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Abstract 

In this brief note we present a 1nethod of estimating the first res
onant mode of a radial-disk resonator. The methodology employed 
utilizes a classical Ritz approxhnation to the relevant eigenvalue prob
lein. With a single term approximation a very accurate approxhnation 
can be computed. 

1 Introduction 

Let us consider the estimation of the first radial vibration mode of a circular 
disk. The geometry is shown in Fig. 1. It consists of a homogeneous isotropic 
linear elastic circular disk of radius R and unspecified thickness; we will 
consider the two extremal cases of zero thickness strain and zero thickness 
stress, viz. ezz = 0 and Uzz = 0, respectively. 

2 Governing Equations 

The relevant kinematic relations for the geometry considered are 

ceo - tt/r. 

(1) 
(2) 

In the thickness direction we will either assume &zz = 0 or determine it from 
the zero thickness stress condition. Note, u(r, t) is the radial motion of the 
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Figure 1: Disk geometry 

material. Within the chosen approximations it is only a function of radial 
posti tion r and time t. 

In this setting there is only one non-trivial equilibrium equation: 

O'rr- O'OO .. 
(Jrr,r + = pu' r 

where pis the material density. 
In the zero thickness strain case, the constitutive response is given as 

O'rr - (2tt + A)C:rr + AC:oo 
O'oo = (2tt + A)C:oo + Aerr , 

(3) 

(4) 

(5) 

where J.i is the shear modulus and A the Lame modulus. For the zero thickness 
stress case, the constitutive response is given as 

Urr - (2JL+A- 2JL~A) e • .+ (A- 2JLA:.J CBO (6) 

UBO = ( 2JL +A- 2JLA: A) eoo + (A- 2JLA: A) e,.,.. (7) 

In what follows, we will write all expressions for the zero thickness strain 
case. To convert to the zero thickness stress case, one only needs to replace 
all instances of A by 2p,A/ (2J.L +A). 

Combining the above relations, one can derive a N avier-form of the gov
erning relation: 

U,rr + (ujr),r = 2/-i: AU. (8) 

This relation needs to be solved in the steady state subject to the botmdary 
condtions: u(O, t) = 0 and (Jrr(R, t) = 0. To this end, one can assume a 
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decomposition of u(r, t) = f(r) exp[i.wt]. Introducing this into (8) yield the 
eigen-pro blem: 

J,rr + (fjr),r = 2f.l.: >.. w
2f, 

where /(0) = 0 and (2J.L + A)/,r(R) + Aj(R)/ R = 0. 

3 Weak Formulation 

The weak form of ( 9) reads: 

(9) 

6f(R)? >.. >.. f(R) + {R 6f,rrf,r dr + {R 6f~ f dr = w: {R 6fr f dr, (10) 
-.J.L + Jo Jo r c Jo 

where we have assumed that the test function 6! is zero at r = 0 and 
introduced the notation c = J(2J.L +A)/ p. Note that the stress boundary 
condition has already been incorporated into this expression. 

4 Ritz Approximation 

To estimate the first eigenvalue of our disk we can compute a Ritz estimate 
using the Galerkin approximation of f(r) = 6f(r) = -r2 + 2Rr. Plugging 
into both sides of (10) and solving for w gives a circular frequency of: 

c 30 ( A ) 
w = R ll 1.25 + 2J.L + A . (11) 

As an example application consider the radial disk resonator in [1]. In this 
case, the elastic properties are given byE= 139 GPa and v = 0.28. The disk 
radius is R = 41.5 J.Lm and the material density is given as p = 4127 kg/m3 • 

These parameters give for zero thickness strain an w = 53.09 MHz - compare 
to a resolved finite element computation which gives 52.9 MHz. In the case 
of zero thickness stress, these parameters give an w = 4 7.36 MHz, which 
compares well to the reported experimental value of 47.26 MHz. It should 
be noted that (11) corrects Equation (70) in f1J to read: 

c 
w = 2.04R, 

where c = 6045 m/ s is the zero thickness stress wave speed. 
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Figure 2: Radial mode shape from a FEA computation using FEAP [2] for 
the zero thickness strain case. The radial motion is plotted vertically. 

It should be noted that the Ritz mode shape, while reasonable, does not 
respect the stress free end condition. A finite element computation of this 
same problem shows that our guess for the mode shape 1nisses a small vari
ation at the edge of the disk; see Fig. 2. Even as such, our simple quadratic 
approximation yields rather good results. 
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A FEAP Inputs file for the generation of 
Fig. 2 

feap ** 1D radial disk resonator model zero thickness strain ** 
0 0 0 1 1 2 

par am 
R = 41.5d-6 disk radius 
E = 139d9 Young's Modulus 
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nu = 0.28 Poisson's Ratio 
d = 4127 Density 
n = 400 number of elements 

block 
cart n 
1 0 
2 R 

eboun 
1 0 1 Fix the 

mate 
solid 

axissymmetric 
elastic isotropic 
density material 

end 

batch 
mass 
tang 
subs, ,4 
plot,dofs,0,1 
plot,defo,,,1d-5 
plot,eigv,1 

end 

inte 
stop 

inner radius 

E nu 
d 

Form mass 
Form stiffness 
Compute eigenvalues 
Map dof 1 to dof 2 for plotting 
Rescale for plotting 
Plot first eigenmode 
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