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The firewall paradox for black holes is often viewed as indicating a conflict between unitarity and 
the equivalence principle. We elucidate how the paradox manifests as a limitation of semiclassical 
theory, rather than presents a conflict between fundamental principles. Two principal features of the 
fundamental and semiclassical theories address two versions of the paradox: the entanglement and 
typicality arguments. First, the physical Hilbert space describing excitations on a fixed black hole 
background in the semiclassical theory is exponentially smaller than the number of physical states in the 
fundamental theory of quantum gravity. Second, in addition to the Hilbert space for physical excitations, 
the semiclassical theory possesses an unphysically large Fock space built by creation and annihilation 
operators on the fixed black hole background. Understanding these features not only eliminates the 
necessity of firewalls but also leads to a new picture of Hawking emission contrasting pair creation at 
the horizon.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Ever since the discovery of the thermodynamic behavior of 
black holes [1–3], we have been searching for a deeper structure of 
spacetime and gravity beyond that described by general relativity. 
Its exploration, however, has repeatedly led to confusions involving 
fundamental principles such as unitarity of black hole evolution 
and smoothness of their horizons [4–7]; see, e.g., Refs. [8,9] for 
reviews. In this regard, the latest major puzzle is the firewall para-
dox [7,10,11], which asserts that unitarity of black hole evolution 
as viewed from the exterior is inconsistent with smoothness of the 
horizon, assuming that the semiclassical theory is valid away from 
the stretched horizon. It has been argued that the most likely im-
plication of this is that an infalling observer encounters drama at 
the horizon, so that there is no such thing as the interior space-
time, at least for an old black hole in which the information re-
trieval process is operative [12].

In this paper, we elucidate how the firewall paradox may mani-
fest as a limitation of the semiclassical theory, rather than presents 
a conflict between fundamental principles. We do this by illus-
trating how an interpretation of the semiclassical theory under-
mines some of the assumptions that went into the arguments of 
Refs. [7,10,11]. In fact, by using this understanding of the paradox 
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we can explore the Hilbert space structure of matter and space-
time in the fundamental theory of quantum gravity. While the 
picture we present is already implicit in more complete treatments 
of evaporating black holes in Refs. [13–15], we find it useful to ex-
plicitly extract the features responsible for avoiding the existence 
of firewalls. In particular, the following aspects of the fundamental 
and semiclassical theories play key roles:

• The number of physical configurations representing semiclas-
sical excitations, i.e. the configurations that are physically re-
alized and which the operators in the semiclassical theory can 
discriminate, is much (exponentially) smaller than the number 
of physical states in the fundamental theory of quantum grav-
ity. This implies that in the fundamental theory, or the “dual 
field theory,” the same semiclassical operators can be realized 
in exponentially many different ways. In other words, the ac-
tions of these operators are defined only on a subset of the 
whole degrees of freedom in the fundamental theory.

• The semiclassical theory possesses a (formally infinitely) large 
Hilbert space constructed as the Fock space associated with 
the creation and annihilation operators on a fixed black hole 
background. This is because the effect of the excitations on 
the spacetime background is ignored in the semiclassical the-
ory. The finite number of independent configurations for the 
physical semiclassical excitations are mapped into this Hilbert 
space. In other words, the elements of the Hilbert space out-
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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side the image of this map are unphysical, and as such, they 
do not exist in the corresponding dual field theory.

We argue that these two features are responsible for addressing 
the two representative arguments for firewalls: the entropy and 
typicality arguments. After reviewing the firewall paradox in Sec-
tion 2 and presenting our view on the semiclassical approximation 
in Section 3, we refute the typicality and entanglement arguments 
in Sections 4 and 5, respectively. In Section 6, we present the pic-
ture of Hawking emission [13,14] implied by these analyses.

For simplicity, we present our analysis for a Schwarzschild black 
hole in 4-dimensional spacetime, although we do not expect diffi-
culty in extending to other cases. Throughout the paper, we do not 
discriminate the Planck length, lP, and the string length, but they 
can be straightforwardly separated if needed. We use natural units 
in which h̄ = c = lP = 1, unless otherwise stated.

2. The firewall paradox

Recall that the firewall arguments asserted that the comple-
mentarity picture [6] was not enough to answer the black hole 
information problem. What is the complementarity picture? De-
spite what Hawking considered long ago [4], we now do not think 
that the black hole formation and evaporation process violates uni-
tarity, at least from the viewpoint of a distant observer (based 
mainly on gauge/gravity duality [16]). This, however, raises the 
black hole “information cloning paradox” [8]: the complete infor-
mation about an object fallen into a black hole seems to reside 
both in late Hawking radiation and in the interior region, violating 
the no-cloning theorem in quantum mechanics. The complemen-
tarity picture was proposed to address this paradox. The basic idea 
was that no one can be distant and infalling observers at the same 
time, physically obtaining the information both from Hawking ra-
diation and the fallen object. The hope was that when one restricts 
the application of the classical spacetime picture to a causal patch 
(i.e. the spacetime region which a single observer, represented by a 
timelike geodesic, can access), semiclassical field theory still gives 
a good local description of physics.

A key point of the firewall arguments was that a paradox sim-
ilar to the information cloning one could be formulated within a 
single causal patch. The argument presented originally in Ref. [7]
goes as follows. Consider an outgoing mode B localized in the 
black hole zone region, r < rz � 3M , which corresponds to Hawk-
ing radiation just emitted from the stretched horizon at r = rs =
2M + O (1/M). Here, r is the Schwarzschild radial coordinate. For 
a sufficiently old black hole, unitarity requires this mode to be en-
tangled with a mode representing Hawking radiation emitted ear-
lier [12]. On the other hand, according to semiclassical field theory, 
the smoothness of the horizon requires that any mode in the zone 
region, including B , must be entangled (almost maximally) with 
the pair mode inside the horizon [17]. These two statements can-
not be reconciled. A single mode B cannot be entangled with two 
different modes, i.e. the earlier Hawking radiation mode (at r > rz) 
and the interior mode (at r < rs), since it would violate strong sub-
additivity of the entropy, entailing the information cloning. We call 
this argument for firewalls the entropy argument.

Another argument was subsequently put forward using a pu-
tative map between a mode in semiclassical field theory (e.g. B
above) and an operator in the dual field theory. The most sophis-
ticated version [11] calculates the average of the number operator, 
â†â, in the dual field theory over states having energies in a cho-
sen range, with â corresponding to an infalling mode a in the bulk. 
It was claimed that the resulting number is at least of order unity, 
N̄ ′

a � O (1), because one can choose a basis for these states such 
that they are all eigenstates of the number operator b̂†b̂ with b̂
corresponding to an exterior mode localized in the zone region 
(and because the expectation value of â†â in any eigenstate of b̂†b̂
is at least of order unity). This would imply that the expectation 
value of â†â is of order unity or larger in a typical black hole state, 
i.e. most black hole states have firewalls. We call this argument the 
typicality argument.

The firewall paradox refers to a set of arguments indicating a 
conflict between unitarity of black hole evolution and smoothness 
of the horizon implied by the equivalence principle, formulated 
within a single causal patch. The two arguments described above 
represent the most well developed among those formulated so far.

3. Semiclassical approximation

What is the semiclassical approximation? Answering this ques-
tion accurately is a key to resolving the firewall paradox. Here 
we present a picture focusing on the relation between the Hilbert 
spaces of fundamental quantum gravity and semiclassical theory. 
This picture builds on earlier work of one of the authors (Y.N.) 
with Sanches and Weinberg [13–15,18,19].

Consider a set of quantum states representing a dynamical 
black hole of mass M and its zone region, r < rz. Here, we have 
adopted the Schrödinger picture; in the Heisenberg picture this 
corresponds to considering a set of quantum states which have 
a black hole of mass M at a fixed location at a fixed time, with 
the region outside the zone being unexcited. The first step to-
ward constructing the semiclassical approximation is to split the 
degrees of freedom represented by this set into those associated 
with the black hole “itself” and excitations around it. According to 
the standard entropy argument, the number of independent black 
hole states without an excitation is

Nvac ∼ e
1
4A+O (Ap;p<1), (1)

where A = 16π M2 � 1 is the area of the black hole, and from 
now on we suppress possible higher order corrections in 1/A in 
the exponents in analogous expressions. The number of possible 
configurations for the excitations is expected to be

Nexc ∼ eγA; (2)

see, e.g., Ref. [20]. Here, the coefficient γ satisfies the holographic 
bound [21], γ < (rz/4M)2 − 1/4.1 Since the total number of quan-
tum states is

N ≈ NexcNvac, (3)

the physical Hilbert space describing excitations around a fixed 
black hole background is exponentially smaller than that of the 
whole quantum gravitational degrees of freedom, Nexc �N .2 This 
first step is depicted as (a) → (b) in Fig. 1.

The next step is to “classicalize” the degrees of freedom corre-
sponding to Nvac, which were called the vacuum degrees of free-
dom in Refs. [13,14,19] because they are associated with the black 
hole vacuum state in semiclassical theory. This step consists of two 
processes. First, we must formally make the number of black hole 
degrees of freedom infinite as depicted as (b) → (c) in Fig. 1 (al-
though we will see later how semiclassical theory “corrects” this 

1 In Refs. [13–15], it was stated that the number of physical configurations for 
the excitations around the black hole is lnNexc ∼ Aq with q < 1, ignoring the ef-
fect of the redshift of the Schwarzschild geometry. Including this effect, the number 
of possible configurations is rather lnNexc ∼ A. This does not affect the basic con-
clusion. Important points are that lnNexc is finite and that there are large number 
of degrees of freedom, lnNvac , that cannot be probed by operators in the semiclas-
sical theory.

2 A similar conclusion has also been reached in Ref. [22] in the context of the 
AdS/CFT correspondence.
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Fig. 1. Construction of the semiclassical approximation requires splitting the physical degrees of freedom in quantum gravity, (a), into the degrees of freedom associated 
with the black hole vacuum (vacuum degrees of freedom) and excitations around it, (b). The vacuum degrees of freedom are then classicalized, (c), which creates a large 
(fictitious) Hilbert space: the Fock space of creation and annihilation operators on the resulting classical background, (d). (For interpretation of the references to color in this 
figure, the reader is referred to the web version of this article.)
to represent phenomena associated with finite Nvac). This can be 
understood by analyzing the origin of the Bekenstein–Hawking en-
tropy, lnNvac = A/4. The quantum uncertainty principle implies 
that a dynamical black hole of mass M has an energy uncer-
tainty of ΔE ≈ ΔM ≈ O (1/M) and, with the position uncertainty 
of order the quantum stretching of the horizon Δr ≈ O (1/M), 
a momentum uncertainty of Δp ≈ O (1/M).3 The finiteness of the 
Bekenstein–Hawking entropy means that there are only a finite 
number of independent quantum states, eA/4, within these uncer-
tainties. On the other hand, classically, the number of independent 
states in this range is infinite, labeled by a continuous number M
(even ignoring the momentum uncertainty).4 Regarding the back-
ground spacetime as classical, therefore, amounts to enlarging the 
number of possible vacuum states to infinity. This can also be seen 
from the fact that lnNvac is written as Ac3/4l2Ph̄ when h̄, c, and lP
are restored, which becomes infinite for h̄ → 0.5

The second process is to ignore the backreaction, i.e. the ef-
fect of excitations on the (now classical) spacetime. This comes 
with a major “side effect”: since the effect of excitation degrees of 
freedom on the vacuum degrees of freedom is ignored, the result-
ing theory—semiclassical theory—allows for having a much larger 
(formally infinite) number of excitations on a fixed spacetime back-
ground. In semiclassical field theory, this manifests itself as the fact 
that the Fock space built by creation and annihilation operators on 

3 The energy and momentum here refer to those as measured in the asymptotic 
region. The energy uncertainty, therefore, is given by ΔE ≈ 1/Δt , where Δt is the 
characteristic timescale for the change of the black hole state in Schwarzschild time. 
Assuming that the relevant timescale is the Planck time as measured locally at the 
stretched horizon, we obtain Δt ≈ O (M). This is indeed the timescale for Hawking 
emission.

4 This is a standard phenomenon in the relation between quantum and classical 
mechanics. For example, the number of independent states of a harmonic oscilla-
tor in a fixed energy interval is finite in quantum mechanics (labeled by a discrete 
number for the levels) while it is infinite in classical mechanics (labeled by a con-
tinuous amplitude).

5 This implies that it is inaccurate to say that a classical black hole loses expo-
nentially many quantum hairs of a quantum black hole. The corresponding “hairs” 
for a classical black hole is the mass parameter M .
the background is much larger than the actual Hilbert space for 
physical excitations; see (d) in Fig. 1. In other words, the phys-
ical Hilbert space for the excitations is much smaller than what 
is naively implied by the Fock space in semiclassical field theory; 
by design, the semiclassical approximation is valid only for a very 
“small” number of excitations, of order lnNexc or smaller.

At this point of the construction, the resulting theory seems 
fairly “superficial.” The effect of excitations (matter and radiation) 
on spacetime is not automatically included—the only way to in-
corporate it is to solve the classical Einstein equation with a given 
configuration of the excitations (often taken as the quantum ex-
pectation value of the energy-momentum tensor) and adopt the 
resulting spacetime as the background. The entropy of the black 
hole is formally infinite, so its temperature is zero—the black hole 
background exists eternally. However, the semiclassical approxima-
tion is actually more clever. It inherits some features reflecting the 
basic structure of the true physical degrees of freedom and their 
interactions, which allowed Hawking to discover the renowned 
black hole emission effect.

Suppose we describe the system from the viewpoint of an ex-
ternal observer. If we want to describe the entire history of black 
hole evolution, we need to consider the whole time-dependent 
background from formation to evaporation, but if we are interested 
only in the black hole emission process, then we may consider a 
black hole background of mass M , which may be viewed as eternal 
at the semiclassical level [17]. As we have discussed, the fact that 
the static approximation for the black hole is valid only for Δt � M
implies that the state must have an uncertainty ΔE � 1/M , so 
when we say a black hole of mass M we are actually considering 
an ensemble of black holes of masses in the range M ± O (1/M). 
Semiclassical field theory encodes this fact such that the black hole 
vacuum state is a mixed (thermal) state. While this state is unique 
for a given M , the von Neumann entropy of the state is nonzero, 
reflecting the fact that the black hole microstate in the fundamen-
tal theory is not unique (so with this procedure, black holes of 
slightly different masses in the range M ± O (1/M) need no longer 
be regarded as different). This is depicted in Fig. 2. Note that by 
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Fig. 2. Semiclassical theory as viewed from an external observer encodes possible black hole microstates as the von Neumann entropy associated with the mixed black hole 
vacuum state. By integrating the entropy density associated with the local temperature from the stretched horizon (Schwarzschild horizon) to the edge of the zone, we 
obtain an entropy that scales as the area of the black hole (infinity), which corresponds to the number of black hole microstates in the quantum (classical) theory. (For 
interpretation of the references to color in this figure, the reader is referred to the web version of this article.)
integrating the thermal entropy density calculated using the local 
temperature

T (r) = 1

8π M

1√
1 − 2M/r

, (4)

from the stretched horizon, r = rs, to the edge of the zone, r = rz, 
we indeed obtain an entropy that scales as the area of the black 
hole, S ∼A. If we do not take into account the quantum stretching 
and integrate the entropy density from the Schwarzschild horizon, 
r = 2M , to the edge of the zone, r = rz, then we obtain S = ∞
consistently with the fact that the black hole entropy is infinite in 
the classical theory.

As we will discuss in more detail later, the thermal nature of 
the black hole vacuum state not only reflects the number of inde-
pendent black hole microstates in the fundamental theory, but also 
encodes interactions of the black hole vacuum degrees of freedom 
with the rest of the degrees of freedom, e.g. field theory modes 
outside the zone, r � rz. Another important point here is that the 
number of physical excitations one can have on the black hole 
background is finite, of order lnNexc ∼ A. The Hilbert space rep-
resenting these excitations must be embedded into the infinitely 
large Fock space that one can formally build on the fixed black 
hole background.

4. Refutation—the typicality argument

The picture in the previous section tells us how the typical-
ity argument for firewalls can be flawed. An important point is 
that the “map” from the physical Hilbert space of the fundamental 
theory to the Fock space of the semiclassical theory with a fixed 
black hole background is not one-to-one. In particular, all the un-
excited black hole microstates look exactly the same as probed by 
the operators in the semiclassical theory. This occurs because these 
operators do not probe the vacuum degrees of freedom, i.e. the 
degrees of freedom in the right half in (c) and (d) of Fig. 1 and 
the left panel of Fig. 2. This implies that in the dual field theory, 
there are exponentially many different ways to represent the bulk 
semiclassical operators, which differ in actions on the degrees of 
freedom other than the excitation degrees of freedom. Said differ-
ently, the actions of these operators are defined only on a subset 
(excitation) of the whole degrees of freedom (excitation + vac-
uum). In Refs. [13,14,18,19], this fact was referred to as that the 
semiclassical picture is obtained after coarse-graining the degrees 
of freedom associated with the Bekenstein–Hawking entropy.

Consider the creation and annihilation operators, b† and b, cor-
responding to a mode localized outside the stretched horizon. In 
terms of these operators, all the black hole vacuum states appear 
as a unique, thermal state. The situation is analogous in the dual 
field theory. In terms of the dual field theory operators b̂† and b̂, 
which are the images of b† and b, all the black hole vacuum states 
appear as the unique thermal state. It is then clear that the aver-
age over all the b̂†b̂ eigenstates considered in Ref. [11] is irrelevant 
to the discussion on the smoothness of the horizon for the black 
hole vacuum states—all the states in the average are the same ther-
mal state in terms of b̂† and b̂ even with a finite width of energy 
range of order ΔM in which the average is taken. We stress that 
the thermal state in question should not be viewed as a statistical 
ensemble of states that look different as probed by the b̂† and b̂
operators, as would be the case if the system were in thermal equi-
librium in the usual sense. This state is intrinsically mixed from the 
perspective of the semiclassical operators, and has the correct en-
tanglement structure when the state is purified using the “mirror” 
modes b̃ [17,23] at the semiclassical level.

What about the excited states? One might think that if we take 
the average of Ref. [11] over all the black hole (not necessarily vac-
uum) states, one can take the basis of the states to be eigenstates 
of the number operator for one of the exterior modes, b, leading 
to the conclusion that a typical state must have firewalls. This is, 
however, not necessarily the case because the number of physi-
cal states is finite, ∼ N , so that the map from the physical states 
to the Fock space of the semiclassical theory may not be onto. In 
particular, one may assume that the physical states correspond to 
states in which infalling modes a (and/or excitations on the “hori-
zon” as viewed from an infalling reference frame [14]) are excited. 
In the distant description, this corresponds to states in which, 
when the vacuum state is purified using the mirror modes b̃, ex-
citations preserve entanglement between b and b̃ necessary to en-
sure the smoothness of the horizon. For example, a state in which 
an a mode is excited is described effectively as a state in which 
the thermal state is modulated by a linear combination of the b, 
b†, b̃, and b̃† operators as implied by the Bogoliubov transforma-
tion between the a and b, ̃b operators (although the full description 
may require intrinsically stringy effects because of a large boost 
between the infalling and distant reference frames [14,24]). While 
we have not proved the assumption made here, we do not find a 
reason why it is impossible.

The picture described above implies that the average consid-
ered in Ref. [11] over the eigenstates of b†b—or its putative map 
b̂†b̂—corresponds to taking the average over an unphysically large 
Hilbert space, depicted as the light shaded (pink) region in the 
left half in (d) of Fig. 1 and the two panels of Fig. 2. One might 
think that if we impose a simple ultraviolet cutoff, e.g., the upper 
bound on the local energy of a b quantum, then (the logarithm 
of) the number of states involved in the average becomes the right 
order, keeping the firewall argument. This is, however, not the cor-
rect way to implement the cutoff. The set of the physical states, 
i.e. the states that actually exist in the dual field theory, does not 
agree with the set kept by such a simple ultraviolet cutoff. In other 
words, firewalls may reside only outside the dark shaded (red) box 
in the figures, and hence may be unphysical.
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We note that many of the physical states considered here do 
have high energy quanta near the horizon. This is, however, differ-
ent from the firewall phenomenon. These states have many phys-
ical excitations near the horizon which will either fall into the 
black hole or fly into the asymptotic space within the timescale 
of O (M ln M); in particular, they cannot be obtained in the course 
of the standard black hole evaporation process. In fact, the first 
two paragraphs of this section are sufficient to address the typical-
ity argument for firewalls presented in Ref. [11], which concerns 
old, near vacuum black holes.

5. Refutation—the entanglement argument

We now address the entropy argument for firewalls. An implicit 
assumption of the argument is that in the Hawking emission (or 
the black hole mining [25]) process, the microscopic information 
about the black hole is carried from the stretched horizon to the 
edge of the zone (or where the mining apparatus is located) by 
an excitation of a semiclassical mode: B in Section 2. If this were 
indeed the case, then it would lead to a contradiction between 
unitarity and smoothness of the horizon.

The information transfer, however, does not occur in this man-
ner [13,14]. Recall that the microscopic information of the black 
hole is represented by the configuration of the vacuum degrees 
of freedom, the dark shaded (blue) box in the right side in the left 
panel of Fig. 2. The question is how the black hole vacuum degrees 
of freedom interact with the other degrees of freedom: the modes 
outside the zone, r > rz, in the case of Hawking emission and ex-
citation modes within the zone, rs < r < rz, in the case of mining. 
The answer given in Refs. [13,14] is that they interact as if they are 
distributed according to the gravitational thermal entropy density. 
This distribution is reference frame dependent, reflecting the fact 
that the vacuum degrees of freedom are not standard radiation, 
and its precise forms are not known in general. In a distant refer-
ence frame, however, the quasi-static nature of the system allows 
us to infer the correct distribution—the relevant entropy density is 
that obtained from the blueshifted Hawking temperature in Eq. (4).

Since the amount of integrated entropy contained around the 
edge of the zone is of O (1), outgoing field theory modes can ex-
tract the information directly from the vacuum degrees of freedom 
there, without involving a semiclassical mode deep in the zone. To 
quantify this statement, we may introduce the tortoise coordinate 
r∗ = r + 2M ln(r/2M − 1), in terms of which the stretched horizon 
is at r∗

s ≡ r∗|r=rs � −4M ln M and the edge region is |r∗| ≈ O (M). 
We then find∫

|r∗|�O (M)

T 3 (
r(r∗)

)
dr∗ ≈ O (1), (5)

where T (r) is given by Eq. (4). This implies that the microscopic 
information about the black hole is delocalized over the entire 
zone region.6 Note, however, that the distribution is not uniform 
and is strongly peaked toward the stretched horizon; we obtain 
the full degrees of freedom only if we integrate the entropy den-
sity down to the stretched horizon∫ O (M)

r∗
s

T 3 (
r(r∗)

)
dr∗ ≈ O (A). (6)

Since entropy indicates how much information one can extract 
from a system in the characteristic timescale, in this case t ≈

6 This is consonant with the intuition that different microstates of the black hole 
correspond, in some sense, to black holes with slightly different masses. It is natural 
to expect that the information about the mass is stored nonlocally, as is indeed the 
case classically (in the form of the metric).
Fig. 3. Semiclassical degrees of freedom outside the zone, r > rz , not only interact 
with semiclassical excitations inside the zone through usual kinetic terms (the left 
bond) but also with the vacuum degrees of freedom (the right bond). The informa-
tion transfer associated with Hawking emission occurs through the latter interaction 
(the solid arrow), rather than through semiclassical excitations in the zone (the 
dashed arrow).

O (M), the amount of delocalization in Eq. (5) is enough for outgo-
ing field theory modes to extract an O (1) amount of information 
from the vacuum degrees of freedom in each Hawking emission, 
which occurs in the timescale of t ≈ O (M) around the edge of the 
zone, where t is the Schwarzschild time. This is how Hawking 
emission must be viewed at the semiclassical level. (A similar anal-
ysis can also be performed for the mining process.)

One might wonder what is the relation between this picture 
and the original calculation by Hawking [3], which seems to in-
volve modes deep in the zone in the semiclassical theory. It is 
not uncommon in physics that calculation of some quantity in-
volves “unphysical” entities in the intermediate step of the cal-
culation. For example, density fluctuations generated by cosmic 
inflation [26] are calculated by imposing the Bunch–Davies vacuum 
condition for all modes, including those that are super-Planckian at 
early times. We do not interpret this to mean that the spacetime 
is indeed classical in sub-Planckian distances. Likewise, a Casimir 
force can be calculated by summing up an infinite tower of modes 
(with an arbitrary large ultraviolet cutoff), and the electron anoma-
lous magnetic moment can be computed by performing the mo-
mentum integral to infinity (with suitable counterterms). We do 
not interpret these to mean that the theories under consideration, 
e.g. QED, are valid up to arbitrary high energies. In some cases, 
we can indeed find explicit regularizations which make it clear 
that the results do not depend on entities that appear in the inter-
mediate steps of calculations. In other cases, finding such explicit 
regularizations are difficult, but even in these cases, one can often 
be convinced (by various arguments) that the most naive extrap-
olations of the theories are giving the correct answers for certain 
“inclusive,” or “low energy,” quantities, despite the fact that these 
extrapolations cannot be taken literally. This can happen because 
such extrapolations often capture the essential features of the (un-
known) fundamental theories which are sufficient to guarantee the 
correct answers. (For a discussion on an illustrative example of this 
phenomenon, see Ref. [27].) We consider Hawking’s original cal-
culation to be of this kind—it gives the correct answers for the 
emission rate and spectrum as viewed from a distance, but we 
should not take all the intermediate steps too seriously, especially 
the part involving modes deep in the zone.

A schematic picture representing interactions between semi-
classical degrees of freedom outside the zone and the black hole 
degrees of freedom (both vacuum and excitation) is given in Fig. 3. 
The portion of the outside degrees of freedom located around 
r = rz interact with the semiclassical degrees of freedom inside 
and near the edge of the zone through usual kinetic terms, as rep-
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resented by the left bond in the figure. They also interact, however, 
with an O (1/A) fraction of the vacuum degrees of freedom di-
rectly, as indicated by the right bond. This is where one of the 
assumptions in Ref. [7]—the “literal” validity of the semiclassical 
theory outside the stretched horizon—breaks down.7 The infor-
mation transfer associated with Hawking emission occurs through 
direct interactions of the outside modes with the vacuum degrees 
of freedom (indicated by the solid arrow), rather than through 
semiclassical excitations in the zone as envisioned in the firewall 
argument (the dashed arrow).

6. Hawking emission: a spacetime view

An intuitive picture of the Hawking emission process can be 
obtained if we choose the vacuum on which excitations are de-
fined to be the (hypothetical) static black hole background (the 
so-called Hartle–Hawking vacuum [29]), rather than the evolving 
black hole background as we have been doing so far. Creation of 
Hawking quanta around the edge of the zone in this description 
is associated with that of an ingoing negative energy flux which 
carries negative entropy [13,14]. Here, the energy and entropy is 
defined with respect to the static background. We can understand 
this phenomenon by the following simple qubit model.

Let |ψk(M)〉 (k = 1, · · · , eS0(M)) be the vacuum microstates (in 
the sense of the static vacuum) of the black hole of mass M . 
Suppose that a black hole, in a superposition state of |ψk(M)〉’s, 
releases 1 qubit of information through Hawking emission. This 
occurs in the timescale of t ≈ O (M), and the energy of the emit-
ted quantum is E � (ln 2)/8π M , so that eS0(M−E) = eS0(M)/2. We 
can model this process by saying that the emitted Hawking quan-
tum is in states |r1〉 and |r2〉 if k is odd and even, respectively. Due 
to energy-momentum conservation, the process is accompanied by 
the creation of an ingoing negative energy excitation on the black 
hole (static) vacuum, which we denote by a star; namely, |ψ∗

k (M)〉
represents black hole microstates with the negative energy excita-
tion.

What would this emission process look like at the microscopic 
level? Can it simply be

|ψk(M)〉 →
{ |ψ∗

k (M)〉|r1〉 if k is odd,

|ψ∗
k (M)〉|r2〉 if k is even,

(7)

as one might naively imagine? If this were the case, we would 
find a problem. Remember that |ψ∗

k (M)〉 have energy M − E , and 
we expect that they will relax into vacuum states of the black hole 
of mass M − E:

|ψ∗
k (M)〉 → |ψk′(M − E)〉. (8)

However, since k′ runs only over k′ = 1, · · · , eS0(M−E) = eS0(M)/2, 
such a relaxation cannot occur unitarily. Instead, what actually 
happens in the emission process is

|ψk(M)〉 →
{ |ψ∗

k+1
2

(M)〉|r1〉 if k is odd,

|ψ∗
k
2
(M)〉|r2〉 if k is even,

(9)

i.e. the index for the black hole microstates with the negative en-
ergy excitation runs only from 1 to eS0(M)/2. This allows for these 

7 This does not necessarily mean that generic soft quanta sent to an evaporating 
black hole must see violation of the semiclassical theory because such processes 
are not the same as the time reversal of the Hawking emission process [13,14]. 
To see the violation certainly, we need to send finely-tuned soft quanta to an 
anti-evaporating black hole. This is a process in which the coarse-grained entropy 
decreases, since usual Hawking emission is a process in which the coarse-grained 
entropy increases [28].
states to relax unitarily into the black hole vacuum states of mass 
M − E , as in Eq. (8). Note that the process in Eq. (9) is also unitary 
by itself if we consider the whole quantum state, including both 
the black hole and the exterior of the zone.

The above analysis implies that a negative energy excitation 
over the black hole static vacuum carries a negative entropy; i.e., 
in the existence of a negative energy excitation, the range over 
which the black hole microstate index runs is smaller than that 
without. Specifically, the excitation of energy −E carries entropy 
−8π M E . This picture is rather comfortable, since entropy is usu-
ally associated with energy, S ∼ E , and we are saying that this is 
also the case even if these quantities are measured with respect 
to the static black hole background. We find that the information 
transfer from an evaporating black hole occurs through an ingoing 
negative entropy flux, at least from this viewpoint.

A comment is in order. Since the creation of a Hawking quan-
tum, and hence of a negative energy excitation, occurs in the 
timescale of O (M), and the relaxation time of a negative exci-
tation is expected to be of O (M ln M), the amount of negative 
energy excitations we have on the static black hole background 
is of order ln M at any time. Here, the relaxation timescale can be 
estimated from the time it takes for the excitation to propagate 
from the edge of the zone to the stretched horizon and the time 
it takes for the information to be scrambled [30], both of which 
give O (M ln M). We may therefore view that an evaporating black 
hole has steady negative energy and entropy fluxes and redefine 
the black hole vacuum to include them. The resulting vacuum then 
has entropy S(M), given by S(M) − S0(M) ≈ − ln M . This redefined 
vacuum corresponds, very roughly, to the Unruh vacuum [17] in 
the semiclassical theory, and the corresponding geometry is that 
of an evaporating black hole, which is well described by the ad-
vanced/ingoing Vaidya metric near the horizon [31]. In this picture, 
the change in the local gravitational field supplies the energy of 
outgoing Hawking quanta created at r ≈ rz. The dark shaded (blue) 
boxes in the right side in (b), (c), (d) of Fig. 1 and in the left panel 
of Fig. 2 represent the microscopic degrees of freedom associated 
with this redefined vacuum.

The picture of Hawking emission resulting from the above anal-
ysis [13,14] is different from what was imagined in Refs. [7,10,11,
32], which implicitly assumed that some information transporta-
tion mechanism is in operation from the stretched horizon to the 
edge of the zone on the semiclassical background; see the left panel 
of Fig. 4. Our picture says that the information transfer from an 
evaporating black hole cannot be understood in this manner—it is 
the spacetime itself that carries the microscopic information about 
the black hole, and this information must be viewed as delocalized 
throughout the zone in the semiclassical picture. With respect to 
the static background, the transfer occurs through an ingoing flux 
of negative energy-entropy excitations created around the edge of 
the zone, as depicted in the right panel of Fig. 4 (although these 
excitations can be incorporated as a part of the evolving black hole 
vacuum). The absence of the problem found in the entanglement 
argument is now obvious: there is no outgoing mode that is en-
tangled with both early radiation and the mirror mode. While late 
Hawking quanta are certainly entangled with early ones for an old 
black hole, these quanta exist only outside the zone, where the 
near horizon approximation is not applicable (and hence there is 
no such thing as the mirror modes).

Comparing this picture [13,14] with the old, heuristic picture of 
Hawking’s pair creation [3,4], we find two key features which we 
reiterate here:

• From the semiclassical viewpoint, the location in which pairs 
of a positive energy Hawking quantum and a negative en-
ergy excitation are created is not at the (stretched) horizon 
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Fig. 4. The information transfer from an evaporating black hole does not occur through outgoing positive energy-entropy excitations (left panel) but through ingoing negative 
energy-entropy excitations in the zone (right panel). This is possible because the microscopic information about the black hole is carried by the “spacetime itself” (the 
vacuum degrees of freedom), which at the semiclassical level must be viewed as delocalized over the zone according to the thermal entropy density associated with the 
blueshifted Hawking temperature.
but around the edge of the zone, which is macroscopically
away from the horizon.8 Microscopic information about the 
black hole is transferred there to field theory quanta, as in 
Eq. (9), which is possible because the information is carried 
by the spacetime itself and so is delocalized over the entire 
zone region. Note that it is not unnatural for such special dy-
namics to occur in this particular region, since it is where the 
near horizon, Rindler-like space is “patched” to the asymptotic, 
Minkowski-like space.

• The creation of a positive energy Hawking quantum and a neg-
ative energy excitation takes a form very different from the 
standard “pair creation” of particles. In the standard pair cre-
ation picture, the final states associated with the positive and 
negative energy excitations are assumed to be maximally en-
tangled with each other, which is not the case here as one can 
see by writing explicitly the expression in Eq. (9) for the first 
few k’s. For example, the black hole states after the emission 
are the same for k = 1 and 2, despite the fact that the states 
for the emitted quanta are different. In fact, it is this lack of 
entanglement that allows for the emission process to transfer 
the information from the black hole to the radiation.

The calculation by Hawking “bypasses” these points while still giv-
ing the correct answers for the rate and spectrum of the emitted 
quanta as viewed from a distance. This must be because it cap-
tures an essential feature(s) of the fundamental theory, which is 
ultimately responsible for this energy-information transfer process 
between spacetime and particles.

What is the essential feature Hawking’s calculation is captur-
ing? We suspect that it may exactly be the smoothness of the 
horizon, i.e. the ability of erecting a reference frame in which 
physics looks approximately Minkowskian locally there. Hawking’s 
(or other related) calculation provides an effective way of incorpo-
rating this information into the derivation of the rate and spectrum 
of the emitted particles. As we have argued, while we may trust 
these quantities as viewed from a distance (or from “high energy” 
excitations such as a mining detector in the zone) since the black 
hole physics is already “integrated out,” it does not mean that all 
the intermediate steps of the calculation can necessarily be trusted. 
To diagnose if we can in analogous cases, we usually analyze if the 
naive interpretation of the theory leads to pathological conclusions. 
In some cases these pathologies are readily evident, but in general 
not all sicknesses of effective theories are straightforward to see 
(cf. Ref. [35]). The firewall arguments may be viewed as such a 
pathology, indicating the limitation of the semiclassical theory in-
terpreted naively.

8 Similar points have also been discussed more recently in Refs. [33,34].
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