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Abstract

Emulation and Uncertainty Quantification for Models with Functional

Response Using Bayesian Adaptive Splines

by

Devin Francom

When a computer code is used to simulate a complex system, a fundamen-

tal task is to assess the uncertainty of the simulator. In the case of computationally

expensive simulators, this is often accomplished via a surrogate statistical model, a

statistical output emulator. An effective emulator is one that provides good approx-

imations to the computer code output for wide ranges of input values. In addition,

an emulator should be able to handle large dimensional simulation output for a rel-

evant number of inputs; it should flexibly capture heterogeneities in the variability

of the response surface; it should be fast to evaluate for arbitrary combinations of

input parameters; and it should provide an accurate quantification of the emulation

uncertainty.

In this work, we develop Bayesian adaptive spline methods for emulation of

computer models that output functions. We introduce modifications to traditional

Bayesian adaptive spline approaches that allow for fitting large amounts of data and

allow for more efficient Markov chain Monte Carlo sampling. We develop a functional

approach to sensitivity analysis that can be performed using this emulator. We

present a sensitivity analysis of a computer model of the deformation of a protective

plate used in pressure driven experiments. This example serves as an illustration

of the ability of Bayesian adaptive spline emulators to fulfill all the necessities of

computability, flexibility and reliable calculation on relevant measures of sensitivity.

x



We extend the methods to emulation of an atmospheric dispersion simulator

that outputs a plume in space and time based on inputs detailing the characteristics

of the release, some of which are categorical. We achieve accurate emulation using

Bayesian adaptive splines to model weights on empirical orthogonal functions. We

extend the adaptive spline methodology to allow for categorical inputs. We use this

emulator as well as appropriately identifiable simulator discrepancy and observa-

tional error models to calibrate the simulator using a dataset from an experimental

release of particles from the Diablo Canyon Nuclear Power Plant in Central Califor-

nia. Since the release was controlled, these characteristics are known, allowing us to

compare our findings to the truth.

We further extend the methods to emulate a computer model that outputs

misaligned functional data. We do this by modeling the aligned, or warped, data

as well as the warping functions, using separate Bayesian adaptive spline models.

We explore inference methods that treat these models jointly and separately, and

establish methods to ensure that the warping functions are non-decreasing. These

methods are applied to a high-energy-density physics model that outputs a curve

representing energy as a function of time.
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Chapter 1

Introduction

1.1 Motivation and Background

Computer simulation plays an indispensable role in modern scientific re-

search and discovery. Hypotheses can be tested in computer simulated experiments

that are impractical or impossible to test in true experiments. These simulators,

or computer models, incorporate current scientific understanding of the phenomena

of interest into a mathematical model that is solved using a computer, sometimes

at great computational cost. Hence, supercomputers have become essential tools

for furthering understanding of complex processes in astrophysics, materials science,

engineering, fluid mechanics, nuclear physics, climate science, ecology, evolutionary

biology, economics, epidemiology, medicine, sociology, and many other fields.

Computer simulations are inherently theoretical. They are based on mod-

els that, for simplicity or because of incomplete scientific understanding, do not

perfectly represent reality. Hence, analyses of computer simulations that fail to ac-

count for uncertainty in the simulator are likely to reach incomplete or incorrect

conclusions. This uncertainty could be due to general inadequacy of the underly-

1



ing mathematical model used to describe the process, lack of understanding of the

inputs to the simulator, or numerical and computational instabilities. Quantifica-

tion of these uncertainties (generally called uncertainty quantification or UQ in the

computer simulation community) is an essential step to ensure the reliability of a

simulator.

Two uncertainty quantification problems of great interest to the those ana-

lyzing computer simulations are (1) analysis of the sensitivity of the simulator output

to changes in its inputs and (2) using observations of the system of interest to deter-

mine appropriate settings (or inputs) of the simulator and possible simulator bias.

The first task, called sensitivity analysis, can provide valuable information concern-

ing which inputs have the largest effect on the output, and hence deserve further

study. The second task, called calibration, is essential if the results of a simulated

experiment are expected to provide useful information about reality.

Often, uncertainty quantification tasks like sensitivity analysis and calibra-

tion cannot be done analytically for complex simulators. In these cases, a Monte

Carlo approach to UQ typically requires a large number of computer model eval-

uations using different input combinations, essentially treating the simulator as a

black box. When a computer model is expensive to evaluate and a large number of

evaluations is impossible, a common approach to UQ is to evaluate the computer

model at a reasonable number of input combinations and build a response surface to

predict the computer model output at arbitrary input settings. Building suitable re-

sponse surfaces, called emulators or surrogate models, is a topic of ongoing research

in many fields. An effective emulator is one that provides good approximations to

the computer code output for wide ranges of input values. In addition, an emulator

should be able to handle large dimensional simulation output for a relevant number

2



of inputs; it should flexibly capture heterogeneities in the variability of the response

surface; it should be fast to evaluate for arbitrary combinations of input parame-

ters, and it should provide an accurate quantification of the emulation uncertainty.

Using a statistical model for emulation is a natural choice. Because linear models

are likely to be too inflexible, research has focused on semi- and non-parametric re-

gression models, with most attention given to the Gaussian process (GP). However,

traditional GP models lack the scalability and the flexibility to handle the larger and

more complex datasets produced in modern computer experiments. Improvements

in these areas is a topic of broad and current interest.

Emulation is further complicated in cases where a realization of the com-

puter model results in a function rather than a scalar. The computer model output

could be a curve, a surface, a time series, a spatio-temporal field or some other type

of function that results from a combination of inputs. Computer models with func-

tional response have become increasingly common as computational capacity has

increased. In some cases, realizations of a computer model using different inputs

may result in functional output on different grids, such as time series on different

time scales. Incorporating functional data analysis methodology into emulation is

an active research area, though minimal attention has been given to including reg-

istration of functional data in the emulation framework.

The purpose of this dissertation is to describe how Bayesian adaptive spline

models can be used for emulation and in turn sensitivity analysis and calibration,

especially for computer models with functional response.

3



1.2 Adaptive Splines

Traditional spline models represent a curve f(x) using a linear combination

of truncated polynomial basis functions, where each basis function takes the form

[x− t]α+ or [t−x]α+ and [x]+ = max{0, x}. The truncation point t in each polynomial

basis function is called a knot. Choosing the number of knots to use and where to put

them can be arbitrary. Using many knots allows for more complex shapes, but also

increases the number of parameters to be estimated, since each basis function weight

in the linear combination is unknown. Representing a surface, rather than a curve,

can be done by using tensor products of truncated polynomial basis functions. For

instance, for f(x1, x2) we may have basis functions of the form [x1 − t1]α+[x2 − t2]α+.

This requires that knots (t1, t2) be placed in multiple dimensions. The curse of

dimensionality leads to an exponential increase in the number of knots needed to

yield complex shaped surfaces, quickly depleting degrees of freedom.

Adaptive spline models choose the number and placement of knots based

on the complexity of the surface being modeled. This means that more knots will

be used in parts of the input space where they are needed, and fewer where they

are not needed. While similar in the spirit of parsimony to recursive partitioning, or

tree based models, the end result when using spline basis functions is continuous.

Inference for adaptive spline models is complicated by the transdimension-

ality of the model space. Because the number of basis functions is unknown and

there can be a massive number of possible basis functions to choose from, methods

of inference need to be able to explore the model space in an efficient way. Further,

the flexibility of the model specification can result in overfitting unless precautions

are taken to limit model complexity. To use adaptive spline models for emulation,
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estimating their uncertainty is important so that it can be appropriately reflected in

the UQ tasks that require the emulator.

1.3 Research Objectives

The primary goals of this research are to develop the capability of Bayesian

adaptive spline models for emulation, sensitivity analysis, and calibration for com-

puter models with functional response. Research contributions in these areas are

motivated by three computer models. While each simulator has functional response,

they each have unique challenges associated with performing UQ tasks.

The first research objective is to develop Bayesian adaptive spline models

that can produce a functional response. Special attention is given to advancing infer-

ence methods and model specification to efficiently explore the adaptive spline model

space and to avoid overfitting. The second objective is to use functional Bayesian

adaptive spline models to do sensitivity analysis. This requires the development of

functional sensitivity analysis methods. These two objectives are achieved in the

work presented in Chapter 2. This work focuses on a materials science computer

model that outputs curves representing the deformation of a protective plate during

a high pressure experiment. The model has seven inputs determining the configura-

tion of the plate.

In the process of achieving the objectives above, the creation of general pur-

pose software to fit and analyze Bayesian adaptive spline models became a secondary

research objective. A description of this software is given in Chapter 3.

The third research objective is to calibrate a computer model for the move-

ment of a plume of particles in space and time in an area of complex terrain. The
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particular application focuses on the region near the Diablo Canyon Nuclear Power

Plant in Central California. In this case, the emulator needs to be able to handle

vast amounts of data and must be able to incorporate both categorical and contin-

uous inputs. Further, the bias of the computer model needs to be quantified and

incorporated into the analysis in a way that does not confound the calibration. The

data obtained for calibration of this model are from an experimental release of be-

nign particles into the atmosphere performed at the nuclear power plant in 1986.

The experimental release allows us to determine the accuracy of our methods, since

the conditions of the release are known. This work is presented in Chapter 4.

The fourth research objective is to build an emulator for a computer model

that outputs misaligned functional data. That is, the emulator models both the

phase and amplitude variation in the functional response based on the inputs to the

simulator. This is presented in Chapter 5 and is demonstrated with the emulation

of a high-energy-density physics simulator that outputs time series on different time

scales. This emulation also requires the assimilation of large amounts of data.

Finally, the research is summarized and possible extensions are described

in Chapter 6.
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Chapter 2

Sensitivity Analysis and

Emulation for Functional Data

using Bayesian Adaptive Splines

Sensitivity analysis, as defined in Saltelli et al. 2004, is the study of how

uncertainty in the output of a model (numerical or otherwise) can be apportioned to

different sources of uncertainty in the model input. Determining these relationships

has become a fundamental step in the use of complex models because of the possible

ways a modeler or model user can utilize such information. Uses include finding

which inputs require the most attention (because varying them causes the output to

vary substantially), finding inputs to which the model is robust and conveying the

reasons that a decision based on the model may not be totally certain. More details

about the practical relevance of sensitivity analysis are found in Saltelli et al. (2008)

Section 1.2.14 and Pannell (1997). For the purposes of this chapter, we are most

interested in performing sensitivity analyses of expensive-to-run computer models
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that are used to simulate complex processes. Further, we would like to do this while

treating the computer model as a black box, also known as non-intrusive sensitivity

analysis.

While many methods for sensitivity analysis exist, they are not all of equal

value. Most methods use a set of inputs at which the model needs to be evaluated,

called the experimental design. Saltelli & Annoni (2010) describe the downfalls of

the “one-factor-at-a-time” (OAT or OFAT) experimental design, which determines

sensitivity by changing only one input at a time from some nominal input values.

The OAT design is often paired with methods of sensitivity analysis deemed “lo-

cal”, because they only take into account variation in the model output in some

small neighborhood of the inputs, usually by taking or approximating a derivative

(Saltelli et al., 2000). By contrast, “global” sensitivity analysis methods (Sobol’,

1990; Saltelli et al., 2008) take into account the entire space of uncertain inputs

by eliciting probability distributions over the inputs. Global methods are thus able

to discover when changes in the model output are due to simultaneous changes in

multiple inputs (interactions), as well as the implications of extreme, but possible,

input settings. In this chapter, we limit our attention to global sensitivity analysis.

When a model is expensive to evaluate, as is the case for many computer

models, being able to perform a sensitivity analysis using a limited number of model

evaluations is essential. Hence, much research has been done to determine which

experimental designs yield the best sensitivity analyses with the least number of

evaluations (Sobol’, 2001; Sacks et al., 1989). Another approach is to use a set of

model evaluations to build a fast, statistical alternative to the model. Sensitivity

analysis and other analyses of uncertainty can then be performed on this surrogate

model, also called an emulator or metamodel. The Gaussian process has been a
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popular surrogate model choice (Welch et al., 1992; Kennedy & O’Hagan, 2001)

because of its flexibility and simplicity, though it is sometimes avoided because

of its lack of scalability to large numbers of model evaluations, large numbers of

input variables, and high dimensional output. In general, sensitivity analysis for the

surrogate model will require the surrogate to be evaluated for very many different

combinations of the input parameters. Oftentimes, the result is prone to Monte

Carlo error, depending on the number of model evaluations. This undermines the

value of surrogate models that are not extremely fast to evaluate for large numbers

of inputs.

In this chapter, we detail the benefits of using Bayesian multivariate adap-

tive regression splines (BMARS) as an emulator for the purposes of sensitivity analy-

sis. MARS and BMARS have been recently introduced to the literature on computer

model analysis (Storlie et al., 2009; Chakraborty et al., 2013; Stripling et al., 2013;

Maljovec et al., 2013), as a flexible and scalable alternative to more traditional Gaus-

sian process based methods. We emphasize, in particular, that the sensitivity anal-

ysis of a BMARS surrogate model can be performed without requiring evaluations

of the surrogate, and thus without Monte Carlo error. This is the case for a lim-

ited number of surrogate models, perhaps the most popular of which is polynomial

chaos (Sudret, 2008). While both BMARS and polynomial chaos use polynomial

expansions that facilitate the analytical calculations of the integrals required for a

global sensitivity analysis, BMARS is especially well suited for high dimensional

problems. This is because BMARS follows an adaptive strategy to fitting the re-

sponse surface, producing flexible and parsimonious emulators. For completeness,

Oakley & O’Hagan (2004) propose a method for getting sensitivity indices under a

scalar Gaussian process emulator that is Monte Carlo free and analytical in some
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cases. However, the BMARS method we introduce is better suited to much larger

datasets than Gaussian process methods.

Our interest lies especially in the application of these methods to computer

models that generate functional data. Such models present a particular challenge as

they often produce output of massive dimension, as, for every combination of the

input parameters, there are hundreds or even thousands of simulated values. The

example that motivated our interest in BMARS emulators is a computer model of

the deformation of a metal plate during pressure driven experiments. This model has

seven inputs detailing the configuration of the plate and outputs a curve representing

the profile of the plate after deformation, as shown in Figure 2.1. The most natural

way to approach emulating a model that outputs functions, say of r, would be to

think of r as though it was another input to the model. However, if we have m model

evaluations that each output a function on a grid of size n, then this approach to

emulation would need to be able to handle data of size mn, which can be difficult

for large m or large n.

In this chapter, we show that the BMARS formulation is well suited for

functional output. We introduce sensitivity analysis methods for functional data,

and give analytical sensitivity measures for the functional BMARS model. We also

introduce some alterations to the BMARS priors to induce regularization as well as

parallel tempering in the MCMC sampling scheme to allow for efficient exploration

of the highly multimodal model space.

The structure of the chapter is as follows. We first review the definition

of the Sobol’ index, which we use as a measure of global sensitivity, in Section 2.1.

We detail some approaches to obtaining the Sobol’ index for models with functional

output. We then explain our approach to fitting the BMARS surrogate model in
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Figure 2.1: Formulation of the plate deformation model: (a) shows the configuration
of the protective (half) plate, (b) shows the output from 104 evaluations of the
computer model with different variable combinations, and (c) shows the variables.
Each curve in (b) is the output from one model evaluation and represents the profile
of the tantalum plate after the experiment. Zero in the x-axis of (b) represents the
center of the plate.

Section 2.2, including our prior specification, computational approach for functional

model output, tempering scheme, and analytical expressions for the Sobol’ sensi-

tivity indices. In Section 2.3, we present a simulation study to demonstrate the

effectiveness of the sensitivity analysis approach. In Section 2.4, we perform a sen-

sitivity analysis of a model of the deformation of a protective plate used in pressure

driven experiments. Finally, we discuss our findings in Section 2.5.

2.1 Global Sensitivity Indices for Functional Output

The Sobol’ sensitivity indices (Sobol’, 1990) decompose the variance of the

model output in terms of the variance due to main effects (first order effects) for each

of the inputs, and variance due to interaction effects (higher order effects). This is

the same task that the ANOVA decomposition accomplishes in linear models, but
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for models that may be highly nonlinear. To start, let the function f represent our

model (or surrogate model). Say that f is a function of p inputs, x = (x1, . . . , xp),

each with domain in the unit interval. Further, say that f has functional output

that is a function of r, also with domain in the unit interval. Then f(r,x) is a scalar.

The Sobol’ decomposition of such a functional output model could proceed

in two ways. First, consider writing f as

f(r,x) = f0(r) +

p∑
i=1

fi(r, xi) +
∑

1≤i<j≤p
fij(r, xi, xj) + . . .+ f1...p(r, x1, . . . , xp)

where

f0(r) =

∫ 1

0
. . .

∫ 1

0
f(r,x)dx

fi(r, xi) =

∫ 1

0
. . .

∫ 1

0
f(r,x)dx−i − f0(r)

fij(r, xi, xj) =

∫ 1

0
. . .

∫ 1

0
f(r,x)dx−ij − f0(r)− fi(r, xi)− fj(r, xj)

and so on with x−ij being the vector x without elements i and j. These terms are

interpretable as the overall mean function, f0(r), the main effect function for variable

i, fi(r, xi), the two way interaction effect function for variables i and j, fij(r, xi, xj),

and so on. Proceeding with the method for obtaining Sobol’ indices, we have that

V ar(f(r,x)) =

p∑
i=1

V ar(fi(r, xi)) +
∑

1≤i<j≤p
V ar(fij(r, xi, xj)) + . . .

+ V ar(f1...p(r, x1, . . . , xp)). (2.1)

Thus, we have decomposed the variance of the function in terms of the variance

from the main effects of each input and the variance from the interactions between
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inputs. Each of these terms is a function of r, as are the associated sensitivity indices

Si1...il(r) = V ar(fi1...il(r, i1, . . . , il))/V ar(f(r,x)), so that Si1...il(r) is the proportion

of variance in the model output at r explained by the interaction between inputs

i1 . . . il in addition to the variance explained by main effects coming from these inputs

and interactions of lesser order between these inputs. We may also be interested

in the cumulative sensitivity of the model to a particular input at r. The total

sensitivity for input i at r is defined as Ti(r) = Si(r) +
∑

j 6=i Sij(r) + . . .+ S1...p(r)

and interpreted relative to Tj(r) as the importance of input i compared to input j

at r. Though these are no longer interpretable as proportions, they give us an idea

of the overall importance of an input relative to the other inputs at a particular r.

The second way we could obtain the Sobol’ decomposition of such a func-

tional output model would be to augment the vector of inputs to z = (r,x). We

then obtain the decomposition

f(z1, . . . , zd) = f0 +
d∑
i=1

fi(zi) +
∑

1≤i<j≤d
fij(zi, zj) + . . .+ f1...d(z1, . . . , zd), (2.2)

where d = p + 1. We proceed with the traditional Sobol’ variance decomposition

to obtain Si, Sij , Ti, etc., which are no longer functions of r. Letting r = z1, S1

is the proportion of variance in the model output due to the main effect produced

by the functional variable r. This provides interesting insights, especially when

determining whether the bulk of the variance in the model output is due to the

functional variables or the inputs to the computer model.

These approaches to functional sensitivity analysis have complementary

strengths, as will be demonstrated in the plate deformation example in Section 2.4.

13



2.2 BMARS

We now discuss the problem of fitting a BMARS model to a set of simu-

lated output in more detail. Multivariate adaptive regression splines (MARS) were

proposed in Friedman (1991c) as a continuous alternative to recursive partitioning

methods like CART. The adaptive part of MARS is what makes it work for high di-

mensions (large numbers of input variables). Multivariate (non-adaptive) regression

splines might take a tensor product of one dimensional splines to get a multivariate

spline, but with only a few dimensions the number of knots explodes and the curse

of dimensionality becomes debilitating. The MARS model instead chooses knots

adaptively, learning where to put them in the same way that partitions are learned

in classification and regression tree (CART) models (Breiman et al., 1984). Thus,

if there is not sufficient utility in having a knot at some point in the high dimen-

sional input space, it will not be included. Further, the MARS model has a natural

ANOVA type decomposition, making main effects and interactions easy to under-

stand. Unlike CART, MARS produces continuous models, creating computational

difficulties but resulting in more realistic models.

The original MARS inference is done using a forward stepwise algorithm fol-

lowed by a backward stepwise algorithm similar to versions of inference for recursive

partitioning. The Bayesian version (Denison et al., 1998b; Nott et al., 2005) consid-

ers all the unknowns as random variables and assigns prior distributions to them.

Reversible Jump Markov chain Monte Carlo (RJMCMC) (Green, 1995) methods

are used to obtain transdimensional samples from the joint posterior. Our approach

uses aspects of Denison et al. (1998b) and Nott et al. (2005) but with a number of

significant alterations to the priors, a strong focus on efficient handling of functional
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data, and tempered RJMCMC to achieve more efficient sampling.

We note that MARS is not an interpolator, meaning it does not have the

property that the fitted emulator replicates the computer model runs exactly. When

emulating deterministic computer models, using an interpolator seems like a natural

choice. However, Gramacy & Lee (2012) point out that emulation is often improved

when a small-scale measurement error is included.

We will first formulate the model and discuss our choice of priors. We

then discuss efficient computation for functional data. Next, we discuss the need

for tempering, and our tempering approach. Finally, we discuss how to analytically

obtain the Sobol’ decomposition of a BMARS model.

2.2.1 Model formulation

To use the BMARS approach for functional data, we include the functional

variable as an additional input to the model. At this point, we consider only the

case of output as a function of one variable, as is the case in the plate deformation

example. Let yi(r) denote the simulator output at r using input vector xi, where r

denotes the functional variable and i = 1, . . . , nx. Then we model yi(r) as

yi(r) = f(r,xi) + εi(r), εi(r) ∼ N(0, σ2)

where we use a basis expansion to specify f ,

f(r,x) = a0 +
M∑
m=1

amBm(r,x).
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If we let z = (r,x), the mth basis function Bm(r,x) = Bm(z) is given by

Bm(z) =

Km∏
k=1

[skm (zvkm − tkm)]α+ (2.3)

which is a tensor product of piecewise polynomials of degree α. The value of Km de-

termines the degree of interaction in the basis function, where Km ∈ {1, . . . ,Kmax}.

The term vkm is an index to determine which variable is used (which element of z).

We allow each variable to be used at most one time in each basis function. The term

tkm is called a knot, and is a value in the domain of the variable zvkm . Following

previous MARS implementations, a knot tkm is only allowed at one of the marginal

locations where we have a value of zvkm in the data for identifiability purposes. The

term skm is a value in {−1, 1}. The function [·]+ is defined as max(·, 0), meaning

that it makes any negative values zero.

This notation follows that of Friedman (1991c), with the exception of the

inclusion of the functional variable. The functional variable could be space, time, or

any other such variable over which the output is measured. In practice, functional

output is usually given on a grid. While nothing in the formulation above requires

the output for yi(r) to be on the same grid of r values as yj(r), for simplicity we

assume that this is the case: y1(r), . . . , yn(r) are given on the same grid of nr values.

We will denote this grid as r. For example, if r denotes time, nr would be the

number of time points on which the output is given, and r would be the vector of

those time points. Treating the functional variable as an additional input results in

a univariate MARS fitted over N = nx × nr data points. If we define the nx × p

matrix X such that the ith row of X is xi, then the data used to fit the MARS model

are the rows of [1nx⊗r,X⊗1nr ], where ⊗ denotes the Kronecker product. For large

16



nx or nr manipulating, and even storing the full matrix X can be challenging. More

specifically, in the course of inference and prediction, we will plug in values of x

and r to Equation 2.3 to get discretized versions of the basis functions, which we

call basis vectors. We denote the mth basis vector as Bm, and the (M + 1) × N

matrix of basis vectors (with an additional column of ones) as B. When N is large

and M is moderately large, storing this matrix becomes costly. We will discuss a

computational strategy that simplifies this approach in Section 2.2.2.

To complete the Bayesian specification of the model, we will specify priors

for the unknown parameters. Our unknowns include the number of basis functions

M , the basis function coefficients a = (a1, . . . , aM ), the variance σ2, and the pa-

rameters used to build each basis function. For the mth basis function, these are

Km, sm = (s1m, . . . , sKmm), vm = (v1m, . . . , vKmm), tm = (t1m, . . . , tKmm). For

notation purposes, let K = (K1, . . . ,KM ), s = (s1, . . . , sM ), v = (v1, . . . ,vM ), and

t = (t1, . . . , tM ). We will formulate our prior as

p
(
M,σ2,a,K, s,v, t, λ, τ

∣∣X, r) = p(λ)p(τ |X, r)p(σ2)p(M |λ)p(a|M,σ2,B, τ)

M∏
m=1

p(Km|M)p(sm,vm, tm|Km,M,X, r)

where λ and τ are hyper parameters to be discussed below. We point out that B is

a function of M , K, s, v, t, X, and r. We also note that priors conditional on such

quantities as X and r do not violate the Bayesian formulation, as they are considered

known.

For the number of basis functions we use a Poisson prior

p(M |λ) ∝ e−λλM/M !
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truncated to M = 0, . . . ,Mmax, where Mmax is the maximum allowable number of

basis functions. We use a Gamma(aλ, bλ) hyperprior for λ. For the error variance,

we use a default prior, p(σ2) ∝ 1/σ2. For the basis function coefficients, we use

a variant of Zellner’s g prior (Zellner, 1986; Liang et al., 2008) with a|B, τ, σ2 ∼

N
(
0, σ

2

τ (B′B)−1
)

where τ |X, r ∼ Gamma(1/N, 1). Thus, τ is centered over the

unit information prior. This prior simplifies computations when compared to previ-

ous approaches that use a ridge regression prior. It also induces regularization by

introducing shrinkage (which the ridge regression prior also does). For the interaction

order we use a discrete uniform prior Km|M ∼ Unif{1, . . . ,Kmax}, m = 1, . . . ,M .

Most implementations of this model take Kmax = 2 as a default. However, we would

like to allow for two way interactions between the input variables that can also in-

teract with the functional variable, so we use Kmax = 3. We note that one could

easily adopt a prior that assigns decreasing probability to larger values of K in or-

der to allow for higher dimensional interactions only if the data really dictate their

inclusion.

For the signs, variables, and knots, previous Bayesian approaches have

considered a discrete uniform prior over all possibilities. We use a similar discrete

uniform prior, but over a limited set of possibilities. The reason for this is that

we want to limit how localized a basis function can become in the same way that

recursive partitioning approaches do, which is to require that each partition contain

a certain number of data points. This is because very local fitting often produces

overfitting. In our experience functional output magnifies this issue. In the MARS

approach, we do not exactly have regular partitions, since basis functions are usually

overlapping in the input space. We get a gauge on how local the structure a certain

basis function is trying to explain by counting the number of non-zero points in the
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basis vector. Although this is only a reliable measure of how localized the model is

near the edge of the input space (in p dimensions), this is the part of the space where

getting such a measure is particularly important since it is where MARS tends to

become unstable.

As an example of the instabilities that we can encounter if we allow for all

possible knot, sign, and variable combinations, consider the dataset given in Figure

2.2. There are 100 random uniform (x1, x2) pairs, given as black circles. If we were

interested in choosing knots for the MARS basis function [x1 − t1]+[x2 − t2]+, the

red dots in the left plot give the possible locations if we do not constrain the prior.

The partition created by the choice of (t1, t2) would, in many of these cases, contain

few data points. The corresponding basis function would then be trying to fit the

very local structure in those few points. The right panel shows the possible knot

locations (in red) if we require the partition to contain at least 20 points. It may

appear that a simpler way to fix the edge instability of MARS would be to not allow

marginal knots too close to the endpoints of the space, as suggested in Friedman

(1991c). For instance, if we required each knot in the example to have at least 20

points marginally between it and the edge of the space, we would allow for a knot

at the intersection of the lines shown in the right panel. Note, however, that there

would only be one data point driving the fit of that basis function, which could lead

to overfitting.

To specify the prior for the signs, variables, and knots, that correspond to
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Figure 2.2: In both plots, 100 random uniform (x1, x2) pairs are shown with black
circles. If we wanted to build the basis function [x1 − t1]+[x2 − t2]+, the red dots
in the left panel show the possible (t1, t2) knot locations if the prior for knots is
unconstrained. On the right are the possible knot locations when the resulting basis
vector is constrained to have at least 20 non-zero values. The lines are placed so
that there are 20 data points larger than these values in each dimension marginally
to illustrate the approach advocated by Friedman.

our proposed constraint, we use the discrete uniform distribution

p(sm,vm, tm|Km,M,X, r) =


cKm if bm ≥ b

0 otherwise

where bm is the number of non-zero values in the basis vectors and b is the minimum

number of non-zero points. In practice, since we have the entire functional output

for each input combination, we might consider choosing b based only on the part of

the basis function that corresponds to the non-functional inputs. We can do this

by replacing b above with bnr where b is chosen as the minimum number of input

points allowed to contribute to the local structure of the function, which we do in the

plate deformation problem. In particular, we use b = 20, though we find the results

are fairly robust for b > 10. We note again, as with the prior for K, that we could
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instead use a prior that places lower probability on basis functions with smaller bm in

order to allow for more localized basis functions only if the data gave strong enough

evidence for them, though we consider only the discrete uniform prior in this thesis.

The value of cKm would usually be unimportant and this prior would merely add an

indicator function to the posterior. However, in the RJMCMC algorithm, cKm will

play a role. The actual value of cKm is the reciprocal of the number of possible basis

functions with interaction order Km, which depends on X and r. For some datasets,

it is feasible to run a pre-processing step to count the basis functions that meet the

required criteria. For datasets where this is not the case, we recommend using, as a

conservative proxy, the constant that would result from the unconstrained prior as

an estimate,

cKm =

(
1

2

)Km ( p

Km

)−1 Km∏
k=1

1

nvkm

where the first term is obtained from the count of all sm, the second from that of the

vm, and the third from that of the tm, conditional on the corresponding vm. Here,

nvkm is the number of unique marginal values of the vkm input in the dataset. This

prior for the knots is slightly different than previous approaches because we have

nx possible knot locations if vkm is one of the regular inputs and nr possible knot

locations if vkm is the functional variable. We find that using this estimate does not

negatively influence the results in test cases.

Now, to address our settings of the remaining parameters we have not yet

addressed, we first consider the spline order α. While in many cases, setting α to

an integer that would ensure continuous derivatives would make sense, we often

encounter instabilities when α > 1. This is because of the erratic tail behavior
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of higher order polynomials, as is documented in Friedman (1991c). In practice,

α = 1 tends to work quite well even for smooth surfaces. We find that the value of

Mmax need not be finite unless computer memory constraints are encountered in the

fitting. Mmax too small should be avoided in order to allow the necessary exploration

of the parameter space. The setting of the hyperparameters for λ, the mean of the

distribution of the number of basis functions, can be difficult. This is because under

the model formulation we have given, the only way to prevent overfitting, even with

a reasonable setting of b and Kmax, is to have a strong prior keeping the number

of basis functions small. Hence, this is a prior that may require tuning. Other

possibilities are to use a strong prior keeping the value of σ2 large or, as has been

done in other approaches, use a large value of τ to shrink the values of a towards

zero. In our experience, changing the value of τ has little effect. A prior keeping the

value of M small seems less invasive than one that keeps σ2 large, especially when

uncertainty quantification is important. Thus, we advocate for a prior that keeps λ

smaller than the actual number of basis functions that we expect. Otherwise, the

slow rate at which the tail of the Poisson distribution decays makes it a weak prior.

2.2.2 Computation

We adapt the original RJMCMC stochastic search algorithm for BMARS

(Denison et al., 1998b) with the additions of Nott et al. (2005) to work with the

priors discussed in the previous section. The RJMCMC has three possible steps:

birth (create a new basis function, add it to the model), death (remove a basis

function), change (change a knot and sign in one basis function). The additions of

Nott et al. (2005) allow for fast variable selection by proposing variables to be used

in a new basis function with probability proportional to the number of times they
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have been used in the current set of basis functions.

To efficiently deal with large N , we will break each of our tensor product

basis functions into two parts, the part that uses the variables x and the part that

uses the functional variable r. We can then write basis function m as Bm(r,x) =

Bx
m(x)Br

m(r). If we let Sxm = {k ∈ (1, . . . ,Km) : zkm 6= r} and Srm = {k ∈

(1, . . . ,Km) : zkm = r}, then

Bx
m(x) =


∏
k∈Sxm [skm(zvkm − tkm)]α+ if |Sxm| > 0

1 otherwise

Br
m(r) =


[skm(r − tkm)]α+|k∈Srm if |Srm| > 0

1 otherwise

.

We then create the nx-vector Bx
m = (Bx

m(x1), . . . , B
x
m(xnx))′ and the nr-vector Br

m =

(Br
m(r1), . . . , B

r
m(rnr))

′. Note, then, that a MARS basis vector is written as Bm =

Bx
m ⊗ Br

m. Thus, we have broken the MARS basis vector into the part from the

input variables (Bx
m) and the part from the functional variable (Br

m). The cases

when these are vectors of ones occur if the basis function uses only the functional

variable or only the design variables.

Now, the matrix of basis functions B can be written as

[1N ,B
x
1⊗,Br

1, . . . ,B
x
M⊗,Br

M ].

If Bx = [1nx ,B
x
1 , . . . ,B

x
M ] and Br = [1nr ,B

r
1, . . . ,B

r
M ] then we have that B =

Bx ∗Br where ∗ denotes the Khatri-Rao product (Kolda, 2006; Lev-Ari et al., 2005).

This Kronecker structure simplifies many matrix calculations. For instance, from
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properties of Khatri-Rao products, Ba = vec(Brdiag(a)Bx′). This is an important

quantity in prediction, and under this formulation it can be calculated without

building explicitly the whole matrix B. Other important quantities used for inference

also have simplified forms, such as B′B = (Bx′Bx) ◦ (Br ′Br) where ◦ denotes the

Hadamard (elementwise) product, and B′vec(Y) = vecd(Br ′YBx) where Y is the

nr×nx matrix of data. Here, vec(·) denotes the columnwise stacking of a matrix and

vecd(·) denotes the vectorization of the diagonal of a matrix. These simplifications

mean that we do not need to build the large matrix B explicitly, but can instead

work with the smaller Br and Bx.

Further simplifications come from the fact that in the RJMCMC algo-

rithm, we are only adding, deleting, or changing one basis function at a time. For

instance, if we were adding a basis function, B∗, we need only calculate B∗
′B∗ =

(Bx
∗
′Bx
∗)(B

r
∗
′Br
∗) and B′B∗ = (Bx′Bx

∗) ◦ (Br ′Br
∗) in order to update B′B. Deleting

is simpler in that if we have selected the mth basis function to delete, we need only

remove the (m+1)th row and column of B′B. We use similar updates for B′vec(Y).

2.2.3 Tempering

The BMARS model, along with Bayesian versions of CART (Denison et al.,

1998a; Chipman et al., 1998), yields a posterior distribution over a space of models

that is often highly multimodal. As such, the RJMCMC algorithm tends to have

difficulty exploring the entire posterior. In the BMARS case, after selecting a set

of basis functions and ending up in one of these modes, it is unlikely that enough

basis functions will be deleted to allow for the chain to move to another mode.

BMARS and Bayesian CART approaches to dealing with this problem have often

centered around restarting the MCMC algorithm after a certain number of iterations.
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Restarting the MCMC, or equivalently, taking samples from parallel chains, has the

undesirable property of representing modes based on their “basins of attraction”

instead of the total probability associated with each mode (Neal, 1996).

We overcome these problems by using parallel tempering, also known as

Metropolis coupled MCMC (Geyer, 1991). That is, we run multiple MCMC chains in

parallel, each with a slightly different stationary distribution, and allow them to swap

states. Particularly, if we denote our parameter vector as θ = (M,σ2,a,K, s,v, t, λ, τ),

our data as y, and the posterior of interest as π(θ|y), we will define a series of

altered posterior distributions as π1(θ|y), . . . , πT (θ|y). In this thesis, we define

πi(θ|y) ∝ π(θ|y)ti , where ti is called the inverse temperature parameter and the

sequence 1 = t1 > t2 > . . . > tT > 0 is called the temperature ladder. Small values

of ti flatten posterior modes and raise troughs, and correspond to “heated” chains

where mixing is easier. A swap of the current state from chain i (called θi) with

that of the current state from chain j (called θj) is accepted with probability

αswap = min

{
1,
πi(θj |y)πj(θi|y)

πi(θi|y)πj(θj |y)

}
.

We note that state vectors θi and θj are possibly of different dimension, so quantities

like πi(θj |y) are not necessarily intuitive. Furthermore, it is not immediately obvious

that the posterior normalizing constants will cancel out because of the dimensionality

difference. We will show explicitly what we mean when we write πi(θj |y) and why

it works with the unnormalized posterior.

Call the unnormalized posterior distribution function g(θ|y). Then, π(θ|y) =

g(θ|y)/c where c is obtained by marginalizing g(θ|y) over all the parameters in θ.

Note that c is the same no matter the dimension of θ since we are marginalizing over
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all possible dimensions. What we mean by πi(θ|y), no matter the dimension of θ, is

πi(θ|y) = [g(θ|y)/c]ti/ai where ai is obtained from marginalizing [g(θ|y)/c]ti over

all the parameters in θ. Now, let ci = ctiai and we have that πi(θ|y) = g(θ|y)ti/ci.

Note then that πi(θj |y) and πi(θi|y) have the same normalizing constants, ci. Thus,

the acceptance ratio can be written as

πi(θj |y)πj(θi|y)

πi(θi|y)πj(θj |y)
=

(
g(θj |y)

g(θi|y)

)ti−tj

which means that the normalizing constants cancel and we need only keep track of

the unnormalized posterior for each chain.

This can be done in parallel, as in Altekar et al. (2004), so that it requires

very little communication between chains. Rather than explicitly swapping states,

we swap temperatures. Also, we only keep samples from the true posterior (the

coolest chain), meaning that the memory footprint of such an algorithm is not sub-

stantially larger than when we do not use tempering. While simulated tempering

(Geyer & Thompson, 1995) might provide better mixing than parallel tempering

(Atchadé et al., 2011), specification of a pseudo-prior for the inverse temperature is

difficult. Further, being able to run the chains in parallel is very useful to those who

have access to large parallel computers, which is common among those working in

uncertainty quantification.

2.2.4 Sobol’ Indices for BMARS

We now discuss the Sobol’ decomposition of a BMARS model. In partic-

ular, we note that the required integration can be done in closed form. Chen et al.

(2005) describe conditions under which tensor product basis function expansions
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have analytical Sobol’ decompositions. For MARS models, these conditions are that

we can analytically perform the integration

Cv(s, t) =

∫ 1

0
[s(xv − t)]α+dxv (2.4)

Cv(s1, t1, s2, t2) =

∫ 1

0
[s1(xv − t1)]α+[s2(xv − t2)]α+dxv. (2.5)

We find that this is possible when α is a positive integer. Particularly

Cv(s, t) =


(1−t)α+1

α+1 s = 1

tα+1

α+1 s = −1

Cv(s1, t1, s2, t2) =



∫ 1
t2

[(xv − t1)(xv − t2)]α dxv s1 = s2 = 1

∫ t1
0 [(xv − t1)(xv − t2)]α dxv s1 = s2 = −1

(−1)α
∫ t2
t1

[(xv − t1)(xv − t2)]α dxv s1 = 1, s2 = −1

0 s1 = −1, s2 = 1

(2.6)

assuming, without loss of generality, that t1 ≤ t2. The integrals in Equation (2.6)

are

∫ b

a
[(x− t1)(x− t2)]α dx =

[
α∑
i=0

pi(x− t1)α−i(x− t2)α+1+i

]x=b
x=a

where pi = (α!)2(−1)i
(α−i)!(α+1+i)! . We can use using Equation 2.4 to write quantities like

f̂ij(zi, zj) =
∫ 1
0 . . .

∫ 1
0 f(z)dz−ij , the non centered version of fij(zi, zj) in Equa-

tion 2.2. We can write quantities like
∫ 1
0

∫ 1
0 f̂ij(zi, zj)

2dzidzj , important in finding
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V ar(fij(zi, zj)), using Equations 2.4 and 2.5. Similarly, we can use Equations 2.4

and 2.5 to write fij(r, x1, x2) and V ar(fij(r, x1, x2)) where we never integrate over

r.

Specifically, if we are considering a set of variables indexed byW = {i1, . . . , il},

the quantity of interest from Equation 2.1 can be obtained as V ar(fW (r,W )) =∑
U∈P (−1)|W |−|U |VU (r) where P is the power set of W excluding the empty set, |U |

denotes the size of set U , and

VU (r) =

M∑
m1=1

M∑
m2=1

am1am2B
r
m1

(r)Br
m2

(r)∏
k∈U1

Cvkm1
(skm1 , tkm1)

∏
k∈U2

Cvkm2
(skm2 , tkm2)

∏
k∈U12

Cvkm1
(skm1 , tkm1 , skm2 , tkm2)

−
∏
k∈Sx

Cvkm1
(skm1 , tkm1)

∏
k∈Sx

Cvkm2
(skm2 , tkm2)

 .

Here U1 = {k : ∀l, vkm1 6= vlm2}, U2 is defined similarly with m1 and m2 switched,

U12 = {k : vkm1 ∈ U} ∩ {k : vkm2 ∈ U}, and Br
m(r) and Sx are defined as in Section

2.2.2.

For each posterior sample, we can calculate the Sobol’ decomposition to

quantify the uncertainty of the sensitivity indices. This would be uncertainty due

to variance in the emulator, not due to Monte Carlo error, as is usually the case.

2.3 Simulation

Consider the function f(x) = 10 sin(2πx1x2) + 20 (x3 − 0.5)2 + 10x4 + 5x5,

with each xi ∈ [0, 1], which is a slight alteration of the Friedman function (Friedman,

1991c; Denison et al., 1998b; Gramacy & Lee, 2012; Surjanovic & Bingham, 2017).
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We treat x1 as a functional variable. In order to get more flexible functional output

we replace π in the Friedman function with 2π. The integrals necessary to obtain

the Sobol’ sensitivity indices for this function are mostly analytical, with derivations

given in Appendix A. The integrals that are not analytical have solutions that can

be represented using series approximations to an arbitrary degree of accuracy.
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Figure 2.3: A few simulated curves, f(x), are given on the left in terms of the
functional variable x1. The middle and right plots show the small and large data
curves corresponding to the curves on the left.
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Figure 2.4: Posterior distributions of sensitivity indices represented with boxplots
for the small and large datasets. Actual values of sensitivity indices are given with
red dots.

We simulate nx values of x2, . . . , x5 from the uniform hypercube and set

x1 to be a grid of values of length nr and use these to generate f(x) for the nx × nr

combinations of x. We add standard Normal errors to the simulated values of f(x).
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Figure 2.5: Functional pie charts of posterior mean sensitivity indices compared to
true values. The left panels show the sensitivity indices using the smaller data set.
The middle shows these indices using the larger dataset. The right panels show
true values. The top panels show functional pie charts while the bottom show the
partitioned variance.

We further generate nx values of x6, . . . , xp that will be extraneous variables. We

will fit our BMARS emulator to these data. This corresponds to having nx model

runs, each of which outputs a curve on a grid of nr values. Further, the computer

model takes p inputs, but only four of them are meaningful.

We consider two settings of nx, nr, and p that demonstrate cases with small

and large data. For the small data case, we use nx = 100, nr = 10, and p = 5. For

the large data case, we use nx = 20000, nr = 500, and p = 200. To demonstrate

what these functional data look like, twenty curves with different settings of x are

shown in Figure 2.3 under these two settings of nr with standard Normal error, in

addition to the true curves. Fitting BMARS models to the small and large datasets

took 14 and 966 seconds, respectively, on a personal computer with a 1.7 GHz Intel

Core i7 processor. The posterior median number of basis functions used for the small

and large datasets is 26 and 95. In these simulations, we did not use tempering. We

used default values of priors for the small data case. In the large data case, we used
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a strong prior on M to keep the number of basis functions small for computation

purposes.

We demonstrate our two functional sensitivity analysis approaches using

BMARS emulators built using these datasets. The sensitivity indices when x1 is

treated as one of inputs are given in Figure 2.4, along with the true values. The

functional sensitivity indices (posterior mean) are given in the form of functional

pie charts (Saltelli et al., 2000; Lamboni et al., 2009) in Figure 2.5, along with

the true functional sensitivity indices. In both approaches, we are able to capture

the important elements quite well for both the small and large data cases. Since

the Sobol’ indices are available analytically when we use the BMARS emulator,

discrepancy in the sensitivity indices (which is quite small in our simulation) is due

only to emulation discrepancy. The sensitivity analysis is more accurate when we

use more data and has more uncertainty when we have small data, as we would

expect. Our BMARS methods are able to efficiently handle the large data analysis,

where use of the Gaussian process would have been infeasible.

We note that deterministic computer model output would not have un-

explained noise like our simulation does. Similar simulations with noiseless data

produce similar sensitivity indices, though regularization becomes more important

when fitting the BMARS model to limit the number of basis functions used. This

limitation prevents overfitting in the small data case. While the large data case

has no issues with overfitting, limiting the number of basis functions is desirable for

computational purposes.
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2.4 Plate Deformation Model Sensitivity Analysis

In this section, we use the above formulation to create an emulator for the

plate deformation model and perform a sensitivity analysis. The plate deformation

model has seven inputs controlling the configuration of a tantalum plate used to

protect a diagnostic imager during pressure driven experiments, as shown in Figure

2.1(c). The output from one model run is a curve representing the profile of the

deformed plate starting from the center of the plate and extending along the radius

to the end of the plate. Hence, the functional variable r in this case is called radial

position. Each curve is given on the same grid of nr = 517 equally spaced points.

We have model runs corresponding to nx = 104 combinations of x specified using

a Latin hypercube design, for a total of 53,768 simulated values. A separate Latin

hypercube was used to obtain 34 model runs that will be used to test the fit of the

emulator.

We use the BMARS formulation given above to build a surrogate model.

We use α = 1, Mmax = 300, and a hyperprior for λ that keeps it close to zero.

Specifically, we use aλ = 1 and bλ = 10300 (chosen by cross-validation). Such a large

value of bλ is necessary in this case because of the combination of the smoothness of

the curves and the large number of possible basis functions. If we did not limit basis

functions based on partition size, there would be more than 1.2× 109 possible basis

functions, which means more than 21.2×10
9

possible models. Hence, bλ = 10300, which

controls the regularization on the number of basis functions, is not an exorbitantly

large number when compared with the size of the model space. We note that the

resultant Gamma hyperprior has so little variance that it may be unnecessary here,

but we include it for consistency. When cross-validating, we compared mean squared
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error averaged over radial position for values of bλ on the log10 scale from 0 (results

in the maximum number of basis functions) to 305. We considered other values of

the maximum degree of interaction (fixed at Kmax = 3) and the minimum number

of non-zero values in a basis function (fixed at b = 20), but did not find better

cross-validated fits.

We note that when the curves are smooth, σ2 plays the role of quantifying

the variance in the data not explained by the model, and will thus be larger as we

impose stronger regularization. Posterior exploration is especially difficult in this

case because moving from one posterior mode to another may require a substantial

increase in σ2, which is not likely to be favored in a typical RJMCMC chain. This is

where tempering becomes extremely useful. We choose a temperature ladder through

experimentation, and find that the maximum inverse temperature at which we are

able to mix well over the model space is 0.001. We find that mixing is reasonable

when we use 100 inverse temperatures in the pattern ti = 1 − Φ
(
i−50.5
13.2

)
, where Φ

denotes the standard Normal cdf. Plots of predicted curves (point-wise posterior

means) and residual curves for the training and test data are given in Figure 2.6.

These plots show that we are able to explain most of the variation in the computer

model runs with the emulator. The posterior predictions for four individual curves

from the test set are shown in Figure 2.7 with 95% central regions (curve-wise)

constructed following Sun & Genton (2012).

Upon obtaining a suitable BMARS surrogate model, we use the analytical

Sobol’ decomposition as described above to obtain the sensitivity indices for each

posterior sample. First, consider the model sensitivity when we treat the functional

variable as one of the inputs. Figure 2.8 shows the posterior distributions of the

sensitivity indices for the most important main effects and interactions as boxplots,
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Figure 2.6: Model fit for the training and test data. From left to right the panels
show the model runs (observed data), our prediction (posterior mean) of the model
runs, the observed curves against the predicted curves, and residual curves. The top
panels show predictions of the training data while the bottom panels show predictions
of the test data.

as well as the posterior distributions of the total sensitivity indices. Importance

was determined by ranking means. These show that radial position (the functional

variable) explains most of the variance, and that the most important input variable

is the spacer thickness. These variables have a strong interaction with each other

and show up in interactions with other variables. The reality of this problem is

that all the effects should be interactions with the functional variable, since there

is nearly zero variance in the model output at the large radial positions. However,

because of the sequential nature of the Sobol’ decomposition (sensitivity indices for

interactions are the additional variance explained when the main effects and lower

order interactions are already included), it is not surprising to see important terms

that do not interact with radial position. It could be that the higher order interaction

with radial position only contributes a small amount.
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from the test data.
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Figure 2.8: Sensitivity analysis including the functional variable. The first boxplots
are the posterior distributions of the largest sensitivity indices, indicating which main
effects and interactions explain the most variance. The second plot is an enlarged
version to show the sensitivity indices for terms that are hard to compare in the
first plot. The next two plots similarly show the posterior distributions of the total
indices. Note that the functional variable, labeled as 1, explains most of the variance.

Now, consider the approach to sensitivity analysis that takes sensitivity

as a function of radial position. For each main effect and interaction we now have

a sensitivity index that is a function of r. Plots of posterior mean sensitivity for

the main effects and most important effects are shown in functional pie charts in

Figure 2.9. Also included in Figure 2.9 are plots of how the standard deviation as a

function of radial position is partitioned. Importance was determined by integrating

the partitioned variance functions over radial position. We note that the plots are

blank when r approaches 0.9 because many of the MCMC draws yield zero variance
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after that point, and we do not try to decompose zero variance. This is a desirable

property, since the actual data have zero variance for these values of r. These

plots show us which variables and interactions are most important at different radial

positions. Clearly, the spacer thickness is most important because of the large main

effect and the important interactions. These plots also show us that the spacer gap

radius plays an important role for 0.3 < r < 0.4. The lexan thickness plays an

important role on its own and interacting with spacer thickness for r > 0.3. The

tantalum thickness is important in combination with spacer thickness and on its own

throughout the range of r. The spacer gap radius plays a small role for r < 0.2, the

most varied part of the functions.
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Figure 2.9: Sensitivity analysis as a function of radial position. The top plots show
functional pie charts of the sensitivity indices for the main effects and the most
important effects. The bottom plots show the way the actual standard deviation of
the model (a function of r) is partitioned.

We see that the pressure radius, support gap radius, and outer radius of the

specified ranges do not play an important role in the simulator. Under the specified
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ranges, it is clear that the spacer thickness deserves the most attention when it comes

to designing a protective plate configuration that will be most reliable.

2.5 Discussion

We have outlined the potential benefits of performing sensitivity analysis

using BMARS as an emulator for functional data. We introduced a way of doing

sensitivity analysis with functional data. We gave an altered version of BMARS

with priors that improve the fit in many circumstances, specifically in cases where

the traditional priors lead to overfitting. We also presented modifications for the

efficient handling of one dimensional functional data on a fixed grid. We showed that

BMARS is fast, accurate, flexible, and can handle datasets with many variables and

thousands of curves, each represented with hundreds of observations. We described

how global sensitivity analysis can be performed effortlessly and without Monte

Carlo error. We introduced a tempering scheme that leads to more satisfactory

posterior sampling than previous approaches. Finally, we stress the fact that the

Bayesian nature of the method allows for a full assessment and propagation of the

uncertainties.

We note that automatic specification of a model of this form is an ongoing

problem. For instance, using the automatic settings of the BMARS code that accom-

panies Denison et al. (2002) resulted in extreme overfitting in the plate deformation

problem. Our approach requires some tuning in specifying the hyperprior for the

mean number of basis functions, and we are interested in other ways of regularizing.

Another area for improvement in this model is the assumed homoscedasticity. As

the rightmost plots in Figure 2.6 show, the unexplained variance changes with radial

37



position, though we assume it is constant. Conceptually, there would be no prob-

lem introducing heteroscedasticity by assuming variance depends on the functional

variable and learning the form of the variance functions. However, computationally,

this is troublesome because we would need to manipulate very large matrices.

Owing to the many computer models coming into use that output large and

complex data, we feel that the BMARS methods outlined have promising possibilities

in the field of uncertainty quantification.
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Chapter 3

BASS: An R Package for

Sensitivity Analysis and Fitting

of Bayesian Adaptive Spline

Surfaces

3.1 Introduction

The purpose of the R (R Core Team, 2016) package BASS (Francom, 2017)

is to provide an easy-to-use implementation of Bayesian adaptive spline models for

nonparametric regression. It provides a combination of flexibility, scalability, in-

terpretability and probabilistic accuracy that can be difficult to find in other non-

parametric regression software packages. As we have demonstrated in the previous

chapter, the model form is flexible enough to capture local features that may be

present in the data. It is scalable to moderately large datasets in both the num-
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ber of predictors and the number of observations. It performs automatic variable

selection. It can build nonparametric functional regression models and incorporate

categorical predictors. The package can partition the variability of a resultant model

using the Sobol’ decomposition, providing valuable interpretation to the predictors.

The Bayesian approach allows for model estimates and predictions that can be eval-

uated probabilistically. The package is protected under the GNU General Public

License, version 3 (GPL-3), and is available from the Comprehensive R Archive Net-

work (CRAN) at https://CRAN.R-project.org/package=BASS.

As we have already discussed, the BASS framework builds on multivariate

adaptive regression splines (MARS) from Friedman (1991c). Well-developed soft-

ware implementations of the MARS1 model are available in the R packages earth,

polspline and mda. The Bayesian version of MARS (BMARS) was first developed

in Denison et al. (1998b). A MATLAB implementation of BMARS is available from

the software website accompanying Denison et al. (2002).

There are a number of other R packages that use splines, such as crs, gss,

mgcv and R2BayesX, the latter two of which include options to implement Bayesian

inference methods. These packages allow (or require) the user to specify which

variables are allowed to interact in what way, as well as which variables are allowed

to have nonlinear main effects. The crs package is more similar to the packages that

fit MARS models in that it can learn the structure of the model from the data. These

packages report a single best model. BASS reports an ensemble of models (posterior

draws from the model space) that can be used to make probabilistic predictions.

In this way, it is more similar to Bayesian nonparametric regression packages like

1MARS, as a software product, is a trademark of Jeril, Inc., and is licensed exclusively to Salford
Systems.
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BayesTree and tgp.

We introduce the package as follows. In Section 3.2, we describe how the

modeling framework is controlled by the user, including our methods for posterior

sampling, modeling functional responses, and incorporating categorical inputs. In

Section 3.3, we describe how to utilize the sensitivity analysis methods. Then, in

Section 3.4, we walk through six examples of how to use the package. Finally, in

Section 3.5, we present a summary of the package capabilities.

3.2 Bayesian adaptive spline surfaces

Here, we discuss the notation for the priors, and how it translates to pa-

rameters in the package. First, consider the priors for the σ2 and a. Let B be the

n× (M + 1) matrix of basis functions (including the intercept). Then we have

a|σ2, τ,B ∼ N(0, σ2(B′B)−1/τ) (3.1)

σ2 ∼ InvGamma(g1, g2) (3.2)

τ ∼ Gamma(aτ , bτ ) (3.3)

with default settings aτ = 1 and bτ = 1/n (shape and rate) to center the prior over

the unit information prior and g1 = g2 = 0 resulting in the non-informative prior

p(σ2) ∝ 1/σ2. In practice, the default settings are sufficient for most cases, though

it can be helpful to encode actual prior information into the prior for σ2.

Now, consider the prior for the number of basis functions, M . We use a
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Poisson prior for M , truncated to be between 0 and Mmax, so that

p(M |λ) ∝ e−λλM

M !
(3.4)

λ ∼ Gamma(h1, h2) (3.5)

where the default settings of h1 = h2 = 10 (shape and rate) in most cases induce

a small number of basis functions. In practice, these hyperparameters can be key

in order to prevent overfitting. More specifically, we increase h2 (by many orders of

magnitude in some cases) to bring the prior for λ very close to zero in an effort to

thin out the tails of the Poisson and have fewer basis functions. We use Mmax to give

an upper bound to the computational cost, rather than to prevent overfitting. This

strategy results in better fitting models since setting Mmax too small often results

in posterior sampling from only one mode.

The priors for K, s, t and v are uniform over a constrained space as de-

scribed in Chapter 2. The constraint in this prior makes sure basis functions have

more than b non-zero values. In addition to specifying b, we also specify Kmax, the

maximum degree of interaction for each basis function.

Table 3.1 shows the parameters used in the bass function that we have

discussed thus far, and what their mathematical symbols are.

Symbol Kmax b h1 h2 g1 g2 α Mmax aτ bτ
bass input maxInt npart h1 h2 g1 g2 degree maxBasis a.tau b.tau

Table 3.1: Translation from mathematical symbols to parameters used in bass func-
tion.
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3.2.1 Efficient posterior sampling

Our RJMCMC scheme allows us to add, delete, or change a basis function

consistent with the approach of Nott et al. (2005). That is, instead of proposing

to add a completely random new basis function in a reversible jump step, we use a

proposal generating distribution that favors the variables and degrees of interaction

already included in the model. For example, say there were five basis functions

already in the model, each with degree of interaction two. Say the maximum degree

of interaction was three. Then if we were proposing a new basis function we would

sample the degree of interaction from {1, 2, 3} with weights {w1, w1 + 5, w1}, thus

favoring two way interactions since we have seen more of them. If the nominal weight

w1 is large compared to the number of basis functions, this distribution looks more

uniform. The value w2 is the equivalent nominal weight for sampling variables to be

included in a candidate basis function. Both w1 and w2 default to five. If there are

a large number of unimportant variables in the data, a small value of w2 (relative to

M) helps to make posterior sampling more efficient by not proposing basis functions

that include the unimportant variables.

We extend the framework of Nott et al. (2005) to allow for more than two-

way interactions. This ends up being non-trivial, since the RJMCMC acceptance

ratio requires us to calculate the probability of sampling the proposed basis func-

tion. The difficulty comes when we try to calculate the probability of sampling the

particular variables, as this requires calculating the probability of a weighted sample

without replacement (weighted since we do not sample variables uniformly, without

replacement since variables cannot be used more than once in the same basis func-

tion). This is equivalent to sampling from the multivariate Wallenius’ noncentral
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hypergeometric distribution. To determine the probability of such a sample, we use

a function from the R package BiasedUrn (Fog, 2015). Since the CRAN version of

BiasedUrn allows for only 32 possible variables, we include a slightly altered version

of the function in BASS to quickly evaluate the approximate density function of the

multivariate Wallenius’ noncentral hypergeometric distribution.

We perform NMCMC RJMCMC iterations and discard the first Nburn, after

which every Nthin iterations is kept. This results in (NMCMC−Nburn)/Nthin posterior

samples. Table 3.2 shows the parameters to the bass function discussed in this

section, as well as their mathematical symbols.

Symbol w1 w2 NMCMC Nburn Nthin

bass input w1 w2 nmcmc nburn thin

Table 3.2: Translation from mathematical symbols to parameters used to specify
nominal weights of proposal distributions and number of RJMCMC iterations in the
bass function.

3.2.2 Parallel tempering

We are able to achieve better mixing by using parallel tempering. This

requires the specification of a temperature ladder, 1 = t1 < t2 < · · · < tT < ∞.

Only samples in the lowest temperature chain (t1) are used for inference. We allow

the chains to run without swapping for Nst iterations at the beginning of the run to

allow them to get close to their stationary distributions.

Specifying a temperature ladder can be difficult. Temperatures need to be

close enough to each other to allow for frequent swaps (with acceptance rates between

20 and 60% (Altekar et al., 2004)), and the highest temperature (tT ) needs to be

high enough to be able to explore all the modes. Future versions of this package may

make some attempt at automatically specifying and altering a temperature ladder.
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Further, a message passing interface (MPI) approach to handling the multiple chains

could result in substantial speedup, and may be implemented in future versions of

the package.

Table 3.3 shows the translation from parameters used for parallel tempering

in the bass function to symbols we have used in this section.

Symbol (t1, . . . , tT ) Nst

bass input temp.ladder start.temper

Table 3.3: Translation from mathematical symbols to parameters used for parallel
tempering in the bass function.

3.2.3 Functional response

When the functional response is output onto the same functional variable

grid for all samples, this results in more efficient calculations involving basis functions

because of the Khatri-Rao product structure, as shown in Chapter 2. For example,

this software is well suited to fit a model where the data are such that a combination

of independent variables results in a time-series and the grid of times (say, r1, . . . , rq)

is the same for each combination.

If there are multiple functional variables, we must specify a maximum de-

gree of interaction for them, KF
max. For instance, if the functional output was a

spatio-temporal field (a function of three variables) and we specify a maximum de-

gree of functional interaction of two, we would not allow for interactions between

both spatial dimensions and time. We would specify the grid of spatial locations and

time points as a matrix with three columns rather than a vector like we did in the

time series example above. We can also specify a value bF , possibly different from b,

that indicates the number of non-zero values required in the functional part of basis

functions. When functional responses are included, the values of b and bF should be
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relative to the sample size and the size of the functional grid, respectively.

Table 3.4 shows parameters necessary to model functional responses in the

bass function. The response y should be specified as a matrix when the response is

functional.

Symbol (r1, . . . , rq) KF
max bF

bass input xx.func maxInt.func npart.func

Table 3.4: Translation from mathematical symbols to parameters used in the bass

function when modeling functional data.

3.2.4 Categorical inputs

The ability to include categorical inputs in our framework will be crucial

in the application presented in Chapter 4. Categorical variables are included by

allowing for basis functions to have indicators for categorical variables being in cer-

tain categories. Our approach is the Bayesian version of Friedman (1991b) and

is described further in Chapter 4. If a set of independent variables is separated

into continuous variables x and categorical variables c, then the mth basis function

equivalent of Equation 2.3 can be written as

Bm(x, c) =

Km∏
k=1

gkm[skm(xvkm − tkm)]α+

Kc
m∏

l=1

1
(
cvclm ∈ Clm

)
(3.6)

where Kc
m is the degree of interaction for the categorical predictors, 1(·) is the

indicator function, vclm indexes the categorical variables and Clm is a subset of the

categories for variables cvclm . We now allow for Km or Kc
m to be zero, and specify a

Kc
max (maxInt.cat in the bass function).

The priors we use for the degree of interaction, variables used and categories

used are, in combination with the priors we use above, the same constrained uniform.
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Thus, basis function (Bm(x1, c1), . . . , Bm(xn, cn)) is required to have at least b non-

zero values.

3.3 Sensitivity analysis

We can obtain the Sobol’ decomposition for each posterior sample to get

posterior distributions of sensitivity indices. This can be time consuming, so the

sobol function has an argument mcmc.use to specify which RJMCMC iterations

should be used. Calculations of the integrals above can be vectorized when basis

functions are the same and only basis function coefficients change. This is the

case for many of the RJMCMC iterations, and the sobol function automatically

determines this and accounts for it. (As a side note, this is also the case for the

predict function).

3.3.1 Functional response

By default, the sobol function gets sensitivity indices for the functional

variables the same way it does for the other variables. Setting func.var = 1 gets

the sensitivity indices as functions of the first (possibly only) functional variable (if

there are multiple functional variables, this refers to the first column of the matrix

xx.func passed to the bass function).

3.4 Examples

We now demonstrate the capabilities of the package on a few examples.

For each example, we start by setting the seed (set.seed(0)) so that readers can

replicate the results. First we load the package
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R> library("BASS")

which we use for all the examples.

3.4.1 Curve fitting

We first demonstrate how the package can be used for curve fitting. We

generate y ∼ N(f(x), 1) where x ∈ [−5, 5] and

f(x) =


−0.1x3 + 2 sin(πx2)(x− 4)2 0 < x < 4

−0.1x3 otherwise

(3.7)

for 1000 samples of x. The data are shown in Figure 3.3.

We generate the data with the following code.

R> set.seed(0)

R> f <- function(x) {

+ -.1 * x^3 + 2 * as.numeric((x < 4) * (x > 0)) * sin(pi * x^2) *

+ (x - 4)^2

+ }

R> sigma <- 1

R> n <- 1000

R> x <- runif(n, -5, 5)

R> y <- rnorm(n, f(x), sigma)

We then call the bass function to fit a BASS model using the default

settings.

R> mod<-bass(x, y)

MCMC Start #-- Mar 14 21:28:51 --# nbasis: 0

MCMC iteration 1000 #-- Mar 14 21:28:53 --# nbasis: 33

MCMC iteration 2000 #-- Mar 14 21:28:55 --# nbasis: 33

MCMC iteration 3000 #-- Mar 14 21:28:57 --# nbasis: 32

MCMC iteration 4000 #-- Mar 14 21:28:59 --# nbasis: 34

MCMC iteration 5000 #-- Mar 14 21:29:02 --# nbasis: 31

MCMC iteration 6000 #-- Mar 14 21:29:04 --# nbasis: 39

MCMC iteration 7000 #-- Mar 14 21:29:06 --# nbasis: 31
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Figure 3.1: Diagnostic plots for BASS model fitting.

MCMC iteration 8000 #-- Mar 14 21:29:08 --# nbasis: 33

MCMC iteration 9000 #-- Mar 14 21:29:10 --# nbasis: 38

MCMC iteration 10000 #-- Mar 14 21:29:12 --# nbasis: 36

The result is an object that can be used for prediction and sensitivity analysis. By

default, the bass function prints progress after each 1000 MCMC iterations, along

with the number of basis functions. To diagnose the fit of the model, we call the

plot function.

R> plot(mod)

This generates the four plots shown in Figure 3.1. The top left and right plots show

trace plots (after burn-in and excluding thinned samples) of the number of basis

functions (M) and the error variance (σ2). The bottom left plot shows the response

values plotted against the the posterior mean predictions (with equal tail posterior

probability intervals as specified by the quants parameter). The bottom right plot

shows a histogram of the posterior mean residuals along with the assumed Gaussian

distribution centered at zero and with variance taken to be the posterior mean of
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σ2. This is for checking the Normality assumption.

Next, we can generate posterior predictions at new inputs, which we gen-

erate as x.test.

R> n.test <- 1000

R> x.test <- sort(runif(n.test, -5, 5))

R> pred <- predict(mod, x.test, verbose = T)

Predict Start #-- Mar 14 21:29:13 --# Models: 164

Predict #-- Mar 14 21:29:14 --# Model: 100

By default, the predict function generates posterior predictive distributions for all

of the inputs. We can use a subset of posterior samples by specifying the parame-

ter mcmc.use. For instance, mcmc.use = 1 will use the first posterior sample (after

burn-in and excluding thinned samples), and will thus be faster. Rather than iterat-

ing through the MCMC samples to generate predictions, we instead iterate through

“models.” The model changes when the basis functions change, which means that we

can build the basis functions once and perform vectorized operations for predictions

for all the MCMC iterations with the same basis functions.

The object resulting from the predict function is a matrix with rows cor-

responding to MCMC samples and columns corresponding to settings of x.test.

Thus, the posterior mean predictions are obtained by taking the column means. We

plot the posterior predictive means against the true values of f(x) as shown in Figure

3.2.

R> fx.test <- f(x.test)

R> plot(fx.test, colMeans(pred))

R> abline(a = 0, b = 1, col = 2)

Note that the predictive distributions in the columns of pred are for f(x).

To obtain predictive distributions for data, we would need to include Gaussian error
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Figure 3.2: BASS prediction on test data.

with variance σ2 (demonstrated in Section 3.4.5). Posterior samples of σ2 are given

in mod$s2.

In the curve fitting case, we can plot predicted curves. Below, we plot 10

posterior predictive samples along with the true curve (Figure 3.3). We also show

knot locations (in the rug along the x-axis) for one of the posterior samples.

R> plot(x, y, cex = .5)

R> curve(f(x), add = T, lwd = 3, n = 1000, col = 2, lty = 2)

R> matplot(x.test, t(pred[seq(100, 1000, 100), ]),

+ type='l', add=T, col=3)

R> rug(BASS:::unscale.range(mod$curr.list[[1]]$knots.des, range(x)))

R> legend('topright', legend = c('true curve',
+ 'posterior predictive draws'), col = c(2:3),

+ lty = c(2, 1), lwd = c(3, 1), bty = 'n')

If we are interested in using fewer knots (fewer basis functions), we can

change the prior for the number of basis functions to be more restrictive. For in-

stance, setting h2=100

R> mod <- bass(x, y, h2 = 100)

R> pred <- predict(mod, x.test)

R> plot(x, y, cex = .5)

R> curve(f(x), add = T, lwd = 3, n = 1000, col = 2, lty = 2)

R> matplot(x.test, t(pred[seq(100, 1000, 100), ]),

+ type='l', add=T, col=3)

R> rug(BASS:::unscale.range(mod$curr.list[[1]]$knots.des, range(x)))
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Figure 3.4: True curve with posterior predictive draws and more restrictive prior on
the number of basis functions.

R> legend('topright', legend = c('true curve',
+ 'posterior predictive draws'), col = c(2:3),

+ lty = c(2, 1), lwd = c(3, 1), bty = 'n')

results in knots as shown along the x-axis of Figure 3.4. This results in fewer knots,

but perhaps slight underfitting in the part of the curve around x = 3. The h2

parameter can be used to prevent overfitting, but the setting is not intuitive. Thus,

this parameter may require tuning (perhaps by cross-validation).

Two final issues to discuss with this example are why we use linear splines

(the default degree = 1) and how to tell if we have achieved convergence before
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taking MCMC samples as posterior samples. We use linear splines almost exclusively

when using this package because of their stability and ability to capture nonlinear

curves and surfaces. Using a higher degree, such as degree = 3, results in smoother

models but suffers from stability problems and is more difficult to fit. We suggest

settings of degree other than degree = 1 be used with care, always with scrutiny of

prediction performance. Convergence is best assessed by examining the trace plots

shown in Figure 3.1. Especially if the trace plot for σ2 shows any sort of non-cyclical

pattern, the sampler should be run for longer. As a side note, a new sampler can be

started from where the old sampler left off by using the curr.list parameter. For

instance, we can run mod2 <- bass(x, y, curr.list = mod$curr.list) to start

a new sampler from where mod left off.

3.4.2 Friedman function

For our next example, we will test the package on the Friedman function

(Friedman, 1991c). This function will have 10 inputs, five of which contribute noth-

ing. The other five are used to generate

f(x) = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5. (3.8)

We generate 200 input samples uniformly from a unit hypercube, calculate f(x) for

each and add standard Normal error to obtain data to model.

R> set.seed(0)

R> f <- function(x) {

+ 10 * sin(pi * x[, 1] * x[, 2]) + 20 * (x[, 3] - .5)^2 +

+ 10 * x[, 4] + 5 * x[, 5]

+ }

R> sigma <- 1

R> n.vars <- 10

R> n <- 200
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R> x <- matrix(runif(n * n.vars), n, n.vars)

R> y <- rnorm(n, f(x), sigma)

Here we will show how we can change the length of the MCMC chain and

use parallel tempering. We run the RJMCMC chain for 40000 iterations, discarding

the first 30000 as burn-in and thinning by keeping every tenth sample. We supply

a temperature ladder with smallest value one (the “cold chain”, or true posterior)

and largest value 8.15 (the “hottest” chain) using geometric spacing. Thus, ti =

(1 + ∆t)
i−1 where ∆t is a spacing parameter we set at 0.3. We use nine chains. By

default, chains at neighboring temperatures will be allowed to swap after the first

1000 iterations.

R> mod <- bass(x, y, nmcmc = 40000, nburn = 30000, thin = 10,

+ temp.ladder = (1 + .27)^(1:9 - 1), verbose = F)

We can generate posterior predictive samples just as we did in the curve

fitting example.

R> n.test <- 1000

R> x.test <- matrix(runif(n.test * n.vars), n.test)

R> pred <- predict(mod, x.test, verbose = T)

Predict Start #-- Mar 14 23:08:16 --# Models: 876

Predict #-- Mar 14 23:08:17 --# Model: 100

Predict #-- Mar 14 23:08:17 --# Model: 200

Predict #-- Mar 14 23:08:17 --# Model: 300

Predict #-- Mar 14 23:08:17 --# Model: 400

Predict #-- Mar 14 23:08:17 --# Model: 500

Predict #-- Mar 14 23:08:17 --# Model: 600

Predict #-- Mar 14 23:08:17 --# Model: 700

Predict #-- Mar 14 23:08:17 --# Model: 800

Plotting these samples against true values of f(x) shows that we have a good fit

(Figure 3.5).

R> fx.test <- f(x.test)

R> plot(fx.test, colMeans(pred))

R> abline(a = 0, b = 1, col = 2)
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Figure 3.5: BASS prediction on test data - Friedman function.

Now that we are considering a function of many variables, we may be

interested in sensitivity analysis. To get the Sobol’ decompostion for each posterior

sample, we use the sobol function.

R> sens <- sobol(mod, verbose = F)

Note that when verbose = T, this function prints after every 10 models (as with the

predict function, vectorizing around models rather than MCMC iterations saves a

large amount of time). Depending on the number of basis functions and the number

of models, this function can take significant amounts of time. If that is the case,

using a smaller set of MCMC iterations by specifying mcmc.use may be useful.

The default plotting for this kind of object (Figure 3.6) shows boxplots of

variance explained for each main effect and interaction that shows up in the BASS

model. It also shows boxplots of the total sensitivity indices.

R> plot(sens, cex.axis = .5)

If there are a large number of main effects or interactions that explain very small

percentages of variation, we can show only the effects that are most significant. For

instance, we could show only the effects that, on average, explain at least 1% of the

variance (Figure 3.7).
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Figure 3.6: BASS sensitivity analysis - Friedman function.
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Figure 3.7: Most important main effects and interactions - Friedman function.

R> boxplot(sens$S[, colMeans(sens$S) > .01], las = 2,

+ ylab = 'proportion variance', range = 0)

As expected, we see that almost all of the variance is from the first five variables

and the only strong interaction is between the first two variables.

As a final note for this example, we discuss tempering diagnostics. We

would like for neighboring chains to have swap acceptance rate of somewhere around

23%. Running bass with verbose = T prints these acceptance rates every 1000

iterations. At the completion of the sampling, we can investigate acceptance rates

by dividing the swap counts by the number of swap proposals, as follows.

R> mod$count.swap/mod$count.swap.prop

[1] 0.3621554 0.3793670 0.3779575 0.2840164 0.2185430 0.3181351

[7] 0.2764826 0.2377282
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Figure 3.8: Parallel tempering diagnostics - swap trace plot.

Since we have specified nine temperatures, there are eight possible swaps, hence the

eight numbers. If, for example, we wanted to increase the first acceptance rate, we

would move the second temperature closer to the first.

Further analysis of swaping can be done by looking at swap trace plots.

R> matplot(mod$temp.val, type = 'l', ylab = 'temperature index')

Figure 3.8 shows the swap trace plot where y-axis values are temperature indices (1

is the true posterior and 9 is the posterior raised to the smallest power), the x-axis

shows MCMC iteration and the colored lines represent the different chains. We want

to see these chains mixing throughout, as we do here.

Determining whether the smallest value of the temperature ladder is small

enough to allow for good mixing can be difficult. In this example, we could run the

model with temp.ladder = 8.15 and look at mixing diagnostics. One could also

look at predicted versus observed plots at the different temperatures for the last

MCMC iteration by executing the following code, the output of which is shown in

Figure 3.9.

R> par(mfrow=c(3,3))

R> temp.ind <- sapply(mod$curr.list, function(x) x$temp.ind)

R> for(i in 1:length(mod$temp.ladder)) {

+ ind <- which(temp.ind == i)
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Figure 3.9: Predicted versus observed for the last MCMC iteration of the nine chains
at different temperatures. The temperatures are shown above each plot.

+ yhat <- mod$curr.list[[ind]]$des.basis %*%

+ mod$curr.list[[ind]]$beta

+ plot(yhat, y, main = round(mod$temp.ladder[i], 2))

+ abline(a = 0, b = 1, col = 2)

+ }

Note that the curr.list object is a list with number of elements equal to the number

of temperatures. This list contains the MCMC state for each chain. Since we swap

temperatures rather than entire states, the chains are not in order according to

temperature. We note that using the default prior for σ2 with a temperature ladder

with relatively large values can lead to instabilities when estimating σ2. In cases

where that is clearly the case, the prior for σ2 will be automatically changed and a

warning will be generated.

To demonstrate what is different when we use tempering, consider the

equivalent BASS model fit without tempering.
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R> mod.noTemp <- bass(x, y, nmcmc = 40000, nburn = 30000,

+ thin = 10, verbose = F)

We compare the root mean square prediction error (RMSE) for the two models, as

well as the empirical coverage of 95% probability intervals. First, the RMSE for the

model fit without tempering

R> pred.noTemp <- predict(mod.noTemp, x.test)

R> sqrt(mean((colMeans(pred.noTemp) - fx.test)^2))

[1] 0.5303968

and the empirical coverage

R> quants.noTemp <- apply(pred.noTemp, 2, quantile,

+ probs = c(.025, .975))

R> mean((quants.noTemp[1, ] < fx.test) &

+ (quants.noTemp[2, ] > fx.test))

[1] 0.923

demonstrate that the fit is quite good. When we use parallel tempering, the RMSE

R> sqrt(mean((colMeans(pred) - fx.test)^2))

[1] 0.4769708

and the empirical coverage

R> quants <- apply(pred, 2, quantile, probs = c(.025, .975))

R> mean((quants[1, ] < fx.test) & (quants[2, ] > fx.test))

[1] 0.949

are better, though not by an extreme amount. Under different seeds, we tend to see

higher coverage when we use tempering and lower coverage when we do not. We also

tend to get better models in terms of RMSE when we use tempering. Other benefits

of tempering will be shown in later examples. Because the computational burden is

currently linear in the number of temperatures, using fewer temperatures is better.

Thus, for many purposes, the model without tempering may be good enough.
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3.4.3 Friedman function with a categorical variable

In this example, we use data generated from a function similar to the

Friedman function in the previous example but with a categorical variable included.

The function, introduced in Gramacy & Taddy (2010), has

f(x) =



10 sin(πx1x2) x11 = 1

20(x3 − 0.5)2 x11 = 2

10x4 + 5x5 x11 = 3

5x1 + 10x2 + 20(x3 − 0.5)2 + 10 sin(πx4x5) x11 = 4

(3.9)

as the mean function and standard Normal error. Again, x6, . . . , x10 are unim-

portant. We generate 500 random uniform samples of the first 10 variables and

randomly sample 500 values of the four categories of the 11th variable. The bass

function treats input variables as categorical only if they are coded as factors.

R> set.seed(0)

R> f <- function(x) {

+ as.numeric(x[, 11] == 1) * (10 * sin(pi * x[, 1] * x[, 2])) +

+ as.numeric(x[ ,11] == 2) * (20 * (x[, 3] - .5)^2) +

+ as.numeric(x[, 11] == 3) * (10 * x[, 4] + 5 * x[, 5]) +

+ as.numeric(x[, 11] == 4) * (10 * sin(pi * x[, 5] * x[, 4]) +

+ 20 * (x[, 3] - .5)^2 + 10 * x[, 2] + 5 * x[, 1])

+ }

R> sigma <- 1

R> n <- 500

R> x <- data.frame(matrix(runif(n * 10), n, 10),

+ as.factor(sample(1:4, size = n, replace = T)))

R> y <- rnorm(n, f(x), sigma)

We fit a model with tempering and use it for prediction, as in the previous

example.

R> mod <- bass(x, y, nmcmc = 40000, nburn = 30000, thin = 10,

+ temp.ladder = (1 + .2)^(1:6 - 1), verbose = F)
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Figure 3.10: BASS prediction on test data - Friedman function with categorical
predictor.

R> n.test <- 1000

R> x.test <- data.frame(matrix(runif(n.test * 10), n.test, 10),

+ as.factor(sample(1:4, size = n.test, replace = T)))

R> pred <- predict(mod, x.test)

Plotting posterior predictive samples against true values of f(x) shows that

we have a good fit (Figure 3.10).

R> fx.test <- f(x.test)

R> plot(fx.test, colMeans(pred))

R> abline(a = 0, b = 1, col = 2)

Sensitivity analysis is performed in the same manner.

R> sens <- sobol(mod)

Plotting the posterior distributions of the most important (explaining more

than 0.5% of the variance) sensitivity indices in Figure 3.11, we see how important

the categorical variable is as well as which variables it interacts with.

R> boxplot(sens$S[, colMeans(sens$S) > .005], las = 2,

+ ylab = 'proportion variance', range = 0)
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Figure 3.11: Most important main effects and interactions - Friedman function with
categorical predictor.

3.4.4 Friedman function with functional response

Next, we consider an extension of the Friedman function that is functional

in one variable, as in Chapter 2. We use

f(x) = 10 sin(2πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 (3.10)

where we treat x1 as the functional variable. Note that we insert a factor of two

into the sin function in order to increase the variability due to x1, making the

problem more challenging. We generate 500 combinations of x2, . . . , x10 from a

uniform hypercube. We generate a grid of values of x1 of length 50. This ends up

being 500 × 50 combinations of inputs, for which we evaluate f and add standard

Normal error. We keep the responses in a matrix of dimension 500× 50 so that each

row represents a curve. The inputs are kept separate in a 500× 9 matrix and a grid

of length 50.

R> set.seed(0)

R> f<-function(x) {

+ 10 * sin(2 * pi * x[, 1] * x[, 2]) + 20 * (x[, 3] - .5)^2 +

+ 10 * x[, 4] + 5 * x[, 5]

+ }

R> sigma <- 1
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Figure 3.12: 500 Functional responses. The goal is to fit a functional nonparametric
regression model and perform sensitivity analysis.

R> n <- 500

R> n.func <- 50

R> x.func <- seq(0, 1, length.out = n.func)

R> x <- matrix(runif(n * 9), n)

R> y <- matrix(f(cbind(rep(x.func, each = n),

+ kronecker(rep(1, n.func), x))),

+ ncol = n.func) + rnorm(n * n.func, 0, sigma)

The functional data can be plotted as follows and are shown in Figure 3.12.

R> matplot(x.func, t(y), type='l')

In order for the BASS package to handle functional responses, each curve needs to

be evaluated on the same grid. Thus, the responses must be able to be stored as a

matrix without missing values.

We fit the model by specifying our matrices x and y as well as the grid

x.func.

R> mod <- bass(x, y, xx.func = x.func)

MCMC Start #-- Mar 14 21:37:48 --# nbasis: 0

MCMC iteration 1000 #-- Mar 14 21:37:50 --# nbasis: 110

MCMC iteration 2000 #-- Mar 14 21:37:54 --# nbasis: 176

MCMC iteration 3000 #-- Mar 14 21:37:59 --# nbasis: 173

MCMC iteration 4000 #-- Mar 14 21:38:03 --# nbasis: 115

MCMC iteration 5000 #-- Mar 14 21:38:05 --# nbasis: 74

MCMC iteration 6000 #-- Mar 14 21:38:06 --# nbasis: 60

MCMC iteration 7000 #-- Mar 14 21:38:08 --# nbasis: 60
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Figure 3.13: BASS prediction performance - Friedman function with functional re-
sponse.

MCMC iteration 8000 #-- Mar 14 21:38:10 --# nbasis: 62

MCMC iteration 9000 #-- Mar 14 21:38:11 --# nbasis: 71

MCMC iteration 10000 #-- Mar 14 21:38:17 --# nbasis: 62

Prediction is as simple as before. If we want to predict on a different

functional grid, we can specify that in the predict function with newdata.func.

R> n.test <- 100

R> x.test <- matrix(runif(n.test * 9), n.test)

R> pred <- predict(mod, x.test)

Following, we make a functional predicted versus observed plot, shown in

Figure 3.13.

R> fx.test<-matrix(f(cbind(rep(x.func, each = n.test),

+ kronecker(rep(1, n.func), x.test))), ncol=n.func)

R> matplot(fx.test, apply(pred, 2:3, mean), type = 'l')
R> abline(a = 0, b = 1, col = 2)

We will demonstrate the two methods of sensitivity analysis discussed in

Section 3.3. First, we can get the Sobol’ indices for the functional variable and its

interactions just as we do the other variables. This is the default.

R> sens <- sobol(mod, mcmc.use = 1:100)

Sobol Start #-- Mar 14 21:38:31 --# Models: 25

Sobol #-- Mar 14 21:38:44 --# Model: 10

Sobol #-- Mar 14 21:38:57 --# Model: 20

Total Sensitivity #-- Mar 14 21:39:05 --#
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Figure 3.14: Sensitivity analysis - Friedman function with functional response.

When we plot the variance decomposition, as shown in Figure 3.14, the functional

variable is labeled with the letter “a.” If we had multiple functional variables, they

would be labeled with different letters.

R> plot(sens, cex.axis = .5)

The other approach to sensitivity analysis is to get a functional variance

decomposition. This is done by using the func.var parameter. If there is only one

functional variable, we set func.var = 1. Otherwise we set func.var to the column

of xx.func we want to use for our functional variance decomposition. This will be

explained in more detail in a later example.

R> sens.func <- sobol(mod, mcmc.use = 1:100, func.var = 1)

Sobol Start #-- Mar 14 21:39:05 --# Models: 25

Sobol #-- Mar 14 21:39:16 --# Model: 10

Sobol #-- Mar 14 21:39:27 --# Model: 20

When we plot the variance decomposition, shown in Figure 3.15, we we get two

plots.

R> plot(sens.func)

The left plot shows the posterior mean (using posterior samples specified with

mcmc.use) of the functional sensitivity indices in a functional pie chart. The right
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Figure 3.15: Functional sensitivity analysis - Friedman function with functional
response.

plot shows the variance decomposition as a function of the functional variable. Thus,

the top line in the right plot is the total variance in y as a function of x1. The bottom

line (black) is the total variance explained by the main effect of x2 as a function of

x1. The labels in the plot on the left are the variable numbers (columns of x).

3.4.5 Air foil data

In this example, we consider a NASA data set, obtained from a series of

aerodynamic and acoustic tests of two and three-dimensional airfoil blade sections

conducted in an anechoic wind tunnel (Lichman, 2013). The response is scaled sound

pressure level, in decibels. There are five inputs: (1) Frequency, in Hertzs; (2) angle

of attack, in degrees; (3) chord length, in meters; (4) free-stream velocity, in meters

per second; and (5) suction side displacement thickness, in meters. The data have

1503 combinations of these inputs, some of which are collinear (variables 2 and 5

have correlation of 0.75).

R> dd <- read.table('https://archive.ics.uci.edu/ml/
+ machine-learning-databases/00291/airfoil_self_noise.dat')

We set aside 200 input combinations to use for testing.

R> set.seed(0)
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R> test <- sample(nrow(dd), size=150)

R> x <- dd[-test, 1:5]

R> y <- dd[-test, 6]

We fit a BASS model using tempering.

R> mod <- bass(x, y, nmcmc = 20000, nburn = 10000, thin = 10,

+ temp.ladder = 1.1^(0:5), verbose = F)

We can predict as we have before. However, this prediction is for the mean function.

R> x.test <- dd[test, 1:5]

R> y.test <- dd[test, 6]

R> pred <- predict(mod, x.test)

Now, if we are interested in predicting actual data rather than the mean function,

we can incorporate uncertainty from our estimate of σ2. The vector mult below is

the multiplyer we would use to get 95% prediction intervals.

R> mult <- 1.96 * sqrt(mod$s2)

R> q1 <- apply(pred - mult, 2, quantile, probs = .025)

R> q2 <- apply(pred + mult, 2, quantile, probs = .975)

R> mean((q1 < y.test) & (q2 > y.test))

[1] 0.9466667

This puts our empirical coverage where we would expect it to be. We can plot our

95% prediction intervals as follows, shown in Figure 3.16.

R> plot(y.test, colMeans(pred))

R> abline(a = 0, b = 1, col = 2)

R> segments(y.test, q1, y.test, q2, col = 'lightgrey')

Next, we can obtain and plot the Sobol’ decomposition, shown in Figure

3.17.

R> sens <- sobol(mod, verbose = F)

R> plot(sens)

The uncertainty in the sensitivity indices in Figure 3.17 is significant and

helps us to understand that there are many possible models for these data that use
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Figure 3.16: Prediction performance - air foil data.
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Figure 3.17: Sobol decomposition - air foil data.
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different variables and interactions. The proper characterization of this uncertainty

would be impossible if our RJMCMC chain was stuck in a mode. Hence, tempering

is crucial in this problem. By exploring the posterior modes, tempering allows us to

find not just a model that predicts well, but all the models that predict well.

3.4.6 Pollutant spill model

The final example we present is an emulation problem. The simulator is for

modeling a pollutant spill caused by a chemical accident, obtained from Surjanovic

& Bingham (2017). While fast to evaluate, this simulator provides a good testbed

for BASS methods. The simulator has four inputs: (1) Mass of pollutant spilled at

each of two locations (range 7−13), (2) diffusion rate in the channel (0.02−0.12), (3)

location of the second spill (0.01−3), and (4) time of the second spill (30.01−30.295).

The simulator outputs a function in space (one dimension) and time that is the

concentration of the pollutant.

We generate 10000 combinations of the four simulator inputs uniformly

from within their respective ranges.

R> set.seed(0)

R> n <- 10000

R> x <- cbind(runif(n, 7, 13), runif(n, .02, .12), runif(n, .01, 3),

+ runif(n, 30.01, 30.295))

We specify six points in space and 20 time points. The functional grid we will pass

to the bass function will thus have two columns, called x.func below.

R> s <- c(0, 0.5, 1, 1.5, 2, 2.5)

R> t <- seq(.3, 60, length.out = 20)

R> x.func <- expand.grid(t, s)

We use the environ function available from http://www.sfu.ca/~ssurjano/Code/

environr.html to generate realizations of the simulator. We will model the log of
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the simulator output.

R> out <- t(apply(x, 1, environ, s = s, t = t))

R> y <- log(out + .01)

With this amount of data, we are presented with an extremely large model

space to search through. In addition, since the data are smooth (no random noise),

BASS models will tend to allocate a very large number of basis functions to try to

capture the smoothness. In order to compensate for the large model space and the

smoothness, we need to set an extreme prior on the number of basis functions to

have a managable model. We do this by increasing h2 by many orders of magnitude.

In this example, we set h2 = 1e250. This results in a prior for the number of basis

functions with very heavy weight near zero. Because of the large amount of data,

we still get hundreds of basis functions.

Using such an extreme prior makes our multimodal posterior more peaked,

and more difficult to explore. We may need hundreds of chains running at dif-

ferent temperatures in order to get the temperatures close enough to eachother to

allow for frequent swapping. Another possibility that does not require picking a

temperature ladder is to instead run multiple cold chains (at the true posterior)

and allow them to swap states. This is a version of parallel hierarchical sam-

pling introduced in Rigat & Mira (2012) that can be easily implemented by setting

temp.ladder = rep(1, n.chains).

R> mod <- bass(x, y, xx.func = x.func, nmcmc = 110000, nburn = 100000,

+ thin = 10, h2 = 1e250, save.yhat = F, temp.ladder = rep(1, 10),

+ npart.func = 1, verbose = F, maxBasis = 175)

Note that we specify save.yhat = F. By default, the bass function saves in-sample

predictions for all MCMC samples (post burn-in and thinned). This can be a sigifi-

cant storage burden when we have large amounts of functional data, as we do in this
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Figure 3.18: BASS prediction performance - pollutant spill model.

case. Changing the save.yhat parameter can relieve this. If in-sample predictions

are of interest, they can be obtained after model fitting using the predict function.

As with the previous example, prediction here is for the mean function.

Whatever error is left over (in σ2) is inability of the BASS model to pick up high

frequency signal.

R> n.test <- 1000

R> x.test <- cbind(runif(n.test, 7, 13),runif(n.test, .02, .12),

+ runif(n.test, .01, 3), runif(n.test, 30.01, 30.295))

R> y.test <- log(t(apply(x.test, 1, environ, s = s, t = t)) + .01)

R> pred <- predict(mod, x.test)

A plot of the predicted (mean function) versus observed data is shown in Figure

3.18.

R> plot(y.test, apply(pred, 2:3, mean))

R> abline(a = 0, b = 1, col = 2)

To see what the predictions look like in space and time, consider the plots

shown in Figure 3.19. These show posterior draws (in grey) of the mean function

for one setting of the four inputs along with simulator output (in red).

R> pp <- pred[, 1, ]

R> ylim <- range(y)

R> par(mfrow=c(2, 3))

R> for(i in 1:length(s)) {
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Figure 3.19: BASS prediction in space and time - pollutant spill model.

+ ind <- length(t) * (i - 1) + 1:length(t)

+ matplot(t, t(pp[, ind]), type = 'l', col = 'lightgrey',
+ ylim = ylim, main = paste('s =', s[i]))

+ lines(t, y.test[1, ind], col = 2, lwd = 2, lty = 2)

+ }

We can use the sensitivity analysis methods above, but we can get Sobol’

indices as a function of either space or time. Below, we show how to get them as

a function of time. We limit the models considered using mcmc.use to speed up

computations. Since we have two functional inputs, we have two letters that can be

included in these sensitivity plots (functional inputs are labeled with letters). Note

that variable four is not included. This is because it did not explain any variance.

R> sens.func1 <- sobol(mod, mcmc.use = 1, func.var = 1,

+ xx.func.var = t, verbose = F)

R> plot(sens.func1)
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Figure 3.20: Sensitivity indices as a function of time - pollutant spill model.

3.5 Summary

Our proposed BASS framework provides a powerful general tool for non-

parametric regression settings. It can be used for modeling with many continu-

ous and categorical inputs, large sample size and functional response. It provides

posterior sensitivity analyses without integration error. The MCMC approach to

inference, especially using parallel tempering, yields posterior samples that can be

used for probabilistic prediction. The BASS package makes these features accessible

to users with minimal exposure. These capabilities have been demostrated with

a set of examples involving different dimensions, categorical variables, functional

responses, and large datasets.
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Chapter 4

Inferring Atmospheric Release

Characteristics in a Large

Computer Experiment using

Bayesian Adaptive Splines

Less than one year after California’s Diablo Canyon Nuclear Power Plant

became operational in 1985, a catastrophic nuclear accident occurred in Chernobyl,

then part of the Soviet Union, resulting in large amounts of radioactive material

being released into the atmosphere and proving fatal for many emergency responders

and reactor staff. Radioactive plumes, which drifted over much of the western Soviet

Union and Europe, necessitated the evacuation and long-term resettlement of many

local people and have had lasting effects on public health (United Nations Scientific

Committee on the Effects of Atomic Radiation, 2008).

Pacific Gas and Electric Company, which operates the Diablo Canyon Nu-
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clear Power Plant, performed a series of experimental releases of sulfur hexafluoride,

a benign gas, from the California plant soon after the 1986 Chernobyl accident. The

purpose of these experiments was to gather concentration data at downwind observa-

tion sites after each release to be used for validation of established particle dispersion

models in the presence of complex terrain (Thuillier, 1992). The inverse problem, to

determine if the release characteristics can be inferred based on observations of the

plume, was of less interest. However, the latest large-scale radioactive release that

happened after an accident in Fukushima, Japan, has prompted renewed interest in

the experimental release data from 1986 as a testbed for particle dispersion forward

and inverse modeling (Lucas et al., 2017). Highly complex systems of this nature

rarely allow for well controlled experiments, making the 1986 experimental release

data a rare asset.

Particle dispersion models have improved in the past three decades, and

statistical calibration of computer models has become a well developed field, es-

pecially following the work of Kennedy & O’Hagan (2001). Our interest lies in

developing non-intrusive uncertainty quantification methods, specifically emulation

and inverse modeling methods, suitable for use with the 1986 atmospheric release

observations and many evaluations of a state-of-the-art particle dispersion model.

This is a difficult task due to the complexity of both the observed and simulated

data. The experimental release observations form a spatio-temporal field that in-

cludes measurement error, background noise and missing values. Each of our many

evaluations of the simulator has both continuous and categorical inputs and outputs

a spatio-temporal field, resulting in massive amounts of simulated data. We note

that, in general, uncertainty quantification has become an essential step in much of

modern scientific exploration, and many fields are consistently increasing their com-
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putational capacity, making analysis of large amounts of simulated data a relevant

topic.

The primary innovation in this work that can be extended to other large

computer experiments is our emulation methodology. We avoid the GP because we

employ a large number of evaluations of the simulator, each with spatio-temporal

output. As we have discussed, scalability is not a strength of the GP, though more

scalable versions are introduced in Kaufman et al. (2011) and Gramacy & Apley

(2015). Instead, we again explore BMARS. While BMARS can be used on its own

for functional emulation as in Chapter 2, we opt for a different approach in this

application. We use BMARS to model weights on spatio-temporal empirical or-

thogonal functions (EOFs) that are linearly combined to yield a spatio-temporal

emulator. This has commonalities with the approach of Higdon et al. (2008), which

emulates simulators with highly multivariate output by using GPs to model weights

when linearly combining principle components. In our application, we also require

an emulator that can handle categorical inputs. We develop a way for BMARS to

incorporate categorical inputs that is true to its adaptive nature. The result is an

emulator that (1) can flexibly and accurately model complicated functional response

surfaces; (2) quantifies emulator uncertainty; and (3) is scalable in the number of

inputs, the number of model runs and the dimension of the functional response. This

is all fairly easy to reproduce via the R package BASS (Francom, 2017), introduced

in Chapter 3.

Inverse modeling, or calibration, for this particular dataset presents its own

set of unique challenges. In addition to emulation for simulators that are expensive

to evaluate, other essential parts of calibration are building the simulator discrep-

ancy model and the observational error model. We combine these models with a
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modularized Bayesian approach similar to that of Liu et al. (2009) to ensure identi-

fiability and to simplify computations. We use a BMARS model for the discrepancy.

The scalability and flexibility of the combined framework could be valuable for other

computer experiments with large amounts of observational and simulation data.

We introduce our data, methods and findings as follows. In Section 4.1, we

introduce the experimental release data and our simulations. In Section 4.2, we detail

the construction of our emulator and evaluate the fit. In Section 4.3, we describe

our calibration framework, detailing simulator discrepancy and observational error

models. We also demonstrate the inversion capability of the framework on synthetic

data. In Section 4.4, we show the results of our calibration technique using the

Diablo Canyon plume observations and discuss the accuracy. In Section 4.5, we

summarize and detail future work.

4.1 Data

As is common in computer experiments, we have two sources of data: ob-

servations and simulations (evaluations of the simulator). In this section, we describe

each of these.

4.1.1 Observations

The 1986 experimental release we analyze is one of eight releases performed

on different days between August 31 and September 17. We focus on a release of

146 kilograms of sulfur hexafluoride (SF6) on September 4. Starting at 8:00AM local

time, the SF6 gas was released continuously for eight hours from a location at the

base of the southmost containment unit at the Diablo Canyon Nuclear Power Plant.
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Air sampling was performed automatically at 150 sites in the surrounding area. At

each site, air was pumped into a tedlar bag over the course of one hour, at which

point the bag was sealed and air was pumped into a new bag. Sampling was done

from the hours of 7:00AM to 7:00PM, yielding 12 measurements at each site. The

quantity of interest, the concentration of SF6, is reported as an hourly average for

each site. Roughly 24% of the samples are missing for unknown reasons.

The first sample at each site (the 7-8am average) was taken prior to the

beginning of the experimental release, thus measuring the background level of SF6.

Investigation of the background level shows moderate amounts near the plant switch-

yard, where SF6 is used for electrical insulation. A map of the background level is

shown in Figure 4.1, along with the time series of the period after the release for a

few sites. The time series are noisy, show orders of magnitude in variation (even in

the background level) and missing values. The large background level at sites near

the switchyard complicate the task of determining the controlled release characteris-

tics based on our plume observations, since this fugitive release plays a confounding

role. To minimize this confounding, for the 12 measurements at each site we sub-

tract the site background level (the first measurement). Any negative values are

truncated to zero. This is an effort to remove the background, but it makes the

assumptions that the background level (1) is constant over time, (2) is small enough

that it has negligible effect on down-wind measurements (i.e., it mostly disperses

before reaching other sites) and (3) is not subject to large measurement error. The

latter two assumptions are likely to be valid, but the first is difficult to justify. Still,

in the absence of unconfounded temporal data to characterize the switchyard re-

lease, we proceed under these assumptions. For sites that are missing a background

measurement (shown with slightly smaller dots in Figure 4.1), we do not subtract a
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background value from the measurements. While we could try to impute the back-

ground level from neighboring sites, we assume that the background level does not

exhibit strong spatial correlation. Further, there are no missing background read-

ings that we believe would be significantly large (i.e., there are no missing values

very near the switchyard). Because of the many orders of magnitude difference in

observations, small background errors are unlikely to have much effect on our ability

to identify release characteristics. Even the largest background measurements are

orders of magnitude smaller than the largest post-release measurements later in the

time series.
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Figure 4.1: On the left, background SF6 levels are shown (corresponding to 7:00
local time) for 137 of the 150 sites. Slightly smaller back dots are sites missing the
7:00 observation. On the right, observed time series for a few of the sites are shown.
Lines connect adjacent observations in time, with missing values excluded.

4.1.2 Simulations

The simulator used in this work is a Lagrangian particle dispersion model

called FLEXPART (“FLEXible PARTicle dispersion model”) (Stohl et al., 2005). An

in-depth discussion of the simulator and simulations can be found in Lucas et al.

(2017), while we only introduce the simulations briefly here. The FLEXPART model
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requires six inputs detailing characteristics of the release (latitude, longitude, alti-

tude, start time, duration, and amount) as well as a wind field. We use the Weather

Research and Forecasting Model (WRF) to generate wind fields while varying only

a few of WRF’s many inputs. The inputs we vary are pre-release initialization time

(9 or 15 hours), planetary boundary layer physics model used (YSU, MYJ TKE, or

MYNN TKE), land surface model used (thermal diffusion, Noah, or RUC), FDDA

nudging amount (none, low, or high), and type of reanalysis data used (NARR,

ECMWF, or CFSR). We use a series of five nested domains for evaluating WRF, so

that the innermost domain resolves winds to 300 meters. More about these param-

eters and nesting can be found in Skamarock et al. (2008). A combination of the

five categorical variables yields a wind field, which, along with a setting of the six

continuous variables detailing the release characteristics, yields a simulated plume.

We obtain an ensemble of 18000 evaluations of FLEXPART with the 11-

dimensional inputs sampled from a Latin Hypercube using the ranges in Table 4.1

for the six continuous parameters. We note that 18000 model evaluations is uncom-

monly large in the computer experiment literature, though there are some recent

applications with many evaluations (Gramacy & Apley, 2015; Kaufman et al., 2011).

Our computational budget allowed for this large number of evaluations, though each

is still expensive to obtain. As discussed above, this large number of simulations

makes emulation difficult, since traditional emulation techniques do not scale well.

The output from one evaluation of the simulator is spatio-temporal on a

grid of 400× 400 spatial locations and 34 time points, as shown in Figure 4.2. The

34 time points are 30-minute averages starting at 6:00 local time, thus extending

to 23:00. We use only a subset of the 160,000 spatial locations when building the

emulator, though the methods we present are scalable to moderately large spatial
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grids. Specifically, we use the 137 spatial locations that correspond to the sites

shown in Figure 4.1, which are sites where we collect measurements. We exclude 13

of the 150 measurement sites from the analysis because they fall outside the region

considered in the simulations, and are far enough away from the release that they

are likely to only measure background levels.

Both simulation and observation data are transformed to be on the log10

scale after adding a constant of 20 to all values. The log scale makes modeling the

many orders of magnitude difference in concentrations easier. Adding 20, determined

in consultation with field experts, minimizes the amount of attention we give to small

(in this case unimportant) concentration values.
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Figure 4.2: We show the simulated SF6 plume for one of the 18000 simulations on
the left (corresponding to 9:30 local time). On the right, we show simulation time
series for a few of the sites.

4.2 Emulator

A usable emulator in this case needs to be able to produce a reasonably

close approximation to the computer model for any possible combination of the 11

inputs. That is, given the characteristics of the release and the wind field charac-
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Table 4.1: FLEXPART continuous parameter ranges

parameter lower bound upper bound true value

latitude 35.1977 35.2250 35.2111
longitude -120.8708 -120.8384 -120.8543
altitude (meters) 1 10 2
start time 7:00 9:00 8:00
duration (hours) 6 10 8
amount (kg) 10 1000 146.016

teristics, it should produce the spatio-temporal plume. Obtaining an estimate of

emulation error is also a necessary task in order to allow us to propagate the error

into calibration uncertainty. If this error is disregarded, we leave open the possibility

of being too confident in our estimates of release and wind characteristics that could

have generated the calibration data. This case also requires an emulator that can

use the large number of model runs available.

Our model runs provide us with 18000 plumes in space and time. We use

these plumes to obtain empirical orthogonal functions (EOFs) in space and time

jointly, and we model the weights in this EOF decomposition using adaptive splines.

4.2.1 Empirical Orthogonal Functions

Let yc(s, t,x) denote computer model output at spatial location s, time t

and 11-dimensional input setting x. The model output is on a grid of ns spatial

locations and nt times. We define the vector of model output for input setting xj as

yc(xj) =

(yc(s1, t1,xj), y
c(s2, t1,xj), . . . , y

c(sns , t1,xj), y
c(s1, t2,xj), . . . , y

c(sns , tnt ,xj))
′

(4.1)
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and define the matrix of model run output Yc = [yc(x1), . . . ,y
c(xnx)] for the nx

model runs, which has dimensions nsnt×nx. We obtain discretized EOFs using the

singular value decomposition, yielding Yc = UDV′. The matrix U is the nsnt×nsnt

matrix that has EOFs as columns and DV′ is the nsnt × nx matrix of weights. To

reduce the dimension in the problem, we use only the first k EOFs, where k <

nsnt, resulting in the truncated decomposition Ŷc = ÛD̂V̂′ where Û has dimension

nsnt × k and D̂V̂′ has dimension k × nx. For modeling purposes, we write the

non-truncated EOF decomposition as yc(s, t,xj) =
∑nsnt

i=1 Ki(s, t)wij where Ki(s, t)

is the ith EOF at spatial location s and time t and wij is the corresponding weight

for xj , specifically (DV′)ij .

We specify our emulator as the truncated decomposition

yc(s, t,x) =
k∑
i=1

Ki(s, t)wi(x) + u(s, t) (4.2)

where u(s, t) is the truncation error. We replace wij with wi(x) in order to allow us

to predict computer model output for x not in our training sample {x1, . . . ,xnx}.

We model the weight functions using adaptive splines with

wi(x) = ηi(x) + εi, εi ∼ N(0, σ2i ) (4.3)

using the values of {wi1, . . . , winx} to train wi(·). We discuss the form of the function

ηi(·) in the next section. We assume that the weights on the EOFs are independent

a priori.

Regarding the truncation, we need k, the number of EOFs used, to be

sufficiently large to yield a suitable approximation, but small enough to be com-

83



putationally feasible. Assuming a parametric distribution for the truncation error,

u(s, t), for which it is independent and identically distributed for all s and t is likely

to improperly characterize the emulation uncertainty because of the large variation

in plume characteristics in space and time. Instead we assume truncation error for a

particular (s, t) combination comes from the distribution of nx = 18000 truncation

errors we have seen already,

u(s, t) ∼ Unif

{
yc(s, t,xj)−

k∑
i=1

Ki(s, t)wij

}nx
j=1

. (4.4)

Since the EOFs are fixed, there is little interest in the truncation error after we have

chosen k, other than to make sure it is propagated during calibration. Hence, we

see no value in trying to estimate a parametric distribution. The large value of nx

makes our discrete distribution for the truncation error accurate without making

any limiting assumptions about distribution tails and symmetry. Further, since this

distribution has no unknown parameters and because the weights wi(x) and wj(x)

have no a priori correlation, the weights will also have no a posteriori correlation.

This means that the adaptive spline models for wi(x) and wj(x) can be fit completely

in parallel, which is a significant computational benefit.

4.2.2 Adaptive Splines

As we have discussed in Chapter 2, BMARS models can be a powerful tool

for emulation for a number of reasons: (1) they are adaptive because knots and

variables are only included in basis functions if they are necessary; (2) they perform

implicit variable selection, as basis functions only include variables that are useful;

(3) they scale well, especially when compared to Gaussian process models; (4) they
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can flexibly pick up localized signal when the data suggest such signal exists; (5)

they yield analytical Sobol’ sensitivity indices; and (6) they can be used to emulate

simulators with functional response.

The model for the adaptive spline mean function ηi(x), used in Equation

4.3, is a linear combination of tensor product basis functions. We drop the index

as we describe this model, since it is fit independently for i = 1, . . . , k. Thus,

η(x) = a0 +
∑M

m=1 amBm(x) where the basis function Bm(x) is of the form

Bm(x) =


∏Jm
j=1 gjm[sjm(xvjm − tjm)]+ if Jm > 0

1 if Jm = 0.

(4.5)

When Jm > 0, the basis function is a tensor product of polynomial splines where

tjm is a knot, vjm indexes a variable, and sjm ∈ {−1, 1}. The function [·]+ is defined

as max(0, ·). The constant gjm scales the basis function to have maximum of one,

which helps with computational stability. Without loss of generality, if xvjm ∈ [0, 1],

then gjm = [(sjm + 1)/2 − sjmtjm]−1. A basis function has Jm elements in the

tensor product where each is required to involve a different variable. Hence, Jm is

the degree of interaction for basis function m. The piecewise structure of the basis

function will become important in the next section, where we will discuss the case

when Jm = 0.

The unknowns associated with η(x) are the number of basis functions, M ,

the basis function weights a, and the basis function parameters. The value of σ2 from

Equation 4.3 is also unknown (again, we drop the index for notational simplicity).

We assign priors to all of these parameters following the specifications of Chapter 2.
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4.2.3 Categorical Predictors

As we have discussed, our emulator needs to be able to handle categor-

ical inputs. This requires an extension of the traditional adaptive splines models

that follows an approach similar to Friedman (1991b), but modified to fit into our

Bayesian framework. Specifically, if the inputs to the simulator are (x, z) where z is

a vector of categorical variables, we define the portion of the basis function due to

the categorical variables as

Bm(z) =


∏Lm
l=1 1(zulm ∈ Dlm) if Lm > 0

1 if Lm = 0.

(4.6)

where ulm indexes a categorical variable, Dlm is a proper subset of the categories

of variable ulm, and Lm is the degree of interaction of categorical variables. This

approach to handling categorical variables is somewhat similar to Storlie et al. (2015)

and Ma et al. (2015). We combine this portion of the basis function with Equation 4.5

so that the mth basis function is Bm(x, z) = Bm(x)Bm(z). The purpose of allowing

for Lm = 0 or Jm = 0 is to allow for basis functions that involve only the continuous

predictors, or only the categorical predictors, respectively. In our case study, we

permit up to third-order interactions of each variable type (Jm = 3 and Lm = 3)

maximally resulting in six-way interactions if the data dictates that such interactions

are useful. Allowing Dlm to be a subset of categories rather than a single category is

useful for cases when two or more categories exhibit similar behavior, as it allows us

to use fewer basis functions to describe the behavior. We again use a discrete uniform

prior for the categorical basis function parameters {Lm, (ulm, Dlm)Lmj=1}Mm=1, and we

alter the constraint discussed in Chapter 2 to apply to the new set of basis functions
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that include both categorical and continuous variables. That is, each resulting basis

function must have at least 20 non-zero points.

4.2.4 Performance

We demonstrate the performance of the emulator by comparing emulator

and simulator output at input settings not used to fit the surrogate or to build the

EOFs. We use the R package BASS (Francom, 2017), introduced in Chapter 3, to

fit the BMARS models. Figure 4.3 shows the performance at 15 of the 137 spa-

tial locations for two different holdout simulator runs. In addition to the emulator

mean, posterior predictive uncertainty is shown. The prediction uncertainty varies

with space and time because (1) the homoscedastic BMARS error from Equation 4.3

is multiplied by the corresponding spatio-temporal EOF in Equation 4.2, thus pro-

ducing spatio-temporal noise and (2) the truncation error varies in space and time.

The models corresponding to the most important EOFs use around 200 BMARS

basis functions to fit the data, while the least important EOFs, which correspond to

higher frequencies, use around 50 basis functions.

These holdout predictions demonstrate reasonable emulator performance,

especially considering the complexity of this simulator. Predictions of a number of

other randomly chosen holdout simulations also show good performance. By using

a large number of EOFs in our emulator, we are able to capture subtle variation in

the shape of the time series for different input settings. For instance, the difference

in the shapes of the two time series for the Whalers Island location (top right in

Figure 4.3 (a) and (b)) could be attributed to “random” variation if a less accurate

emulator was used. Instead, we can attribute the difference to input parameter

variation. Because the simulator is deterministic, there is technically no “random”
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variation, though there may be numerical variation that is difficult to attribute to

any parameter.

Our efforts to build an emulator for a single location (using the 34 time

points) resulted in poor emulation compared to those that utilize the spatio-temporal

plume information. We also achieved better emulation performance using spatio-

temporal EOFs than we did using EOFs that were separable in space and time.

While separable EOFs have the benefit of easier interpretation, we have little interest

in interpretation, and separability ends up being a poor assumption for this plume

model.

The only case we foresee where we may be interested in interpretation

of the EOFs is when doing sensitivity analysis. We can easily obtain the Sobol’

decomposition for each EOF adaptive spline model, extending the work of Chapter

2 to include the categorical framework we have introduced (shown in Appendix

B). However, if the EOF lacks interpretability, so too does the sensitivity analysis.

Because the first EOF is generally interpretable as the average and accounts for

most of the variance, sensitivity analysis of that EOF model may be interesting

(shown in Figure 4.4). That sensitivity analysis shows that variable three, which is

the release altitude, plays no role in the weight for the first EOF. Hence, we would

expect to learn very little about that parameter during calibration, since it is also

unimportant in all of the other EOF models. We note that a more interpretable

functional sensitivity analysis can be performed analytically using our emulator (i.e.

the Sobol’ decomposition integrals are analytical), but it bears a large computational

burden and will not be further explored in this chapter. A derivation of the Sobol’

indices for this case is given in Appendix B.
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(a) Holdout Sample 1
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(b) Holdout Sample 2

Figure 4.3: Demonstration of emulator fit at 15 locations. The top plots (a) show the
time series simulator output (dotted lines) for a particular set of inputs not used to
train the emulator. The bottom plots show a different input setting, to demonstrate
variation in the model output shape. Emulator posterior predictive means (dashed
lines) and pointwise 95% probability intervals (shaded region).
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Figure 4.4: Sensitivity analysis for the adaptive spline model corresponding to the
first EOF. Variable numbers 1-6 are the continuous inputs while variables 7-11 are
the categorical inputs.

4.3 Calibration Model

Our strategy for calibration differs from that of Kennedy & O’Hagan (2001)

in a few important ways. Rather than the GP emulator, we use BMARS. We also

opt to fit the emulator before calibrating, independent of the observational data.

While we do this primarily for computational reasons, it marks a general difference

in strategy. A similar approach was used in Gramacy et al. (2015), with the justifi-

cation that with a large number of simulations the observational data is not going

to significantly influence the emulator. Others justify this strategy on philosophical

grounds, because the emulator is meant only to replicate the computer model and

thus should not be influenced by observational data (Liu et al., 2009).

Let yF (s, t) denote the log concentration data gathered from sensors at

location s and time t. Let ζ(s, t) denote the true concentration at the same location
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and time. Then we set up the calibration model as follows:

yF (s, t) = ζ(s, t) + ν, ν ∼ N(0, σ2F ) (4.7)

ζ(s, t) = yc(s, t,θ) + δ(s, t) (4.8)

where ν is the observation error, σ2F is the observation error variance and yc(s, t,θ)

denotes the estimated computer model output at location s, time t and input setting

θ. The δ(s, t) term denotes the systematic model discrepancy. Hence, θ is the

unknown setting of the simulator that best matches reality when jointly considered

with simulator discrepancy and observational error. While the observations are

hourly averages, the emulator gives 30-minute averages. Thus, we average 30-minute

averages in the emulator output to match the observation time scale. We also exclude

emulator and discrepancy values at (s, t) where the corresponding yF (s, t) is missing.

A potential problem with the introduced modeling framework is that the

observations can be produced in a number of different ways. For instance, we might

get good prediction if we get as close as we can to the observations by only altering

θ, and then consider δ(·) to be the leftover spatio-temporal structure in combination

with ν, the observational error. However, we could achieve equally good prediction

by fixing θ at a particular value and only altering δ(·). These two examples represent

the extremes in overfitting, but we may attain equally misleading combinations of

these. Hence, we need restrictions in order to make all the terms identifiable. The

most satisfying restrictions we can introduce are in the form of an informative prior

for the shape of the discrepancy, rather than an informative prior for the parameters

θ (Liu et al., 2009). While there may be some applications where the shape of the

discrepancy is somewhat understood, we do not have an informative prior for our
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discrepancy model.

Following Liu et al. (2009), we make the quantities of interest identifiable

by modularizing the analysis further. Particularly, we fix the shape of the model

discrepancy before trying to infer θ. We get an estimate of the model discrepancy

by estimating the computer model output at the prior mean parameter settings

(Bayarri et al., 2007b) and subtracting that from the observations. We then fit a

BMARS model to that discrepancy as a function of s and t, effectively smoothing

it out. While we fix this discrepancy shape, we allow for its influence to vary by

multiplying the discrepancy by a scale factor, γ. Our prior for γ is uniform between

zero and two. If γ is near zero, the influence of the discrepancy is minimal. If it is

near two, then the discrepancy plays a larger role. We limit the upper bound to two

because anything larger would give the discrepancy similar magnitude to the simu-

lator output, which we hope is not the case. While we introduce a scale parameter

to the discrepancy, we do not introduce an intercept parameter because doing so

would likely confound our ability to learn one of the simulator parameters (release

amount), which explains much of the magnitude variation. Without a priori knowl-

edge of systematic magnitude discrepancy, we refrain from including an intercept (or

a multiplicative discrepancy term for yc(·), included in Kennedy & O’Hagan (2001)).

Thus, we alter Equation 4.8 to be

ζ(s, t) = yc(s, t,θ) + γδ(s, t).

While the functional forms of yc(·) and δ(·) are fixed in advance, we incorporate

their uncertainties in calibration by sampling their posterior predictive distributions,

rather than using their mean functions.
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Under this calibration framework, our likelihood is yF |θ, σ2 ∼ N(yc(θ) +

γδ, σ2F I) and our posterior is

π(θ, σ2F , γ|yF ) ∝ N(yF |yc(θ) + γδ, σ2F I)IG(σ2F |a, b)1(θ ∈ D)1(γ ∈ [0, 2]) (4.9)

where D is the hypercube based on the prior ranges identified in Table 4.1 that

also allows for all the discrete parameter combinations. We obtain samples from the

posterior by using Markov chain Monte Carlo (MCMC) methods (Gelman et al.,

2013). We sample σ2F and γ from their Inverse Gamma and Truncated Normal full

conditionals, respectively. We use the Metropolis-Hastings algorithm to sample the

six continuous parameters in θ from their joint full conditional. We sample the

five categorical parameters jointly from their discrete full conditional. Specifically,

there are 162 combinations of the categorical parameters. We take a sample from

the emulator posterior predictive distribution for each of the 162 combinations and

evaluate the posterior up to a constant. This is reweighted to produce a posterior

(full conditional) probability for each setting of the categorical parameters. We then

sample one of the 162 combinations according to that probability distribution.

The computational bottleneck to this algorithm is sampling the emulator

posterior predictive distribution, as it requires building the BMARS basis functions

for all EOF models. A single sample takes 0.2 seconds when the tasks for the 100

models are split between four cores. To obtain 162 samples, one for each categorical

combination, a naive approach would require more than 30 seconds for each MCMC

iteration. We overcome the bottleneck in sampling the posterior predictive 162 times

by building all of the possible categorical basis functions in advance. For each EOF

model and each emulator posterior sample, we obtain the basis functions used in
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each of the 162 predictive combinations. The resulting basis functions, which are

combinations of ones and zeros, are multiplied (pointwise) by the portions of the basis

functions from the continuous predictors. This allows us to obtain the 162 posterior

predictive samples in less than 0.1 seconds on four cores, in contrast to the naive

approach that takes more than 30 seconds. Though the categorical basis functions

may seem like they would have a large memory footprint, they are combinations of

ones and zeros and thus can be stored efficiently in memory.

4.3.1 Synthetic Calibration

To test our methods, we can calibrate to data where we know the truth.

Particularly, we use two of the holdout model runs to perform two synthetic calibra-

tions. That is, we treat each of the two holdout model runs as the true data. Hence,

we exclude the simulator discrepancy portion of the model. The goal is to see if

the parameters used to generate the model runs can be reasonably identified. One-

and two-way marginal posterior distributions for the six continuous parameters are

shown in Figure 4.5. These show that we are able to learn five of the six parameters

well. However, we are unable to learn the altitude from these data. This is not

surprising, given that our sensitivity analyses showed that altitude played little to

no role in the emulator, so the output cannot constrain this particular input. Upon

closer investigation, we found that the grid used in the simulations was too coarse to

learn anything about the altitude parameter in the range that was specified a priori

(see Table 4.1).

Regarding the five categorical parameters that are inputs to WRF, we

are able to identify these well in the two synthetic examples (these results are not

shown). Most posterior probability (86% and 87% in the two examples) is given
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(a) Synthetic Calibration 1 (b) Synthetic Calibration 2

Figure 4.5: Marginal posterior distributions of continuous parameters in two syn-
thetic calibration problems where we calibrate to model run output. True values are
marked with vertical lines and X’s. 95% contours are shown in the two-way marginal
plots.

to the particular combination of five variables that are the true settings. Other

synthetic calibrations using holdout data have shown that the land surface model

can be difficult to identify in some cases (results not shown).

4.4 Inferring the Source of a Diablo Canyon Release

In this section, we present the results of the case study. We first discuss

calibration results under two different discrepancy settings: (1) assuming no discrep-

ancy (i.e., δ = 0) and (2) using the modularized discrepancy discussed above. Figure

4.6 shows the one- and two-dimensional marginal posterior distributions of the con-

tinuous parameters for the no discrepancy and modularized discrepancy cases. The

true values of the parameters are also shown in Figure 4.6, from which we see that

latitude and longitude are well identified under both discrepancy models. As can

be seen from its nearly uniform posterior distribution, altitude is not well identified

for the reason discussed in the previous section. The differences between these cali-
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(a) Calibration Without Discrepancy (b) Calibration With Discrepancy

Figure 4.6: Marginal posterior distributions of continuous parameters obtained from
calibrating to real data. True values are shown with vertical lines and X’s. The left
panel does not use discrepancy while the right panel does. 95% contours are shown
in the two-way marginal plots.

brated release location parameters are negligible under the two different discrepancy

models. However, the release timing parameters (start time and duration) exhibit a

fairly significant shift. The discrepancy model helps to reduce the bias of the timing

parameters. While both models result in a biased amount parameter, the bias is

reduced when a discrepancy model is included.

The bias in the calibrated amount parameter is most likely due to the fact

that the amount is highly correlated with the maximum (over space and time) of a

model run. The maximum is important because we are using the log scale, so other

measurements may be orders of magnitude smaller and thus would not reflect much

difference in the amount. Since the emulator is more smooth than the observations,

the emulator maximum tends to be smaller than that seen in the observational

data. Hence, we did not have a bias in our calibrated amount under the synthetic

calibrations discussed earlier, as the synthetic data are more smooth, and maximum

values tend to be well predicted by the emulator.
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(a) Calibration Without Discrepancy
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(b) Calibration With Discrepancy

Figure 4.7: Marginal posterior distributions of categorical parameters obtained from
calibrating to real data. The top panel does not use discrepancy while the bottom
panel does. Unlike the continuous parameters, the true values of these parameters
are unknown.

In Figure 4.7, the posterior marginal distributions of the categorical vari-

ables are shown for the two discrepancy cases. These distributions show significant

change when a discrepancy model is used. The distribution of each parameter be-

comes less varied when the discrepancy is included. Notably, the reanalysis param-

eter strongly favors the North American model (NNAR) over the European model

(ECMWF) when the discrepancy is included. The distribution of the planetary

boundary layer (PBL) physics parameters is altered to give little mass to the YSU

setting. There is also a much stronger preference for no nudging when discrepancy

is included.

While the original goal of this analysis was to test the calibration methodol-

ogy on an experimental release where many of the release characteristics were known,

the field study was conducted over three decades ago at a time when global posi-

tioning satellites were not available. As a result, there is a discrepancy between the
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coordinates of the release location in the original field study documentation (UTM

695368 Easting, 3898440 Northing, and zone 10) and the qualitative description of

the release site in the paper by Thuillier (1992). Our initial analysis showed that our

estimate (posterior mean) of the location of the release (latitude and longitude) was

biased by about 100 meters and more consistent with location described in Thuillier

(1992), which indicates that the release occurred at the base of Containment Unit

2 (the southmost containment unit). The corrected release location is supported

by our calibration analysis, indicating it is much more probable than the originally

reported release location, as shown in Figure 4.8.

 4000 

 8000 

 12000 

 16000 

●
●

●
●

● ● ● ● ● ●
●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

reported release location
corrected release location
measurement sites
prior range
posterior contours

Figure 4.8: The marginal posterior distribution of the latitude and longitude param-
eters, as well as the reported location (see text for details).

As discussed previously, our calibration approach fixed the shape of the

model discrepancy before inferring the calibration parameters. The scale parameter

γ, which would inflate or deflate the effect, preferred a deflated discrepancy (95%
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probability interval of (0.58, 1.02) for γ). The model discrepancy inferred from the

data can be a useful tool in understanding what parts of the model could be explored

further to improve predictive accuracy. We perform an exploratory data analysis of

the discrepancy to try to determine its meaning. We see common shapes in groups

of the discrepancy time series. When we cluster these time series, we partition our

spatial field into areas where the discrepancy time series look similar. The clustered

time series and the accompanying locations are shown in Figure 4.9. Clustering

was performed using the fdakma R package (Parodi et al., 2015) with a K-means

(but using the medians) type of algorithm that calculated the L2 distance between

the first derivatives (approximated by differencing) of the time series. Thus, cluster

membership was determined based on similarity of the shape, rather than amplitude

of the curves. The number of clusters was selected based on visual assessment of

the clustering results. The more interesting parts of our discrepancy are in clusters

three and five, shown in Figure 4.9. Cluster three corresponds to locations that

would be in the early path of the plume under the meteorological conditions we

observe. The shape of the time series in cluster three seems to indicate a discrepancy

in the timing of the plume reaching those locations, implying that the simulator’s

early concentrations are too high and late concentrations are too low. This matches

the fact that our inference regarding the timing parameters was improved when we

included this discrepancy model. As shown in Figure 4.6, excluding a discrepancy

results in later inferred start time. Cluster five corresponds to the spatial locations

closest to the release. These have largest discrepancy likely because of the high

concentration of the plume just after the release. With only a slight perturbation

of the wind conditions, the early plume predictions can be in completely different

locations because the plume is so concentrated. Thus, if wind predictions are only
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slightly inaccurate, the early plume predictions yield a large model discrepancy.
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Figure 4.9: Clusters of discrepancy time series according to shape. The bottom right
plot shows locations marked by cluster membership. The vertical dotted lines in the
time series represent interval limits outside of which extrapolation begins.

Our calibrated predictions with and without discrepancy for the locations

in cluster five are shown in Figure 4.10. These show that including discrepancy

brings a significant benefit at those locations while not being overly complex in

shape. These also show that the extrapolated predictions including discrepancy can

be fairly inaccurate. Indeed, the curves shown in Figure 4.9 show that the temporal

extrapolation is linear. As in all discrepancy functions that are motivated by data

rather than scientific input, this extrapolation should not be trusted. Note that one

of the locations, site 326, is missing all of the observations. Because site 326 is located

such that it is not much of a spatial extrapolation (not shown), this prediction may

be trustworthy.

To see the broader effect of including discrepancy on calibrated predic-
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(a) Prediction Excluding Discrepancy
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(b) Prediction Including Discrepancy

Figure 4.10: Calibrated prediction for the locations in cluster 5. The top panel shows
prediction excluding discrepancy, while the bottom panel includes discrepancy. The
95% pointwise probability intervals do not include the observational error, which is
Normal with posterior standard deviation near 0.39 (95% probability interval (0.35,
0.43) for σF , symmetry coincidental).
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tion, we show the predicted (posterior mean) versus observed data in Figure 4.11.

This shows that the discrepancy model, while simple, generally improves prediction.

The improvement is most significant for large values, corresponding to the location

clusters closest to the release.
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Figure 4.11: Calibrated prediction versus the observations, with and without the
discrepancy in prediction.

4.5 Discussion

We have presented an analysis of a computer experiment with important

applications to locating and assessing an atmospheric release. In the process, we have

developed emulation methodology that can be scaled for use with large numbers of

model runs when each has functional output. We have extended existing BMARS

methodology to allow for categorical inputs and to model in a reduced dimension

space. In building this emulator, we have detailed how to keep track of different

sources of uncertainty. We have extended modular approaches to computer model

calibration for use with a BMARS emulator and a BMARS discrepancy function,

paying special attention to identifiability.

The immediate applications of this work are for research and development
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purposes rather than emergency response. In an actual emergency, there would

be limited time to run WRF (in forecast mode) to get the wind fields for use in

FLEXPART. However, an approach that uses weather analogues (Delle Monache

et al., 2011) rather than WRF runs may be feasible. An ensemble of FLEXPART

simulations could be obtained in parallel, and emulation and calibration models

could be fit thereafter. In order to be useful, emulation and calibration need to

be done quickly and accurately. Hence, the emulation and calibration methodology

outlined here has potential to be useful. This work would also be valuable for forensic

and remediation purposes, i.e., determining what happened during an atmospheric

release after it has ended, or understanding what populations were exposed during

a release.

A possible extension of the proposed model would be to include functional

input. That is, rather than parameterizing WRF with five categorical parameters,

we could include the entire spatio-temporal wind field as input for the emulator.

This may be possible by decomposing wind fields onto a set of basis functions and

including the basis function weights as inputs to the BMARS emulator.
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Chapter 5

Functional Nonlinear Regression

and Registration using Bayesian

Adaptive Splines

When a computer model outputs functional data, it is sometimes the case

that the functional data are misaligned. For instance, if a computer model response

is a time series, and different input combinations yield time series with different

time scales, the functional data are misaligned. Many of the fundamental uncer-

tainty quantification tasks discussed in previous chapters are complicated by the

misalignment, beginning with emulation.

In this chapter, we develop an emulator that can handle misaligned func-

tional data. This is motivated by a high-energy-density physics computer model

used to simulate inertial confinement fusion ignition experiments that take place on

the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory.

The goal of these experiments is to achieve nuclear fusion by compressing and heat-
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ing a fuel capsule using high-energy lasers. The simulator, called HYDRA, takes

nine inputs describing the laser stimulus (shape, amount, and timing) given to the

capsule as well as the density of the fuel in the capsule (Peterson et al., 2017). The

simulator outputs many quantities, but we are particularly interested in the energy

production rate over time. Figure 5.1 shows the log of the simulator output from

five different combinations of the nine inputs. The goal is to build an emulator that

can predict and quantify prediction uncertainty using nearly 25000 simulations.
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Figure 5.1: Five curves output from five runs of the HYDRA simulator with different
input settings.

Approaches to emulation for models with misaligned functional responses

are limited. Hung et al. (2015) build a Gaussian process emulator, including the

functional response using a Kronecker covariance structure and handling the mis-

alignment with missing data methods. Missing data methods, where the functional

response is imputed for the entire range of possible functional responses, are un-

likely to be useful here because of the large variability in the misalignment of the
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responses, as shown in Figure 5.1. Other possible approaches center on registration,

which is the process of aligning functional data. When only the aligned functions

are of interest, the data can be registered as a preprocessing step, as in Bayarri et al.

(2007a). An emulator built from registered data would be limited to prediction of

aligned curves only, unless a registration model was incorporated into the emulator.

The prospect of combining a registration model with an aligned functional

data model is of interest to functional data analysis researchers more generally. For

instance, Earls et al. (2017) develop a model that, for a functional dataset without

covariates, uses Gaussian processes to simultaneously infer the aligned mean curve

and the warping function, which is the function that transforms the unregistered

data to be registered. Telesca (2015) also considers, for the purposes of inference

and not prediction, a mixed model for both the warped data and the warping func-

tions. A good deal of attention has been given to modeling of warping functions

for inference purposes (Gervini & Gasser, 2004; Tucker et al., 2013), but attention

has not been given to modeling warping functions with covariates, especially in a

nonlinear fashion. A warping function must be non-decreasing, which can compli-

cate modeling of warping functions. Further, joint modeling of phase and amplitude

variability can lead to identifiability issues, since overfitting of phase variability by

not constraining warping functions to be smooth is detrimental to the analysis of

the amplitude variability.

While many methods for registration have been proposed, landmark regis-

tration is preferred when possible (Gervini & Gasser, 2004). Landmark registration

consists of aligning functions according to where important functional traits (land-

marks) occur. For instance, local maxima, minima, or inflection points may be

considered landmarks. Landmarks can be considered realizations from the warp-
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ing functions, making the shape of the warping functions easier to identify. The

difficulty with landmark registration is that landmarks can sometimes be difficult

to select. Hence, methods that do not depend on landmarks are more common.

Recent work by Strait & Kurtek (2016) develops a method to estimate landmark

placement with uncertainty. In the case of the HYDRA simulations, there are a

few clear landmarks occurring in each curve. These are the start, end, global maxi-

mum, and point at which the curve changes direction between the start and global

maximum. If we consider warping functions that are linear between the landmarks,

Figure 5.2 shows what the aligned curves look like. For comparison, Figure 5.2 also

shows what the aligned curves would look like with only the start and end points as

landmarks. Variation near the excluded landmarks would require the model for the

aligned curves to be more complex, and justifies the inclusion of all four landmarks

since they are easily identified. Figure 5.2 shows the (inverse) warping functions

using four landmarks.
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Figure 5.2: The five curves from Figure 5.1 warped in two different ways. The
left panel shows landmark warping with two landmarks, while the right uses four
landmarks. Dotted vertical lines indicate the location of landmarks

We propose an emulator that uses a Bayesian adaptive spline model for the
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Figure 5.3: Warping functions for the five curves in Figure 5.1 that are linear between
landmarks.

warped curves as well as a Bayesian adaptive spline model for the warping functions.

The most natural way to require a BMARS model to be non-decreasing in the

functional variable would be to include such a constraint in the likelihood. Then, if

f(r,x) = a0 +
∑M

m=1 amBm(x)Bm(r) is the corresponding BMARS mean function,

d
drf(r,x) =

∑M
m=1 amBm(x)B′m(r), and B′m(r) is easy to obtain as the derivative of

a truncated linear function. However, for a particular f(r,x), we need to check that

d
drf(r,x) ≥ 0 for all possible x. This becomes a combinatorial problem because of

the dimension of x and the size of M . Another possible approach is to only allow

non-decreasing basis functions. Because 0 ≤ Bm(x) ≤ 1, this simply requires that

amB
′
m(r) ≥ 0. However, the resulting shape of the BMARS mean function, f(r,x),

is limited in this case. Yet another approach would be to work with different basis
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functions altogether, such as Bernstein polynomials (Chang et al., 2007). However,

multivariable nonparametric regression where one of the dimensions is required to

be non-decreasing is going to be a difficult problem with any basis functions, for the

reasons just described. If the basis functions have a tensor product form, we will face

the combinatorial problem. If the basis functions are required to be non-decreasing

in the functional variable, the possible shapes of the non-decreasing functions are

likely to be limited. Instead, we opt to model the warping functions in a transformed

space, according to a transformation that results in monotonicity. Specifically, we

model in the log derivative space.

We describe the emulator in full in Section 5.1, including possible methods

of inference. In Section 5.2, we emulate the HYDRA simulator and evaluate the

performance. In Section 5.3, we conclude and discuss possible extensions.

5.1 Adaptive Spline Emulator

Let yi(r) denote the output from the ith computer model run for i =

1, . . . , n. The output is a function of r, though r may have a different range for

different model runs. We model yi(r) as the composition of two random functions,

yi(r) = yi(r
∗) ◦ w−1i (r). (5.1)

Here, yi(r
∗) represents the aligned data and w−1i (r) is the non-decreasing warping

function that transforms the aligned data to the original scale. If r ∈ T , r∗ ∈ T ∗,

and yi(r) ∈ R, then we have that w : T ∗ → T , y(r) : T → R, and y(r∗) : T ∗ → R.
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Note that Equation 5.1 can be rewritten as

yi(r) ◦ wi(r∗) = yi(r
∗), (5.2)

since function composition is associative and w−1 ◦ w is the identity function.

We then model the aligned data as

yi(r
∗) ∼ N

(
ηy(r

∗,xi), σ
2
y

)
ηy(r

∗,xi) = ay0 +

My∑
m=1

aymB
y
m(r∗)By

m(xi), (5.3)

which is the BMARS model introduced in Chapter 2. The warping functions are

modeled on the log derivative scale as

log

(
d

dr∗
wi(r

∗)

)
≡ vi(t∗) ∼ N

(
ηv(r

∗,xi), σ
2
v

)
ηv(r

∗,xi) = av0 +

Mv∑
m=1

avmB
v
m(r∗)Bv

m(xi),

which is another BMARS model. We can rewrite w in terms of v as

wi(r
∗) = r0i +

∫ r∗

r∗0

exp{vi(s)}ds

where r∗0 is the infimum of R∗ and r0i is the constant that vanishes when taking

derivatives, which can be interpreted as the start time. This integral has an analyt-
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ical solution, given in Appendix C. Finally, we model

r0i ∼ N
(
ηr(xi), σ

2
r

)
ηr(xi) = ar0 +

Mr∑
m=1

armB
r
m(xi),

which is a third BMARS model with scalar, rather than functional, response.

The warping functions wi(r
∗) would be treated as latent functions if we did

not have landmarks. The landmarks are realizations of these functions, which we

denote as wi = {wi(r∗1), . . . , wi(r
∗
L)} where L = 4 is the number of landmarks. Some

simplifications result from assuming that the warping functions are linear between

the landmarks. We can discretize the derivative and integral given above. If we let

vi = {vi1, . . . , viL−1} where vij = log
(
wi(r

∗
j+1)−wi(r∗j )
r∗j+1−r∗j

)
for j = 1, . . . , L − 1, then vi

is a coarsely discretized version of the function vi(r
∗), which we can model. Then,

to transform to the space of w, we need only wij = r0i +
∑j

l=2 exp{vij}(r∗l − r∗l−1),

from which we obtain wi(r
∗) by interpolating between the values of wi. Hence, the

coarseness of the discretization of the derivative does not matter, and the warping

functions are identifiable.

To perform inference, there are two fundamental questions that need to be

addressed. First, we must consider whether the model for the warping functions

should be influenced by anything other than the landmarks. The second question

arises again because we have the landmarks for the observed curves, so we can use

Equation 5.2 to get the corresponding aligned data. With aligned data, the second

question is whether the model for the aligned data should depend on the predicted

warping functions. We consider two approaches to answering these questions: the

full Bayesian approach and the modularized Bayesian approach.
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5.1.1 Full Bayesian Inference

Let y∗i = {yi(r∗1), . . . , yi(r
∗
m)} denote a vector of m realizations of the

aligned curve i. Given vi, r
0
i and y∗i , we can reconstruct the function yi(r) on a

grid. Let ηy denote the random function (and its associated parameters) given in

Equation 5.3, with ηv and ηr similarly defined. Let X denote the design matrix with

n rows and nine columns. Then the likelihood is given by

f(y∗1, . . . ,y
∗
n,v1, . . . ,vn, r

0
1, . . . , r

0
n|ηy, ηv, ηr, σ2y , σ2v , σ2r ,X)

which we rewrite as f(y∗, v, r0|θ,X) = f(y∗|v, r0, θ,X)f(v|r0, θ,X)f(r0|θ,X), where

(v, r0) can be used to make w. The posterior is given by

π(θ|y∗, v, r0,X) ∝ f(y∗|v, r0, θ,X)f(v|r0, θ,X)f(r0|θ,X)π(θ).

Then the full conditionals are

[ηy] ∝ N(y ◦ w|ηy, σ2y)π(ηy)

[ηv] ∝ N(y ◦ w|ηy, σ2y) N(v|ηv, σ2v)π(ηv)

[ηr] ∝ N(y ◦ w|ηy, σ2y) N(r0|ηr, σ2r )π(ηr).

Hence, updates to the warping function parameters require a likelihood calculation

for the warped data. Thus the warping functions depend on the landmarks and the

fit of the warped data.
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5.1.2 Modularized Bayesian Inference

As opposed to the full Bayesian approach, a possible modular approach

makes the warping functions only depend on the landmarks, and the model for the

warped data only depend on the data warped by the observed landmarks. The full

conditionals would be

[ηy] ∝ N(y∗|ηy, σ2y)π(ηy)

[ηv] ∝ N(v|ηv, σ2v)π(ηv)

[ηr] ∝ N(r0|ηr, σ2r )π(ηr),

where the three models could be fit independently. Also, warping of the training

data can be done once using the observed landmarks, and does not need to be

repeated as part of the MCMC algorithm. Because of the large number of model

runs, warping the training data is the most time consuming part of the full Bayesian

MCMC algorithm.

5.1.3 Computation

The modular Bayesian inference can be done using the BASS package di-

rectly, where three BMARS models are fit independently using three different re-

sponses but the same input combinations. The first model has the aligned functional

data, evaluated on a common grid, as the response. The second model has the log

of the differences between the landmarks as the response. The third model has the

first landmark as the response.

The full Bayesian inference can be done using a few relatively simple ma-

nipulations of the BASS package. In a given RJMCMC iteration, the model for the
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first landmarks is updated conditional on the other two models. Then the model for

the log of the differences between the landmarks is updated conditional on the other

two models. Finally, the warping functions resulting from these two models are used

to update the aligned data, and the aligned data model is updated.

The modular approach to inference can be completed in a matter of min-

utes, while the full Bayesian approach requires nearly 24 hours. The major bottle-

neck of the full Bayesian computation is warping the training data in each MCMC

iteration. If we had less training data, the difference in timing would not be as

drastic.

5.2 HYDRA Emulation

5.2.1 Prediction Performance

We hold out 100 HYDRA simulations to use for evaluation of the predic-

tive performance of the emulator. To assess uncertainty of an emulator prediction,

we build a 95% pointwise probability region for an unwarped prediction based on

samples from the posterior predictive distribution. These samples vary in both the

amplitude and phase dimensions. To get the 95% pointwise probability region, we

build a two dimensional kernel density estimate of the discretized posterior predictive

samples, from which we extract the 95% contour. Figure 5.4 shows 25 predictions

with uncertainty under the full Bayesian approach as well as the true curves.

The shape of the probability regions in Figure 5.4 demonstrates an aspect

of our warping model that may not be desirable. Because the warping functions

are modeled with additive homoskedastic error on the log derivative scale, the error

becomes multiplicative and heteroskedastic after exponentiating and integrating. If
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we disregard the error in that space, essentially treating σ2v as a nuisance parameter

used only for fitting, we get the posterior predictive regions shown in Figure 5.5.
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Figure 5.4: Prediction of 25 holdout simulations under the full Bayesian model. The
shaded regions are 95% pointwise probability regions. The solid line is the posterior
mean prediction. The dotted line is the true simulator output.

Predictions using the modular approach are shown in Figure 5.6, and in

Figure 5.7 setting σ2v = 0. The prediction performance is similar to the full Bayes

prediction. The modular approach is preferred based on metrics like posterior pre-

dictive root mean squared error of the landmark predictions (1.94 × 10−5 versus

2.83 × 10−5) and warped data predictions (0.54 versus 0.60). This is not surpris-

ing, since these are basically the metrics used to fit the independent pieces of the

modularized model, while the full Bayes model considers them jointly.
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Figure 5.5: Prediction of 25 holdout simulations under the full Bayesian model while
excluding variance in log derivative warping functions. The shaded regions are 95%
pointwise probability regions. The solid line is the posterior mean prediction. The
dotted line is the true simulator output.

5.2.2 Sensitivity Analysis

While the combination of the three BMARS models is necessary for pre-

diction, the three pieces of the emulator can be used for sensitivity analysis in a

modular way. That is, we can perform separate sensitivity analyses for the three

BMARS models that make up the emulator. The most interesting sensitivity anal-

ysis is likely to be the one for the model of the aligned curves, as it explains the

general differences in shape. The sensitivity analysis for the first landmark model

provides an explanation for the variation in start times. The sensitivity analysis of

the log derivative of the warping functions explains why some curves are longer than

others.

Figure 5.8 shows the functional Sobol’ decomposition of ηy, the model for
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Figure 5.6: Prediction of 25 holdout simulations under the modularized Bayesian
model. The shaded regions are 95% pointwise probability regions. The solid line is
the posterior mean prediction. The dotted line is the true simulator output.

the warped data. These indicate that most of the variance in the early to middle

time period is due to variation in input three, which controls the density of the

fuel in the capsule. There is a decrease in the total variance about 75% of the way

through the warped time (r∗ = 0.75), as many of the curves overlap around that

point. Variation after that point is due to changes in the shape, timing, and amount

of laser stimulus to the fuel capsule.

Figure 5.9 shows the sensitivity analysis of the model for the start time, ηr,

and indicates that most of the variation is due to changes in inputs six and eight,

which correspond to timing variables governing the laser power. Input three is also

somewhat important in explaining the start time variation.

Figure 5.10 shows the sensitivity analysis of the model for the log derivative

of the warping functions, ηv. The fuel density (input 3) is again a primary source of
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Figure 5.7: Prediction of 25 holdout simulations under the modularized Bayesian
model while excluding variance in log derivative warping functions. The shaded
regions are 95% pointwise probability regions. The solid line is the posterior mean
prediction. The dotted line is the true simulator output.

variation in the early portion of the warped time, which corresponds to the placement

of the second landmark (i.e., the difference between the first and second landmark).

Variation in the placement of the third landmark is minimal, but is driven primarily

by one of the timing inputs. Variation in the final landmark location is driven by a

combination of shape and timing variables.

One of the more important findings of this sensitivity analysis is that we

have determined which variables are unimportant. Inputs seven and nine do not

explain significant variation in any of the three BMARS models that make up the

emulator. These variables correspond to particular aspects of timing and shape that

appear to be less influential in these ranges of parameters.
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Figure 5.8: Sobol’ indices for the warped data model, ηy. The left is a functional
pie chart that shows the partitioned variance as a function of r∗. The variables
and interactions by which it is partitioned are shown on the right axis. The right
plot is the actual partitioned variance. Dotted vertical lines indicate the location of
landmarks

5.3 Conclusion

We have introduced emulation methods for computer models that output

misaligned functional data. We have discussed a fully Bayesian and a modularized

Bayesian approach to inference. We have shown how the methods perform using

a large number of multi-physics simulations from the HYDRA code. We have also

demonstrated a method for performing sensitivity analysis for such a simulator.

Much of our methodology is valid because we could easily extract landmarks

from the simulations. For misaligned functions like the ones we encounter here, there

are likely to be at least two easily identified landmarks: the start and the end points.

If those were the only landmarks we could find, the model for ηv could have scalar

rather than functional response, as there would only be one slope to consider.

In cases where the functional response is misaligned but landmarks are too

difficult to obtain, the full Bayesian model could be extended in such a way as to
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Figure 5.9: Sobol’ indices for the start time model ηr. The left shows the proportion
of variance explained by the most important effects. The right shows the total
sensitivity indices.

propose BMARS warping functions without using landmarks to determine if they

are good. Rather, the utility of a warping function would be determined completely

by the warped data likelihood. This presents some challenges, as the BMARS model

for the warping functions would be a latent process without data to drive it, and the

latent process could be difficult to identify because of the flexibility of the model for

the warped data.

When landmarks are available, there is a clear philosophical argument that

the modular approach to inference is justified. The argument is that the warping

functions should not be influenced by anything other than the landmarks and that

the functional model in the warped space should not be influenced by anything other

than the true warping functions. The benefits of the modularized approach are also

apparent in the decreased computational burden.

A shortfall of the proposed methodology is the inclusion of an error term

in the model for the log derivative of the warping functions. This leads to large

heteroskedastic errors in predicted functions because the homoskedastic error is

integrated. An approach to resolve this issue is to replace the model vi(t
∗) ∼
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Figure 5.10: Sobol’ indices for the model for the log derivative of the warping func-
tions, ηv. The left is a functional pie chart that shows the partitioned variance as a
function of r∗. The variables and interactions by which it is partitioned are shown
on the right axis. The right plot is the actual partitioned variance. Dotted vertical
lines indicate the location of landmarks. The plot starts at the first landmark.

N(ηv(r
∗,xi), σ

2
v) with wi(t

∗) ∼ N
(
r0i +

∫ r∗
r∗0

exp{ηv(s,xi)}ds, σ2w
)

, so that the er-

ror is not integrated. Essentially, this amounts to introducing a link function into

the BMARS model. Such a nonlinear transformation of the linear BMARS mean

function would complicate the calculations that are otherwise simple from having

a Gaussian linear model with Gaussian coefficients. Certainly, an isotonic model

for the warping functions that does not include any integration would be preferred,

but more research is necessary to determine usable nonlinear isotonic functional

regression models of many variables.

121



Chapter 6

Conclusion

We have extended the capability of Bayesian adaptive spline models for

emulation, sensitivity analysis, and calibration for computer models with functional

response. A key component of all of our developments has been the ability to handle

large amounts of data. We have detailed how adaptive spline models for functional

data are computationally tractable. We have shown that these models have closed

form global sensitivity indices that can be explored functionally. We have intro-

duced priors to minimize overfitting of various types as well as tempering to im-

prove posterior sampling. We have introduced an alternative adaptive spline model

for functional data in a reduced dimensional space, and shown how it can assimilate

massive amounts of data to emulate and calibrate a complex simulator. We have

introduced a way to incorporate categorical variables in Bayesian adaptive spline

models. Further, we have detailed a possible way to emulate a computer model with

misaligned functional response using adaptive splines to model the aligned data and

warping functions.

All methodological improvements were made in an effort to emulate com-
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puter models currently being used to further modern scientific understanding. We

have demonstrated that the emulators proposed can be used for important uncer-

tainty quantification tasks. In the end, emulation is merely an application for non-

linear multiple regression. As such, the methods developed here are not limited to

use for emulation. They can be utilized to build nonparametric regression models of

many or few variables, with scalar or functional response.

A number of possible extensions could be pursued. Computationally, in-

vestigation of variable selection methods for choosing basis functions could allow us

to go without reversible jump MCMC, as in Clyde et al. (2011). Alternative model

search techniques, like those in Hans et al. (2007), could also be computationally

beneficial. With regard to functional data analysis, these models could be extended

to incorporate functional inputs, perhaps by summarizing the inputs on a set of

basis functions as in Mondal (2012). Another extension is emulators for models that

output multiple types of functional data, which is a common scenario. This could

be done by representing the multiple outputs on a single set of basis functions, like

empirical orthogonal functions, and modeling the weights on those basis functions

using adaptive splines, similar to the approach in Chapter 4. Models for multiple

scalar responses could also be of interest. Friedman (1991a) proposes a single set

of basis functions with different sets of coefficients for this circumstance. Further

development of these models for use in nonlinear times series analysis, as in Lewis

& Stevens (1991), or with non-Gaussian likelihood, as in Holmes & Denison (2003),

could make them more useful for general purpose non-parametric regression.
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Appendix A

Sobol Decomposition of the

Friedman Function

We obtain the Sobol’ decomposition of the function

f(x) = 10 sin(2πx1x2) + 20

(
x3 −

1

2

)2

+ 10x4 + 5x5

using the the approach where we treat x1 as another input (augmentation approach)

and where we get other sensitivity indices as a function of x1 (functional approach).

A.1 Augmentation Approach

The overall mean is given by

f0 =

∫ 1

0
. . .

∫ 1

0
f(x)dx

=

∫ 1

0

∫ 1

0
10 sin(2πx1x2)dx1dx2︸ ︷︷ ︸

a1

+

∫ 1

0
20

(
x3 −

1

2

)2

dx3︸ ︷︷ ︸
a2=5/3

+

∫ 1

0
10x4dx4︸ ︷︷ ︸
a3=5

+

∫ 1

0
5x5dx5︸ ︷︷ ︸

a4=5/2
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where

a1 =

∫ 1

0

10 sin2(πx)

πx
dx

=
5

π
[log(2π) + γ − Ci(2π)]

Ci(x) = γ + log(x) +

∞∑
k=1

(−x2)k

2k(2k)!

⇒ a1 = − 5

π

∞∑
k=1

(−4π2)k

2k(2k)!

The main effects are given by

f1(x1) =

∫ 1

0
10 sin(2πx1x2)dx2 + a2 + a3 + a4 − f0

=
10 sin2(πx1)

πx1
− a1

f2(x2) =
10 sin2(πx2)

πx2
− a1

f3(x3) = 20

(
x3 −

1

2

)2

− a2

f4(x4) = 10x4 − a3

f5(x5) = 5x5 − a4

and the interaction effect is given by

f12(x1, x2) = 10 sin(2πx1x2)−
10 sin2(πx1)

πx1
− 10 sin2(πx2)

πx2
+ a1.
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Then the overall variance is given by

V ar(f(x)) =

∫ 1

0
. . .

∫ 1

0
f2(x)dx

=

∫ 1

0
. . .

∫ 1

0
100 sin2(2πx1x2)︸ ︷︷ ︸

50−25Si(4π)/2π

+ 400

(
x3 −

1

2

)4

︸ ︷︷ ︸
5

+ 100x24︸ ︷︷ ︸
100/3

+ 25x25︸︷︷︸
25/3

+ 400 sin(2πx1x2)

(
x3 −

1

2

)2

︸ ︷︷ ︸
2a1a2

+ 200x4 sin(2πx1x2)︸ ︷︷ ︸
2a1a3

+ 100x5 sin(2πx1x2)︸ ︷︷ ︸
2a1a4

+ 400x4

(
x3 −

1

2

)2

︸ ︷︷ ︸
2a2a3

+ 200x5

(
x3 −

1

2

)2

︸ ︷︷ ︸
2a2a4

+ 100x4x5︸ ︷︷ ︸
2a3a4

dx− f20

= 50− 25Si(4π)/2π + 5 + 125/3

+ 2(a1a2 + a1a3 + a1a4 + a2a3 + a2a4 + a3a4)− f20

where the underbraces give the quantity after integration and

Si(x) =

∫ x

0

sin t

t
dt =

∞∑
k=1

(−1)k−1
x2k−1

(2k − 1)(2k − 1)!
.
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The variances for the main effects are given by

V ar(f1(x1)) =

∫ 1

0
f21 (x1)dx1

=

∫ 1

0

100 sin4(πx1)

π2x21︸ ︷︷ ︸
50/π[2Si(2π)−Si(4π)]

+ a21 − 20a1
sin2(πx1)

πx1︸ ︷︷ ︸
a21−2a21=−a21

dx1

V ar(f2(x2)) = V ar(f1(x1))

V ar(f3(x3)) =

∫ 1

0
400

(
x3 −

1

2

)4

︸ ︷︷ ︸
5

+ a22 − 40a2

(
x3 −

1

2

)2

︸ ︷︷ ︸
−a22

dx3

V ar(f4(x4)) =

∫ 1

0
100x24︸ ︷︷ ︸
100/3

+ a23 − 20a3x4︸ ︷︷ ︸
−a23

dx4

V ar(f5(x5)) =

∫ 1

0
25x25︸︷︷︸
25/3

+ a24 − 10a4x5︸ ︷︷ ︸
−a24

dx5.

The variance for the interaction is given by

V ar(f12(x1, x2)) =

∫ 1

0

∫ 1

0
f212(x1, x2)dx1dx2

=

∫ 1

0

∫ 1

0
100 sin2(2πx1x2)︸ ︷︷ ︸

50−25Si(4π)/2π

+
100 sin4(πx1)

π2x21
+

100 sin4(πx2)

π2x22
+ a21︸ ︷︷ ︸

100/π[2Si(2π)−Si(4π)]+a21

−2
10 sin2(πx1)

πx1
10 sin(2πx1x2)− 2

10 sin2(πx2)

πx2
10 sin(2πx1x2)︸ ︷︷ ︸

−200/π[2Si(2π)−Si(4π)]

+ 2a110 sin(2πx1x2)︸ ︷︷ ︸
2a21

+ 2
10 sin2(πx1)

πx1

10 sin2(πx2)

πx2︸ ︷︷ ︸
2a21

−2
10 sin2(πx1)

πx1
a1 − 2

10 sin2(πx2)

πx2
a1︸ ︷︷ ︸

−4a21

dx1dx2

= 50− 25Si(4π)/2π − 100/π[2Si(2π)− Si(4π)] + a21
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A.2 Functional Approach

As a function of x1, the main effects are

f0(x1) =
10 sin2(πx1)

πx1
+ a2 + a3 + a4

f2(x1, x2) = 10 sin(2πx1x2)−
10 sin2(πx1)

πx1

f3(x1, x3) = f3(x3)

f4(x1, x4) = f4(x4)

f5(x1, x5) = f5(x5).

Then the variance functions are

D(x1) =

∫ 1

0
. . .

∫ 1

0
f2(x)dx−1

= 50− 25 sin(4πx1)

2πx1
+ 5 + 125/3 + 2(a2 + a3 + a4)

10 sin2(πx1)

πx1

+ 2a2a3 + 2a2a4 + 2a3a4 − f20 (x1)

D2(x1) =

∫ 1

0
f22 (x1, x2)dx2

= 50− 25 sin(4πx1)/(2πx1)−
100 sin4(πx1)

π2x21

D3(x1) = 5− a22

D4(x1) = 100/3− a23

D5(x1) = 25/3− a24.
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Appendix B

Sobol Decomposition of the

BMARS Model in EOF Space

B.1 Sobol’ Decomposition

If we have a function f(x) where x = (x1, . . . , xp), we decompose it into

f(x) = f0 +

p∑
i=1

fi(xi) +

p∑
i=1

∑
j>i

fij(xi, xj) + · · ·+ f1...p(x1, . . . , xp) (B.1)

where all terms added above are orthogonal. In addition, all terms except f0 are

centered at zero. This is achieved by building each term such that

f0 =

∫
f(x)dx (B.2)

fi(xi) =

∫
f(x)dx−i − f0 (B.3)

fij(xi, xj) =

∫
f(x)dx−ij − fi(xi)− fj(xj)− f0 (B.4)
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as so on, where integrals are over the bounds of each xi. Without loss of generality,

we assume that the bounds are zero and one.

We are interested in partitioning V ar(f(x)) into variance from each main

effect and interaction. First, note that if we assume that xi is a random variable

with uniform distribution fi(xi) = E(f(x)|xi)−f0 and f0 = E(f(x)). Also note that

V ar(f(x)) = E(f2(x)) − E(f(x))2. Now, squaring Equation B.1 and integrating,

we obtain

E(f2(x)) = f20 +

p∑
i=1

∫
f2i (xi)dxi +

p∑
i=1

∑
j>i

∫
f2ij(xi, xj)dxidxj + . . .

+

∫
f21...p(x1, . . . , xp)dx

which lacks any crossproduct terms because all the terms are orthogonal. We could

also write each term above as a variance, i.e., V ar(fi(xi)) =
∫
f2i (xi)dxi − 0. We

subtract 0 because (
∫
fi(xi)dxi)

2 = 0. This is the case for each term. Thus,

E(f2(x)) = f20 +

p∑
i=1

V ar(f(xi)) +

p∑
i=1

∑
j>i

V ar(f(xi, xj)) + . . .

+ V ar(f1...p(x1, . . . , xp))

and we have that

V ar(f(x)) =

p∑
i=1

V ar(f(xi)) +

p∑
i=1

∑
j>i

V ar(f(xi, xj)) + · · ·+ V ar(f1...p(x1, . . . , xp)),

thus decomposing the variance of f into variance due to each main effect and interac-

tion. Note that the way we construct the main effects and interactions in Equations

B.2 through B.4 is sequential, so that a two way interaction function is the effect
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after taking into account the two main effects.

We outline some practical considerations for obtaining the variance decom-

position above, as discussed in Chen et al. (2005). First, if u ⊆ {1, . . . , p} of size s

and xu = {xu1 , . . . , xus}, then we write the effect fu(xu) (interaction if s > 1, main

effect if s = 1) can be written as

fu(xu) = f̂u(xu)−
∑

v∈{P (u)−u−∅}

fv(xv)− f0

f̂u(xu) =

∫
f(x)dx−u

where P (u) is the power set of u. Note that f̂u denotes the non-centered version of

fu. This recursive definition gives rise (with some algebra) to a simpler formulation

only in terms of the non-centered effects,

fu(xu) =
∑

v∈P (u)

(−1)|u|−|v|f̂v(xv)

where we define f̂v(xv) = f0 if v = ∅. With some further algebra, we can see that

V ar(fu(xu)) =
∑

v∈{P (u)−∅}

(−1)|u|−|v|V ar
(
f̂v(xv)

)

and it is easy to show that

V ar
(
f̂u(xu)

)
=

∫
f̂2u(xu)dxu − f20 . (B.5)

Thus, if we can evaluate Equation B.5 analytically, we can obtain the variance

decomposition analytically.
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B.2 BASS Sobol’ Decomposition

The Sobol’ decomposition for the BASS model can be done analytically.

The details for obtaining the Sobol’ decomposition and functional Sobol’ decomposi-

tion when inputs are continuous are in Chapter 2. Here, we will describe the details

when we have categorical inputs. We will also describe how to get functional sen-

sitivity indices when we use the EOF approach to emulation described in Chapter

4.

First, we review (Chen et al., 2005) that when we use a tensor product basis

function approach such that f(x) = a0 +
∑M

m=1 am
∏Jm
j=1 hjm(xvjm), the quantities

we need to obtain are C1
i =

∫
hjm(xi)dx and C2

i =
∫
hjm1(xi)hlm2(xi)dxi where

C2
i = 1 if vjm1 6= vlm2 . These quantities are discussed when inputs are continuous

in Chapter 2. For categorical inputs we use sums rather than integrals, so that

C1
lm =

1

|Di|
∑
z∈Di

1(z ∈ Dlm) =
|Dlm|
|Di|

C2
i =

1

|Di|
∑
z∈Di

1(z ∈ Dlm)1(z ∈ Djm) =
|Dlm ∩Djm|
|Di|

Now if u is a set of variable indices,

V ar(f̂u(xu)) =
M∑

m1=1

M∑
m2=1

am1am2

(∏
l /∈u

Clm1Clm2

)(∏
l∈u

C2
lm1m2

)
− f20 .

B.3 Functional Sobol’ Decomposition - EOFs

While the functional Sobol’ decomposition of a functional BASS model is

described in Chapter 2, the model from Chapter 4 is slightly different. We use

BASS for modeling weights for EOFs. To get a functional Sobol’ decomposition in
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this case, we need to do a little more work.

First, consider the case where we are interested in getting Sobol’ indices

for the functional variables like we do the other variables. The function we are

decomposing is f(r,x) =
∑k

i=1Ki(r)wi(x) where r = (s, t). If we define

ŵui (xu) =

∫
wi(x)dx−u

Ki =

∫
Ki(r)dr

then we can obtain the overall mean

f0 =

∫ ∫ k∑
i=1

Ki(r)wi(x)drdx =

k∑
i=1

∫
Ki(r)dr

∫
wi(x)dx

=
k∑
i=1

Kiw
0
i

and the non-centered effects as

f̂r(r) =
k∑
i=1

Ki(r)w0
i

f̂u(xu) =

k∑
i=1

Kiŵ
u
i (xu)

f̂ru(r,xu) =
k∑
i=1

Ki(r)ŵui (xu).

Then we need to obtain

V ar
(
f̂r(r)

)
=

∫
f̂2r (r)dr− f20

=

k∑
i=1

k∑
j=1

w0
iw

0
j

∫
Ki(r)Kj(r)dr− f20 (B.6)
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V ar
(
f̂u(xu)

)
=

∫
f̂2u(xu)dxu − f20

=
k∑
i=1

k∑
j=1

KiKj

∫
ŵui (xu)ŵuj (xu)dxu − f20 (B.7)

V ar
(
f̂ru(r,xu)

)
=

∫ ∫
f̂2ru(r,xu)drdxu − f20

=
k∑
i=1

k∑
j=1

∫
Ki(r)Kj(r)dr

∫
ŵui (xu)ŵuj (xu)dxu − f20 (B.8)

which simplifies in Equation B.6 and Equation B.8 when the basis is orthogonal, but

not in Equation B.7. Then, the only quantity left to seek an analytical solution for

is

∫
ŵui (xu)ŵuj (xu)dxu = a0ia0j + a0i(w

0
j − a0j) + a0j(w

0
i − a0i)

+

Mi∑
mi=1

Mj∑
mj=1

amiamj

(∏
l /∈u

C1
lmiC

1
lmj

)(∏
l∈u

C2
lmij

)
.
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Appendix C

Integral of Exponentiated

BMARS Model

Here we will show that the integral of an exponentiated BMARS with

respect to the functional variable can be obtained analytically. The specific integral

in context of the warping functions introduced in Chapter 5 is

wi(r
∗) = r0i +

∫ r∗

r∗0

exp

{
a0 +

M∑
m=1

amBm(xi)Bm(u) + εi

}
du (C.1)

= r0i + exp{a0 + εi}
∫ r∗

r∗0

exp

{
M∑
m=1

amBm(xi)Bm(u)

}
du (C.2)

where Bm(s) = gm[sm(u− tm)]+. Without loss of generality, assume that the basis

functions are ordered such that t1 < t2 < · · · < tM and that tj < r∗ < tj+1. We can

135



rewrite Equation C.2 as

wi(r
∗) = r0i + h0

∫ r∗

r∗0

exp

{
M∑
m=1

hmiBm(u)

}
du (C.3)

= r0i + h0

∫ t1

r∗0

exp

 ∑
m∈A1

hmiB
∗
m(u)

 du+

j∑
l=2

∫ tl

tl−1

exp

∑
m∈Al

hmiB
∗
m(u)

 du

+

∫ r∗

tj

exp

 ∑
m∈Aj+1

hmiB
∗
m(u)

 du

 (C.4)

where B∗m(u) = gmsm(u − tm). Here, A1 = {m ∈ 1, . . . ,M : sm = −1} and

Al = {m ∈ 1, . . . , l − 1 : sm = 1} ∪ {m ∈ l, . . . ,M : sm = −1} for l = 2, . . . , j + 1.

To complete the integral, we have that

∫ α2

α1

exp

{∑
m∈A

hmiB
∗
m(u)

}
du

=

∫ α2

α1

exp

{∑
m∈A

hmigmsm(u− tm)

}
du (C.5)

=

∫ α2

α1

exp

{
u
∑
m∈A

hmigmsm +
∑
m∈A

hmigmsmtm

}
du (C.6)

=

(∑
m∈A

hmigmsm

)−1
exp

{
u
∑
m∈A

hmigmsm +
∑
m∈A

hmigmsmtm

}u=α2

u=α1

. (C.7)
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