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ABSTRACT OF THE DISSERTATION

The Selective and Combinatorial Regulation of Toll-Like

Receptor-Activated Transcriptional Cascades

by

Xin Liu
Doctor of Philosophy in Molecular Biology
University of California, Los Angeles, 2017

Professor Stephen T. Smale, Chair

The immune system is essential for host defense to pathogen infection, tissue repair,
stress response, and other physiological functions. An unbalanced immune system is
detrimental to homeostasis and mammalian survival. Immunodeficiency can cause
susceptibility to pathogen infection. A hyperactive immune system can cause
autoimmunity and chronic inflammatory diseases including rheumatoid arthritis,
psoriasis, and atherosclerosis. Deciphering the mechanisms regulating the immune
response will illuminate on the pathogenesis of inflammatory diseases and promote the
development of new therapies to treat these diseases. Because innate immunity is the
first line of host defense and transcription is a critical contributor to the innate immune
response, we focused our studies on mechanisms regulating transcriptional activation of

the innate immune response.



Toll-like receptor (TLR) signaling is a classical model to study pathogen recognition and
the activation of innate immunity. TLR transcriptional cascades have been extensively
studied using conventional systems approaches. Because conventional systems
approaches rely on statistics and large sample sizes to uncover the common regulatory
mechanisms, they often miss gene-specific regulatory mechanisms. To reveal gene-
specific regulatory mechanisms, we used a stringent systems approach to dissect the
TLR transcriptional cascades in chapter 2. To prevent biases towards the majority of
weakly induced genes, we separated strongly induced genes from weakly induced
genes. Combining high-resolution transcriptional profiles and perturbation studies, we
classified TLR4-activated genes by their activation mechanisms. By integrating RNA-
seq, ChlP-seq, ATAC-seq, and motif data, we found that several key inflammatory genes
are regulated by highly selective mechanisms. TLR4-activated nuclear factor kappa B
(NFkB) and interferon regulatory factor 3 (IRF3) selectively regulate a small subset of
pro-inflammatory genes by chromatin and combinatorial regulation. We also found serum
response factor (SRF) selectively regulates a few early transient primary response
genes. In chapter 3, we used a gene-centric method and identified the motif rules
governing the combinatorial regulation of serum response factor (SRF) and ternary
complex factor (TCF). Ternary complex formation can enhance SRF binding and
promote histone mark deposition. The active ternary complex can regulate transcription
through either promoter or enhancer. Taken together, we demonstrated a gene-centric,
stringent systems approach that can complement the conventional systems approach to

unveil gene-specific regulatory mechanisms in ligand-induced transcriptional cascades.
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CHAPTER 1

Introduction

The Transcriptional Regulation of Innate Immune Response



A. Immune Responses

The immune system is indispensable for vertebrate survival. Immune cells circulate
throughout the body and participate in a wide variety of roles including tissue
development and repair, host defense against pathogen infection, and stress response.
Upon pathogen infection, the immune system can trigger two types of responses: the
innate immune response and the adaptive immune response. The innate immune
response typically involves neutrophils, macrophages, and dendritic cells. They express
pattern recognition receptors that can recognize non-self molecules unique to
pathogens. Upon on activation, they rapidly produce numerous cytokines and
chemokines, which in turn recruit other effector cells to sites of inflammation.
Furthermore, macrophages and dendritic cells can bridge the innate and adaptive
immunity by presenting antigens to adaptive immune cells. Adaptive immune cells are
composed of T and B Ilymphocytes. Adaptive immune cells undergo DNA
rearrangement to generate pathogen-specific responses. They can also generate
memory cells that respond quickly upon subsequent encounters to the same pathogen.
While innate immune cells detect pathogens by pre-programmed systems such as
pattern recognition receptors, the adaptive immune cells go through DNA arrangement
that allows for plasticity, selectivity, and memory. But recent discoveries suggest that
macrophages can also develop trained “memory” to previous stimuli (Netea et al., 2016;

Ostuni et al., 2013).

Because the immune system is constantly reacting to intrinsic and extrinsic stimuli, it is

in a dynamic equilibrium and requires proper balance between host defense and



homeostasis (Eberl, 2016). Insufficient immune activity can cause immunodeficiency
and susceptibility to pathogen infection whereas over-activation of the immune system
can cause allergy, autoimmunity, and chronic inflammatory diseases including
rheumatoid arthritis, inflammatory bowel disease, and psoriasis (Hato and Dagher,
2014; Eberl, 2016). Because the immune system is involved in maintaining homeostasis
in many tissues, its deficiency or over-activation also contribute to the pathogenesis of
many “modern diseases” including diabetes, Alzheimer’s disease, atherosclerosis, and
cancer (Kotas and Medzhitov, 2015; Okin and Medzhitov, 2012; Lampron et al., 2013;
Hansson and Libby, 2006). Demystifying the regulation of the immune system is critical
to understanding disease pathogenesis and developing novel therapies for
inflammatory, autoimmune, and other diseases. Because pathogen recognition by
innate immune cells is the first step of the immune response, understanding the

regulation of innate immune cell is key to unraveling the immune response cascades.

B. Pattern Recognition Receptors and TLR Signaling

Innate immune cells can recognize pathogen-associated molecular patterns or danger-
associated molecular patterns by pattern recognition receptors. They can sense non-
self components and initiate the innate immune response, which in turn activates the
adaptive immune response (Janeway, 1989). They can recognize extracellular and
intracellular pathogen components such as lipopolysaccharides, lipoprotein, zymosan,
and pathogenic nucleic acids. To recognize a broad range of pathogen components,
pattern recognition receptors have diversified into many different receptor families.

These include Toll-like receptors (TLRs), RIG-I-like receptors (RLRs), nucleotide-binding



oligomerization domain, leucine-rich repeat-containing receptors (NLRs), and C-type
lectin receptors (CLRs) (lwasaki and Medzhitov, 2015; Thompson et al., 2011). Other
newly discovered families include AIM2-like receptors, DAI, and cGAS (Burckstimmer
et al., 2009; Takaoka et al., 2007; Cai et al., 2014). TLRs are a well-characterized
founding family of pathogen recognition receptors consisting of 9 members. Depending
on the location of their ligands, they reside in different cellular compartments. TLR1,
TLR2, TLR4, TLR5, TLR6, TLR11 (only in mouse) are located on the cell surface
membrane to detect extracellular pathogen components. For example, TLR4 can
recognize lipopolysaccharides, mannan, and glycoinositol phospholipids from Gram-
negative bacteria. TLR3, TLR7, TLR8, and TLR9 reside on the membrane of
endolysosome. They are specialized in sensing intracellular pathogens such as virus
and mycobacteria. For example, TLR3 can recognize viral RNA; TLR9 can recognize
viral DNA. RLRs are intracellular sensors of viral RNA (Loo and Gale, 2011). NLRs
consist of 23 members, located in cytoplasm, plasma membrane, or endosome. They
detect a diverse range of intracellular pathogen components including bacterial
peptides, bacterial toxin, and bacterial flagellin (Motta et al., 2015). CLRs reside on the
cell membrane and detect fungal and bacterial components including glucan, mannan,
and glycoprotein (Hoving et al.,, 2014). The redundancy within and between families
allows them to act in concert to amplify innate immune responses (Kawai and Akira,

2011).

C. TLR Signaling and Transcriptional Cascades

Toll-like receptors were discovered 20 years ago, as the first mammalian pattern



recognition receptor family (Lemaitre et al., 1996). Although 11 mammalian TLR
members are activated by different ligands, they share several common signaling
pathways. TLR4 represents a typical pattern recognition receptor (Figure 1-1). TLR4 is
located on the plasma membrane to recognize extracellular microorganisms. Its
extracellular domain contains leucine-rich domains adopting a horseshoe-like structure
(Kim et al., 2007). With the assistance of other trans-membrane molecules including
MD2, LPS binding protein, and CD14, TLR4 can recognize and bind to ligands such as
lipopolysaccharides. This induces TLR4 homo-dimerization and conformation changes
of the intracellular domain. The intracellular domain belongs to the Toll/IL-1R (TIR)
domain family, which can induce intracellular signaling. The selectivity of intracellular
pathways is dependent on the ability to recruit different adaptors. Through TIR domain,
TLR4 can recruit at least two adaptors: myeloid differentiation primary response gene

88 (MyD88) and TIR-domain-containing adapter-inducing interferon- (TRIF).

MyD88-dependent pathways trigger a cascade of signal molecules, leading to the
activation of the MAPK and NFkB pathways (Figure 1-1). Activated TLR4 can interact
with TIRAP through homotypic interaction of TIR domains (Akira and Takeda, 2004).
TIRAP can then recruit MyD88 to membrane TLR4. The activated MyD88 will assemble
into a signaling complex called myddosome by recruiting IRAKs and TRAF6 (Brubaker
et al., 2015). Upon Phosphorylation and activation by IRAK4, IRAK1 can phosphorylate
the E3 ubiquitin ligase TRAF6. Active TRAF6 can induce the polyubiquitination of TAK1
and the release of TAK1 into the cytosol. TAK1 acts upstream of the MAPK and NFkB

pathways (Brubaker et al., 2015; O’Neill et al., 2013). TAK1 phosphorylates IKK@, which



induces phosphorylation and proteasome degradation of NFkB inhibitor IkBa.
Dissociation from IkBa allows NFkB to translocate into the nucleus and activate pro-
inflammatory genes. TAK1 also functions as MAPKKK to activate the MAPK pathway,
which in turn induces its downstream transcription factors including CREB, AP1, and
SRF. These transcription factors also contribute to the induction of many early and late
inflammatory genes. Because MyD88-dependent signaling starts at the plasma
membrane and does not require receptor internalization, it can rapidly induce gene
transcription, generating an early wave of TLR4-activated transcription (Warner and

Nunez, 2013).

Another TLR4 signaling pathway, TRIF-dependent pathway, follows the internalization of
TLR4 and induces the NFkB and IRF pathways, leading to a late wave of transcriptional
activation. Although its regulation is still unclear, CD14 can mediate activated TLR4
trafficking from plasma membrane to endosome through the ITAM pathway. After
internalization to the endosome membrane, TLR4 can interact with the sorting adaptor
TRAM and recruit TRIF. Similar to MyD88, TRIF can assemble a signaling complex,
which recruits RIPK1, TRADD, caspase-8 complex, and IKKs. Activated IKKs trigger
NFkB signaling, thus promoting sustained NFkB activation following MyD88-activated
NFkB signaling. TRIF also recruits TRAF3, TANK, TBK1, IKKy, and IKKe. TBK1 and
IKKs phosphorylate and activate IRF3, which can translocate into the nucleus and
induce type | IFN production (Yamamoto and Takeda, 2010; Brubaker et al., 2015;

Yamamoto and Takeda, 2010).



Intriguingly, TLR4 signaling pathways also induce negative regulators that inhibit TLR4
signaling at multiple stages including the signaling, transcriptional, and post-
transcriptional stages. For example, TLR4 signaling can strongly induce genes
encoding the negative regulators of the NFkB pathway such as A20. A20 can inhibit
NFkB pathway by several mechanisms. It can remove the K63 ubiquitination from
TRAF6 or inhibit TRAF6 E3 ligase activity, thus preventing NFkB activation through the
MyD88 pathway (Boone et al., 2004; Shembade et al., 2010). It can also inhibit TRAF3
interaction with TBK1 and IKKs, thus preventing NFkB activation through the TRIF
pathway (Parvatiyar et al., 2010). TLR4 signaling also rapidly induces transcription of
ATF3, which can recruit HDACs and restrict chromatin accessibility to prevent
transcriptional induction (Gilchrist et al., 2006; Whitmore et al., 2007). Lastly, TLR4
signaling also strongly induces TTP (also known as ZFP36 or TIS11), an RNA-binding
protein. By inducing transcription and phosphorylation, TTP can bind to the AU-rich
elements in the 3-UTR of many pro-inflammatory mRNAs and mediate their
degradation (Deleault et al., 2008; Lai et al., 2006). Recent studies also found that TLR4
signaling can produce anti-inflammatory fatty acids, which contribute to inflammation
resolution (Oishi et al., 2017). Thus, TLR4 signaling can robustly induce two waves of
pro-inflammatory and IFN gene induction, subject to auto-regulatory negative feedback

mechanisms.

D. The Contribution of Transcription to TLR4 Activation
Besides transcriptional activation, TLR4 signaling also triggers many changes at the

levels of mRNA splicing, mRNA degradation, translation, and protein degradation



(Vogel and Marcotte, 2012). Therefore, the rate of protein accumulation is
disproportionate to the rate of transcription. For example, because TLR4 signaling can
also activate factors controlling translation, some genes appear weakly or barely
inducible by transcription, but their protein levels exhibit significant increase. Because
TLR4 signaling also induces factors controling mRNA degradation or protein
degradation, some genes appear unaffected by transcription but show reduced protein
abundance (Rabani et al., 2014; Jovanovic et al., 2015). Splicing rates of nascent
transcripts can also affect protein abundance (Jovanovic et al., 2015; Bhatt et al., 2012).
Because of the technical limitations of microarray and un-labeled mass spectrometry,
the contribution of transcription in cellular response was underestimated. With the
emergence of RNA-seq, biochemical labeling methods, and improved mass
spectrometry, several studies revealed that transcription is the major contributor to
cellular responses in both mouse and human (Li and Biggin, 2015; Vogel et al., 2010;
Vogel and Marcotte, 2012). Transcription has a huge impact on protein expression. In
yeast, every mRNA molecule can produce approximately 5000 protein molecules (Lu et
al., 2007). In TLR signaling, mRNA can explain 90% of the changes in protein level,
while translation and protein degradation only explain 10% of the changes (Jovanovic et
al., 2015). Acting as the upstream of protein synthesis, transcription is also associated
with most of phenotypic variance (Battle et al., 2015). Because transcription can
significantly affect the output of stimulus-induced responses, we will focus our studies

on the transcriptional regulatory mechanisms in macrophages.



E. Primary and Secondary Response Genes Induced by TLR4 Signaling

Ligand-induced transcriptional cascades are universal in eukaryotic cells. By their
activation mechanisms, ligand-induced genes can be roughly divided into primary and
secondary response genes (K R Yamamoto and Alberts, 1976; Herschman, 1991).
Activation of primary response genes depends on existing signaling molecules and is
independent of new protein synthesis. They are immediately downstream of receptor-
induced signaling through post-translational modifications or nuclear translocation of
transcription factors. Therefore, primary response genes are often rapidly induced. In
contrast, activation of secondary response genes requires new protein synthesis, which

results in delayed transcriptional induction.

Besides their differences in transcriptional kinetics and regulatory mechanisms, primary
and secondary response genes also have other distinct characteristics. Many primary
response genes possess CpG-island promoters that are constitutively accessible
(Ramirez-Carrozzi et al., 2009). Their promoters also associated with active histone
marks including H3K4me3, H3S10ph, and histone acetylation (Fowler et al., 2011).
Their promoters also have paused RNA Pol Il with serine 5-phospohrylation, which can
quickly transition into active elongation upon stimulus-induced P-TEFb recruitment
(Hargreaves et al., 2009; Medzhitov and Horng, 2009). Many primary response genes
are relatively small genes that contain fewer exons than secondary response genes,
leading to rapid transcriptional and splicing rates (Tullai et al., 2007). In contrast,
secondary response genes often lack CpG-island promoters and require stimulus-

induced transcription factors that can recruit chromatin remodeling complex to initiate



chromatin remodeling (Ramirez-Carrozzi et al., 2009; Ramirez-Carrozzi et al., 2006).
Besides mechanistic differences, primary response genes and secondary response
genes also differ in their biological functions. In TLR4 signaling, many primary response
genes encode signaling molecules, transcription factors, and effector molecules.
Secondary response genes often encode molecules regulating more specific biological

functions such as antigen presentation and T cell activation (Tong et al., 2016).

Primary and secondary response genes can be interdependent. Primary response
genes can also encode activators of secondary response genes. For instance, LPS can
activate the MAPK pathway and induce the primary response genes Fos, Jun, and Atf3,
which encode AP1/ATF transcription factors (Tong et al., 2016; Bhatt et al., 2012).
AP1/ATF transcription factors can potentiate the expression of several secondary
response genes. LPS can also induce primary response gene Ifnb1, which encodes
type | interferon. Type | interferon is a key immune-regulatory molecule that induces at
least half of the secondary response genes regulating the interferon response (Raza et

al., 2014; Amit et al., 2009).

However, the boundary between primary and secondary response genes is often
blurred. Some genes can behave like both primary and secondary response genes. For
example, Gbp5 contains a canonical IRF binding site. In early TLR4 signaling, it is a
primary response gene directly activated by IRF3. Later in TLR4 signaling, it can be
activated as a secondary response gene by interferon-induced IRF9-STAT1-STAT2

complex (Ourthiague et al., 2015; Krapp et al., 2016). Limited by the cell-specific

10



expression of key regulators, one gene can be either primary or secondary response
gene in different cell contexts. For instance, /6 is a primary response gene induced by
LPS in macrophages (Ramirez-Carrozzi et al., 2009). But //6 is a secondary response
gene in fibroblasts, which is sensitive to cycloheximide, an inhibitor of translation. As an
initial clue to transcriptional regulatory mechanisms, separating primary and secondary

response genes is often the first step of gene classification.

F. Selective Regulation of Transcriptional Cascades in Inflammation

Almost all cells in their native environment are constantly encountering extracellular and
intracellular stimuli. How cells react to these stimuli depends on cell context and the
nature of stimuli (Figure 1-2). It is believed that the lineage-determining factors and
stimulus-regulated transcription factors together shape the transcriptional networks in
macrophages (Glass and Natoli, 2016; Ostuni and Natoli, 2013; Heinz et al., 2010).
During cellular development, the environmental cues will elicit the expression of lineage-
determining transcription factors. Some of these factors can act as pioneer factors,
which can recruit chromatin-remodeling complexes, bind extensively to many cell-
specific cis-regulatory regions, and activate key regulators to promote lineage
commitment. Subsequent environmental factors can further shape cell identity by
inducing polarizing factors, which can further differentiate precursor cells into certain cell
types. By opening chromatin or modifying other chromatin features, both pioneer factors
and polarizing factors can establish cell-specific cis-regulatory elements including
enhancers and promoters. Once the mature cells enter peripheral tissues, peripheral

signals can activate stimulus-specific effector transcription factors, which can bind to

11



cell-specific cis-regulatory elements established during development. Different
combinations of effector transcription factors can activate unique sets of genes for
stimulus-specific responses. Deciphering these selective regulation mechanisms is
essential for understanding the logic of selective gene regulation and developing cell-

specific or gene-specific therapeutics.

G. Cell-Specific Regulation of Transcription

Cell identity is continually evolving in changing microenvironments. In bone marrow,
hematopoietic stem cells can differentiate into macrophages in the presence of many
differentiating factors including colony-stimulating factors, chemokines, morphogens,
and contact signals (Ostuni and Natoli, 2013; Sanchez-Martin et al., 2011; Amit et al.,
2016). In the presence of tissue-specific factors, tissue-resident macrophages will
undergo transcriptional and phenotypic changes to adapt to the local microenvironment.
For example, peritoneal retinoic acids drive unique expression signatures of the
peritoneal macrophages; brain TGFB induces genes regulating microglia-specific
functions (Gosselin et al., 2014; Amit et al., 2016). Besides tissue-specific phenotypes,
cytokines can prime and polarize macrophages into M1 and M2 macrophages (Martinez
and Gordon, 2014; Benoit et al., 2008; Mantovani and Locati, 2009). IFNy can polarize
macrophages into M1 type macrophages. M1 macrophages are pro-inflammatory,
typically expressing genes regulating antibacterial functions such as Nos2. On the other
hand, IL-4 can polarize macrophages into M2 type macrophages. M2 macrophages are
anti-inflammatory, expressing genes regulating tissue repair such as Arg1. Besides

transcriptional control, environmental factors also employ epigenetic strategies to shape

12



cell identities.

DNA methylation. DNA methylation is an epigenetic modification that can regulate
gene transcription. In vertebrates, DNA methylation usually occurs at the cytosine of
CpG dinucleotide except CpG islands at the promoter. Alteration of DNA methylation by
developmental and environmental stimuli can cause changes in gene expression and
cellular functions (Philibert et al., 2012). During blood formation, methylome changes
are correlated with lineage-specific gene expression and lineage commitment
(Ronnerblad et al., 2014; Reinius et al., 2012). Knockout of DNA methyltransferase 1
impaired lineage development (Broske et al., 2009). Loss of DNA methylation often
prevents heterochromatin formation, leading to the chromatin accessibility, binding of
key transcription factors, and marking of active histone. During macrophage
differentiation, DNA de-methylation promotes the activation of macrophage-specific cis-
regulatory elements and expression of macrophage-specific genes (Wallner et al.,
2016). DNA methylation also plays a role in shaping cell identity by environmental
signals. For example, DNA methylation participates in M1/M2 macrophage polarization.
In M1 macrophages, pro-inflammatory genes have hypo-methylated promoters, and
anti-inflammatory genes have hyper-methylated promoters. This methylation pattern is
correlated with the skewed expression of pro-inflammatory genes in M1 macrophages.
M2 macrophages show the opposite methylation and expression patterns at the
promoters of pro-inflammatory and anti-inflammatory genes (Babu et al., 2015). Thus,
DNA methylation can refine cell identity by altering the chromatin features and gene

expression during development and environmental stimulation.

13



Pioneer factors and polarizing factors. Pioneer factors often refer to transcription
factors that can bind to closed chromatin and modify chromatin features during
development. Pioneer factor binding and the consequent chromatin changes can
facilitate or repress the binding of other transcription factors at key cis-regulatory
elements, leading to transcriptional and phenotypic changes. For example, during
hematopoiesis, progenitor cells undergo significant changes in transcription factor
binding, chromatin features, and gene expression (Kowalczyk et al., 2015; Lara-Astiaso
et al.,, 2014). Pioneer factors play a pivotal role in maintaining cell identity through
chromatin regulation. In macrophages and B cells, PU.1 functions as a pioneer factor
binding to thousands of genomic sites regulating cell-specific gene expression (Ghisletti
et al., 2010). PU.1 can prevent heterochromatin formation and maintain open chromatin
by interacting with p300/CBP (Nerlov and Graf, 1998; Yamamoto et al., 1999; Tagore et
al., 2015). PU.1 can establish de novo enhancers with H3K4me1 and H3K27ac marks.
Some of these enhancers are constitutively active by directly regulating macrophage-
specific genes; some enhancers are inducible by recruiting other stimulus-induced
transcription factors such as NFkB, AP1, and IRF. PU.1 can also collaborate with other
stimulus-induced factors and induce transcriptional and phenotypic changes to adapt to
the local environment. For example, in peritoneal macrophages, PU.1 can collaborate
with GATA-6, a transcription factor induced by retinoic acids in the peritoneal cavity, and
promote the expression of genes regulating gut IgA production (Glass and Natoli, 2016;
Rosas et al.,, 2014; Gautier et al., 2014). Besides pioneer factors expressed during
development, polarizing factors can also regulate gene expression through modifying

chromatin features at cis-regulatory elements. Polarizing factors are often transcription
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factors that are induced by microenvironment signals. In M2 macrophage polarization,
IL-4-induced STAT6 can activate the H3K27 demethylase Jmjd3. Jmjd3 removes
H3K27me2/3 marks on inactive cis-regulatory elements and promotes the expression of
M2 marker genes (Ishii et al., 2009). Thus, by establishing novel cis-regulatory
elements, both pioneer factors and polarizing factors can shape cell identity by acting

alone or collaborating with other stimulus-induced transcription factors.

H. Stimulus-Specific Regulation of Transcription

Environmental stimuli can activate different receptors to promote stimulus-specific
cellular responses. The activated receptors use different combinations of signaling
molecules and transcription factors to induce genes regulating stimulus-specific
responses. For example, different TLRs selectively activated anti-bacterial or anti-viral
genes by using different adaptors and downstream signaling molecules. The membrane
receptors TLR1, TLR2, TLRS5, and TLR6 use adaptors MyD88 to activate the MAPK and
NFkB pathways, inducing pro-inflammatory genes encoding cytokines, chemokines, and
anti-bacterial peptides. The intracellular receptor TLR3 uses TRIF to activate the NFkB
and IRF pathways, inducing pro-inflammatory genes and type | interferon response
genes. TLR4 uses both MyD88 and TRIF adaptors to activate pro-inflammatory and
type | interferon response genes. However, the limited number of transcription factors
cannot fully explain the differential expression induced by different stimuli. While there
are around 30,000 genes in the mouse genome, there are fewer than 3,000
transcription factors. Therefore, cells might leverage the limited number of transcription

factors for selective gene activation using other strategies. These strategies are often
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prevalent for regulating important transcription factors and important genes.

In TLR signaling, some key transcription factors can undergo multiple post-translational
modifications that affect their activity and stability. One example is IRF3. It can induce
type | IFN production in activated macrophages. Depending on the specific stimuli, IRF3
can have at least three different types of post-translational modifications. In TLR4
signaling, TBK1 or IKKe can phosphorylate IRF3 C-terminal Ser/Thr clusters. IRF3
phosphorylation increases the negative charges and induces structural changes. This
leads to IRF3 dimerization, nuclear translocation, DNA binding, and interaction with
coactivators CBP/p300 (Panne et al., 2007; Dragan et al., 2007). IRF3 activity is also
negatively regulated by SUMOylation at Lys152. Mutation of the SUMUylation site or the
SUMO-conjugating enzyme UBC9, enhances transcriptional activity of IRF3 and
elevates type | interferon production (Kubota et al., 2008; Decque et al., 2015).
Additionally, IRF3 stability is regulated by polyubiquitination. Pin1 can bind to
phosphorylated IRF3 and promote IRF3 degradation by proteasomes, resulting in a
transient expression of type | IFN (Saitoh et al., 2006; Lin et al., 1998). On the other
hand, HERCS5 can prevent Pin1 binding and stabilize IRF3 by coupling 1ISG15 to IRF3,
which results in a sustained expression of type | interfereon and robust antiviral
response (Shi et al., 2010). Therefore, by carefully balancing different post-translational
modifications of IRF3, cells can precisely regulate the temporal expression of type |

interferon and anti-viral response genes.

Besides regulating key transcription factors, selective regulatory mechanisms also
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include the combinatorial interaction of transcription factors. Combinatorial regulation is
widely used to regulate diverse biological functions including immune responses, cell
proliferation and differentiation, and vascular development. One typical example of
combinatorial regulation involves the transcription factor SRF. Although SRF is widely
expressed, it can selectively induce transcription by interacting with two different
cofactors: TCF transcription factors and MRTF transcription factors. Upon MAPK
activation, SRF can partner with TCF to rapidly activate many primary response genes
including c-fos, Egr1, and Nr4a1 (Treisman et al., 1992; Gregg and Fraizer, 2011;
Costello et al., 2004). SRF and TCF motifs have short and flexible spacing (Treisman et
al., 1992; Posern and Treisman, 2006). At the promoter of c-fos, TCF binds to an Ets
motif with a short core motif GGA; SRF binds to a core motif CCATATTAGG. The
distance between Ets motif and SRF motif on c-fos promoter is only 3bp, thus allowing
SRF to form a ternary complex with TCF (Mo et al., 2001). The cooperative binding of
SRF and TCF stabilizes the binding of both factors on DNA (Kukushkin et al., 2002;
Treisman et al., 1992). The binding of the complex causes a stronger bending of DNA
towards SRF than SRF binding alone (Hassler, 2001). This probably allows SRF to
make more extensive contact with DNA in the ternary complex than SRF binding alone.
Both SRF and TCF are required for transcriptional activation. Mutation of either site will
abolish gene induction. Another SRF cofactor, MRTF, can compete with TCF for the
same binding domain on SRF (Murai and Treisman, 2002; Wang et al., 2004). Unlike
TCF, MRTF does not bind to DNA in a sequence-specific manner. It indirectly binds to

SRF motif through SRF recruitment.
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IFNB1, encoding type | interferon in human, is a primary response gene induced by
TLR4 signaling. It is also an autocrine molecule that triggers half of the secondary
response genes, which regulate the interferon response and antiviral response. IFNB1
transcription relies on the cooperative binding of three different transcription factors:
ATF-2/c-Jun, IRF3/IRF7, and NFkB. Their binding sites on IFNB1 promoter comprise a
tightly packed 55-bp motif including one AP1 site, two IRF sites, and one NFkB site.
This motif is highly conserved in mammals, suggesting that they are functionally
important. Although these transcription factors lack physical contact in crystal structure,
they can bind cooperatively to the promoter and form a large functional complex called
the enhanceosome (Panne et al., 2007; Thanos et al., 1993). The formation of the
enhanceosome requires the architectural protein HMGI(Y) and the orderly recruitment
of histone acetylase, chromatin remodeling complexes, and transcription initiation
machinery (Agalioti et al., 2000; Merika et al., 1998). In embryonic stem cells, Oct4 and
Sox2 transcription factors can also bind cooperatively to a composite site and regulate
genes essential for maintaining pluripotency (Reményi et al.,, 2004). In antigen-
presenting cells, CIITA complexes with RFX, X2BP, and NF-Y transcription factors,
acting as a master control factor of MHCIl genes (Ludigs et al., 2015; LeibundGut-
Landmann et al., 2004). In endothelial cells, Forkhead and Ets transcription factors bind
cooperatively to a highly conserved Ets:Fox motif composite and selectively activate

genes regulating vascular development (Val et al., 2008).

Combinatorial regulation requires fulfilling rules in motif, dimerization, and post-

translational modification. In combinatorial regulation, transcription factors often need
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strong motifs for binding, but their motifs may also diverge slightly from the canonical
motifs for optimal protein interaction. And because the cooperative binding may stabilize
protein binding in the complex, transcription factors can sometimes bind to weak motifs.
For example, ternary complex formation allows TCF binding to a suboptimal Ets site
near SRF site (Treisman et al., 1992). Short motif spacing is often required for physical
interaction between transcription factors. Some have strict motif spacing, but some have
flexible spacing. For example, the cooperative binding of Forkhead factor and Ets factor
requires no spacing between the two motifs (Val et al., 2008). In contrast, TCF interacts
with SRF through a flexible linking domain and forms a complex with SRF with variable
spacing (Treisman et al., 1992). Besides motif requirements, combinatorial regulation
might also prefer selective dimers. For example, the AP1 site on human IFNB1
enhanceosome prefers the AP1 dimer formed by c-Jun and ATF2. A selective dimer
further ensures the precise of transcriptional activation by selective stimuli. Lastly,
combinatorial regulation can also depend on selective translational modifications of
transcription factors. For example, SRF and TCF can form a ternary complex on DNA
prior to stimulation, but the complex is not activated until TCF phosphorylation by MAPK

(Herrera et al., 1989; Gineitis and Treisman, 2001).

In eukaryotic cells, DNA wraps around histone proteins and assembles into a unit called
a nucleosome. Each nucleosome is composed of 146bp DNA wrapped around an
octamer consists of two copies each of H2A, H2B, H3, and H4. Between neighboring
nucleosomes, there is usually a 10-50bp linker DNA bound by histone H1. To pack 3

billion base pairs of human genome into 2nm fibers, nucleosomes also fold into higher
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order of structures (Woodcock and Ghosh, 2010; Luger et al., 2012). Because many
cis-regulatory elements are buried in the nucleosome structure, protein binding to these
inaccessible sites requires chromatin-remodeling complexes such as SWI/SNF. They
can open chromatin by sliding or removing nucleosomes (Venkatesh and Workman,
2015; Clapier and Cairns, 2009). Histone modifiers can covalently modify the histone
residues and alter chromatin structure by changing the electric charges of key residues
or recruiting other histone regulators (Venkatesh and Workman, 2015; Bannister and
Kouzarides, 2011). These chromatin regulation strategies increase the complexity of

selective transcriptional regulation.

Chromatin accessibility is largely affected by the intrinsic properties of promoters. About
70% of mammalian promoters contain CpG islands (Saxonov et al., 2006). Because
CpG-island promoters are too rigid to form stable nucleosomes, they are more likely to
be nucleosome-free and accessible to protein binding (Ramirez-Carrozzi et al., 2009;
Tazi and Bird, 1990; Choi, 2010). Thus, high CpG content is often sufficient to maintain
open chromatin at promoters. Because they do not require chromatin remodeling, these
CpGe-island promoters are frequently associated with ubiquitously expressed genes.
Almost all housekeeping genes possess CpG-island promoters (Zhu et al., 2008). CpG-
island promoters often contain the active promoter mark H3K4me3 and a paused Pol Il,
which is often associated with high basal expression (Hargreaves et al., 2009).
Conversely, low CpG-island promoters are more likely to form stable nucleosomes, thus
preventing transcription factor binding and gene activation. Low CpG-island promoters

often rely on pioneer factors or stimulus-induced factors to recruit chromatin-remodeling
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complexes and histone modifiers. For example, interferon-y can synergize with TLR
agonists to activate pro-inflammatory genes by inducing the transcription factors STAT1
and IRF1. STAT1 and IRF1 recruit remodeling complexes to low CpG-island promoters,
resulting in TLR-activated transcription factors binding to accessible promoters and
transcriptional activation (Qiao et al., 2013; Pattenden et al., 2002). Because low CpG-
island promoters require chromatin remodeling, they often have delayed transcriptional

activation.

In TLR signaling, chromatin regulation also plays a role in separating primary and
secondary response genes regulating different biological functions. Many primary
response genes containing CpG-island promoters encode transcription factors and
effector molecules. Because they do not require chromatin remodeling, they can be
quickly induced to activate secondary response genes or auto-regulate primary
response genes. Conversely, many secondary response genes encode cytokines
regulating adaptive immune functions. They possess low CpG-island promoters that
require chromatin remodeling, leading to delayed transcriptional induction (Ramirez-

Carrozzi et al., 2009).

Cell-specific and stimulus-specific regulatory mechanisms often act collaboratively to
regulate key inflammatory genes. One example is the //72b gene. It encodes IL-12p40,
a subunit shared by IL-12 and IL-23. IL-12p40 can dimerize with the constitutively
expressed IL-12p35 subunit to form IL-12, a cytokine that bridges the innate and

adaptive immunity by promoting Th1 cell development (Trinchieri, 2003; Trinchieri,
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1995). IL-12p40 can also dimerize with IL-23p19 to form IL-23, a cytokine essential for
Th17 development (Vignali and Kuchroo, 2012; Teng et al., 2015). //12b is inducible by
cytokine and pattern recognition receptor agonists only in myeloid cells. During
hematopoiesis, PU.1 binds to the Ets site of //72b enhancer and maintains an
accessible enhancer. In cells lacking PU.1, polycomb repressive complex 2 binds to the
I112b enhancer and establishes heterochromatin with the repressive histone mark
H3K27me3 (Tagore et al.,, 2015). The PU.1-established enhancer ensures the cell-
specific expression of //12b. 1112b gene transcription requires activation of both the
promoter and the enhancer. Upon on LPS stimulation, Oct proteins and CEBPf bind to
the I112b enhancer to induce //712b transcription (Zhou et al., 2007; Bradley et al., 2003).
I112b enhancer activity is also negatively regulated by IL-10-induced NFIL3 (Smith et al.,
2011). IRF5 can facilitate the synergy between the //72b enhancer and promoter by
binding to the IRF sites on both the enhancer and the promoter of //12b (Koshiba et al.,
2013). These transcription factors have differential roles in regulating //72b transcription.
While CEBPB mutation does not strongly affect //72b induction, Oct and IRF5 mutation
severely impaire //12b induction (Takaoka et al., 2005; Zhou et al., 2007; Bradley et al.,
2003). The 1I12b promoter has binding sites for CEBP, AP1, and NFkB. Among them,
the NFkB site is most critical for the transcriptional induction of //72b. The non-canonical
NFkB site at the //12b promoter has much a stronger preference for c-Rel:p50 dimer
than other NFkB dimers. Mutating c-Rel abolished the expression of //12b, but RelA
mutation hardly affected //12b expression (Sanjabi et al., 2005). While the 1/12b
enhancer is constitutively open, //72b promoter lacks CpG islands and requires TLR-

activated chromatin remodeling for transcriptional activation (Weinmann et al., 2001;
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Weinmann et al., 1999). However, only about 20% of the macrophages undergo
chromatin remodeling at promoters after LPS stimulation (Gjidoda et al., 2014). This
suggests that nucleosomes might compete with transcription factors for DNA binding.
Interestingly, although c-Rel knockout cells have diminished //72b induction, it does not
affect promoter chromatin remodeling (Weinmann et al., 2001). This indicates that c-Rel
binding is a downstream event of chromatin remodeling. Although there might be other
as-yet-unknown mechanisms regulating //112b, 1/12b represents a complicated selective
regulation model combining cell-specific and stimulus-specific mechanisms, which
involves transcription factor regulation, chromatin regulation, and promoter-enhancer

interaction.

Cell-specific and stimulus-specific regulation can be interdependent and can share
similar mechanisms. Pioneer factors can collaborate with stimulus-induced transcription
factors at cell-specific cis-regulatory elements to activate transcription; and stimulus-
induced factors can also change chromatin status and further shape cell identity. For
example, differentiated macrophages maintain a certain degree of plasticity. Upon
repeated bacterial infection, macrophages can develop trained immunity or immune
tolerance (Netea et al., 2016; Ifrim et al., 2014). LPS-activated transcription factors can
bind to intergenic sites lacking enhancer marks and establish de novo enhancers by
promoting the removal of repressive histone marks and the deposition of H3K4me1
marks (Ostuni et al., 2013; Yoshida et al., 2015). These de novo enhancers are also
called latent enhancers. Upon the second LPS challenge, they can induce transcription

more robustly and rapidly than the first challenge. Thus, macrophages are able to gain
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partial short-term memory to certain environmental stimuli. On the other hand, repeated
LPS stimulation can also cause weaker or no response, a phenomenon called LPS
tolerance. LPS can reduce histone acetylation at cis-regulatory elements of some
induced genes, leading to the non-response or tolerance to the subsequent LPS
stimulation (Hargreaves et al., 2009). Trained immunity and immune tolerance
demonstrate that stimulus-specific changes can also shape cell identity and overlap with

the functions of cell-specific regulatory mechanisms.

l. Selective Regulation of NFkB

NFkB transcription factors play a pivotal role in innate and adaptive immunity. They are
widely expressed in many cell types and can be activated by a diverse range of stimuli.
Dysregulation of NFkB transcription factors is associated with many chronicle
inflammatory diseases and other diseases including cancer, Alzheimer’'s disease,
diabetes, and atherosclerosis (Hoesel and Schmid, 2013; Patel and Santani, 2009;

Pamukcu et al., 2011).

NFkB family transcription factors consist of five members: Rel A, RelB, c-Rel, p50, and
p52. Structurally, all NFkB members share a Rel homology domain (RHD), which is
responsible for interaction with IkB inhibitor proteins, dimerization, nuclear localization,
and DNA binding (Hoesel and Schmid, 2013; Lawrence, 2009; Zhang et al., 2017).
While Rel A, RelB, and c-Rel share an additional transcriptional activation domain, p50
and p52 precursors share many copies of ankyrin repeats in their C-terminal domains.

These sequences are responsible for self-inhibition. Because p50 and p52 lack
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transcription activation domains, their homodimers can bind to NFkB sites as dominant
negative proteins to inhibit transcription of NFkB targets. NFkB members can form 15
dimeric species that can bind to DNA. The most important dimers in the immune
response are RelA:p50, c-Rel:p50, and RelB:p52. NFkB dimers can bind to a
consensus kB motif: 5-GGGRN(Y)YYCC-3' (Hoffmann and Baltimore, 2006). However,
different dimers favor slightly different kB motifs (Wang et al., 2012). Protein binding
microarrays reveal three classes of consensus kB motifs. RelA and c-Rel homodimers
prefer binding to a 9-bp motif; heterodimers prefer binding to a 10-bp motif; and p50 and
p52 homodimers prefer binding to an 11-bp or a 12-bp motif (Siggers et al., 2012). The
differential binding of dimers represents one of the strategies to selectively regulate
NFkB targets. For example, the //12b promoter has a non-canonical NFkB site that
favors c-Rel:p50 binding. While //12b induction was abolished by c-Rel mutation, it was
not affected by the mutation of other NFKB members (Sanjabi et al., 2005; Tong et al.,

2016).

NFkB transcription factors are regulated by the canonical and non-canonical pathways.
In the canonical pathway, NFkB is sequestered in the cytoplasm by inhibitory IkB
proteins including IkBa, IkBB, IkBy, and IkBe. IkB proteins mask the nuclear
translocation signals of NFkB and thereby prevent nuclear translocation. Extracellular
stimuli like pathogen components and cytokines can activate the IKK complex, which
consists of IKKa, IKK[, and regulatory subunit IKKy. The active IKKB can phosphorylate
IkB proteins, inducing IkB protein ubiquitination and proteasome degradation. The

degradation of IkB proteins releases NFkB, allowing it to dimerize, translocate into
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nucleus, and bind to NFkB sites regulating pro-inflammatory genes (Shih et al., 2011;
Hayden and Ghosh, 2012). In the non-canonical pathway, p52 precursor, p100, remains
in the cytoplasm because of self-inhibitory sequences at the C-terminus. TNF family
cytokines such as CD40L, BAFF, and RANKL, can activate a complex composed of NIK
and IKKa. Activated IKKa can phosphorylate p100 and induce removal of these
inhibitory sequences. The processed p100 releases p52, which can dimerize with RelB
and translocate into the nucleus (Sun, 2011; Cildir et al., 2016). While the canonical
pathway activates genes regulating host response to pathogen infection, the non-
canonical pathway often controls genes regulating lymph-organogenesis, B cell

maturation, and bone metabolism.

NFkB transcription factors are regulated at many steps of gene expression including
transcription and post-translational modification steps. NFKB members and IkB proteins
can induce their own transcription in an auto-regulatory manner (Tong et al., 2016). The
rapid induction of IkB proteins can export nuclear NFkB to the cytoplasm and replenish
the cytoplasmic pool of NFkB proteins. This results in the transient expression of NFkB
targets, but it also ensures robust cellular response to repeated stimuli (Kearns et al.,
2006; Nelson et al., 2004; Kellogg and Tay, 2015). NFkB proteins also undergo different
post-translational modifications that positively or negatively regulate NFkB activity. For
example, RelA Ser-276 can be phosphorylated by the cytoplasmic protein kinase A or
the nuclear MSK1. Ser-276 phosphorylation can prevent the folding of two terminal
domains and facilitate the interaction with the co-activator p300/CBP (Perkins, 2006;

Zhong et al., 2002). Phosphorylation of Thr-254 of RelA is required for the binding of
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Pin1, which can activate RelA by promoting RelA dissociation from IkBa. RelA can also
be acetylated by p300/CBP at multiple sites including Lys-281, Lys-221, and Lys-310.
While Lys-281 and Lys-221 prevent nuclear IkBa from exporting of RelA, Lys-310
enhances the transcriptional activity of RelA (Chen et al., 2002). Post-translational
modifications can also negatively regulate RelA. For example, RelA methylation by Set9
or ubiquitination by SOCS-1 can result in proteasome-mediated protein degradation and
termination of transcription (Yang et al., 2009; Ryo et al., 2003; Huang et al., 2010).
Thus, by combining post-translational modifications and interactions with co-factors,

NFkB can both broadly and selectively regulate hundreds of pro-inflammatory genes.

J. Serum Response Factor (SRF) and Combinatorial Regulation

Serum response factor (SRF) is a ubiquitously expressed transcription factor that
regulates a wide variety of biological functions including cell proliferation and
differentiation, circadian rhythm, cytoskeleton, cell migration, muscle cell development,
and inflammation (Olson and Nordheim, 2010; Posern and Treisman, 2006; Kndll and
Nordheim, 2009). SRF mutation is embryonic lethal during gastrulation. Tissue-specific
deletion of SRF also causes defects in vascular development, skeletal muscle
development, neuronal development, B cell and T cell maturation, and macrophage
functions (Miano, 2010). It is interesting that such a ubiquitously expressed transcription

factor can selectively regulate genes involved in diverse functions in different cell types.

SRF belongs to the MADS domain protein family that is conserved from yeast to human.
It binds to DNA as a homodimer and induces a 72° bending of DNA towards SRF

(Pellegrini et al., 1995; Mo et al., 2001). SRF binds to a consensus motif named CArG
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box: CC[A/T]¢GG. Degenerate CArG box motifs are widespread in the genome.
Computational analyses predict more than 3 million such CArG box motifs in human
genome (Sun et al., 2006). SRF ChIP-seq, however, revealed only thousands of peaks
in each cell type (Kim et al., 2010; Sullivan et al., 2011; Esnault et al., 2014). This
suggests the functional binding of SRF may be regulated by other mechanisms such as
chromatin regulation. SRF can be regulated by transcriptional induction, post-
translational modification, and cofactor interaction. SRF is constitutively expressed, and
it can activate its targets without new protein synthesis. But its transcription can also be
further induced by Rho-actin pathway activators (Esnault et al., 2014; Misra et al.,
1991). SRF has two phosphorylation sites: Thr-159 and Thr-162. Phosphorylation of
Thr-159 in the MADS domain is required for transcriptional activation of the a-actin gene
(lyer et al., 2003). Phosphorylation of Thr-162 prevents SRF binding at the actin
promoter, but it does not prevent SRF binding at the promoter of c-fos (lyer et al., 2006).
This is probably because SRF activity requires different cofactors at these two genes.
And different phosphorylation can affect the choice of cofactor to selectively activate

SRF targets.

SRF activity is mainly regulated through cofactor interaction (Figure 1-3). SRF can
interact with two cofactors: ternary complex factor (TCF) and myocardin-related
transcription factor (MRTF) transcription factors. TCF transcription factors consist of
three members: SAP-1, EIk1, and Net. TCF belongs to the ETS family transcription
factors. In the presence of nearby SRF sites, TCF can bind cooperatively with SRF and

form a ternary complex on DNA in the absence of stimulation (Posern and Treisman,
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2006; Herrera et al., 1989). Because TCF contacts SRF through a flexible domain, they
can form a complex with variable spacing between the two binding sites (Treisman et
al., 1992). The MAPK pathway can activate TCF in the ternary complex through
phosphorylation. Active TCF can further recruit CBP/p300, histone modifiers, and
transcription initiation machinery for transcriptional activation (Ramirez et al., 1997;
Esnault et al., 2017). The MAPK-TCF pathway can be activated by a broad range of
stimuli including mitogens, cytokines, UV irradiation, and TLR agonists (Chai and
Tarnawski, 2002). SRF and TCF control the expression of many primary response

genes that regulate cell proliferation and differentiation, such as c-fos, Egr1, and Nr4a1.

Myocardin-related transcription factors (MRTFs) belong to another family of SRF
cofactors. This family consists of myocardin, MRTFA, and MRTFB. Myocardin is
selectively expressed in muscle cells. Myocardin is constitutively active and controls the
expression of many muscle-specific genes (Wang et al., 2003). MRTFA and MRTFB are
expressed ubiquitously in many cell types. MRTF is sequestered by monomeric actin in
the resting state. Activation of the Rho-actin pathway induces actin polymerization,
which dissociates actin from MRTF. MRTF then translocates to the nucleus and
complexes with SRF (Miralles et al., 2003; Olson and Nordheim, 2010). Although MRTF
also makes DNA contact in the SRF-MRTF complex, it does not bind to DNA in a
sequence-specific manner; it is recruited to the SRF motif by SRF (Zaromytidou et al.,
2006). The MRTF-SRF complex regulates genes involved in actin cytoskeleton function,
cell migration, and muscle function (Olson and Nordheim, 2010; Medjkane et al., 2009).

Because MRTF and TCF bind to a common interface on SRF, they can compete for
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SRF interaction, resulting in either the activation or repression of transcription
(Zaromytidou et al., 2006; Murai and Treisman, 2002; Wang et al., 2004). The
competition of different cofactors enables SRF to integrate multiple signals and

selectively activate transcription.

In conclusion, a proper immune response requires a fine balance between host defense
and homeostasis. Clarifying the mechanisms underlying the immune activation will
improve our understanding of the immune system and will shed light on treating
immune-related diseases. Because innate immunity orchestrates a chain of innate and
adaptive immune responses during inflammation, we began our studies on the innate
immune response. Innate immune cells can sense pathogen components through
pattern recognition receptors, which reside in different cellular compartments and trigger
potent transcriptional induction integrating discrete signaling pathways, chromatin
regulators, and transcription factors. The highly coordinated events regulating the
transcriptional cascades require both common and gene-specific strategies that allow
innate immune cells to respond in cell-specific and stimulus-specific manners. Although
many studies have investigated the transcriptional mechanisms of different pattern
recognition receptors, they relied on statistics and conventional systems approaches
that focus on common regulatory mechanisms. Their approaches assume that one
transcription factor or pathway can regulate many genes, and combinatorial regulation
leads to gene-specific regulation. However, their statistic methods require large sample
sizes, and therefore, they often suffer from the loss of selective mechanisms that only

regulate a small number of genes. In chapter 2, | describe a stringent system approach
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to classify primary and secondary response genes. This approach demonstrates that
key inflammatory genes are regulated by highly selective mechanisms involving
chromatin regulation and combinatorial regulation. In chapter 3, | examine a
combinatorial regulation model of SRF and TCF transcription factors and identify the
strict motif requirements for cooperative binding and transcriptional induction. Taken
together, our stringent systems approach can complement the conventional systems
approach by uncovering selective mechanisms and by elucidating deeper mechanistic

details in complicated contexts.

Figure Legends

Figure 1-1: TLR4 Signaling Pathways

LPS-activated TLR4 signaling is mediated through two adaptors: TIRAP/MyD88 and
TRIF. Dimerization of TLR4 recruits TIRAP/MyD88, which in turn recruits IRAKS,
TRAF6, TAB1/2/3, TAK1, IKKa, IKKB, and the regulatory subunit IKKy. Active IKKs can
phosphorylate IkBs and activate the NFkB pathway. Active TAK1 in the cytoplasm can
activate the MAPK pathway. Through CD14-mediated activation of ITAM, Syk and
PLCy, TLR4 can internalize and transport to endosome. In endosome, TLR4 interacts
with the adaptor TRAM/TRIF, which in turn recruits RIPK1, TRADD, caspase-8, FADD,
IKKa, IKKB, and IKKy. Active IKKs can induce the NFkB pathway. TRAM/TRIF can also
recruit TRAF3, which can interact with TANK, IKKy, IKKe, and TBK1. TBK1 can activate

IRF3, a key transcription factor responsible for type | IFN production.
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Figure 1-2: Cell-Specific and Stimulus-Specific Regulation of Gene Transcription

A model explains the cell-specific and stimulus-specific regulation of transcription.
During cell development, micro-environmental cues induce the expression of pioneer
transcription factors and polarizing transcription factors. They can promote cell-specific
gene expression program and drive lineage commitment and cell differentiation. In the
peripheral tissue, terminally differentiated cells can respond to extracellular and
intracellular stimuli by inducing different effector transcription factors. These stimulus-
specific transcription factors can induce gene expression programs resulting in

reversible functional states.

Figure 1-3: SRF Regulated by Rho-MRTF and MAPK-TCF Pathways

SRF can partner with two cofactors: MRTF (MAL) activated by the Rho-actin pathway,
and TCF activated by the MAPK pathway. Monomeric actin can bind to MRTF (MAL)
and sequester MRTF (MAL) in the cytoplasm. Activation of the Rho family GTPases
(RhoA, Rac, and Cdc42) induces actin polymerization and dissociates monomeric actin
from MRTF (MAL). MRTF can translocate into the nucleus and complex with SRF to
activate transcription. The MAPK pathway can phosphorylate and activate TCF. TCF
binds to the Ets site near SRF site. TCF can bind cooperatively with SRF and form a

ternary complex to activate transcription.

32



Figure 1-1: TLR4 Signaling Pathways
(Brubaker et al., 2015; License#: 4082740867171)
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Figure 1-2: Cell-Specific and Stimulus-Specific Regulation of Gene Transcription

(Ostuni and Natoli, 2013; License#: 4082741209330)
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Figure 1-3: SRF Regulated by Rho-MRTF and MAPK-TCF Pathways

(Posern and Treisman, 2006; License#: 4082741323052)
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SUMMARY

Much has been learned about transcriptional cas-
cades and networks from large-scale systems ana-
lyses of high-throughput datasets. However, anal-
ysis methods that optimize statistical power
through simultaneous evaluation of thousands of
ChlIP-seq peaks or differentially expressed genes
possess substantial limitations in their ability to un-
cover mechanistic principles of transcriptional con-
trol. By examining nascent transcript RNA-seq,
ChlP-seq, and binding motif datasets from lipid
A-stimulated macrophages with increased attention
to the quantitative distribution of signals, we identi-
fied unexpected relationships between the in vivo
binding properties of inducible transcription factors,
motif strength, and transcription. Furthermore, rather
than emphasizing common features of large clusters
of co-regulated genes, our results highlight the
extent to which unique mechanisms regulate individ-
ual genes with key biological functions. Our findings
demonstrate the mechanistic value of stringent inter-
rogation of well-defined sets of genes as a comple-
ment to broader systems analyses of transcriptional
cascades and networks.

INTRODUCTION

The molecular biology revolution of the 1970s was followed by a
20-year period during which gene regulation was studied at the
level of individual model genes. Near the turn of the century,
the emergence of DNA microarrays and whole-genome se-
quences opened avenues toward the study of gene regulation
at a global scale, making it possible to identify genes and net-
works that characterize a cell type, environmental response, or
disease state. More recently, RNA sequencing (RNA-seq) has
emerged as a method that allows global transcript levels to be
evaluated with greater accuracy (Marioni et al., 2008). RNA-
seq also provides an opportunity to monitor nascent transcripts
in addition to mRNA (e.g., Bhatt et al., 2012; Core et al., 2008;
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Rabani et al., 2011). For studies of stimulus-induced transcrip-
tion, nascent transcript levels provide more accurate information
about the kinetics with which gene transcription is activated, and
they allow transcription to be studied independently of mRNA
stability.

Transcriptional cascades induced by inflammatory stimuli in
cells of the mouse innate immune system have been especially
well studied at a global scale, with most studies focusing on cells
stimulated with lipopolysaccharide (LPS) or lipid A. LPS and lipid
A engage Toll-like receptor 4 (TLR4), which then activates com-
mon signaling pathways via the MyD88 and TRIF adaptors. The
TLR4-induced cascade has been monitored by DNA microarray,
RNA-seq, and nascent transcript RNA-seq (e.g., Amit et al,,
2009; Bhatt et al., 2012; Ramsey et al., 2008). Binding sites for
several transcription factors are enriched within the promoters
of defined clusters of co-regulated genes, and distinct subsets
of promoters contain features of either active or inactive chro-
matin prior to cell stimulation (Hargreaves et al., 2009; Ram-
irez-Carrozzi et al., 2009). Moreover, thousands of inducible
enhancers have been defined, with some enhancers poised for
activation and others lacking chromatin marks prior to stimula-
tion (Ghisletti et al., 2010; Heinz et al., 2010; Ostuni et al.,
2013). Gene expression profiles have been further integrated
with chromatin immunoprecipitation sequencing (ChIP-seq) da-
tasets and small interfering RNA (siRNA) knockdown experi-
ments for transcription factors and chromatin regulators (e.g.,
Amit et al., 2009; Garber et al., 2012).

Although conventional systems analyses have provided
considerable insight into the logic underlying the transcriptional
response to a stimulus, the results are often limited to statistical
trends and lack the precision needed to fully uncover molecular
mechanisms. Moreover, for most systems analyses, all genes
that are induced or differentially expressed by a magnitude
exceeding a low threshold—often 2-fold—are considered
equally. This approach enhances statistical power and provides
an opportunity to simultaneously examine an entire “system.”
However, the results tend to be strongly biased toward genes
that are differentially expressed by small magnitudes; these
genes are far more prevalent—and may be regulated by different
mechanisms—than genes differentially expressed by large
magnitudes.

Here, we describe an analysis of lipid A-induced transcription
using gene-centric approaches that place greater emphasis on
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Figure 1. Properties of the Lipid A-Induced Transcriptional Cascade

Chromatin-associated transcripts from BMDMs stimulated with lipid A were analyzed by RNA-seq.
{A) The distribution of maximum fold induction values over the 2 hr stimulation period is shown for the 1,340 significantly induced (2-fold, p < 0.01) and expressed
{three RPKM) genes. With multiple hypothesis testing, two weakly induced genes exhibited g values >0.01. The dashed gray lines represent 5-, 10-, and 50-fold

induction thresholds.

(B) The 1,340 induced genes were grouped into bins, with basal RPKMs shown for each bin and red dashes indicating median RPKMs.
{C) The distributions of maximum fold inductions (left), peak RPKMs (top right), and basal RPKMs (bottom right) are shown for the 226 genes selected for analysis.
(D) The 226 genes were separated into PRG and SRG groups on the basis of their expression in CHX-treated and /fnar '~ BMDMs. Genes were classified as SRGs

if they were expressed <33% in CHX or <30% in fnar '~

IFNAR, or both.

quantitative aspects of nascent transcript RNA-seq, ChlP-seq,
and binding motif datasets. In addition to providing insight into
a number of unanswered mechanistic questions, these ap-
proaches allowed us to move beyond the identification of com-
mon features of large clusters of co-regulated genes and toward
an appreciation of the unique molecular mechanisms used to
regulate individual genes within the inflammatory cascade.

RESULTS

Basic Properties of the Transcriptional Cascade
We first performed RNA-seq with mouse bone-marrow-derived
macrophages (BMDMs) treated with lipid A for 0, 15, 30, 60,
and 120 min. To separate transcription from mRNA stability,
we analyzed nascent, chromatin-associated transcripts. 3,863
(14.1%) of the 27,384 annotated Refseq genes (prior to removal
of duplicate isoforms) reached an expression level of at least
three RPKM in at least one time point. We used a high expression
threshold because our subsequent analysis emphasized induc-
tion magnitudes, which can be quantified most accurately
when both basal and induced transcript levels can be measured
with confidence.

Of the 3,863 expressed genes, 1,340 (34.7%) were induced by
at least 2-fold (p < 0.01) (Figure 1A). Importantly, however, 79.5%
of these genes were induced less than 10-fold (Figure 1A). If all

52

samples. The Venn diagram indicates the number of genes affected by CHX treatment, the absence of

genes induced by 2-fold or greater were evaluated together,
the analysis would be dominated by weakly induced genes.
Notably, most induced genes encoding key cytokines, chemo-
kines, and transcription factors were induced by >10-fold (data
not shown). We therefore focused on the potently induced
genes, with the resulting insights then examined in the context
of the weakly induced genes (see below). Notably, the basal tran-
script levels of the weakly induced genes were generally higher
than those of the strongly induced genes (Figure 1B).

With the above considerations in mind, we focused on 226
genes, 215 of which were induced (p < 0.01) >10-fold during
the 2-hr induction period. The remaining 11 genes were tran-
siently induced by 5- to 10-fold at the 15-min time point; these
genes were added to capture a larger number of genes that
are rapidly downregulated after their early induction. Although
the analysis focuses on only 226 genes, their basal and peak
transcript levels were distributed over more than two orders of
magnitude (Figure 1C).

Separation of Primary and Secondary Response Genes

We next separated primary response genes (PRGs) and second-
ary response genes (SRGs) by performing RNA-seq with nascent
transcripts from BMDMs stimulated with lipid A in the presence
of cycloheximide (CHX). This analysis revealed 83 genes that
were expressed at a level in CHX-treated cells that was <33%



of the expression level in untreated cells (Figure 1D). These 83
genes were included in the SRG group (Figure 1D).

Interferon-p3 (IFN-B) expression is induced by lipid A and acti-
vates a type | IFN gene program. RNA-seq analysis of nascent
transcripts from type | IFN receptor (IFNAR)-deficient (ifnar—'")
BMDM s stimulated with lipid A revealed 62 genes that were ex-
pressed <30% of wild-type (WT) (Figure 1D). Interestingly, 11 of
these IFNAR-dependent genes were classified as PRGs in the
CHX analysis because they exhibited expression levels in the
presence of CHX that placed them just above the threshold
used for SRG classification. Nevertheless, an analysis of their in-
duction kinetics revealed greater similarity to the other IFNAR-
dependent SRGs than to the PRGs (data not shown; see Fig-
ure S1). Because of their strong IFNAR dependence and kinetic
profiles, these 11 genes were added to the SRG category (Fig-
ure 1D). Thus, 132 and 94 genes, respectively, were defined as
PRGs and SRGs for the current analysis. Because some genes
possess both primary and secondary response components
(data not shown), the classification assignments will need to be
re-evaluated as our knowledge increases.

Separation of IFNAR-Dependent and -Independent

SRGs

As described above, a central feature of the response to lipid A
is the activation of type | IFN. Therefore, we separated SRGs
into IFNAR-dependent and -independent groups. Forty-two of
the 94 SRGs were expressed <10% of WT in /fnar '~ BMDMs,
with an additional 22 expressed between 10% and 33% (Figures
2A and 2B). Kinetic analyses revealed that 41 of the 42 genes
expressed <10% of WT failed to reach an expression level in
WT cells corresponding to 10% of the maximum level until
the 120-min time point (Figure 2C), indicating that a robust
transcriptional response to IFNAR signaling begins between 60
and 120 min post-stimulation. In contrast, 22 of the 23 SRGs
that were largely unaltered in the Ifnar~'~ cells (expression level
>50% of WT) reached an expression level in WT cells corre-
sponding to 10% of their maximum within 60 min (Figure 2C).
Thus, the CHX-sensitive events needed for activation of IF-
NAR-independent SRGs generally occur more rapidly than
the autocrine/paracrine loop that activates IFNAR-dependent
genes.

To separate IFNAR-dependent and -independent genes more
carefully, we further examined the RNA-seq datasets from lipid
A-stimulated Ifnar~'~ BMDMs, as well as RNA-seq datasets
from WT BMDMs stimulated with Pam3CSK4 (PAM), a TLR2
ligand that does not induce IFNAR signaling (Toshchakov
et al., 2002). Twenty-nine SRGs remained strongly induced in
these datasets (Figure 2D, top).

Interestingly, although these 29 SRGs were strongly induced
in the absence of IFNAR signaling, a subset, including the critical
T cell polarizing cytokines //12b, 116, Lif, and /127 (Metcalfe, 2011;
Shih et al., 2014), were induced much less potently by PAM than
by lipid A (Figure 2D, bottom). In fact, //12b, Ii6, Lif, and 1127 ex-
hibited greater differential induction by TLR4 versus TLR2 li-
gands than any other PRG or SRG (Figure 2E). This finding sug-
gests that the TRIF pathway activated by lipid A but not by PAM
may be important for the activation of these genes, but not due to
its role in activating IFNAR signaling. Consistent with this possi-

bility, a direct comparison of WT to Trif 7~ BMDMs revealed
strong TRIF dependence of these genes (Figure 2D, bottom).
Together, the data suggest that lipid A induces the expression
of key T cell polarizing cytokines (//12b, iI6, Lif, and /127) much
more potently than does PAM because the TRIF pathway
strongly promotes the expression of these genes in an IFNAR-in-
dependent manner.

To better understand the significance of the above regulatory
strategies, we performed gene ontology analysis with the 132
PRGs, 65 IFNAR-dependent SRGs, and 29 IFNAR-independent
SRGs (Figure 2F). The PRG analysis suggested broad roles in
regulating inflammation and the functions of blood cells. As ex-
pected, the IFNAR-dependent SRGs were implicated in anti-viral
responses. Most interestingly, the small group of IFNAR-inde-
pendent SRGs exhibited highly significant enrichment for genes
that regulate T cell proliferation, differentiation, and activation.
Specifically, 14 of the 29 IFNAR-independent SRGs are involved
in the regulation of T cell responses (Figure 2G). Eleven of these
14 genes are among the 13 IFNAR-independent SRGs that are
most potently induced by lipid A. Thus, these results reveal com-
mon regulatory features of a prominent group of genes that helps
bridge the innate and adaptive immune systems. Nevertheless, a
careful examination reveals that the induction kinetics for each of
these genes is unique (Figure S1), suggesting that gene-specific
regulatory events are superimposed on top of their common
characteristics of potent and rapid CHX-sensitive yet IFNAR-in-
dependent induction.

Initial Analysis of PRGs

Shifting our attention to the 132 PRGs, we first examined their
expression kinetics in greater detail by nascent transcript RNA-
seq from lipid A-stimulated BMDMs collected every 5 min during
the first hour of activation, with an additional 120-min time point.
We also performed nascent transcript RNA-seq with BMDMs
from Myd88~/~, Trif /=, Myd88~'~Trif /-, and If3~/~ mice, and
with WT BMDMs stimulated with lipid A in the presence of ERK
and p38 MAPK inhibitors; the two inhibitors were analyzed
together because little effect was observed in pilot experiments
with each inhibitor alone (data not shown). The results consider
the maximum induced RPKM in WT cells for each gene to be
100% and the basal RPKM in unstimulated WT cells to be 0%;
the maximum induced RPKM observed in each mutant strain
for each gene is then displayed as a percentage of the maximum
WT RPKM.

Figure 3A (see also Figure $2) shows that each perturbation re-
sulted in a continuum of effects. For this study, genes expressed
<33% of WT were considered to be dependent on the factor that
was absent. By combining these datasets with k-means cluster
analysis of expression kinetics, an initial classification of the 132
PRGs emerged (Figure 3D; see Figure S2 for gene names). Clus-
ter 1 includes nine genes that exhibited reduced expression
(<33% of WT) in both Trif '~ and Irf3~/~ BMDMs. Clusters 2-5
include 28 genes that exhibited reduced expression in Trif /~
but not in Irf3~/~ BMDMs (Figures 3B and 3D); these genes
were then subdivided by k-means clustering on the basis of their
expression kinetics. Clusters 8-9 include 38 genes that exhibited
reduced expression in WT BMDM s treated with MAPK inhibitors,
but without strongly reduced expression in Trif 7~ BMDMs; as

53



A Minutes Treated With Lipid A E o0
T E & *Pam3CSK4, WT
S [} am .
cw2PRE8B39LI3B3 S < £ ®Lipid A, Ifnar-/- e
== = § 1000 . .
EE .
23 ot
ET 100 « ° ¢ .
x < . .
] . 2 .
s3T . ® . H
2 101° . oo aisiy .2
— w . e &0 ag
1
E 300 1o pamacsKa, wr
o Lipid A, Ifar-/- °e
cZ 2507 <Cpid A Trie-
- 23 200
85 ..
\9‘ o 150 & i .
= i) .
] .
] . . cessnee [} °
e %0 e ane o .
q o ol2aee [ M
MOE QNN S ENODNANTT- TN TNONNOT=TN O™
SN JN AN P S s s NORE 208 T 28NS 8
: LI 8 TS UORSSENIT ES8EREsasENS
Percentile % Expression %3 A
0 0 100 E Q
o[ 100 =
o i £ 1000
O] 100 o ©Primary Response
Lo ®IFNARi Secondary Response "
@
S 100
B C Time to 10% of o
% Expression Maximum Expression a 10
in fnar* IFNAR (%) _0-30 _30-60 120 o
T 50 >50[ 10 12 1 2
" 03350 3350 0O 4 3 c 11
010-33 1033 2 9 1 S
8<10 <10| 1 0 41 E
% 0.1 T T T
s 0.1 1 10 100 1000
Maximum TLR4 Induced RPKM
F G
Gene Class Functional Annotation k1
quantity of blood cells iizs £ ez
quantity of leukocytes o e
Primary Response inflammatory response oo T o .
function of leukocytes CISHO i1 gl [IuF ’EOId Induction
function of blood cells [1100+ [ 10-20
stimulation of T lymphocytes [15-10

IFNAR-Independent|

proliferation of blood cells

replication of viral replicon

Figure 2. Analysis of IFNAR-Independent and -Dependent SRGs

{A) Activation kinetics are shown for SRGs from BMDMs stimulated at 5-min intervals from 0-60 min, with an additional 120-min time point. Shades of blue
indicate percentile values. Genes were sorted on their maximum percent expression in /fnar~~ BMDMs relative to WT BMDMs (purple column). The maximum

L A
c:Dng differentiation of helper T lymphocytes { ) NOS2
\

Secondary stimulation of leukocytes
Response differentiation of helper T lymphocytes .
proliferation of T lymphocytes ILan O stimulation of T lymphocytes STATEA
antiviral response n
IFNAR-Dependent antimicrobial response CLECZDO ADORA2A
Secondary infection of mammalia > ud
Response replication of virus ca

CAV1

percent expressions in Myd88~/~, Trif /=, and Irf3~/~ BMDMs are shown to the right. See also Figure S1.
(B) The distribution of genes in IFNAR-dependence bins based on their expression in Ifnar~'~ BMDMs is shown.
{C) The time point at which each SRG in the IFN-dependence bins reached 10% of its maximum expression is indicated.

(D) The maximum fold induction of the 29 IFNAR-independent genes in PAM-stimulated (olack) and lipid A-stimulated /fnar~/~ (purple) BMDMs is shown {top),
along with the percent expression of these genes in PAM-stimulated (black), lipid A-stimulated /fnar~'~ (purple), and lipid A-stimulated Trif '~ (orange) BMDMs
relative to WT BMDMs stimulated with lipid A (bottom). IFNAR-independent genes were defined as those induced >10-fold and expressed >3 RPKM in the
absence of IFNAR signaling, or expressed at greater than 50% of WT in /fnar~'~ BMDMs stimulated with lipid A or WT BMDMs stimulated with PAM.

{E) A scatterplot comparing the maximum RPKMs in PAM-stimulated BMDMs (y axis) and lipid A-stimulated BMDMs (x axis) for PRGs (blue) and the IFNAR-

independent SRGs {red) is shown.

{F) Ingenuity Pathway Analysis was used to identify the top functional annotations for PRGs and the IFNAR-dependent and -independent SRGs.

{G) The IFNAR-independent genes involved in the proliferation, differentiation, and activation of T lymphocytes (Ingenuity Pathway Analysis) are colored based on

their fold induction in Ifnar '~ BMDMs.
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Figure 3. Properties of PRGs

(A) The distribution of the maximum percent expressions in Myd88~/~ (red), Trif '~ (orange), Irf3~/~ (green), and MAP kinase inhibitor-treated (light blue) BMDMs
stimulated with lipid A are shown for the 132 PRGs. The horizontal dashed gray line indicates the 33% expression threshold.

(B and C) The percent expression of each PRG is shown in Trif '~ versus Irf3~/~ cells (B) or in Trif /~ versus Myd88~/~ cells (C). TRIF lo (<33% relative to WT) IRF3
hi (>33% relative to WT) genes are in orange, and TRIF lo (<33% relative to WT) IRF3 lo (<33% relative to WT) genes are in green.

{D) Activation kinetics are shown {log2-normalized and mean-centered RPKMs) for the PRGs in BMDMs stimulated for 5-min intervals between 0 and 60 min, and
for 120 min. The PRGs were broadly classified based on their expression in Myd88~~ (red), Trif '~ (orange), Irf3~/~ (green), and MAP kinase inhibitor-treated (light
blue) BMDMs with the following order: IRF3-dependent (cluster 1; <33% in both Trif '~ and Irf3~'"), TRIF-dependent (clusters 2-5; <33% in Trif '~ only), and
MAPK-dependent (clusters 6-9; <33% in MAPK inhibitor-treated samples). The remaining PRGs were not dependent on any perturbation examined (clusters 10—
16; >33% in all perturbed datasets). The genes in each class were subclustered (k-means) on their expression kinetics. The properties of each gene are shown to
the right of the heatmap: basal expression value {gray), fold induction magnitude (blue), promoter CpG-island (beige), and the maximum percent expression in

Myd88~'~ (red), Trif '~ (orange), Irf3~/~ (green), and MAPK inhibitor-treated (light blue) BMDMs.

See also Figures S2 and S3.

above, the genes were subdivided by k-means clustering (Fig-
ure 3D). Finally, clusters 10-16 include the remaining 57 genes
that did not exhibit reduced expression in the presence of
MAPK inhibitors or in Trif /= or I3~/ cells; these genes were
divided into seven kinetic clusters. It is noteworthy that only
five of the 132 PRGs exhibited reduced expression in Myd88 '~
cells (Figures 3C and 3D). No genes were induced in Myd88~’
~Trif '~ mutant cells (data not shown).

In addition to the degree of dependence of each PRG on
MyD88, TRIF, IRF3, and MAPKs, Figure 3D indicates basal tran-
script and fold-induction values. Furthermore, Figure 3D indi-
cates which genes contain CpG-island or low CpG (LCG)
promoters. As shown previously (Bhattet al., 2012), all early tran-
siently induced genes (e.g., clusters 6 and 10) contain CpG-is-
land promoters and a high percentage of the most potently
induced genes contain LCG promoters (e.g., clusters 1 and

14), whereas the two promoter types are distributed fairly
randomly among the other clusters.

Initial Transcription Factor Binding Motif and ChlP-Seq
Analyses

To extend the above foundation, we evaluated the over-repre-
sentation of transcription factor binding motifs within the pro-
moters of the PRGs within each of the 16 clusters in Figure 3D.
This analysis (Figure S3) provided insight into transcription fac-
tors that may regulate each cluster. However, toward the goal
of elucidating molecular mechanisms, these statistical enrich-
ments were unsatisfying. For example, although nuclear factor
kB (NF-kB) motifs are enriched in the promoters of genes in
several clusters, a closer analysis revealed considerable hetero-
geneity within each cluster, with only a subset of promoters in a
cluster generally containing a strong NF-kB motif (data not
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Figure 4. NF-«B Interactions at the Promoters of Defined Gene Classes
{A) PBM Z scores of p50:RelA {y axis) and RelA ChIP-seq peak scores (x axis) in the promoters of the PRGs (left) and all remaining genes in the genome (right) were
plotted. The remaining genes were assigned to 2- to 10-fold induced (blue), not induced {red), SRG (green), or low expression (gray) categories. The horizontal
dashed line indicates the PBM Z score threshold (6.4), and the vertical dashed line indicates the ChIP-seq peak score threshold (19).

(legend continued on next page)
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shown). Imprecise correlations were also apparent when exam-
ining ChIP-seq datasets for NF-kB and other transcription fac-
tors (data not shown). Therefore, additional strategies are
needed to move beyond statistical enrichments toward more
meaningful mechanistic insights.

Quantitative Analysis of NF-kB’s Contribution to the
Transcriptional Cascade

We next focused on NF-kB. Prior studies showed that a large
percentage of ChlIP-chip and ChlP-seq peaks for NF-kB family
members do not coincide with strong binding motifs (Lim et al.,
2007; Martone et al., 2003; Zhao et al., 2014), raising questions
about NF-kB’s DNA recruitment and transcriptional activation
mechanisms. However, when focusing attention on the pro-
moters of our well-defined set of strongly induced PRGs, a
different relationship between NF-kB binding and motifs
emerged.

Specifically, Figure 4A examines NF-kB ChIP-seq peak scores
versus motif scores for the promoters (—500 to +150 relative to
the transcription start site [TSS]) of each of the 132 PRGs. The
NF-kB motif scores were derived from protein binding microar-
ray (PBM) results obtained with a recombinant RelA:p50
heterodimer, the most abundant NF-kB dimer involved in
TLR4-induced transcription (Siggers et al., 2012). RelA ChIP-
seq experiments were performed with BMDMSs stimulated with
lipid A for 0, 15, 30, 60, and 120 min (followed by stringent
peak-calling and a focus on peaks observed in multiple biolog-
ical replicates). This analysis revealed 8,458 total peaks, with
942 promoter peaks.

When focusing on the promoters of the 132 strongly induced
PRGs, a motif Z score threshold readily emerged that resulted
in a high probability of a strong ChlP-seq peak; 37 of 44 pro-
moters (84%) containing an NF-kB motif exceeding a Z score
of 6.4 supported strong RelA binding (ChlP-seq peak >19),
whereas only 20 of 88 promoters (23%) whose strongest NF-
kB motif was below this motif threshold supported strong bind-
ing (Figures 4A, left, and 4B, left). These results suggest that,
although a high percentage of NF-xB genomic interactions do
not coincide with strong binding motifs (see Figure 4A, right),
most interactions observed at the promoters of a well-defined
set of PRGs are associated with strong motifs. Thus, NF-xB
function may often require binding to a near-consensus motif.
The results also suggest that, at the promoters of this well-
defined set of genes, a surprisingly strict motif strength threshold
exists, in which promoter motifs exceeding this threshold almost
always support strong in vivo binding (see below). This in vivo
threshold contrasts with the continuum of binding affinities
observed in vitro (Siggers et al., 2012).

To evaluate the significance of these findings, we examined
promoters for all other annotated genes separated into five

groups: the 132 strongly induced PRGs, the 94 strongly induced
SRGs, 732 genes induced between 2- and 10-fold, 1,732 genes
that were expressed at a nascent transcript level more than three
RPKMs but without induction, and the remaining 18,487 anno-
tated genes. Promoters within each group were separated into
six classes on the basis of their ChIP-seq peak scores and motif
scores, including three ChlP-seq categories (no binding, peak
strength <19, and peak strength >19) combined with two motif
categories (Z score <6.4 and >6.4) (Figure 4B).

An examination of the ChIP-seq/motif categories for the five
groups of annotated genes revealed extensive enrichment of
genes whose promoters combined strong ChIP-seq peaks and
NF-kB motifs among the strongly induced PRG class. Specif-
ically, whereas 28% (37/132) of the strongly induced PRGs com-
bined strong ChIP-seq peaks and motifs, only 1.6% (27/1,723) of
expressed but uninduced genes combined strong peaks and
motifs. Importantly, little or no enrichment of strongly induced
PRGs was observed in four of the other ChIP-seq/motif cate-
gories (weak peak/strong motif, weak peak/weak motif, no
peak/strong motif, no peak/weak motif). Substantial but lesser
enrichment in the PRG class was observed for only one other
ChlP-seq/motif category: those that combined a strong ChIP-
seq peak with a weak motif (15.2% of strongly induced PRGs
versus 3.8% of expressed uninduced genes).

The strong enrichment of promoters that combine strong
ChlIP-seq peaks and motifs in the group of 132 PRGs suggests
that most or all of the 37 PRGs possessing these properties
may be directly activated by RelA-containing dimers via direct
promoter binding. Furthermore, the ability to define a motif
Z-score threshold above which 84% of promoters supported
strong NF-kB binding suggests that a single strong NF-kB motif
is usually sufficient to support strong binding. Notably, although
several of the 37 promoters contain two or more near-consensus
NF-kB binding motifs, a strong correlation was not found be-
tween the number of NF-kB motifs and either the strength of
the RelA ChlIP-seq peak or the magnitude of transcriptional in-
duction (data not shown). It is also noteworthy that ChlP-seq ex-
periments examining the NF-kB p50 subunit revealed strong
peaks at all 37 promoters that contain RelA peaks and motifs
(data not shown), suggesting that the promoters are typically
bound by RelA:p50 heterodimers.

The substantial but lesser enrichment of promoters with strong
NF-kB peaks (score >19) and weak binding motifs (Z score <6.4)
among the strongly induced PRGs is also of interest. In these
promoters, NF-kB may bind directly to weak motifs. Alterna-
tively, NF-xB may be recruited by other transcription factors,
or the NF-kB ChlIP-seq signal could be due to looping of an
NF-kB-bound enhancer to the promoter. Although the signifi-
cance of these interactions remains unknown, our ability to clas-
sify these promoters and distinguish them from the more

(B) Tables are shown indicating the distribution of genes from (A) for both numbers (left) and percentages (right) of genes.

{C—F) Tables are shown indicating the best matching kB motif in each promoter {(column 1), the gene name (column 2), the PBM p50:RelA Z score (column 3), the
position of the motif relative to the TSS (column 4), the RelA ChIP-seq peak score {(column 5), and either the function or fold induction {column 6). This information
is included for the PRGs with (C) strong kB motifs and strong RelA binding, (D) strong kB motifs that do not support RelA binding, (E) weak kB motifs and strong

RelA binding, and (F) other NF-xB and IxB family members.

{G) A line graph is shown indicating the p50:RelA motif Z score enrichment in the promoters of the PRGs relative to the promoters of uninduced genes.

See also Figure S5.
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prevalent promoters that combined strong ChIP-seq peaks and
motifs will facilitate future studies of their regulation.

An examination of the 732 genes induced by 2- to 10-fold pro-
vides additional insights. A higher percentage of genes in this
weakly induced class (5.9%) contain strong NF-«kB peaks and
motifs than in the class of genes that is expressed but not
induced (1.6%). This enrichment suggests that a subset of
weakly induced genes is regulated by NF-kB binding to strong
motifs. However, a much smaller percentage of genes in this
2- to 10-fold induced class (5.9%) combine strong NF-«kB peaks
and motifs than in the strongly induced PRG class (28%), sug-
gesting that a much smaller fraction of the weakly induced genes
is regulated by NF-kB promoter binding.

Examination of NF-kB-Regulated Genes

A major goal of this study was to elucidate the logic through
which the lipid A-induced transcriptional cascade is regulated.
The identities of the 37 strongly induced PRGs that combine
strong ChIP-seq peaks and strong motifs provide compelling ev-
idence of an underlying logic; specifically, more than a third (13 of
37; Figure 4C) encode NF-kB or [kB family members or key reg-
ulators of NF-«kB activation, including three NF-kB family mem-
bers (Nfkb1, Nfkb2, and RelB), five kB family members (Nfkbia,
Nfkbib, Nfkbid, Nfkbie, and Nfikbiz), two NF-kB-inducing recep-
tors (Tir2 and Cd40), and three regulators of NF-kB signaling
(Tnfaip3, Tnip3, and Traf1). Strikingly, these 13 genes include
all of the NF-kB/IkB family members and direct regulators of
NF-kB signaling found among the 132 PRGs. Notably, the pro-
moters of genes encoding the two NF-kB family members and
one |kB family member missing from this list also combine a
strong RelA ChIP-seq peak with a strong NF-kB motif (Figure 4F);
these genes were not among the 132 PRGs because they were
only weakly induced.

The 37 PRGs in Figure 4C contain only 21 distinct motifs,
which adhere to one of two motif definitions: (G/T)GG(G/
A)N)A/TT/G)T/C)CC (17 motifs) or (G/A)GGGG(G/A)(T/A)
TT(T/C) (four motifs). The finding that a high level of similarity to
the optimal NF-kB consensus is usually associated with NF-xB
binding in the RelA ChIP-seq experiments was initially surprising.
However, support for the significance of this finding emerged
from an examination of binding motif enrichment at the 132
PRGs in comparison to the 1,723 expressed but uninduced
genes, without any consideration of ChIP-seq data. Specifically,
motifs with Z scores above 8.0 were strongly enriched among
the promoters of the 132 PRGs. Motifs with Z scores between
6.0 and 7.9 were weakly enriched, but no enrichment was
observed with motifs with Z scores below 6.0 (Figure 4G).

One remaining question is the reason seven promoters with
motifs exceeding the threshold of 6.4 did not support RelA bind-
ing (Figures 4A and 4B). The motifs in three of these promoters
possess very high Z scores (8.4-8.6, Figure 4D). However, two
of these motifs are at a distance upstream of their TSS (-310
and —395) that exceeds the distance observed in all but five of
the 37 promoters that support NF-kB binding (Figure 4D). We hy-
pothesize that these two motifs do not support binding in vivo
because they are occluded by nucleosomes. The third strong
motif is located farther downstream of the TSS (+137) than the
motifs found in any of the promoters that support strong
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NF-kB binding, suggesting that this motif may also be masked
by a nucleosome.

The three remaining motifs possess Z scores between 6.7 and
7.4 (Figure 4D). We speculate that their Z scores may be defined
imperfectly due to limitations of the PBM method. One of these
motifs is found in two different promoters, neither of which sup-
ports binding, and the other two do not conform to the motif def-
initions derived from the 21 motifs that support binding (see
above). Detailed affinity measurements will be needed to better
understand why a few motifs fail to support NF-«xB binding, but
this quantitative analysis reveals a remarkably strong ability to
predict NF-kB promoter binding in vivo on the basis of in vitro
motif strength, as well as a motif strength threshold below which
the probability of in vivo binding is greatly diminished.

Kinetic and Functional Analysis of Putative NF-«xB
Targets

To test the prediction that the 37 PRGs described above are
regulated by NF-kB, we examined their activation kinetics and
RelA dependence. The initial upregulation of most of the genes
occurred 10-20 min post-stimulation, as is evident from the third
panel in Figure 5A, in which the fold increase in RPKM relative to
the preceding time point is highlighted. Although most of these
genes are initially upregulated at the same time, their overall
expression kinetics are diverse (Figure 5A, second panel; see
also Figure $S4), implicating other factors in their regulation.
Consistent with this suggestion, the NF-«kB target genes that
depend on MAPK signaling were, on average, induced slightly
earlier than the other putative target genes (Figure 5A, cluster
2; Figure 5C).

To examine RelA dependence, we compared WT and Rela
fetal liver-derived macrophages by RNA-seq. Most of the puta-
tive NF-kB targets exhibited RelA dependence (Figure 5A,
RelA~'~ column), although the degree of dependence varied
considerably, possibly due to redundancy between RelA and
other NF-kB family members.

We next asked whether the activation kinetics and RelA
dependence observed in Figure 5A are unique to genes whose
promoters contain strong ChlP-seq peaks and motifs. Interest-
ingly, several other PRGs exhibited similar activation kinetics
and/or degrees of RelA dependence (Figures 5B and 5D). A sub-
set of these genes contains RelA ChIP-seq peaks in their
promoters without strong motifs, but most lack RelA peaks (Fig-
ure 5B, right). We speculate that NF-«B directly regulates these
genes by binding to distant enhancers. Consistent with this pos-
sibility, strong RelA ChIP-seq non-promoter peaks (peak score
>19) were found in the vicinity of many of the PRGs (Figure S5).
Thus, NF-kB may regulate strongly induced PRGs through either
promoter or enhancer binding, with an underlying logic sug-
gested by the fact that promoter binding characterizes genes en-
coding NF-kB/IkB family members and other NF-kB regulators.

/

Gene-Specific Regulation of IRF3-Dependent Genes

Although most studies emphasize large clusters of co-regulated
genes, the above data suggest that, when induction magnitudes
are considered, the unique features of individual genes and small
clusters of genes begin to emerge. This concept is further
exemplified by an examination of PRGs dependent on the
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Figure 5. Kinetic and Functional Analysis of Putative NF-xB Target Genes

{A) The 37 PRGs containing strong NF-«xB promoter motifs and RelA ChIP-seq promoter peaks were grouped into four categories: those that encode NF-«xB/IkB
family members and regulators (group 1), those that exhibit either MAPK or IRF3 dependence (groups 2 and 4), and the remaining genes (group 3). Normalized
expression values from 0 to 25 min (left panel) and 0 to 120 min (second panel) and the fold change relative to the previous time point (third panel) are shown. To
the right of the heatmaps, the basal expression values, fold induction magnitudes, promoter CoG contents, and expression values in Rela™'~, Trif /=, Irf3~/~, and
MAPK-inhibited BMDMs are shown. The presence of a p50:RelA motif based on PBM datasets and the RelA ChlP-seq binding peak scores are indicated in the

far-right panels. See also Figure S4.

(B) Examples of PRGs that exhibited similar activation kinetics and/or RelA dependence to the 37 genes with strong NF-kB motifs and ChIP-seq peaks are shown.

See also Figure S4.

{C) The average activation kinetics of the NF-kB subgroups is shown as log2 fold inductions relative to basal during the 120 min lipid A treatment period.
{D) The average activation kinetics of the two additional clusters from Figure 5B {clusters 5 and 6) are shown.

transcription factor, IRF3. As shown in Figure 3, only nine
strongly induced PRGs exhibited expression levels in both
Irf3~/~ and Trif /7~ BMDMs that fail to reach 33% of the level
observed in WT. Five of these genes are within the group of 37
PRGs containing strong NF-kB ChlIP-seq peaks and motifs in
their promoters (Figure 5A). One notable difference between
the five genes containing NF-kB motifs and the four lacking
NF-kB motifs is that the induction magnitude of the former group
is much higher than that of the latter, with average induction
magnitudes of 643- and 40-fold, respectively (Figures 6A
and 6B).

An examination of the five genes exhibiting both NF-kB pro-
moter binding and IRF3 dependence reveals the extent to which
genes have evolved unique regulatory strategies. Within this
group, the expression kinetics of Cc/b and Ifnb1 are each unique,
whereas Cxcl10, Gbp5, and Irg1 are similar (Figure 6A). These
latter three genes were initially induced 10-15 min post-stimula-
tion along with most NF-kB-dependent genes. Consistent with

the hypothesis that NF-kB contributes to this early induction,
RelA ChlIP-seq peaks were observed at these genes by 15 min
post-stimulation (Figure 6A, right), and their induction at early
time points was unaltered in 3=/~ macrophages (data not
shown). IRF3 dependence was observed only at later times,
consistent with prior knowledge that IRF3 activation is relatively
slow (Kagan et al., 2008).

Interestingly, Cc/5 is unique in that RelA binding was not
observed until the 30-min time point; at alf other PRGs bound
by RelA, RelA binding was readily detected at the 15-min time
point (Figures 5A and 5B, right; Figure 6A, right). The delay in
RelA binding correlates with the delayed Ccl5 activation. Thus,
RelA binding to this promoter requires an additional event that
is unique among PRGs.

Ifnb1 regulation also appears unique. /fnb1 induction was not
observed until the 35-min time point, but RelA binding was
observed by 15 min (Figure 6A, right). This early binding is
consistent with evidence that the promoter lacks a nucleosome
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Figure 6. Analysis of IRF3 Target Genes

(A) PRGs exhibiting IRF3 dependence (<33% expression in both /3=~ and Trif '~ macrophages) were separated based on the presence or absence of strong
NF-kB promoter motifs and RelA ChIP-seq peaks. Colors indicate the percentile of the relative expression. Also shown are the basal RPKM, fold induction
magnitude, and promoter CpG content. The rightmost heatmap indicates the RelA ChIP-seq binding peak scores.

{B) The fold induction for each IRF3-dependent gene is shown over the 2-hr time period, grouped based on their additional requirement for NF-kB.

(legend continued on next page)
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in unstimulated cells (Agalioti et al., 2000). Nevertheless, the de-
layed induction is consistent with evidence that activation is
strongly dependent on IRF3 (Panne et al., 2007).

Figure 6C shows the distribution of promoter IRF motif scores
relative to functional dependence on IRF3. IRF motifs with Trans-
fac Position Weight Matrix (PWM) scores of 90 or greater accom-
pany the strong NF-kB muotifs in all five promoters (Figures 6C
and 6D). The distances between the IRF3 and NF-kB motifs
range from 2 to 55 bp (Figure 6D). Notably, of the four IRF3-
dependent genes that do not contain NF-kB promoter motifs,
only one (/sg15) contains an IRF3 motif of similar strength to
those found in the genes with strong NF-kB motifs (Figures 6C
and 6D).

The above results support a hypothesis in which multiple
distinct mechanisms regulate the nine IRF3-dependent genes.
To examine this hypothesis further, three additional experi-
ments were performed. First, IRF3 ChlIP-seq experiments re-
vealed that strong IRF3 peaks (>19) coincide with strong IRF
motifs (>90) at the promoters of only six of the 132 primary
response genes, including the five NF-kB/IRF3 genes
described above and the IRF3-dependent /sg75 gene that
lacks NF-kB binding (see peak scores in Figure 6D; a detailed
analysis of the IRF3 ChlIP-seq data will be presented else-
where). An IRF3 ChIP-seq peak was also observed in the pro-
moter of one of the IRF3-dependent genes that lacks a strong
IRF motif (/fih?; Figure 6D).

Second, ATAC-seq experiments revealed weak increases in
chromatin accessibility upon lipid A stimulation at PRGs in
many different classes (Figure 6E). However, the largest increase
was observed at the Cc/5 promoter, with large increases also
observed at the Irg7 and Gbp5 promoters (Figure 6E). The large
increase at the Cc/5 promoter is consistent with the hypothesis
that a nucleosome remodeling requirement is responsible for
the delayed binding of RelA. Furthermore, the absence of an
inducible ATAC-seq signal at the /fnb7 promoter is consistent
with prior evidence that the promoter is nucleosome-free prior
to stimulation. However, the strong increases in ATAC-seq signal
at the Irg7 and Gbp5 promoters were surprising, given the rapid
RelA binding and induction of these genes.

The third experiment performed was ChIP-qPCR examining
RelA binding in /rf3~/~ macrophages. This experiment revealed
strong IRF3 dependence of RelA binding to the Cc/5 promoter
(Figure 6F), consistent with our evidence from nuclease accessi-
bility experiments that IRF3 is important for nucleosome remod-

eling at this promoter (Ramirez-Carrozzi et al., 2009). At the Ifnb1
promoter, the initial binding of RelA was not dependent on IRF3
(Figure 6F); however, the increase in RelA binding at later time
points exhibited IRF3 dependence, consistent with the notion
that IRF3 stabilizes RelA binding while promoting synergistic
transcriptional activation (Agalioti et al., 2000; Panne et al.,
2007). Finally, although potently induced ATAC-seq signals
were observed at the Irg7 and Gbp5 promoters, RelA binding
to these promoters was not IRF3 dependent (Figure 6F). Thus,
the nucleosome remodeling observed at these promoters by
ATAC-seq is likely to be dictated by NF-kB itself or by other
rapidly induced factors.

Together, these results support a model in which the mech-
anisms by which NF-kB and IRF3 regulate the Cci5 and Ifnb1
genes are unique, with these two transcription factors contrib-
uting to /rg7 and Gbp5 activation (and possibly Cxc/70 activa-
tion) by a third distinct mechanism. To determine whether
these mechanisms appear to be unique only because we
focused on a stringently defined group of PRGs, we asked
whether any additional annotated promoters throughout the
genome could be identified that possess the basic DNA prop-
erties of the five NF-kB/IRF3 genes (i.e., a strong RelA ChiIP-
seq peak [>19], a strong NF-kB motif [Z score >6.4], a strong
IRF3 motif [Transfac score > 90], and a distance between the
NF-kB and IRF3 motifs of less than 100 bp [see Figure 6D]).
Strikingly, only six additional promoters from among the
21,168 annotated promoters share these properties (data not
shown).

Together, these results reveal the extent to which a quantita-
tive, gene-centric analysis can begin to move toward an under-
standing of the unique molecular mechanisms used to regulate
key genes in the transcriptional cascade. Although previous
ChiP-seq studies led to the hypothesis that IRF3 and NF-xB
cooperatively activate hundreds of genes (Freaney et al.,
2013), the results presented here demonstrate that only five
PRGs induced greater than 10-fold by lipid A combine strong
NF-kB promoter binding, strong IRF3 dependence, a strong
IRF3 promoter motif, and strong IRF3 binding, yet with at least
three distinct modes of collaboration between NF-kB and IRF3
among these five genes. Although IRF3 can also bind many en-
hancers (Freaney et al., 2013), these interactions may have more
subtle modulatory functions in lipid A-stimulated macrophages
or may represent opportunistic binding events that lack func-
tional consequences.

(C) For each PRG, the higher maximum percent expression from either 7rif '~ or Irf3~/~ BMDMs (y axis) was assessed against the best scoring IRF3 motif (x axis)
within the promoter based on the IRF Transfac PWM. The five IRF3/NF-kB genes are shown in blue, and the four IRF3 genes are shown in green. The PRGs
containing strong NF-xB promoter motifs and RelA ChIP-seq peaks are shown in red. The horizontal dashed line indicates the expression threshold (33%), and
the vertical dashed line indicates the Transfac threshold (90).

{D) For each IRF3-dependent gene, the IRF3 and RelA:p50 binding sites (for the IRF3/NF-kB groups of genes) were identified. The spacing between the NF-xB
and IRF3 motifs is indicated at the right. The strengths of the kB motifs are represented by PBM Z scores, and the strengths of the IRF motifs are represented by
PWM Transfac scores. For the four genes lacking NF-kB motifs, the best IRF promoter motif is shown.

(E) Left: the fold increase in ATAC-seq RPM at gene promoters (x axis) is shown according to the PRG clusters 1-10 (y axis) where the cluster designations denote
1, SRF; 2, MAPK; 3, MAPK/NF-kB; 4, NF-kB/IkB regulator; 5, NF-kB/other; 6, NF-kB/IRF3; 7, NF-kB/enhancer; 8, TRIF; 9, IRF3; 10, unknown (see also Figure S6).
The vertical dashed lines indicate the 2.5- and 5-fold cutoffs. Right: UCSC Genome Browser tracks of chromatin accessibility in resting and 120 min stimulated
BMDMs at the promoters of two genes from different gene clusters are shown.

(F) RelA ChIP-qPCR was performed using WT and /rf3~/~ BMDMs stimulated with lipid A. The relative enrichment of RelA binding was normalized to a negative
control region. The RelA binding kinetics at the promoters of the five NF-xB/IRF3 genes were compared to the Tnfaip3 promoter as a control (far right). The data
shown represent an average of three biological replicates. Error bars indicate the SE. **p < 0.01; *p < 0.05.
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Regulation of Transiently Transcribed Genes by Serum
Response Factor

The most distinctive cluster of genes in Figure 3 is arguably the
MAPK-dependent cluster 6, which contains genes that exhibit
rapid yet transient upregulation within 5 min of lipid A stimulation.
This cluster contains only three genes, Egr1, Fos, and Nr4a1, yet
the initial motif analysis (Figure S3) suggests enrichment of pro-
moter binding sites for serum response factor (SRF). We there-
fore examined SRF binding by ChlP-seq in BMDMs stimulated
with lipid A for 0, 15, 30, 60, and 120 min. SRF peaks remained
unchanged through the time course, consistent with knowledge
that SRF binds its targets constitutively, with inducible activity
due to the induction of co-regulatory ternary complex factors
(TCFs, Treisman, 1994).

The SRF ChIP-seq datasets yielded the strongest peaks we
have detected and the greatest specificity of binding, with only
a small number of strong peaks and very little background. A
simultaneous examination of ChIP-seq peaks and Transfac
PWM-defined motifs revealed that only seven of the 132 PRGs
contain promoters with strong ChlP-seq peaks (peak score
>10); all seven promoters contain strong motifs (Transfac score
>90) (Figure 7A). No strong ChlIP-seq peaks were observed at
these promoters in the absence of a strong motif, and only two
promoters contained a strong motif without a strong ChIP-seq
peak; both of these motifs are far from their TSS (—306 and
—331), suggesting that they may be occluded by nucleosomes.
Thus, to even a greater extent than observed with NF-«B, strong
binding of SRF correlated closely with motif strength, leadingtoa
motif threshold that may be both necessary and sufficient for
SRF binding in the context of a well-defined set of promoters.

Surprisingly, only 39 additional promoters within the remaining
21,036 annotated genes reached the same peak and motif
thresholds achieved by the seven binding events at the primary
response genes (Figures 7A and 7B). Instead, the vast majority of
binding events at other gene classes coincided with weak motifs
(Figures 7A and 7B).

A closer examination of the seven genes that combine strong
SRF ChlIP-seq peaks and motifs supports the hypothesis that at
least six are functional targets of SRF. This group of seven genes
includes the three found in cluster 6 of Figure 3A (Egr1, Fos, and
Nr4at1) and four additional genes (Egr2, Dusp5, Zfp36, and
Rnd3). All but Rnd3 were initially upregulated during the first
5 min of lipid A stimulation (Figure 7C, third panel), and all but
Rnd3 exhibited MAPK dependence. MAPKs are responsible
for activation of the TCFs (Treisman, 1994). The fact that Rnd3
exhibited different properties suggests that this gene may
instead require a second class of SRF co-activator proteins
that are not activated by MAPKs (Posern and Treisman, 2006).

An examination of the expression kinetics of the seven genes
explains why only three were placed in the same kinetic cluster in
Figure 3A: these three genes exhibited relatively uniform induc-
tion and repression kinetics, whereas Egr2, Dusp5, and Zfp36,
although initially induced by 5 min, were either further upregu-
lated at later time points or were upregulated less potently and
downregulated more slowly, presumably due to the contribu-
tions of other factors.

Last, an analysis of the 132 PRGs led to the identification of
only two additional genes that exhibit similarly rapid induction ki-
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netics as the six genes discussed above: Btg2 and ler2 (Fig-
ure 7D). These two genes lack SRF ChIP-seq peaks and motifs
in their promoters but instead contained strong promoter NF-
kB ChIP-seq peaks. This finding raises the question of how these
two genes achieve induction kinetics similar to those of the
genes whose promoters are directly bound by SRF. Interestingly,
both of these genes contain strong SRF ChIP-seq peaks at up-
stream regions (Figure 7E); in both instances, the SRF peaks
coincide with CpG islands and are conserved through evolution
(data not shown). The SRF peaks at the Btg2 and ler2 loci are 10
and 1 kb upstream of their TSSs, respectively. Remarkably, only
three other PRGs contained SRF ChIP-seq peaks within the re-
gion 10 kb upstream of their TSS, indicating that this property
is rare. These results suggest that SRF contributes to the early
transient induction of these genes by cooperating with NF-xB
bound to the promoters.

DISCUSSION

Broad systems analyses of gene expression cascades and net-
works continue to provide important biological and mechanistic
insights. However, the focus of most conventional studies on
large numbers of genes or ChIP-seq peaks meeting low-strin-
gency criteria, for the purpose of optimizing statistical power,
possesses significant limitations. The results described here
demonstrate that, toward the goal of a mechanistic understand-
ing of transcriptional control at a genome-wide level, it is not only
possible, but often preferable, to use more stringent and quanti-
tative approaches to examine RNA-seq, ChIP-seq, and binding
motif datasets.

This approach allowed us to obtain evidence that a single NF-
kB or SRF motif that reaches a defined threshold consistently
supports factor binding and function in vivo. Moreover, we ob-
tained evidence of an underlying logic through which NF-kB
may regulate distinct sets of genes by binding to promoters
versus enhancers. We speculate that promoter binding may be
compatible with transcriptional induction in response to any
stimulus that induces NF-kB activity, whereas enhancer binding
may often be preferred at genes that require cell-type-specific
induction. Of greatest interest, our results reveal that, even
when two inducible factors (e.g., NF-kB and IRF3) act in concert
to regulate a small cluster of only five genes, individual genes
within the cluster are regulated by unique mechanisms. Overall,
the results of this analysis provide a wealth of mechanistic in-
sights that are accessible to future exploration.

Figures S6 and S7 display summaries of the results obtained in
this study. Notably, although the study derived great benefit from
detailed kinetic analyses of chromatin-associated transcripts,
diverse overall expression kinetics are observed within each
cluster. This observation supports the long-standing view that
multiple transcription factors act in concert to shape the expres-
sion pattern of each gene.

The findings described here contrast with ChIP-seq studies
that implicate key transcription factors in the regulation of hun-
dreds or thousands of genes. It is important to emphasize that
our study focused on the properties of the limited number of
potently induced genes for which NF-kB, IRF3, and SRF appear
to be major regulators, but they do not rule out the possibility that
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Figure 7. Analysis of SRF Target Genes

{A) Scatterplots comparing the Transfac PWM scores of SRF binding motifs (y axis) versus the SRF ChIP-seq peak scores (x axis) in the promoters (—500 to +150)
of the PRGs {left) and all remaining genes in the genome (right) are shown. The genes in the latter graph were divided into categories as in Figure 4A. The horizontal
and vertical dashed lines indicate the SRF motif (90) and ChIP-seq peak (10) thresholds.

(B) Tables are shown indicating the distribution of genes from (A), for both numbers (left) and percentages (right) of genes.

{C) Log2 normalized expression values from 0 to 25 min (first panel), 0 to 120 min (second panel), and the fold induction relative to the expression level at the
previous time point (third panel) are shown for the seven putative SRF target genes. To the right are columns indicating the basal expression level, fold induction
magnitude, promoter CpG content, and MAPK dependence for each gene.

{D) Two genes that exhibited similar activation kinetics as the putative SRF target genes are shown, with the same layout as in Figure 7C.

{E) The two genes from (D) were examined on UCSC Genome Browser to identify distal SRF binding peaks. RelA binding peaks were also examined for these
genes. The TSSs of the genes are indicated as red arrows, and the green rectangles indicate CpG islands.

See also Figures S6 and S7.

these same factors play more subtle roles in the regulation of
hundreds of additional genes. For example, although only a small
fraction of genes induced by 2- to 10-fold contain promoter bind-
ing sites for NF-kB, this factor may contribute to the induction of
alarge fraction of weakly induced genes by binding to distant en-
hancers. Nevertheless, the current results document a clear
distinction between strongly induced and weakly induced genes

with respect to the prevalence of NF-kB promoter binding and
promoter motifs, providing a framework for studies to elucidate
the diverse mechanisms by which NF-kB contributes to the lipid
A response. Similarly, the ability to identify consistent properties
of genes that appear to be regulated by SRF, IRF3, and IRF3/NF-
kB provides a step toward a precise understanding of the broad
mechanisms regulating the transcriptional cascade. In addition
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to exploring the insights obtained in greater depth, an important
goal for the future will be to continue building on this framework
by using stringent approaches to examine additional signaling
pathways, transcription factors, and chromatin regulators, while
extending the analysis to enhancers, weakly induced genes, and
gene expression cascades induced by diverse stimuli in diverse
cell types and physiological settings.

EXPERIMENTAL PROCEDURES

Cell Culture

BMDMs were prepared from 6-week-old C57BL/6, Myd88~'—, Trif~/—, Irf3~/~,
or Ifnar~'~ male mice. Fetal liver macrophages were from D14.5 C57BL/6 or
RelA~'~ embryos. Macrophages were activated on day 6 with 100 ng/ml lipid
A (Sigma) or Pam3CSK4 {InvivoGen). When indicated, cells were preincubated
for 15 min with 10 mg/mI CHX or 1 hr with 10 uM PD0325901 (Sigma) and 1 pM
BIRB0796 (AXON Medchem). The use of mice for this study was specifically
approved by the UCLA Chancellor’s Animal Research Committee.

RNA-Seq

Total RNA and chromatin-associated RNA were prepared as described (Bhatt
et al., 2012). Strand-specific libraries were generated from 60 ng chromatin
RNA or 400 ng total RNA using the TruSeq RNA Sample Preparation Kit v2
{lllumina) and the dUTP second strand cDNA method (Levin et al., 2010).
cDNA libraries were single-end sequenced (50bp) on an lllumina HiSeq 2000.

Reads were aligned to the mouse genome (NCBI37/mm9) with TopHat
v1.3.3 and allowed one alignment with up to two mismatches per read. Chro-
matin RNA RPKM values were calculated by dividing all mapped reads within
the transcription unit by the length of the entire locus. MRNA RPKM values
were calculated by dividing mapped exonic reads by the length of the spliced
product.

All RPKMs represent an average from two or three biological replicates. A
gene was included in the analysis if it met all of the following criteria: the
maximum RPKM reached 3 at any time point, the gene was induced at least
10-fold, and the induced expression was significantly different from the basal
{p < 0.01) as determined by the edgeR package in R Bioconductor (Robinson
etal., 2010). Additionally, a gene was included if its induction reached 5-fold at
the 15-min time point. p values were adjusted using the Benjamini-Hochberg
procedure of multiple hypothesis testing (Benjamini and Hochberg, 1995).

To determine the impact of a perturbation, the basal RPKM in WT samples
was set at 0% and the maximum RPKM at 100% for each gene. The maximum
RPKMs inthe mutant samples were converted to percent expression using this
scale. For the Rela~'~ analysis, the RelA dependence of a gene was deter-
mined by the percent expression in Rela~'~ samples at the earliest time point
in which the WT samples were induced by at least 3-fold.

ChIP-Seq
ChlP-seq libraries were prepared using the Kapa LTP Library Preparation Kit
{Kapa Biosystems). ChlP-seq was performed as described (Barish et al.,
2010; Lee et al., 2006) with minor modifications, using anti-RelA {Santa Cruz
Biotechnology, sc-372), anti-IRF3 (Santa Cruz, sc-9082), or anti-SRF (Santa
Cruz, sc-335) antibodies.

Reads were aligned to the mouse genome (NCBI37/mm9) with Bowtie2.
Uniquely mapped reads were used for peak calling and annotation using
HOMER {Heinz et al., 2010). Peaks were called if they passed a false discovery
rate of 0.01 and were enriched over input. Called peaks were considered for
downstream analysis if peaks from at least 4 of 7 replicates were overlapping
within 200 bp for RelA and five of five replicates were overlapping within 300 bp
for SRF. Peaks were annotated to the nearest TSS.

ATAC-Seq

ATAC-seq libraries were prepared using the Nextera Tn5 Transposase kit
(lllumina) as described (Buenrostro et al., 2015) with slight modifications. Li-
braries were single-end sequenced (50 bp) on an lllumina HiSeq 2000. Reads
were mapped to the mouse genome (NCBI37/mm9) using Bowtie2. Reads
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were removed from the subsequent analysis if they were duplicated, mapped
to mitochondrial genome, or aligned to unmapped contiguous sequences.
Promoter accessibility was calculated by totaling all reads within —500
to +150 bp relative to the TSS. The reads were converted to reads per million
{RPM) by dividing by the total number of reads per sample. The average RPM
from four replicates was used to quantify the fold increase in promoter
accessibility.

Motif Analysis

The promoters of genes (—500 to +150 bp) were used for motif analysis unless
otherwise indicated. The strongest p50:RelA binding site within each promoter
was identified using a PBM dataset (Siggers et al., 2012). Transfac PWMs were
used to identify the best matching SRF and IRF3 binding sites in promoters us-
ing Pscan (Zambelli et al., 2009).

ACCESSION NUMBERS

All data are accessible through GEO Series accession number GSE67357.

SUPPLEMENTAL INFORMATION

Supplemental Information includes seven figures and can be found with this
article online at http://dx.doi.org/10.1016/j.cell.2016.01.020.

AUTHOR CONTRIBUTIONS

A-J.T, XL., B.J.T., and M.M.L. designed and performed most experiments
and wrote the manuscript. M.R.B., M.D.S., A.L.A., and G.D.B performed the
RelA ChlP-seq experiments, and S.T.S. designed experiments and wrote
the manuscript.

ACKNOWLEDGMENTS

We thank Christopher Glass, Alexander Hoffmann, Steven Ley, Ranjan Sen,
and Trevor Siggers for helpful discussions, and the UCLA Broad Stem Cell
Research Center Core for sequencing. This work was supported by NIH grants
R0O1GM086372 (S.T.S.), PS0AR063030 (S.T.S.), T32CA009120 (A.-J.T.), and
T32GM008042 {B.J.T.), and by the China Scholarship Council and Whitcome
pre-doctoral training program {X.L.).

Received: July 17, 2015
Revised: November 1, 2015
Accepted: January 13, 2016
Published: February 25, 2016

REFERENCES

Agalioti, T., Lomvardas, S., Parekh, B., Yie, J., Maniatis, T., and Thanos, D.
{2000). Ordered recruitment of chromatin modifying and general transcription
factors to the IFN-$ promoter. Cell 703, 667-678.

Amit, I, Garber, M., Chevrier, N., Leite, A.P., Donner, Y., Eisenhaure, T., Gutt-
man, M., Grenier, J.K,, Li, W., Zuk, O., et al. (2009). Unbiased reconstruction of
amammalian transcriptional network mediating pathogen responses. Science
326, 257-263.

Barish, G.D., Yu, R.T., Karunasiri, M., Ocampo, C.B., Dixon, J., Benner, C.,
Dent, A.L., Tangirala, R.K., and Evans, R.M. (2010). Bcl-6 and NF-kappaB cis-
tromes mediate opposing regulation of the innate immune response. Genes
Dev. 24, 2760-2765.

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a
practical and powerful approach to multiple testing. J.R. Stat. Soc. 57,
289-300.

Bhatt, D.M., Pandya-Jones, A., Tong, A.J., Barozzi, |., Lissner, M.M., Natoli,
G., Black, D.L., and Smale, S.T. (2012). Transcript dynamics of proinflamma-
tory genes revealed by sequence analysis of subcellular RNA fractions. Cell
150, 279-290.



Buenrostro, J.D., Wu, B., Chang, H.Y., and Greenleaf, W.J. (2015). ATAC-seq:
a method for assaying chromatin accessibility genome-wide. Curr. Protoc.
Mol. Biol. 709, 21.29.1-21.29.9.

Core, L.J., Waterfall, J.J., and Lis, J.T. {2008). Nascent RNA sequencing re-
veals widespread pausing and divergent initiation at human promoters. Sci-
ence 322, 1845-1848.

Freaney, J.E., Kim, R., Mandhana, R., and Horvath, C.M. (2013). Extensive
cooperation of immune master regulators IRF3 and NF«B in RNA Pol Il recruit-
ment and pause release in human innate antiviral transcription. Cell Rep. 4,
959-973.

Garber, M., Yosef, N., Goren, A., Raychowdhury, R., Thielke, A., Guttman, M.,
Robinson, J., Minie, B., Chevrier, N., Itzhaki, Z., et al. (2012). A high-throughput
chromatin immunoprecipitation approach reveals principles of dynamic gene
regulation in mammals. Mol. Cell 47, 810-822.

Ghisletti, S., Barozzi, |., Mietton, F., Polletti, S., De Santa, F., Venturini, E.,
Gregory, L., Lonie, L., Chew, A., Wei, C.-L., et al. (2010). Identification and
characterization of enhancers controlling the inflammatory gene expression
program in macrophages. Immunity 32, 317-328.

Hargreaves, D.C., Horng, T., and Medzhitov, R. (2009). Control of inducible
gene expression by signal-dependent transcriptional elongation. Cell 738,
129-145.

Heinz, S., Benner, C., Spann, N., Bertolino, E., Lin, Y.C., Laslo, P., Cheng, J.X.,
Murre, C., Singh, H., and Glass, C.K. (2010). Simple combinations of lineage-
determining transcription factors prime cis-regulatory elements required for
macrophage and B cell identities. Mol. Cell 38, 576-589.

Kagan, J.C., Su, T., Horng, T., Chow, A., Akira, S., and Medzhitov, R. (2008).
TRAM couples endocytosis of Toll-like receptor 4 to the induction of inter-
feron-beta. Nat. Immunol. 9, 361-368.

Lee, T.I., Johnstone, S.E., and Young, R.A. (2006). Chromatin immunoprecip-
itation and microarray-based analysis of protein location. Nat. Protoc. 7,
729-748.

Levin, J.Z., Yassour, M., Adiconis, X., Nusbaum, C., Thompson, D.A., Fried-
man, N., Gnirke, A., and Regev, A. (2010). Comprehensive comparative anal-
ysis of strand-specific RNA sequencing methods. Nat. Methods 7, 709-715.

Lim, C.-A., Yao, F., Wong, J.J.-Y., George, J., Xu, H., Chiu, K.P., Sung, W.-K.,
Lipovich, L., Vega, V.B., Chen, J., et al. (2007). Genome-wide mapping of RE-
LA(p65) binding identifies E2F1 as a transcriptional activator recruited by NF-
kappaB upon TLR4 activation. Mol. Cell 27, 622-635.

Marioni, J.C., Mason, C.E., Mane, S.M., Stephens, M., and Gilad, Y. (2008).
RNA-seq: an assessment of technical reproducibility and comparison with
gene expression arrays. Genome Res. 78, 1509-1517.

Martone, R., Euskirchen, G., Bertone, P., Hartman, S., Royce, T.E., Luscombe,
N.M., Rinn, J.L., Nelson, F.K., Miller, P., Gerstein, M., et al. (2003). Distribution
of NF-kappaB-binding sites across human chromosome 22. Proc. Natl. Acad.
Sci. USA 700, 12247-12252.

Metcalfe, S.M. (2011). LIF in the regulation of T-cell fate and as a potential ther-
apeutic. Genes Immun. 72, 157-168.

Ostuni, R., Piccolo, V., Barozzi, ., Polletti, S., Termanini, A., Bonifacio, S., Cu-
rina, A., Prosperini, E., Ghisletti, S., and Natoli, G. (2013). Latent enhancers
activated by stimulation in differentiated cells. Cell 152, 157-171.

Panne, D., Maniatis, T., and Harrison, S.C. (2007). An atomic model of the inter-
feron-beta enhanceosome. Cell 129, 1111-1123.

Posern, G., and Treisman, R. (2006). Actin’ together: serum response factor, its
cofactors and the link to signal transduction. Trends Cell Biol. 76, 588-596.

Rabani, M., Levin, J.Z., Fan, L., Adiconis, X., Raychowdhury, R., Garber, M.,
Gnirke, A., Nusbaum, C., Hacohen, N., Friedman, N., et al. (2011). Metabolic
labeling of RNA uncovers principles of RNA production and degradation dy-
namics in mammalian cells. Nat. Biotechnol. 29, 436-442.

Ramirez-Carrozzi, V.R., Braas, D., Bhatt, D.M., Cheng, C.S., Hong, C., Doty,
K.R., Black, J.C., Hoffmann, A., Carey, M., and Smale, S.T. (2009). A unifying
model for the selective regulation of inducible transcription by CpG islands and
nucleosome remodeling. Cell 738, 114-128.

Ramsey, S.A., Klemm, S.L., Zak, D.E., Kennedy, K.A., Thorsson, V., Li, B., Gil-
christ, M., Gold, E.S., Johnson, C.D., Litvak, V., et al. (2008). Uncovering a
macrophage transcriptional program by integrating evidence from motif scan-
ning and expression dynamics. PLoS Comput. Biol. 4, e1000021.

Robinson, M.D., McCarthy, D.J., and Smyth, G.K. (2010). edgeR: a Bio-
conductor package for differential expression analysis of digital gene expres-
sion data. Bioinformatics 26, 139-140.

Shih, H.Y., Sciume, G., Poholek, A.C., Vahedi, G., Hirahara, K., Villarino, A.V.,
Bonelli, M., Bosselut, R., Kanno, Y., Muljo, S.A., and O’Shea, J.J. (2014). Tran-
scriptional and epigenetic networks of helper T and innate lymphoid cells. Im-
munol. Rev. 2617, 23-49.

Siggers, T., Chang, A.B., Teixeira, A., Wong, D., Williams, K.J., Ahmed, B., Ra-
goussis, J., Udalova, I.A., Smale, S.T., and Bulyk, M.L. (2012). Principles of
dimer-specific gene regulation revealed by a comprehensive characterization
of NF-kB family DNA binding. Nat. Immunol. 73, 95-102.

Toshchakov, V., Jones, B.W., Perera, P.-Y., Thomas, K., Cody, M.J., Zhang,
S., Williams, B.R.G., Major, J., Hamilton, T.A., Fenton, M.J., and Vogel, S.N.
(2002). TLR4, but not TLR2, mediates IFN-beta-induced STAT1alpha/beta-
dependent gene expression in macrophages. Nat. Immunol. 3, 392-398.

Treisman, R. (1994). Temary complex factors: growth factor regulated tran-
scriptional activators. Curr. Opin. Genet. Dev. 4, 96-101.

Zambelli, F., Pesole, G., and Pavesi, G. (2009). Pscan: finding over-repre-
sented transcription factor binding site motifs in sequences from co-regulated
or co-expressed genes. Nucleic Acids Res. 37, W247-W252.

Zhao, B., Barrera, L.A., Ersing, I., Willox, B., Schmidt, S.C.S., Greenfeld, H.,
Zhou, H., Mollo, S.B., Shi, T.T., Takasaki, K., et al. {2014). The NF-xB genomic
landscape in lymphoblastoid B cells. Cell Rep. 8, 1595-1606.

65



Minutes Treated With Lipid A

Ifnar’
Irf3"

o X

owowowowowod I

IM’Ol{)v—v-NN(’)(’)VVlOlOLDv— &)
d

&
S %
S =
Saa3
D8Ertd82e
Adora2a
Jdp2
1%
Lass6
Jak2 1 Percentile % Expression
Stoip o0 o[—_____]100
oI 100
uprl o___J100
o 100
Sém o- 100
Lif|
16
2
Dix3) .
RGE
]
Cend.
l1sral
Gbp7
Gbp?2
Py
Nod1
Gbp3 i
Cd69
Batf2
Daxx|
Ifit3
Tap
Olfr56
Slfn5
Irgm2
Bst2
Irf7’
Setdb2

Figure S1. IFNAR-Independent and IFNAR-Dependent Secondary Response Genes, Related to Figure 2

An expanded version of Figure 2A is shown to include gene names for each 10-fold significantly induced secondary response gene. This expanded version also
includes a column indicating the percent expression in cycloheximide-treated BMDMs.
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Figure S2. Highly Induced Primary Response Genes Ordered by Their Dependence on Various Signaling Pathways, Related to Figure 3
An expanded version of Figure 3D is shown to include gene names for each 10-fold significantly induced primary response gene.
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Figure S3. Promoter Motif Analysis of Primary Response Gene Clusters, Related to Figure 3
Overrepresented transcription factor binding motifs are shown for each cluster, 1-16. The genes were clustered as described in Figure 3D. The transcription factor
families are shown on the left, in alphabetical order. The color intensity is proportional to the negative log of the p value.
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Figure S5. The Position of RelA Peaks Relative to the Transcription Start Sites of All Genes, Related to Figure 4

{A) For each annotated gene in each gene category {(primary, secondary, 2-10 fold induced, not induced but expressed, and unexpressed), RelA binding peaks
were identified at the following distance ranges relative to the transcription start site (TSS): promoter, 10 kb, 20 kb, 100 kb, and >100 kb. The promoter was
designated as the region spanning —500 to +150 relative to the TSS. Peaks included those identified either upstream or downstream from the TSS. The annotated
RelA peaks were then grouped based on their ChlP-seq peak score (>19 or <19). If a gene did not have a peak in the indicated region, a score of 0 was given to that
gene. The top table represents the number of genes in each group, and the bottom table indicates the percent of genes in each group relative to the gene class.
{B) The distribution of RelA peaks as shown in the bottom table of {A) is shown as a bar graph. Strong binding indicates a RelA peak score >19, and weak binding
indicates a RelA peak score <19.
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Figure S6. Final Classification of the Primary Response Genes, Related to Figure 7

The 132 primary response genes were grouped based on their regulation by SRF or RelA, dependence on MAPK, TRIF, or IRF3. The left heatmap represents log2
normalized expression values, and the right heatmap represents the log2 fold change relative to the previous time point. To the right of the heatmaps are columns
indicating the following, from left to right: the presence of a strong SRF motif, a strong SRF binding peak, expression in MAPK-inhibited BMDMs, a strong RelA
motif, a strong RelA binding peak, expression in Refa™'~ FLMs and in Trif /~ and Irf3~/~ BMDMs. See also Figure S7.
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Figure S7. Final Classification of the Secondary Response Genes, Related to Figure 7
The 94 secondary response genes were grouped based on their dependence on IFNAR. To the right of the heatmaps are columns indicating the following, from
left to right: expression in IHnar~'~ BMDMs, and expression in Pam-stimulated WT BMDMs. See also Figure S6.
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CHAPTER 3

A Gene-Centric Approach Unravels the Selective and Combinatorial Regulation of SRF
Targets
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Abstract

Although ChlIP-seq data reveal that a transcription factor can bind to thousands of
genomic sites, expression data suggest that only a subset of these sites contribute to
transcription. This discrepancy indicates that transcription factor binding is often
insufficient for transcriptional activation and the functional sites require selective
regulation. In this study, we described a gene-centric, stringent system approach to
investigate the selective mechanisms regulating serum response factor (SRF) in a lipid
A response. SRF can activate transcription through the combinatorial interaction with
cofactors such as ternary complex factor (TCF). By combining well-defined gene
clusters, motif data, and ChIP-seq data, we found that the Toll-like receptor 4 (TLR4)
agonist lipid A selectively and strongly activated a small number of SRF targets. All
promoter-activated SRF targets share a unique, strict, and conserved SRF-TCF
cassette. This SRF-TCF cassette is essential for the strong promoter SRF binding and
the cooperative binding of TCF. Furthermore, formation of ternary complex at the SRF-
TCF cassette also requires an open chromatin at the promoter. Enhancer-activated
SRF targets possess SRF and TCF motifs similar to promoter SRF-TCF cassettes. The
function of SRF-TCF cassettes is further confirmed in different cell types and by
different stimuli. These findings demonstrate that the selective and combinatorial
regulation of SRF targets require strict motif rules. They also exemplify a gene-centric,
stringent system approach to identify functional binding events that directly contribute to

transcriptional induction.
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Introduction

Discovered thirty years ago, serum response factor (SRF) is a well-studied transcription
factor that led to many important discoveries in gene regulation. SRF was originally
discovered as a factor that can rapidly activate c-fos gene within 15 minutes of serum or
growth factor stimulation (Greenberg and Ziff, 1984; Treisman, 1986; Norman et al.,
1988). SRF binds to a consensus sequence CC(A/T)sGG, named the CArG box. This
CArG box exists at the promoters of many SRF targets. SRF targets often respond
rapidly to environmental stimuli through existing signaling molecules. Thus, they are
called immediate early genes, or primary response genes. Conversely, genes that
exhibit late kinetics and require new protein synthesis are called secondary response
genes (K R Yamamoto et al., 1976; Herschman, 1991). The separation of primary and
secondary response genes is often the first step to dissect stimulus-induced

transcriptional cascades (Ramirez-Carrozzi et al., 2009; Tong et al., 2016).

Serum response factor (SRF) is an MADS (MCM1, Agamous, Deficiens, and SRF) box
family transcription factor, which contains a conserved MADS box domain for DNA-
binding. Mammalian SRF is ubiquitously expressed in many cell types and is critical for
cell survival and cellular responses to many environmental stimuli. SRF can react to
mitogens including serum, growth factors, cytokines, lipopolysaccharide, and
tetradecanoylphorbol-13-acetate. Mitogens can activate SRF targets regulating cell
cycle, cell proliferation, apoptosis, cell differentiation, circadian rhythm, and cytoskeleton
functions (Posern and Treisman, 2006; Medjkane et al., 2009; Gerber et al., 2013). Cell-

specific activation of SRF targets is often involved in maintaining cell identity and
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regulating cell-specific functions (Miano, 2010). For example, SRF can collaborate with
muscle-specific factors to regulate the expression of many muscle-specific genes
regulating the development of cardiac muscle cells, smooth muscle cells, and skeletal
muscle cells. Heart-specific mutation of SRF impairs cardiac development and is
embryonic lethal (Parlakian et al., 2004). In hematopoietic stem cell progenitors, SRF is
responsible for cell migration and cell seeding in response to chemokine signaling
(Costello et al., 2015). In macrophages, SRF is essential for phagocytosis by regulating

cytoskeletal functions (Sullivan et al., 2011).

Although SRF can undergo several post-translational modifications, active SRF is
insufficient for gene activation. SRF activity also depends on the combinatorial
interaction with co-factors. SRF binds to DNA constitutively and interacts with at least
two competing co-factors: ternary complex factor (TCF) transcription factors (Elk-1,
SAP1, and Net), and myocardin-related transcription factors (MRTF) (myocardin,
MRTF-A, MRTF-B). Stimulus-induced MAPK pathway can phosphorylate and activate
TCF (Dalton and Treisman, 1992; Posern and Treisman, 2006). TCF binds to an Ets
site and interacts with SRF through a flexible domain, which allows for stable ternary
complex formation with variable spacing between the Ets site and the CArG box
(Treisman et al.,, 1992). Because the formation of ternary complex stabilizes TCF
binding on DNA, TCF can tolerate a suboptimal Ets site. Among MRTF transcription
factors, myocardin is selectively expressed and constitutively active in smooth muscle
and cardiac cells (Pipes et al., 2006; Posern and Treisman, 2006). The other two MRTF

members, MRTF-A and MRTF-B, are widely expressed in many cell types and are
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induced by Rho-actin pathway. In resting cells, actin monomer binds to MRTF and
inhibit MRTF nuclear translocation. Activated Rho pathway induces actin polymerization
and releases actin from MRTF, resulting in MRTF activation and nuclear translocation
(Vartiainen et al., 2007; Pawtowski et al., 2010). MRTF does not bind directly to DNA in
a sequence-specific manner; it is recruited to the SRF motif by SRF to activate
transcription. Because MRTFs and TCFs bind to the same interface on SRF, they can
compete for SRF binding, resulting in either gene activation or repression (Murai and
Treisman, 2002; Zaromytidou et al., 2006; Wang et al., 2004; Gualdrini et al., 2016).
Therefore, by using different co-factors, SRF targets can integrate different extracellular

signals into transcriptional outcomes and balance different cellular responses.

Previous biochemical and computational studies have given us many insights on the
mechanisms regulating SRF targets. Site selection experiments discovered that the
consensus motif of SRF, the CArG box, is a degenerate sequence (Pollock and
Treisman, 1990). Computational analyses have identified hundreds of potential
promoter CArG boxes in human and mouse genomes (Sun et al., 2006). The emerging
next-generation sequencing technologies, including chromatin-immunoprecipitation
sequencing (ChlP-seq) and Hi-C, uncovered thousands of in vivo SRF binding sites in
different cell types. SRF ChlIP-seq data suggest that SRF can bind to canonical CArG
boxes as well as non-canonical CArG boxes with mismatches (Esnault et al., 2014; He
et al., 2011; Sullivan et al., 2011). SRF binding at different genomic locations contribute
to the differential gene expression patterns. For example, SRF binds to promoters to

regulate ubiquitously expressed genes; SRF binds to enhancers established by pioneer
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factors to activate cell-specific genes (Sullivan et al., 2011; Kim et al., 2010; He et al.,
2011). Because SRF activity is the dependent on co-factor interaction, most SRF peaks
are constitutive and coincide with either MRTF or TCF binding (Gualdrini et al., 2016;
Esnault et al., 2014). SRF ChlP-seq data also suggest that SRF binding is insufficient
for gene activation. Selective recruitment of MRTF or TCF factors is critical for
transcriptional activation (Vasudevan and Soriano, 2014). Although previous SRF
ChlP-seq analyses have revealed many characteristics of SRF, their peak-centric
statistical approaches are restricted by large sample sizes and are therefore biased
towards co-regulatory mechanisms. To unveil the selective mechanisms regulating SRF

function, we need to use a different strategy.

In this study, we describe a gene-centric approach to identify the motif rules that
selectively activate SRF targets in the innate immune response. By identifying SRF
targets and studying the motif characteristics, binding strength, and DNA context, we
prevented the interference of non-functional sites and focused on the mechanisms
controlling functional SRF sites. This enabled us to characterize a small subset of SRF
targets sharing a unique promoter SRF-TCF cassette responsible for SRF activity.
Owing to the relative few ChIP-seq peaks and abundant evidence from previous
studies, SRF serves as a good example to optimize the strategies to interrogate the

selective mechanisms regulating transcription.
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Results

General Features of SRF ChiP-Seq in Macrophages

To understand the mechanisms regulating SRF activity in the lipid A response, we
performed ChlP-seq experiments in bone marrow-derived macrophages (BMDMs)
stimulated with lipid A for 0, 15, 30, 60, and 120 minutes. We eliminated the non-
specific peaks that also showed up in SRF knockout samples (Sullivan et al., 2011).
Consistent with the previous studies, SRF binds to DNA before stimulation (Li et al.,
2003; Nissen et al., 2001). Most peaks bind constitutively and remain unchanged within
two hours of lipid A stimulation (Figure 3-1A). Because weaker peaks are less
reproducible and are more likely to represent technical artifacts, we treated samples of
five time points as replicates and uncovered 718 reproducible peaks reaching a peak
score threshold of 10. Strikingly, these SRF peaks are highly enriched in the promoter
region (Figure 3-1B and C). Almost one fifth of the SRF peaks fall into the promoter

region (-500 to +150 relative to TSS).

Although more than half of the promoters contain CpG islands, 91.6% of the SRF
promoter peaks contain CpG islands with an obs/expt CpG ratio greater than 0.6
(Figure 3-1D). Because CpG-island promoters are too rigid to form stable nucleosomes,
they are generally constitutively accessible to transcription factors without the need of
chromatin remodeling (Ramirez-Carrozzi et al., 2009). Thus, they are often associated
with housekeeping genes and other ubiquitously expressed genes. The prevalence of
CpGe-island promoters might suggest that SRF binding at promoters tend to regulate

ubiquitously expressed genes. In contrast to promoters, fewer than 15% of the SRF
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enhancer peaks have CpG islands (Figure 3-1E), and their CpG content is similar to
active enhancer peaks identified by H3K27ac ChlP-seq peaks. The differential CpG
content in SRF promoter and enhancer peaks might simply reflect the depletion of CpG
in non-promoter regions of mammalian genomes. It might also reflect the different
strategies that SRF deploys to regulate genes involved in different biological functions.
One study found that SRF regulates ubiquitously expressed genes by promoter binding
and regulates cell-specific genes by binding to enhancers established by pioneer factors
(Sullivan et al., 2011; Heinz et al., 2010). Because promoters are better characterized

than enhancers, we decide to start our analysis from SRF promoter peaks.

Identify SRF Targets Induced by Lipid A

In macrophages, lipid A-induced TLR4 signaling can trigger the MAPK pathway, which
in turn phosphorylates TCF and induces transcriptional activation of SRF targets.
Previously, we stimulated bone marrow-derived macrophages (BMDMSs) with lipid A and
monitored nascent transcript expression by collecting samples every five minutes during
the first hour of stimulation (Tong et al., 2016). To prevent the interference of mMRNA
stability, we isolated nascent transcripts associated with chromatin and measured
transcript levels by RNA-sequencing. Because SRF targets are often transiently
induced between 10 to 30 min, a large number of time points can capture the peak
transcription of SRF targets. Using stringent criteria that include a fold change threshold
of 10 and a maximal expression threshold of 3 RPKM, we identified 226 lipid A-induced

genes.
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To uncover the common features and potential rules for SRF to activate transcription,
we focused on the well-defined SRF targets. We found that lipid A activated only eight
SRF targets (Figure 3-2A). These eight SRF targets are distinct from other lipid A-
induced genes by their early transient transcriptional kinetics. They are activated by 5
min and peaked by 20 min. They are transiently induced because the upstream of SRF-
TCF, MAPK, is transiently activated during the lipid A response. Consistently, all SRF
targets are strongly repressed by a cocktail of MAPK inhibitors (ERK inhibitor,
PD0325901; p38 inhibitor, BIRB796). All eight SRF targets are categorized as primary
response genes, which depend on existing signaling molecules and are insensitive to
the inhibitor of translation, cycloheximide. Six of the SRF targets (Egr1, Egr2, Dusp5,
Fos, Zfip36, Nr4a1) have SRF binding and CpG islands at their promoters (Figure 3-2B).
Another two SRF targets (ler2, Btg2) have SRF binding at enhancer regions within 10kb
upstream of their transcription start sites (TSSs), which coincide with the active

enhancer mark H3K27ac (Figure 3-2B).

Interrogate Functional SRF Peaks Combining Motif Data and ChlP-seq Data.

To understand the requirements for functional SRF binding that lead to gene activation,
we evaluated the correlation of promoter motif strength and peak strength of different
gene classes. By their activation mechanisms and transcriptional kinetics, we separated
the mouse genome into five categories: primary response genes, secondary response
genes, 2- to 10-fold induced genes, not induced genes, and low expression genes. We
compared the promoter SRF ChlP-seq peak score and the motif score using the

Transfac database (Wingender et al., 1996; Kaplun et al., 2016). Only primary response

81



genes exhibit a clear correlation between promoter motif strength and peak strength.
While no weak promoter SRF motif has binding, seven of nine primary response genes
with strong promoter motifs have SRF binding (Figure 3-3A). Notably, six of these seven
strong promoter motifs belong to previously defined SRF targets by RNA-seq. Although
another two primary response genes possess strong promoter SRF motifs, their SRF
sites reside farther (-306 and -331) upstream of transcription start sites than SRF
targets, and therefore they may be occupied by nucleosomes and are inaccessible to
SRF binding. Consistently, theses two SRF sites are not conserved in mammalian
species. In contrast to primary response genes, none of the other gene classes show
such strong correlation between strong motif and strong binding. While 5.3% of the
primary response genes contain strong promoter SRF motif with strong binding, only
less than 0.7% of genes in the other classes show similar strong binding and strong
motif (Figure 3-3A and B). Many classes have promoter SRF binding without strong
SRF motifs, which might represent indirect or non-functional binding. The enrichment of
strong motifs and strong binding at primary response genes suggests that strong motifs
combining strong binding is necessary for SRF transcriptional activity in a lipid A

response.

Because functionally important cis-regulatory elements are often conserved, we
quantified the conservation score of the SRF motifs by PhastCons (Siepel et al., 2005).
In primary response genes, six of the seven strong promoter motifs with strong binding
are highly conserved with a score greater than 0.997 (Figure 3-3C, in black). In contrast,

only 6 of 123 weak promoter SRF motifs of primary response genes reach such high
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conservation score. Interestingly, none of the other two strong SRF motifs without
binding is conserved, suggesting they might not contribute to transcription in the lipid A
response. Promoters with strong SRF motifs and strong binding are more conserved
regardless of their gene classes. This indicates that strong motifs with strong binding
might be functionally important in different contexts. Although many promoters do not
respond to lipid A stimulation, they might react to other stimuli through different
mechanisms. The enhancer sites, however, show a different trend. Although they are
more conserved than the predicted strong enhancer SRF motifs without binding,
enhancer peaks with strong motifs are less conserved than promoter peaks with strong
motifs. It is possible that many enhancer SRF peaks react to cell-specific and stimulus-
specific signals, and therefore they are less conserved than the promoter sites
regulating ubiquitously expressed genes, which are essential for developmental and
cellular functions. Unlike promoter peaks, strong enhancer SRF motifs do not exhibit
stronger conservation than weak enhancer SRF motifs. This indicates that the

regulation of SRF at promoter and enhancer sites require different mechanisms.

Identify a Promoter SRF-TCF Cassette Required for Gene Induction

Although strong SRF motifs with strong binding are highly correlated with transcriptional
activation by lipid A, another 39 promoters with strong SRF motifs and strong binding
failed to strongly induce transcription. This implies that either SRF activity depends on
other factors such as TCF, or there are subtle differences in SRF motifs that motif score
cannot reveal. To address these possibilities, we compared the promoter SRF motifs in

different gene classes. Because ETS family transcription factor TCF can bind to SRF
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and form a ternary complex, which can stabilize TCF binding and tolerate a suboptimal
Ets site near SRF site, we also scanned for the nearest Ets site using the motif-

searching tool Pscan (Zambelli et al., 2009).

Intriguingly, all six SRF targets with promoter SRF binding share a strict SRF-TCF
cassette (Figure 3-4A). Although the reported SRF consensus sequence can tolerate
either A or T in the center six base pairs, we found all six SRF targets shared a more
stringent SRF motif, which includes an ATA sequence on one side of the motif. These
sites also contain a consensus Ets motif that is within 19bp of SRF motif. This is
consistent with the previous discovery that TCF can physically interact with SRF
through a flexible domain and tolerate short and variable spacing between the two
motifs (Treisman et al., 1992). Thus, we have defined a unique SRF-TCF cassette
shared by all six SRF targets: an SRF motif CCATA(A/T/C)(A/T)(A/T)GG, a TCF motif
(CC/ICA/GA)GGA, with 3 to 19-bp motif spacing. We also noticed that an additional
primary response gene, Rnd3, also contains an SRF motif and an Ets motif, but the
motif spacing between the two sites is only 1bp. Rnd3 is not activated by SRF in the
lipid A response, probably because the motif distance is too small for ternary complex
formation. Structural evidence also suggests that ternary complex formation requires
more than 1-bp spacing (Hassler, 2001). Furthermore, EMSA experiments have shown
that SRF and TCF failed to form a ternary complex on a DNA probe with only 1-bp

spacing between the SRF and TCF motifs (Treisman et al., 1992).
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When we used the above definition of the SRF-TCF cassette to examine the other 39
promoters combining strong SRF binding with strong motifs, we found only 2 of the 39
promoters contain similar SRF-TCF cassettes: Fosb and Glipr1. Interestingly, both
genes showed rapid transcriptional kinetics like SRF targets. Both genes peaked by 20
min of lipid A stimulation and were repressed by MAPK inhibitors (Figure 3-4B and C).
Although Fosb is induced more than ten fold, its maximal RPKM is below our threshold
of 3. Although Glipr1 exceeds our maximal RPKM threshold, its fold change is 5.9,
which is lower than our fold change threshold of 10. Because Fosb is a close related
family member of another SRF target, Fos, it is likely that these two genes are regulated
by similar mechanisms. Although Fosb and Glipr1 missed our stringent criteria for
strongly induced genes, they have substantial transcriptional induction and expression
levels, so they appear to be functional SRF targets that were mis-categorized in our
previous analysis. Thus, using this defined SRF-TCF cassette, we accidentally found
another two SRF targets induced by lipid A. This further indicates that the SRF-TCF

cassette may be sufficient to identify SRF targets regulated by promoter binding.

Only Nine Additional Promoters Contain SRF-TCF Cassettes

Because we defined the promoter SRF-TCF cassette solely from six SRF targets, it is
possible that we might experience a survivor bias; SRF-TCF cassettes might also exist
in other promoters but is unnecessary or insufficient for gene induction. To address this
problem, we scanned 21013 promoters in the mouse genome for additional SRF-TCF
cassettes. In addition to the above eight SRF targets, the defined SRF-TCF cassette

only exists in another nine promoters. All of these nine promoters lack SRF binding and

85



were not activated by lipid A (Figure 3-5A). It is likely that their SRF-TCF cassettes lack

transcription factor binding because of nucleosome occupation.

Because promoter CpG content often dictates nucleosome stability, we first assessed
their chromatin states by comparing the promoter CpG content between SRF targets
and these nine promoters lacking SRF binding. While seven of eight SRF targets have
CpG ratio greater than 0.9, none of the nine promoters without SRF binding reach such
high CpG ratio (Figure 3-5B). The lower CpG content at the nine promoters lacking SRF
binding supports that their promoters tend to possess well-positioned nucleosomes and

are inaccessible for SRF binding.

Consistent with the above CpG content data, ATAC-seq data also showed that all SRF
targets have accessible promoters. In contrast, only three of the nine promoters without
SRF binding are accessible with strong ATAC-seq signals (Figure 3-5C). H3K4me3
mark for active promoters also aligned with the CpG content and ATAC-seq data. While
all SRF targets have strong H3K4me3 signal, only three of the nine promoters lacking
SRF binding (Rhoj, Tnfsf14, and Gpr183) are active promoters with strong H3K4me3
signals. However, SRF motifs of these three promoters are located beyond the
functional range of SRF motifs in SRF targets (Figure 3-5D). While promoter SRF motifs
of SRF targets are between 42bp to 410bp upstream of the TSS, one promoter SRF
motif without SRF binding (7nfsf14) is located farther upstream of the TSS, which is far
from the accessible promoter region. Another two promoter SRF sites without SRF

binding (Rhoj and Gpr183) are at the proximal downstream of the TSS. These two SRF
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sites may be occupied by the +1 nucleosome, a well-positioned nucleosome
downstream of the TSS (Jiang and Pugh, 2009; Bai and Morozov, 2010). Therefore, the
additional nine SRF-TCF cassettes probably lack SRF binding because they are located

within inaccessible promoter regions.

Because eight of the nine genes with promoter SRF-TCF cassettes lacking SRF binding
have undetectable expression in resting macrophages (data not shown) and appear to
require chromatin regulation, their transcriptional activation may require other stimulus-
specific or cell-specific transcription factors that can trigger chromatin remodeling. One
of these nine genes, Vil1, is such an example. Vil1 is selectively expressed in epithelial
cells. Bacterial infection can activate Vil1 by inducing SRF-TCF pathway in epithelial

cells (Rieder et al., 2005).

Therefore, by evaluating the prevalence of the defined SRF-TCF cassette at all
promoters, we confirmed that the defined SRF-TCF cassette is a unique feature of SRF
targets. The defined SRF-TCF cassette is probably necessary for inducing SRF targets
through the MAPK pathway. It also suggests that an accessible chromatin context is

essential for ternary complex formation and function at the defined SRF-TCF cassette.

SRF Targets Possess the Strongest SRF Promoter Peaks
Further examination of SRF targets revealed that their promoter SRF-TCF cassettes
also coincide with exceptionally strong SRF peaks. Among the strongest fifteen

promoter peaks, eight of them contain strong SRF motifs. And six of these eight SRF
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peaks with strong SRF motifs belong to SRF targets, often dwarfing most of the peaks
on the same chromosome (Figure 3-6A and B). For example, the Egr1 promoter peak is
the strongest peak on chromosome 18 (Figure 3-6B). One likely explanation for this
observation is the cooperative binding of TCF, which can stabilize SRF binding to DNA
by forming a ternary complex (Shore and Sharrocks, 1994; Shore et al., 1996). In
mouse embryonic fibroblasts, mutating TCF transcription factors strongly impaired SRF

binding (Gualdrini et al., 2016).

However, another two SRF targets (Zfp36 and Fos) containing promoter SRF-TCF
cassettes do not exhibit exceptionally strong SRF binding. This suggests that the
exceptionally strong binding at six SRF targets might be supported by other
mechanisms as well. One likely mechanism is the collaboration of SRF with other
transcription factors. To uncover potential collaborating transcription factors, we
compared motif enrichment of promoters with stronger (peak score>30) and weaker
(peak score<30) SRF binding. While all promoter peaks are highly enriched with the
SRF motif, the stronger SRF peaks are also enriched with motifs of CREB/ATF family
transcription factors (Figure 3-6C). To determine whether CREB can promote SRF
binding, we evaluated the CREB motif strength and CREB-SRF motif spacing in all
promoters with strong SRF binding and strong SRF motifs (Figure 3-6D and E).
Interestingly, all six SRF targets with exceptionally strong binding contain TCF motifs
and strong CREB motifs (motif score >0.87) within 70bp of SRF motifs. Moreover, all
these six SRF target promoters have strong CREB ChlP-seq peaks (Figure 3-6E and

F). Another two promoters (Egr4 and Filip1l) also have strong CREB motifs near SRF
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motifs. However, both promoters lack strong CREB binding. This is probably because
their CREB sites are inaccessible by nucleosome occlusion. Although we cannot
exclude the possibility that CREB binding at these six targets may be a coincidence, it is
very likely that the proximal CREB binding may enhance SRF binding to six SRF targets
through direct or indirect mechanisms. For example, CREB might physically interact and
stabilize the SRF-TCF complex. Or it might facilitate SRF binding by bending DNA or

excluding nucleosomes to increase chromatin accessibility.

Besides CREB, there may be other explanations for the exceptionally strong SRF
binding at six SRF targets. Another two genes, Srf and Bcl2/11, also have exceptionally
strong SRF binding and strong SRF motifs, but lack strong CREB motifs near SRF
motifs (Figure 3-7A). However, both of their promoters contain more than one SRF site,
which can potentially enhance the binding affinity of SRF (Figure 3-7A). To evaluate the
importance of motif copy number, we scanned for additional SRF motifs at the
promoters of SRF targets. Four of the SRF targets with the strongest peaks (Egr1, Egr2,
Duspb5, and Glipr1) have more than one SRF site at their promoters. In Egr1 promoter,
there are six SRF sites and multiple Ets sites spanning two SRF peaks (Figure 3-2B,
Figure 3-7A and B). Interestingly, Egr2 shares a similar pattern with Egr1. Egr2 also has
two promoter peaks covering multiple SRF and Ets sites. It is very likely that Egr7 and
Egr2 use similar mechanisms to regulate transcription by SRF and TCF. And it is also
interesting to understand whether the two adjacent promoter peaks function
cooperatively or redundantly. Taken together, these findings suggest that the

exceptionally strong binding of SRF at SRF targets might depend on more than one
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mechanism. Besides the role of TCF in stabilizing SRF binding, the binding of CREB
near SRF and multiple copies of SRF motifs might also contribute to the exceptionally

strong binding of SRF.

To determine whether the above mechanisms for promoter peaks also apply for
enhancer peaks, we examined the SRF motif strength and peak strength of the 552
SRF enhancer peaks (Figure 3-8A). Because it is difficult to correlate enhancer peaks
with their targets, and it is hard to separate functional enhancers by gene transcription,
we did not observe any clear correlation between the motif strength and peak strength.
To assess whether the strong SRF enhancer peaks correlates with Ets motifs or CREB
motifs, we searched for the nearest Ets motifs and the best CREB motifs near SRF
motifs. Because the motif requirements for functional binding at enhancers may differ
from those at promoters, we used less stringent criteria for enhancer SRF-TCF motifs
than the defined promoter SRF-TCF cassette. We first found the best SRF motif; then

we searched for the nearest Ets motif and the best CREB motif near an SRF motif.

The strongest enhancer peaks exhibit a different motif pattern from the strongest
promoter peaks. While six of eight strongest promoter peaks contain strong SRF, Ets,
and CREB motifs, only two of sixteen strongest enhancer peaks contain all three motifs.
Notably, these two enhancer peaks are near Bfg2 and ler2—two SRF targets identified
by expression data (Figure 3-2A and Figure 3-8B). Another potent enhancer peak,
containing only SRF and Ets motifs, is around 3kb upstream of Egr3, a gene that is

closely related to another two SRF targets, Egr7 and Egr2. Although Egr3 has relatively
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low expression level (RPKM<1), which is below our threshold for expressed genes
(RPKM>3), it is rapidly and transiently induced like other SRF targets (Figure 3-8C).
And its induction was sensitive to MAPK inhibitors. Another two enhancer peaks contain
both SRF motifs and CREB motifs but lack Ets motifs near SRF motifs. Consequently,
their closest genes, Junb and Ubald1, are not strongly induced by lipid A. Although the
motif sequences at enhancer peaks are slightly different from the defined promoter
SRF-TCF cassettes of SRF targets, we found that SRF-TCF motifs combining strong
SRF binding are sufficient to identify functional enhancer peaks. Thus, by studying the
mechanisms of SRF regulation at promoters, we were able to extend similar analyses to
enhancers and found that ternary complex formation can regulate transcription at both

promoters and enhancers.

MRTF May Regulate Other Promoter SRF Peaks with Strong Motifs

Besides the six SRF targets, another two genes also contain exceptionally strong
promoter SRF peaks and strong SRF motifs: Srf and Bcl2/12 (Figure 3-6A). Because
these two genes lack the defined promoter SRF-TCF cassette and are not activated by
the MAPK pathway, they might be regulated by another SRF cofactor, MRTF. Upon
activation of Rho-actin pathway, MRTF can translocate into nucleus and bind to SRF to
activate SRF targets. Published data in fibroblasts showed that Cytochalasin D (CytoD),
a strong activator of Rho-actin pathway, induced Srf and Bc/2/12 by more than five fold
(He et al., 2011, Figure 3-9A and B). Moreover, serum stimulation, a mild activator of
MRTF, led to MRTF binding at the promoter of Srf, coinciding with SRF binding (Figure

3-9C). These findings suggest that MRTF might regulate other promoter SRF peaks that
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lack the defined SRF-TCF cassettes.

To evaluate whether the other 37 promoters combining strong SRF peaks and strong
SRF motifs are regulated by the SRF-MRTF pathway, we compared gene induction by
CytoD in fibroblasts and by lipid A in macrophages (Figure 3-9D and E). While most
SRF targets were preferentially induced by lipid A, 12 of 37 genes with strong SRF motif
and binding were preferentially induced by CytoD (fold change>5, max RPKM>3).
Moreover, seven of these CytoD-inducible genes also have MRTF peaks at their
promoters following serum stimulation (Figure 3-9D). The other five genes lack MRTF
binding, probably because serum stimulation is a weaker activator of MRTF than CytoD.
Another 25 genes were not strongly induced by CytoD. Their activation might require
stronger stimulation or other factors. Taken together, these data support that MRTF
might regulate a subset of promoter SRF peaks with strong motifs that lack SRF-TCF
cassettes. Because MRTF binds to SRF only after stimulation and it might not stabilize
SRF binding like TCF, the SRF peaks regulated by MRTF are weaker than those with

SRF-TCF cassettes.

Ternary Complex Formation Can Enhance SRF Binding and H3K4me3 Mark

Because TCF binding coincides with the strongest SRF peaks at promoters and
enhancers, we first evaluated its contribution to SRF binding and transcription by
mutating Ets sites in immortalized macrophages using CRISPR. To avoid the effects of
redundant sites, we mutated the SRF or Ets site at the Nr4a1 promoter, which has only

one SRF site and one Ets site. To get maximal gene induction, we stimulated the
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immortalized macrophages with lipid A and serum simultaneously. For each CRISPR
mutation, we selected two mutant clones as biological replicates. Mutating the Ets site
strongly diminished SRF binding at the Nr4a1 promoter (Figure 3-10A). This supports
the hypothesis that TCF binds cooperatively with SRF and enhances SRF binding to
DNA. However, while mutating the SRF site decreased SRF binding to less than 5% of
maximal SRF binding, mutating the TCF site still retained about 25% of SRF binding.
The residual SRF binding in the absence of TCF indicates that SRF can bind
autonomously. In contrast, TCF binding at the Nr4a1 promoter seems to be completely
dependent on SRF. The binding of a TCF family member SAP1 is decreased to similar

level by mutating either the SRF or Ets site (Figure 3-10B).

Most SRF-regulated promoters possess CpG islands and strong H3K4me3 marking
(Deaton and Bird, 2011; Vavouri and Lehner, 2012). It’s still obscure how H3K4me3
mark is deposited. To determine whether SRF binding contributes to H3K4me3
deposition, we measured H3K4me3 levels in CRISPR mutants (Figure 3-10C).
Interestingly, mutating either the SRF or Ets site can reduce half of Nr4a71 promoter
H3K4me3 signal. This indicates that SRF binding alone is insufficient for optimal
H3K4me3 marking; the formation of ternary complex at basal level is required for
optimal H3K4me3 marking. Studies have shown that histone modification is associated
with the active ternary complex, possibly by directly or indirectly recruiting histone
modifiers (Esnault et al., 2017). And the other half of H3K4me3 signal might depend on
other mechanisms. For example, CpG-binding proteins can bind to CpG islands and

recruit methyltransferase to promote H3K4me3 marking (Thomson et al., 2010).
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Consistent with the ChlIP data, mutating either the SRF or Ets site significantly impaired
Nr4a1 gene induction (Figure 3-10D). This indicates that the potent gene induction
requires forming an active ternary complex. Although loss of ternary complex reduced
more than 70% of maximal transcription, there was still more than 20-fold gene
induction. This suggests that other transcription factors may also contribute to Nr4a1
transcription. For example, MAPK-activated CREB may independently induce the
transcription of Nr4a1. Thus, by investigating the SRF target, Nr4a1, we demonstrated

that SRF could bind and recruit TCF to optimize H3K4me3 level and gene induction.

Ternary Complex at the Egr3 Enhancer Stabilizes SRF Binding and Promotes
Transcription

To assess whether TCF-SRF interaction also regulates enhancer function, we mutated
the Ets site at the Egr3 enhancer, which has the strongest SRF peak on chromosome
14 (Figure 3-11A, Figure 3-6B). Interestingly, the Egr3 enhancer has the same SRF site
and TCF site as the Nr4a1 promoter. But they have different motif spacing. Because
Egr3 has a second SRF site at the promoter peak, which might be redundant or
dependent on the enhancer SRF site, we individually mutated the promoter and

enhancer sites in immortalized macrophages using CRISPR.

Consistent with our hypothesis that TCF can stabilize SRF binding, mutating the
enhancer Ets site compromised the binding of SRF to the Egr3 enhancer. Mutating the
enhancer Ets site has similar effects as mutating the enhancer SRF site (Figure 3-11B).
Thus, like Nr4a1 promoter, the Egr3 enhancer might also possess a ternary complex

formed by the cooperative binding of SRF and TCF. However, there is still about one
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third of residual SRF binding at the Egr3 enhancer in the absence of the enhancer SRF
site. Two likely explanations may account for the residual SRF binding. First, there may
be another cryptic SRF site at the Egr3 enhancer. Although we found another weaker
SRF motif, its mutation did not affect SRF binding or Egr3 transcription (data not
shown). It is possible that these two enhancer SRF sites are redundant to each other,
but the stronger one is more critical. Second, promoter SRF binding might contribute to

the residual enhancer SRF binding through promoter-enhancer interaction.

Likewise, mutating the promoter SRF site did not affect SRF binding at the enhancer
(Figure 3-11C). This indicates that the enhancer SRF binding is independent of the
promoter SRF site. Conversely, mutating the enhancer SRF site or Ets site did not
affect promoter SRF binding; only mutating the promoter SRF site impaired promoter
SRF binding. Thus, SRF binding at the promoter and enhancer are independent of each
other. Probably because there is only one SRF site at the promoter, loss of SRF binding
was greater at the promoter than that at the enhancer. It is also possible that the
promoter SRF site, rather than the enhancer SRF site, is essential for promoter-
enhancer looping. While mutating the enhancer SRF site still allows for promoter-
enhancer interaction and the detection of SRF binding at the enhancer, mutating the
promoter SRF might abolish promoter-enhancer interaction and therefore prevent

detecting SRF binding at the promoter.

SAP1 binding was similarly curtailed by mutating either the SRF or Ets site at the Egr3

enhancer (Figure 3-11D). Therefore, like the Nr4a1 promoter, TCF binding at the Egr3
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enhancer is also dependent on SRF. Furthremore, loss of the promoter SRF site did not
affect TCF binding at the enhancer. This again confirms that ternary complex formation

at the enhancer is independent of the promoter SRF site.

Mutating either the enhancer SRF site, TCF site, or promoter SRF site reduced more
than 70% of the maximal Egr3 transcription (Figure 3-11E). The reduced gene induction
suggests that ternary complex formation at the enhancer is critical for Egr3 gene
induction. Because the enhancer and promoter mutation exhibit similar loss of gene
induction, both the enhancer and promoter may be required for Egr3 induction, possibly
by promoter-enhancer looping. However, none of these mutants reduced the gene
expression to basal level. The residual 30% of transcription might be explained by the
activity of the promoter or enhancer alone. It is also likely that other lipid A-activated
transcription factors can contribute to Egr3 transcription. For example, we found that
CREB binds to a strong CREB motif on the Egr3 promoter in CREB ChIP-seq data
(data not shown). This suggests that SRF and CREB may act independently to promote

the transcription of Egr3.

We did not detect any change of histone marks for active enhancer (H3K27ac) or active
promoter (H3K4me3) in any of these mutants (data not shown). This might result from
the redundant roles of promoter and enhancer. This might also imply that histone mark

deposition is dependent on gene-specific mechanisms at Egr3.
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Promoter SRF-TCF Cassette Is Correlated with Robust and Ubiquitous
Transcriptional Induction

To understand the cell-specific binding patterns of SRF, we compared the SRF ChIP-
seq data from five different cell types: BMDMs, 3T3 fibroblasts, cortical neurons, HL-1
cardiac muscle cells, and C2C12 myocytes (Esnault et al., 2014; Kim et al., 2010; He et
al.,, 2011). Because we have more confidence in identifying targets regulated by
promoter peaks than enhancer peaks, we first compared SRF promoter peaks in
different cell types. When comparing all promoter peaks, we found up to 78 unique
promoter peaks in each cell type, but not all of them may be regulated by direct or
functional binding (Figure 3-12A, left). To enrich the functional sites, we further
compared the strong peaks combining strong motifs. This revealed only fewer than 5
unique promoter peaks in each cell type. These promoter peaks are generally weaker
peaks and lack CpG islands at promoters (Figure 3-12A, right). And many of these
promoters regulate cell-specific genes. For example, one neuron-specific SRF promoter
peak is associated with Pou3f4, a gene encoding a neuron-specific transcription factor.
It is likely that this small subset of cell-specific promoter SRF peaks tends to form stable
nucleosomes and requires chromatin remodeling initiated by cell-specific transcription

factors.

All these five cell types share 41 SRF promoter peaks containing strong SRF motifs.
These 41 promoters include seven SRF targets bearing promoter SRF-TCF cassettes.
Only one SRF target, Glipr1, is not among these 41 promoters. Glipr1 lacks a CpG-

island promoter. It's likely that the SRF binding to Glipr1 promoter requires chromatin
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remodeling maintained by another macrophage-specific transcription factor. Because
SRF predominantly binds to CpG-island promoters, which are constitutively accessible
without the requirement of chromatin remodeling, SRF can ubiquitously bind to these

promoters in many cell types.

Next, we compared published transcriptional data using different activators of SRF in
three cell types: lipid A stimulation in BMDMSs; serum stimulation in 3T3 fibroblasts; and
KCI depolarization in neurons (Tong et al., 2016; Esnault et al., 2014; Kim et al., 2010).
All these stimuli strongly induced the MAPK-TCF pathway. Serum stimulation also mildly
activates Rho-actin pathway and MRTF. When we compared the 41 genes with strong
promoter SRF binding and strong SRF motifs, we found only six genes induced more
than five fold in all cell types (Figure 3-12C). All of them are the SRF targets identified in
the lipid A response (Figure 3-4A). This suggests that the defined promoter SRF-TCF
cassette is functional in different cell types and may be essential for the ubiquitous gene
induction. Therefore, by embedding the conserved TCF-SRF cassettes in accessible
CpGe-island promoters, the SRF-TCF ternary complex can bind ubiquitously in different
cell contexts and promote robust and transient transcriptional activation by different

stimuli.

Discussion
By carefully documenting the motif characteristics of SRF peaks associated with SRF
targets, we discovered that the MAPK-TCF pathway selectively regulates a small subset

of SRF targets through a unique promoter SRF-TCF cassette. This strict motif
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requirement refined the model of the combinatorial regulation by multiple transcription
factors. This study also demonstrated that our gene-centric method has the potential to

uncover the mechanistic details of transcriptional regulation.

By comparing the transcriptional induction, motif strength, and binding strength in well-
defined gene sets, we were able to separate the direct and functional binding events
that contribute to transcription. The correlation between strong binding, strong SRF
motifs, and strong conservation at primary response genes suggest that SRF activity
requires direct binding to a strong SRF motif. The differential CpG content and motif
conservation at promoters and enhancers indicate that SRF binds to promoters and
enhancers with different mechanisms to differentially regulate gene expression.
Previous studies have found that SRF can regulate ubiquitously expressed genes
through promoters, and SRF can regulate expression of cell-specific and stimulus-
specific transcription through enhancers (Sullivan et al., 2011). Because many cell-
specific and stimulus-specific genes evolved later than genes regulating development
and essential cellular functions, these cell-specific and stimulus-specific enhancers

might not be as conserved as promoters.

Because MAPK-induced SRF targets are relatively few, and there are many studies on
individual SRF targets, we were able to scrutinize each SRF target. By comparing their
features of motif, peak strength, and expression, we found unique patterns emerged.
We discovered that promoter-regulated SRF targets share a strict SRF-TCF cassette.

Although previous studies have examined individual SRF targets and identified
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consensus SRF motifs using the site selection method and de novo motif discovery, we
found that the SRF-TCF targets require even stricter motif sequences (Pollock and
Treisman, 1990; Sullivan et al., 2011; Esnault et al., 2014;). The strict rules explain why
the defined SRF-TCF targets are highly selective and rare in the mouse genome.
Besides the eight SRF targets, the characterized promoter SRF-TCF cassette only
exists in 9 of 21013 promoters that lack SRF binding. Furthermore, the SRF-TCF
cassettes of SRF targets are more conserved than those without SRF binding. While
seven of the eight promoter SRF motifs of SRF targets are conserved, only five of the
nine promoter SRF motifs lacking SRF binding are conserved. We also found these
nine SRF motifs lack CpG islands at promoters and probably reside in inaccessible
chromatin. This suggests that these SRF-TCF cassettes lacking SRF binding might
evolve later and require recruiting chromatin-remodeling complexes by cell-specific or

stimulus-induced transcription factors.

Besides the eight SRF targets, we found another 37 genes containing strong promoter
SRF binding and strong SRF motifs. At least one third of them are regulated by another
cofactor of SRF, MRTF. Interestingly, some genes can be activated by either TCF or
MRTF. Because TCF and MRTF can competitively bind to a common interface at SRF,
these genes might be controlled by the integrated signals from both pathways (Murai
and Treisman, 2002; Zaromytidou et al., 2006; Gualdrini et al., 2016). In contrast, some
genes can be activated by only one pathway. These genes might employ a selective
mechanism to prevent the interference of another pathway. While SRF targets are

sensitive to any MAPK-TCF activator, many MRTF targets do not respond to all types of
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MRTF stimuli. For example, a weak activator of MRTF, serum stimulation, failed to
activate twelve genes that were inducible by cytochalasin D in the same cell type. The
differential responses to MRTF activators indicate that different stimuli can selectively
regulate MRTF through yet unknown mechanisms. Besides MRTF-regulated SRF
targets, strong SRF promoter binding and strong motifs also exist at the promoters of
another 25 genes. There is no evidence supporting their regulation by the SRF-TCF or
SRF-MRTF pathways. Therefore, their activation might require selective post-
translational modifications, other cofactors of SRF, or collaboration with other
transcription factors (Posern and Treisman, 2006; Sealy et al., 1997; Watson et al.,

1997).

We also found that SRF targets are unique in their exceptionally strong SRF binding.
Several mechanisms can possibly explain this phenomenon. The most likely
explanation is the supportive role of TCF, which can bind cooperatively with SRF in a
ternary complex and stabilize SRF binding. By CRISPR mutation experiments, we found
that TCF can enhance SRF binding not only at promoters but also at enhancers. Three
strongest enhancer peaks with SRF and TCF motifs are all in the vicinity of previously
identified SRF targets. Therefore, these SRF-TCF motifs at enhancers might also

possess a ternary complex that regulates transcriptional induction by lipid A.

Besides the supportive role of TCF, the proximate CREB binding might also contribute
to the strong binding of SRF. It is interesting to clarify whether CREB can promote SRF

binding through direct or indirect mechanisms. It is possible that CREB binding can
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bend the DNA or exclude nucleosomes to increase accessibility for ternary complex
formation. Alternatively, CREB can facilitate SRF binding and transcription by
participating in a large complex. It has been shown that the active SRF-TCF complex
can recruit CREB binding protein (CBP), which also interacts with CREB at c-fos
promoter (Nissen et al., 2001; Ramirez et al., 1997). Because CREB can independently
recruit CBP, CREB can probably promote the interaction between CBP and ternary
complex and assist with basal transcriptional machinery assembly. CREB is also known
to regulate several SRF targets (Ahn et al., 1998; Herndon et al., 2013; Vialou et al.,
2012; Ramanan et al., 2005). Because most SRF targets are involved in key cellular
functions including cell proliferation, cell cycle regulation, apoptosis, cell growth, and
metabolism, they might require stringent regulation by more than one mechanism. In
addition to SRF-TCF regulation, CREB can add another layer of regulation to SRF
targets, refining the expression pattern for stimulus-specific responses. And by
integrating different intracellular and extracellular signals, the combination of SRF and

CREB regulation may sensitize the cellular response to environmental changes.

By mutating the SRF and Ets sites at the promoter of Nr4a1, we confirmed that TCF
supports the strong binding of SRF. While SRF can bind by itself, TCF alone cannot
bind to DNA. This suggests that SRF might be able to recruit TCF on the Nr4af
promoter. Although many studies showed that SRF could recruit TCF, there is also
evidence indicating that TCF can recruit SRF to form a ternary complex (Treisman et al.,
1992; Latinkic et al., 1996). It is likely that the subtle sequence differences in TCF

members can affect the interaction with SRF and DNA. DNA context can also affect
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SRF and TCF interaction. For example, both SAP1 and Elk-1 contain C-terminal
inhibitory sequences that prevent the autonomous binding to DNA (Treisman et al.,
1992). By mutating SRF and Ets sites, we found that ternary complex is also required
for the optimal H3K4me3 marking at the Nr4a1 promoter. The underlying mechanism is
still unclear. It is likely that the SRF-TCF ternary complex can recruit histone modifiers
(Esnault et al., 2017). It is also likely that the loss of ternary complex binding can affect

the nucleosome structure and histone modifications.

By CRISPR mutation experiments, we confirmed that TCF can facilitate SRF binding at
the Egr3 enhancer. Moreover, Egr3 induction depends on both the promoter and
enhancer SRF sites. Similar to Egr3, another two Egr family members, Egr1 and Egr2,
also possess two SRF peaks upstream of the TSS. It will be interesting to investigate
whether these two peaks are redundant or interdependent to each other. Because Egr1,
Egr2, and Egr3 belong to the same family and share similar patterns of SRF binding,
their regulation by SRF might depend on similar mechanisms. However, comparing to
Egr1 and Egr2, Egr3 is distinct in at least three aspects. First, while Egr1 and Egr2 have
two SRF promoter peaks, Egr3 has one promoter peak and one enhancer peak.
Second, Egr3 has fewer copies of SRF motifs than Egr1 and Egr2. Third, although all
three genes exhibit similar transcriptional kinetics after stimulation, Egr3 has a much
lower expression level than Egr1 and Egr2. The first two differences can possibly
explain the lower expression level of Egr3. Because both the promoter and enhancer
are required for the optimal induction and the Egr3 enhancer peak is far from the TSS,

Egr3 expression may be limited by enhancer-promoter interaction. This can result in
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less potent transcription than Egr1 and Egr2, which both depend on promoter
regulation. It is also likely that fewer copies of SRF motifs can lead to lower SRF binding
affinity to Egr3. But it is also possible that the additional SRF motifs of Egr1 and Egr2
can enhance transcription by other mechanisms. Because Egr members regulate genes
of different biological functions, SRF might control the differential expression of different
family members by altering their motif copies and locations (Poirier et al., 2008;

O’Donovan et al., 1999).

Interestingly, lipid A-induced SRF targets are the only genes that are inducible by
different MAPK activators and in different cell types. The robust and ubiquitous
transcriptional induction of SRF targets probably derives from the combination of CpG-
island promoters and the unique SRF-TCF cassettes. Because CpG-island promoters
form unstable nucleosomes and are constitutively accessible in all cell types, they allow
the formation of ternary complex in resting cells, which can rapidly respond to various

environmental stimuli through MAPK pathway activation.

Thus, by revisiting a classical model of combinatorial regulation using a gene-centric
method, we revealed strict motif rules that selectively regulate the SRF-TCF targets.
Because SRF lacks have any functionally redundant family member and interacts with
only one cofactor at a time, it represents a relatively simple model of combinatorial
regulation. But the strategy in our study has demonstrated the potential to answer more
complicated questions. In future studies, we can use this strategy to investigate how

different transcription factors act in concert to induce gene transcription in more
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complicated combinatorial regulation models involving more factors. We can also use
this strategy to explore and compare the regulatory mechanisms of different
transcription factor family members. And this will deepen our understanding of the
mechanisms and underlying biological significance that account for the selective

transcriptional activation by different environmental stimuli.

Materials and Methods

Cell Culture and Reagents

Bone marrow cells were isolated from 6- to 10-week-old C57BL/6 male mice. They were
incubated in medium containing M-CSF for six days for macrophage differentiation.
Bone marrow-derived macrophages were stimulated with 100ng/ml lipid A (Sigma
L6895) for 0, 15, 30, 60, and 120min before cross-linking for ChIP experiments. J2
virus-immortalized macrophages were also from C57BL/6 mouse. Immortalized
macrophages were incubated in medium containing 0.5% fetal bovine serum overnight.
The next day, they were stimulated by 100ng/ml lipid A in media with 20% fetal bovine

serum.

Chromatin Immunoprecipitation and ChiP-seq Library Preparation

After stimulation, 40 million bone marrow-derived macrophages were cross-linked with
1% formaldehyde (Fisher, PI-28908). Nuclei pellets were isolated and sonicated using
Misonix 3000 sonicator to fragments between 200bp to 1000bp. Chromatin lysate was
incubated with SRF antibody (Santa Cruz, sc-335), SAP1 antibody (Santa Cruz, sc-

13030), or H3K4me3 antibody (Millipore, 07-473) overnight. The immune complex was
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pulled down by Protein G Dynabeads (Invitrogen, 10004D) and washed for four times.
The purified immune complex was incubated with proteinase K (ThermoScientific,
EO0491) at 60°C overnight for reverse cross-linking and protein digestion. IP DNA was
purified by phenol-chloroform (Sigma, P3803). DNA concentration was quantified by
Qubit kit (Thermo Fisher, Q32854). ChlP-seq library was prepared using KAPA LTP

library preparation kit (KK8500) following the manufacturer’s instructions.

ChlIP-seq Read Mapping and Processing

ChlIP-seq library samples were sequenced on lllumina HiSeq 2000 platform. Single-end
50bp reads were aligned to mouse mm9 genome using Bowtie2. Unique mapped reads
were kept for peak calling using HOMER (Heinz et al., 2010) with enrichment over input
and FDR less than 0.01. Non-specific peaks were eliminated by comparing with SRF
ChlP-seq data from SRF KO macrophages. Peak read density was calculated by
HOMER peak annotation function and heat maps were generated using Java TreeView
software. SRF peaks were annotated as promoter peaks if they are within -600bp to
+250bp relative to TSS. CpG content is calculated by dividing the number of observed
CpG by the number of expected CpG. Promoter region is defined as -500bp to +150bp

relative to TSS.

Chromatin RNA Extraction, RNA-seq Library Preparation and Data Analysis

See Chapter 2 EXPERIMENTAL PROCEDURES.

Motif Analysis and Conservation Analysis
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SRF, TCF, and CREB motifs were searched using TRANSFAC and JASPAR
transcription factor data base by Pscan (Wingender et al., 1996; Mathelier et al., 2016;
Zambelli et al., 2009). Promoter region is defined as -500bp to +150bp relative to TSS.
The best SRF motif identified by motif MO0186 was used for analysis of each SRF peak.
Ets motifs (M00032, M00074, M00007, M00025, MA0080.3, MA0081.1, MA0098.2,
MAO0028.1, and MA0Q076.2) were used to search the nearest Ets site near SRF motif.
CREB motif MO0039 was used to find the best CREB motif in promoter or enhancer

peaks.

Conservation score is quantified using UCSC PhastCons placental mammal data
(Siepel et al., 2005). Conservation score is quantified as the average PhastCons score
over a 10bp SRF motif. The best SRF motif of each region was used for conservation
analysis. Enhancer SRF motifs in the mouse genome were identified using HOMER
findMotifsGenome.pl function. Strong motifs were identified with SRF motif score

(M00186) greater than 0.89.

CRISPR

J2 virus-immortalized macrophages were diluted and seeded in 96-well plates to obtain
single cell colonies. Single cell-derived colony was expanded for CRISPR experiment.
Single guide CRISPR sequences targeting transcription factor binding sites were
designed using MIT CRISPR Designer (http://crispr.mit.edu/). They were cloned into
lentiviral vector lentiCRISPRv2 (Addgene, 52961), which expresses both Cas9 and

guide RNA. Lentiviral vectors and lentiviral packing plasmids psPAX2 (Addgene, 12260)
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and pMD2.G (12259) were transfected into 293T cells. Lentiviral media were collected
36hr and 60hr after transfection. One million single cell-derived macrophages were
plated in 6-well plates. Each well was incubated with 4ml of lentiviral medium and
centrifuged at 2000rpm for 1.5 hours. Two spin infections were performed. Three days
after the second spin infection, macrophages were cultured in medium containing
12.5ug/ml puromycin for seven days. Puromycin selection media were replaced every
two days. Puromycin-resistant macrophages were scraped, diluted, and plated into
single cells in 96-well plates. Single cell colonies were expanded for 2 weeks. Cells
were lysed and protein is digested by proteinase K at 55°C overnight. Genomic DNA is
precipitated by isopropanol. DNA pellets were washed with 70% ethanol and dissolved
in water. Primers targeting the transcription factor sites were used to select mutant
clones. The region flanking the mutation sites of candidate clones were PCR amplified
and sent for Sanger sequencing. Two mutants for each CRISPR guide RNA were

selected for qRT-PCR and ChIP experiments.

RNA extraction and qRT-PCR

Two million cells were lysed in TRI reagent (Molecular Research Center, TR118). RNA
was extracted using Qiagen RNeasy kit following the manufacture’s instructions. 1ug
RNA was used to synthesize cDNA. Levels of cDNA were quantified by gPCR using

BioRad CFX384 Real-Time PCR machine.

Accession Number
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RNA-seq, ChlP-seq, and ATAC-seq data were deposited in Gene Expression Omnibus
(GEO) database. BMDM chromatin RNA-seq, SRF ChlP-seq and ATAC-seq are under
session number GSE67357. H3K27ac ChIP-seq data are under session number
GSE38379. 3T3 fibroblast RNA-seq and ChlP-seq data are under session number
GSE45888. Neuron SRF ChlIP-seq data are under session number GSE21161. C2C12
SRF ChlIP-seq data is under session number GSE36024. HL-1 SRF ChlP-seq data is

under session number GSE21529.

Figure Legends

Figure 3-1. General Features of SRF ChIP-Seq in Lipid A-Activated Macrophages
Bone marrow-derived macrophages were stimulated with lipid A for 0, 15, 30, 60, and
120 min. Samples were collected for SRF ChlP-seq experiments. (A) The heat map
shows the read density of SRF ChlP-seq peaks in a 6-kb window, centered in peaks
called in at least one sample (by HOMER, false discovery rate <0.01). Peaks are ranked
by the average peak score. The color indicates the read value. (B) The pie chart
displays the genomic distribution of 718 reproducible peaks. Promoter region is defined
as -500 to +150 bp relative to the TSS. (C) The genomic distribution of SRF ChlP-seq
peaks is compared with the distribution of different genomic regions. (D) The CpG
content of 166 promoters with SRF binding (in red) is compared with 21168 promoters
(in black) in the mouse genome. The y-axis shows CpG content of promoters, which
equals to the number of observed CpG divided by the number of expected CpG. The x-
axis shows the percent of promoters in each category. The table compares the CpG

content between SRF-regulated promoters and all promoters. (E) The CpG content of
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552 SRF enhancer peaks (in red) is compared with 26434 enhancers with H3K27ac
peaks (in black). The y-axis shows the CpG content, which equals to the number of
CpG divided by the number of expected CpG in a 395-bp window. The x-axis shows the
percent of enhancers in each category. The table compares the CpG content between

SRF-regulated promoters and all promoters.

Figure 3-2. Identify SRF Targets by RNA-seq and ChiIP-seq

(A) The heat map shows log2-transformed expression levels of eight SRF targets.
Macrophages were stimulated by lipid A with 5 min intervals in the first hour including a
2 hr stimulation. The blue shade indicates the expression level. The blue and red heat
map shows the fold change of each time point relative to the previous time point. The
CpG column shaded in brown indicates genes with CpG-island promoters
(observed/expected CpG ratio is greater than 0.6). The MAPK column in blue indicates
genes inhibited by MAPK inhibitors (ERK inhibitor PD0325901; p38 inhibitor BIRB0796)
by at least three fold. (B) The left panel shows the genome browser snapshots of SRF
binding at the promoters of six SRF targets: Egr1, Egr2, Duspb, Fos, Zfp36, and Nr4af.
The right panel shows SRF binding to distal regions of two SRF targets (Btg2 and ler2),
which overlap with H3K27ac enhancers. The red arrow indicates the TSS and the

direction of transcription.

Figure 3-3. Characterize SRF Peaks by Peak Strength and Motif Strength
(A) The left scatter plot displays the peak score of promoter peaks (x-axis) and the motif

score by TRANSFAC transcription factor database (y-axis) of 132 primary response
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genes. The right scatter plot shows the peak score and motif score of other gene
classes: secondary response genes, 2- to 10-fold induced genes, not induced genes,
and low expression genes. The horizontal dashed line indicates the motif score
threshold of 90. The vertical dashed line indicates the peak score threshold of 10. (B)
Tables display the number and percent of promoters divided by motif score and peak
score in five gene classes. (C) The line graph shows the conservation scores of SRF
sites for SRF peaks at primary response genes (left), all promoters (middle), and
enhancer sites (right). Conservation score is quantified as the average score spanning
the 10-bp SRF motif using UCSC PhastCons data. Promoter SRF sites and enhancer
SREF sites with binding are identified by Pscan. Strong SRF motifs at enhancers without

binding are predicted by HOMER.

Figure 3-4. SRF Targets Share a Unique Promoter SRF-TCF Cassette

(A) The table lists SRF motif, TCF motif, and motif spacing at the promoters of six SRF
targets in primary response genes and another two SRF targets in other gene classes.
(B) The scatterplot shows the fold change of nascent transcripts induced by lipid A (x-
axis) and the percent of maximal expression in the presence of MAPK inhibitors (ERK
inhibitor PD0325901 and p38 inhibitor BIRB0796). The horizontal dashed line indicates
the expression threshold of 33%. The vertical dashed line indicates the fold change
threshold of 5. SRF targets in primary response genes are highlighted in red. Another
two SRF targets, Glipr1 and Fosb, are labeled in the right bottom square. (C) The heat
map shows nascent transcript expression of six SRF targets in primary response genes

and genes in other classes that also have strong SRF motifs and strong SRF binding at
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promoters. Normalized expression by RPKM is shown in blue scale. The fold change
relative to the previous time point was shown in blue to red scale. MAPKi column in blue

indicates genes sensitive to MAPK inhibition.

Figure 3-5. Identify Promoters Containing Defined SRF-TCF Cassettes and
Lacking SRF Binding

(A) The table lists SRF motif, TCF motif, locations of motifs, motif spacing, and CpG
content of nine genes in the genome that contain the defined promoter SRF-TCF
cassettes. CpG content equals the number of CpG divided by the number of expected
CpG in promoter. (B) The dot plot displays the promoter CpG content of eight SRF
targets (in red) and nine genes with promoter SRF-TCF cassettes lacking SRF binding
(in black). The dotted horizontal line indicates the CpG obs/exp threshold of 0.6. (C) The
dot plot compares the levels of H3K4me3 (in green) and ATAC-seq signal (in black)
between eight SRF targets (left) and nine genes with promoter SRF-TCF cassettes
lacking SRF binding (right). The levels of H3K4me3 ChlP-Seq and ATAC-seq are
evaluated by RPKM of the called peaks. The dotted horizontal line indicates the RPKM
threshold of 2. (D) The dot plot compares the position of promoter SRF motif relative to
the TSS between eight SRF targets (in red) and nine genes with promoter SRF-TCF
cassettes lacking SRF binding (in black). The dotted horizontal lines indicate position

-410 and +1 relative to the TSS.

Figure 3-6. Interrogate the Potent SRF Binding at SRF Targets

(A) The scatterplot shows SRF peak score (x-axis) and SRF motif score quantified by
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TRANSFAC database (y-axis) at all promoters. The grey horizontal dashed line
indicates the motif score threshold of 89.5. The vertical dashed line indicates the peak
score threshold of 10 (left, used for strong SRF binding) and 67 (right, used for top 15
promoter peaks). Eight SRF targets are highlighted in red. Top 15 peaks are highlighted
in blue. (B) Genome browser snapshots display six chromosomes containing SRF
peaks of SRF targets and Egr3. (C) Motif analysis comparing the strong motifs with
peak score greater than 30 and strong motifs with peak score lower than 30. The p
value (in red) of the enriched motifs is quantified by Pscan. (D) The scatterplot
compares CREB and SRF motif spacing identified by Pscan (x-axis) and motif score (y-
axis) at promoters with strong SRF binding and motifs. The grey dashed horizontal line
indicates the CREB motif score threshold of 0.87. The grey dashed vertical line
indicates the SRF-CREB motif spacing threshold of 70bp. Eight SRF targets are
highlighted in red. Two SRF targets (Fos and Zfp36) outside the top left square are
labeled. Another two top promoter peaks (Srf and Bcl2/12) with strong motifs are also
labeled. (E) The table compares the eight promoters at the top left square in (D) by their
CREB motif score, SRF-CREB motif spacing, CREB ChlIP-seq peak score, and SRF
ChIP-seq peak score. (F) Promoter sequences of six SRF targets, which rank among
top 15 strongest promoter peaks. Position relative to the TSS is shown on left. SRF

sites are in red; TCF sites are in blue; and CREB sites are in green.

Figure 3-7. Strong Promoter SRF Peaks Possess Proximate CREB Binding and
Multiple SRF Motifs

(A) The table compares SRF targets and another two genes (Srf and Bcl2/12) by the
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number of SRF site, minimal motif spacing between SRF sites, CREB site near SRF
site, TCF site near SRF site, and SRF peak score. (B) Promoter sequences of Egr1 and
Egr2, which have multiple SRF sites and TCF sites. Position relative to the TSS is

shown on left. SRF sites are in red; TCF sites are in blue; and CREB sites are in green.

Figure 3-8. SRF-TCF Motifs at Enhancer SRF Peaks Correlate with SRF Targets

(A) The scatterplot shows SRF peaks score (x-axis) and SRF motif score quantified by
TRANSFAC database (y-axis) at enhancer peaks. Enhancer SRF peaks containing Ets
motifs within 20bp of SRF motifs are in blue. Enhancer SRF peaks containing CREB
motifs within 70bp of SRF motifs are in yellow. Enhancer SRF peaks containing both
Ets motifs within 20bp of SRF motifs and CREB motifs within 70bp of SRF motifs are in
red. The horizontal dashed line indicates the motif score threshold of 89.2. The vertical
dashed lines indicate the SRF ChlP-seq peak score threshold of 10 (left, for strong
peaks) and 88 (right, for top 25 strongest enhancer peaks). The closest genes of 25
strongest enhancer peaks in top right square are labeled: two peaks in red represent
Btg2 and ler2; one peak in blue represents Egr3; two peaks in yellow represent Junb
and Ubald1. (B) Enhancer SRF peak sequences of Btg2, ler2, and Egr3 are shown.
Position relative to the TSS is shown on left. SRF sites are in red; TCF sites are in blue;
and CREB sites are in green. (C) The line graph indicates RNA-seq RPKM values
measuring the nascent transcript levels of Egr3 stimulated by lipid A in the presence of

DMSO (in black) control or MAPK inhibitors (in blue).

Figure 3-9. The Role of MRTF in Regulating Promoters with Strong SRF Binding
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and Strong Motifs

(A) The bar graphs compare the mRNA expression of Srfinduced by 100ng/ml lipid A in
BMDMs. (B) The bar graph compares mRNA expression of Bcl2/12 stimulated by 2uM
cytochalasin D (CytoD) in 3T3 fibroblasts. (C) Genome browser snapshots show that
SRF binding coincides with MRTF binding at the promoter of Srf following serum
stimulation in 3T3 fibroblasts. (D) The table summarizes genes with strong promoter
binding and SRF motifs by their responses to cytochalasin D (CytoD) and MRTF binding
in 3T3 fibroblasts. (E) The scatterplot shows the fold change of nascent transcript
induced by lipid A in macrophages (x-axis) and the fold change of mRNA induced by
cytochalasin D (CytoD) in 3T3 fibroblasts (y-axis) for genes with strong promoter
binding and strong SRF motifs. Eight SRF targets are in red. Genes with inducible
MRTF binding by serum stimulation are in green. Other genes with strong promoter

SRF binding and strong motifs are in grey.

Figure 3-10. Evaluate the Roles of the Ternary Complex at the Nr4a71 Promoter by
CRISPR

Bar graphs show SRF binding (A), SAP1 binding (B) or H3K4me3 (C) at the Nr4a1
promoter in control, mutant lacking the SRF site (sgSRF), and mutant lacking the TCF
site (sgTCF). J2 virus-immortalized bone marrow-derived macrophages are stimulated
with 100ng/ml lipid A and 20% serum. The data shown represent an average of three
biological replicates. (D) Bar graph shows the fold change of the Nr4a7 mRNA induced
by 100ng/ml lipid A and 20% serum in immortalized macrophages. The data shown

represent an average of three biological replicates. Error bars indicate the standard
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error. **p < 0.01; *p < 0.05; n.s.=not significant.

Figure 3-11. Evaluate the Roles of the Ternary Complex at the Egr3 Enhancer by
CRISPR

(A) Genome browser snapshots show the enhancer SRF peak and promoter SRF peak
of Egr3. The enhancer peak contains one TCF site (in blue) and one SRF site (red). The
promoter contains one SRF site (in red). Bar graphs show SRF binding at the Egr3
enhancer (B) or promoter (C) in control, mutant lacking the enhancer SRF site
(sgEnh_SRF), mutant lacking the enhancer TCF site (sgeEnh_TCF), and mutant lacking
the promoter SRF site (sgPro_SRF). J2 virus-immortalized bone marrow-derived
macrophages are stimulated with 100ng/ml lipid A and 20% serum. (D) Bar graph
shows SAP1 binding at the Egr3 enhancer in control, mutant lacking the enhancer SRF
site (sgEnh_SRF), mutant lacking the enhancer TCF site (sgEnh_TCF), and mutant
lacking the promoter SRF site (sgPro_SRF). (E) Bar graph shows the fold change of
Egr3 mRNA induced by 100ng/ml lipid A and 20% serum in immortalized macrophages.
The data shown represent an average of three biological replicates. Error bars indicate

the standard error. **p < 0.01; *p < 0.05; n.s.=not significant.

Figure 3-12. Robust Induction of SRF Targets by Different Stimuli in Different Cell
Types

(A) The Venn diagram compares all SRF promoter peaks (left) or SRF promoter peaks
with strong motifs (right) overlapping between 3T3 fibroblasts, BMDMs, -cortical

neurons, HL-1 cardiac muscle cells, and C2C12 myocytes. (B) The table lists cell-
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specific promoter peaks with strong motifs by peak score and promoter CpG content.
(C) The dot plot compares the induction of 41 genes with strong promoter binding and
strong motifs in five cell types. Gene induction is quantified by RNA-seq data in different
cell types. Nascent transcript induction by lipid A in BMDMs is in red. Messenger RNA
induction by serum stimulation in 3T3 fibroblasts is in green. Messenger RNA induction
by KCI depolarization in cortical neurons is in blue. The grey vertical dashed line

indicates the fold change threshold of 5.

Table 3-1. List of Genes with SRF Binding or SRF Motifs
The list shows the Refseq IDs, gene symbols, aliases, and functions of lipid A-induced
SRF targets, genes with promoter SRF-TCF cassettes lacking binding, and other genes

mentioned in this article.

117



Figure 3-1. General Features of SRF ChIP-Seq in Lipid A-Activated Macrophages
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Figure 3-2. Identify SRF Targets by RNA-seq and ChlIP-seq
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Figure 3-3. Characterize SRF Peaks by Peak Strength and Motif Strength
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Figure 3-4. SRF Targets Share a Unique Promoter SRF-TCF Cassette
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Figure 3-6. Interrogate the Potent SRF Binding at SRF Targets
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Figure 3-7. Strong Promoter SRF Peaks Possess Proximate CREB Binding and
Multiple SRF Motifs

A
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Gene SRF motifs  Spacing <70bp <20bp  Peak score
© Egri TSNS Yes Yes
Egr2 3 35 Yes Yes
Dusp5 2 o Yes Yes
Glipr1 2 341 Yes Yes 80.1
Nrdat 1 NA Yes Yes 75.5
Fosb 1 NA Yes Yes 74.8
Fos 1 NA No Yes 25.0
Zfp36 1 NA No Yes 10.7
Bcl2l12 2 416 No No
Srf 2 10 No No 68.8
B . . .
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Figure 3-8. SRF-TCF Motifs at Enhancer SRF Peaks Correlate with SRF Targets
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Figure 3-9. The Role of MRTF in Regulating Promoters with Strong SRF Binding

and Strong Motifs
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Figure 3-10. Evaluate the Roles of the Ternary Complex at the Nr4a1 Promoter by
CRISPR
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Figure 3-11. Evaluate the Roles of the Ternary Complex at the Egr3 Enhancer by
CRISPR
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Figure 3-12. Robust Induction of SRF Targets by Different Stimuli in Different Cell
Types
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Table 3-1. List of Genes with SRF Binding or SRF Motifs

Refseq ID Gene Symbol Aliases Function

SRF Targets

NM_010234 Fos D12Rfj1; c-fos; cFos Transcriptional regulator

NM_011756 Zfp36 Gos24; Ttp; TIS11D; Zfp-36; Nup475; TISII; Tis11 RNA binding protein

NM_010444 Nrda1 NGFIB; Hbr-1; TR3; NP10; Gfrp; Hbr1; NGFI-B; NUR77-  Transcriptional regulator

2; NUR77-1; N10; nur77; TIS1; GFRP1; Hmr
NM_007913 Egr1 Krox24; TIS8; NGFIA; ETR103; NGF1-A; NGFI-A; Zfp- Transcriptional regulator
6; Zif268; A530045N19Rik; Krox-1; Egr-1; Krox-24;
Zenk; egr

NM_010118 Egr2 Egr-2; NGF1-B; Zfp-25; Zfp-6; Krox-20; Krox20 Transcriptional regulator
NM_001085390 Duspb Gm337 Signaling molecule

NM_008036 Fosb - Transcriptional regulator

NM_028608 Glipr1 mRTVP-1; RTVP-1; 2410114014Rik; RTVP1 Tumor suppressor

NM_007570 Btg2 AA959598; APRO1; Pc3; TIS21 Transcriptional regulator

NM_010499 ler2 Ch1; Pip92; AI317238 Transcriptional regulator

NM_018781 Egr3 Pilot Transcriptional regulator

SRF-TCF Cassettes without Binding

NM_207138 Olfr149 MOR224-8; M31 G-protein-coupled receptor
NM_007621 Cbr2 MLCR Enzyme
NM_153520 Opalin Tmp10; Tmem10 Transmembrane protein
NM_183031 Gpr183 Ebi2 Signaling molecule
NM_019418 Tnfsf14 LIGHT; HVEML; Tnig1d; LTg; Ly113; HVEM-L Cytokine
NM_023275 Rhoj TC10L; TCL; 1110005019Rik; AW210585; Arhj Signaling molecule
NM_009509 Vil1 Vil Signaling molecule
NM_008288 Hsd11b1 - Enzyme
NR 033528 Olfr75-ps1 V1; Olfr75; MOR135-20 G-protein-coupled receptor
Other Genes
NM_029410 Bcl2l12 Bcl2-L12; 2810475P17Rik; 5430429MO05Rik; Bcl-L12 Anti-apoptotic factor
NM_020493 Srf AW049942; AW240594 Transcriptional regulator
NM_028810 Rnd3 2610017M0O1Rik; Al661404; Rhoe; Arhe Signaling molecule
NM_008562 Mcl1 AW556805; Mcl-1 Anti-apoptotic factor
NM_145929 Ggat 4930406E12Rik; AW209092; AU016030 Protein trafficking regulator
NM_010049 Dhfr Al662710; AA607882; 8430436103Rik; AW555094 Enzyme
NM_007393 Actb E430023MO04Rik; Actx; beta-actin Cytoskeleton
NM_145456 Zswim6 2900036G02Rik; mKIAA1577 Metal ion binding
NM_172457 Mobki2a Mob3a; A630029F06; AV218468; 5330417K06Rik Metal ion binding
NM_016896 Map3k14 aly; Nik Signaling molecule
NM_020596 Egr4 pAT133; NGFIC; NGF1-C; NGFI-C Transcriptional regulator
NM_001177871 Filip1! Doc1; 4631422005Rik Signaling molecule
NM_008416 Junb - Transcriptional regulator
NM_145359 Ubald1 1500031H01Rik; Fam100a; BC013706 Unkonwn
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CHAPTER 4

Concluding Remarks: Conclusions and Future Directions
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A balanced mammalian immune system is essential for host defense and homeostasis
(Kotas and Medzhitov, 2015). Inefficient immune activation can cause susceptibility to
cancer and pathogen infection. Over-activation of the immune system can cause
allergy, autoimmunity, and chronic inflammatory diseases such as Crohn’s diseases
and rheumatoid arthritis (Eberl, 2016; Takeuchi and Akira, 2010). Novel therapies based
on immune discoveries have proved to show efficacy in treating cancer and other
diseases (Daniyan and Brentjens, 2017). To develop novel therapeutics for immune-
related diseases, it is essential to understand the mechanisms regulating immune

responses.

Upon pathogen infection, the innate immune cells often act as the first line of host
defense. They can recognize pathogen components and damaged cell components by
various pattern recognition receptors including Toll-like receptors (TLRs), RIG-I-like
receptors (RLRs), and nucleotide-binding oligomerization domain-like receptors (NLRs)
(Brubaker et al., 2015; Takeuchi and Akira, 2010). Pattern recognition receptor
activation will trigger many downstream pathways including MAPK, NFkB, IRF, and
PI3K. This signal cascade eventually leads to the transcriptional activation of thousands
of pro-inflammatory genes and the production of antibacterial peptides, cytokines, and
chemokine, which in turn attract adaptive immune cells and initiate the adaptive immune
response. Activation of innate immune cells is a highly coordinated process that
requires the precise regulation at transcriptional, post-transcriptional, translational, and
post-translational steps. Because transcription acts as the first step for the production of

inflammatory molecules in the innate immune response, we decided to dissect the
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transcriptional cascades of a classical pattern recognition receptor: Toll-like receptor 4

(Li and Biggin, 2015; Vogel and Marcotte, 2012).

Although different stimuli can induce discrete subsets of pro-inflammatory and anti-viral
genes, they activate innate immune cells through many common signaling pathways
and transcription factors. The stimulus-specific induction of inflammatory genes through
common regulators demands using selective gene regulatory mechanisms. While
studies on inflammatory diseases often identify only a few cytokines and chemokines
responsible for pathogenesis, it is difficult to inhibit them selectively. Chemical inhibitors
generally target kinases and can affect many downstream genes. Antibody injection can
selectively inhibit cytokines or chemokines, but it can lack selectivity for the
inflammation sites and elicit systematic side effects. To develop more effective and
selective therapies to treat inflammatory diseases, it is essential to understand both the
common and gene-specific regulatory mechanisms controlling key inflammatory genes

during inflammation.

To pursue our long-term goal to understand the selective regulatory mechanisms in the
innate immune response, we started by studying a key pro-inflammatory gene that
requires tight and selective regulation: //12b. In Toll-like receptor 4 (TLR4)
transcriptional cascades, //12b is potently and selectively induced by the NFkB family
member c-Rel (Sanjabi et al., 2005). //12b induction is also optimized by many other
transcription factors binding to its promoter and enhancer (Zhou et al., 2007; Bradley et

al., 2003). Besides transcription factors, //12b also requires stimulus-induced chromatin
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remodeling at the promoter. The chromatin regulation of //72b precedes the binding of c-
Rel and adds an additional layer of transcriptional regulation (Weinmann et al., 2001;
Weinmann et al., 1999). Owing to the emerging next-generation sequencing
technologies, we can apply our knowledge of //12b regulation to whole transcriptome
studies and investigate similar or different regulatory strategies. We found that
chromatin remodeling also controls the induction of many late primary response genes
and secondary response genes. The requirement of chromatin remodeling is rooted in
the CpG content of promoters. CpG-island promoters form unstable nucleosomes and
are constitutively accessible, allowing for the rapid induction of many early primary
response genes. Low CpG-island promoters form well-positioned nucleosomes that
require chromatin remodeling, leading to delayed induction of late primary response

genes and secondary response genes (Ramirez-Carrozzi et al., 2009).

Although many systems genomic analyses have dissected and uncovered some
common transcriptional regulation mechanisms, their statistical approach relies on a
large sample size, which can potentially miss unique mechanisms that only regulate a
few genes. Thus, we need to employ a different strategy to explore gene-specific
regulatory mechanisms. In this dissertation, we used a gene-centric, stringent system
approach that highlights the quantitative nature of genomic data. In chapter 2, we used
this approach to dissect the TLR4 transcriptional cascades and classified lipid A-
induced genes by upstream signal pathways and transcription factors. We also explored
the selective regulatory mechanisms by key transcription factors including NFkB and

SRF. To understand the selective and combinatorial regulation of transcription factors,
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we investigated a classical SRF-TCF combinatorial regulation model and identified motif

rules governing the activity of SRF and TCF.

Explore Gene-Specific Regulatory Mechanisms Using a Stringent Systems
Approach

Many systems approaches assume that one transcription factor or pathway can
regulate hundreds of genes. In these cases, statistical methods can efficiently reveal
common regulatory mechanisms, but they may also miss selective mechanisms that
regulate only a few genes. To reveal gene-specific regulatory mechanisms, we
improved the experimental design and applied a stringent systems approach. Our
strategies showed at least four advantages in unveiling the gene-specific regulatory

mechanisms.

First, we measured the nascent transcript levels by isolating chromatin-associated RNA
for RNA-seq analysis. This directly quantifies transcription rate and prevents the
interference of MRNA stability. Second, we focused our analysis on strongly induced
genes. Although key inflammatory genes are among the most strongly induced genes,
strongly induced genes (fold change >10) only constitute 20% of all induced genes (fold
change >2). Given that the strongly and weakly induced genes possess different
transcriptional characteristics and are regulated by different mechanisms, separating
strongly and weakly induced genes will prevent a biased conclusion towards the
majority weakly induced genes. We can then apply the knowledge learned from strongly

induced genes to studying weakly induced genes. Third, by focusing on strongly
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induced genes, perturbation studies exhibited robust changes compared to control
samples and gave us confidence to identify the targets regulated by different pathways
and transcription factors. Last, we identified direct and functional protein binding events
by combining the ChlP-seq and motif data. These data reveal that strong binding is
highly correlated with strong motifs at the functional sites for two important transcription

factors, NFkB and SRF.

By quantitatively dissecting TLR4 transcriptional cascades using stringent criteria, we
classified the strongly induced genes by their kinetics and regulatory mechanisms. This
also discloses several gene-unique regulatory mechanisms. We found that NFkB and
IRF3 can selectively and collaboratively regulate five lipid A-induced genes through
promoter binding. These five genes include Ifnb1 and Ccl5. Interestingly, Ifnb1 and Ccl5
promoters use different strategies for NFkB and IRF3 interaction. While Ifnb1 promoter
is accessible before the cooperative binding of NFKB and IRF3, Ccl5 promoter requires
chromatin remodeling by IRF3 before NFkB binding. Another three NFkB/IRF3 genes
also require strong remodeling at the promoter, but they probably depend on another
factor CEBP. The differential regulation by NFkB and IRF3 demonstrates that critical
inflammatory genes can achieve selective regulation by combining transcription factor

binding, DNA context, and chromatin regulation.

Identify Rules Regulating the Functional Binding of SRF in a Lipid A Response
Besides five selective NFKB/IRF3 genes, we also found another small subset of genes

selectively regulated by SRF. Although SRF binds to hundreds of promoters and
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enhancers in the genome, only a small number of SRF targets were activated by lipid A.
To understand the selective regulatory mechanisms of SRF targets, many studies used
a peak-centric method. It first proposed the putative functional peaks and then tested
them by statistical correlation with expression data. This method often lacks precision to
understand the mechanistic details of complicated transcription events. To find the
precise mechanisms regulating transcription, we employed a gene-centric method. We
examined the shared characteristics and common patterns of SRF targets and identified

rules that can explain the functional binding events.

By comparing the promoter SRF motifs of SRF targets, we found that functional SRF
binding sites share a strict SRF-TCF cassette. This SRF-TCF cassette is rare; only
another nine promoters in the mouse genome contain it, but they are inaccessible and
thus are not inducible by lipid A. The characterized SRF-TCF cassette could also
possibly explain the potent SRF binding at promoters of many SRF targets. We found
that the SRF cofactor, TCF, can enhance SRF binding by forming a ternary complex.
Ternary complex formation is required for the optimal H3K4me3 marking and
transcriptional activation. Interestingly, SRF-TCF motifs also exist at enhancers that
have exceptionally strong SRF binding near SRF targets. Thus, by studying the
common motif features of SRF targets, we found that the selective activation of SRF
targets require the combinatorial regulation of SRF and TCF. Because their SRF-TCF
cassettes reside in CpG-island promoters, which are constitutively accessible, these
SRF targets are also inducible in other cell types and are sensitive to different TCF

activators. Given that most SRF targets regulate essential cellular functions including
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cell growth, proliferation, and apoptosis, the selective regulation by SRF and TCF
ensures these key genes can faithfully respond to various environmental stimuli in

different cell contexts.

Implications and Future Directions

The analyses in this dissertation demonstrate our initial efforts to surface the
mechanisms underlying the complicated transcriptional cascades in the innate immune
response. They also provide many interesting observations that warrant further
investigation. One frequent observation common for many transcription factors is the
skewed distribution of ChlP-seq peak score (Figure 4-1). It is interesting that the peak
score distribution does not exhibit a normal distribution. Normal distribution is common
for many other biological features including the cell size, body height, and blood
pressure (Marshall et al., 2012; A’AHEARN et al., 2009; Wright et al., 2011). These
biological features are tightly regulated by many factors within a narrow range. The
stringent regulation will exclude any individual that falls out of the optimal range,
resulting in a relatively homogeneous population close to an optimal value. On the other
hand, the skewed distribution is more frequently seen in phenomena in social sciences
such as the distribution of wealth (Berman et al., 2016; Bassani et al., 2014). In these
cases, the population is rather heterogeneous; a small subset of extremely strong
events dramatically differs from the majority of weak events. The sum of this small

percent of extreme events usually has greater effects than the sum of all weak events.

The skewed distribution of ChlP-seq peak score implies that the transcription factor
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binding in vivo might follow a different regulatory mechanism from other biological
features that results in homogenous populations. The homogenous populations with
normal distribution may result from factors excluding abnormal individuals beyond the
optimal range by affecting their essential functions. The heterogeneous population of
ChIP-seq peaks implies that non-functional binding in vivo does not adversely affect key
cellular functions, and thus are not excluded by evolution. The prevalent redundant
‘non-functional” binding sites may prepare the cells to evolve new functional cis-
regulatory elements in an ever-changing environment. But it is also likely the non-
functional binding is a consequence of technical artifacts. Because the functional sites
are relatively few (for example, only 8 of 166 SRF promoter peaks contribute to a lipid A
response) in many contexts, studying all sites together will lead to biased conclusions
that overshadow the regulatory mechanisms of functional sites. Thus, it is essential to

separate the functional and non-functional sites using stimulus-specific criteria.

Many studies have endeavored to find a universal strategy to identify functional ChlP-
seq peaks. Some studies defined functional sites with the strongest peaks, which are
called “super enhancers.” They are usually much stronger or wider peaks than normal
enhancers (Pott and Lieb, 2015; Whyte et al., 2013; Hnisz et al., 2013). Consistently,
most of our functional SRF peaks rank among the strongest peaks. However, not all
strong peaks are functional in a certain context. Some peaks may be active in one
context, but not in another. It is tempting to hypothesize that peaks frequently activated
by various environmental stimuli during evolution are more important, so they are more

likely to be conserved and become stronger than other less important peaks. Thus, the
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strong peaks may be more likely to represent functionally important sites during the
evolution, which are often selective to different contexts or stimuli. But the context-
specific regulatory mechanisms are largely unknown. The statistical methods often
require large sample sizes and can potentially ignore the relatively few number of
context-specific peaks. By identifying the patterns of lipid A-specific targets, we can
avoid the limitation of statistics and identify rules that selectively activate important
transcription factors. Although in this dissertation, we have identified motif requirements
as a critical factor that distinguishes the functional sites of SRF in a lipid A response, we
cannot exclude the possibility that other factors can also contribute to the functional
binding and transcriptional activation. Other mechanisms might include motif location,
chromatin state, and histone marks. Future studies can address the possibility of other
mechanisms by studying the selective transcriptional regulation under different stimuli

and in different cell types.

We focused our analyses on promoters because they are better characterized than
enhancers. In future studies, we will extend our analysis to enhancers, which might
require different regulatory mechanisms from promoters. Our CRISPR mutation
experiments on Egr3 revealed that both the enhancer and the promoter are essential for
Egr3 gene induction. This implies that the optimal induction of Egr3 requires the
collaboration of the enhancer and promoter through promoter-enhancer interaction. The
step-wise mechanism of this induction remains unclear. We can try to understand the
promoter-enhancer interaction by HiC and mutation experiments. Although we still lack

the knowledge to identify the targets of enhancers, we can get initial insights from the

145



regulatory mechanisms of individual enhancers like the Egr3 enhancer and extend our
insights to broader studies. Understanding transcription factor regulation at enhancers

will also allow for a better characterization of enhancers.

Although we have demonstrated that some transcription factors can activate
transcription by altering chromatin features, it is still unclear how transcription factor
binding leads to chromatin changes. In our studies, we find that IRF3 binding to the Ccl5
promoter precedes SWI/SNF binding, chromatin remodeling, NFkB binding, and
transcriptional induction. It is still unclear how IRF3 binds to an inaccessible region and
initiates remodeling. It is very likely that it binds at the edge of a well-position
nucleosome or on a small accessible window of the nucleosome. We need further
investigation into the stepwise mechanistic details of this process in future studies.
Intriguingly, IRF3 can also bind to accessible promoters that do not require chromatin
remodeling. It will be interesting to understand whether IRF3 can detect chromatin
contexts to apply different regulatory mechanisms. To understand the roles of IRF3 in
initiating chromatin remodeling, we can also compare it with other transcription factors
that can also induce chromatin remodeling, particularly transcription factors in the IRF

family.

Besides combinatorial regulation, many other mechanisms could potentially contribute
to selective transcriptional induction. One mechanism involves the selective binding of
different transcription factor members that have slightly different motif preference. For

example, NFkB family transcription factors can recognize and bind ubiquitously to many
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canonical NFkB sites. However, the //72b promoter contains a non-canonical NFkB site,
which is highly selective for c-Rel. This preference leads to selective inhibition of //72b in
c-Rel knockout cells without affecting other NFkB targets (Sanjabi et al., 2005). Similar
preference for a certain transcription factor member might also exist in other
transcription families. For example, AP1 family transcription factors consist of Fos
proteins and Jun proteins. Different combinations of Fos and Jun dimers can result in

different binding preference (Mechta-Grigoriou et al., 2001; Karin et al., 1997).

Another possible selective regulatory mechanism is the use of alternative cofactors. For
example, SRF activity requires two competing cofactors: MRTF transcription factors and
TCF transcription factors. While TCF family members can form ternary complexes with
SRF and activate genes regulating cell proliferation, apoptosis, and circadian clock,
MRTF family members can bind to SRF and activate cytoskeletal genes. One member
of the MRTF family, myocardin, is selectively expressed in muscle cells and regulates
muscle-specific genes (Olson and Nordheim, 2010; Posern and Treisman, 2006;).
Another example is CREB, which can interact with two cofactors: CBP and CRTC2
(Altarejos and Montminy, 2011; Mayr and Montminy, 2001). While the CBP-CREB
interaction controls genes regulating broad functions, CRTC2-CREB can selectively

activate genes regulating metabolic functions.

To get a more comprehensive understanding of mechanisms regulating lipid A
transcriptional cascades, we can use our stringent systems approach to examine the

binding profiles of other transcription factors. Besides NFkB, IRF3, and SRF, many
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other transcription factors also contribute to the lipid A response, which include CEBP,
AP1, and CREB. We can explore the ChlP-seq data from these factors with respect to

three aspects.

First, we can dissect their binding profiles using our gene-centric approach and
investigate the mechanisms that activate lipid A-responsive sites. Second, lipid A can
induce different transcription factor members in the same family. It will be interesting to
compare the common and unique properties of different transcription factor members.
By comparing their kinetics, peak strength, motifs, and other characteristics, we can
uncover the selective mechanisms underlying the redundant and differential use of
transcription factor members. Furthermore, we can integrate transcription factor binding
properties with other features including chromatin accessibility and histone mark data.
The potential coordination of chromatin regulation and transcription factor will illuminate
on the complexity of transcription factor regulation in the native environment. Third,
several transcription factors often act in concert to induce transcription. After
understanding how each transcription factor functions individually, we can then explore
their combinatorial regulation. For example, besides NFkB and IRF3, CEBPf also binds
to the promoters of three NFKB/IRF3 genes. These three NFkB/IRF3 genes undergo
chromatin remodeling before NFkB and IRF3 binding. It is likely that CEBPJ binds at
these three NFKB/IRF3 genes to initiate chromatin remodeling, which permits NFkB and
IRF3 binding and gene induction. Taking advantage of the well-defined lipid A-induced
gene classes, we can investigate more selective mechanisms by combination of

transcription factors. Eventually, by clarifying the roles of different transcription factors,
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we can refine the classification of lipid A-induced genes. This will enable us to evaluate

the contribution of key transcription factors during inflammation.

There are also many challenges for analyzing ChlP-seq data from different transcription
factor family members. Because transcription factor family members may share
homologous domains, it may be technically challenging to find specific ChIP antibodies
for each transcription factor member. Furthermore, there is often functional redundancy
between different family members, so knockout of one gene might not uncover all
targets. Mutating all transcription factor members is technically difficult and is often
lethal. The difficulty to identify targets might compromise the identification of functional
ChlP-seq peaks. If a transcription factor is selectively expressed in macrophages, there
is an alternative approach. We can compare the gene expression in other cell types. If a
gene is selectively activated only in macrophages, then it is more likely to be a real

target.

Taken together, by carefully dissecting the lipid A transcriptional cascades and
uncovering selective regulatory mechanisms of transcription factors, we have
demonstrated the efficacy and potential of mining the gene-specific regulatory
mechanisms using our stringent systems approach. This approach will benefit future
genomic studies and provides potential applications in medicine. With the emergence of
cheaper personal sequencing technologies, it is likely that clinicians will adopt genomic
analyses for personalized medicine in the future. By comparing the gene expression

profiles of the control and patient samples, it is possible to make more accurate
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diagnoses and find better treatment options. However, inflammatory diseases often
disrupt complicated gene networks involving both common and gene-specific regulatory
mechanisms. Conventional systems approaches can detect large-scale expression
changes regulated by common mechanisms, but our approach can also detect unique
changes regulated by gene-specific mechanisms. The combination of both approaches
will provide a precise diagnosis of complicated inflammatory diseases by identifying
critical regulators in disease pathogenesis. Besides the applications in disease
diagnosis, investigation of gene-specific mechanisms regulated by transcription factors,
chromatin regulation, and other mechanisms will also facilitate the development of

selective medications to treat human diseases with minimal side effects.

Figure Legend

Figure 4- 1 The Distribution of SRF and RelA ChlIP-seq Peak Scores

(A) Line graph displays the peak score of 718 reproducible SRF ChlIP-seq peaks
identified by HOMER software. Peaks are ranked by peak strength. (B) Line graph
displays the peak score of 8458 reproducible RelA ChIP-seq peaks identified by

HOMER. Peaks are ranked by peak strength.
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Figure 4-1 The Distribution of SRF and RelA ChIP-Seq Peak Score
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