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Facile, ethylene glycol-promoted microwave-assisted  

solvothermal synthesis of high-performance LiCoPO4 as a  

high-voltage cathode material for lithium-ion batteries†  

Jennifer Ludwig,a Cyril Marino,b‡ Dominik Haering,b Christoph Stinner,c Dennis Nordlund,d  
Marca M. Doeff,e Hubert A. Gasteigerb and Tom Nilgesa*  

Olivine-type LiCoPO4 is considered a promising high-voltage cathode material for next-generation lithium-ion batteries. 

However, preparing high-performance LiCoPO4 by a simple approach has been challenging. Herein, we present a facile and 

rapid (30 min) one-step microwave-assisted solvothermal synthesis route using a 1:1 (v/v) water/ethylene glycol (EG) 

binary solvent mixture and a temperature of 250 °C. The technique delivers high-performance LiCoPO4 nanoparticles 

without additional post-annealing or carbon coating steps. The as-prepared powder consists of single crystalline LiCoPO4 

and features a hexagonal platelet-like morphology with dimensions of 700–800 nm × 400–600 nm × 100–220 nm. Selected 

area electron diffraction (SAED) experiments reveal that the platelets show the smallest dimension along [010], which is 

the direction of the lithium diffusion pathways in the olivine crystal structure. Furthermore, the results indicate that the 

EG co-solvent plays an important role in tailoring the particle size, morphology, and crystal orientation of the material. Co 

L-edge soft X-ray absorption spectroscopy (XAS) of LiCoPO4 are presented for the first time and confirm that the material 

only consists of Co2+. Benefiting from the unique morphology, which facilitates Li-ion conduction, electrochemical 

measurements deliver an initial discharge capacity of 137 mAh/g at 0.1 C, a remarkably stable capacity retention of 68% 

after 100 cycles at 0.5 C, and a specific energy density of 658 Wh/kg based on its capacity and voltage, which is the best 

performance of LiCoPO4 obtained from microwave-assisted solvothermal synthesis to date.   

Introduction 

The scientific community predicts that effects of climate 

change due to the burning of fossil fuels will be significant 

within the next twenty years. Global warming is an important 

challenge for mankind and solutions need to be found. The 

development of electric vehicles powered by fuel cells or lithi-

um-ion batteries can play a key role in reducing CO2 gas emis-

sions, which is considered a main cause of the greenhouse 

effect. For the past 30 years, scientists have been looking for 

the perfect combination of electrolyte, an anode material, and 

a cathode material for building the best Li-ion battery with 

high energy density, good cycling and acceptable safety char-

acteristics. Since their introduction by Padhi et al.,1 olivine-

structured lithium transition-metal orthophosphates with the 

formula LiMPO4 (M = Fe, Mn, Co, Ni) have attracted consider-

able attention as cathode materials for lithium-ion batteries 

due to their high specific capacities and thermal stability.2-7 

Within the phospho-olivine family, LiFePO4 (LFP) has widely 

been investigated and is a fully developed material that is 

nowadays available for commercial applications.8 The use of 

iron-based cathodes for lithium-ion batteries has several ad-

vantages, including abundant and cheap raw materials, high 

thermal stability and relatively low toxicity.5, 9, 10 Moreover, 

with a theoretical capacity of 170 mAh/g, LFP operates at a 

voltage of 3.45 V versus Li/Li+,1 which is compatible with com-

mercially available electrolytes used in current lithium-ion 

battery technology. However, in recent years the scientific 

community has increasingly been focusing on the isostructural 

LiMnPO4 (LMP), LiCoPO4 (LCP) and LiNiPO4 (LNP) type phospho-

olivines due to the possibility of increasing the specific energy 

with these compounds.7, 11-13 The Mn2+/Mn3+, Co2+/Co3+, and 
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Ni2+/Ni3+ redox couples have been shown to operate at much 

higher voltages of 4.1 V,1 4.8 V,14 and 5.1 V,15 respectively, and 

are thus paving the way for next generation high-energy-

density olivine-based Li-ion batteries.3 

The redox potential of LNP is too high for use with common 

electrolytes and the electrochemical activation of the com-

pound remains a challenge.3, 15, 16 The high-voltage cathode 

material LCP with a lower operating voltage features the high-

est energy of 802 Wh/kg within the olivine family and a theo-

retical capacity of 167 mAh/g.14 However, the low electronic17, 

18 and ionic19 conductivities of LCP as well as the limited oxida-

tive stability of standard electrolytes20, 21 remain major obsta-

cles to successful utilization. All these disadvantages result in 

an unsatisfactory electrochemical performance of LCP, in-

cluding low practical capacities, poor rate performance, and 

short cycle life.3  

Tremendous efforts have been made in recent years to miti-

gate these limitations. In particular, chemical doping,17, 22, 23 

carbon coating,24, 25 and particle size reduction26-29 have been 

extensively used to improve the electrochemical activity of 

LCP. The importance of nanostructural engineering to the 

electrochemical performance has also been examined for 

other types of cathode materials, such as spinel-type transition 

metal oxides.30 Theoretical studies suggest that despite the 

fact that Li+ ions are located in one-dimensional channels along 

[010] and [001] in the olivine crystal structure (Fig. 1b,c), lithi-

um diffusion is only promoted along the [010] pathway 

(Fig. 1b).22, 31, 32 Thus, reducing the particle dimensions along 

the b direction can result in faster Li-ion diffusion and im-

proved electrochemical properties as shown recently by Rui 

and co-workers.29 After 50 cycles at 0.2 C, a discharge capacity 

of 136 mAh/g for LiCoPO4/C nanosheets was reported com-

pared to only 54 mAh/g for bulk particles, which is the best 

performance reported for carbon-coated LCP to date. Nano-

sheets exhibit a large surface-to-volume ratio that allows a 

more effective electrode–electrolyte contact area. Neverthe-

less, the multi-step preparation, which requires solid-state 

synthesis of a NH4CoPO4 ∙ H2O precursor, followed by a liquid-

phase exfoliation and a high-pressure high-temperature lithia-

tion by a supercritical fluid (SFC) process in ethanol precludes 

easy scale-up and industrial applicability. A simpler and faster 

synthetic approach towards high-performance LCP with small 

dimensions along [010] and the option for large-scale produc-

tion is yet to be fully developed, to the best of our knowledge.  

 
Fig. 1 Projections of the crystal structures of olivine-type LiCoPO4 (space group Pnma) 

along the three crystallographic axes: (a) [100], (b) [010], and (c) [001]. [CoO6] 

octahedra are drawn in red, [PO4] tetrahedra in blue, and Li ions in grey. 

With regard to the synthetic method, conventional solid-state 

reactions have been the dominant technique.33-35 The process, 

however, generally requires high temperatures and an addi-

tional ball milling step, making this approach unfeasible for 

potential industrial applications. Hydrothermal (HT)36-40 or 

solvothermal (ST)29, 41-44 approaches are of greater interest due 

to the facile and easily scalable process, mild reaction condi-

tions, and the possibility of preparing nanomaterials with con-

trollable and uniform particle sizes, shapes and crystal orienta-

tions.45 From a practical point of view, however, the conven-

tional HT or ST approach can be limited by slow reaction ki-

netics and non-uniform reaction conditions due to thermal 

gradients that are caused by the convective heating. This re-

sults in heterogeneous particle size distributions and morphol-

ogies and hence, inferior electrochemical performance.46 Only 

a few reports of conventional hydro- or solvothermal products 

indicate a direct formation of crystalline LCP materials without 

high-temperature annealing in a single step.36-38, 44 Further-

more, the materials often show antisite defects and disordered 

structures and therefore require additional thermal treat-

ments at very high temperatures (~800–900 °C), or additional 

carbon coating steps to obtain reasonable electrochemical 

performances.37, 39, 42 The microwave-assisted (MW) approach, 

which is quite new in the research field of LCP,47-51 is particu-

larly appealing because of the direct dielectric heating by the 

use of microwave irradiation, which allows short reaction 

times of only several minutes and more uniform reaction con-

ditions due to lower thermal gradients in the reaction vessel.46, 

48, 52 The method allows uniform nucleation and produces 

highly crystalline materials with homogeneous particle size 

distributions and morphologies.48, 52 The electrochemical per-

formance of LCP obtained by MWST synthesis without post-

calcination steps is comparable to ST materials that have been 

annealed at high temperature. A detailed overview of the state 

of the art in the hydrothermal and solvothermal synthesis of 

LCP, including supercritical fluid and microwave-assisted tech-

niques is given in Table S1 in the Electronic Supplementary 

InformaSon (ESI†). 

Very recently, combining an organic solvent and water in a 

mixed system has become popular in the solvothermal synthe-

sis of LiCoPO4 nanocrystals.42, 44, 53 The solvent blend is sup-

posed to be beneficial for effectively regulating the morph-

ology and crystal orientation due to the soft template effect of 

the organic solvent,42, 54 and also promotes the complete dis-

solution of the reagents with the help of the water compo-

nent. However, the effect of crystallographic orientation and 

particle morphology on the electrochemical performance of 

LCP has barely been touched upon.29, 41, 48, 55 

Herein, a novel, simple and fast microwave-assisted solvo-

thermal (MWST) approach towards high-performance LCP at 

moderate temperatures (250 °C) using ethylene glycol (EG) as 

a co-solvent is presented for the first time. Unlike other proce-

dures, the innovative technique does not require any post-

calcination steps or the use of carbon coatings to improve the 

electrochemical performance. The as-prepared LCP material is 

fully characterized by X-ray powder diffraction, elemental 

analysis, scanning and transmission electron microscopy, 
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Brunauer-Emmett-Teller surface area measurements, infrared 

and Raman spectroscopy, thermogravimetric measurements 

as well as electrochemical measurements. Based on these 

measurements, the relationship between the synthesis, mor-

phology, and electrochemical properties of the material is 

elucidated. Moreover, Co L-edge soft X-ray absorption spec-

troscopic data on LCP are presented for the first time. 

Experimental 

Microwave-assisted solvothermal synthesis 

A microwave-assisted solvothermal (MWST) process based on 

a previous report for LiMn0.7Fe0.3PO4
56 was modified with re-

gard to power of the microwave irradiation, synthesis tem-

perature and pH in order to obtain pure olivine-type LCP. 

22.5 mmol of LiOH ∙ H2O (Bernd Kraft, ≥ 99.0%), 7.5 mmol of 

CoSO4 ∙ 7 H2O (Chempur, 99%), and 7.5 mmol of H3PO4 

(AppliChem, Ph. Eur., 85 wt% solution) were dissolved in 30 mL 

of a 1:1 (v/v) mixed solvent of deionized water (high-purity 

water type I, Millipore, 18.2 MΩ∙cm) and ethylene glycol (VWR 

AnalaR NORMAPUR, 99.9%). The molar ratio of Li:Co:P was 

3:1:1. Note that the two additional moles of Li are necessary to 

bind the sulfate in the reaction (cf. Scheme 1a) and that a 1:1:1 

ratio did not result in the formation of the olivine phase. 

0.050 g ascorbic acid (Alfa Aesar, 99+%) was added as a reduc-

ing agent to prevent oxidation of Co2+ to Co3+ in the aqueous 

solution as well as a buffer to keep a suitable pH value to pro-

mote the crystallization of single-phase LCP. The resulting 

blue-violet mixture (pH 5.5, cf. graphical abstract) was stirred 

vigorously and then transferred into a 75 mL PTFE/TFM vessel 

(HTV-75, MLS GmbH). The solvothermal reaction was per-

formed at 250 °C for 30 min under continuous stirring using an 

Ethos One microwave system (MLS GmbH, MR-8 HT high-

temperature rotor). The internal temperature was maintained 

by adjusting the power of the microwave irradiation with the 

automatic T660 temperature control unit (maximum power: 

600 W). After natural cooling, the pH of the solution was 5.0. 

The violet precipitate was collected by filtration, washed five 

times with 50 mL distilled water and 50 mL absolute ethanol 

(VWR AnalaR NORMAPUR, 99.95%) followed by drying in air at 

150 °C for 12 h. The sample is denoted LCP-MW.  

 

Structural, physical and chemical characterization  

X-ray powder diffraction (XRD) patterns were collected on a 

Stoe STADI P diffractometer using Mo Kα1 radiation (Ge(111) 

monochromator, λ = 0.70930 Å) and a Dectris MYTHEN DCS 1K 

silicon solid-state detector. The samples were ground in a 

mortar and then sealed in 0.5 mm borosilicate glass capillaries 

(Hilgenberg, glass type no. 50, wall thickness: 0.01 mm). The 

data were measured in a 2θ range of 3–70° (PSD step: 0.015°; 

time/step: 25 s, 3 ranges, measurement time: 12 h). Silicon 

powder (a = 5.43088 Å) was used as an external standard. 

Rietveld fitting of the powder diffraction data was performed 

using the Jana2006 software package.57 The background pro-

file was fitted using a Chebyshev function with 35 coefficients. 

Peak asymmetry at small scattering angles was corrected by 

the axial divergence model described by Finger et al.58 using 

empirically determined starting values for the parameters. 

Moreover, an absorption correction was applied (estimated 

packing fraction ~0.6).59 General atomic positions as well as 

the isotropic thermal displacement parameters of Co, P, and O 

were refined. The thermal factors of Li, however, were kept 

fixed because they cannot be determined by X-ray powder 

diffraction (cf. low atomic scattering factor). Finally, the Berar’s 

correction was applied to obtain more realistic values for the 

estimated standard uncertainties.60 

Elemental analysis was performed using atomic absorption 

spectroscopy (Varian AA280FS sequential device) for the Li, 

and photometry (Shimadzu UV-160 device) for the Co and P 

contents, respectively. C, H, N, and S contents were analyzed 

by combustion analysis using a Hekatech Euro EA CHNSO in-

strument.  

The morphologies of the particles were observed using a high-

resolution scanning electron microscope (HR-SEM, JEOL JSM-

7500F). The gentle beam (GB) mode (accelerating voltage: 

1 kV) was used to reduce charging effects of the material. 

Energy-dispersive X-ray spectroscopy (EDS) was performed at 

an acceleration voltage of 15 kV and a probe current of 20 µA 

using a Noran system S1X (Thermo Electron Corporation, 

model 6714A01SUS-SN) probe attached to the scanning elec-

tron microscope. 

Transmission electron microscopy (TEM, JEOL JEM-2010, 

160 kV, LaB6 cathode) and selected area electron diffraction 

(SAED) were performed using specimens dispersed in ethanol 

and then dropped onto 200 mesh carbon film. Magnetite was 

used as a reference material for the SAED studies, and the 

patterns were analyzed using the CrystalMaker software.61 

The specific surface area of the powder was measured by N2 

adsorption using the Brunauer-Emmett-Teller (BET) method, 

where eleven points were measured. The measurement was 

performed on a Quantachrome Autosorb iQ instrument after 

degassing at 423 K for 12 h. 

Soft X-ray absorption spectroscopy (XAS) measurements on 

the as-prepared LiCoPO4 material were conducted at beamline 

8-2 of Stanford Synchrotron Radiation Lightsource (SSRL) using 

a 1100 mm−1 spherical grating monochromator operated with 

40 µm entrance and exit slits, providing ~2.0 ∙ 1010 ph/s at 

0.4 eV resolution in a 1 mm2 beam spot. Two scans of the Co 

L2,3-edge μ(E) spectra were acquired under ultrahigh vacuum 

(10−9 Torr) at room temperature in the Auger electron yield 

(AEY), total electron yield (TEY), and fluorescence yield (FY) 

modes, respectively.62 After normalizing the spectra to the 

beam current, the background contribution was subtracted. 

The energies scale was corrected using the values reported by 

Hibberd and co-workers.63 Additionally, CoO and Co3O4 pow-

ders were used as reference samples for Co2+ and Co3+. For 

better comparison and plotting, the intensity of all spectra was 

further normalized to a maximum intensity of 1.   

 

Electrochemical measurements  

The electrochemical performance was evaluated using 

Swagelok cells. The working electrodes were composed of 
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80 wt% of the as-prepared LCP powder, 10 wt% carbon (Super 

C65, Timcal), and 10 wt% polyvinylidene difluoride binder 

(PVDF, Kynar HSV 900, Arkema). LCP, Super C65 and PVDF 

were mixed with N-methyl-2-pyrrolidone (NMP, Sigma Aldrich) 

and then homogenized at 2000 rpm for 20 min using a plane-

tary centrifugal vacuum mixer (Thinky). The electrode slurry 

was spread on aluminum foil (15 µm, MTI corporation) and 

dried at 55 °C for 3–4 h. Electrodes with diameters of 10 mm 

and typical loadings of 4–5 mg/cm² were punched out, and 

pressed two times at 250 MPa for 1 min (KBr press, 

PerkinElmer). Afterwards, the electrodes were additionally 

dried for 2 h at 120 °C under vacuum in a Büchi B-585 glass 

oven. The test cells were assembled in an Ar-filled glove box 

(MBraun; < 0.1 ppm H2O, < 0.1 ppm O2). The cells were cycled 

between 3.5 V and 5.2 V in two different procedures: a) three 

cycles each at 0.1 C, 0.2 C, 0.5 C, 1 C, and 2 C followed by 20 

cycles at 0.5 C; b) 2 initial cycles at 0.067 C followed by 100 

cycles at 0.5 C rate. In both procedures, a constant voltage 

step at 5.2 V was added with a current limited to 0.05 C. Spe-

cific capacities were calculated on the basis of the weight of 

the as-prepared LCP powders in the electrodes (neglecting the 

weight of the lithium sulfate side phase, as it accounts for only 

< 5 wt%; cf. Table 1); C-rates were calculated based on a theo-

retical specific capacity of 167 mAh/gLCP. 

Results and discussion 

X-ray powder diffraction 

Fig. 2 shows the Rietveld fit of the X-ray powder diffraction 

(XRD) data of the as-prepared sample LCP-MW obtained from 

the simple microwave-assisted solvothermal (MWST) process. 

All diffraction peaks can be fitted to the orthorhombic olivine 

structure model (space group Pnma, ICSD database no. 

24749764) with good reliability factors (Table S2, ESI†). The 

refined lattice parameters are a = 10.1930(7) Å, b = 

5.9188(4) Å, and c = 4.6959(3) Å. The refined atomic coor-

dinates, thermal displacements parameters, and selected 

interatomic distances are given in Tables S3 and S4 (ESI†).  

No crystalline impurity phases which are generally reported for 

products from solution-based routes (e.g. the poorly soluble 

Li3PO4)65 are observed within the detection limit of the meth-

od. In contrast to conventional hydro- or solvothermal prod-

ucts, which are prone to antisite defects and disordered struc-

tures37 and therefore often have to undergo thermal treat-

ments at very high temperatures (~800–900 °C) to improve 

electrochemical activity,39, 42 the microwave technique delivers 

a highly crystalline LiCoPO4 material within a short reaction 

time of only 30 min and without any post heat treatment. This 

is evidenced by the appearance of sharp and narrow diffrac-

tion peaks. Moreover, the refinement of the occupancies of 

the Li and Co sites neither suggested a Li-deficient nor a disor-

dered structure. The Co and Li sites were kept fully occupied 

and an ordered structure was assumed for the refinement. The 

refined cell volume of 283.31(3) Å3 is smaller than reported 

values for hydro-37, 66 and solvothermal44, 48 LCP, indicating 

fewer antisite defects. The observed background profile can 

mostly be attributed to the borosilicate capillary used (refer-

ence measurement of an empty capillary see Fig. S1, ESI†). 

However, the presence of amorphous impurity phases cannot 

be ruled out by the PXRD experiment.   

 
Fig. 2 Rietveld fit of the X-ray powder diffraction data of the as-prepared LCP-MW 

material obtained from the microwave-assisted solvothermal synthesis.  

 

Elemental analysis 

The chemical composition of the XRD-pure sample LCP-MW 

was determined by CHNS, photometry, and AAS analyses. The 

results are given in Table 2a. The measured absolute contents 

(in wt%) show a deficiency both in Co and P compared to the 

expected values. This can be attributed to the higher-than-

expected amounts of Li and S, which result in a relative de-

crease of the former elements. The calculated Li:Co:P molar 

ratio is found to be 1.14(5):1.00(1):1.00(2). The deviation of 

the Li value from the theoretical value of 1:1:1 might be due to 

some amorphous or trace impurities. CHNS analysis shows that 

the sample does not contain detectable amounts of carbon 

that might add to the electrochemical performance, which is 

confirmed by the absence of any carbon D or G bands in the 

Raman spectrum (Fig. S7c,d, ESI†). This indicates that the 

washing step is efficient for the removal of the EG co-solvent 

or the ascorbic acid additive and their decomposition prod-

ucts. Also no H (e.g. from residual water) can be found, but 

significant amounts of sulfur are detected. Taking the slight 

excess of about 0.3 wt% Li into account, the S content of 

1.5 ± 0.3 wt% can be related to a mixture of Li2SO4 ∙ H2O and 

Li2SO4 impurities. The Li2SO4 originates from Li2SO4 ∙ H2O, a 

side product of the synthesis (Scheme 1a, see also Fig. S2, 

ESI†). The dehydrated form is obtained because of the drying 

step of the process at 150 °C (dehydration at 130 °C, Scheme 

1b).67, 68  

Because Li2SO4 has hygroscopic properties,69 we assume that a 

mixture of the anhydrous and monohydrate form is present, 

although the detected hydrogen amounts in the sample were 

negligible and the IR spectrum does neither show absorption 

bands of water nor of lithium sulfate (cf. Fig. S7a,b, ESI†). In 

addition, the estimated 5 ± 1 wt% of lithium sulfate are amor-

phous and thus not detectable by PXRD in the LCP-MW pow-
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der. TGA/DSC and temperature-dependent in situ PXRD exper-

iments indicate that the amorphous impurity can be crystal-

lized upon heating (Fig. S4, S5, and S6, ESI†). 

Table 1 Elemental analysis (CHNS, AAS, photometry) of the LCP samples LCP-MW and 

LCP-MW-w in comparison with the theoretical valuesa,b 

Element Theor. a) LCP-MW b) LCP-MW-w 

S (wt%) 0 1.5(3) 1.6(3) 

Li (wt%) 4.3 4.6(2) 4.5(2) 

Co (wt%) 36.6 34.3(5) 34.1(5) 

P (wt%) 19.3 18.0(5) 17.7(5) 

n(Li):n(P) 1 1.14(5) 1.13(5) 

n(Co):n(P) 1 1.00(1) 1.01(1) 

Li2SO4 (wt%) 0 5(1) 6(1) 

LiCoPO4 (wt%) 100 94(2) 92(2) 

a LCP-MW: as-synthesized, LCP-MW-w: after additional extensive washing with 

ice water to remove solution-accessible Li2SO4. b The molar ratios are calculated 

from the experimental results (in wt%) of the CHNS, AAS, and photometric 

analyses (standard deviations are given in parenthesis). c The values for C, H, and 

N were too low to be measured in all samples (= 0). 

 

Scheme 1 (a) Reaction scheme of the microwave-assisted solvothermal synthesis, (b) 

dehydration of the lithium sulfate monohydrate side phase. 

As equal molar amounts of LiCoPO4 and Li2SO4 ∙ H2O are 

formed during the reaction according to Scheme 1a, we as-

sume that the biggest portion of the water-soluble lithium 

sulfate is dissolved in the water component of the binary sol-

vent and further removed by the washing step. In order to 

completely remove the impurity, we tried to wash the sample 

extensively with 1 L of ice water, as the solubility of lithium 

sulfate in water increases with decreasing temperature.70, 71 

The S content of the corresponding sample LCP-MW-w re-

mains similar (Table 2b), indicating that the impurity cannot be 

removed by additional washing. We therefore infer that the 

remaining minor impurity might form inclusions inside the 

particles rather than being located on their surface, and that 

> 94 ± 2 wt% of the sample are the pure LCP phase. Further 

experiments with alternative sulfate-free starting materials 

(e.g. chlorides, nitrates) indicate that the Li2SO4 impurity can-

not be avoided because impure materials or inferior electro-

chemical performances were observed. Therefore, we consider 

the sulfate route as the most feasible one, as it also allows the 

removal of a major portion of the water-soluble side product 

by washing. 

 

Scanning electron microscopy 

Fig. 3 shows the SEM images of the as-prepared sample LCP-

MW. The material consists of uniform, well-crystallized and 

dispersed hexagonal platelets with dimensions of about 400–

600 nm × 700–800 nm and thicknesses ranging from about 

100 nm to 250 nm. The observed particle size is consistent 

with the value of the specific surface area (BET) of 

5.5 ± 0.5 m2/g. Furthermore, no agglomerates of particles are 

observed (Fig. 3a,c), indicating that the EG co-solvent helps to 

prevent agglomeration of the particles without requiring an 

additional dispersant. Moreover, small pores of 10–20 nm (cf. 

zoomed SEM image, Fig. S9, ESI†, and TEM images, Fig. 4) in 

diameter are found on the surface of the particles that can 

most probably be attributed to the formation mechanism. 

According to Scheme 1a, LiCoPO4 and Li2SO4 are formed in 

parallel during the reaction and seem to initially form perfect 

hexagonal composite particles. The highly water soluble Li2SO4 

is dissolved in solvent as well as in the washing water used 

after the synthesis. Hence, pores appear on the surface of the 

particles where the Li2SO4 impurity phase was formerly locat-

ed. The pores, which might be interconnected, destabilize the 

particles, with some particles showing cracks probably due to 

mechanical stress during the synthesis produced by stirring 

and the washing step. As a result, the particle size distribution 

is slightly inhomogeneous. This explanation was confirmed by 

further experiments with different amounts of washing water, 

whereby the extent of fragmentation increased with increasing 

volumes of water. For instance, the SEM images of the exten-

sively washed sample LCP-MW-w (Fig. S10) show significantly 

more fragmented platelets. Therefore, the sample LCP-MW 

was chosen for further characterization. 

Energy dispersive spectroscopic (EDS) analysis under SEM 

(15 kV; Fig. 3h) delivers a composition of 33 ± 2 wt% Co, 

17.4 ± 0.5 wt% P, 48 ± 1 wt% O, and 1.4 ± 0.2 wt% S. These 

values are in good agreement with the results of the elemental 

analysis (Table 2). The corresponding Co:P molar ratio is 

0.99(6). The elemental distribution was examined using EDS 

mapping (Fig. 3d–g; please note that the overview image of 

Fig. 3c suffers from charging effects due to the high accelerat-

ing voltage of 15 kV). As expected, all the elements are homo-

geneously distributed within the sample. It is affirmed that the 

sulfur shows a regular distribution within the particles, sug-

gesting that the amorphous Li2SO4 phase is most likely forming 

inclusions in the hexagonal platelets and therefore cannot be 

removed by intensive washing as observed from elemental 

analysis for the sample LCP-MW-w (Table 2). 

The results clearly indicate that the mixed solvent of H2O and 

EG significantly influences the morphology of the obtained LCP 

powder. Whereas the water component promotes the com-

plete dissolution of the reagents and therefore helps to form a 

more homogeneous reaction mixture, the EG component plays 

an important role in controlling the particle size and shape. 

The size-regulating effect can be attributed to the increased 

viscosity of the binary solvent in comparison to pure water. 

Hence, the ion diffusion rate is slowed down and therefore 

prevents the growth of large particles. As a result, comparably 

narrow particle size distributions are obtained. In addition, the 

EG components inhibits agglomeration of the primary parti-

cles. The polar EG molecules are reported to form long hydro-

gen-bonding chains, that can trap the cations present in the 
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reaction mixture due to its chelating ability and therefore help 

the olivine to nucleate and grow into particles with specific 

morphologies.54, 72 Therefore, EG not only acts as a solvent, but 

also shows properties of a soft template.54, 73  

 
Fig. 3 (a,b) SEM images of LCP-MW recorded at 1 keV (GB mode), (c,d,e,f,g) SEM image 

and EDS maps for Co, P, O, and S obtained at 15 keV to optimize EDS signals, and (h) 

representative EDS spectrum. The C and Al signals derive from the carbon tape and the 

aluminum holder used for the measurement. 

 

Transmission electron microscopy 

In order to get a better understanding of the structure and 

morphology of the material and therefore the formation 

mechanism and crystal growth, transmission electron micros-

copy (TEM) in combination with selected area electron diffrac-

tion (SAED) experiments was performed. The low resolution 

image (Fig. 4a) is in agreement with the results of the SEM 

studies and shows well-defined hexagonal platelets with di-

mensions of 700–800 nm × 400–600 nm × 100–220 nm. In the 

SAED study, patterns of several individual crystals were taken 

to verify that all crystals exhibit identical orientations. In addi-

tion to that, diffraction patterns of perpendicular crystal faces 

were recorded. This approach allows reliable information 

about the crystal growth orientation as well as the thickness of 

the platelets. The frontal view of a regular hexagonal platelet 

(Fig. 4b,c) shows that the particles are highly ordered single 

crystals that are grown in the ac plane, the c axis being ori-

ented diagonally along the longest dimension. The pore struc-

ture or inclusions within the particles, can be seen in the ir-

regular transmission of the platelet that possesses an un-

flawed contour. The side view (Fig. 4d–f) reveals that the 

platelets show the smallest dimension along [010], which is 

the direction of the lithium diffusion pathways in the olivine 

crystal structure. Hence, the platelet-like morphology with 

shorter lithium diffusion pathways enhances the Li diffusion 

properties. The Figures 4g–i show a highly fragmented platelet, 

the hexagonal shape of which is still indicated. Here, the pores 

have formed an interconnected system, which may be a result 

of the removal of the water soluble Li2SO4 impurity that is 

formed within the particles. Despite the defective morphology, 

the single-crystalline particle still shows high crystallinity.  

In agreement with previous reports,73, 74 the TEM studies indi-

cate that the EG co-solvent specifically adsorbs on the (010) 

crystal face, therefore dramatically decreasing its surface en-

ergy. As a result, the growth along [010] is inhibited. In addi-

tion, the nanoplatelets grow preferentially along the [001] 

direction of the (010) plane due to the higher surface energy of 

the (001) than that of the (100) plane,72 promoting the for-

mation of unique hexagonal platelets with reduced dimensions 

along b. A more thorough formation mechanism cannot be 

derived at this point and will have to be further examined. 

However, the observation of hexagonal shapes with exposed 

(010) faces is consistent with calculations of the surface ener-

gies of LFP by Fisher and Islam,75 who suggested the favorable 

growth morphology under hydrothermal conditions to be an 

hexagonal prism terminated by (010), (100), and (101) faces. 

 

Fig. 4 TEM images, corresponding SAED (selected area electron diffraction) patterns, 

and HRTEM images of LCP-MW: (a) overview image, (b,c) frontal view of a hexagonal 

platelet, (d,e,f) side view of a platelet, and (g,h,i) particle with a porous structure as a 

result of the removal of the water soluble Li2SO4 impurity.  
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Soft X-ray spectroscopy 

The normalized soft XAS Co L2,3-edge spectra for the sample 

LCP-MW are shown along with two reference compounds 

(CoO and Co3O4 powder) in Fig. 5. Whereas K-edge spectra 

have been obtained in various studies,76-78 to the best of our 

knowledge, this is the first time the Co L-edge data of LiCoPO4 

are presented. The XAS was collected in the Auger electron 

yield (AEY), total electron yield (TEY), and fluorescence yield 

(FY) modes, corresponding to probing depths of 1–2 nm, 2–

5 nm and 50 nm, respectively.62 The absorption peaks of the 

L2,3-edge XAS are sensitive to the oxidation state, spin state, 

and the chemical environment in the crystal.79  

We note that the main peaks in the spectra line up with the 

CoO reference spectra. A comparison with Co L2,3-edge spectra 

reported for other Co(II) and Co(III) compounds in various 

symmetries, as well as the lowest energy peak at 776.4 eV give 

strong evidence for octahedral Co2+ as expected, showing a 

similar crystal field strength as in CoO.63, 79-81 The well-defined 

multiplet structure indicates a highly ordered crystal structure 

and a low degree of covalence in the CoO6 octahedra,63 which 

is consistent with the sharp peaks observed in the PXRD (Fig. 2) 

and in general agreement with earlier findings for LFP through 

Fe L2,3-edge spectra.82, 83 The oxidation state is consistently +II 

for all detection modes and hence, indicates that the sample is 

homogeneous from the top surfaces to volumes deep in the 

bulk. The absence of a shoulder at the characteristic peak 

energy for Co3+ (779.4 eV) shows that there are no significant 

amounts of Co3+ impurities, also not on the surface, which 

might reduce the electrochemical activity. The small amount of 

the ascorbic acid reductant used in the synthesis therefore 

seems to be sufficient to prevent oxidation of Co2+ in solution. 

The EG solvent can also act as a weak reducing agent.73 

 

 

Fig. 5 Normalized soft XAS Co L2,3-edge spectra of LCP-MW recorded in the AEY (blue), 

TEY (red), and FY (green) modes in comparison to the FY modes of the reference 

compounds CoO (black) and Co3O4 (grey). The energies corresponding to Oh Co2+ 

(776.4 eV), Co2+ (777.7 eV), and Co3+ (779.4 eV) are indicated. 

Electrochemical characterization 

The electrochemical performances of the LCP synthesized by 

MWST synthesis (LCP-MW) are presented in Fig. 6. In order to 

gauge the obtained data, a comparison with a LCP material 

with spherical nanoparticles (diameter ~50–60 nm, BET area 

~25 m2/g) obtained by solid-state synthesis (LCP-SS) as de-

scribed in our previous work84 was added. The rate capability 

of the LCP-MW electrode was investigated (Fig. 6a). The corre-

sponding galvanostatic curves of the 3rd cycle at 0.1 C and 

0.5 C are shown in Fig. 6b. During the 1st cycle at 0.1 C, LCP-

MW reaches an initial discharge capacity of 137 mAh/g where-

as only 125 mAh/g is obtained for LCP-SS. The charge curve 

(Fig. 6b) is characterized by two potential plateaus at 4.75 V 

and 4.86 V for LCP-MW. For LCP-SS, the plateaus are slightly at 

higher potential values with 4.8 V and 4.9 V. Both potential 

windows are in agreement with earlier reports for LCP.85, 86 

The discharge curves also present two potential plateaus 

which are shifted to lower potential for LCP-SS. The corre-

sponding gravimetric energy densities of the materials based 

on the mean values of the potential of ~4.8 V and ~4.75 V are 

658 Wh/kg for LCP-MW and 594 Wh/kg for LCP-SS, respective-

ly. For the first six cycles corresponding to rates of 0.1 C and 

0.2 C, the difference in specific capacity between the samples 

was similar, with values of 120 mAh/g and 108 mAh/g found 

for LCP-MW and LCP-SS at the end of cycle 6, respectively. At 

these low C rates, the coulombic efficiency, which improved 

upon cycling, was higher for LCP-MW than for LCP-SS, at 96.7% 

and 94.5%, respectively, after six cycles. The low coulombic 

efficiency values in the first cycle are caused by the decompo-

sition of the electrolyte during the charge at high potential.87 

The better efficiency obtained for LCP-MW can be explained 

by its lower surface area (~6 m2/g compared to ~25 m2/g84 for 

LCP-SS), as parasitic currents from electrolyte oxidation at high 

potentials would be estimated to be proportional to the BET 

surface area. The about fourfold lower BET surface area of 

LCP-MW should thus lead to the observed substantially im-

proved coulombic efficiency. From 0.5 C to 2 C, the difference 

in specific capacity between LCP-MW and LCP-SS increased. At 

the end of the cycling procedure at a 2 C rate, a specific capaci-

ty of 98 mAh/g was reached for LCP-MW, whereas 71 mAh/g 

was obtained for LCP-SS. LCP-MW is able to sustain higher 

currents than LCP-SS, probably due to its unique platelet-like 

shape with shorter lithium diffusion paths as discussed earlier. 

This hypothesis is also supported by the lower charge/ dis-

charge polarization of the LCP-MW compared to LCP-SS 

(Fig. 6b), despite of its fourfold lower BET area. Additionally, 

some tests at lower current (0.067 C) were done for LCP-SS but 

no improvement in the specific capacity was obtained.  

The electrochemical stability of both LCP materials was inves-

tigated at 0.5 C rate after two formation cycles at 0.067 C 

(Fig. 6c). The very low coulombic efficiencies in the first two 

cycles are due to the very low C rates, at which parasitic cur-

rents from electrolyte oxidation more strongly affect the cou-

lombic efficiency. For the first cycle at 0.5 C, the specific capac-

ity reaches 123 mAh/g for LCP-MW and only 106 mAh/g for 

LCP-SS. After 100 cycles, a specific capacity of 84 mAh/g is 
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obtained for LCP-MW whereas only half of this value is found 

for LCP-SS. A coulombic efficiency of 98.9% is quickly reached 

for LCP-MW, which is higher than the one of LCP-SS. The bet-

ter electrochemical behavior in the 1st cycle combined with a 

higher coulombic efficiency are probably responsible of the 

higher stability observed for LCP-MW. 

 

Fig. 6 (a) Specific capacity vs. C rate and coulombic efficiency obtained in each cycle for 

LCP-MW in comparison to LCP-SS, (b) galvanostatic curves for the 3rd cycle at 0.1 C and 

at 0.5 C, (c) comparison of the electrochemical stabilities of LCP-MW and LCP-SS at 

0.5 C after the first two cycles at 0.067 C. 

In order to elucidate whether the amorphous lithium sulfate 

impurity (~5 wt%) affects the electrochemical properties, sam-

ples with similar particle size and shape but varying amounts 

of Li2SO4 were synthesized by the MWST process. As all sam-

ples show comparable electrochemical performance within 

standard deviations (Fig. S11 and S12, ESI†), the results indi-

cate that the impurity does not influence the electrochemical 

behavior, and that it is electrochemically inactive.  

To sum up, we have demonstrated that the LCP produced by 

MWST synthesis outperforms a compound synthesized by a 

conventional solid-state reaction, which is the standard meth-

od for synthesizing LiCoPO4 in the bulk scale.  

 

Comparison with the literature 

Research in the field of hydro- and solvothermal synthesis of 

LCP has been ongoing since 2005.36 The electrochemical prop-

erties of materials synthesized by the hydrothermal technique 

were first reported in 2009 and a capacity of only 15 mAh/g 

reached.38 An improvement of the performance has been 

exclusively realized by additional post-calcinations at tempera-

tures as high as 900 °C and/or coating with conductive carbon 

to give LiCoPO4/C, the only exception being the MWST synthe-

sis (Fig. 7). Hence, it is important to note that the capacities of 

uncoated LiCoPO4, which reflects the intrinsic capacity of the 

material, and LiCoPO4/C are comparable to only a limited de-

gree. In fact, by introducing carbon coatings, the energy densi-

ty is decreased. Hence, the carbon content has to be kept a 

relatively low levels, even if there is an apparent improvement 

in rate capability.88 In addition, also the cell design, charging 

protocol (C rate, potential window, CV step, etc.) as well as 

post-synthetic treatments influence the electrochemical per-

formance. 

In comparison to the state-of-the-art in conventional as well as 

microwave-assisted hydro- and solvothermal synthesis of pure 

LCP-type materials, reflecting the intrinsic material properties, 

our material LCP-MW in fact delivers the best electrochemical 

performance to date. In comparison to materials that under-

went further treatments such as post-annealing or conductive 

coatings, our as-prepared material also delivers a state-of-the-

art performance, which is remarkable. Moreover, our material 

was tested in a regular setup using standard electrolytes 

(EC/DMC) and medium loadings (4–5 mg/cm2). Additional tests 

with high loadings up to 12 mg/cm2 were done and present 

reasonable specific capacity (Fig. S13, ESI†). Further improve-

ments can be expected upon optimization of the electrolyte 

(e.g., using ionic liquids or additives such as trimethyl-

boroxine84, 89) and the electrode formulation.13 In addition, the 

microwave method allows a considerable reduction of the 

production costs as it requires only moderate temperatures 

and produces highly crystalline materials in one step without 

further treatment. Once suitable electrolytes for high-voltage 

cathodes are available, materials like LCP might be sustainable 

candidates for future Li-ion battery applications. 
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Fig. 7 Comparison of the initial discharge capacities obtained for LiCoPO4 and carbon-

coated LiCoPO4/C materials synthesized via hydrothermal (HT),38-40, 42 solvothermal 

(ST),42-44, 53, 90 microwave-assisted hydro- (MWHT)47 and solvothermal (MWST),48, 50, 51 

and supercritical fluid (SCF)28, 29, 55, 78 procedures as reported between 2009 and 2016. 

Asterisks mark materials that underwent additional post-heat treatments at high 

temperatures. The star represents the capacity reached in this work using a MWST 

approach, which is the best reported for an untreated LCP-type material to date. 

Conclusions 

High-performance LiCoPO4 particles with uniform hexagonal 

platelet-like morphologies have been synthesized by a facile 

and rapid microwave-assisted solvothermal approach at mod-

erate temperatures (250 °C) using a water/ethylene glycol (EG) 

(1:1) mixed solvent. Unlike conventional hydrothermal or 

solvothermal techniques, the process does not involve any 

additional post heat treatment or carbon coating. PXRD pat-

terns indicate the direct formation of highly crystalline, olivine-

type LiCoPO4 from the microwave synthesis. SEM and 

TEM/SAED studies reveal that the hexagonal platelets feature 

dimensions of 800 nm × 300–400 nm in the (010) plane and a 

thickness of 200–300 nm along [010]. The results indicate that 

EG plays an important role in the formation of the LiCoPO4 

nanoplatelets by effectively regulating the particle size and 

morphology as well as tuning the crystal orientation. 

The nanoplatelets exhibit excellent electrochemical proper-

ties, including a high initial discharge capacity of 137 mAh/g at 

0.1 C, 114 mAh/g at 0.5 C, and 97 mAh/g at 2 C, high cou-

lombic efficiency, and excellent rate capability. Moreover, the 

material displays a remarkable stable capacity retention of 

68% after 100 cycles at 0.5 C. These attractive electrochemical 

features can be attributed to the unique sub-micron scale 

platelet-like morphology with shortened lithium-ion diffusion 

pathways along the b direction of the crystal structure. Never-

theless, a possible effect of the amorphous, sulfur-containing 

Li2SO4/Li2SO4 ∙ H2O impurity (<5 wt%), which was identified by 

means of elemental analysis, EDS, and temperature-depen-

dent X-ray powder diffraction experiments, on the electro-

chemical features will have to be addressed in further experi-

ments.  

To conclude, the present work provides an efficient and simple 

approach towards high-performance olivine-type cathode 

materials with designed morphology. Moreover, it clarifies the 

relationship between the synthesis method, material micro-

structure and electrochemical properties, which has hitherto 

barely been touched upon in the literature but is crucial for 

developments in the field. The short reaction time as well as 

the fact that the one-step microwave process does not involve 

any post-treatments (e.g. annealing, coating, ball milling) offer 

the potential to lower the manufacturing costs of cathode 

materials with significant energy savings in comparison to 

other synthesis techniques.  
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