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Abstract 

Human beings do assess probabilities. Their judgments are 
however sometimes at odds with probability theory. One 
possibility is that human cognition is imperfect or flawed in the 
probability domain, showing biases and errors. Another 
possibility, that we explore here, is that human probability 
judgments do not rely on a weak version of probability 
calculus, but rather on complexity computations. This 
hypothesis is worth exploring, not only because it predicts some 
of the probability ‘biases’, but also because it explains human 
judgments of uncertainty in cases where probability calculus 
cannot be applied. We designed such a case in which the use of 
complexity when judging uncertainty is almost transparent.  

Keywords: Probability, Kolmogorov complexity, simplicity, 
unexpectedness. 

Introduction  
Human beings have a natural intuition of ‘probability’. They 
use it, not only to anticipate risks, but much more often 
when they get the point of narratives based on unexpected 
events (Dessalles, 2008a). For instance, people are very 
good at noticing all factors that control unexpectedness in 
coincidences (Griffiths & Tenenbaum, 2001 ; Dessalles, 
2008b) and in near-miss experiences (Teigen, 2005; 
Dessalles, 2010). Even if unexpectedness does not always 
match the presence of low probability (Teigen & Keren, 
2003; Maguire & Maguire, 2009), the two notions are 
strongly linked, in a way that will be explored here. 

This definite and consistent ability to assess probability 
appears quite mysterious in the light of the many apparent 
‘biases’ that have been revealed in the past decades. For 
instance, people wrongly assign low probability to non-
representative sequences of similar events (Kahneman & 
Tversky, 1972; Tenenbaum & Griffiths, 2001). Let’s 
mention some other errors of judgments: the gambler’s 
fallacy (Terrell, 1994), the base-rate fallacy (Bar-Hillel, 
1980), the conjunction fallacy (Tversky & Kahneman, 
1983) or the simplicity bias in causal explanations 
(Lombrozo, 2007). What kind of computation can be so 
wrong that it fails on basic tests and yet is so precise when it 
comes to judging uncertainty for everyday purposes? 

This issue, quite surprisingly, has not been considered a 
priority. In many psychology experiments, for instance in 
decision theory, probabilities are provided as input to 
participants, with the tacit hypothesis that they are able to 
process them directly. Could it be that judgments of 
uncertainty are spontaneously achieved through a 
fundamentally different form of computation? Could it be 
that probability is no more than a mathematical notion with 
no cognitive counterpart? The purpose of this paper is not to 

solve these issues, but to show that complexity should not be 
ruled out as a candidate to account for uncertainty 
judgments, and that contrary to a common opinion, it is 
cognitively plausible, perhaps no less than probability itself. 

We will first consider the notion of complexity and show 
how it can be turned into a cognitive notion. Then we will 
see how notions like condition, independence and subjective 
probability are reformulated in the framework of Simplicity 
Theory. We will use an example, a story of plagiarism, to 
show that individuals are sensitive to complexity. Lastly, a 
small experiment based on this example will be presented. 
Its purpose is to test some predictions of the theory. 

Cognitive Complexity 
The mathematical notion of complexity, known as 
Kolmogorov complexity, emerged in the last fifty years to 
deal with issues such as randomness, induction in learning 
and computability. The complexity of a situation is the size of 
its shortest summary. Or, in other words, its size when it has 
been maximally compressed. This definition can be made 
formal by coding situations as binary strings and by finding 
computer programs that generate them. The complexity C(s) 
of s is the length of the shortest program that outputs s. 

The transposition to cognitive science seems straightforward 
(Chater, 1999). It is indeed known since Gestalt Theory that 
human individuals are sensitive to simplicity. The use of 
complexity in cognitive science has however been hindered by 
an obvious objection: it is not computable. It is easy to prove 
that no program can output C(s) when s is given as input. Ideal 
compression is well-defined, but cannot be computed. This 
observation led to the conclusion that human minds have no 
access to complexity. Some authors decided to abandon it 
altogether in favour of statistical inference (Griffiths & 
Tenenbaum, 2003), while others attempted to consider 
computable alternative measures of complexity, such as pattern 
complexity or Boolean complexity (Simon, 1972; Feldman, 
2004). We just need, however, to consider a bounded-resource 
version of complexity (Chater, 1999). Human beings do have 
computational power that allows them to detect, for instance, 
pattern repetition. They are therefore able to perform some 
compression on perceived situations. For instance, anyone who 
knows about numbers can detect a pattern in the series 
122333444455555, namely “n repeated n times”, which leads 
to significant compression.1 More generally, any detection of 

                                                           
1 Using concatenation, the series can be written nn, n < 5. This 

is much more compact than the independent specification of 15 
numbers: two instructions (loop and repeat) and an upper limit on 
the one hand, 15log2(10) = 50 bits on the other hand. If we spare 
three bits to designate each instruction in the number sequence 
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structure achieves a compression. Let’s call Ci,t(s) the size of 
the best compression that an individual i has been able to 
produce within time t. This notion is, by definition, computable 
as soon as a computable cognitive model is available. In what 
follows, C(s) will be used to designate Ci,t(s). In this sense, C(s) 
is computable. 

Description vs. Generation 
Links between complexity and probability have been 
noticed from the outset (Solomonoff, 1964). The basic idea 
is that simpler patterns are more probable. Algorithmic 
Information Theory (AIT) offers several definitions of 
algorithmic probability, including p(s) = 2C(s), which 
amounts to converting each complexity bit into the flip of a 
fair coin.2 This definition matches the subjective uncertainty 
attached to explanatory scenarios: complicated explanations 
involving many choice points are perceived as less likely. 

This definition cannot be the answer, however, as 
subjective probability sometimes functions the other way 
around. Lottery draws such as 1-2-3-4-5-6 or 5-10-15-20-
25-30 are intuitively felt as much more improbable than 17-
19-24-35-38-43, not because the former are more complex, 
but on the contrary because they are less complex 
(Dessalles, 2006; Maguire et al., 2013). AIT accounts for 
this effect by introducing a new notion, randomness 
deficiency (Li & Vitányi, 1994). Within the framework of 
Simplicity Theory (ST), randomness deficiency is a special 
case of complexity drop (Dessalles, 2008a).  

Why is improbability sometimes attached to complexity 
(as for causal explanation) and sometimes to simplicity (as 
for lottery draws)? According to ST, unexpectedness does 
not correspond to one measure of complexity, but to the 
difference between two measures of complexity: generation 
complexity and description complexity. The latter matches 
the usual definition of C(s). Note that each individual is 
regarded as a different computing ‘machine’: if a lottery 
draw matches an individual’s telephone number, it will be 
very simple for her, but not for other people. 

Generation complexity, on the other hand, is defined as 
the simplest causal scenario that the individual can figure 
out to explain a situation. In a lottery, all numbers are 
believed to be generated by equally complex causal 
processes. Generation complexity Cw(s) can be measured by 
the number of choice points and the number of options in 
the minimal scenario that generates s. For instance, most 
individuals consider that the presence of a famous actor in 
their kitchen would require a complex causal scenario.3 

                                                                                                  
context, the first code would need only 23+log2(5) < 9 bits.  

2 This definition is sometimes regarded as problematic. If we code 
situations s as numbers ns, then for most situations, C(s)  log2(ns), 
and p(s) =  instead of 1. This problem is avoided, either by 
considering prefix-free codes, or by regarding numbers like 297 and 
2971 as non exclusive (as the latter contains the former). 

3 See www.simplicitytheory.org for further details. The site 
answers some frequently asked questions about ST, including why 
a situation that is the most complex in its class turns out to be 
simple for that reason; or the converse: why a standard object, like 

Note that this definition of generation complexity provides a 
simple notion of independence. Two situations s1 and s2 are 
independent iff Cw(s1&s2) = Cw(s1) + Cw(s2). 

ST defines unexpectedness U(s) as the difference between 
generation and description complexity. 

 U(s) = Cw(s)  C(s). (1) 

This definition is congruent with Teigen and Keren’s 
observation that surprise corresponds to contrasts between 
actual outcomes and expectations (Teigen & Keren, 2003; 
Saillenfest & Dessalles, 2014). Here, expectations correspond 
to Cw(s) and outcomes to C(s). The above definition of 
unexpectedness aims at capturing exactly what people regard 
as surprising, as unlikely, as ‘improbable’ (in the naïve 
sense). The correspondence with probability is explored now. 

Simplicity Theory and Probability ‘Biases’ 
The main hypothesis explored in this paper is that human 
beings, in many judgments about uncertainty, rely on 
unexpectedness rather that on probability. Let’s consider the 
above mentioned ‘fallacies’ in turn to see if they are 
compatible with this hypothesis.  

In the gambler’s fallacy (Terrell, 1994), people are reluctant 
to bet on recently drawn numbers. This behavior is deviant in 
the eyes of Probability Theory (PT). Why would a memory-
less lottery avoid recent numbers? If 571 was drawn four 
weeks ago in a weekly lottery, people behave as if they 
considered the probability that 571 be drawn, not twice at a 
four week distance, but twice within a four week interval. PT 
explains neither the phenomenon nor the ‘within’ hypothesis 
required to account for its fading with time. According to ST, 
gamblers bet on the least unexpected outcome. If 571 was 
recently drawn, it is much simpler to describe than log2(1000)  
10, which is the number of bits required to distinguish among 
the 1000 options in the lottery studied by Terrell. The simplest 
description of 571 now amounts to 2 bits, as it consists in giv-
ing its rank in the list of past winning numbers. The gambler’s 
fallacy results from a decrease in C(s), while Cw(s) remains 
constant. This makes recent winning numbers too unexpected 
to be bet on. The effect lasts as long as the complexity of 
locating 571 in the winning list remains small enough. 

As observed by H. Simon (1972), simplicity accounts for 
biases of representativeness as well. People would consider 
a series of eight births like GGGGBBBB, where four girls 
and then four boys are born in the family, as less ‘probable’ 
than a more complex pattern like GGBGBBGB. Here also, 
Cw(s) is kept constant while C(s) varies. The effect is a 
mystery for PT, but it is again predicted by ST if we 
suppose that individuals are sensitive to unexpectedness. As 
(1) shows, simple structures make U(s) larger, hence the 
feeling of improbability. This simplicity effect can be 
quantified and matches experimental results (Simon, 1972). 
For the same reason, remarkable lottery draws like 1-2-3-4-
5-6 are regarded as virtually impossible by most people 

                                                                                                  
a common window, turns out to be complex, as it requires a 
lengthy description to be distinguished from all other windows. 
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(Dessalles, 2006). Note that contrary to PT, ST does not 
invoke here any ad hoc notion such as representativeness. 

In the conjunction fallacy (Tversky & Kahneman, 1983), 
people find it less probable that Paul, a former Green 
activist, would drive a big SUV rather than if he drived a 
big SUV functioning with LPG (SUV are known to waste 
more energy than standard cars and LPG is known to be less 
polluting than gasoline). Within the set-theoretic framework 
of PT, this seems absurd, as the set of SUV drivers includes 
the set of LPG-SUV drivers. How does ST account for this 
phenomenon? By noticing that the causal generation of the 
SUV case is more complex than for the LPG-SUV case. 

The two situations: Paul driving a SUV (s1) and Paul 
driving a LPG-SUV (s2), differ both by their description and 
their generation. Assuming that Paul is already in the 
context, situation s1 can be described using the concept of 
green activist (G) and the concept of SUV (f1).  

 C(s1) = C(G) + C(f1|G).  

The vertical bar in C(a|b) denotes conditionality. It means 
that b is available to describe a. For instance, C(a|a) = 0. s2 
requires an additional feature f2 = ‘LPG’ to be described. 

 C(s2) = C(G) + C(f1|G) + C(f2|G, f1). 

(we ignored other features, such as ‘drive’, that are 
common to s1 and s2). Here, concepts4 are prototypical 
situations evoked by words. Considering prototypes instead 
of sets is presented as a human flaw by Tversky and 
Kahneman (1983). But the hypothesis that words be 
associated with sets rather than prototypes is a constraint 
imposed by PT and has little cognitive support.5  

If we abandon PT’s extensional constraint, we can compute 
how s1 and s2 differ on the generation side. s1 evokes a typical 
situation, i.e. a gasoline SUV. Since LPG is supposed to be 
more Green-friendly than standard gasoline, the contradiction 
with Paul’s past as Green activist is less flagrant in s2 than in 
s1. This means that the minimal causal scenario explaining s2 
is less complex than the minimal causal scenario leading to s1. 
In other words: Cw(s2) < Cw(s1). We get: 

 U(s1)  U(s2) = Cw(s1)  Cw(s2) + C(f2|G, f1) > 0.  (2) 

ST correctly predicts that s1 will appear more unexpected, 
and therefore less probable, than s2. This prediction matches 
the so-called ‘conjunction fallacy’. Note that this account, 
derived from ST, is not unrelated to Maguire et al.’s (2013) 
explanation. These authors introduce different ‘models’, 
which correspond to the causal scenarios underlying Cw(s1) 
and Cw(s2). Though adopting a complexity-based approach, 
their description is expressed in terms of probability 

                                                           
4 For any concept x, C(x) can be approximated as C(x)  log2(r), 

where r is the rank of a word expressing x in a list of words sorted 
by frequency of occurrence in a corpus. Assuming Zipf’s law, r 
can also be the frequency itself, or the relative number of hits on a 
Web search engine (Cilibrasi & Vitányi, 2007). A specific corpus 
can be used to refine estimates for given individuals. 

5 The set of all SUVs is a mathematical abstraction which is not 
computable, either objectively or cognitively. 

distributions. (2) shows that the phenomenon can be 
parsimoniously analyzed in terms of complexity 
exclusively. The detour through probability is unnecessary. 

If individuals judge uncertainty based on complexity 
rather than on probability, several other ‘fallacies’ are no 
longer problematic. Simplicity bias in causal explanations 
(Lombrozo, 2007) and base-rate neglect (Bar-Hillel, 1980) 
rely on experiments in which probabilities are provided as 
numbers (percentages) to participants. While educated 
individuals may be able to translate unexpectedness into 
probability estimates, it is a too strong assumption to 
suppose that the converse might be true. 

Unexpectedness and Subjective Probability 
ST has been developed to account for the human ability to 
assess the unexpectedness of events after they have 
occurred. Ex post probability6 is defined as:  

 p(s) = 2U(s). (3) 

Formula (3) explains why a simple sequence like 1-2-3-4-
5-6 is felt as much more improbable than a complex one 
like 17-19-24-35-38-43. It also explains why events that are 
rare, unique or extreme according to a simple criterion are 
perceived as improbable when they occur; it explains why 
rare events (like a fire) are regarded as less probable when 
they occur in the vicinity; it explains recency effects in the 
news; it also explains why coincidences are exaggeratedly 
perceived as improbable (Falk, 1983) (see 
simplicitytheory.org for a review). In all these examples, 
probability judgments are performed ex-post, after the fact. 

In all the above mentioned classical studies on probability 
bias, individuals were asked whether a situation was more 
‘probable’ than another. This corresponds to an ex-ante 
judgment. Ideally, from the ex-ante perspective, s is already 
determined: C(s) = 0, and ex-ante unexpectedness is Ua(s) = 
Cw(s). The central thesis of this paper is that people translate 
the word ‘probable’ by considering both Ua(s) and U(s). In 
our lottery examples, Ua(s) is constant and only U(s) varies. 
In the SUV example, Ua(s) and U(s) vary in the same 
direction. But only for a relevant feature like LPG. 

ST predicts that individuals’ behavior will be different if 
f2 is a neutral feature such as ‘the SUV was red’. Suppose 
there are 16 possible SUV colors. One needs C(f2|f1) = 4 bits 
to designate the actual color. On the generation side, 4 
additional bits are also required in a causal scenario to orient 
the choice among the 16 colors: Cw(s2) = Cw(s1) + 4. We get: 
U(s2) = U(s1), and s2 will be judged no more unexpected 
than s1. In a narrative like: “Remember Paul, the former 
Green activist?”, the two mentions “I saw him driving a big 
SUV” and “I saw him driving a big red SUV” offer exactly 
the same unexpectedness. The detail about the color is 
irrelevant,7 if relevance is defined as: ‘contributing to 

                                                           
6 Technically, ex-post probability p(s) as defined by (3) 

corresponds to Prob(happens(s) | s). It is not itself a probability 
measure: the sum of p(si) for different events si may exceed 1.  

7 Unless it is used to emphasize that the story is true. 
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unexpectedness’ (Dessalles, 2013). However, Ua(s2) is 
larger than Ua(s1) by 4 bits. This may lead most people to 
regard ‘red-SUV’ as less probable than mere ‘SUV’, thus 
respecting the conjunction axiom this time. Note that PT is 
unable to take the relevance of the feature into account. 

The Plagiarism Story 
To make the case of complexity even stronger, we searched 
for a situation in which individuals make a definite 
judgment of uncertainty that cannot be explained by 
probability calculus. Consider the following story. 

Story 1: Ms S. is accusing Mr D. of having stolen her manuscript 
and of having published it under his name. Fortunately, she hid 
her name in the book. Her name is (option n1: Sami); (option n2: 
Schildget). It can be retrieved by taking (option r1: the first letter 
of each chapter); (option r2: the first or the second letter of each 
chapter, depending on the chapter’s parity). 

We could not find anyone, in informal inquiries among 
students, who chose options other than n2 and r1 when asked 
to maximize Ms S.’s chances to win her case. Why do the 
more complex name and the simpler retrieving algorithm 
make plagiarism so obviously more likely in this story? 

PT would merely predict that a shorter name is more 
likely to ‘occur’ by chance in the book, without any 
precision about what ‘occur’ means. It is unable to account 
for the role of the algorithm used to retrieve the name. 

ST’s explanation is straightforward: plagiarism is 
probable if the co-occurrence by chance of Ms S.’s name 
(N) and Mr D.’s book (B) is highly unexpected, i.e. if 
U(N & B) is large. ‘By chance’ here means that N and B are 
supposed to be independent. By definition of independence, 
Cw(N & B) = Cw(N) + Cw(B). On the description side, 
C(N & B) < C(B) + C(N|B). The algorithm A provided by 
Ms S. to retrieve her name in the book gives an upper bound 
of C(N|B): C(N|B) < C(A). If we assume that neither B nor N 
is unexpected by itself, we get by applying (1): 

 U(N & B) > C(N)  C(A). (4) 

ST thus explains why a complex (i.e. long) name and a 
simple algorithm make plagiarism more probable in story 1. 
The complexity of the retrieving algorithm, A, is directly 
understood to play a crucial role. A probability-based model 
could not account for this effect without many ad hoc 
assumptions. It is more parsimonious to consider that 
individuals have direct access to complexity assessments. 

We designed a small experiment as a first attempt to 
explore the Plagiarism story in more details and try to test 
finer grain phenomena. This time, we introduce new var-
iables, such as the size of the book. Here is the second story. 

Story 2: Ms Schmidt is accusing Mr Durand of having 
plagiarized in his book B2 a passage T2 of size S that is almost 
identical to a passage T1 from her book B1. The sizes of the two 
books are S1 and S2. T1 is located at page p1 of B1 and T2 at 
page p2 in B2. T2 is found in one piece (option 1) / in three 
pieces distributed over three paragraphs in p2 (option 2).  

Can we predict how parameters S, S1, S2, p1, p2 and the two 
options influence plagiarism probability? PT has something 
to say about this. It will predict that the probability of T1 
appearing in B2 by chance would decrease with S and increase 
with S1 and S2. But in the absence of any specific knowledge 
about the borrowing mechanism, it would assume uniform 
probability for p1 and p2, and their value would be irrelevant. 
Comparing options 1 and 2 would be somewhat tedious. One 
would need to imagine all ways of splitting T1 into several 
pieces to determine the probability that T1 would end up in 
three, instead of one, two or more than three pieces. 

In the ST framework, plagiarism is blatant when the 
coincidence between the content of B1 and of B2 is too 
unexpected. There is coincidence if these contents are 
supposed to be independent: 

 Cw(B1&B2) = Cw(B1) + Cw(B2).  (5) 

On the description side: 

 C(B1&B2) < C(B1) + C(B2|B1).  (6) 

Following (1), the unexpectedness of the coincidence, 
U(B1&B2), corresponds to the complexity drop between 
generation (5) and description (6). Assuming that neither B1 
nor B2, as sequence of words, is unexpected by itself8 
(Cw(Bi) = C(Bi)), we get: 

 U(B1&B2) > C(B2)  C(B2|B1).  (7) 

The right-hand side of (7) is the compression of B2 allowed 
by the knowledge of B1. This compression is due to the 
resemblance between T1 and T2. Ideally, C(T2) could be 
spared in the description of B2. There is a tax to pay, however, 
which is the complexity of the procedure needed to get T2 
from B1. To compute a lower bound of the compression, we 
may compute the complexity of the following procedure: 
locate T1 in B1; use algorithm A to transform T1 into T2; 
determine target location in B2; insert T2. From (7), we get: 

 U(B1&B2) > C(T2)  (C(l1) + C(A) + C(l2)).  (8) 

l1 and l2 designate the precise locations of T1 and T2 in B1 
and B2. If there are about n words in a page, then: 

 U(B1&B2) > C(T2)  (C(p1) + C(A) + C(p2) + 2 log2(n)). (9) 

In option 1, if texts are strictly identical, then A1 is a mere 
copy and C(A1) = 0. In option 2, C(A2) has a definite value, as 
it requires at least four numbers: two cut points in T1 to make 
the three pieces, and the size of two gaps to specify how to 
insert the pieces in the target text. To make things concrete, 
we may say that C(A2) ~ 4 log2(n). Formula (9) allows us to 
draw the following predictions. Plagiarism is more likely if: 

[1] T2 is a long excerpt, making C(T2) large 
[2] A is simple   
[3] Sizes Si are small, as C(pi) < log2(Si), while n is not too 

large. 

                                                           
8 One way to be unexpected in this way would be to be more 

compressible than exepected, as Georges Perec’s Grand palindrome. 
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Figure 1: Answers for each alternative of the 6 propositions in Story 2 

[4] pi is small (while n is not too large), as in this case 
C(pi) ~ log2(pi) < log2(Si). 

If B1 is not known in advance, C(B1) is augmented by the 
determination of Ms Schmidt and by the determination of B1 
in her works. We could then add the two following 
predictions: 

[5] Ms Schmidt is a famous author 
[6] She has written few books. 

Note that prediction [1] has a massive effect, as compared 
with predictions [2]-[4]. Each word in T2 contributes by 
log2(N) bits to unexpectedness, where N is the size of the 
lexicon (if one compares text creation to a uniform lottery 
among words). In comparison, [4] may spare 6 bits only if 
p1 = 3 and S1 = 250. The following small experiment is an 
attempt to put predictions [1]-[4] to the test. 

Experiment  
Participants were presented Story 2 (in French) with the 
following options: 

o Ms Schmidt’s book is a 154/654 -page book.  
o Mr Durand’s novel is a 162/443 -page book.  
o The passage mentioned by Ms Schmidt is located page 

number 3/43 in her collection of short stories.  
o The passage mentioned by Ms Schmidt is 9/19 lines long.  
o The passage mentioned by Ms Schmidt can be found in 

one part / spread over 3 paragraphs in Mr Durand’s novel.  
o The passage mentioned by Ms Schmidt can be located 

page number 5 / 122 in Mr Durand’s novel book. 
A total of 352 individuals (aged from 16 to 63, mean 28.64 
(std. dev. 6.66), 276 females, 91 males, 15 unknown gender) 
participated to the test online. Participants were recruited via 
social networks and billposting. We manually checked the 
answer files for individuals who provided incomplete results 
or whose response time was less than 30 seconds. 

Results and discussion  
Percentages of answers for each alternative proposed are 
presented in Figure 1. We tested for significance using 

binomial tests. Results indicate a significant effect (p < 
0.05) for the number of pages of the books, the size of the 
passage, its location in Mr Durand’s book and the 
complexity of the algorithm that leads from one text to 
another. The location of the passage in Ms Schmidt’s book 
did not lead to a significant effect (p  0.11). These results 
agree with our predictions [1], [2], [3] and [4]. Note that a 
probabilistic model would predict [1] and [3], perhaps [2], 
but not [4]. 

The non-significant result for the localization in Ms 
Schmidt’s book is due in part to its small expected 
contribution in comparison with [1]. Moreover, an informal 
inquiry among additional participants suggests that some 
individuals may have performed second-order reasoning: 
borrowing a passage from Ms Schmidt’s first pages would 
be too conspicuous and would make plagiarism not rational 
and therefore less likely. Due to its design that did not 
anticipate this reaction, Story 2 turns out to be less 
convincing than Story 1. 

In further work, we plan to test predictions [5] and [6], as 
the contribution is larger (~ log2(A) where A is the number 
of authors), and also because probability calculus would not 
naturally take the author’s celebrity into account. 

Conclusion 
The first aim of this paper is to question the human ability to 
process probability as such. Despite the existence of 
numerous human ‘biases’, the fact that uncertainty 
judgments rely on some form of probability calculus is often 
taken for granted without questioning its cognitive 
plausibility.  

Our second aim is to put forward the possibility that 
complexity can be directly assessed by individuals. 
Complexity has not been sufficiently considered as a good 
candidate to explain judgments of uncertainty, due to 
prejudices concerning its non-computability, to 
misconceptions about how it should be computed (see 
note 3), and to the (wrong) belief that probability itself is 
always computable (see note 5). Notions which are quite 
intricate when expressed in probabilistic terms are more 
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intuitively defined in terms of complexity: independence 
and causal indeterminism are captured by generation 
complexity; conditionality and simplicity come naturally 
with description complexity. 

We hypothesized that unexpectedness, as defined in 
Simplicity Theory as the difference between generation and 
description complexity, is used by individuals to judge 
about uncertainty. This hypothesis has two advantages. (1) 
It offers new and parsimonious accounts of the various 
cognitive ‘biases’; (2) It accounts for situations in which 
probability theory would be partially silent. We designed 
two versions of the Plagiarism story to make up cases in 
which judgments of uncertainty seem to rely on complexity 
rather than on probability.  

Simplicity Theory has been designed in an unrelated 
context: to account for interest and relevance in narratives 
(Dessalles, 2008; Saillenfest & Dessalles, 2014). Quite 
remarkably, as we showed here, it can be successfully 
applied with no modification to judgments of uncertainty. 
No ad hoc hypotheses, such as recency avoidance, 
representativeness or randomness deficiency, have been 
introduced. This invites us to consider complexity as a 
plausible dimension of cognitive processing. 
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