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ABSTRACT OF THE DISSERTATION 

 

Impacts of Anthropogenic Activities on Wild Species:  

An Evaluation of Environmental Stressors Associated with Urban and Agricultural Land Use on 

Bobcats, Mule Deer, and Bats in California  

by 

Devaughn Lee Fraser 

Doctor of Philosophy in Biology 

University of California, Los Angeles, 2017 

Professor Robert Wayne, Chair 

 

Human land use is responsible for global declines in biodiversity, primarily through the loss, 

fragmentation and degradation of natural habitat. Urban development and agriculture are the two 

most important forms of land use change causing species imperilment in the US, both of which 

are strongly associated with additional environmental stressors such as pesticides and movement 

barriers. Socially, economically and ecologically important species are often affected negatively, 

and thus, priority should be placed on evaluating how land use affects natural populations.  This 

research focuses on three distinct systems to identify the effects of habitat fragmentation and 

chemical pollutants on wildlife, including 1) the physiological effects of persistent anticoagulant 

rodenticide exposure on bobcats in the Santa Monica Mountains and Simi Hills near Los 

Angeles, CA; 2) the effect of highways on geneflow in mule deer occupying various open spaces 
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separated by intervening highways and characterized by varying degrees of urban development; 

and 3) the influence of pesticide use on resource selection and dietary diversity in big brown bats 

in an intensively managed agricultural landscape. 
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INTRODUCTION 

Human activities are causing a precipitous decline in biodiversity worldwide. While 

altered habitat availability- via degradation, loss, and fragmentation- presents the most 

immediate threat to species (Brooks et al., 2002; Groom et al., 2006; Hanski 2011), secondary 

stressors such as pollution often operate in tandem to exacerbate local effects of changing 

landscapes (McNeely 1992; Crain et al., 2008; Serieys et al., 2015).  Understanding the scope 

and magnitude of these interactions is critical to maintaining biodiversity and managing 

populations of ecologically and economically important species in highly altered urban and 

agricultural environments.  

Habitat fragmentation reduces both resource availability and population connectivity, and 

thus carries both demographic and genetic consequences for wild species. Populations may 

decline in response to limited resources necessary for reproduction and survival (Herkert 1994, 

Newman et al. 2013), while decreased gene flow between remaining patches can lead to reduced 

genetic diversity (Sato et al. 2014, Barr et al. 2015) and inbreeding depression (Bouzat et al., 

1998; Johnson et al., 2010) thus limiting the evolutionary-response capabilities of populations to 

environmental change (Hughes et al., 2003; Schaberg et al., 2008). Such isolation can also lead 

to transiently high local population densities or “crowding effects”, with implications for habitat 

quality, disease transmission and survival (Lindsey et al., 2009, Gabriel et al., 2017). Further, 

other stressors associated with human land-use, such as pollutants, can have profoundly negative 

effects on natural populations inhabiting areas along an urban- or agricultural-wild interface. 

Cumulatively, such impacts can reduce population fitness and contribute to population declines 

over time. The two most common forms of habitat degradation that contribute to species 

imperilment include urbanization and agriculture, both highly associated with habitat 
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fragmentation and chemical contaminants such as pesticides (Ricketts & Imhoff, 2003; 

McPherson et al., 2013). 

I and my co-authors have selected three distinct systems through which to evaluate direct 

and indirect consequences of human land-use change on natural populations. In Chapter 1 of this 

dissertation entitled “Genome-wide expression reveals multiple systemic effects associated 

with detection of anticoagulant poisons in bobcats (Lynx rufus),” We evaluated the effects of 

sublethal anticoagulant rodenticide exposure on genome wide expression patterns in peripheral 

whole blood from an urban-associated population of bobcats (Lynx rufus). Rodenticide exposure 

is pervasive in this population and is potentially linked to an epizootic of notoedric mange that 

lasted from 2002-2011 (Riley et al. 2007, Serieys., et al 2015). We used three analytical approaches 

to identify multiple physiologic systems that are impacted by exposure to rat poisons. We then 

extended our findings to hypothesize about potential mechanisms leading to increased 

susceptibility to notoedric mange in this bobcat population. We found that AR exposure in bobcats 

results in differential expression of genes related to endoplasmic reticulum stress, epithelial 

formation and maintenance and both innate and adaptive immunity. We hypothesized that the 

combination of simultaneous immune activation and immune suppression paired with 

compromised epithelial integrity predisposes AR-exposed bobcats to opportunistic infection by an 

ectoparasite.   

In Chapter 2 entitled “Connectivity of mule deer (Odocoileus hemionus) populations 

in southern California: A genetic survey of a mobile ungulate in a highly fragmented 

landscape” we examined the direct effects of major highways and urban development on the 

distribution of genetic diversity in mule deer across two highly urbanized regions in southern 

California. Urbanization is a substantial force shaping the genetic and demographic structure of 
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natural populations. As urban areas expand, so too do transportation corridors that facilitate 

human movement, such as highways. As such, genetic continuity in wild species is increasingly 

compromised and should be assessed for a multitude of highly mobile species that exhibit 

varying responses to human activity. While carnivores are well studied in general, common 

species such as mule deer are often overlooked. However, as the only wide-ranging ungulate 

species in Southern California, genetic and demographic impacts of urban development on mule 

deer is an important area of research. Here, we present the first assessment of genetic 

connectivity for mule deer focused explicitly at understanding mule deer response to habitat 

fragmentation in an increasingly urbanized landscape. We use a combination of genetic analyses 

and resource selection modeling to show that deer movement is limited by major highways and 

the associated urban development. Therefore, deer should be an important consideration during 

wildlife connectivity planning in urban landscapes. 

Finally, in Chapter 3 entitled “Dietary diversity and resource selection by big brown bats 

(Eptesicus fuscus) in agricultural landscapes exhibiting different levels of pesticide-use in 

California” we examined patterns of dietary diversity and resource use in big brown bat 

populations in an agricultural landscape in central California. Bats provide invaluable economic 

and environmental services in agricultural landscapes by consuming insects that damage crops 

and are otherwise controlled through the use of chemical pesticides. Quantifying these services is 

a major research focus, yet little is known about the dietary diversity or foraging behavior of bats 

in such landscapes. Further, few data are available for understanding the influence of pesticide-

use on bat foraging, concomitantly negating our understanding of exposure risks for bats. We 

have implemented an RSF modeling approach to analyze telemetry data on ten female foraging 

big brown bats, in order to determine if bats exhibit a preference for certain crop types over 
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others and to test whether bats tend to avoid or select for areas with high pesticide use. We 

additionally have analyzed guano from 18 wild bats captured in two locations which vary in 

landscape levels of insecticides applied. We demonstrate that bats show consistent selection and 

avoidance for specific crop and land-use types and that pesticides do exhibit a significant 

influence on bat foraging decisions. We further show that dietary diversity is reduced in high-

pesticide use areas, likely due to reduced prey availability. Collectively, our results highlight the 

importance of understanding foraging strategies for economically valuable species and may 

provide a management framework for agricultural producers to promote bat predation on their 

lands. 
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CHAPTER 1 

 

Genome-wide expression reveals multiple systemic effects associated with detection of 

anticoagulant poisons in bobcats (Lynx rufus) 

INTRODUCTION 

Poisons aimed at controlling specific pest species may threaten populations of non-target 

species. For toxicants that bioaccumulate in the food chain, these threats are greatest to predatory 

and scavenging species. Although some mortality in non-target animals occurs via the same 

molecular pathways that the toxicant are designed to disrupt, sublethal exposure can also have 

cryptic physiological effects that nonetheless impact individual fitness (Baldwin et al., 2009; 

Santadino et al., 2014; Gill & Raine, 2014), and hence, may decrease population viability 

(Thompson et al., 2014; Rattner et al., 2014; Serieys et al., 2015a). 

Anticoagulant rodenticides (ARs) are toxicants used globally to eliminate rodent pests and 

have been implicated as an important source of mortality in many non-target species that consume 

poisoned rodents (Eason et al., 2001; Fournier-Chambrillon et al., 2004; Sánchez-Barbudo et al., 

2012; Rattner et al.,2014; Dennis et al., 2015; Gabriel et al., 2015; Huang et al., 2016).  For 

example, 81% of tested stone martens (Martes foina) and 77% of polecat (Mustela putorius) were 

exposed in Belgium, and between 84% and 100% of birds and other animals tested were exposed 

in Denmark (Baert et al., 2015; Elmeros et al., 2011; Christensen et al., 2012). In California, 

exposure to ARs is a statewide problem with over 70% (368/492) of birds and mammals testing 

positive for ARs between 1995 and 2011 (California Department of Pesticide Regulation 2013). 

AR toxicity was a leading cause of mortality in predatory and scavenging birds (Kelly et al., 2014) 

and in coyotes (Canis latrans) (Riley et al., 2003), and it is increasingly recognized as a major 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4562445/#R9
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threat to the to the Pacific fisher (Pekania pennanti) (Gabriel et al., 2012; Thompson et al., 2014) 

and to the endangered San Joaquin kit fox (Vulpes macrotis mutica) (Nogeire et al., 2015). In 

Southern California over 90% of bobcats and mountain lions (Puma concolor) tested positive for 

ARs (Riley et al., 2007).  Further, AR exposure occurs in a wide variety of environments, from 

pristine areas such as the Sierra Nevada Mountains, to agricultural areas with low human densities 

such as cattle and horse ranches and grain storage facilities, to urban areas with both high and low-

density housing, as well as highly modified areas such as golf courses and natural areas which abut 

human habitation (Gabriel et al., 2012; Gabriel et al., 2015; Nogeire et al., 2015; Serieys et al., 

2015).  

Several formulations of ARs are available and are grouped into first- and second generation 

ARs (FGARs and SGARs); the latter are more acutely toxic and persistent in tissue as they were 

developed as a countermeasure to heritable resistance in rodent populations to FGARs. The most 

commonly deployed FGARs are warfarin, chlorophacinone, and diphacinone and the most 

commonly used SGARs are brodifacoum, bromadiolone, difenacoum, and difethialone (US EPA- 

https://www.epa.gov/rodenticides/restrictions-rodenticide-products). In the Santa Monica 

Mountains near Los Angeles, CA (USA), bromadiolone and brodifacoum (SGARs) had the highest 

prevalence of detection in bobcats, whereas diphacinone (FGAR) was detected at the highest 

concentrations in animal tissues (Serieys et al. 2015a). 

ARs are vitamin K antagonists that reduce vitamin K availability for a variety of critical 

processes including hemostasis, bone metabolism, angiogenesis, apoptosis, oxidative protein 

folding, and immune function (Opal & Esmon, 2002; Li et al., 2003; Shearer & Newman, 2008; 

Esmon, 2005; Suttie, 2009; Ferland, 2012; Rutkevich & Williams, 2012; El Asmar et al., 2014; 

Danziger, 2008). While secondary exposure to ARs frequently leads directly to death from 

https://www.epa.gov/rodenticides/restrictions-rodenticide-products
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hemorrhaging (California Department of Pesticide Regulation 2013), persistent sublethal exposure 

appears to be common in non-target species (Fournier-Chambrillon et al., 2004; Riley et al., 2007; 

Gabriel et al., 2015; Nogeire et al., 2015). Known side effects of sublethal exposure to vitamin K 

antagonists in humans and rats include pathologies such as arterial calcification (Danziger et al., 

2008), severe skin irritation (Ozcan et al., 2012; Pourdeyhimi et al., 2014) and both immune 

activation and suppression (Kater et al., 2002; Popov et al., 2013). Given these potential effects, it 

is likely that sublethal AR exposure in natural populations disrupts important biological pathways 

necessary for survival from injury and pathogens. 

Here, we analyze global gene expression patterns to evaluate the systemic effects of 

sublethal AR exposure in wild bobcats living near Los Angeles, California, USA. Bobcats are a 

highly mobile, widely distributed North American felid and are obligate carnivores that utilize a 

variety of habitats across their range and have been found even in some urban landscapes (Riley 

et al., 2010). They are highly territorial and solitary, with average home range sizes in our study 

area of approximately 2.5 km2 for females and 5.0 km for males (Riley et al., 2010). In the study 

area, their diets consist primarily of lagomorph and rodent species including cottontail and brush 

rabits, pocket gophers, ground squirrels, and voles; all of which are primary targets of ARs 

(Fedriani et al., 2000; Riley et al. 2010; Bartos et al., 2011). Additioanlly, some non-target rodents 

are exposed to ARs, such as woodrats, that are also bobcat prey (Moriarty et al., 2012). 

 Despite high exposure prevalence in our study area, few bobcat mortalities have been 

attributed directly to AR toxicity (Riley et al., 2007). However, previous research repeatedly found 

mortality from notoedric mange (caused by the mite Notoedris cati) to be associated with the level 

of ARs (Riley et al., 2007; Serieys et al., 2015a), suggesting the potential for sublethal effects of 

ARs on the ability of bobcats to resist mange mite infection. Mange was the primary source of 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4562445/#R9
https://www.ncbi.nlm.nih.gov/pubmed/?term=Pourdeyhimi%20N%5BAuthor%5D&cauthor=true&cauthor_uid=25673894


11 
 

mortality in the bobcat population from 2002-20008 (Riley et al. 2010, Riley et al. 2015), which 

resulted in a genetic bottleneck (Serieys et al., 2015 b). Notoedric mange had never previously 

been known to have such severe demographic impacts on any wild felid population, and typically 

only affected a few individuals that were likely already unhealthy (e.g., Penner and Parke 1954; 

Pence et al. 1982; Pence et al. 1995). The emergence of this epizootic prompted NPS biologists to 

submit bobcat carcasses to the California Animal Health and Food Safety Laboratory (CAFHS) 

for necropsy and full evaluation to assess cause of death and any associated factors. Carcass 

examination and testing for a panel of eight environmental contaminants (lead, manganese, iron, 

mercury, arsenic, zinc, copper and cadmium) in addition to ARs suggested ARs as the only 

consistent underlying complication in bobcats that succumbed to death from mange infection 

(Riley et al., personal communication). However, the mechanism underlying this potential link 

between mange and AR exposure remains unknown. 

By comparing AR-positive cases to those without detectable AR levels, we demonstrate 

the use of RNA-seq on whole blood to investigate genes and cellular processes that are affected 

by sublethal AR exposure in bobcats. Based on genes known to interact with vitamin K antagonists 

(http://ctdbase.org/) (Davis et al., 2017), we expected differential expression of genes involved in 

hemostasis, xenobiotic metabolism, and the immune system. We further sought to identify 

potential links between altered gene expression and disease susceptibility in bobcats and 

potentially, other wildlife. To our knowledge, this is the first genome-wide assessment of 

transcriptional responses to secondary AR exposure in a wild vertebrate population.  

MATERIAL AND METHODS 

SAMPLING 

http://ctdbase.org/
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We conducted our analyses on 52 RNA preserved whole blood samples from bobcats 

captured as part of an ongoing research project directed by the National Park Service. We selected 

our samples to include 26 bobcats for which ARs were detected and 26 samples for which ARs 

were not detected in whole blood at the time of capture (Serieys et al., 2015a). Additionally, we 

balanced our samples across sex and age. These bobcats were captured across the Santa Monica 

Mountains, Simi Hills and Hollywood Hills between 2008-2012 (Figure 1). The study area was 

comprised of large natural areas within the Santa Monica Mountains, relatively large fragments of 

natural habitat surrounded by roads and development in the Simi Hills, and intensely urbanized 

areas in the Hollywood Hills. The dominant natural vegetation types were coastal sage scrub and 

chaparral. Each animal was captured, processed and sampled in accordance with the Office of 

Animal Research Oversight of the University of California Los Angeles (Protocol ARC#2007-

167-12) and under authorization through California Department of Fish and Wildlife (SC-9791), 

assessed for AR exposure as described in (Serieys et al., 2015) and released at the capture site. 

Briefly, AR exposure was assessed using high performance liquid chromatography for the 

presence, and liquid chromatography- mass spectrometry for the quantity of warfarin, coumachlor, 

bromadiolone, brodifacoum, diphacinone, chlorophacinone, and difethialone from tissue, serum 

or whole blood. Detection of AR exposure in blood can greatly underestimate true exposure 

prevalence as paired liver samples from necropsied animals frequently tested positive for ARs 

even in the absence of detection in blood (Serieys et al., 2015a). Several factors may determine 

the detectability of ARs in blood: time since exposure; the magnitude of exposure; and the 

metabolic half-life of the AR which is both species and compound specific. Thus, although 

detection in blood most likely indicates a relatively recent exposure event, we cannot distinguish 

among all these effector variables. Further, many samples fell below the limit of quantitation but 
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above the level of detection. Hence, we considered AR exposure status as a binary variable (see 

Serieys et al., 2015a), and conservatively considered individuals showing detectable levels of at 

least one and up to five of the seven screened compounds (i.e., > 1 ppb) as positive for AR exposure 

(AR-positive). 

 All animals in this study were apparently healthy at the time of capture (i.e. no sign of 

disease). Disease screening was performed at the Center for Companion Animals Studies or in the 

Feline Retrovirus Research Laboratory in the Microbiology, Immunology, and Pathology 

Department at Colorado State University. Serum samples were analyzed separately for Feline 

Immunodeficiency Virus (FIV) and Puma Lentivirus (PLV) using western blot. Serum from blood 

samples was also assayed for Feline Calicivirus (FCV), Feline Herpesvirus (FHV), Bartonella sp. 

and Toxoplasmosis gondii specific IgG by enzyme linked immunosorbant assay (ELISA). To test 

for Mycoplasma haemofelis, M. haemominutum, B. henselae and B. clarridgeaie infection, PCR 

assays were performed on whole blood.  

METHOD DETAILS 

RNA processing 

Total RNA was extracted from 0.5 mL whole blood using the Ambion Mouse RiboPure 

Blood extraction kit, followed by globin removal using the Ambion GlobinClear Mouse kit (Life 

Technologies, Inc). RNA was quantified on the Agilent bioanalyzer (Agilent Technologies, USA). 

RIN scores from globin-depleted RNA samples ranged from 5.5 to 9.3. A minimum of 100 ng was 

used as input for cDNA library preparation using the Kapa Biosystems stranded mRNA kit (Kapa 

Biosystems, LTD). Each sample was uniquely tagged with custom index sequences developed at 

UCLA (Faircloth et al., 2014) comparable to Illumina TruSeq tags.  Individual sample libraries 
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were then pooled in equimolar ratios, with 13 or 14 samples per pool and each pool sequenced on 

two lanes of an Illumina HiSeq 2500 or HiSeq 4000 sequencer.  Sequencing was performed for 

150 bp single end reads. Library quantification, pooling and sequencing were performed at the 

Vincent Coates Sequencing Facility at UC Berkeley. 

Quality control, mapping and trimming and read quantification 

Raw sequences were processed using Trim Galore! 0.3.1 (Krueger, 2015) to remove 

Illumina adapters and filter out sequences that did not meet the quality thresholds (q > 20, length 

> 25 bp). Alignment of reads was performed on TOPHAT2 2.1.0 (Kim et al., 2013) using the 

domestic cat (Felis catus) as a reference genome (Ensembl release 85.62) (Yates et al., 2015). To 

maximize the number of unique reads mapped to the reference genome, we used the following 

parameters: read mismatches 10, max-insertion-length 12, read-edit-dist 22.  On average, 70% of 

reads mapped uniquely, leaving an average of 13,232,179 mapped reads per individual (3,405,189-

22,898,827).  

Gene expression quantification 

Aligned reads were converted to raw counts using HTSEQ (Anders et al., 2014) with the 

“union” mode, resulting in alignment to 21,890 genes. After removal of three globin-related genes 

(ENSFCAG00000030531, ENSFCAG00000031043, ENSFCAG00000022139) with high 

expression levels prior to normalization, values for the remaining 21,887 genes were normalized 

using the trimmed mean of M-values (TMM) method in the edgeR package (Robinson & Oshlack, 

2010) in R and adjusted for gene length and GC content using custom Python scripts and the 

package CQN in R (Hansen et al., 2012). The number of genes remaining after filtering for protein-

coding genes and sufficient coverage (> 10 reads in 75% of cDNA libraries) was 12,332. We used 
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hierarchical clustering of the gene expression adjacency matrix to identify outlier samples (defined 

as having a z-score greater than 3) with the R package WGCNA (Langfelder & Horvath, 2008). 

STATISTICAL ANALYSIS 

A summary of the analyses used in the present paper is available in Figure 1.2. 

LIMMA 

We performed principal components analysis to identify and remove technical factors from 

the expression data (Figure 1.3). Gene by gene linear mixed models were used to identify 

differentially expressed genes in AR-positive bobcats using the limma package in R (Ritchie et al., 

2015). We adjusted our significance values to account for multiple hypothesis testing using the 

false discovery rate (FDR) method as implemented in the qvalue package in R (Storey et al., 2015) 

and selected genes falling below Q < 0.05. We selected the genes falling under a Q-value threshold 

of 0.05 and then performed Gene Ontology (GO) analysis on the up and downregulated genes that 

passed this threshold using g:Profiler (Reimand et al., 2016). In g:Profiler (version 1682), we used 

the 12,332 genes as a statistical background and aligned our significant Ensembl gene ID 

specifically to the Felis catus genome. We required a minimum of 2 for the query intersection and 

applied the Benjamini-Hochberg FDR correction for the significance threshold. The remaining 

parameters were set using the defaults. 

WGCNA (Weighted Gene Correlation Network Analysis) 

We assigned all 12,332 genes to functional categories based on coordinated expression 

patterns using the WGCNA package in R (Langfelder & Horvath, 2008). Briefly, WGCNA 

searches for genes with similar expression profiles and transforms this correlation matrix into an 

adjacency matrix via a power function β (Zhang & Horvath, 2005). The adjacency matrix is used 
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to define a measure of node dissimilarity. In conjunction with a clustering method (average 

hierarchical clustering) and the node dissimilarity measure, the user can identify modules 

containing highly interconnected genes which can then be related to a trait of interest (Langfelder 

& Horvath, 2008).  

We first ran a k-means clustering optimization to determine the most likely number of 

clusters in our expression dataset using the ICGE package in R (Irigoien et al., 2012). In WGCNA, 

we then followed the automatic, one-step network construction and module detection implemented 

with the function “blockwiseModules” with an unsigned network algorithm, a power β= 6, 

corType= bicor, maximum block size = 13000, min module size = 40, mergeCutHeight =0.5, 

mergingThresh = 0.5. The remaining parameters were kept at the default setting. This cutoff value 

yielded the “correct” number of modules, including the “grey” module, which contains genes that 

are not part of any modules. Subsequently, we performed a hub gene analyses (genes with the 

highest intramodular connectivity) on each resulting module, and submitted the top hub genes (up 

to 100) for GO analysis using g:Profiler (Reimand et al., 2016). We used these functional 

categories based on gene enrichment of biological processes to aid in the interpretation of our 

linear model results at a systemic level.  

In order to assess the stability of the modules and therefore the biological interpretation of 

the hub gene analyses, we performed a module stability analysis (Langfelder & Horvath, 2012). 

We conducted 50 full module construction and module detection runs on resampled expression 

data, where each iteration randomly sampled 52 animals from the original dataset, with 

replacement. Module assignment for each gene was then compared to the original module 

assignment and overall stability of the hub genes was calculated as the mean proportional 

assignment of each hub gene to the original module. In addition, we repeated our module detection 
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analysis after changing the correlation type to the default (Pearson) and subsequently calculated 

module preservation statistics to evaluate whether a given module defined in one dataset (reference 

network) can also be found in another dataset (test network) across 200 permutations. Each 

permutation will report the observed value and the permutation Z score to measure significance, 

which is then summarized in a composite measure called Z.summary.  

Transcript Origin Analysis (TOA) & Transcriptome Representation Analysis (TRA) 

Transcript Origin Analysis (TOA) was applied as in Cole et al. (2011) to identify the 

specific cell types giving rise to observed AR-related differences in whole blood gene expression. 

Transcriptome Representation Analysis (TRA) was performed as in Powell et al. (2013) to 

quantify differences in the prevalence of specific cell types based on coordinated shifts in cell type-

specific RNA profiles in AR-positive bobcats. Both analyses utilize publicly available leukocyte 

subset-specific expression profiles as reference distributions to generate cell diagnosticity scores 

for each gene analyzed. The cell diagnosticity scores for AR-associated genes (defined either by 

fold expression difference (> 1.5) or significance (q < 0.05)) are then tested for significant over-

representation relative to the basal prevalence of diagnosticity scores across all genes present in 

the data set (TOA), or the most cell type-diagnostic transcripts are tested for differential expression 

as a function of AR exposure (TRA).  Cell type-specific reference profiles used in the present 

analyses included major leukocyte subsets (i.e., monocytes, dendritic cells, natural killer cells, B 

lymphocytes, CD4+ T lymphocytes, CD8+ T lymphocytes, from GEO data set GSE1133), 

immature/classical (CD16-) vs mature/non-classical (CD16+) monocytes (GSE25913), M1 vs M2 

macrophages (GSE51446), and two data sets comparing naïve B lymphocytes with progressively 

more differentiated B cell subpopulations (GSE64028 and GSE13411). 

RESULTS 
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Principal Components of Expression Data 

To evaluate the influence of technical (i.e.batch effects) and biological variables on data 

structure, we performed linear regression on the principal components (PC) of the normalized read 

counts. We regressed out technical factors that were significantly correlated with the first PC, 

including the sequencing platform (HiSeq 2500 or HiSeq 4000), RNA integrity number (RIN) and 

library preparation. After correcting for technical effects, we found that exposure status was highly 

significant on PC 1, which explained 19.4 % of the total variance (Figure S2). Importantly, none 

of the pathogens for which each bobcat was currently infected (Mycoplasma haemominutum, M. 

haemofelis/turricensis, Bartonella clarridgeie, B. henselae) were significantly correlated with the 

first 12 PCs, and although evidence of exposure (seropositivity) to Puma Lentivirus (PLV) and 

Bartonella spp. was significant on PC 9 (PLV) and PC 12 (Bartonella), these principal components 

explained only 2.6% and 1.9% of the total variation in expression (Figure S2, Table 1.1). 

Therefore, differential expression profiles in AR-positive bobcats are not likely due to current 

infection status for the 10 common feline pathogens (Bevins et al., 2012; Carver et al., 2016) 

examined. Additionally, age classification (juvenile or adult) was significant on PC 6, which 

explained only 3.5 % of the variance in the data. 

AR exposure as a linear predictor of differentially expressed genes 

To identify genes influenced by AR exposure, we used linear regression to measure fold-

change (β) and statistical significance (Q). Our dataset included read counts for 12,332 genes that 

were retained after normalization and low coverage filtering. After applying a false discovery rate 

(FDR) corrected for multiple testing (Figure S3), a total of 1,783 genes were significantly (Q < 

0.05) predicted by exposure status, of which 530 were downregulated and 1,253 were upregulated 

(Figure 2). Eighteen of these genes identified in our model overlap with genes listed in the 
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Comparative Toxicogenomics Database (Davis et al., 2017) as interacting with warfarin, although 

the direction of dysregulation was not consistent for all genes with responses observed in rats or 

humans (Table 1.2). 

Downregulated genes were enriched for several gene ontology (GO) terms related to 

immune function, including response to IL-12 and IL-6; positive regulation of acute inflammatory 

response; complement-mediated cytotoxicity; myeloid differentiation; monocyte activation; FC-

epsilon receptor signaling; and positive regulation of macrophage chemotaxis. Downregulated 

genes were also enriched for terms related to epithelium including keratinocyte proliferation, 

glomerulus development, and intestinal epithelial differentiation; and for terms related to vascular 

processes including Tie-signaling, negative regulation of vasoconstriction, regulation of 

angiotensin levels in blood, negative regulation of blood circulation, and platelet aggregation. 

Additional terms related to cell cycle, biosynthetic processes, metabolism, reproductive processes, 

and transport (Figure 3A; Table 1.3). 

We observed downregulation of several genes related directly to wound healing and 

epithelial integrity, including matrix metallopeptidase 1 (MMP1: β = -0.99; Q =0.038) and matrix 

metallopeptidase 10 (MMP10: β = -1.26; Q =0.01); as well as two important transcription factor 

involved in white blood cell production and differentiation, GATA binding protein 2 (GATA2: β 

= -0.54; Q =0.047) and kruppel-like factor 5 (KLF5: β = -0.67; Q =0.016). Further several genes 

involved in the allergic response were downregulated. These included membrane spanning 4-

domains A2 (MS4A2: β = -0.79; Q =0.03) and Fc Fragment of IgE Receptor Ia (FCER1A: β = -

0.88; Q =0.025), encoding for the high affinity IgE beta and alpha receptors, and carboxypeptidase 

A3 (CPA3: β = -1.29; Q =0.019) which is involved in granulocytic mediated inflammation. 

Bobcats exposed to ARs thus may experience a depressed inflammatory response coupled with 
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diminished epithelial integrity and wound healing response. 

There were 2.36 times as many upregulated genes, which were enriched for GO terms 

related predominantly to immune function, specifically to T lymphocytes, as well as terms for gene 

expression and RNA processing. Immune related terms included positive regulation of immune 

response, T cell differentiation, thymocyte aggregation, and T cell receptor signaling (Figure 3B; 

Table 1.4). Notably, we also observed upregulation of UbiA prenyltransferase domain containing 

1 UBIAD1 (β = 0.38; Q = 0.032), a mammalian gene involved in the biosynthesis of vitamin K2 

(Nakagawa et al., 2010; Meehan & Beckwith, 2017), as well as several genes involved in 

xenobiotic metabolism including Cytochrome P450 Family 2 Subfamily U Member 1 (CYP2U1: 

β = 0.35; Q = 0.016), ATP Binding Cassette Subfamily B Member 1 (ABCB1: β = 0.52; Q =0.015), 

Carbohydrate Sulfotransferase 2 (CHST2: β = 0.65; Q = 0.013), and Heparan Sulfate-Glucosamine 

3-Sulfotransferase 1 (HS3ST1: β = 0.64; Q = 0.039). These results suggest that ARs may activate 

the adaptive immune system as well as processes associated with xenobiotic metabolism and, 

potentially, responses to vitamin K deficiency. Other GO terms included gene expression, RNA 

metabolic process, translation, positive regulation of RNA splicing, response to dsRNA, and 

ribonucleoprotein complex biogenesis (Figure 3B; Table 1.4). Several of the genes in these terms 

relate specifically to immune and cellular stress-responses, likely reflecting increased 

transcriptional activity due to immune activation and toxicant metabolism. 

Further, we observed differential expression of several interleukin cytokines (ILs) in AR-

positive bobcats (Table 1.5). Downregulated IL genes were generally regulators of inflammation 

including IL13 (β = -0.9; Q = 0.016) and IL36B (β = -0.8; Q = 0.013); whereas upregulated IL 

genes were generally indicators of B and T cell activity, including ILF2 (β = 0.24; Q = 0.044), 

ILF3 (β = 0.25; Q = 0.033) and IL7R (β = 0.6; Q = 0.017). Overall, the up- and downregulation of 
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numerous cytokines demonstrate a pronounced dysregulation of critical mediators of immune 

function, implying both immunosuppressive and stimulating effects of AR exposure. 

Transcript Origin Analysis & Transcriptome Representation Analysis 

To identify and quantify cellular subsets that contribute to differential gene expression in 

AR-positive bobcats, we applied a Transcript Origin Analysis (TOA) and Transcriptome 

Representation Analysis (TRA). The TOA analyses of major leukocyte subsets showed that AR-

downregulated genes originated disproportionately from monocytes (CD14+ cells) whereas 

upregulated genes originated primarily from helper (CD4+CD8-) and cytotoxic (CD4-CD8+) T 

cells and CD19+ B cells (Table 1.6). Further, TRA analyses indicated an average 6.4% reduction 

in total monocyte prevalence within circulating blood of AR-positive bobcats (mean TRA log2 

prevalence ratio for monocyte-diagnostic genes = -0.102 ± SE 0.047, p = 0.039). These results 

were consistent regardless of whether the differential expression analysis was assessed by effect 

size (0.917 fold-change) or as a function of the significance threshold (Q < 0.05; 0.952-fold 

change). 

Subsequent TOA analysis focusing on specific monocyte subsets showed that AR-

downregulated genes derived predominantly from CD16- (immature “classical”) monocytes 

whereas AR-upregulated genes derived predominantly from CD16+ (mature, “non-classical”) 

monocytes. Again, these results were consistent regardless of whether differential expression was 

defined by effect size or statistical significance. In terms of patterns for B cells, TOA analyses of 

distinct B cell differentiation states linked AR exposure to a shift toward immature, naive B-cells; 

whereas downregulated genes derived predominantly from more mature/memory B cell 

phenotypes, including plasma cells whose primary role is the secretion of antibodies, indicating 

that these cells were less common or less active or both (Table 1.6). In general, these results 
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indicate that AR exposure may affect immune function by impacting the relative abundance of 

circulating immune effector cells and cell-subsets. 

Weighted Gene Co-Expression Network Analysis (WGCNA) 

We implemented a WGCNA to assign all 12,332 genes to modules based on patterns of 

coordinated expression, resulting in 11 modules, including a non-specific module which was 

consistent with the k-means clustering results (Figure S4). We subsequently assigned each module 

to functional categories based on GO enrichment analysis of modular hub genes and assessed how 

many significantly differentially expressed genes (based on the linear model) were assigned to 

each module (Figure 4A). The dominant expression profile (eigengene) for two of the ten modules 

were significantly correlated (p < 0.05) with exposure after FDR correction (Figure 4B; Figure 

4C). Functionally, these modules related to T-cell activation and signaling (Pearson’s r = 0.46, 

padjusted = 0.006; light blue module), and the inflammatory response (Pearson’s r = -0.39, padjusted = 

0.025; blue module). In addition, 4 of the remaining 8 modules had an overlap of 10 or more genes 

that were significant in the linear model. These modules were enriched functionally for transferase 

activity (green module), wound healing/coagulation (red module), endoplasmic reticulum stress 

response (purple module), and heme metabolic process (yellow module). Module stability for these 

6 modules ranged from 27% - 98%. The hub genes were re-assigned at 98% for the light blue 

module, at 88% for the green module, at 96% for the red module, at 78% for the yellow module, 

at 57% for the blue module, at 27% for the purple module.  Similarly, all our modules showed high 

preservation, with Z.summary scores ranging from 19 to 56. 

DISCUSSION 

The analysis of genome-wide transcriptional changes is a potent but largely underutilized 
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method to assess organismal response to sublethal toxicant exposure in the wild, especially when 

controlled exposure experiments are logistically or ethically unfeasible, as is often the case with 

wild carnivores.  Bobcats in the Santa Monica Mountains persistently exposed to ARs do not 

exhibit canonical signs of coagulation disruption, such as hemorrhaging, despite the fact that this 

was the second-leading cause of mortality in a long-term coyote study (Gehrt and Riley 2010). 

However, bobcats do appear more susceptible to notoedric mange (Riley et al. 2007; Serieys et al., 

2015a), consistent with sublethal effects of AR-exposure.   

Other environmental toxicants or stressors that potentially influence gene expression may 

be common in areas in AR-use areas. Consequently, ARs may not be the ultimate cause of the 

pattern we observe or may be one of several contributing factors. However, we argue that ARs are 

the most likely cause of gene expression dysregulation for the following reasons: 1) ARs are 

known to accumulate in food chains and are targeted at prey species which bobcats frequently 

consume (Riley et al., 2010), so there is a specific and well-understood pathway of exposure for 

bobcats; 2) AR exposure is correlated generally with more intensive human land use, however AR 

exposure has also been documented in pristine environments (Gabriel et al., 2012), and particularly 

near modified open space areas such as landscaped parks, cemeteries, equestrian facilities, and 

golf courses (Nogieres et al., 2015, Serieys et al., 2015a) which are less degraded than more 

intensively urbanized settings; 3) the most urban-associated bobcats in our study area were 

nonetheless largely using natural areas, with commonly more than 75% or more of their radio 

telemetry (Riley et al., 2010); 4) necropsies performed on bobcats throughout the course of the 

20+ year study of carnivores in SMMNRA have not shown any other toxicants consistently linked 

to disease or mortality other than ARs in bobcats or in other carnivores such as coyotes or mountain 

lions (Gehrt and Riley 2010, Beier et al. 2010); and 5) many of the pathways we have found 
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differentially expressed are known to be affected by ARs as discussed below. For these reasons, 

we suggest that sublethal AR-exposure in bobcats is the best candidate for gene dysregulation and 

physiologic perturbation. 

In addition to impacts related to hemostasis and vitamin K availability, we observed 

substantial effects on multiple biological processes including xenobiotic metabolism and ER stress 

response, inflammatory and allergic immune response, adaptive immunity, and skin integrity 

(Figure 2; Table 1.7). For each process discussed below, these effects have important implications 

for bobcat health, and taken together, also constitute strong plausible links between AR exposure 

and mange susceptibility in bobcats. 

Blood Hemostasis and Vitamin K 

Bobcats, like domestic cats, appear less sensitive than other species to the common effects 

of ARs (Petterino & Paolo, 2001; Beusekom, 2015). Specifically, clotting times do not differ 

significantly between AR-positive and AR-negative bobcats (Serieys et al. unpublished data). 

Importantly, however, one bobcat and three mountain lions (Riley et al., 2007) have died from 

coagulopathy in the study area. Our gene expression results also suggest that there are some direct 

effects of ARs on hemostasis, potentially related to the vitamin K cycle. We observed GO 

enrichment for hemostasis-related terms in downregulated genes, and several downregulated genes 

overlapped with the coagulation module from WGCNA, including genes involved in platelet 

activation (i.e. thromboxane A synthase 1; TBXAS1) and fibrin-clot formation (i.e. serpin family 

E member 2; SERPINE2). Notably, upregulation of UBIAD1 in AR-positive animals may reflect 

a possible compensatory mechanism in bobcats. Vitamin K2 has been shown to offset effects of 

vitamin K antagonists on arterial calcification (Kawashima et al., 1997) and is supportive for 

hematopoietic and bone metabolism (Tabb et al., 2003; Miyazawa & Aizawa, 2004).  
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Xenobiotic Metabolism and Endoplasmic Reticulum stress 

Xenobiotic metabolism is a primary function of the liver that occurs over three phases- 

cellular uptake, transformation and excretion (Ioannides, 2001; Filser, 2008; Lee et al., 2011). 

During the second phase, reactive intermediates can be formed that directly target enzymes in the 

ER, thereby triggering oxidative and ER stress responses (Foufelle & Fromenty, 2016; Cribb, 

2005). In bobcats, evidence that AR exposure activates the ER stress response is, as shown by the 

differential expression of genes such as Lysosomal Associated Membrane Protein 3 (LAMP3), 

Heat Shock Proteins (HSP90B1), Hypoxia Up-Regulated 1 (HYOU1), X Box Binding Protein 1 

(XBP1) and Protein Disulfide Isomerase (PDI6), all of which were clustered in the WGCNA 

module related to ER stress (Figure 4A; Figure 4B). 

In model organisms, ARs are processed through canonical xenobiotic pathways and are 

recognized inducers of oxidative stress (Ware et al., 2015; Miller, 2009). However, in felids, 

mechanisms of xenobiotic metabolism are poorly understood (Beusekom, 2015). For instance, cats 

are deficient in several enzymes identified as necessary for drug elimination in rats and humans 

(Beusekom, 2015; Court, 2013). Similarly, the mammalian gene encoding for UGT1A6, 

specifically involved in warfarin metabolism, is a pseudogene in the felid family and is therefore 

not expressed as a functional protein (Shresta et al., 2012). High tolerance for ARs suggest that 

felids have possibly developed alternate and perhaps more efficient mechanisms for metabolizing 

these toxicants. We observed upregulation of CYP2U1, a member of the CYP450 gene family 

whose products are the primary mediators of xenobiotic metabolism (Zanger & Schwab, 2013; 

Lynch & Price, 2007; Karlgren et al., 2005). In humans, variants in certain CYP enzymes are 

associated with differential warfarin sensitivity (Freeman et al., 2000). Given the high variability 

of CYP function across species (Zanger & Schwab, 2013), it is plausible that CYP2U1 plays an 
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active role in the metabolism of ARs in felids. Additionally, we observed upregulation of CHST2 

and HS3ST1, two genes involved in the xenobiotic metabolism pathway (Zhu et al., 2016), as well 

as ABCB1, essential for elimination of AR metabolites (Miller, 2009; Beusekom, 2015) and also 

associated with differential warfarin sensitivity (Wadelius et al., 2004).  

Immunomodulation by ARs 

Controlled experiments on herbicides and pesticides document exposure-related changes 

in circulating leukocyte composition in a variety of species (Malik & Chughtai, 2003; Cimino-

Reale et al., 2008). For ARs specifically, rats exhibited reduced monocytes and increased 

lymphocyte numbers (Mikhail & Abdel-Hamid, 2007). We found evidence of similar patterns of 

AR-induced changes in circulating leukocytes in bobcats, likely resulting in both immune 

suppression (of myeloid lineage immune cell function) and stimulation (of lymphoid lineage cell 

functions). 

With respect to immune suppression, we observed downregulation of several genes 

involved in the allergic immune response including FCER1A, HDC, MS4A2, and CPA3, each 

primarily associated with the function of mast cells and monocytes. Evidence of reduced total 

monocytes in AR-exposed bobcats, with a higher relative abundance of activated or mature to 

naive monocytes suggests a decrease in the production of immature myeloid lineage cells. In 

mammals, white blood cell production (hematopoiesis) occurs in bone marrow, where 

transcriptional regulation, cytokine signaling and properties of the stromal niche operate in tandem 

to determine lineage commitment of hematopoietic stem cells (Dorshkind,1990; Schoeters et al., 

1995; Orkin & Zon, 2008). We observed downregulation of several transcription factors involved 

in hematopoiesis in bone marrow. GATA-2 is critical for the production and maintenance of early 

hematopoietic progenitors (Tsai et al., 1997). Mutations in this gene are associated with myeloid 
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cell abnormalities in humans (Hsu et al., 2011; Pasquet et al., 2013). Transcription factors KLF4 

and KLF5 share co-regulatory roles during hematopoiesis (Ishikawa et al., 2013) including 

monocyte production and development (Park et al., 2016; Shahrin et al., 2016). Further, vitamin 

K has been shown to improve the supportive function of bone marrow stromal cells for 

hematopoiesis (Miyazawa & Aiwazawa, 2004) and directly promotes survival and differentiation 

of myeloid progenitor cells (Sada et al., 2010). Therefore, AR exposure may impact the number 

of circulating monocytes through effects of vitamin K availability on bone marrow integrity as 

well as through deregulation of transcription factors necessary for monocyte differentiation. 

With respect to immune stimulation, we observed an increase in gene expression by B- and 

T-lymphocytes in AR-positive bobcats. In B-cells, upregulation stemmed specifically from 

increased activity of naive relative to mature or differentiated B-cells. There was also a strong 

signal for a reduction in the proportion of plasma cells. As above, this may indicate altered output 

of early lymphocyte progenitor cells, hence inflating the number of naive B-cells in peripheral 

leukocytes. Conversely, it may indicate an increased elimination of standing activated and memory 

B-cells, with a responding increase in lymphopoiesis. In this respect, KLF5 emerges as an 

important candidate gene. In heterozygote deficient mice (KLF +/-) this gene has been linked 

experimentally to the manifestation of systemic sclerosis (SSc) symptoms, a disease characterized 

by B-cell dysregulation, skin lesions and vasculopathy (Noda et al., 2014). Total and relative naïve 

B-cells were elevated in SSc patients, whereas proportions of memory B and plasma cells were 

decreased, which was attributable to increased spontaneous death of these cells (Sato et al., 2004). 

Our results imply that although total B cells are elevated in exposed bobcats, the animal’s ability 

to maintain sufficient memory B-cells capable of recognizing specific pathogens upon secondary 

challenge may be compromised. This could limit the immunologic capacity of exposed bobcats to 
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mount a rapid response to a previously encountered pathogen such as notoedric mange. 

Our results also indicate that AR-exposure is associated with upregulation of T-cell 

activity. Indeed, all three of the mature T-cell coreceptor molecules (CD3G, CD3D, and CD3E) 

are highly upregulated in exposed bobcats. Previous work demonstrated that T-cells can be 

activated directly by anticoagulants through MHC presentation (Naisbitt et al., 2005). 

Phenindione, for instance, is a vitamin K antagonist anticoagulant that is known to cause 

hypersensitivity in some human patients. It is also one of the most commonly detected AR 

compounds (in the form of diphacinone) in our study population (Serieys et al., 2015a). 

Manifestation of hypersensitivity occurs primarily in the skin and is correlated with rapid 

proliferation of drug-specific CD4+ T cell clones (Naisbitt et al., 2005). In the latter study, it was 

shown that warfarin (a coumarin compound) can also adopt a phenindione-like structure and 

similarly elicit T cell proliferation. Hence, AR exposure may directly induce T cell proliferation 

through the antigen presentation, potentially leading to immune exhaustion or expansion of 

dichotomous (i.e. Th1 and Th2) T cell subpopulations. 

Keratinocyte Regulation 

Genes downregulated in AR-positive bobcats indicated that ARs may interact with 

epithelial maintenance and formation. Considerable evidence suggests that the skin may be a target 

tissue of warfarin. Some warfarin treated patients experienced skin necrosis (Chan et al., 2000; 

Pourdeyhimi et al., 2014), while endothelial cell injury has been observed in experimental warfarin 

treated rats (Ozcan et al., 2012). In bobcats, three differentially expressed genes are consistent with 

these observations. Transglutaminase 1 (TGM1) is a key enzyme in keratinocyte differentiation 

(Elias et al., 2002, Thacher & Rice, 1985; Russel et al.,1995) and was downregulated in AR-

exposed bobcats. Mutations in this gene result in deficient epidermal cornification (Herman et al., 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Pourdeyhimi%20N%5BAuthor%5D&cauthor=true&cauthor_uid=25673894
https://www.ncbi.nlm.nih.gov/pubmed/?term=Pourdeyhimi%20N%5BAuthor%5D&cauthor=true&cauthor_uid=25673894
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3243309/#R24
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3243309/#R100
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2009) and inhibited skin cell maturation (Jiang et al., 2010). Second, stratifin (SNF) is also 

downregulated in AR-positive bobcats. This gene been demonstrated to affect the expression levels 

of matrix metallopeptidases (MMPs) which are integral to the wound healing process (Dong, 2008; 

Medina et al., 2007; Nuutila et al., 2012). Interestingly, two metallopeptidases MMP1 and MMP10 

were some of the most downregulated genes in AR-positive bobcats. Finally, previously discussed 

transcriptions factors KFL4 and KLF5 are involved in epidermal differentiation when expressed 

in keratinocytes (McConnell et al., 2007; Segre et al., 1999; Tetreault et al., 2016). 

Potential links between AR exposure and susceptibility to mange 

The immune response to mange-causing parasites is highly variable among species 

(Walton, 2010). With limited understanding of the immunological responses to mange in felids, it 

is difficult to link mange-susceptibility mechanistically to AR-exposure in bobcats. One 

hypothesis based on our results is that simultaneous immune dysregulation and disruption of 

epithelial integrity specifically predisposes bobcats to opportunistic infection by an ectoparasite 

pathogen. 

Studies of Sarcoptes scabeii, a close relative of Notoedris cati, indicates that both innate 

and adaptive immune pathways are activated in response to infestation. In some mammals, an 

initial localized inflammatory response of the skin, characterized by infiltrates of mast cells, 

neutrophils and mononuclear cells, is typically followed by a pronounced humoral response, which 

subsides over time in resistant hosts upon secondary challenge (Rahman et al., 2010; Arlian et al., 

1996). We found that AR-positive bobcats exhibit a substantial reduction in the expression of 

genes involved in allergic immune response, as well as from both monocytes and late stage B 

lymphocytes including plasma cells. Reduction of these cell types in AR-positive bobcats suggests 

that the basic immune machinery, specifically proinflammatory monocytes, mast cells, and 
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antibody producing B-cells/plasma cells, necessary to protect against severe mange infestation is 

compromised by ARs. Further, downregulation of proinflammatory cytokines known to operate 

directly on keratinocytes (e.g. IL36) (Foster et al., 2014), in addition to downregulation of several 

genes involved in epithelial formation and maintenance, suggest that ARs directly affect skin 

integrity and immunity.  

We hypothesize that the cumulative effects of these cellular responses to AR exposure 

increases the susceptibility of individuals to opportunistic parasitism of the skin and inhibits wound 

healing, allowing for the mange lesions to expand and leading to death. Future research should 

focus on assessing transcriptional changes in skin following AR exposure, as well as determining 

the impacts on bone marrow integrity and leukocyte production. Further, antibody production 

against a range of pathogens potentially threatening to bobcats (e.g., Feline Leukaemia virus, 

Canine Distemper virus, plague, gastrointestinal parasites) should be tested in AR exposed 

animals, perhaps in captivity, to assess other secondary effects of AR exposure. In general, 

experimental models to understand responses to simultaneous toxicant and pathogen exposure 

need to be developed and tested. 

CONCLUSION 

We investigated the effects of anticoagulant rodenticides using RNA-seq and provide 

convincing evidence that sublethal exposure to ARs has substantial and dramatic gene regulatory 

consequences in a wild carnivore population. We demonstrate that surveying genome wide 

expression from whole blood is an effective method to analyze the effects of toxicants in natural 

populations. Our analyses provided a system wide perspective on the physiological effects of these 

toxicants and enabled us to detect subtle stage-specific changes in circulating leukocyte 

populations, which has critical implications for the biological function of these cell types. With 
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the increasing accessibility and reduced cost of genome sequencing, this method could be 

translated to other systems and identify sensitive diagnostic biomarkers for AR exposure in felids 

and other species. Overall, our results show that the focus on the lethal effects of toxicants 

developed for pest control which cause a failure of blood to clot in target species, may be 

misplaced. Individual fitness and population persistence may be critically impacted without signs 

of the target effects of ARs. This result may apply to other toxicants in the natural environment. 

Given the worldwide application of anticoagulants in a wide variety of settings from residential to 

rural environments and even pristine environments, research on the sublethal effects may be a new, 

previously unacknowledged priority for future research.  
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TABLES AND FIGURES 

 

Table 1.1. Summary of the variance on the first 12 Principal Components. F-statistics and p-

values are reported for four significantly correlated variables (AR-detection, age class, PLV 

detection, and Bartonella spp. seropositivity). 

 PCA1 PCA2 PCA3 PCA4 PCA5 PCA6 

Standard 

deviation 
24.81 17.2 13.7336 11.8603 11.41883 10.6628 

Proportion 

of variance 
0.194 0.932 0.05941 0.04431 0.04107 0.03581 

Cumulative 

proportion 
0.194 0.287 0.34648 0.39079 0.43186 0.46768 

Variable 
AR-

detection 

    age 

F-statistic 11.97     9.214 

p-value 0.001     0.0038 

 PCA7 PCA8 PCA9 PCA10 PCA11 PCA12 

Standard 

deviation 
9.588 9.26402 9.10637 8.65275 8.43 7.82635 

Proportion 

of variance 
0.029 0.02703 0.02612 0.02358 0.0224 0.01929 

Cumulative 

proportion 
0.497 0.52367 0.5498 0.57338 0.596 0.61508 

Variable   PLV1   
Bartonella 

spp. 

F-statistic   12.25   9.063 

p-value   0.001   0.004 
1 PLV = puma lentivirus 
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Table 1.2 Differential expressed genes listed as related to warfarin in the Comparative 

Toxicogenomic Database1 

Gene name Gene symbol Known interactions with warfarin  

Present 

study 

(bobcats) 

Beta fold 

change (β) 

ATP binding cassette 

subfamily B member 1 
ABCB1 

ABCB1 polymorphism affects the 

susceptibility to Warfarin 
↑ 0.52266 

ABCB1 protein affects the 

metabolism of warfarin 

adenosylhomocysteinase AHCY ↓ ↑ 0.18268 

BCL2, apoptosis regulator BCL2 
↓ (Vitamin K2 inhibit the 

interaction and increase expression) 
↑ 0.49731 

chaperonin containing 

TCP1 subunit 5 
CCT5 ↑ ↑ 0.3042 

Eukaryotic Translation 

Initiation Factor 3 Subunit 

I 

EIF3I ↓ ↑ 0.24019 

Ectonucleotide 

Phosphodiesterase 1 
ENPP1 ↑ ↑ 0.835109 

G3BP Stress Granule 

Assembly Factor 1 
G3BP1 ↑ ↑ 0.224469 

Heat Shock Protein 90 

Alpha Family Class B 

Member 1 

HSP90AB1 ↓ ↑ 0.34457 

Heat Shock Protein Family 

A (Hsp70) Member 8 
HSPA8 ↑ ↑ 0.34054 

Keratin 18 KRT18 ↓ ↑ 0.38046 

NmrA like redox sensor 1 NMRAL1 ↑ ↑ 0.38422 

Nucleobindin 1 NUCB1 ↑ ↑ 0.25164 

Proliferation-Associated 

2G4 
PA2G4 ↑ ↑ 0.321884 

Protein Disulfide 

Isomerase Family A 

Member 3 

PDIA3 

↑ 

↑ 0.227104 
↓ 

Ribosomal Protein L27 RPL27 ↑ ↑ 0.31455 

Selenophosphate 

Synthetase 1 
SEPHS1 ↑ ↑ 0.31914 

Tumor Protein P53 TP53 

Affect the expression 

↑ 0.33625 Increase degradation of TP53 

protein 

U2 Small Nuclear RNA 

Auxiliary Factor 2 
U2AF2 ↑ ↑ 0.18791 

1 symbol: ↑ = upregulated,  ↓=downregulated 

 

http://ctdbase.org/basicQuery.go?bqCat=gene&bq=ATP+binding+cassette+subfamily+B+member+1
http://ctdbase.org/basicQuery.go?bqCat=gene&bq=ATP+binding+cassette+subfamily+B+member+1
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Table 1.3. Figure code, functional category, GO term ID, GO term description, and p-value for 

the downregulated genes. 

Code 
Functional 

category 
GO_terms ID Description Pvalue 

1 Vascular process GO:0003018 Vascular process in circulatory system 0.015 

2 Vascular process GO:0090331 Negative regulation of platelet aggregation 0.05 

3 Vascular process GO:0048014 Tie signaling pathway 0.005 

4 Vascular process GO:0045906 Negative regulation of vasoconstriction 0.016 

5 Vascular process GO:0002002 Regulation of angiotensin levels in blood 0.031 

6 Immune GO:0038095 Fc-epsilon receptor signaling pathway 0.016 

7 Immune GO:1903307 Positive regulation of regulated secretory pathway 0.045 

8 Immune GO:0010759 Positive regulation of macrophage chemotaxis 0.05 

9 Immune GO:0002675 Positive regulation of acute inflammatory response 0.041 

10 Immune GO:0030222 Eosinophil differentiation 0.016 

11 Immune GO:0032506 Cytokinetic process 0.018 

12 Immune GO:0090383 Phagosome acidification 0.031 

13 
Immune GO:0002762 Negative regulation of myeloid leukocyte 

differentiation 

0.014 

14 Immune GO:0032675 Regulation of interleukin-6 production 0.015 

15 Immune GO:0042117 Monocyte activation 0.016 

16 Immune GO:0070671 Response to interleukin-12 0.002 

17 Immune GO:0097278 Complement-dependent cytotoxicity 0.005 

18 Epithelium GO:0032835 Glomerulus development 0.038 

19 Epithelium GO:0010839 Negative regulation of keratinocyte proliferation 0.05 

20 Epithelium GO:0060575 Intestinal epithelial cell differentiation 0.008 

21 
Membrane GO:0051088 PMA-inducible membrane protein ectodomain 

proteolysis 

0.016 

22 Membrane GO:0001508 Action potential 0.032 

23 HGF GO:0032905 Transforming growth factor beta1 production 0.031 

24 HGF GO:0060396 Growth hormone receptor signaling pathway 0.008 

25 Reproductive GO:2000243 Positive regulation of reproductive process 0.018 

26 
Biosynthetic 

process 

GO:0046504 
Glycerol ether biosynthetic process 

0.05 

27 
Biosynthetic 

process 

GO:0008611 
Ether lipid biosynthetic process 

0.016 

28 
Biosynthetic 

process 

GO:0045714 Regulation of low-density lipoprotein particle 

receptor biosynthetic process 

0.05 

29 
Biosynthetic 

process 

GO:0036092 Phosphatidylinositol-3-phosphate biosynthetic 

process 

0.05 

30 Transport GO:0015711 Organic anion transport 0.038 

31 Transport GO:0046942 Carboxylic acid transport 0.045 

32 Transport GO:0071985 Multivesicular body sorting pathway 0.002 

33 
Metabolic 

process 

GO:0006195 
Purine nucleotide catabolic process 

0.038 

34 
Metabolic 

process 

GO:0006734 
NADH metabolic process 

0.05 

35 
Metabolic 

process 

GO:0019720 
Mo-molybdopterin cofactor metabolic process 

0.05 

36 
Metabolic 

process 

GO:0006007 
Glucose catabolic process 

0.031 
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Table 1.4. Figure code, functional category, GO term ID, GO term description, and p-value for 

the upregulated genes. 

  

37 
Metabolic 

process 

GO:0009109 
Coenzyme catabolic process 

0.031 

38 Cell process GO:0045598 Regulation of fat cell differentiation 0.029 

39 Cell process GO:0072423 Response to DNA damage checkpoint signaling 0.05 

40 Cell process GO:0040020 Regulation of meiotic nuclear division 0.006 

41 Cell process GO:0006390 Transcription from mitochondrial promoter 0.024 

Code Cluster GO_terms Description Pvalue 

1 Immune GO:0071594 Thymocyte aggregation 0.006 

2 Immune GO:0030217 T cell differentiation 0.003 

3 Immune GO:0050778 Positive regulation of immune response 0.009 

4 Immune GO:0050852 T cell receptor signaling pathway 0.007 

5 RNA GO:0033120 Positive regulation of RNA splicing 0.006 

6 RNA GO:0022613 Ribonucleoprotein complex biogenesis 0.011 

7 RNA GO:0016070 RNA metabolic process 0.0003 

8 RNA GO:0043331 Response to dsRNA 0.009 

9 Gene expression GO:0006412 Translation 0.001 

10 Gene expression GO:0010467 Gene expression 0.000016 
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Table 1.5. List of differentially expressed interleukin cytokines and interleukin cytokine 

receptors from the linear model analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

Gene Symbol Coefficient Q-value Description 

IL13 -0.909 0.0010 Anti-inflammatory; Th2 mediating 

IL36B -0.803 0.0003 Role in local inflammatory response at epithelial barriers 

IL1R2 -0.770 0.0113 Decoy receptor for IL1B (proinflammatory) ligand 

IL36RN -0.642 0.0051 IL36 antagonist 

IL36G -0.627 0.0042 Role in local inflammatory response at epithelial barriers 

IL27 -0.543 0.0108 Promotes Th1 response; expansion of naïve CD4+ T-cells 

IL4I1 -0.421 0.0082 
Induced by IL4 in B-cells; possible role in lysosomal antigen 

processing 

ILF2 0.242 0.0111 Regulation of IL2 expression during T-cell activation 

IL2RG 0.247 0.0004 Signaling component for IL2, -4, -7 and -21 

ILF3 0.257 0.0062 Regulation of IL2 expression during T-cell activation 

IL12RB1 0.408 0.0055 IL12 signal transduction 

IL2RB 0.503 0.0025 IL2 receptor involved in T cell mediated immune response 

IL21R 0.507 0.0018 Promotes proliferation of B and T lymphocytes and NK cells 

IL27RA 0.527 0.0006 
Regulation of Th1 immune response and innate immune 

response 

IL7R 0.602 0.0011 Role in V(D)J recombination of lymphocytes 
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Table 1.6. Transcript Origin Analysis for leukocytes and leukocyte subsets1  

 

CELL TYPE 
P value 

FD > 1.5 FD < 0.67 

PBMC N = 108 N = 149 

CD14 Monocytes 0.998 0.004* 

BDCA4 Dendritic Cells 0.999 0.999 

CD56 NK Cells < 0.0001* 0.018* 

CD4 T cells 0.002 0.556 

CD8 T cells < 0.0001* 0.038* 

CD19 B cells < 0.0001* 0.038* 
 

Monocytes N = 76 N = 105 

CD14+16- 0.992 0.0008* 

CD14+16+ 0.0072* 0.999 
 

B cells- naïve vs memory N = 194 N = 252 

Human_IgM+IgD+CD27+ 0.0254* 0.070 

Human_class switched 0.999 0.655 

Human_IgM+IgD-CD27+ 0.058 < 0.0001* 

Human_IgM+IgD+CD27- 0.006 0.998 
 

B cells- class switched N = 117 N = 151 

naïve 0.427 0.738 

IgM  0.339 0.819 

switched mem. B cells 0.964 1 

plasma cells 0.889 0.0006* 

1  FD = Fold Change; PBMC = peripheral blood  

mononuclear cell,  N = Number of genes, * = significant 
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Table 1.7. Summary of physiological pathways and processes affected, analytical support, 

relevant genes of interest and the implications for fitness in AR exposed bobcats. 

Pathway/ 

process 

affected 

Pattern 

Methods 
Candidate 

Genes 

Implication for 

fitness 
Linear Model TOA/TRA WGCNA 

Innate 

Immunity 
↓ ↓ Inflammation 

↓ total and 

naïve 

monocytes 

↓ 

Inflammation 

FCER1A, 

KLF5, KLF 4, 

GATA2, 

CPA3, HDC, 

MS4A2 

Decreased defense 

against extracellular 

pathogens and 

allergens 

Adaptive 

Immunity 
↑↓ 

↑ T cell 

activation 

↑ T & B 

cell 

activation; ↓ 

mature/ 

plasma B 

cells 

↑ T cell 

signaling 

CD3D, 

CD3G, CD3E 

Immune activation 

leading to 

exhaustion; reduced 

specific antibody 

Xenobiotic 

Metabolism 

and ER 

stress 

↑ 

↑ drug 

metabolism 

genes 

 

 

- 

↑ ER stress 

HYOU1, 

LAMP3, 

HSP90B1, 

XBP1, PDIA6 

Increased cell death 

Epithelial 

Integrity 

and wound 

healing 

↓ 
↓ keratinocyte 

proliferation 

 

 

- 

↓ wound 

healing 

SFN, IL36B, 

TGM1, 

MMP1, 

MMP10 

Reduced epithelial 

integrity; Increased 

vulnerability to 

ectoparasites 

Hemostasis 

and vitamin 

K 

↓ 
↓ platelet 

aggregation 

 

- 
↓ coagulation 

SERPINE2, 

TBXAS1 

Coagulopathy; 

hemorrhaging 
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Figure 1.1. Map of the study area depicting sample locations for all 52 bobcats, whether or not 

the animal tested positive (+) or not positive (⊙) for ARs, and the general land use categories 

(urban, altered open, and natural). 
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Figure 1.2. Workflow summary of genome wide analysis of anticoagulant rodenticide impacts 

on gene expression in bobcats. 
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Figure 1.3. Linear regression of biological and technical factors on the principal components (PC) of the 

normalized read counts after regressing out technical factors significant on the first PC (sequencing 

platform, RIN, library preparation 5). 

 



42 
 

Figure 1.4. False discovery rate distribution after 1000 permutations compared to the p-value 

distribution of the linear modeling analyses. 
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Figure 1.5. (A) Volcano plot depicting the -log10 of the Q value against the β fold change for all 

12,332 genes. Significant gene (Q <0.05) are highlighted in tan. Labeled genes are color coded 

by associated physiological process (depicted in B-C). Mean normalized counts of upregulated 

genes (B) and downregulated genes (C) shown for AR-negative (light color) and AR-positive 

(dark color) bobcats. 
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Figure 1.6. Treemap of the GO Biological Processes for the down (A) and up (B) regulated 

genes (Q <0.05). Box size correlates to the –log10 p-value of the GO-term enrichment. Boxes 

with the same color represent higher level categories of processes. Main Abbreviations: (+) : 

positive regulation, (-) : negative regulation, macroph: macrophage. See Table S4, S5 for GO 

term details. 
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Figure 1.7. INCA index for each k-value after resampling. The number of clusters directly 

preceding the greatest negative slope (11) is assigned as the most probable number of clusters in 

the data.   
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Figure 1.8. (A) Number of significant genes (from linear model) assigned to one of six 

functional categories (from WGCNA) as a proportion of total module size. (B) Correlation 

between AR exposure and WGCNA module eigengenes. (C) Heat maps displaying the 

expression profiles and dendrograms of AR-negative (light color) and AR-positive (dark color) 

bobcats for the “T cell signaling” and “inflammatory response” modules. Columns are individual 

bobcats and rows are individual genes.  
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CHAPTER 2 

 

Connectivity of mule deer (Odocoileus hemionus) populations in southern California: A genetic 

survey of a mobile ungulate in a highly fragmented landscape 

 

ABSTRACT 

Urbanization is a substantial force shaping the genetic and demographic structure of 

natural populations. As urban areas expand, so too do transportation corridors that facilitate 

human movement, such as highways. As such, genetic continuity in wild species is increasingly 

compromised and should be assessed for a multitude of highly mobile species that exhibit 

varying responses to human activity. While carnivores are well studied in general, common 

species such as mule deer are often overlooked. However, as the only wide-ranging ungulate 

species in Southern California, genetic and demographic impacts of urban development on mule 

deer is an important area of research. Here, we present the first assessment of genetic 

connectivity for mule deer focused explicitly at understanding mule deer response to habitat 

fragmentation in an increasingly urbanized landscape. We use a combination of genetic analyses 

and resource selection modeling to show that deer movement is limited by major highways and 

the associated urban development. Therefore, deer should be an important consideration during 

wildlife connectivity planning in urban landscapes. 

INTRODUCTION 

Habitat fragmentation is a primary threat to biodiversity worldwide (Brook et al 2008, Mora 

et al. 2011) that can have demographic and genetic consequences for natural populations. 

Populations may decline due to resource limitation alone (Herkert 1994, Newman et al. 2013). 
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However, genetic factors that reduce diversity such as impeded movement between habitat 

patches (Sato et al. 2014, Barr et al. 2015) and inbreeding (Bouzat et al. 1998, Johnson et al. 

2010), can limit the adaptive potential for environmental change and have direct fitness effects 

through inbreeding depression (Eldrige et al. 1999, Reviewed in Keller and Waller 2002). Major 

roadways, in particular, can be a significant impediment to gene flow for a variety of species 

(Riley et al. 2004, Keller et al. 2003, Holderegger and Di Giulio 2010, Munshi-South and 

Karchenko 2010, Frantz et al. 2012), as well an important source of mortality for dispersing 

individuals. Cumulatively, such impacts can reduce population viability over time. 

The genetic impacts of fragmentation on large mammalian carnivores have been of 

particular conservation focus (Riley et al., 2006; Benson et al., 2016; McClure et al. 2017) as 

these species are typified by life history traits that intersect poorly with human development (i.e. 

large home ranges, territorial, low population densities, high maternal investment for few 

offspring, human conflict, etc.). Comparatively fewer studies exist which examine the effects of 

habitat fragmentation on the genetics of large ungulates, especially in the context of urban 

development. Large ungulates possess intrinsically different life history traits than carnivores and 

so their genetic response to habitat fragmentation is potentially also different. Although multiple 

studies suggest that deer and other ungulates are highly sensitive to fragmentation and 

anthropogenic barriers (Wang and Schreiber 2001; Coulon 2004; Epp et al. 2005; Frantz et al. 

2012; Ito et al., 2013); other studies show that deer can adapt to urban settings (Harveson et al. 

2007; Blanchong et al. 2013) and that their social structure, specifically male biased dispersal 

and non-random mating across matrilineal groups, may buffer them from genetic impacts of 

fragmentation observed in other wide ranging species (Blanchong et al. 2013). Understanding 

factors influencing the genetic responses of large, highly mobile species is essential for the 
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maintenance of genetic variability in rapidly expanding urban landscapes, especially where large 

wild spaces are intersected by major highways.  

Southern California serves as a unique model for assessing the effects of expanding urban 

development and highway infrastructure on wild populations. California is among the most 

heavily human populated of 25 biodiversity hot spot across the globe (Cincotta et al. 2000). The 

juxtaposition of dense human populations and large undeveloped natural areas is common across 

the state, particularly in the Los Angeles Basin. Vast networks of major highways are a defining 

characteristic of southern California landscapes, and studies demonstrate the genetic impacts of 

fragmentation due to roads on medium and large carnivores (Riley et al. 2006, Benson et al 

2016; Ernest et al., 2014). For example, mountain lion (Puma concolor) populations in both the 

Santa Monica Mountains (Los Angeles and Ventura Counties) and the Santa Ana Mountains 

(Orange, San Bernadino and Riverside Counties) exhibited extremely low genetic diversity and 

high levels of inbreeding, attributable to the isolation imposed by major highways (Riley et al. 

2014, Ernest et al. 2014). The long-term viability for both these mountain lion populations was 

predicted to be highly contingent on maintaining immigration from surrounding populations 

(Ernest et al. 2014, Benson et al. 2016). Similarly, definitive population structure was observed 

among both bobcats (Lynx rufus) and coyotes (Canis latrans) sampled across two major 

highways dividing the Santa Monica Mountains, which developed despite movement across 

highways by radio-collared individuals (Riley et al. 2006). For territorial species, highways may 

impose social barriers to reproduction for dispersing individuals because territory boundaries 

may coincide with freeways, thus limiting gene flow despite physical movement across them. 

High genetic differentiation was also observed between bobcats sampled in the Santa Ana 

Mountains and the San Joaquin Hills (Lee et. al. 2012). 



60 
 

Although carnivores have been studied extensively in Southern California (Riley et al. 

2006; Ernest et al. 2014; Serieys et al. 2015), relatively little is known about the effects of habitat 

fragmentation on the movement, demography and population genetic structure of the only 

common native ungulate, the mule deer (Odocoileus hemionus). Camera trapping studies suggest 

that deer movement may be more restricted by highways than other species, as highway 

underpasses were used less frequently by deer than bobcats, coyotes, and raccoons (Ng et al. 

2004; Alonso et al. 2014; Brown et al. unpublished data). Deer appear to have highly specific 

requirements, such as adequate height and suitable adjacent habitat, for utilizing underpasses (Ng 

et al. 2004) and thus may have fewer opportunities to cross highways. Therefore, deer may be 

more highly impacted by the isolating effects of highways, especially for populations that 

migrate seasonally (Nicholson et al. 1997).  In contrast, deer are less restricted by territoriality 

than carnivores, and so may have more opportunities for reproduction, and hence gene flow, if 

they successfully traverse roadway barriers. Given the role large herbivores play in structuring 

ecosystems (Rooney et al. 2003, Hobbs 1993) and their importance as prey for large carnivores 

such as mountain lions (Benson et al. 2016), understanding factors that influence local 

population dynamics is important in conservation planning.  

 In this study, we conducted the first assessment of mule deer genetic connectivity in two 

major mountain regions in southern California. We considered a large geographic region with 

multiple areas of appropriate deer habitat bordering highways potentially enabling genetic 

continuity if deer can cross freeways. We predicted that if highways are an important barrier to 

gene flow, then population structure would align with highways and associated urban 

development that prevented or inhibited deer from successfully crossing. Finally, we expected 

lower pairwise relatedness between individuals in different subregions (8 in total in LA and 
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Orange County) than between individuals in the same subregion and differentiation habitat 

resistance when controlling for distance.  

MATERIALS AND METHODS 

STUDY AREA 

The study area consisted of two main regions, LA (including areas in both Los Angeles 

and Ventura Counties) and OC (including areas in San Bernadino, Riverside and Orange 

Counties), that were further divided into eight subregions based on hills and mountains and 

major highways separating them (Figure 1a). Sampling locations (subregions) in the LA Region 

were Santa Monica Mountains (SMM), Santa Susana Mountains and Simi Hills (SIMI), 

Hollywood Hills including Griffith Park (HH) which are the eastern end of the Santa Monica 

Mountains Ecoregion, and Verdugo Mountains (VM) further east in Los Angeles County (Figure 

1b). Major highways in this area were: I-405 separating HH from SMM; and CA-101 separating 

SMM and SIMI and running through the eastern part of HH. The Verdugo Mountains are 

separated from HH by I-5 and CA-134 and a highly developed urban matrix, and from the 

adjacent San Gabriel Mountains by I-210. The OC Region included the Santa Ana Mountains 

(SAM), Chino Hills and the Puente-Chino Hills Corridor (CH), Prado Basin (Prado), and San 

Joaquin Hills (SJH) (Figure 1c). Major highways between OC subregions were CA-91 separating 

SAM from CH and PB; CA-7 running between CH and PB; and I-5, separating SAM from SJH. 

In addition, there is a large urban matrix separating SAM from SJH, which was bordered to the 

other side by the Pacific Ocean. VM and HH were the closest parts of the LA Region to the OC 

Region, but were separated from CH by continuous urban matrix interspersed with small natural 

fragments and multiple highways, including I-10 and CA-60. The size and landscape context 
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varied across each of these subregions, as did the size, traffic volume and degree of associated 

urban development for each of the major highways (Figure 1; Table S3).  

SAMPLE COLLECTION 

Scat and opportunistic tissue samples from animals found dead were collected from 

November 2014 –June 2015, by researchers, project partners, and volunteers.  Collectors 

followed a protocol to prioritize collection from deer pellet piles that appeared fresh and 

consolidated, and hence most likely from a single individual. Site information, GPS coordinates, 

date, time, and initials of the collector were recorded for each sample. Samples were collected 

and placed in paper envelopes or suspended in 95% ethanol and transported to UCLA for 

processing. Scat samples were assigned a quality score based on appearance and received further 

processing, or were archived and stored in the lab. A total of 648 samples were collected, rated 

on a quality scale of 1-5 (Supplementary Info), stored, and catalogued. DNA extractions were 

performed on 538 of these samples. Those omitted did not meet the minimum quality 

requirements for DNA extraction (≥ 3) based on suspected age of the samples or degradation due 

to prolonged environmental exposure. Here and throughout, the term ‘sample’ refers to the scat 

or tissue from which DNA was extracted whereas genotypes refer to the samples for which PCR 

amplifications were successful across a minimum of 10/15 loci. Finally, we refer to the 

genotypes included in the final analyses as individuals, because at this stage each genotype 

corresponds to an individual deer as genotypes of replicate samples were removed from these 

analyses. 

DNA EXTRACTION AND PROCESSING 

    DNA was extracted and PCR amplified as described by Mitelberg (2010). Briefly, 10-12 scat 
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pellets from a sample were suspended in 1x PBS solution (pH 7.4) and vortexed vigorously to 

suspend deer epithelial cells from the surface of the pellets. The PBS suspension was then 

centrifuged at high speed and excess PBS was pipetted off, for a final volume of ~1 mL. DNA 

was extracted from this suspension using the DNeasy Blood and Tissue kit (Qiagen) according to 

the manufacturer’s protocol. Two elutions were performed on every sample. All sixteen markers 

were amplified in a single 5 uL reaction following the protocol designed by Mitelberg (2010). 

Specifically, 1.5 ul DNA were added to 2.5 ul Qiagen Hotstart taq mastermix (Qiagen Multiplex 

Kits, Qiagen, USA), 0.365 ul primer mix, 0.635 ul H20. Thermocycling conditions were as 

follows: Initial denaturation at 95 C for 15 minutes, followed by 37 cycles of 72 C for 90s, 59 C 

for 60s and a final extension at 68 C for 30 minutes. PCR products were run on an ABI prism 

spectral analyzer and visualized in GeneMapper v 2.7. 

To ensure accurate genotyping, all samples were genotyped from a minimum of three 

separate PCR reactions. Heterozygote calls per locus were made only when both alleles were 

observed at least twice and at least once as a single genotype across the three reactions. 

Homozygote calls required that the single allele be observed three times across the three 

reactions. If spurious alleles were observed in any of the reactions, a fourth PCR reaction was 

run. In some instances, additional reactions were run using the second DNA elution or at single 

markers to fill in missing loci. Only samples that were typed at greater than sixty-five percent 

(10/15) of the loci were kept for further analysis (n =328). All markers had greater than seventy 

five percent genotyping success across all 328 samples. 

ANALYSIS 

Mapping, recaptures, and null alleles  
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Collection locations of sufficiently genotyped samples were mapped from GPS 

coordinates recorded in the field and assigned a location attribute according to the subregion in 

which they were found. Genotypes originating from the same individual but different samples 

were identified using Cervus v3.0.7. Genotypes that matched at a minimum of eight loci with no 

mismatches were assumed to be from the same individual deer. If samples with matching 

genotypes were collected on different days or were separated by more than 2 km, we considered 

them recapture events of the individual. Otherwise, samples yielding genotypes from the same 

individual were considered redundant and one of the genotypes was removed from the dataset. 

Because samples in these cases were typically close spatially, we selected the most complete 

genotype. If the number of loci was equal, we selected the sample that was collected first. In the 

case of recaptures, the genotype corresponding to the first sample collected was retained for 

further analyses. Distances between each recapture were calculated in ArcMAP v10.3.1 and 

tabulated along with the time (in days) between sampling. Microsatellite data were checked 

using MICROCHECKER, with 10000 randomizations implemented for each run. We ran the 

program iteratively with various population groupings to assess the presence of null alleles.    

Genetic Diversity, Effective Population Size, and Population Structure  

We calculated summary statistics for genetic diversity for each subregion using GenAlEx v. 

6.502 (Peakall and Smouse 2012). We calculated global and pairwise genetic distances, 

measured as Jost’s D (Dest), between subregions using the MMOD package v 1.3.2 in R.  Jost’s 

D is suggested to perform better with highly polymorphic loci than traditional measures of 

genetic distance such as Fst and Gst. The latter two measures can give paradoxical results under 

conditions of strong differentiation or high diversity, as they strictly employ measures of 

heterozygosity and do not account for the identity and distribution of individual alleles (Jost 
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2008). We then used hclust from the stats package in R to generate a dendrogram from the 

pairwise genetic distance matrix. We estimated significance for each pairwise subregion 

comparison separately from 10,000 permutations of genotype and subregion. We estimated 

effective population size (Ne) for each subregion using NeEstimator v 2.1 (Do et al. 2014) with 

the linkage disequilibrium method. We used a critical value for the minimum allele frequency of 

0.02 and omitted 2 loci with greater than 15% missing data (H and L) to get a numeric estimate 

of Ne for each subregion.  

We used two complementary approaches to assess the distribution of genetic diversity in 

mule deer with respect to major highways. First, population subdivision across the study area 

was assessed using a Bayesian clustering algorithm implemented in the program STRUCTURE 

v. 2.3.4 (Pritchard et al. 2003). We ran a total of 15 iterations per K value, where K represents 

the number of distinct genetic clusters, and assessed the data across a range of K = 1-10. 

Proportional assignments were made for each individual to each of K clusters. We used an 

admixture model, and ran each simulation for 106 iterations of the MCMC and 2 x 105 burn in. 

We ran STRUCTURE results through Structure Harvester (Dent et al. 2005) to determine 

optimal values for K based on the Evano method (Evano et al. 2005).  

Second, we applied discriminant function analysis of principal components (DAPC) using 

the poppr package v2.7.1 in R. This method applies a k-means clustering algorithm to multilocus 

genetic data that has been transformed using principal components analysis. The clustering is 

followed by a multivariate discriminant function analysis, which minimizes within group 

variance and maximizes between group variance in the PCA transformed data. This method is 

less restricted by Structure assumptions of Hardy-Weinberg equilibrium and linkage 

disequilibrium and is useful when weak structure is likely (Jombart et a. 2010). We retained the 
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first 45 principal components, which explained approximately 90% of the data. For both 

STRUCTURE and DAPC, we calculated the evenness of genetic clusters in each subregion using 

the Shannon diversity index as a means to rank relative admixture, and conversely genetic 

isolation, across subregions (Shannon and Weaver, 1949).  

Individual Pairwise Relatedness 

We used inverse measures of relatedness between individuals (1/r) to test the hypothesis that 

highways form a barrier to gene flow in mule deer. We first calculated individual pairwise 

genetic distance in GenAlEx v. 6.502, which is calculated as the inverse of the relatedness 

between two samples based on genetic congruity. For clarity, we refer throughout to this measure 

of genetic distance as relatedness, so as not to be confused with subregion level genetic distance 

as measured by Dest. We then compared mean pairwise relatedness for within- versus between-

subregion comparisons. We expected lower relatedness for between-subregion comparisons. 

Significance was determined by bootstrapping a null distribution of differences in mean 

individual pairwise relatedness. We subtracted the means of 500 randomly sampled individual 

pairwise relatedness values from the mean of 500 different randomly sampled pairwise 

relatedness values that were drawn from the entire dataset (both with-in and between subregions 

combined) with replacement. We constrained the data to include only pairwise comparisons that 

fell within the overlapping range of Euclidean distances for pairs sampled within versus between 

subregions.  

Second, we ran generalized linear models to identify significant predictors of relatedness 

between individual deer. Our predictors included Euclidean distance, a habitat based path 

distance (explained in Section 2.4.4), and a measure of the effect of highways on deer movement 

(also explained in Section 2.4.4). For both approaches, we limited our data to include only 
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pairwise comparisons between individuals sampled in geographically adjacent subregions.  

Least Cost Path Analysis 

We developed a cost surface using a suite of candidate landscape covariates and a 

competing model framework, Akaike Information Criterion (AIC) (Burnham and Anderson 

2002).  Candidate explanatory variables of mule deer occurrence included topographic features, 

current land-uses, and vegetative characteristics (Table S1).  Topographic variables included a 

terrain ruggedness measure termed unevenness, a terrain view-shed index known as openness 

(Yokoyama et al. 2002), steepness of slope, general topographic curvature, and site exposure 

index.  Unevenness was calculated using ArcGIS 10.3.1’s Spatial Analyst extension (Esri 2014) 

focal cell statistics tool to measure the variation, using standard deviation, of general curvature 

for a 150 m radius. General curvature was also calculated using ArcGIS 10.3.1’s Spatial Analyst 

extension (Esri 2014) using a 30-meter resolution digital elevation model (DEM) (U.S. 

Geological Survey 2009) projected into the Universal Transverse Mercator, North American 

Datum of 1983 coordinate system.  This DEM was also used to calculate slope in degrees and 

site exposure index, a measure of the effects of solar radiation and aspect, using the Surface 

Gradient and Geomorphometric Modeling toolbox (Evans et al. 2014) in ArcGIS (Esri 2014).  

Land-use and vegetation characteristics were represented using a road density metric and the 

LANDFIRE program’s datasets for existing vegetation and height (LANDFIRE 2011; Rollins 

2009).  USGS transportation road segment data for California were obtained from the National 

Map (https://viewer.nationalmap.gov/ Accessed June 15, 2017) and line density of all classes of 

roads were calculated using an analysis window of 120 m.   

Existing vegetation types (LF EVT) was represented using the attribute values of red, 

green, and blue, which are a color map with values scaled between 0-1, that represent particular 

https://viewer.nationalmap.gov/
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classes of vegetation types using the Society of American Foresters classification system.  High 

values of red (LF EVT red) represent barren, developed, and disturbed areas of introduced 

herbaceous and grassland vegetation types.  High values of green (LF EVT green) are associated 

with native grasslands, woodlands, forests, and riparian vegetation types.  High values of blue 

(LF EVT blue) are associated with developed areas such as agricultural fields and irrigated 

nonnative vegetation. LANDFIRE’s existing vegetation height classes were used to create a 

continuous measure of vegetation height by taking the median value of a class, resulting in a 

range of vegetation height between 0-37.5 m for the study area.    

We competed six models using combinations of the candidate variables and selected the 

best model with the lowest AIC value (Table S2). This model was used to calculate the inverse 

of the dependent variable (the probability of mule deer presence), to describe the cost of 

movement and habitat connectivity for mule deer across the study area. A high probability of 

modeled mule deer use of the landscape, assumed to represent high quality habitat, is therefore 

assumed to have low cost of movement. In contrast, modeled low quality habitat is estimated to 

have a high cost of movement. Pairwise least cost paths, both the geographic distance and the 

accumulated cost of the least cost path, were calculated using a python tool 

(https://www.arcgis.com/home/item.html?id=bbc7ae14015747318e06dda0f6c5bddf Accessed 

July 12, 2017) for use in ArcGIS 10.1 (Esri 2012). We calculated the least cost path for 

individual pairwise comparisons that were analyzed for genetic distances, resulting in 33,930 

path calculations. We measured the Euclidean distance (m), the distance of the least cost path 

(m), and the accumulated cost of the path (Etherington and Penelope Holland 2013).   

To explore whether or not high traffic volume, multilane freeway systems are a feature on the 

landscape that are costly to mule deer movement, we created a second cost surface. Using 2014 

https://www.arcgis.com/home/item.html?id=bbc7ae14015747318e06dda0f6c5bddf


69 
 

Caltrans data on annual traffic volumes (http://www.dot.ca.gov/hq/tsip/gis/datalibrary/ Accessed 

August 10, 2017), we scaled the observed 0-377,000 Ahead Annual Average Daily Traffic 

(ADDT) volume between 0-1, by dividing by the maximum value. Using a spatial join to 

attribute the ADDT point values to the Caltrans freeway line segments, we then created a cost 

raster based on the rescaled ADDT, and added it to the habitat based cost surface. This resulted 

in a second cost surface, ranging in cost values 0-2, that results in the possibility of different least 

cost paths and higher accumulated cost paths for pairwise comparisons that are separated 

spatially by one or more freeway systems.   

We used the difference between the freeway cost surface and the habitat cost surface to 

define a “freeway effect” which we subsequently used in a multivariate regression analysis 

(explained in Section 2.4.3) 

RESULTS 

Mapping, recaptures, and null alleles  

Cervus identified a total of 265 unique genotypes representing individual deer. For 40 

individual deer, up to five samples were collected. For most of these individuals (32 of 40), the 

additional samples were considered redundant because they were collected in close spatial 

proximity, on the same day, or both. This resulted in removal of 54 genotypes that were 

redundant. For the other 8 individuals, there was at least one additional sample designated as a 

recapture event, resulting in the removal of 9 genotypes. Of these recaptures, 2 were samples of 

the same individual collected on opposite sides of a highway: across CA-71 (between CH and 

PB) and across I-405 (between HH and SMM). Another recapture from CH was a sample found 

in a CA-71 underpass, thereby providing at least two instances of movement between Prado and 

CH. Direct evidence of movement between Prado and CH through genetic analysis and camera-

http://www.dot.ca.gov/hq/tsip/gis/datalibrary/
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trap data (Alonso et al. 2014), as well as high relatedness to CH deer (7/9 deer sampled in Prado 

showed first order relationships with deer sampled in CH) prompted us to include Prado samples 

with CH in subsequent analysis as a single subregion. The average Euclidean distance between 

samples for the 8 recaptured individuals was 1.84 km (s.d. = 0.96 km; max = 3.02 km), while the 

average Euclidean distance between 54 redundant genotypes for 32 individuals was 0.094 km 

(s.d.= 0.16 km; max = 0.75 km). 

Null allele analysis showed locus B to have a very high null allele frequency, as observed 

in previous studies of mule deer genetics in southern California (Pease et al. 2008; Mitelberg 

2010), and was thus removed from the dataset for subsequent analyses. Several other loci 

exhibited evidence of null alleles depending on how subregions were grouped (data not shown), 

likely indicating genetic structure and not necessarily the presence of true null alleles. We 

therefore proceeded in the analysis with the fourteen remaining loci. 

Genetic diversity, effective population size, and population structure  

Observed heterozygosity averaged across all loci for each subregion ranged from 

0.49±SE: 0.046 – 0.69 ± SE:0.072 (Table 1). The lowest observed heterozygosity was in SMM 

followed by SIMI. All loci were polymorphic in all populations except for SJH for which locus L 

was monomorphic. The fixation index was lowest in SAM (0.012, SE 0.032) with the exceptions 

of SJH and VM, where observed heterozygosity exceeded expected heterozygosity and hence the 

fixation indices in these subregions were negative. The fixation index was highest in SIMI 

(0.135, SE 0.047). The largest effective population sizes (Ne) were observed in SAM (Ne = 

548.2; 95% CI = 89.1-inf) followed by VM (Ne = 84; 95% CI = 6.6-inf. The smallest effective 

population size was observed in SJH (Ne = 16.8; 95% CI = 10.5-30.8) followed by HH (21.4; 

95% CI 14.1-36) (Table 1). 
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Global Dest  was 0.072 (95 % CI = 0.057 - 0.092). Measures of pairwise Dest were 

significant at p ≤ 0.005 after permutation between all subregions, and ranged from 0.017, 

between SMM and SIMI, to 0.138, between SJH and SMM (Table 2).  The highest average 

pairwise Dest among subregions, 0.11, was observed in SJH, followed by HH; the lowest average 

Dest of 0.05 was observed in SAM. Hierarchical clustering of subregion pairwise Dest showed 

VM clustering as sister group to CH/SAM, with all three subregions clustering as sister to the 

LA Region, and SJH forming an outgroup. Within the LA Region, SIMI and SAM cluster 

together with HH as an outgroup (Figure 2).  

STRUCTURE analysis on all unique individuals (n = 265) indicated that K =5 was the 

optimal number of genetic clusters (Figure 2) while DAPC analysis suggested that K = 6 was 

optimal. Admixture was present in all subregions in both analyses; however, average 

proportional assignments to each cluster varied by subregion. The highest posterior assignments 

to a single cluster ranged from 32-65 percent and from 27-64 percent, in STRUCTURE and 

DAPC, respectively (Table 3). In both analyses, the highest assignment to a single cluster 

occurred in SJH. Evenness of cluster assignments also varied by subregion and by analysis. In 

both analyses, SJH showed the lowest evenness.  

Individual pairwise relatedness within and between subregions 

The mean inverse of individual pairwise relatedness between adjacent subregions was 

16.54 (95% CI = 16.18-16.83) and within subregions was 15.93 (95% CI = 15.59-16.22), for a 

small yet significant difference of 0.608 (p = 0.007) across comparable Euclidean distances, 

suggesting that highway barriers do contribute to increased differentiation. The best fit model for 

predicting pairwise relatedness (ΔAIC = 202) relative to the null model included the distance of 

the least cost path based on habitat alone and a binary variable indicating whether the samples 
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were collected across a major roadway or highway (Table 4). Additionally, when controlling for 

Euclidean distance, pairwise genetic distance was positively and significantly correlated with the 

accumulated cost of traversing the habitat along the least cost path (F = 5; p = 0.045; Figure 3). 

Least Cost Path Analysis 

 Several topographic features, vegetative, and anthropogenic factors were found to be 

associated with the likelihood mule deer are found on the landscape and were used to create a 

resistance surface (Figure 4).  Terrain unevenness and openness both had strong quadratic 

relationships suggesting a preference for mid-range values within the modeled region.  

LANDFIRE’s green attribute associated with several native vegetation types had a positive 

relationship, while steep slopes, high road densities, and non-native vegetation (LANDFIRES’s 

red and blue values) resulted in a negative response (Figure 5A).  Some responses were modified 

by an interaction term (Figure 5B).  The response became negative to site exposure index (SEI) 

on steeper slopes (high values of SEI are southern aspects receiving more solar input), and to 

LANDFIRE’s red values in areas of higher road densities.  Though the response to 

LANDFIRE’s green metric was positive, the response was even stronger at higher road densities. 

DISCUSSION 

Roads and urban development can pose a major dispersal barrier for a variety of species, 

particularly large and highly mobile species, including ungulates. Desert bighorn sheep in 

California, for example, exhibited drastic reductions in genetic diversity and geneflow over a 

short time period, due largely to the impact of roads (Epps et al., 2005). While deer are 

comparatively well-adapted to human development, deer are nonetheless shown to avoid human 

development (Nicholson et al., 1997), suggesting that urban development may impose barriers to 
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movement. The aim of this study was to determine if major highways and the surrounding urban 

matrix act as significant dispersal barriers for mule deer in southern California.  

Our resource selection models showed a strong negative response of mule deer presence 

with road density and developed areas. Accordingly, we found some evidence of genetic 

structure among subregions as well as a subtle but apparent effect of highways on individual 

pairwise genetic distance. Interestingly, however, our resource selection models also show an 

interaction between road density and landcover, such that the positive response to high quality 

vegetation becomes stronger with higher road density, suggesting that deer respond differently to 

roads depending on abutting habitat. Specifically, we found higher genetic distances within and 

between subregions that had high associated levels of habitat, mostly due to urban development, 

when controlling for distance. Therefore, not all highways and landscape configurations are 

equal in the context of wildlife movement. Our results highlight the need to account for both 

behavioral differences in focal species and the specific features of natural habitat, and highway 

and urban infrastructure barriers when planning for habitat connectivity in fragmented 

landscapes.  

Broadly, mule deer in California partition into five distinct genetic clusters based 

primarily on ecological factors related to climate and elevation (Pease et al., 2010). This same 

study suggested that deer within our study area belong to a single genetic cluster, yet our results 

reveal more subtle patterns of genetic structure at both regional and local scales. Regionally, 

mule deer in our study area appear to cluster into three main groups: 1) all the LA Region (SIMI, 

SMM, and HH); 2) CH, SAM, and VM; and 3) only SJH (Figure 2). However, in both k-means 

clustering approaches, no single cluster was exclusive to any single region or subregion; and all 

clusters were represented in all or nearly all subregions (Table 3). The latter evidence supports 
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high levels of historic connectivity between subregions likely facilitated by the geography of the 

area (i.e. movement along mountainous corridors) where the resulting distribution of genetic 

diversity was driven largely by isolation by distance.  This contrasts with our measures of genetic 

differentiation between subregions, all of which were statistically significant and substantially 

higher than has been observed in other ungulate populations, including white tailed deer 

(Odocoileus virginianus), across far greater distances exceeding 1000 km (Cullingham et al., 

2011; Mager et al., 2013). 

At more local scales, several interesting patterns emerged. First, although VM is 

geographically more proximate to the LA Region and to HH specifically (Figure 1), both 

pairwise Dest and STRUCTURE results suggested that deer sampled in VM were more 

genetically similar to OC Region deer (Figure 2; Table 2), specifically CH and SAM. Further, 

although represented by only 8 individuals, VM had the second highest estimated Ne and the 

highest observed heterozygosity, suggesting connectivity with a larger area of suitable deer 

habitat. In this case the connectivity was likely with the San Gabriel Mountains which are 

substantially larger than SAM or SMM and for which there is a large underpass across CA-210 

that is well buffered by natural vegetation and limited human development. In contrast, the 

matrix between VM and HH is highly developed and requires traversing a wide intersection of 

two major highways (CA-134 and I-5). Future work in VM that includes sampling deer in the 

San Gabriel Mountains and more data on the historical connection between them might show the 

connectivity requirements for a relatively small mountain range to support such a high Ne.  

Our results also highlight an important management unit for mule deer in Southern 

California. Deer from SJH showed the highest genetic differentiation from other subregions, as 

well as the lowest effective population size. Specifically, average pairwise Dest between SJH and 
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all other subregions was over 60 percent greater than the next highest average Dest (observed in 

HH), and is comparable to values observed for populations of white-tailed deer separated by the 

Rocky Mountains in Canada (Cullingham et al. 2011). Further, in both STRUCTURE and DAPC 

analyses, SJH had the highest incidence of assignment to a single cluster and hence the lowest 

evenness in genetic diversity of all subregions considered (Table 3).  A vast urban matrix and 

major highway (I-5) separate SJH and SAM subregions, and similar genetic results for this area 

have been found in bobcats (Lee et al. 2012, Ruell et al. 2012). Mountain lions had existed in the 

area historically, but once isolated by the freeways, soon suffered extinction, which is caution to 

the effects of small population sizes for large species in the SJH.  

The pattern for SJH in the OC Region is paralleled to a lesser magnitude by HH in the 

LA Region, with HH having the second highest average Dest and the third lowest evenness in 

both STRUCTURE and DAPC analyses (Table 3). HH is separated from SMM by I-405, one of 

the busiest highways in the country that spans 12 lanes between these subregions. Ongoing 

camera monitoring of four potential crossings along this highway segment indeed demonstrated 

that deer are less likely to utilize crossings than other species, although some movement of deer 

under I-405 was observed at a single underpass (NPS- personal communication).  

The lowest divergence was observed between CH and SAM and SMM and SIMI in the 

OC and LA Regions, respectively, reflecting either higher rates of gene flow between the 

subregions or slower rates of genetic drift due to population size.  Although CH and SAM 

showed low levels of genetic distance (Dest) across CA-91, the presence of highways and 

intervening development may later show genetic impacts. The expansion of CA-91 is relatively 

recent (27 % increase in ADDT between 1993 to 2014; Table S3), but monitoring of several 

underpasses along CA-91 by remotely-triggered cameras showed only limited use by deer of a 
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single underpass connecting CH to SAM from (Boydston- unpublished data). Low 

differentiation between SIMI and SMM may also result from higher effective population sizes as 

well as the presence of at least one potential movement corridor located at Liberty Canyon in 

Calabasas, CA and low relative traffic volumes along US-101. The Liberty Canyon underpass 

has dimensions adequate for deer to use and is characterized by high levels of adjacent natural 

habitat, as has been shown to be preferred by deer (Ng et al. 2004).  It is also the proposed 

location for a wildlife crossing as part of the CalTrans initiative to improve habitat connectivity 

for mountain lions and other wildlife in this study area. Similarly, CA-71 does not appear to 

inhibit deer movements, given that several recaptured individuals were identified directly within 

underpasses and on either side of this highway. This highway has several large underpasses, 

some built specifically as wildlife crossings (Alonso et al., 2014), thus highlighting the benefits 

of planning for wildlife connectivity during urban infrastructure expansion.  

Collectively, our results suggest that I-405 and I-5 and the associated urban matrix typical 

of major highway systems pose the greatest barrier to gene flow for mule deer. Although we did 

not detect reduced gene flow across CA-91 or CA-101, the patterns of increasing volume of 

traffic and expanding development occurring in these systems suggests these highways may 

become problematic for genetic exchange in mule deer in the future.  

CONCLUSION 

As mule deer are not territorial, individuals that disperse successfully across highways 

crossing may be more likely to contribute genetically to the adjoining population. However, as 

human populations continue to expand in urban areas with associated increase in transportation 

needs and infrastructure, effective migration may decrease. Our findings underscore the 

continued relevancy of wildlife crossings and connectivity across urban matrices to land and 
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wildlife managers in areas where connectivity is increasingly limited by continued urbanization. 

Additionally, our study highlights the paucity of data available for understanding and evaluating 

mule deer movements across these landscapes. Results of this study suggest that future work   

should address seasonal movements, survival and reproductive success linked to habitat quality 

and urban development for mule deer and other highly mobile species for which urban associated 

barriers may impose direct costs in terms of demographic and genetic viability.  
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TABLE AND FIGURES 

 

Table 2.1. Annual Average Daily Traffic volumes (cars per day) in 1993 and 2014 for 5 major 

highways intersecting subregions of natural habitat in the study area 

Route AADT (1993) AADT (2014) % increase 

CA-71 34437 82900 1.41 

CA-91 202166 256114 0.27 

US-101 132653 155192 0.17 

I-405 272200 276200 0.01 

I-5 196647 282944 0.44 

 

Table 2.2.  Logistic regression model structure for estimating mule deer habitat quality.  The 

inverse of this model was used to create a cost surface for comparing pair-wise least cost paths 

and accumulated cost paths to pairwise genetic distance.   

Type  Variable DF 

Adj. 

Deviance Coefficient SE  

Chi-

Square 

P-

Value 

 Constant 14 382.20 -20.2900 8.570 382.20 <0.001 

Topographic Unevenness 1 68.61 3.5470 0.443 68.61 <0.001 

Unevenness2 1 43.48 -1.1600 0.179 43.48 <0.001 

Openness 1 4.96 0.4700 0.213 4.96 0.026 

Openness2 1 4.90 -0.0029 0.001 4.90 0.027 

Site Exposure 

Index 1 10.28 0.0405 0.013 10.28 0.001 

Slope 

(degrees) 1 0.07 0.0071 0.026 0.07 0.785 

Slope2 1 12.34 -0.0025 0.001 12.34 <0.001 

Site Exposure 

Index x Slope 1 10.15 -0.0017 0.001 10.15 0.001 

Anthropogenic 

& Vegetative  
Road Density 1 1.38 0.0513 0.044 1.38 0.241 

LF EVT 

Green 1 0.80 0.3070 0.344 0.80 0.372 

LF EVT Red 1 0.80 0.2700 0.302 0.80 0.370 

LF EVT Blue 1 7.58 -0.8040 0.294 7.58 0.006 

Road Density 

x  LF EVT 

Green 1 31.19 0.2106 0.040 31.19 <0.001 

Road Density 1 23.23 -0.2674 0.058 23.23 <0.001 
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x  LANDFIRE 

EVT Red 

 Error 1643 1916.27   

  Total 1657 2298.48     

 

Table 2.3.  Competing model results using Akaike Information Criterion (AIC) and two model 

fit statistics, adjusted R2, and Area under the Receiver Operating Curve (AUC).   

Model Descriptiona Deviance k AIC ΔAIC R2 adj AUC 

Unevenness2, Openness2,  

Slope2, Site Exposure Index x 

Slope, Road Density x LF EVT 

Green, Road Density x LF EVT 

Red, LF EVT Blue 

1916.27 15 1946.27 0.00 16.02% 75.2 

Unevenness2, Openness2,  

Slope2, Site Exposure Index x 

Slope, Road Density x LF EVT 

Green, Road Density x LF EVT 

Red, LF EVT Blue x LF EVT 

Height  

1937.12 16 1969.12 22.85 15.07% 74.4 

Unevenness2, Openness2,  

Slope2, Site Exposure Index x 

Slope, Road Density x LF EVT 

Green, Road Density x LF EVT 

Red, LF EVT Blue, LF EVT 

Height2  

1937.83 16 1969.83 23.56 15.04% 74.4 

Unevenness2, Openness2,  

Slope2, Site Exposure Index x 

Slope, Road Density, LF EVT 

Green, LF EVT Red, LF EVT 

Blue, LF EVT Height 

1951.20 14 1979.20 32.93 14.54% 74.2 

Unevenness2, Openness2,  

Slope2, Curvature2, Site 

Exposure Index2, Road Density, 

LF EVT Green, LF EVT Red, 

LF EVT Blue, LF EVT Height 

1955.95 16 1987.95 41.68 14.25% 74.2 

Unevenness, Openness,  Slope, 

Curvature, Site Exposure Index, 

Road Density, LF EVT Green, 

LF EVT Red, LF EVT Blue, LF 

EVT Height 

2110.76 11 2132.76 186.49 7.73% 69.5 
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Table 2.4. Effective population size, observed heterozygosity and expected heterozygosity 

across 14 loci for each subregion. 

Subregion (N) Ne (95% CI) Ho (SE) He (SE) 

CH (73) 69.6 (48-112.6) 0.51 (0.06) 0.06 (0.52) 

SAM (45) inf (235.9-inf) 0.55 (0.06) 0.06 (0.55) 

SJH (24) 16.6 (10.4-29.9) 0.55 (0.06) 0.06 (0.54) 

VM (8) 79 (6.9-inf) 0.69 (0.07) 0.07 (0.55) 

HH (30) 22.9 (15.2-38.8) 0.54 (0.05) 0.05 (0.58) 

SMM (52) 63.9 (40.5-124.8) 0.49 (0.05) 0.05 (0.55) 

SIMI (33) 32.9 (20.9-62.3) 0.5 (0.06) 0.06 (0.56) 

* Ne = Effective population size; Ho = observed heterozygosity; He = expected heterozygosity 

 

Table 2.5. Pairwise and average genetic distances (Dest) between 7 mountainous subregions 

separated by major highways in Southern California. 

Subregion CH SAM SJH VM HH SMM SIMI AVERAGE 

CH - 0.0001 *** 0.0028 *** *** *** 0.065 

SAM 0.02 - *** 0.0008 *** *** *** 0.05 

SJH 0.13 0.07 - 0.0005 *** *** *** 0.11 

VM 0.05 0.05 0.09 - 0.0004 0.0001 0.0061 0.067 

HH 0.07 0.05 0.13 0.07 - *** *** 0.072 

SMM 0.06 0.06 0.14 0.08 0.05 - 0.005 0.068 

SIMI 0.06 0.05 0.12 0.06 0.06 0.02 - 0.062 

£ Below diagonal: Genetic distance (Dest); Above diagonal: p-value 

*** Indicates p < 0.0001 after 10000 bootstrap iterations 

  

 

  



81 
 

Table 2.6. Average proportional assignment of individuals to K clusters and relative evenness 

across clusters by subregion for both STRUCTURE (A) and DAPC (B) 

A. STRUCTURE (K = 5)   

  Clust 1 Clust 2 Clust 3 Clust 4 Clust 5 - 

Rank 

H’/Hmax 

CH 0.41 0.09 0.36 0.06 0.07 - 4 

SAM 0.21 0.24 0.32 0.08 0.15 - 2 

SJH 0.07 0.65 0.12 0.08 0.07 - 7 

VM 0.13 0.21 0.33 0.18 0.15 - 1 

HH 0.09 0.08 0.12 0.15 0.55 - 5 

SMM 0.11 0.09 0.10 0.44 0.26 - 3 

SIMI 0.11 0.07 0.07 0.58 0.17 - 6 

        

B. DAPC (K = 6) 

Rank 

H’/Hmax  

 Clust 1 Clust 2 Clust 3 Clust 4 Clust 5 Clust 6  

CH 0.36 0.20 0.02 0.06 0.28 0.08 3 

SAM 0.23 0.27 0.11 0.10 0.23 0.07 1 

SJH 0.03 0.02 0.64 0.23 0.05 0.03 7 

VM 0.17 0.03 0.12 0.60 0.04 0.04 6 

HH 0.09 0.03 0.00 0.51 0.15 0.22 5 

SMM 0.04 0.04 0.02 0.16 0.33 0.41 4 

SIMI 0.06 0.11 0.07 0.18 0.24 0.33 2 
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Table 2.7. Generalized linear models for predictors of individual pairwise relatedness (1/r) 

between deer sampled in adjacent subregions 

Model βdist βadditional ΔAIC 

GD1 ~ 1 - - 202 

GD ~ Euclidean 0.5338 - 52 

GD ~ HLCP2 0.5367 - 50 

GD ~ FLCP3 0.5370 - 50 

GD ~ HLCP + Hwy4 0.3813 0.8523 0 

1 Genetic Distance (1/r); 2 Habitat Least Cost Path; 3 Freeway Least Cost Path; 4 Binary indication of whether 

samples were collected across a highway (1) or not (0) 
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Figure 2.1. Study area map showing the location of genetic samples gathered across the sub-

regions and the other occurrence records used to estimate selection of habitat features by mule 

deer for the whole study area (a), and sample locations for the LA (b) and OC regions (c).  We 

used a paired random sampling approach to sample the range of conditions found in the areas 

where samples and occurrence data were collected.   

A) 
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Figure 2.2. Posterior assignments for individual deer to each of 5 genetic clusters identified in 

STRUCTURE. Subregions are arranged and grouped according to the pairwise genetic distance 

(Dest) matrix as shown by the dendrogram. 
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Figure 2.3. Mean pairwise genetic distance as a function of the accumulated cost along the least 

cost path divided by the Euclidean distance between samples collected within all subregions 

(squares) and between adjacent subregions (circles). The correlation was significant (adj. R2 = 

0.24, Fstat = 5, p-value = 0.045).  
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Figure 2.4.  Response curves for mule deer occurrence data versus an equal number of randomly 

stratified locations.  Factors exhibiting direct responses (quadratic and linear) include terrain 

unevenness and openness, and 4 LANDFIRE attributes (A). Factors modified by an interaction 

term include site exposure index (SEI) x slope, and 2 LANDFIRE attributes (red and green) x 

road density (B).  
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Figure 2.5.  Cost surface used to estimate mule deer habitat connectivity for the study area (A.).  

Using a resource selection function (RSF) approach, we estimated high quality habitat would 

have little cost for movement for mule deer in the region and landscape features where mule deer 

were not observed to use, as having a high cost of movement on a scale of 0-1 (the inverse 

probability of mule deer presence).  To explore whether or not high traffic volume freeways may 

pose a movement barrier, we added additional costs to the locations of freeway systems based on 

the Ahead Annual Average Daily Traffic (ADDT) volume rescaled to values between 0-1 and 

added it to the habitat based cost surface.  These areas of increased cost to transverse are shown 

for a portion of the US-101 (B.), the I-405 (C.), and the CA-91 and CA-71 intersection (D.).   
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CHAPTER 3 

Dietary diversity and resource selection by big brown bats (Eptesicus fuscus) in agricultural 

landscapes exhibiting different levels of pesticide-use in California 

ABSTRACT 

Bats provide invaluable economic and environmental services in agriculture by 

consuming insects that damage crops and are otherwise controlled through the use of chemical 

pesticides. Quantifying these services is a major research focus, yet little is known about the 

dietary diversity or foraging behavior of bats in intensively managed agricultural landscapes. 

Further, few data are available for understanding the influence of pesticide-use on bat foraging, 

concomitantly negating our understanding of exposure risks for bats. We have implemented an 

RSF modeling approach to analyze telemetry data on ten female foraging big brown bats, in 

order to determine if these bats exhibit a preference for certain crop types over others and to test 

whether bats tend to avoid or select for areas with high pesticide use. We additionally have 

analyzed guano from 17 wild big brown bats and four additional individuals of three bat species 

captured in two locations which vary in landscape levels of pesticides applied. We demonstrate 

that brown bats exhibit selection and avoidance for specific crop types and that pesticides do 

exhibit an important influence on bat foraging decisions. We further show that dietary diversity 

is reduced in high-pesticide use areas, potentially resulting from reduced prey availability. 

Finally, we observed high foraging distances for big brown bats in these landscapes relative to 

previously observed foraging distances in non-agricultural landscapes, suggesting potential 

energy costs associated with low or unpredictable prey availability in intensively managed 

agriculture. Collectively, our results highlight the importance of understanding foraging 
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strategies for economically valuable species in altered landscapes and may provide a 

management framework for agricultural producers to promote bat predation on their lands. 

 

INTRODUCTION 

Animals that occupy intensively managed agricultural landscapes must contend with a 

variety of challenges, including chemical pollutants and habitat degradation. In addition to the 

potential toxic effects of various pesticides (Clark and Rattner 1987), altered habitats are often 

highly degraded with respect to resource availability, which can have energetic costs for foraging 

animals (Bruun & Smith, 2003; Tremblay et al., 2005). Understanding these impacts is important 

for preserving biodiversity in agricultural systems, particularly for species that provide 

ecological services. 

The Central Valley of California is one of the top U.S. agricultural export regions 

(University of California Agricultural Issues Center, https://aic.ucdavis.edu/2015/06/09/2014-

california-export-data), with approximately 200 million pounds of the active ingredients (a.i.) in 

pesticides applied annually to support food production (http://www.pesticideinfo.org). 

Insecticides, in particular, are often highly toxic and harmful to both humans and wildlife 

(Wesienberger 1993, Davidson 2004), comprise approximately 2% of pesticides applied 

(http://www.pesticideinfo.org). The distribution of pesticide-use varies spatially and temporally, 

creating a mosaic of risk exposure across the landscape and providing a useful gradient for 

identifying and understanding the effects of agricultural management and pesticide-use on 

wildlife at the landscape scale.  

https://aic.ucdavis.edu/2015/06/09/2014-california-export-data
https://aic.ucdavis.edu/2015/06/09/2014-california-export-data
http://www.pesticideinfo.org/
http://www.pesticideinfo.org/
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Insectivorous bats foraging in agricultural areas are susceptible to chronic exposure to 

pesticides through their insect diets (Stahlschmidt and Brühl 2012).  Impacts from such exposure 

can be direct (i.e. altering their survival, reproduction, behavior, physiology or immune 

function), or indirect (i.e. limiting food resources). Few data have been collected on the 

toxicological sensitivity of bats to pesticides, although two studies suggest that, despite lower 

sensitivity to death from organophosphate insecticides, bats are more susceptible to sub-lethal 

effects on neuromuscular control and orientation (Clark 1986; Clark and Rattner 1987), which 

can be fatal in the wild.  Eidela and Whittaker (2007) discovered organophosphate residues in 

tissues from small sample sizes of both live-captured and recovered carcasses of Northern long 

eared and federally endangered Indiana bats and DDT has been discovered in guano deposits in 

New Mexico (Clark 2001), suggesting that bats are ingesting agricultural pesticides while 

foraging. Population level outcomes of exposure to insecticides are even less-well studied. Frick 

et al. (2007) observed declines in recruitment in populations of Yuma myotis following a large-

scale pesticide spill, which they attribute largely to limitations on insect resources. Apart from 

these observations, little research has been published on assessing the risks and ecological 

outcomes for bats foraging in intensively managed agricultural landscapes.  

Bats serve as an important model for understanding the effects of landscape level 

pesticide use in intensively managed agricultural systems given their insectivorous diets and their 

ability to forage widely across the landscape in a single evening (Shiel et al., 1999). Further, 

because bats provide critical biological pest control services, estimated to value upwards of 23 

billion dollars annually across the United States (Boyles et al., 2011), they are of particular 

importance in developing strategies to mitigate pesticide-use and to provide incentive for farmers 

to employ alternative management methods that are less harmful to people and the environment.  
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To accurately assess exposure risk for bats to pesticides requires an adequate 

characterization of their foraging patterns in agricultural landscapes. We followed a two-pronged 

approach to assess how landscape-level pesticide-use influences bat foraging patterns and dietary 

diversity. First, we used radio-telemetry to track female big brown bats (Eptesicus fuscus) 

captured at two sites which differed in cumulative pesticide-inputs at the landscape scale. We 

calculated observed foraging extents (OFE), followed by implementation of a Resource Selection 

Function (RSF) to determine the features of the landscape bats actively select or avoid during 

foraging. We used a distance-based analysis, rather than site-occupancy models, as this method 

can reduce the selection estimate bias inherent in high error location estimates (Forester et al., 

2009). Further, distance variables for various resources have been shown to improve predictions 

of bat occupancy (Rainho et al., 2011). We hypothesized that if bats actively avoid or select 

particular crop types or current pesticide sources, then their foraging locations would differ 

significantly from random with respect to these aspects of their environment.  

Second, we used a metagenomics approach to assess dietary diversity for brown bats 

captured in two sites that varied considerably in the intensity of pesticide-inputs, as measured by 

the total weight of pesticide applied during the summer months when bats are actively foraging 

and reproducing.  We hypothesized that higher insecticide inputs would limit resource 

availability for bats and therefore, dietary diversity would be lower in areas with higher annual 

pesticide inputs. We further hypothesized that if intensively managed agricultural landscapes are 

degraded with respect to prey availability for bats, then foraging ranges would be substantially 

large compared to previously observed foraging ranges of big brown bats in non-agricultural 

landscapes. Finally, we evaluated specific prey items to identify whether pest species are being 

consumed by bats. 
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METHODS 

STUDY AREA 

The study area consisted of two conventionally managed almond orchards located in 

Kern County, CA, USA (Figure 3.1) that differed with respect to pesticide-inputs at a landscape 

scale. Kern County comprises the southern border of the San Joaquin Valley, CA which is 

predominantly agricultural, with several towns and developed areas surrounded by a large matrix 

of variable agricultural commodity production. Almond orchards were selected based on patterns 

of landscape level pesticide-use surrounding the orchard. Specifically, we calculated the mean 

cumulative weight of pesticides applied across approximately 150 km2, or the extent 9 Public 

Land Survey System townships (http://nationalmap.gov/small_scale/a_plss.html) directly 

surrounding and including the orchard from March – September (2011 – 2014), the period when 

bats are most actively foraging and reproducing. One orchard was located near the town of 

Arvin, CA (site: ARVIN), 24 km southeast of Bakersfield, CA, and the other near Shafter, CA 

(site: SHAFTER), 40 km northwest of Bakersfield, CA. The two orchards were similar in age 

and canopy structure, yet varied in landscape context. The ARVIN orchard, approximately 0.5 

km2 in area, was located approximately 2.5 km from the town of Arvin, and was bordered to the 

north by uncultivated fields and a walnut orchard, to the east by corn, to the south by cotton and 

to the west by a vineyard during our study period. At the landscape scale, this area is dominated 

by a combination of fruit and nut orchards, vineyards, and various field crops. Mean cumulative 

pesticide inputs for this landscape was 2,384,740 lbs. The SHAFTER orchard, approximately 1 

km2 in area and is located approximately 5 km from the town of Shafter. SHAFTER was 

bordered on all sides by almond orchards, which were managed by various growers. This 

landscape is heavily dominated by almond orchards, fruit orchards, cattle pastures, and 

http://nationalmap.gov/small_scale/a_plss.html
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miscellaneous field crops. Pesticide inputs surrounding this orchard were 3,866,493 lbs. for the 

same time frame and spatial extent as locality ARVIN. 

 

CAPTURE AND TELEMETRY 

Bats were captured using 8 mm mist nets (Avinet, Inc., USA) stacked at single, double 

and triple high configurations along roads and tree rows within almond orchards. Mist nets were 

opened at sunset and closed at 2 am each night, and each site was sampled for 10 nights from 

June to August 2015. Individuals were identified to species, aged (adult or juvenile), and 

assessed for reproductive condition (lactating, postlactating and non-reproductive). Guano 

deposited in the capture bag or during processing was collected and preserved in 96% ethanol 

and stored at -20 ̊ C until processing. Measurements were taken to confirm species identification 

and to assess body condition.  Radio transmitters (Holohil, LLC, Canada) weighing less than 5% 

of body mass were affixed to adult and juvenile female big brown bats using a degradable epoxy 

adhesive. Bats were captured and processed in accordance with UCLA Animal Care and Use 

Committee requirements (ARC# 2012-004-03) under a California Department of Fish and 

Wildlife Scientific Collecting Permit (SCP #11920).  

A total of 14 bats were fit with VHF radio transmitters (Holohil, LLC). Two transmitters 

failed before sufficient data could be collected. A third individual was never located following 

her release, while an additional individual was only located once briefly while foraging. 

Analyses were therefore performed on the remaining big brown bats (n = 10) for which sufficient 

data were collected (SHAFTER: n = 3; ARVIN: n = 7). The day following capture, active 

searches were performed to locate bats within roosts. Roosts for nine bats were located within a 
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few hours of searching, but the roost for one adult female, although successfully tracked during 

foraging, could not be located because it was on private property.  

To track nightly foraging movements, two mobile teams assembled near the roosts and 

awaited emergence. Once a focal bat was active, foraging locations were collected at two-minute 

intervals using bi-angulation of telemetry signals and communication between teams through 

short-wave radios.  

Bat locations were estimated from telemetry data in LOAS v. 4.0 (Ecological Software 

Solutions, LLC). Bearing errors were generated for each person performing telemetry from 

bearings taken on a known location. Bat location estimates were then imported into ArcMAP 

(ESRI) for visual inspection. Locations that were greater than 1 km from the locations 

immediately preceding and immediately following the location were removed. Locations were 

pruned to limit the dataset to no more than 5 locations taken within in the same 30 min time 

period to limit spatial autocorrelation. Home ranges were calculated for each bat as minimum 

convex polygons (MCP) in GME (Spatial Ecology, LLC).  

Crop data for 2015 were obtained through the Kern County Agricultural Commission 

(http://www.kernag.com/caap/crop-reports/crop-reports.asp). Crop categories were consolidated 

into 8 categories: 1) field crops such as grains and corn; 2) fruit orchards which were 

predominantly citrus but also included stone fruits, apples, and pomegranate; 3) miscellaneous 

vegetable crops; 4) developed areas such as towns and cities; 5) pastures including cattle stock 

yards and grazing; 6) uncultivated fields; 7) nut orchards; and 8) vineyards. Pesticide data was 

obtained from California Department of Pesticide Regulation (http://calpip.cdpr.ca.gov) and was 

implemented as a ninth variable. Only crop and pesticide data corresponding to the days for 

which each bat was tracked were included in individual bat datasets. Spatial information for both 

http://www.kernag.com/caap/crop-reports/crop-reports.asp
http://calpip.cdpr.ca.gov/
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crop and pesticide data were recorded as meridian townships and sections according to the Public 

Land Survey System. The PLSS layer was joined with the crop and pesticide data and converted 

to separate rasters for each feature. Available points for each crop type and pesticide input were 

computed from a raster with cell resolution of 30 m across Kern County. This raster was 

intersected in GME with each bat MCP to generate a dataset of available points for each 

landscape feature for each bat. Distance to each used and available point was calculated in GME. 

 

DNA PROCESSINNG 

We sequenced DNA from guano collected from 17 brown bats (SHAFTER: n = 10; 

ARVIN: n = 7). In addition, we sequenced DNA from guano from 2 Yuma myotis (M. 

yumanensis), a pallid bat (Antrozous pallidus), and a Brazilian free-tailed bat (Tadarida 

brasiliensis). DNA was extracted from guano using the Qiagen DNA Stool Extraction Kit 

(Qiagen, USA) with modifications as described in Zeale et al. (2010). We custom ordered hybrid 

primers designed to target ~ 130 bp sequence of the 16S region of the mitochondrial genome that 

has been shown to be useful for distinguishing insects in animal diets (Kartzinal et al., 2015), as 

well as a 33 bp Nextera transposase sequence (Illumina, San Diego, California; 

https://support.illumina.com/content/dam/illumina-

support/documents/documentation/chemistry_documentation/experiment-design/illumina-

adapter-sequences-1000000002694-03.pdf). Each PCR was run in triplicate using the QIAGEN 

Multiplex PCR Kit (Qiagen, Valencia, CA) and pooled in equal concentration. PCR 

thermocycling conditions were as follows: initial denaturation at 95 ̊ C for 10 min, followed by 

35 cycles of denaturing at 95 ̊ C for 30 s, annealing at 50 ̊ C for 30 s and extension at 72 ̊ C for 

30s, with a final extension at 72 ̊C for 2 min. Following PCR, we performed a bead clean up with 

https://support.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_documentation/experiment-design/illumina-adapter-sequences-1000000002694-03.pdf
https://support.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_documentation/experiment-design/illumina-adapter-sequences-1000000002694-03.pdf
https://support.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_documentation/experiment-design/illumina-adapter-sequences-1000000002694-03.pdf
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Sera-Mag SpeedBeads (GE Healthcare, Life Sciences, Marlborough, MA). Concentration was 

quantified on a Victor3 multilable plate reader (PerkinElmer, Waltham, MA) using the Qubit® 

dsDNA BR Assay Kits (Invitrogen, Molecular Probes). Fluorescence was measured at 485/530 

nm. We added a unique Nextera XT index (Nextera XT Index Kit v2, Illumina, San Diego, CA) 

to each sample library in a second PCR. We used the KAPA HiFi HotStart Ready Mix PCR Kit 

(Kappa Biosystems, Wilmington, Massachusetts) starting with 10 ng input DNA. PCR 

thermocycling conditions for this step were as follows: Initial denaturation at 95oC for 5 min, 

followed by 5 cycles of denaturing at 98 ̊ C for 20 secs, annealing at 56 ̊ C for 30 secs, and 

extension at 72 ̊ C for 3 min; an extension at 72 ̊ C for 5 min and a final extension at 8oC for 10 

cycles. We conducted a final bead clean up and quantified as previously described. We then 

pooled equal copy numbers to 10nM. Copy number was calculated by dividing the product of 

DNA molarity and sampling concentration (ng) by the product of amplicon length and the molar 

concentration of DNA (http://cels.uri.edu/gsc/cndna.html). Libraries were sequenced as 150 bp 

paired-end reads on the HiSeq 4000 sequencing platform (Illumina, San Diego, CA). 

ANALYSIS 

Resource Selection Function 

To assess how big brown bats navigate agricultural landscapes during foraging, we 

implemented a RSF model to assess bat preference or avoidance for 8 main crop categories and 

local pesticide inputs. RSFs are a viable strategy for characterizing habitat and resource use in 

wild populations (Johnson et al., 2006) especially when mixed effects are incorporated to 

account for hierarchical structure in natural populations (i.e. individuals in colonies; Gillies et al., 

2006). We implemented both animal and site as nested random effects, hence allowing each 

animal to have its own coefficient of selection, and each site an independent intercept. This has 

https://www.gelifesciences.com/
https://www.google.com/search?client=safari&rls=en&q=Waltham+Massachusetts&stick=H4sIAAAAAAAAAOPgE-LUz9U3MMuNLzBS4gAxM6qMTbW0spOt9POL0hPzMqsSSzLz81A4VhmpiSmFpYlFJalFxQApgQyfQwAAAA&sa=X&ved=0ahUKEwiIo9D04fDXAhVU3GMKHdfGD-AQmxMIkAEoATAS
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been shown to improve model performance, particularly with unbalanced sample designs and 

variability in individual animal preferences (Gillies et al., 2006).  

Distance to used and available points for each bat were then input as variables in a RSF 

to identify which crop types bats select or avoid, with a binary response variable indicating 

whether a location was used (1) or available but not used (0). General linear mixed effects 

models were run using the R package lme4 (Bates et al., 2015), with individual and site 

implemented as nested random effects. We compared several models which included 1) random 

effects and all crop types but excluding pesticides; 2) random effects and all crop types and 

including pesticides; and 3) random effects plus all crop types interacting with pesticides. Our 

null model included only random effects. We selected the best model with the lowest AIC value. 

Dietary Diversity 

All reads were pre-processed using the Anacapa toolkit (https://github.com/limey-

bean/Anacapa). Briefly, we trimmed sequencing adapters from the 5’ end and adapters and 

primer sequence from the 3’ end of each read using cutadapt (Martin, 2011). Reads with a 

quality score < 35 or reads with < 100 bp after trimming were removed with the Fastxtoolkit 

(Gordon and Hannon, 2010). Cutadapt was then used to sort all reads by their index and primer 

sequence and to trim additional basepairs from the end of reads to increase quality. We sorted 

out unpaired forward and reverse reads into separate files from the paired reads, and used dada2 

to identify amplicon sequence variants (ASV) to denoise, dereplicate, merge paired reads (where 

applicable) and detect any chimera sequences.  

 In order to assign sequence reads to a taxonomic group, we first generated a custom 

reference library using CRUX (https://github.com/limey-bean/CRUX_Creating-Reference-

libraries-Using-eXisting-tools).  This pipeline first performs an in silico PCR against the EMBL 

https://github.com/limey-bean/Anacapa
https://github.com/limey-bean/Anacapa
https://github.com/limey-bean/CRUX_Creating-Reference-libraries-Using-eXisting-tools
https://github.com/limey-bean/CRUX_Creating-Reference-libraries-Using-eXisting-tools
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standard nucleotide sequence database (Stoesser et al., 2002) to generate a seed library of reads 

with unique taxon identifiers. Library reads are then checked to confirm that they contain the 

primer regions, which are subsequently trimmed using cutadapt. The seed library is then 

BLASTed (Camacho et al., 2009) against the NCBI nr nt database 

(ftp://ftp.ncbi.nlm.nih.gov/blast/). BLAST results are dereplicated by accession number and 

converted to FASTA format. We used entrez_qiime (https://github.com/bakerccm/entrez_qiime) 

to produce a taxonomy file from the blast output and then generated an indexed reference library 

using Bowtie2 (Langmead et al., 2009).  We then used Bowtie2 to get the best hits between our 

sample reads and our reference library. We used a global read matching algorithm and a local 

setting for any leftover reads. Confidence intervals for our taxonomic assignments were 

generated from the resulting SAM output from Bowtie 2 using a Bayesian Least Common 

Ancestor algorithm that was adapted from Gao et al., 2017. 

We used the observed number of species and Shannon entropy to measure and compare 

alpha diversity (Caporaso et al. 2010) in bat diets between the two sites.  We took the average of 

ten replicated rarefactions at increments ranging from 1,000 – 10,000 reads per sample 

(Rodrigues et al. 2013). Although saturation across samples was reached at approximately 2,000 

reads, as a conservative means to ensure that we captured the diversity in bat diets, we ran each 

rarefaction up to 4,000 reads. We ran paired t-tests to determine whether dietary diversity was 

significantly different between the two sites.  We additionally used a nonmetric multivariate 

dimensional scaling (NMDS) analysis to visualize community composition and ran a 

PERMANOVA and a test of multivariate homogeneity of group dispersions (adonis and betadist 

functions in r library vegan (Dixon 2003, Oksanen et al. 2007))  to measure dispersion and assess 

the relative heterogeneity of bat diets between the two sites. 

ftp://ftp.ncbi.nlm.nih.gov/blast/
https://github.com/bakerccm/entrez_qiime
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RESULTS 

CAPTURE AND TELEMETRY 

A total of 10 female brown bats were tracked via radio-telemetry while foraging from 

June – August 2015. Acquired foraging locations for each bat ranged from 33 – 156 points after 

manual removal of points with high autocorrelation or error (Table 3.1). Mean OFE was 70.1 

km2 (16.4 – 118 km2) for adult females and 101.55 km2 (47 -151.2 km2) for juvenile females. 

OFEs did not differ significantly between sites (t = 0.039, p = 0.97). Average distance between 

foraging locations and day roost was 5.54 ± 2.94 km for adults, and 5.07 ± 2.25 km for juveniles.  

RESOURCE SELECTION FUNCTION 

The best fitting general linearized mixed-effects model suggested that brown bats 

selected for fruit orchards and field crops and avoided developed areas and uncultivated 

agricultural plots (Table 3.2). Additionally, there were several significant interactions between 

pesticide input and certain crops. Specifically, bats were observed foraging closer to fruit 

orchards and vegetable crops that had higher pesticide inputs. Conversely, bats were observed 

farther than expected by chance from field crops and vineyards that had high pesticide inputs 

(Table 3.2). The next best fit model (ΔAIC = 26.6), which assessed pesticide input as an 

independent factor and not as an interaction variable, showed significant avoidance of pesticides, 

as well as developed areas and uncultivated agricultural plots. The null had the poorest fit (ΔAIC 

= 378) 

DIETARY DIVERSITY 

 A total of 116 unique arthropod taxonomic assignments were made based on 16S 

sequences in bat guano from all four bat species and 88 assignments from big brown bats alone 
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(Figure 3.2). Rarefaction curves showed higher rates of prey sequence accumulation in Brazilian 

free-tailed bats, followed by Yuma myotis, and then by brown bats and pallid bats (Figure 3.3). 

Alpha diversity was not significantly different between sites, whether measured by relative 

abundance of observed species (t = 1.3479, p = 0.21; Figure 3.4a) or by a Shannon Entropy 

measure (t = 0.99654, p = 0.38; Figure 3.4b). However, beta diversity of prey items differed 

significantly by site (PERMANOVA; p = 0.007; Figure 3.4c). Further, measures of dispersion in 

NMDS analysis showed a significant difference in prey item heterogeneity between sites based on 

species presence in guano. (k = 3, stress = 0.074, p = 0.005, Figure 3.4d).  

 Several important agricultural pest species were identified as primary prey items in the 

diets of brown bats (Figure 3.2) including members of the family of Melolothini beetles (also 

known as May beetles and June bugs), the southern house mosquito (Culex quinquefasciatus), and 

several cutworms including the large yellow underwing (Noctua pronuba) and the Western bean 

cutworm (Striacosta albicosta). This analysis shows that bat guano can be an effective source not 

only for prey information in wild bats, but also informative of arthropod diversity at landscape 

scales. This is particularly important with regards to agricultural pests. Our results also suggest 

that pesticide use may not affect species alpha diversity but can potentially reduce beta diversity, 

supporting previous observations  (Hendrickx et al., 2007; Eekros et al., 2010). 

 

DISCUSSION 

Overall, the results of this research suggest pesticides and intensive agricultural 

management may impact bat utilization of the landscape as well as the diversity of bat prey. 

Many acoustic studies have shown bats to be impacted by the structure and composition of 

landscape features in agricultural areas (Lentini et al., 2012; Kalda et al., 2015; Kelly et al., 
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2016).  Relatively few studies have assessed the impacts of pesticides on bats foraging in 

agricultural systems, although differences in bat foraging activity between conventional and 

organic farms suggest that pesticides likely limit resource availability for bats (Wickramasinghe 

et al., 2003; Wickramasinghe et al., 2004).  

We assessed whether pesticides and crop types influence foraging behavior, and if 

landscape level pesticide-use has an important effect on dietary diversity for big brown bats. 

Observed foraging areas were substantially large, suggesting that resource limitation in 

agricultural landscapes may be driving higher foraging energy costs. Pesticide inputs were 

significantly selected against and showed the greatest positive correlation with distance to 

observed locations compared to all other variables. However, interaction terms in our model 

suggested that certain crop types (fruit orchards and vegetable crops) are more likely to be 

utilized with increasing pesticide inputs. We found dietary beta diversity was significantly lower 

in the high pesticide-use area (SHAFTER) and critically, that bats consume economically 

important pests. Each of these observations suggest that agricultural landscapes, and particularly 

pesticides, may impose substantial energy costs to bats. Such costs may in turn impact pest 

control services provided by foraging bats. 

In general, animals in human dominated landscapes tend to occupy larger territories than 

individuals in non-modified landscapes (Nicholson et al., 1997; Riley et al., 2003). Big brown 

bats in this study were observed foraging across greater distances than previously observed in 

non-agricultural landscapes (Brigham, 1991), possibly due to lower total prey availability or 

lower predictability in the distribution and abundance of prey across a mosaic landscape. 

Nocturnal insect diversity has been shown to be lower in conventionally managed farms relative 

to organic farms, suggesting that resource availability is affected by pesticide-use in agricultural 
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systems (Wickramasinghe et al., 2003; Wickramasinghe et al., 2004). Similarly, both prey 

availability and foraging activity of pallid bats was shown to be higher in natural habitat 

compared to vineyards (Rambaldini and Brigham, 2004). In big brown bats, foraging activity 

was shown to be significantly impacted by the availability of remnant vegetation surrounding 

vineyards in Northern California (Kelly, et al., 2016). Large foraging distances for brown bats in 

agricultural landscapes may have potential fitness costs due to the high energetic demands 

associated with flight (Thomas et al., 1972). In conjunction with potential exposure to pesticides 

and reduced resource availability, populations in these areas may be more stressed energetically. 

Interestingly, the individual with the smallest home range and shortest commute distances was 

the only lactating female monitored, likely reflecting the high metabolic costs of caring for 

young (Henry et al., 2002). 

Our resource selection functions showed that bats exhibit variable preferences for 

different crop types at the individual level, but collectively avoid pesticides in general. 

Interestingly, however, interactions between pesticide-use and fruit orchards and vegetable crops 

suggest that bats select for high pesticide-use in these crops types. This has implications for the 

exposure risk for bats in these crop types, as they are more likely to encounter toxins in their diet 

by selecting for these areas. Further research should focus on assessing bat activity in these crop 

types during spray events to assess whether bat-use directly overlaps temporally with the 

application of potentially harmful chemicals.  

Beta diversity of brown bat diets was shown to be lower in the high pesticide-use site 

(SHAFTER), suggesting greater dietary heterogeneity in the diets of bats from a low pesticide-

use site (ARVIN). Although alpha diversity was not significantly different between sites, the 

power to detect a significant difference was low given small sample size. In fact, the overall 
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pattern clearly suggests lower diversity in the diets of bats sampled in SHAFTER (Figure 3.2). 

Further, although we did not include replicates of other bat species (except for M. yumanensis, n 

= 2), our rarefaction analysis showed much faster rates of accumulation of prey sequences for 

Yuma myotis and Brazilian free-tailed bats compared to brown and pallid bats (Figure 3.3), and 

thus, these bat species appear to have more diverse diets.  Given that sympatric bats species are 

known to partition prey (Razgour et al., 2011; Emrich et al., 2014) and big brown bats are known 

to specialize on Coleoptera spp. (Clare et al., 2014) as we detected, we infer that a landscape that 

supports a greater number of bat species is also likely to promote stronger pest control. We never 

encountered any other species at SHAFTER besides big brown bats, and although this is less 

likely a direct result of lower pesticide-use in the ARVIN site rather than other elements of 

landscape heterogeneity or roost availability not measured in this study, it does suggest that 

spatial variation in the presence of bat species in agricultural landscapes may contribute to 

variation in the magnitude of ecosystem services bats provide. Therefore, bats should be a focal 

management focus for growers, including creating amenable habitat features and reducing 

pesticide-use.    
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TABLES AND FIGURES 

Table 3.1. Telemetry location numbers, observed foraging extent (OFE), mean foraging distance 

from roost locations (Avg. Dist) and the furthest location from roost locations (Max Dist.) for 

each radio-tracked bat (n = 10). 

Animal Age Site # Locs. OFE* (km2) Avg. Dist (km) Max. Dist (km) 

B76  A AV 33 45 6.60 ± 5.72 16.36 

B83  A AV 55 33.4 3.51 ± 1.64 11.44 

B91  A AV 60 105 10.08 ± 6.05 18.96 

B631 A AV 99 118 NA1 NA1 

B10  J AV 132 47 3.22 ± 1.46 9.63 

B47  J AV 156 127 4.47 ± 4.63 18.88 

B67  J AV 105 81 4.22 ± 4.01 15.71 

B22  A SH 114 65.9 4.79 ± 2.81 9.21 

B51  A SH 59 16.4 2.68 ± 1.55 5.52 

B43  J SH 124 151.2 8.33 ± 7.50 25.30 

 
1 Roost was never located for B63 
  

 

Table 3.2. Mixed effects model components, ΔAIC (calculated against null model), and 

significantly (p < 0.05) selected (S) and avoided (A) land features with and without the 

interaction of pesticide inputs (lbs).  

MODEL STRUCTURE ΔAIC S A Lbs*S Lbs*A 

Y~1+(1+animal|roost) (NULL) 378 NA NA NA NA 

Y~crop types + (1+animal|roost) 263.4 Fruit D1, UC2 NA NA 

Y~crop types+LBs+(1+animal|roost) 26.6 
Field 

Fruit 

D, UC, 

LBs3. 
NA NA 

Y~ cropt types * LBs + 

(1+animal|roost) 
0 

Field 

Fruit 
D, UC  

Fruit 

Veg 

Field 

Vine 
 

1 Developed areas; 2 Uncultivated agricultural fields; 3 Summed pesticides (lbs.)   
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Figure 3.1. Study area map with relative position of both sites (A), as well as observed foraging 

extents (colored polygons), distribution of crop types and pesticide inputs for SH (B) and AV 

(C). 

A) 
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B) 

 

C) 
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Figure 3.2. Relative abundance of prey types detected in guano from 17 brown bats captured in a 

low pesticide-use area (ARVIN- left) and high pesticide-use area (SHAFTER- right). For 

readability, only the first 20 most abundant prey types are listed in the legend. 
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Figure 3.3. Average accumulation of prey sequences across sampling intervals ranging from 

1000 – 10,000. Rarefaction results are presented as the average accumulation across 10 replicate 

runs. Error bars are shown for brown bats captured at the Arvin site (blue) and the Shafter site 

(purple). Other bat species include Yuma myotis (green), pallid bat (red), and free-tailed bat 

(orange). 
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Figure 3.4.   Comparison of alpha (top panels) and beta (bottom panels) diversity of prey types 

detected in guano of 17 brown bats captured in a low (ARVIN) and high (SHAFTER) pesticide-

use area. Alpha diversity was not significantly different between sites whether measured by the 

relative abundance of observed prey sequences (A; t = 0.99; p = 0.38) or Shannon Entropy (B; t 

= 1.34, p = 0.21). Beta diversity of prey types as calculated using the Bray-Curtis dissimilarity 

measure implemented in a PERMANOVA test was significantly different between the two sites 

(C; F = 2.54; R2 = 0.145; p = 0.007); and by a nonmetric multidimensional scaling analysis (D; k 

= 3; stress = 0.074; p = 0.005). The figure shows a two-dimensional representation of dietary 

similarity between the bats captured at ARVIN (green circles) and SHAFTER (blue diamonds). 

 

  

A) 

D) C) 

B) 
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