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Representing abstract plan failures

Christopher Owens
The University of Chicago

An intelligent agent must be able to recover from and learn from its failures.
This involves building a causal explanation of why the failure occurred and using
that causal explanation as the basis of further reasoning about how to deal with
the failure. This paper argues that the tasks of building the explanation and
reasoning from the explanation should be tightly coupled, to avoid the problem
of factually correct but pragmatically useless explanations. This integration can
be accomplished by using a model of reasoning about plan failures that is based
upon knowledge structures that link descriptions of stereotypical plan failures
with descriptions of repair and recovery strategies appropriate to those failures.

1 Dealing with failures

An intelligent agent operating in an uncertain environment must constantly face the fact
that its plans may fail. Knowledge about the world is incomplete, knowledge about the
necessary preconditions for a particular course of action is likely to be underspecified, and
the state of the world might change between the time a particular action is planned and
the time it is executed.

While some failures are the result of circumstances that are genuinely beyond the con-
trol and predictive abilities of the agent, others result from planning errors which can be
corrected if the agent understands the connection between the planning error and the fail-
ure. A widely-accepted paradigm for dealing with failed plans (see, for example, [Sussman,
75), [Hayes-Roth, 83], [Hammond, 86), [Birnbaum and Collins, 88]), is that an agent must:

e Explain the failure. Assign blame for the failure to some condition over which the
agent could have had control. (Or, if no such condition can be found, identify the
failure as an unforseeable, unavoidable one.)

¢ Recover from the failure. Plan some activity that will lead toward the original goals,
taking into account the changed world resulting from the failure. Or, if achieving the
original goal now looks too expensive, work on some other goal.
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o Repair the plan that resulted in the failure. If the explanation assigns blame to
some condition internal to the planner, for example failure to look for a certain con-
traindicating condition before commencing a particular activity, modify the plan so
that future uses of the same plan will not result in the same failure.

It is clear that under this model, the steps of recovering from a failure and repairing the
plan depend upon a good explanation - one that assigns blame to some state of the world or
state of the planner’s knowledge that is both responsible for the failure and within the power
of the agent to change. It is also true, though less immediately clear, that whatever process
builds the explanation of the plan failure must be informed by the system’s knowledge of
recovery and repair.

To understand this latter point, consider the example of a robot that, given the instruc-
tion to carry two chairs from one room to the next, picks up both chairs together and, in
the process of trying to maneuver through a narrow doorway, damages the chairs. Some
potential explanations of the failure are:

1. The doorway was too narrow.

2. The chairs were too large.

3. The robot is poor at judging the widths of passageways.

4. The robot did not know to re-estimate its size when carrying loads.
5. The robot knew to re-estimate its size, but is poor at it.

6. The robot did not know about the vulnerability of chairs to impact damage.

. The robot chose the plan of carrying two chairs at once even though the plan was
risky, because it considered the decrease in time worth the increased risk of damage
(This might not be an error, but might in fact be a reasonable course of action if, for
example, the room were on fire.)

Although each of these explanations refers to the same manifestation of a failure (i.e.
dented chairs), the repairs and recoveries derived from each will be different. The first two
explanations assign blame to states of the world that aren’t reasonably within the robot’s
control. The recoveries or repairs they suggest (make the doorway larger, for example)
are not feasible. The next four explanations deal with errors or omissions in the robot’s
knowledge about carrying objects, and the repairs they suggest involve modifying or adding
to that knowledge. The final explanation deals with the mechanism the robot uses to
mediate between competing goals, and it suggests modifying that mechanism.

Examining the difference between the first two explanations and the others points out
that the goodness of an explanation depends not only upon the degree with which it faith-
fully captures some aspect of the causality leading up to the failure, but also upon the
degree to which it suggests an operational repair. This dependency has implications for the
role of memory in reasoning about failures.
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2 Building explanations

There are basically two mechanisms whereby a system can build a useful explanation of
a failed plan: “Build from scratch”, which involves chaining together causal rules into an
explanation that connects the unexpected failure with known conditions, and “Retrieve
and apply”, whereby the system maintains a library of abstract explanations that can be
matched against the circumstances of a failure and instantiated with the particulars of the
situation.

The “retrieve and apply” method of explanation construction is discussed in [Schank,
86] and [Kass et al., 86]. The fundamental idea is that certain fairly complex patterns of
causality tend to recur in the course of an agent’s interaction with the world. These are
not in principle different than the patterns that the system could recognize via the “build
from scratch” approach, but the number of them that the system actually encounters is
small relative to the total number of syntactically valid patterns that the system could
build by chaining together its primitive causal rules. Caching these large and frequently-
encountered causal patterns is not only useful from the point of view of efficiency, but also,
as has been argued in [Kass and Owens, 88|, from the point of view of likely utility in the
face of incomplete knowledge.

In the context of reasoning about plan failures, there is a third advantage to the “retrieve-
and-apply” approach to explanation, and this advantage pertains to the above-discussed
question of how the system’s notion of repair and recovery should guide its choices when
it builds an explanation of a failed plan. The remainder of this paper deals with the
representational form and content of a class of knowledge structure that addresses the task
of understanding, recovering from and repairing failed plans.

3 What to represent

As has been argued in more detail in [Schank, 86) and [Owens, 88], there is an interesting
correspondence between the type of stereotypical plan failure that an intelligent agent needs
to represent, and common advice-giving proverbs and aphorisms. The lazy man’s load, for
example, refers to the failure resulting from trying to minimize the number of trips required
to move some number of objects by moving all of them at one time. A more generally
applicable pattern describing the same class of error might be the too many irons in the fire
pattern, which deals with the general problem resulting from overdoing the optimization of
combining tasks and executing them simultaneously.

These proverbs categorize situations in some useful way. All too m y irons situations
share certain causal properties, for example that the failure is related to the fact that
multiple tasks are being combined. It is generally easy for people to decide based on a post
facto description, whether or not a particular situation is of the too many irons in the fire
type. There is a common set of failure recovery strategies that should be successful in all
too many irons situations, for example interleaving fewer tasks, putting some tasks on hold
or finding someone to help. People are able to enumerate these strategies when asked about
too many irons situations in the abstract. The goal for knowledge structures to be used as
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part of an intelligent planning system, is to similarly categorize experiences into meaningful
abstract classes or clusters.!

It is the observation that proverbs seem to link abstract failure descriptions with abstract
recovery strategies that addresses the question of how the tasks of explaining, recovering
from and repairing failures can be better integrated. They are done so via a knowledge
structure that combines an abstract description of a plan failure with recovery and repair
strategies. It is called a plan failure explanation pattern, or PFXP, and it is an extension
and specialization of the XPs described in [Schank, 86] and [Kass et al., 86).2

3.1 Understanding the failure

The central content of a PFXP is a template that can be used to build a causal model of
the class of situation represented by that knowledge structure. The template characterizes,
in abstract terms, the common causality that all situations covered by this PFXP share. In
the case of the Too many irons in the fire situation, the causal pattern that characterizes
the failure, when written out in English, looks something like:

Simultaneously executing multiple tasks can fail if several of the tasks have time-
critical steps, in that the agent will be busy attending to one time-critical step
at the time that another time-critical step requires the agent’s attention, or if
the total workload of the tasks exceeds the agent’s capabilities, in that the agent
will be overloaded.

By deciding that this particular causal pattern applies to the current situation, the
system makes several commitments about which features of the current situation will par-
ticipate in the explanation. The fact that the object being moved is a chair, for example,
is not involved in matching the situation against this pattern, and is consequently ignored,
while the fact that the situation involved scaling the size of a task is highlighted. When it
comes time to repair the problem, the system can ignore the former and focus on the latter.

3.2 Recovering from the failure

A recovery strateéy, such as the decision to restart the plan using less interleaving of tasks,
could be calculated dynamically from the causal model. Since the causal model shows
that the interleaving is implicated in the plan failure, reformulating the plan to use less
interleaving is not a particularly complicated inference. Other recovery strategies, like
deciding to look for help, are not quite so easily and cheaply inferred from the initial causal
explanation of the plan failure.

!See also [Lehnert, 81], [Schank, 82], [Dyer, 82] for a more general discussion of the relationship of proverbs
to abstract thematic structures in the context of story understanding.

2See also the planning TOPs discussed in [Hammond, 86] for another abstract characterization of plan-
ning failures
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In a system based on PFXPs, though, there is very little advantage to dynamically
calculating repair strategies by inferring them from the causal model. Since the causal
model is a static object stored as part of the knowledge structure, a set of potential repair
strategies can also be packaged with a PFXP in memory. The system’s task can therefore be
to choose from among several possible recovery strategies rather than to try to build one
from scratch. By comparison, in a system that builds explanations from scratch by chaining
primitives together there is no obvious place to put recovery strategies in memory.

While the abstract strategies stored with a PFXP are static, the instantiation must
of course be handled dynamically, since the abstract knowledge structure cannot know
in advance the details of the situations to which it will be applied. The variables that are
instantiated in the process of matching the causal model of the PFXP to the current situation,
are carried over and used to instantiate the recovery strategy into a specific course of action.

The two recovery strategies mentioned above are representative of two distinct general
classes of strategies. The first, re-executing with less interleaving, is basically an application
of a general strategy that could be applied to any failure:

If some fact x ts causally implicated in the failure, then cause x not to hold and
try the plan again.

While this strategy is general and simple, it is fraught with problems. A large number
of conditions are causally implicated in the failure; yet many of them cannot or should
not be changed by the planner, either because they are present in service of some goal or
because they are beyond the control of the planner. This recovery strategy, given some of
the explanations from the beginning of this paper, could easily generate the “solution” of
making the doorway larger.

The second recovery strategy, looking for help, is much more specific to the too many
irons failure. As a design principle, PFXPs should be set up with this more specific type
of recovery strategy whenever possible. There is less inferential complexity involved in
instantiating the strategy in the context of the failure, and because the inference chain is
shorter, we can have more confidence that the strategy will be appropriate.

3.3 Identifying the bad planning decision

The role of a PFXP in allowing a system to correct its inappropriate planning behavior is
that it provides a pointer to a planning decision believed likely to be the one responsible
for the failure characterized by this particular PFXP. Often the decision pointed to will be
a plan transformation. In the case of the Too many irons PFXP, the bad decision suggested
looks something like:

Enhance this plan by simultaneously performing similar steps

The type of bad decision that is pointed to by a PFXP can take several forms, among
them:
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Spurious action Some action was taken that caused the plan to fail; had it not been taken
the plan would have succeeded. This is the type of failure that the too many irons
PFXP embodies.

Omitted action Some action could have been taken to prevent this particular failure,
but was not taken. This is the type of failure implicated in, for example, the PFXP
corresponding to the proverb A stitch in time saves nine, which typifies failures in
which some low-cost preventive measure would have avoided a high-cost outcome.

Inappropriate plan choice The choice of plan to accomplish some particular goal or
subgoal was inappropriate. This type of bad decision can be referred to by PFxPs
such as the one corresponding to the proverb You can catch more flies with honey
than you can with vinegar.

Inappropriate resource choice The choice of resource with which to implement some
plan was inappropriate. An example of this can be found in a PFXP corresponding
to some interpretations of the proverb You can’t make a silk purse out of a sow’s ear
or A handsaw is a good thing, but not to shave with — each of which warns against
applying a resource to some task for which it is manifestly unsuited.

Ignored factor Some factor was not taken into account that, if it had been taken into
account, would have avoided the failure. An extremely general instance of this failure
is found in the Look before you leap PFXP.

Spurious factor Some factor was considered that, if it had been ignored, would have
avoided the failure. The system paid too much attention to an insignificant or irrele-
vant factor. A number of decisions related to risk-taking fall into this category, such
as those implicated in the proverb He who waits for a fair wind misses many a voyage

Inappropriate goal prioritization Some goal was given either excess or insufficient con-
sideration, relative to the other goals on which the system was working at the time.
This corresponds to the final explanation for the damaged chairs suggested at the
beginning of this paper.

Incorrect assumption From the point of view of credit and blame attribution, this type
of bad decision is different from the others in that it isn’t really a decision that is
pointed to here - the system didn’'t do anything wrong that led it into the failure,
but rather it relied on information that is not correct. The bad decision field of this
type of PFXP points to the offending assumption.

Some of these descriptions are oversimplified here. For example, spurious factor,
ignored factor, spurious action and omitted action need not be boolean descriptors

as suggested above. In fact, this type of error is much more often a matter of degree than
it is of absolutes. The description of a bad decision is less likely to be something like

You paid attention to something you should have ignored

than it is to be something like
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You paid more attention to this factor than you should have.

The basic idea behind encoding a bad decision as part of the representation of a PFXP is
analogous to the credit assignment function of the basic causal model of the PFXP. Just as
the basic causal model attempts to focus credit assignment on aspects of the world that are
potentially under the planner’s control, the bad decision field provides a means to focus
internal credit assignment on aspects of the system’s planning behavior that are modifiable.

A problem with this kind of credit assignment is that there is no guarantee of accuracy.
The particular plan transformation or other decision pointed to is neither necessary nor
sufficient as an explanation of the failure. Clearly the decision to interleave tasks does not
always result in a bad outcome. Generally, in fact, it is a desirable thing to do. Furthermore,
and more importantly from the point of view of constructing explanations, not all instances
of the Too many irons situation result from an explicit decision to interleave tasks. Some-
times the situation might result from, for example, failing to notice a problem developing
as more and more situations requiring immediate attention arise. Or, the situation might
result from the conjunction of several seemingly unrelated planning decisions. The contents
of the bad decision field are of heuristic value rather than of provable correctness.

3.4 Modifying the bad planning decision

Just as each description of a failure in the world has associated with it a recovery strategy,
likewise each description of a bad planning decision has associated with it a repair strategy.
The role of a PFXP in repair is, however, less clear-cut than it is in the area of developing a
causal explanation or recovering from specific failures. This is partially due to the fact that
internal credit attribution is not so clear-cut as external credit assignment. In the case of
the robot moving the chairs, what, exactly, is the bad decision that resulted in the damage?
Was it the decision to carry two chairs at once? To move quickly through the door? Or was
it the result of placing too much importance on getting the job done quickly, or not enough
importance on preserving the chairs.

If, a system constantly encounters errors of the same type, say too many irons, it should
be less willing to perform the plan transformation that says to enhance a plan by allocating
multiple agents to work on it. If, on the other hand, this type of error never occurs, that
is a sign that the system is probably missing opportunities to enhance plans by being too
conservative — it should be less fussy about applying that particular plan transformation.
Ideally, the way to make the system more fussy about a particular plan transformation
is to add preconditions for that transformation, and the way to make it less fussy is to
drop preconditions. A very crude approximation to this behavior that requires much less
knowledge on the part of the system, is to adjust some numerical parameter corresponding
to the likelihood of a particular plan transformation being applied based upon the number
of errors encountered that point to that transformation. While the latter approach is easier
to implement, it does not allow the kind of learning enabled by the former.
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4 Conclusions

Reasoning about failed plans by using an approach based upon matching large causal struc-
tures is more than just an efficiency issue related to the compilation of rules into larger rules
with more detailed applicability conditions. The approach addresses the question of how
to more closely link the task of understanding a plan failure with the task of acting based
upon that understanding. Because the only knowledge structures available for matching
are those that are linked to operational repair and recovery strategies, the system avoids
the problem of generating factually correct but pragmatically useless explanations.
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