
UC Berkeley
UC Berkeley Previously Published Works

Title
New Mechanism for Voltage Induced Charge Movement Revealed in GPCRs - Theory and 
Experiments

Permalink
https://escholarship.org/uc/item/7k74v4fm

Journal
PLOS ONE, 5(1)

ISSN
1932-6203

Authors
Zohar, Assaf
Dekel, Noa
Rubinsky, Boris
et al.

Publication Date
2010

DOI
10.1371/journal.pone.0008752
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7k74v4fm
https://escholarship.org/uc/item/7k74v4fm#author
https://escholarship.org
http://www.cdlib.org/


New Mechanism for Voltage Induced Charge Movement
Revealed in GPCRs - Theory and Experiments
Assaf Zohar1., Noa Dekel1., Boris Rubinsky2, Hanna Parnas1*

1 Department of Neurobiology, Hebrew University, Jerusalem, Israel, 2 School of Computer Science and Engineering, Center for Bioengineering in the Service of Humanity

and Society, Hebrew University, Jerusalem, Israel

Abstract

Depolarization induced charge movement associated currents, analogous to gating currents in channels, were recently
demonstrated in G-protein coupled receptors (GPCRs), and were found to affect the receptor’s Agonist binding Affinity,
hence denoted AA-currents. Here we study, employing a combined theoretical-experimental approach, the properties of
the AA-currents using the m2-muscarinic receptor (m2R) as a case study. We found that the AA-currents are characterized
by a ‘‘bump’’, a distinct rise followed by a slow decline, which appears both in the On and the Off responses. The cumulative
features implied a directional behavior of the AA-currents. This forced us to abandon the classical chemical reaction type of
models and develop instead a model that includes anisotropic processes, thus producing directionality. This model fitted
well the experimental data. Our main findings are that the AA-currents include two components. One is extremely fast,
*0:2ms, at all voltages. The other is slow, 2{3ms at all voltages. Surprisingly, the slow component includes a process which
strongly depends on voltage and can be as fast as 0:3ms at z40mV . The reason that it does not affect the overall time
constant of the slow component is that it carries very little charge. The two fast processes are suitable candidates to link
between charge movement and agonist binding affinity under physiological conditions.
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Introduction

Voltage gated channels were shown to exhibit charge movement

associated currents, gating currents (GCs), already more than 30

years ago [1]. Since then, an overwhelming amount of experimental

data was accumulated [2–6]. This data supplemented by mathemat-

ical models [7–10] indicates that voltage induced reorientation of

electric charge within the channel protein produces a conformational

change in the protein which leads to channel opening.

G-protein coupled receptors (GPCRs) are the largest family of

proteins in the living cell and they mediate most signal

transduction processes; the first step being binding of an agonist.

Although being transmembrane proteins, they were not consid-

ered to be able to sense changes in membrane potential. Recently,

however, it was found that several GPCRs exhibit voltage

sensitivity where voltage modulates their agonist binding affinity

[11,12]. Even more dramatic was the finding that GPCRs, like

channels, display depolarization induced charge movement

associated currents. Furthermore, a tight correlation was found

between the charge that moves and the fraction of receptors that

undergo a change in binding affinity at any membrane potential

[13]. Because in GPCRs, the charge movement associated

currents lead to alteration of the Agonist binding Affinity we

denote these currents AA-currents.

Aiming at unraveling the mechanism that underlies the voltage

induced change in agonist binding affinity we developed here a

combined theoretical-experimental approach to study the properties

of the putative voltage sensor(s), taking the m2-muscarinic receptor

(m2R), a prototypical GPCR, as a cases study. We found that the AA-

currents include two components. One is in the tenth of millisecond

range and the other is slow, 2{3ms. However, the slow component

includes a fast constituent which is also in the tenth of millisecond

range and carries very little charge. The two fast constituents are

suitable candidates to link between charge movement and agonist

binding affinity under physiological conditions.

Materials and Methods

Preparation of cRNA and Oocytes
cDNA plasmid of m2R was linearized and transcribed in vitro as

described [14]. Xenopus oocytes were isolated and incubated in NDE

solution composed of ND96 (in mM: 96 NaCl, 2 KCl, 1 CaCl2, 1
MgCl2, 5 HEPES-NaOH pH 7:5) with the addition of 2:5mM
Naz pyruvate, 100units=ml penicillin, and 100mg=ml streptomy-

cin. A day after their isolation, the oocytes were injected with 50nL
of the m2R cRNA, at 100ng=mL. The oocytes were maintained at

180C in NDE for 3{6 days before currents measurements.

Cut-Open Oocyte Voltage Clamp Setup
AA-currents recordings were performed with a CA-1B amplifier

(Dagan, Minneapolis), as described [13,15]. Voltage commands were

generated by using PCLAMP8 software (Axon Instruments, Union
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City, CA), a personal computer and a DigiData 1322A interface

(Axon Instruments). Recording were performed at room tempera-

ture, unless specified otherwise. Data was sampled at 50KHz and

filtered at 5KHz. Linear leak and capacitive currents were

compensated by analog circuitry and online subtraction employing

the pulse(P)=8mV protocol from a holding potential of z40mV
[16]. That is, administrating 1=8 of the test pulse amplitude from a

holding potential where no charge movement was observed

(z40mV ). Then, subtracting the currents obtained from 8 such

pulses from the test pulse current. The external solution contained (in

mM) 115 N-methyl-D glucamine (NMDG)-methanesulphonate

(NMG-MES), 2 CaCl2, 20 HEPES, pH 7:5. The internal solution

was similar but did not contain CaCl2 and contained 2mM EGTA.

Statistical Evaluation
Significance was checked by Student’s two-tailed or one-tailed t

test. Results are given as mean + SD.

Numerical Simulations and Parameters Estimation
All the numerical operations were done using Matlab 7. The

equations of the kinetic models were implemented in Matlab and

were solved using stiff differential equations variable order

method. Fitting eqs. 13 and 14 to the experimental AA-currents

recordings was done using the curve fitting toolbox. Parameters

optimization was done using multidimensional unconstrained

nonlinear minimization method.

Results

Characteristic Features of the AA-Currents
Using the cut-open oocyte voltage clamp setup [15], we

measured AA-currents in m2R expressing Xenopus oocytes. As

seen, for the experimental protocol exhibited in Figure 1A

(administrating 40ms depolarizing pulses of various amplitudes

from a holding potential of {120mV , denoted standard

protocol), the m2R AA-currents exhibit the following character-

istic features: (i) The predominant feature is the ‘‘bump’’, a

complex behavior of a rather fast rise followed by a slow decay

which appears both in the On and the Off responses. When

existing it always follows the initial fast decay. (ii) In the On

responses, the bump is clear at {70mV , less apparent at {40mV
and completely disappears at more positive potentials. (iii) In the

Off responses, the bump always appears irrespective of the level of

the depolarizing pulse. Furthermore, the normalized responses

overlap (Figure 1B). For comparison, the GCs in channels

(Figure 1C) show a fundamental different behavior. Specifically,

the bump does not characterize the GCs, it rather seems as an odd

phenomenon appearing only at very specific conditions; in the Off

response of {8mV (Figure 1C). Another important difference is

that, in contrast to the AA-currents, the Off responses do not

overlap. Rather, the behavior of the Off responses depend on the

level of the depolarizing pulse.

Because the bump is a predominant feature of the AA-currents,

we designed experiments to check whether the bump is not an

artifact but rather an intrinsic feature of the AA-currents. The AA-

currents seen in Figure 1A were obtained by subtracting the linear

capacitive currents from the total currents [15]. It is, however,

possible that residual AA-currents still occur at the voltages used to

asses the linear capacitive currents, hence an artificial bump is

seen. To check for this possibility, we employed the P=8mV
subtraction protocol from three holding potentials (z20, z30 and

z40mV ), all at the saturated region of the curve that describes the

dependency of the charge that moves on depolarization (see later ).

Figure 2A shows that the kinetics of the AA-currents (normalized

each to the peak amplitude of its fast component) is similar in the

Figure 1. Characteristic features of AA-currents and GCs. (A) AA-currents recorded from m2R expressing oocytes following 40ms depolarizing
pulses to the indicated potentials from a holding potential of {120mV , notice the different scales. The arrows in (A) indicate the bumps observed in
the AA-currents. Upper panel - the experimental protocol. Symmetric capacitive currents were subtracted by using pulses of P=8mV from a holding
potential of z40mV . (B) Superposition of the results in (A) where each graph is normalized to the peak amplitude of its fast component. (C)
recordings of GCs from oocytes expressing the Shaker Kz channel, taken with permission from Bezanilla et al. [7], notice the different scales.
doi:10.1371/journal.pone.0008752.g001
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three subtraction holding potentials. In particular, the time

constants of the fast decay, the slow decay and the rise of the

bump obtained by fitting the AA-currents to a three exponential

function, are not much affected by the subtraction holding

potential (Figure 2B–D). Employing even more positive potentials

for subtraction is problematic as it leads to opening of intrinsic

voltage-dependent Kz channels [17,18]. Using holding potentials

that are more negative than {120mV are also problematic

because of hyperpolarization-activated Cl{ channels [18,19]. The

quantitative features of the bump are not affected even if the only

ions existing in the recording system, i.e., Ca2z and Cl{, are

replaced by Ba{Acetate (Figure S1).

To further challenge our conclusion that the observed bump is

an intrinsic feature of the AA-currents, we examined the

dependency of the AA-currents kinetics on temperature. We

focused on the Off responses where the bump always occurs. We

expect that the Q10 of the various time constants of the AA-

currents, including that of the bump, will be in the range

previously found for GCs in channels, i.e., 1:2vQ10v4:5 [20].

Figure 3A shows representative AA-currents recorded at 10oC
and 20oC. As seen, the Off bump flattened at 10oC compared

with 20oC. Average of 36 recordings showed that the bump

amplitude was reduced by 1:5 fold (pv0:01) and the average time

to peak of the bump was prolonged from 3:7+0:2ms to

4:4+0:5ms (pv0:01) when the temperature was reduced to

10oC. The various time constants of the Off responses

(Figure 3B–D) were calculated by fitting the currents to a three

exponential function. The time constants of the fast decay, the

slow decay and the rise of the bump were increased by 1:3, 1:6
and 2:2 fold respectively when the temperature was reduced to

10oC (pv0:01).

Guide Lines in Developing a Mathematical Model for the
AA-Currents

To obtain a bump, a minimum of two sequential transitions is

required [21]. Accordingly, a minimal model that will produce a

bump will be,

(1)

For the model in scheme 1 to actually produce a bump two

additional requirements must be met. (a) the parameters should

guarantee that the 2nd transition (C'D in the On response and

C'B in the Off response) will produce most of the measured AA-

currents. For further details and means to achieve (a) see Text S1,

Eqn S6. (b) Before administration of the depolarizing pulse the

receptors need to populate mainly state B while at the end of the

depolarizing pulse the receptors need to populate mainly state D.

This guarantees a delay in populating state C.

In order to account for the fast component seen in Figure 1A,

an additional transition needs to be added either sequentially

(scheme 2) or in parallel (scheme 3).

Figure 2. The effect of the subtraction holding potential on the
AA-currents kinetics. The AA-currents were subtracted by using
P=8mV from a holding potential of z20mV (i), z30mV (ii) and
z40mV (iii). (A) Left panel, On currents elicited following 40ms
depolarizing pulse from {120mV to {70mV . Right panel, Off currents
elicited in the return to the holding potential ({120mV ). The graphs
are normalized, each to the peak amplitude of its fast component. (B)
Time constants of the fast component of the AA-currents. (C) Time
constants of the slow component of the AA-currents. (D) Time
constants of the bump rising phase. The results in B, C and D are
presented as mean +SD (n = 5–60).
doi:10.1371/journal.pone.0008752.g002

Figure 3. Effect of temperature on AA-currents kinetics. (A)
Currents recorded at two temperatures, 10oC, left panel and 20oC, right
panel following 40ms depolarizing pulses to the indicated potentials
from {120mV . Arrows indicate the bump in the Off responses. B–D,
time-constants of various features of the Off responses. (B) Time
constants of the fast component. (C) Time constants of the slow
component. (D) Time constants of the bump rising phase. The results in
B, C and D are presented as mean +SD (n = 36).
doi:10.1371/journal.pone.0008752.g003
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(2)

Scheme 2 can account for feature (ii) and partially for feature

(i), but fails to produce feature (iii) of the AA-currents(see Figure

S2A). The failure to produce feature (iii) stems from the following.

The Off response depends heavily on the occupancies of the

various states at the end of the depolarizing pulse. In particular,

following a high pulse, mainly state D will be populated. Hence,

the Off response will begin with the slow transition D?C and will

lack the initial fast component. In contrast, following a low pulse

mainly states A and B will be populated. Hence, the Off response

will show a fast decay but will lack a bump altogether. Depending

on the pulse amplitude we will observe behaviors which vary

between the two extreme cases, as seen for channels (Figure 1C).

To ensure that the Off response will always exhibit an initial fast

component independently of the pulse amplitude we modified the

sequential model (scheme 2) to become a parallel model (scheme

3). Here, the fast component occurs in parallel to the slow one.

(3)

Indeed, this model accounts for the fast decay that precedes the

bump in the Off responses (part of feature (i)). However, similar to

the model in scheme 2, it fails to consistently produce a bump in

the Off response (Figure S2B).

An additional model that was designed to produce a rising

phase, hence a bump, is a pair of interacting charges that undergo

spatial diffusion along a bi-stable potential of mean force [22].

This model was simplified to a 4 state cyclic Markovian model as

depicted in scheme 4 where we assign similar symbols as before to

the various states. Without loss of generality we assume that during

the On response the receptors shift from state B to state E while

the opposite occurs during the Off response.

(4)

However, such a model, under the constraint of microscopic

reversibility, can produce a prominent bump but only either in the

On or the Off responses (Figure S3). Hence it cannot account for

feature (i) characterizing the AA-currents.

The AA-Current Model
What do we learn from the former models? Because the parallel

model (scheme 3), but not the sequential one (scheme 2), accounts

for an initial fast component followed by a slow one both in the On

and the Off responses we retain in the final model the property

that the fast component occurs in parallel to the slow one.

Regarding the slow component, it must involve two transitions

occurring in sequence in order to produce a bump. But, because

the sequential part of the previous schemes does not guarantee a

consistent depolarization independent bump in the Off responses

the two transitions must occur in parallel rather than sequentially.

Reconciliation of the two contradicting requirements; i.e., the two

transitions occurring in parallel and in sequence, is achieved as

follows. The slow component is now composed of two parallel

transitions. The first transition, R1'R2, is faster than the second

transition C'D. The second transition is coupled to the first one

by its voltage dependent rate constants being also dependent on

the receptor configuration, R1 or R2. Such a model generates

directionality.

The final model of the AA-currents is presented in scheme 5

and Eqn 6.

(5)

To ensure that the transition C?D (On response) will indeed

follow the transition R1?R2, the rate constant for the transition

C?D must be small when the receptor is in R1 and large when in

R2. Similarly, to ensure that the transition D?C (Off response)

will indeed follow the transition R2?R1 the rate constant for the

transition D?C must be small when the receptor is in R2 and

large when in R1. Accordingly,

(6a)

(6b)

To obtain dC=dt we need to provide a quantitative description

for k̂kz(R,V) and k̂k{(R,V ). Following scheme 5 we notice that the

receptor can be in one of four complex states; R1 and C; R1 and

D; R2 and C and R2 and D. Thus, the fraction of receptors that

will transit from state C to D with the rate constant k3(V ) (Eqn 6a)

will be the fraction of receptors that are in the complex state of R1

and C. Because the R states are independent of state C(D)

Charge Movement in GPCRs
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(scheme 5), this fraction equals R1=RT|C=RT , where RT is the

amount of total receptors. To transform from fractions to amount

of receptors the fraction of receptors at the complex states needs to

be multiplied by RT . Accordingly,

dC

dt
~RT| {k3(V )|

R1

RT

|
C

RT

zk{3(V )|
R1

RT

|
D

RT

��
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Eqn6a

zRT| {k4(V )|
R2

RT

|
C

RT

zk{4(V )|
R2

RT

|

�
D

RT

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Eqn6b

ð7Þ

Rearrangement of Eqn 7 provides,

dC

dt
~{ k3(V )

R1

RT

z

�
k4(V )

R2

RT

�
|C

z k{3(V )
R1

RT

z

�
k{4(V )

R2

RT

�
|D

ð8Þ

Recalling that the transitions R1'R2 do not depend on

whether the receptor is in state C or D, we obtain,

dR1

dt
~{k2(V )|R1zk{2(V )|R2 ð9Þ

For completion of the model equations, Eqn 10 describes the

fast component,

dA

dt
~{k1(V )|Azk{1(V )|B ð10Þ

The model differential equations obey the following conserva-

tion law,

RT~AzB~R1zR2~CzD ð11Þ

Thus, the AA-currents model is given by Eqn 8–11. And the

total AA-currents (I ) are given by the sum of the effective charges

(the valence of the charge times the fraction of the electric field it

traverse) carried by transitions A'B, R1'R2 and C'D. Thus,

I(t)~{q1|
dA

dt
{q2|

dR1

dt
{q3|

dC

dt
ð12Þ

Where q1, q2 and q3 are the effective charges carried by

transitions A'B, R1'R2 and C'D respectively.

Parameters Estimation
To obtain an initial estimation of the various rate constants we

aimed at achieving an analytical solution for the AA-currents. This

became possible by simplifying scheme 5. Based on Eqn 6 we

neglected k3(V ) and k{4(V ). Furthermore, because k{3(V )
decreases with depolarization and increases with hyperpolarization

while the opposite occurs for k4(V ) we neglected k{3(V ) and

k4(V ) during the On and Off responses respectively. The

analytical solution is given by (for further details see Text S1,

Eqn S17–S20),

I~ X (V )exp({l 1(V )t)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
transitions A'B

z Y (V )exp({l 3(V )t)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
transitions R1'R2

z Z(V )|(exp({l 2(V )t){exp({l 3(V )t))|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
transitions C'D

ð13Þ

Where X (V ) is composed of the effective charge carried by

transitions A'B and of the rate constants of these transitions.

Y (V ) is composed of the effective charge carried by transitions

R1'R2 and of the rate constants of these transitions. Z(V ) is

composed of the effective charge carried by transitions C'D and

of the rate constants of transitions R1'R2 and C'D. The

exponents l1(V ), l2(V ) and l3(V ) are defined as the sums

k1(V )zk{1(V ), k{3(V)zk4(V ) and k2(V )zk{2(V ) respec-

tively (for further details see Text S1, Eqn S19).

The solution of Eqn 13 showed good agreement with the

experimental results of Figure 1A (Figure S4A). It is satisfying to

note that the parameters estimated from Eqn 13 corroborate the

requirement of condition (a) above, necessary for a bump to be

produced, that the contribution of transitions R1'R2 to the AA-

currents is negligible, i.e., it is a ‘‘hidden’’ transition (see Figure

S4B). Neglecting this charge, Eqn 13 is further simplified to

become,

I~ X (V )exp({l 1(V )t)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Fast component

z Z(V )|(exp({l 2(V )t){exp({l 3(V )t))|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
slow component

ð14Þ

The initial set of parameters was obtained by fitting Eqn 14 to

the experimental results. The rate constants were estimated from

the corresponding exponents in Eqn 14, i.e., l1(V ), l2(V ) and

l3(V ), employing exponential voltage dependency as described in

Bezanilla et al. [7]. The effective charges carried by transitions

A'B and C'D were estimated from X (V ) and Z(V )
respectively using the already estimated rate constants.

Finally, the full model (scheme 5 and Eqn 6) was solved

numerically and the initial values were adjusted (for most

parameters no more than 15% change was required) such as to

obtain best fit to the experimental results. Specifically, we used

unconstrained nonlinear optimization method using the initial

parameters estimation as an initial value. The final values of the

parameters are given in Table S1.

Use of the Model to Characterize the Properties of the
AA-Currents

We begin by contrasting the model and the estimated

parameters (Table S1) with experimental results employing the

standard protocol. For both, normalized average results with SD

are provided. The normalized average of the simulation results

was obtained as follows. Parameters were estimated for each of five

individual oocytes. Then, five simulations of the AA-currents

corresponding to the five sets of parameters were conducted.

Finally each simulation was normalized to the peak amplitude of

the fast component of its corresponding experimental result. This

was done to contrast both the simulations kinetics and amplitude

with the experimental currents. Then, as for the experiments, the

Charge Movement in GPCRs
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average of the simulation results was found. Figure 4 shows that

the simulations (gray lines) and the experiments (black lines) match

very well both in the On and the Off responses. Also seen that the

model successfully accounts for the characteristic features of the

AA-currents (i–iii above).

To further characterize the behavior of the AA-currents we

need to estimate the time-constants of each component and the

dependency of the charge that moves by each component on

voltage (Q{V ). A straightforward approach to evaluate the

experimental time-constants would be by fitting the results to a

double exponential decay function [7]. This procedure is not

efficient in the present case due to the existence of a prominent

bump. Because Eqn 14, a sum of three exponents, was shown to

faithfully describe the experimental results (Figure S4C), we

evaluated the time-constants of the fast component and that of the

two constituents of the slow component from this equation.

Figure 5A shows that the time-constant of the fast component

(filled circles) is around 0:2ms and depends only weakly on voltage.

The time-constant of the slow constituent of the slow component

(filled diamonds) exhibits a parabolic dependency on voltage with

values ranging between 2 to 3ms. The surprising behavior

concerns the time-constant of the other constituent of the slow

component (filled triangles); It exhibits strong voltage dependency

ranging from 3ms at {100mV to around 0:3ms at z40mV .

The time-constants of the various components can be also

evaluated from the model. Here, the time-constant of the fast

component corresponds to transitions A'B. The time-constant of

the slow constituent of the slow component corresponds to

transitions C'D and the fast constituent of the slow component

corresponds to transitions R1'R2. It can be seen that the time-

constants evaluated from the model (Figure 5A, open symbols)

match well the experimental ones.

Because transitions R1'R2 carry insignificant fraction of the

charge, these transitions cannot be detected experimentally.

Incorporating transitions R1'R2 into the model was necessary

for generation of the directionality required to account for the

bump observed in the On and the Off responses. It is thus

important to examine whether the characteristic properties of the

transitions R1'R2 (insignificant charge and strong voltage

dependency) are indeed essential. We show in Figure S5 that if

these transitions carry charge larger than 20% of the charge

carried by transitions C'D or if they show weak voltage

dependency the model fails to show a bump.

To evaluate how much charge is carried by each component we

show in Figure 5B their respective Q{V curves. We see that as for

the kinetics, the model also describes well the steady-state features

of the AA-currents. The total charge (integral of the total current)

shows a characteristic sigmoid shape. Also seen (extracted from

Eqn 14) is that the slow component carries most of the charge

(70%). The Q{V curve of the fast component, which is controlled

by the transition A?B, lacks the characteristic initial plateau

(Figure 5C, squares), implying that a significant fraction of A
shifted to B already at voltages lower than {120mV , which could

imply that this transition is physiologically irrelevant. Indeed,

when k1 and k{1 depend exponentially on voltage (Figure 5C,

black lines) we find that already at {120mV more than 60% of

the receptors are at state B (Figure 5C, gray lines). Due to the

physiological importance of this issue and because the estimation

of the rate constants was performed with the constraint of

exponential voltage dependency [7], we re-estimated the param-

eters but now relaxing this constraint. The parameters obtained

from this fit are summarized in Table S2. Surprisingly, although

no constraints were employed, the rate constants k1 and k{1

exhibit a sigmoid voltage dependency (Figure 5D, black lines)

while the rest of the rate constants maintained the exponential

voltage dependency.

Figure 5. Comparing average (n = 5) simulation and experi-
mental results employing the standard protocol. (A) Time
constants of the various transitions, A'B (circles), R1'R2 (triangles)
and C'D (diamonds). Here and below, open symbols correspond to
the model and filled symbols to the experiments. (B) Q{V curves of
the total charge (diamonds), the fast component (squares) and the slow
component (triangles). (C) and (D) Average occupancies of the fast
component states A and B (gray lines), the values of k1(V ) and k{1(V )
(black lines) and the simulated normalized charge carried by the fast
component (squares). In (C) the rate constants were estimated under
the constraint of exponential dependency on voltage [7], while in (D)
the rate constants were estimated after relaxing this constraint (Table
S1 and Table S2 respectively).
doi:10.1371/journal.pone.0008752.g005

Figure 4. Comparing simulation and experimental results
employing the standard protocol (40ms pulse duration,
{{{120mV holding potential). Average +SD (n = 5) currents at
indicated depolarizing pulses, model, gray lines, experiments, black
lines. The experimental currents are normalized, each to the peak
amplitude of its fast component and the simulations are normalized,
each to the peak amplitude of the corresponding experimental fast
component (see text for details).
doi:10.1371/journal.pone.0008752.g004
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Figure S6 depicts a comparison between the experiments and

the simulations employing unconstraint parameters. It is seen that

the fit to experimental results is even better than the very good fit

obtained with the constraint parameters. However, in contrast to

the behavior with the constraint parameters, the transitions A'B

exhibit significant voltage dependency under the physiological

range of the action potential (Figure 5D, gray lines). Specifically, at

membrane potential of {120mV more than 90% of the receptors

are at state A while at membrane potential of z40mV more than

90% of the receptors are at state B. Furthermore, under these

conditions the Q{V curve of the fast component exhibits the

characteristic initial plateau (Figure 5D, squares).

Further Experimental Validation of Key Assumptions of
the Model

So far we have shown that the model fits well various aspects of

the experimental results. We, nevertheless, wish to further test the

model by examining whether its key assumptions can be validated

experimentally. To do so, we first examine how the model

generates the characteristic features of the AA-currents.

What generates the bumps in the On responses? Recalling Eqn

6, it is the transition C?D employed with the rate constant k4(V )
(receptors that are at state R2) which is expected to form the bump

during the On response. Indeed, the occupancy of the receptors

that are both at state C and R2 (denoted C|R2) shows a bump

like behavior (Figure 6, left panel). Comparing the time to peak of

C|R2 to that of the bump at the same voltage (Figure 4,

{70mV ) we find that they match. The rising phase of the bump is

thus controlled by the transitions R1'R2.

Why is the bump in the On response detected only at low

depolarizations? Examining the time course of the fast transition

A?B at z40mV (Figure 6, lower panel) and at {70mV

(Figure 6, upper panel), we find that the two are very similar. In

contrast the transition R1?R2 is much faster at z40mV than at

{70mV (0:3 and 2ms respectively). Therefore, although a bump

is formed both at {70mV and at z40mV , it will be detected only

at {70mV because at z40mV it merges with the fast transition

A?B.

Why is the bump in the Off response always observed

irrespective of the depolarizing pulse? In the Off response it is

the occupancy of D|R1 which correlates with the bump (Figure 6,

right panel). As seen, the time to peak of the bump, which is

governed by the transition R2?R1, is very similar at both

{70mV and z40mV . This is because the slow time constant of

the transition R2?R1 corresponds to {120mV (the holding

potential). At the same time, the fast component, whose rate

constant also corresponds to {120mV , remains fast. Consequent-

ly, the bump is distinct from the fast component at all voltages.

To test the above conclusion experimentally, we employed a

‘‘reverse’’ protocol. That is, we now administered pulses which are

below {80mV from a holding potential of z40mV . We expect to

see a bump during the On response for all these pulses. Upon

return to the holding potential of z40mV (now the Off response)

we expect a double exponential decay. Figure 7A shows that these

predictions are fully met. The Q{V curve of the reverse protocol

is given in Figure 7B. It is seen that the model predictions (gray

lines) match extremely well both the kinetics (Figure 7A) and the

steady-state (Figure 7B) results. Since the model parameters were

estimated from the standard protocol, the excellent match between

the model and the reverse protocol results provides further support

to the model.

Providing support to the notion that transitions R1'R2 govern

the bump, we now test the notion that the rate constants of these

transitions depend strongly on voltage. To do so, we will repeat the

experiment of Figure 1A but with a brief pulse instead of the

standard 40ms pulse and will focus on the Off response. The

rational underlying such experiments is as follows. The Off response

will be measured because the bump during the Off response

depends on the fraction of receptors that populate states D and R2

at the end of the On response. We recall that the time constant of

the transitions R1'R2 is *3ms at low depolarizations, but it is

v1ms at high depolarizations. Thus, with a 3ms pulse we expect to

see almost no bump at low depolarizations and a prominent bump

at high ones (Figure 8A, left panel). Figure 8A, right panel, shows

that these predictions are fully met by the experimental results. As

expected, following a pulse of 1ms (shorter than the time constant of

transitions C'D) no bump is formed at any voltage. Figure 8B

depicts the Q{V curves of the various pulse durations normalized

to that obtained following 40ms pulse. As seen, the model also

accounts for the steady-state behavior of the short pulses.

Figure 6. How the model generates the AA-currents features.
Occupancies of relevant states of the model during the On (left column)
and the Off (right column) responses employing the standard protocol.
The simulation results were obtained using the unconstraint parame-
ters (Table S2).
doi:10.1371/journal.pone.0008752.g006

Figure 7. Kinetics of the AA-currents and Q{{{V curves
employing the reverse protocol. (A) Kinetics of the experimental
and simulation results. The currents are normalized as describe in
Figure 4. Here and in B, experiments, black lines and simulations gray
lines. (B) Q{V curves of the total charge. Experimental and simulation
results are presented as mean +SD (n = 5). The simulation results were
obtained using the unconstraint parameters (Table S2).
doi:10.1371/journal.pone.0008752.g007
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Furthermore, because following the 1ms pulse only the fast

component occurred, this result further supports the conclusion

that the fast component carries only 30% of the charge (Figure 5B).

Discussion

We examined several models to their ability to account for the

main characteristic features of the AA-currents. We found that

only a non-linear model with rate constants that guarantee

directionality can match the experimental results.

Conventional modeling of chemical reactions employ the Curie

theorem which states that forces of one tensorial order cannot

couple with fluxes of a different order. In the Curie theorem sense

the affinity of a chemical reaction which is a scalar cannot couple

with a vector such as the transition of a carrier from one side of the

membrane to the other. In that sense a chemical reaction cannot

drive a directional process, it can only cause activation or

deactivation of a carrier. This concept is also closely tied to the

concept of thermodynamic equilibrium. Conventional chemical

reactions represent states of thermodynamic equilibrium. On the

other hand the flux of a species cannot be, by definition, in a state

of thermodynamic equilibrium. Therefore, conventional chemical

reaction formulations of equilibrium are not rigorously correct

when describing a vectorial process.

In our study we have encountered a situation in which there is a

directional flux of electrical charges, i.e., a vectorial process that is

not in a state of thermodynamic equilibrium. The bump pattern

which we have observed (Figure 1A) involves a process that is

clearly not in thermodynamic equilibrium and has directionality.

Indeed attempts to employ conventional chemical reaction

equilibrium formulations to describe the process failed. Therefore

we used a new constitutive type of formulation in which we

imposed a vectorial behavior to the process. It has been proposed

[23] that anisotropy can act as a universal feature of vectorial

couplings, the Curie theorem notwithstanding. We adopted this

concept in Eqn 6. We showed that the constitutional anisotropic

representation could indeed represent the experimentally observed

process. Since the only fundamental thermodynamic criteria that

constitutive relations must satisfy are the laws of conservation, we

have checked conservation of mass and have shown that the new

formulation satisfies conservation of mass (Eqn 11).

Which of the AA-currents components could be responsible for

the observed [11–13] voltage induced agonist binding affinity

change? We previously showed [13], regarding the m2R, a tight

correlation between the dependence of the charge that moves on

voltage (Q{V ) and the dependence of the fraction of receptors in

low affinity state on voltage (RL{V ), suggesting that it is the

charge that moves that drives the change in the GPCR’s binding

affinity. Under physiological conditions the voltage induced

change in binding affinity is expected to be produced by the brief

(*1ms) action potential. Indeed this was shown to be the case for

release of acetylcholine [24] and glutamate [25] from nerve

terminals. Therefore, the two fast components, one from the fast

voltage sensor and the hidden one from the slow voltage sensor,

exhibit an appropriate time constant (faster than 1ms). The fast

voltage sensor is a natural candidate. This is because we showed

here that this fast component contributes 30% of the total charge

that moves. Hence, it could play a major role in relaying charge

movement to changes in conformation of the receptor and as a

result change in binding affinity. The situation is different

regarding the fast component of the slow voltage sensor (the

transitions R1'R2), which does not display significant charge

movement. Therefore, at first sight, this component is not

expected to play a role in relaying charge movement to changes

in conformation of the receptor. The question is then whether this

fast component, whose rate constants strongly depend on voltage,

can nevertheless be responsible for change in binding affinity. We

argue that this could well be the case. It had been suggested

regarding class A GPCRs (to which the m2R belongs) that a

network of salt bridges forms an ionic lock that is disrupted during

receptor activation [26–30]. It is thus quite possible that the

transitions R1'R2 represent a voltage dependent break of a salt

bridge, hence the strong voltage dependency of the rate constants.

This break, in turn, could cause a chain of conformational changes

in the receptor resulting in changes in agonist binding affinity.

Our data is too preliminary to suggest a biophysical mechanism

for the charge movement in GPCRs. However, it is possible that

the main difference in the kinetics of GCs in channels and AA-

currents in GPCRs stems from the lack of voltage dependent break

of a salt bridge in the former.

Supporting Information

Text S1 The supporting information text and equations.

Found at: doi:10.1371/journal.pone.0008752.s001 (0.11 MB

PDF)

Figure S1 The effect of the ions present in the external solution

on the kinetics of the AA-currents. On and Off currents elicited in

Figure 8. The effect of pulse duration on the characteristics of
the AA-currents. (A) Experimental (right panel) and simulation (left
panel) results employing the standard protocol with pulse duration of
40ms (black lines), 3ms (dark gray lines) and 1ms (light gray lines). The
currents are normalized as describe in Figure 4. (B) Corresponding
Q{V curves of the total charge, pulse durations of 40ms (diamonds),
3ms (squares) and 1ms (triangles), experimental (black lines) and model
(gray lines). Experimental and average simulation AA-currents are
presented as mean (A) or mean +SD (B) (n = 5). The simulation results
were obtained using the unconstraint parameters (Table S2).
doi:10.1371/journal.pone.0008752.g008
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the m2R expressing oocytes following 40ms depolarizing pulses to

the indicated potentials from 2120mV. Standard external solution

(black lines, see Methods) and when 2mM of CaCl2 was replaced

by 2mM of Ba-Acetate (gray lines). The graphs are normalized,

each to the peak amplitude of its fast component and are presented

as mean 6SD (n = 4–9).

Found at: doi:10.1371/journal.pone.0008752.s002 (0.06 MB TIF)

Figure S2 AA-currents predicted by the sequential (scheme 7)

and the parallel (scheme 8) models employing the standard

protocol to the indicated potentials, (A) and (B), respectively. The

Off AA-currents predicted by the slow component of the parallel

model (scheme 8) are depicted in the inset of (B). The graphs are

normalized, each to the peak amplitude of its fast component. The

pulse protocol is presented on top.

Found at: doi:10.1371/journal.pone.0008752.s003 (0.13 MB TIF)

Figure S3 AA-currents predicted by the cyclic model (scheme 9).

Computed AA-currents employing 40ms depolarizing pulse to

270mV from a holding potential of 2120mV. The model was

assigned with parameters that satisfy the conditions in Eqs. 15 and

16 and microscopic reversibility. Inset - the initial phase of the Off

response.

Found at: doi:10.1371/journal.pone.0008752.s004 (0.09 MB TIF)

Figure S4 Fitting of Eq. 20 and 21 to the experimental AA-

currents recordings. (A) AA-currents recordings from m2R

expressing oocytes employing the standard protocol (black lines)

superimposed with the three exponential fitting function, Eq. 20

(gray lines). (B) The total charge (circles) and the charge carried by

the transitions A«B (triangles), R1«R2 (diamonds) and C«D

(squares). (C) AA-currents recordings from m2R expressing

oocytes employing the standard protocol (black lines) superim-

posed with the three exponential fitting function, Eq. 21 (gray

lines). (D) Separate plot of the fast and the slow components,

solutions were obtained from the same equation (Eq. 21) that was

used to fit the experimental results seen in (C). Black lines

represent the fast component (Xexp(2l1t)) and gray lines

represent the slow component (Z6(exp(2l2t)2exp(2l3t))).

Found at: doi:10.1371/journal.pone.0008752.s005 (0.26 MB TIF)

Figure S5 Examining the behavior of transitions R1«R2. (A)

Predicted AA-currents following 40ms depolarizing pulse to

270mV from holding potential of 2120mV. The three simula-

tions differ in the value that was assigned to the effective charge

carried by transitions R1«R2. The values were 0, 20 and 40% of

the effective charge carried by the transition C«D (blue, green

and red lines respectively). Here and below, the graphs are

normalized each to the peak amplitude of its fast component. (B)

Predicted AA-currents following 40ms depolarizing pulse to

+20mV from holding potential of 2120mV. The three simulations

differ in the time constant that was assigned to transition R1«R2

at +20mV. The time constants were: 0.134ms (the time constant

that was used throughout, blue line) and 5 and 10 times slower

(green and red lines respectively). (C) Predicted AA-currents

following 40ms depolarizing pulse to 270mV from holding

potential of 2120mV. The three simulations differ in the time

constant that was assigned to transition R1«R2 at 270mV. The

time constants were: 1.9ms (the time constant that was used

throughout, blue line) and 5 and 10 times faster (green and red

lines respectively). The model simulation results were obtained

using the unconstraint parameters (Table S2).

Found at: doi:10.1371/journal.pone.0008752.s006 (0.06 MB TIF)

Figure S6 Comparing average (n = 5) simulation and experi-

mental results employing the standard protocol. (A) Kinetics of

AA-currents, experiments, black lines, simulations, gray lines. The

currents are normalized as describe in Fig. 4 (see text). (B) Time

constants of transitions A«B (circles), R1«R2 (triangles) and

C«D (diamonds). In all, open symbols correspond to simulations

while filled symbols correspond to experiments. (C) Q–V curves of

the total charge and the fast and slow components. Diamonds,

total Q–V, triangles, Q–V of the slow component and squares, Q–

V of the fast component. In all, open symbols correspond to the

model and filled symbols to experiments. The parameters were

estimated after relaxing the constraint of exponential dependency

on membrane potential (Table S2).

Found at: doi:10.1371/journal.pone.0008752.s007 (0.10 MB TIF)

Table S1 List of the parameters and the standard deviations

estimated for the AA-currents model (text, scheme 4).

Found at: doi:10.1371/journal.pone.0008752.s008 (0.03 MB

PDF)

Table S2 List of the unconstraint parameters and the standard

deviations estimated for the AA-currents model (text, scheme 4).

Found at: doi:10.1371/journal.pone.0008752.s009 (0.03 MB

PDF)
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