
Lawrence Berkeley National Laboratory
Recent Work

Title
USE OF A DISTRIBUTED MOVIE-MAKING SYSTEM FOR PRESENTATION OF FLUID FLOW DATA

Permalink
https://escholarship.org/uc/item/7k1816h6

Author
Robertson, D.W.

Publication Date
1988-05-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7k1816h6
https://escholarship.org
http://www.cdlib.org/

'~~.""';...-)

'1'_' _.ll'f~. -- '
~ ~

LBL-25274

ITtl Lawrence Berkeley Laboratory
~ UNIVERSITY OF CALIFORNIA, BERKELEY

Information and Computing R r= ~; :-: l .._.Eo

Sciences Division r;:~ ,/',·,·:--: .. ~ ··:r.~y

SEP 1 D 1909
Use of a Distributed Movie-Making System for r ·-· '· 'I ' '

Presentation of Fluid Flow Data c:::~G;~ii\';:~ ~-~G-~-10 ~!

D.W. Robertson
(M.S. Thesis)

May 1988

• - I ~.I ll ;>~~~-:r
·. 'r: . ,.

,..4-., ,,
' ' ' ··. ,--- .

,, .._f,·

.
' ' ·. .

' '

Prepared for the U.S. Department of Energy under Contract :'~lumber DE-AC03-76SF00098.

C'.~

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

....

May 6, 1988 LBL-25274

Use of a Distributed Movie-Making System for
Presentation of Fluid Flow Data

David W. Robertson

Advanced Development Projects
Information and Computing Sciences Division

Lawrence Berkeley Laboratory
1 Cyclotron Road

Berkeley, CA 94720

The author ca.n be reached via USMail a.t: Lawrence Berkeley Laboratory, Bldg. SOB, Rm. 3238, Berkeley, CA 94720.
His Email address is: davidr@csam.Ibl.gov

The work presented in this paper is supported by the U.S. Department of Energy under contract DE-AC03-76SF00098.
Any conclusions or opinions, or implied a.pprovai or disapproval of a. company or product name are solely those of the a.u·
thors a.nd not necessarily those of The Regents of the University of California., the Lawrence Berkeley Laboratory, or the
U.S. Department of Energy.

"'

'"'

'

USE OF A DISTRIDUTED MOVIE-MAKING SYSTEM FOR
PRESENTATION OF FLUID FLOW DATA

A thesis submitted to the faculty of
San Francisco State University

in partial fulfillment or the
requirements for the

degree

Master of Science
In

Computer Science

by

DAVID W. ROBERTSON

San Francisco, California

May, 1988

...

USE OF A DISTRffiUTED MOVIE-MAKING SYSTEM FOR
PRESENTATION OF FLUID FLOW DATA

DAVID W. ROBERTSON
San Francisco, California

1988

This thesis describes work done to develop techniques for the graphical presentation of

time-dependent 2- or 3-dimensional flow fields generated by fluid modelling together with a

distributed computing software architecture to produce the graphics. The software runs on

UNIX systems and uses interprocess communication with a TCP /IP based network protocol to

implement the architecture. The system components provide for communication between a

video workstation consisting of a microcomputer controller, a frame buffer, a video recording

device, and a front end system. The use of particle advection to graphically display the flow

fields proper was investigated. The associated numerical calculations for transforming the

data into graphical form are described, as are the relative merits and problems involved with

this type of graphical display. The representation of the object(s) perturbing or constraining

the flow is an important topic in itself, and issues involved in the implementation of features

of the software which affect both the display of the object(s) and the flow field are discussed.

An analysis is given of the use of video recording and playback as the final manner of presen-

tation for a given data set .

..

ACKNOWLEDGE:MENTS

I thank William E. Johnston for his guidance in helping to produce this thesis, and the past

and current members of the Advanced Development Group at Lawrence Berkeley Laboratory

for their help. I thank Donald and Margaret Robertson for their support.

This work is supported by the U.S. Department of Energy, under Contract No. DE-AC03-

76SF00098 with the Lawrence Berkeley Laboratory, University of California .

-lV-

Table of Contents

List of Tables.. vii

List of Figures.. vu1

List of Appendices xu

Introduction.. 1

Chapter

1. Visualizing Flow Dynamics.. 3

Approaches to Graphical Presentation 3

Particle Advection... 6

2. Distributed Computing Architecture for Graphics........................... 28

Background... 28

Motivation for a Distributed Software Architecture.................... 29

Flow of Graphics Information... 31

The RPC Level 34

Compression Techniques.. 36

User-Level Interfaces in the Two Approaches.............................. 46

3. Graphics Issues.. 50

Introduction.. 50

Representation of the Object... 51

Implementation Issues... 60

4. Video Recording 82

Introduction.. 82

-v-

Advantages and Disadvantages.. 83

Previewing 84

Videotape vs. Videodisk 85

Ancillary Information.. 88

5. Conclusions 90

Evaluation 90

Usability 99

References... 104

Appendices 111

. .,

. ' ..

-vi-

List of Tables

Table Page

2.1. Compression ratios for Figs. 2.2.a through 2.2.d. 40

'w 2.2. Compression ratios with the addition of Lempel-Ziv.................... 43

3.1. Rendering steps... 61

3.2. Revised lighting model. 73

-vii-

Figure

1.1.

List of Figures

"Simulation of the turbulent behavior of a shear layer
[Furnished by J. Riley and R. Metcalfe]." Reprinted, by
permission, from Peyret and Taylor [33], 4

Page

4

1.2. "Vortex breakdown over a strake-delta wing. Contours are
constant values of normalized stagnation pressure.
(Computer simulations by Fujii)." Courtesy V. Watson, figure from
Watson et al. [47], 10. ... 5

1.3. Four particles injected. Time step = 0.5 s 7

(a) EulE}r's method. 1

(b) Modified Euler's method.. 7

(c) Runge-Kutta method... 1

1.4. Four particles injected. Time step = 0.125 s. 11

(a) Euler's method.. 11

(b) Modified Euler's method.. 11

(c) Runge-Kutta method... 11

1.5. Cut-away of torus with three chambers. 13

1.6. Ten particles injected. Runge-Kutta method.
Time step= 0.125 s. ... 14

1.7. Forty particles injected. Particle tracks are for time= 7.5 s
through time = 9.5 s {8 time steps)... 15

1.8. Five hundred particles injected at 2 points................................ 16

(a) 120th frame... 16

(b) 127th frame... 16

(c) 134th frame... 17

-viii-

1.9. Five hundred particles injected at two injection points.
201st frame. Notice vortices and stagnation region to
right of step .. .'............................. 18

1.10. Ten thousand particles injected at two injection points.
lOlst frame. Outlined region shown in Fig. 1.11....................... 20

1.11. Zoom on outlined region in Fig. 1.10 :............ 22

1.12. Intensity cueing based on z coordinate. Rotation of torus
causes particles at the right to become bright and all those
at the left to become dark... 26

1.13. Same as Fig. 1.12 with intensity cueing based on relationship
of particle to front of torus... 26

2.1. Flow of graphics information.. 32

2.2. Four test images... 38

(a) Flow over backward facing step. 500 particles injected.
201st frame.. 38

(b) Zoom on region outlined in Fig. 1.10. 10000 particles
injected. lOlst frame. Image same as Fig. 1.11. 38

(c) Smooth shaded clipped torus... 39

(d) Same as (c) with the addition of advected particles.......... 39

2.3. Smooth shaded torus... 42

2.4. Result of BTC and color map encoding showing inaccuracies. .. . 45

2.5. Zoom on outlined region in Fig. 2.4... 45

3.1. Gridded portion is region modelled :................. 51

3.2. Triangulation between contour pairs. Reprinted from
Christiansen and Stephenson [7J, 14.2. 53

3.3. Torus given in form of inner and outer fibers. 54

3.4. Smooth shaded torus... 55

·IX·

3.5. "Flow over the Space Shuttle (Computer simulations by
Chaussee, Rizk, and Buning)." Courtesy V. Watson, figure

·from Watson, et al. [47], 7. ... 56

3.6. Smooth shaded torus cut away to show advected particles........ 56

3.7. Result of rotation in conjunction with viewing clipping. Note
region at right is not clipped away.. 58

3.8. Result of object-oriented clipping with same rotation specified
as in Fig. 3.7. .. 58

3.9. Constant-shaded torus. Polygons arrived at by Mosaic
tessellation. Note ambiguous region at upper left..................... 59

3.10. Same as Fig. 3.9 with Gouraud shading. Polygons arrived
at by Mosaic tessellation... 60

3.11. Polygon to scan convert.. 63

3.12. Triangle interpenetrates the two rectangles. Reprinted, by
permission, from Rogers [37], 260. 65

3.13. Lambert's law models diffuse reflection. Reprinted, by
permission, from Rogers [37], 312. 66

3.14. Rotation achieved by moving eye point from A to C. Light
source eclipsed at C :.................................... 67

3.15. The blob... 68

3.16. Light source to the left and in front of the torus....................... 69

3.17. As eye point is moved from e'i toe; by angle (3, light
source is also moved from 5i to e; by angle (3 to remain
at same angle a with the eye point.. 69

3.18. Cross section of cut away of torus. Eye point is at eye.
Light source at either 5i or 52. Solid arrows are
polygon normals. ±e refers to angle between normal and eye
point. ±3 refers to angle between normal and light source........ 72

3.19. Clipped torus with light source at5'2. .. 74

3.20. Bilinear interpolation to arrive at intensity component of
pixel. Reprinted, by permission, from Rogers [37], 324 ;.. 76

-x-

3.21. Gouraud-shaded image of "top". Scalloping due to color
aliasing. 78

3.22. Polygons A and B unclipped, C and D partially clipped,
and E and F clipped.. 79

5.1. Two vortices interacting. Simulation described in Baden [1]..... 101

5.2. Kummer surface. 102

B.1. Module Diagram... 116

-XI-

List of Appendices

Appendix Page

A. Video Workstation Configuration.. 111

·.,.· B. Documentation of System.. 113

C. Videotape and Color Print Availability....................................... 129

-xu-

....

Introduction

Fluid modelling attempts to find a numerical mathematical description of com­

plex flow patterns in a region of interest, such as the flow of air past an airplane wing .

One result of such modelling is a flow field. A flow field is a grid laid out over a given

area, with the x, y, and in the case of 3-dimensional modelling, z components of the

velocities of the flow being given at each grid point. Since the motion of the fluid

changes with time, the result of the modelling is not one, but a sequence of such flow

fields. The amount of data involved rapidly becomes difficult to comprehend, or even

manage, as the number of grid points increases. For example, 300 64x64x64x3 3D

flow fields (numbers stored as floats) contain close to 1 gigabyte of information.

The focus of this thesis is gaining the ability to visualize significant features of 2-

and 3-dimensional (2D and 3D) flow by converting the data describing the flow fields

into a sequence of graphical representations, such as the simulation of the motion of

dye tracers being carried along by the fluid. A number of researchers have used com­

puter graphics to better understand large complex data sets [15, 24, 45]. Computer

graphics has already been used in the field of fluid modelling [4, 19, 22, 41, 45, 47].

My aim was to further explore its use in this field given the constraints and advan­

tages of a certain class of "video workstation" [20].

The video workstation consists of an PC-type microcomputer, a 16-bit frame

buffer, and a video recording device. To be able to study flow visualization, it was

necessary to develop much underlying software. The hardware constraints dictated

distributed graphics software that relegated the role of the video workstation to that

1

2

of a graphics/animation server, with the numerical calculations involved in converting

flow data to a graphical form and the rendering of the boundary being performed in a

client program on a remote UNIX system. The design of a network distributed appli­

cation was driven by the need to perform the computationally intensive tasks on a

powerful-enough CPU, and to minimize the amount of data movement over the net­

work.

A number of problems had to be addressed during the development of the graph­

ics software used to visualize flow fields. These included how to transform the data

into graphical form, how to represent the geometry of boundaries constraining the

flow, how to display complex data in a clear and unambiguous fashion, and how to

generate the results in a timely manner. A considerable part of the effort for this

thesis went into developing rendering software that could be used to remove hidden

surfaces of, and shade and scan convert the boundary of the region of interest in the

30 case.

Another issue that had to be addressed was the final presentation of the data.

The graphical representations of the sequence of flow fields have to be displayed fairly

rapidly to gain a be"tter understanding of what is being modelled. The expenence

gained in usmg video recording on videotape and videodisk to achieve this rapid

display is described.

Chapter 1

Visualizing Flow Dynamics

1.1. Approaches to Graphical Presentation

The information in a flow field has been graphically represented in many ways.

It has been converted into a scalar form such as pressure, density, or energy at each

grid point and displayed in the two-dimensional (2D) case as contour lines along which

the magnitude of the variable is constant. The spacing of the contours easily indi-

cates the values of the gradient [4] [Fig. 1.1]. However, in displaying a sequence of

flow fields the gradient changes from frame to frame, giving the spurious effect of

movement of contour lin.es perpendicular to themselves. If a continuous color coding

of the magnitude is used [41] [Appendix C, Fig. Cl.1] 1, this distracting perpendicular

movement, which has no physical meaning, is not as noticeable. Another distraction

occurs if the difference in magnitude between adjacent levels is too small, in which

case lines jump in and out of existence in regions where there is a small gradient [15].

1All figure references of the form [Appendix C, Fig. C#.#] are contained in a sup­
plementary videotape to this thesis. Information on availability of the videotape is
given in Appendix C.

3

z

z

2 r-----------.

Oo~------~~~------~
l

T • 0

2~--------~

0~0------~~~------·
l

T • 16

z

z

2r---------------~

0 ~0------~~------~2
X

T·a
2~---------------.

0~0------~r-------~
l

T • 24

4

Fig. 1.1. "Simula­
tion of the turbulent
behavior of a shear
layer. !Furnished by
J. Riley and R.
Metcalfe]." Reprint­
ed, by permission,
from Peyret and
Taylor !33], 4.

In the three-dimensional (3D) case multiple parallel planes through the volume of

interest have been displayed, with each plane having a continuous color coding of the

magnitude [Fig. 1.2}. Another method for representation of scalar quantities is to

display surfaces where the variable is constant. When displaying multiple surfaces,

transparency has been used to see hidden surfaces [47]. In either case only a small

number of slices or surfaces can be usefully displayed, missing 3D aspects of the flow

such as large gradient changes [4J.

5

Fig. 1.2 . "Vortex
breakdown over a
strake-delta wing.
Contours are con­
stant values of nor­
malized stagnation
pressure. (Computer
simulations by
Fujii) ." Courtesy V .
Watson, figure from
Watson, et al [47],
10.

BBC 880-11633

Two other approaches to displaying flow fields are direct display of vectors at

points in the grid, and particle advection [4, 15, 47] . Both are well suited to animated

display (either real time or movie style playback). Displaying vectors requires show-

mg their magnitude (usually color coded) and their direction . In the 2D case, this

method has been used to derive features of the flow such as flow separation. Display-

ing 3D flow vectors is more difficult. If more than one plane through the 3D grid is

shown , it is difficult to pick out the separate layers from the jumble of vectors [4] .

Particle advection, the approach explored in this thesis, has been widely used by

researchers [4, 15, 19, 41, 45, 47] . It simulates the motion of dye tracers dropped into

a fluid flow and carried along by it. This simulation reveals features of the flow such

as "vortices, shock fronts, boundary layers, and flow separation" [45].

6

1.2. Particle Advection

Simulating the motion of a tracer particle requires advecting it through the flow

fields. In this process the position of a particle at one time step is used to find the

flow-field grid cell containing the particle's location. The velocity components at each

vertex of the enclosing grid cell are interpolated to that location. The resulting velo-

city is used to locate the particle position at the next time step. This process is

repeated for each time step until the particle leaves the modelled region or until the

end of the period for which flow fields were found.

A numerical method is used to approximate the particle's position at th-e next

time step. This involves approximating the solution to the following differential equa-

tions:

:; = u(x,y,t)

k = v(x y t)
dt ' '

(1.1)

where u(x,y,t) is the x velocity of the particle interpolated to the location (x,y) from

the velocities at the enclosing grid points at time t. Similarly, v(x,y,t) is the y velo-

city of the particle interpolated to the location (x,y) at time t [40].

1.2.1. Numerical Calculation- 2 Dimensional Case

The first study case was a 20 flow field resulting from modelling of flow over a

backward facing step [41]. Several numerical methods were tried for approximating

the solutions to the above equations, namely Euler's, the modified Euler, and the

Runge-Kutta method. The Runge-Kutta method is the most accurate of the three,

7

but also the most complex [5]. Several particles were advected through the flow field

using each method, and the resulting series of positions traced by each particle were

displayed. [Fig. 1.3].

Fig. 1.3. Four particles injected. Time step = 0.5 s.

Flow is left to right, entering through the small opening.

(a) Euler's method.

(b) Modified Euler's
method.

(c) Runge-Kutta
method.

...

8

The first step in advecting particles is to bilinearly interpolate between grid

points to find the x andy velocity components at a particle location, i.e.,

Xa = Xpa.r- X (1.2)

X bottom = (1 - Xa)xbotleft + XaXbotright

Xtop = (1 - Xa)xtopleft + XaXtopright

Ya = Ypar- Y

Xinterp = (1 - Y a)xbottom + Y aXtop

where x and y are the indices of the lower left vertex of the cell, Xpar is the x coordi­

nate of the particle position, xbotleft is the x velocity component at the lower left ver­

tex, Xbotright at the lower right, Xtopleft at the top left, and xtopright at the top right.

xbottom is the intermediate result for the bottom side, xtop the intermediate result for

the top, and xinterp is the final interpolated velocity component. A similar method is

used for they velocity component.

Once the velocity components are found, a numerical method is then used to find

the location of the particle at the next step. Euler's method is as follows:

x0 =a (1.3)

Xi+l = Xj + 0t . Xvel

where a is the x coordinate of the initial injection point, 8t is the time step, and xvel is

the x component of the velocity as arrived at by bilinear interpolation. The new y

position is calculated similarly. The implementation of Euler's and the following

.•

9

methods is slightly different from that g1ven in Burden and Faires [5] because

dx = u(x,y,t) is already given at each grid point. Interpolation is all that is neces­
dt

sary to get the velocity Xvei·

The less accurate nature of Euler's method is seen by comparing the tracks left

using each method [Fig. 1.3]. Using Euler's method, the structure of the tracks is

more gross, with less loops traced indicating less capturing of particles by vortices.

The Modified Euler method [5] is as follows:

(1.4)

Xinterm =Xi + 8t · Xvel

where a is the x coordinate of the initial injection point, 8t is the time step, xvel is the

interpolated velocity at xi> xinterm is the intermediate x coordinate, and Xvxint is the

interpolated x velocity at xinterm· The first step of this method is identical to Euler's

and results in the x position xinterm· In the second step the velocity is found at xinterm•

and averaged in with the x velocity found for the original x position. Again, the

results are different from the more accurate Runge-Kutta method [Fig. 1.3].

The Runge-Kutta method of order four is as follows:

{1.5)

x1 = interpolated x velocity at xi

•

x2 =interpolated x velocity at ["' + ~]· x1

x3 =interpolated x velocity at ["' + ~]· x2

x4 = interpolated X velocity at (Xj + Ot) · X3

xi +1 = xi + ~t · (x 1 + 2 · (x2 + x3)) + x4)

10

This method requires four more calculations per time step than Euler's, but the

accuracy gained makes it worthwhile. The Runge-Kutta method is more accurate

using a time step of 4x than the Euler method is using a time step of x [5J.

The particle tracks in Fig. 1.3 have a jagged appearance. Using a smaller time

step, the simulation of tracer movement is made more visually pleasing owing to the

greater accuracy acheived. The smaller the time step, t_he more accurate the approxi­

mation, up to a certain point [5J. Fig. 1.4 shows the result of the same three methods

using three interpolated time steps between each modelled one. Interpolation in x and

·y was performed for two successive time steps, and then interpolation in time between

the results. Decreasing the time step further increases the accuracy but would not

make much difference visually due to the limited resolution of the display.

..

11

Fig. 1.4. Four particles injected. Time step = 0.125 s.

(a) Euler's method .

(b) Modified Euler's
method.

(c) Runge-Kutta
method.

With larger time steps and/or less accurate methods, particles overshoot the

bounds of the flow field at the top and bottom. Since the modelling assumes solid

walls at the top and bottom, this is undesirable. However, with a small enough time

step and an accurate method this overshooting cannot occur because (1) a particle

moves a smaller distance at a time, encountering the region near the wall where the

velocity components are small and pointing towards the interior before it overshoots,

and (2) a more accurate method uses more than one calculation per time step and

"averages" the results of these calculations, correcting for a too-large displacement.

12

A logistical problem arises with the modelling of many time steps. One hundred

ninety-two steps were modelled for the backward facing step, and three additional

time steps are interpolated between each modelled one, resulting in almost 800 frames

to be calculated and recorded. To be able to start in the middle of the modelled

period without having to re-run the simulation up to that point (a fairly lengthy

enterprise), the particles' positions and colors are recorded in a checkpoint file after a

given number of frames. This saves a great deal of time and allows movies to be

made in several pieces. Checkpoint files are also used in the 3D case.

1.2.2. Advection in the 3-Dimensional Case

The sample modelling data in the 3D case was generated on the University of

Minnesota Cray 2. Flow through a torus with three chambers was modelled, with the

eventual goal of modelling blood flow through the human heart [26, 32] [Fig. 1.5]2.

2See Appendix C for availability of color reproductions of photographic prints.

13

Fig . 1.5. Cut-away
of torus with three
chambers.

BBC 884-4329

Unfortunately the flow fields consist of 64x64x64x3 or 786,000 floating point numbers

per time step, and there are at least several hundred time steps. This large amount of

data made transporting the flow fields over a wide-area network with a bandwidth of

about 2,000 bytes per second unfeasible . A sample data set consisting of several

planes through the 3D flow field , and the boundary data for about 40 time steps, was

available at the beginning of the development process.

The flow field data available contained insufficient information for advection .

Since the main goal was investigating the graphics issues involved in displaying parti-

cle advection through 3-space, a test case was devised . The 2D flow field for the back-

ward facing step [41] is promoted to a 3D field by setting the z velocity components

equal to the y components. The rectilinear coordinate space of the flow over the

backward-facing step is mapped to the interior of the torus. The geometry of the

14

torus is given by the boundary data for the first time step. As long. as particles are

injected with the y position sufficiently different from the z position, more than

enough 3D, complex motion is generated to test the graphics issues involved.

The Runge-Kutta method is used to advect the particles. The calculations are

I

identical to those of the 20 case, with the addition of the calculation of the z positions

at each time step, i.e. an additional step is used with z substituted for y in Equation

1.5. The particles are not transformed into torus space until after advection.

1.2.3. Pa.rameten to Consider in Advecting Particles

Visual as well as numerical issues must be addressed when advecting particles.

The goal is to gain insight into the flow through visual means, to present the max-

imum amount of information without being confusing and showing a "tangled mass of

spaghetti" [4]. This "spaghetti" problem was encountered in the ca.se of the back-

ward facing step. The display of even 10 particles leaving their tracks is difficult to

understand [Fig. 1.6] .

Fig. 1. 6. Ten parti­
cles injected.
Runge-Kutta method .
Time step - 0.125 s.

Showing particle tracks has its advantages - the history of the particle over many

time steps can be shown, making this device good for static presentations, and a sense

of flow is given even when the particles cannot be advected very rapidly .

15

Unfortunately, unless the tracks are color coded by injection position, only a few

intertwining particle trails car. be confusing. A partial solution is to erase the portion

of a particle track more than a. few time steps old. This, in combination with color

coding, would gain some leeway in displaying a.dvected particles. If tracks a.re com-

plex, however, not more than 30 or 40 particles can be usefully displayed [Fig. 1.7].

1-~'

Fig. 1.7. Forty parti­
cles injected. Particle
tracks are for time-
7.5 s through time -
9.5 s (8 time steps) .

If the particles are advected rapidly enough or recorded for video playback, the

particle tracks can be eliminated. The result of displaying only the current position

of particles at each time step is much like non-soluble colored particles being dropped

in an actual flow [45]. A problem with this approach is that the speed of the flow may

be too fast to comprehend the advection of the particles properly. In that case each

frame can be recorded twice and/or the time step size can be reduced. Reducing the

time step size increases the amount of computation since particle positions must be

found for each time step.

The proper choice of injection point yields much information about the dynamics

of the flow. For example, in the case of video of the backward facing step, injection

occurs at two points with color coding by location of injection [Fig. 1.8] [Appendix C,

Fig. Cl.2].

Fig. 1.8. Five hundred particles injected at 2 points.

I •<- ... • I .-•'!'!''"'!)
{·,! ~ ' .

.)~;, t ~~~-~
. . . --~ ~:- ;· .. :~·­

\ ·, , ... ' .:,;. ~·
' 'lor. • ;• I ~' . ·-

(a) 120th frame .

BBC 884-4301

(b) 127th frame.

BBC 883-2579

16

17

(c) !34th frame .

BBC 884-4305

The cyan particles injected in the top regiOn where the flow IS more laminar are

caught up in turbulence later than the magenta ones.

Four related issues are how often to inject particles, how many to inject, the

spacing of the particles at the injection point, and the size of the particles. In the case

of the backward facing step, particles continuously exit the region of interest after a

quarter of the time steps modelled . If particles are injected only once, too few parti­

cles are left in the region of interest to clearly show the structure of the flow in the

latter part of the period modelled. Injecting particles at intervals resupplies enough

particles to be able to see features of the flow, such as vortices and the stagnation

region immediately to the right of the step, that form as quasi steady-state

phenomenon [Fig. 1.9] [Appendix C, Fig. Cl.2].

18

Fig. 1.9 . Five hun­
dred particles inject­
ed at two injection
points. 201st frame .
Notice vortices and
stagnation region to
right of step .

BBC 884-4317

However , if particles are injected too often, the number of particles becomes too large

and starts to fill up the modelled region enough to obscure features of the flow.

Another reason not to inject too often is that with properly spaced injections, it is

possible to see the differences in flow features that arise later in the period modelled

even when the injection points are identical. These differences are obscured if injec-

tions occur too often.

In the modelling of the backward-facing step, or of flow over objects such as an

airplane wing, particles exit the modelled region . In the case of the 3D torus, how-

ever, particles are constrained to flow within the interior of the torus. If particles are

followed over a period longer than the time for them to complete a circuit of the

torus, only a few injections should occur, or there will be too many particles. Another

choice, if the focus is on more short-term behavior, is to inject at intervals throughout

19

the period modelled and remove particles after they have made one revolution.

Choosing the n urn her of particles to inject is related to the frequency of injec­

tion . If there are too many, features will be obscured. If there are too few, structures

will not show up clearly. In both the 2D and 3D cases, 500 to 10000, pixel-sized,

colored particles are injected at two locations. An alternative approach in both cases,

not used due to time constraints, both programming and computational , is injecting

many times more, darkly colored, transparent particles, the result of which looks like

smoke in a wind tunnel. With this number of particles, very complex features can be

seen [45] . However , a relatively small number of colored particles gives a good idea of

what is going on at a fraction of the computational cost. A compromise would be to

use the colored particle approach for an exploratory survey of the flow, and the

"smoke" approach later for a more detailed visualization .

Choos.ing the spacing between particles is related to the number of particles

injected. Since a small initial difference in position can make a large difference in

position later, particles are spaced more closely at the injection point than the resolu­

tion of the display . As a result, many particles are displayed at the same pixel loca­

tion. The more particles, the closer the spacing 'chosen; otherwise the groups of dye

tracers spread out over too great a region of the screen .

The choice of size of the particles is influenced by the fact that frames are even­

tually recorded for video playback . Video recording uses NTSC encoding for the

color , which limits the spatial resolution for many colors [20] . (It should be noted

that the photo figures are not NTSC encoded, but are black and white reproductions

of a high-resolution RGB signal.) If the particles are too small, the color washes out .

20

For this reason, particles at least two pixels on a side are used in most cases, making

their color clearer.

When thousands of particles are injected near the backward facing step , they are

drawn out into long convoluted strings by the flow . In this instance, if particles two

pixels on a side are used, detail is lost because the strings are too thick. If interest is

more in this region than near the right exit point where the particle strips have bro-

ken up, one-pixel sized particles are used [Fig. 1.10] [Appendix C , Fig. C1.3] .

"-! •
--::-:).:

"\
/ \.
t.. .:

1- ·~
I'·: i .

Fig. 1.10. Ten
thousand particles in­
jected at two injec­
tion points. lOlst
frame . Outlined re­
gion shown in Fig .
1.11.

BBC 884-4311

In addition to problems caused by the low spatial bandwidth of some colors, the

use of NTSC encoding necessitates a careful choice of particle and background color

combinations. Many choices interact badly, i.e. the color of a group of particles will

"bleed" into the background. A particularly bad choice in the 3D case was red for the

21

torus and blue and green for the particles [Appendix C, Fig. C1.4]. The final choice of

colors for the 2D and 3D movies was made empirically; there may be other,· better,

combinations of colors.

Another display problem encountered in the case of the backward facing step

involves the aspect ratio of the region modelled , i.e. 10:1 , length to height . The reso­

lution of the display is not enough at a tenth of the screen to see clearly what is going

on. Even if it were, it would be hard to look at. To solve this problem , the size of the

tube is doubled in the y direction, which distorts the flow but at the same time makes

it easier to see features of the flow .

To see greater detail in the 2D case, portions of the flow are zoomed in on

(enlarged). The aspect ratio of the tube is not as important m this case smce the

enlarged regiOn can be chosen to have the same aspect ratio as the display device

without scaling the flow [Fig. 1.11] [Appendix C, Fig. Cl.5].

··.\ ._. ~
.. -, .

l. !
' ~ :

J l •

. ~~- ,:

~ ... -' "- "'

... . , ._
:"."1. ~:· • ·~-~ • • ' t :

22

Fig. 1.11 . Zoom on
outlined region in
Fig. 1.10.

BBC 884-4309

If zooming is used , particle parameters such as number injected are modified . Since

zoommg increases the spatial resolution in the region enlarged, more particles are

injected. Five hundred particles are usually injected when using an unenlarged view,

but this number results in a very sparse display when zooming is used . Ten thousand

particles are injected at two points in Fig. 1.11.

If a fixed area is enlarged, as it is in Appendix C, Fig. C1.4 and Fig. Cl.5, it is

not always possible to have an interesting level of activity in the region of interest,

especially if injection does not occur frequently enough. Particles exit the region of

interest more rapidly than in the unenlarged case. The area chosen to enlarge should

contain some quasi-steady state phenomenon, such as the stagnation region near the

step. As can be seen by Appendix C, Fig. Cl.6, a vortex does not stay in a fixed area.

The solution to this is to track the vortex as is done in Sethian and Ghoniem [41]

23

[Appendix C, Fig. Cl.l].

1.2.4. Depth Cueing

In advecting particles through 3D space, portraying the depth of a particle

becomes a problem. An isolated point, unlike larger objects, does not have 3D cues

such as shadows cast upon it, another object partially in front of it, or apparent

dimunition in size with distance. Three depth cues have been tried for particles: glo­

bal rotational motion of the entire flow field, intensity, and size. Of the three, rota­

tion is the most effective and the easiest to implement. In general, rotation is very

useful in portraying the 3-dimensionality of many types of objects [4, 15, 47].

Care must be taken with using rotation in spite of its effectiveness. In general,

in animating 3D scientific results any additional visual features added to enhance the

understanding of these results runs the risk of making the display too busy or com­

plex [15]. When the torus and its enclosed particles are rotated too rapidly, it is

difficult to tell whether the particles' motion is due to their being advected through

the flow field, or due to the rotation. The rotational movement can be slowed consid­

erably and the 3D effect is still retained. It is also important that the rotation be

smooth; jerky movement resulting from quick changes in angle is distracting. A

cosine function with the frame number as an argument is used to control the amount

of rotation. However, if the torus is rotated through too small an angle too slowly,

the particles "flatten out", even though the torus still appears three-dimensional

[Appendix C, Fig. Cl.7].

Another problem with global rotation is that as the torus is rotated away from a

full frontal view, its walls obscure part of the flowing particles [Appendix C, Fig.

24

Cl.8]. A solution to this problem is to make the torus walls transparent, though the

effect of intensity cueing of the particles would likely be diminished. The best solution

to this problem is to interactively rotate the object and advect particles in real time

to be able to quickly explore all possible views. However, workstations capable of

doing this with more than a small number of particles advected inside the chambered

torus are much more expensive than the video workstation [28,43].

The next most effective depth cue is intensity. In this technique the color of a

particle is made darker as its distance from the front of the viewing area increases. It

is effective because the eye is accustomed to nearer objects being brighter than far­

away ones [13].

The HSV (hue, saturation, value) color model [42] was chosen to arrive at colors

differing only in their degree of lightness or darkness. A color is given in terms of a

hue, saturation, and value component. Hue distinguishes between colors such as red

and green. The saturation component gives the degree of whiteness added to a color

and ranges from 0.0 (no white added) to 1.0 (fully white). The value (or intensity)

component gives a uniform scaling of the underlying color components, and ranges

from 0.0 (fully black) to 1.0 (no attentuation) [13]. Thus the intensity component of a

particle's color is diminished to make it appear darker as it moves farther away.

The limited intensity resolution of the 15-bit frame buffer-based display (only 5

bits each for the red, green, and blue components) makes intensity cueing more

difficult. The problem is aggravated because particles are colored according to their

injection location. Using the HSV color scheme, it is difficult to tell two colors with

lower intensities apart [9], especially when using the NTSC video encoding. As a

25

result the lower intensities are not used in implementing this type of cueing. To add

to the color range, the color saturation of a particle is decreased (white is added to the

color) when it moves towards the front of the torus, making it appear brighter.

Since there are a limited number of colors available, ideally the full range of

colors, from brightest to darkest, should be used. To accomplish this, the maximum

and minimum z values that a particle takes must be found, at which values the

brightest and darkest colors respectively are assigned. There is no way to predict a

priori this range of values; the advection process must be carried out to find the path

of a particle. One way to arrive at the z range is to use the maximum and minimum

z values of the region of interest. However, if the region of interest has a much

greater z range than that of the advected particles, only a few colors are assigned.

In the case of the torus, the particles can not move out of the interior so the

front and back boundary of the torus, with no rotation applied, are used as the front

and back z values. Unfortunately this approach has difficulties. The z range of the

torus boundary changes as it is rotated. If rotation moves a particle to a location

behind the assigned back z value, the particle cannot be made any darker, distorting

the intensity cueing.

A more serious problem occurs because of the shape of the torus. As the torus is

rotated all the particles in the forward "arm" of the torus become bright and all the

particles on the deeper side become dark. This effect would be informative if the par­

ticles were in the interior of a sphere, but the shape of the torus makes thi~ cueing

redundant [Fig. 1.12] The solution to both of the above difficulties is to lessen a

particle's intensity as it moves deeper into the torus, regardless of its z value resulting

from rotation [Fig. 1.13] .

26

Fig. 1.12. Intensity
cueing based on z
coordinate. Rotation
of torus causes parti­
cles at the right to
become bright and all
those at the left to
become dark .

BBC 884-4325

Fig. 1.13. Same as
Fig. 1.12 with inten­
sity cueing based on
relationship of parti­
cle to front of torus.

BBC 884-4323

27

To accomplish this "depth" cueing, 3 points on the plane containing the front of

the unrotated torus are used to find the equation of that plane. The range of z values

taken by the unrotated, object are also found. As the torus is rotated, the points

determining the plane are rotated. The equation:

d. t (ax +by + cz +d)
IS ance =-

Vaz + b2 + c2
(1.6)

finds the distance of a point from the plane. a, b, c, and d are the components of the

plane equation

ax + by + cz + d = 0 (1.7)

while x, y, and z give the position of the particle [2]. The proportion of the distance

found to the total z range determines the intensity of the particle, and when using size

cueing, its width also.

Making a particle bigger if it moves toward the front of the torus is the least

informative of the three types of depth cueing. The range of tracer particle widths

used varied from two pixels to five pixels on a side. With all the activity going on it

is hard to tell whether particle(s) are getting bigger, or whether a clump of particles is

coming together [Appendix C, Fig. Cl.S]. As more particles are advected, this prob-

lem becomes worse. Fine detail also becomes harder to see with particles five pixels

on a side, since the resolution is effectively reduced by five in that region. Because of

these problems, size cueing is not used in the final version of the torus movie [Appen-

dix C, Fig. Cl.9].

Chapter 2

Distributed Computing Architecture for Graphics

2.0. Background

Rapidly displaying the graphical representations of a sequence of flow fields

requires either the computational power for real-time display or the ability to record

the results a frame at a time and then play back the frames in real time. In the past,

film recorders were used tO" record movies of the results of computer modelling on 16

mm or 35 mm film. This involved the expenditure of much time, money, and equip­

ment. The recording process is less time-consuming if videotape instead of film is

used. However, the equipment necessary to record a single computer-generated image

at a time on videotape is usually expensive. The philosophy of the LBL Video Anima­

tion Project has been that scientific movies resulting from computer simulation would

be made more frequently if scientists had access to a low-cost video movie making

system. Movies produced with this system, while not of broadcast quality, would

enable insight into the results of computer modelling. The system put together to

reach this goal is described in Johnston, et al. [20J.

The goal of this thesis is to display the information in flow fields in graphical

form. The achievement of this goal required the use of the "video workstation"

described above. The work described in Chapter 1 could not have been done without

the color, fairly high-resolution video display, and video recording provided by the

workstation.

28

29

2.1. Motivation for a Distributed Software Architecture

The main hardware components of the workstation are an IBM PC compatible

microcomputer, a 16-bit color frame buffer, a video animation controller, and an Eth­

ernet controller. The Ethernet controller has .associated software allowing one to

communicate over the network using the TCP /IP [39] protocol. The frame buffer is

supplied with software implementing graphics primitives (i.e. for points, lines, etc.).

The video animation controller is supplied with software that permits the use of sim­

ple commands like "edit in a certain frame at location xxx and record this frame until

location yyy". A block diagram of this system is provided in Appendix A.

The first movie made using this system, depicting 2D flow over a backward­

facing step [Appendix C, Fig. Cl.2], was produced in a convoluted manner. The flow

field was generated on a Cray XtvfP-48 [41]. It was moved by tape to a VAX-VMS

system, and then to a V AX-Unix system. Particles ~ere advected with software writ­

ten and run on the V AX-780 Unix system, since advection was too time-consuming to

be done on the PC compatible. The positions and colors of the particles, along with

the position of the boundary, were recorded in a graphics metafile. This metafile was

then sent to the PC using FTP [8]. The amount of data being sent over the network

was so large (around 40 megabytes) that the movie was made in sections. After

transfer, a program [20] was started on the PC to read the metafile, display the

colored particles, and control the recording process.

This three-step process requires the user to know something about two operating

systems, and the file transfer program that operates between them. Another draw­

back is that human intervention is required after each step is completed in order to

30

start the next step, making it difficult to leave the process running unattended for

· long periods. 3D rendering has the same problem in that it is also too time consum­

ing to do on the PC.

Using a remote procedure call library to control the use of the frame buffer and

the video recorder from a front-end system overcomes these difficulties, and has some

additional advantages as well. A remote procedure call (hereafter referred to as RPC)

is similar to a conventional procedure call, but is made between processes which are

potentially on separate machines. An RPC made by one machine (the client) causes

the invocation of a procedure on another (the server) through the mediation of the

RPC package. The RPC package communicates the arguments across the network,

handles data format conversion, and finds the desired procedure on the server. The

implementation described here uses the Sun RPC library [35]. This RPC implementa­

tion uses the Berkeley Unix socket interface to TCP /IP to provide the underlying net­

work transport [35, 39]. Both are widely available -- thus many systems can use the

video workstation for display and recording.

Using RPC's, the three-step process described above is avoided. Following

advection, RPC's are used to display graphics primitives and to control the recording

process on the video workstation directly from the front-end machine. A user does

not need to know anything about the PC with RPC's -- the PC is relegated to the role

of a non-interactive animation server. Two approaches are taken in transferring the

graphics data. In one, used only in the 2D case, point and line RPC-based graphics

primitives are used to invoke the corresponding software routines on the workstation

side. In the second approach, graphics primitives, including polygons in the 3D case,

..

31

are rendered (scan converted) into a software frame buffer located in main memory on

the front end machine. This software frame buffer is transferred to the workstation

using RPC's and written into the PC frame buffer several scan lines at a time.

2.2. Flow of Graphics Information

The following diagram [Fig. 2.1] shows the flow of graphics information in the

two approaches. Each box in the diagram represents a relatively independent module

that the information passes through. These modules are described further in Appen­

dix B. In the 2D metafile approach, particles are advected and 2D GKS-like routines

invoked. All the steps below are internal and invisible to the user. GKS (the Graphi­

cal Kernel Standard) provides a paradigm for a device (and in this case, approach)

independent manner of invoking graphics primitives. The user only has to set a flag

indicating the metafile approach, and the GKS level automatically calls the low-level

metafile routines that in turn invoke RPC's to display the particles and the 2D boun­

dary of the modelled region. The RPC package takes control from here and converts

the data into XDR (eXternal Data Representation) form, a standard, machine­

independent, representation of data [12]. The information is then sent over the Ether­

net using one of two IP protocols, UDP (User Datagram Protocol) or TCP (Transmis­

sion Control Protocol), which will be described in the next section. The data received

by the PC are converted from XDR format into PC format. The RPC package on

the PC finds the desired remote procedure, which then invokes local software provid­

ing the graphics primitive to display the data. A separate RPC is made to record the

display on frame(s) of videotape.

32

Fig. 2.1. Flow of graphics information

metafile both frame buffer

tesselation I
I 20 advection J '

30 advection I
~ " --

~
GKS

~
30 package!

metafile V ~ RPC calls r-, 20 scan _, 30 scan
conversion conversion

'\ /
compression

1\ software frame

----- buffer RPC
I Sun RPC package l.,...--- calls •

client
ISunXOR

/

network

1/
~

video
I SunXOR I workstation

frame buffer • remote procedures
I Sun RPC package I _.,

metafile remote v decompression
procedures

~
display

display
--{recording~

•

33

The other half of the diagram shows the flow of information in the software

frame buffer approach. Again, the GKS module is the lowest module visible to the

user. In the 30 case, particles are advected and the torus (boundary) data is con­

verted into polygonal form by "tessellation" (described in Section 3.1). The resulting

positions of the particles, and the vertices of the polygons are sent through the 30

viewing pipeline, which invokes the appropriate GKS-level calls to display the data.

The GKS module invokes 30 routines to scan convert the data into the software

frame buffer. The user makes a separate GKS call which invokes a RPC to display

the information contained in the software frame buffer.

The software frame buffer requires storage of about 400 kilobytes of data, and

the bandwidth observed in the Ethernet connecting the front-end system and the

workstation is from 10 to 50 kilobytes/second, depending on the protocol used (see

section 2.3). Thus the frame buffer is usually compressed before transmission. (The

two types of compression used, and the corresponding decompression on the worksta­

tion, are described in Section 2.4.) On the front end system, the RPC package takes

the data, converts it into PC internal format, and calls a special XOR routine,

xdr_opaque, to take the data and place it in a buffer with no conversion for transfer­

ral. Since there are various front-end systems, conditional compilation is used to

select the correct means of translating the compressed data into PC format for the

mode of compression transferring the data in short integer format. The data is not

put in the standard XDR form because conversion from XDR to PC form would take

too long on the PC. From here the steps are similar to that of the metafile approach

with the addition of the decompression step on the workstation side [Fig. 2.1].

34

2.3. The RPC Level

Before RPC's could be used, a large part of the Sun RPC library had to be

ported to the PC. This work is described in detail in [36]. The two factors on the PC

that made this software port possible were the commercially supplied socket library

for the Ethernet controller [30], and a run-time library providing a similar environ­

ment to Unix [27].

Socket calls are Unix low-level primitives for communication between processes

running on the same or different machines. Sun RPC has two flavors -- one in which

socket calls are made with the UDP protocol, and the other with TCP. TCP is a

stream, or connection oriented protocol, and data transmitted by a single RPC using

TCP can be of any length up to 231 - 1 bytes (in Sun RPC) [12]. UDP is a datagram

protocol. The data transferred by a single RPC is limited by the maximum packet

length. This length is system dependent, but modern UNIX systems typically allow

8K [35]. UDP transmission is not error-free, while TCP is guaranteed to be reliable,

at the cost of error-checking overhead [39].

RPC's were first implemented on the PC using the UDP protocol. Since UDP is

not reliable, the Sun RPC package provides some mechanisms for reliability. In par­

ticular, the client re-transmits data if an acknowledgement to a RPC is not received

within a set time limit. A problem arises in the proper setting for this time limit. If

the time limit is too long, excessive delays in displaying the data may result when a

packet of data is lost because the client will wait to re-transmit until the time-out

period expires. If the time limit is too short, the slowness of the PC server in per­

forming an RPC may cause duplicate calls, because the client could re-transmit

35

several times before the server has a chance to ack"nowledge. Based on experience

over many runs, the retransmission rate eventually chosen was 4 seconds for a local­

area network.

At first this setting caused problems when transferring the software frame buffer

because one RPC was used to transfer one scan line, resulting in 400 RPC's per

image. One or two scanlines per image were sometimes lost, causing a delay of 4 or 8

seconds. This problem is alleviated when compression is used, allowing dozens of scan

lines to be sent in a packet via ~n RPC. The percentage of lost packets might be the

same, but with compression there are many fewer packets being sent.

Recording a frame on videotape takes about 15 seconds. This length of time

does not cause RPC packet retransmission because the recording RPC is made asyn­

chronously. That is, the PC sends back an acknowledgement to the RPC which ini­

tiates the recording before it sends the record command to the animation controller.

This allows the front end to be advecting the particles or rendering the next frame

while the recording process is going on.

Because the recording RPC is asynchronous, the next RPC made after it is often

re-transmitted because the PC is still waiting for the videotape recorder (VTR) to

finish and is not able to respond. If the amount of data to be sent is potentially large,

a null RPC {sending no data) is made first to verify that the PC is ready before mak­

ing the next RPC call.

The problems associated with using UDP are eliminated when using the RPC

library with the TCP protocol. No packets are lost. Th~ price is a slower rate of

transmission over the network. One study showed a maximum bandwidth between

.•

36

Sun 3/50's of 310 kilobytes per second using RPC's with the UDP protocol but only

140 kilobytes per second using TCP [38]. The bandwidth between a front-end and the

PC is considerably less using either protocol. A rough estimate of the data transfer

rate between a Sun 3/280 front end and the workstation using RPC's with the UDP

protocol is 50 kilobytes per second. With TCP this rate goes down to roughly 10 to

20 kilobytes per second. Over a local-area network, reliability is generally not a prob­

lem and UDP is used as the transport protocol. TCP is used over a wide-area net­

work, since reliability is potentially an issue in that case.

Another advantage of TCP became evident when the client side of the package

was ported to a Cray X/MP-14 Unicos system. When the Cray is heavily used there

is a sizeable delay after each RPC. Even with compression, the amount of data asso­

ciated with the software frame buffer exceeds the 8K limit imposed by UDP. Since

the compressed image of the torus and particles is on the order of 30 to 40K bytes,

several RPC's have to be made to transfer the data, with the accompanying delays.

With TCP the entire compressed frame buffer is sent with one RPC. There is still a

small delay evident after a certain amount of data (estimated at lOK) is sent, but the

total transferral time is much smaller.

2.4. Compression Techniques

Two suites of programs [44] for compressing and decompressing raster images

were integrated into the portion of the graphics package using the software frame

buffer approach. One suite uses block truncation coding (BTC) and frame to frame

differencing, while the other uses a preliminary BTC step, encoding using a color map,

and frame to frame differencing. Both are variations of the encoding described in

37

Campbell et al. [6].

BTC encoding divides the frame buffer (raster image of 15 bits per pixel) into

4x4 blocks. Two "best" colors are chosen to represent the block. These two colors,

along with a bitmap which has 1 's for pixels closer to one color and O's for pixels

closer to the other, are the compressed version of the original 4x4 block of pixels.

Using the color map approach, 256 colors are selected which are most representative

[16] of the colors found in the uncompressed image (215 - 1 colors). The two best

colors found by BTC encoding are represented by pointers into a lookup table con-

taining 256 colors [6]. Frame to frame differencing finds those blocks of pixels which

do not change from one frame to the next. The two colors and the bit map only need

to be stored for blocks that change [44].

Different types of images result in differing amounts of compression, as illus-

trated in Table 2.1 for the four images [Fig. 2.2a through Fig. 2.2d]. The minimum

amount of compression using BTC is 5.33:1. The maximum size of a 4x4 block using

only BTC encoding is 6 bytes, and there are 12,800 blocks, or 76,800 bytes. (The

uncompressed software frame buffer is 409,600 bytes.) The minimum amount of

compression using BTC and the color map is 8:1, since the maximum size of a 4x4

block is 4 bytes.

Fig. 2.2. Four test images.

r

38

(a) Flow over back­
ward facing step .
500 particles injected.
20lst frame.

BBC 884-4315

(b) Zoom on region
outlined in Fig. 1.10.
10000 particles injectr
ed . 101st frame . Im­
age same as Fig. 1.11.

BBC 884-4307

Fig. 2.2. Four test images (continued) .

•

(c) Smooth shaded
clipped torus.

BBC 884-4331

39

(d) Sameas(c)with
the addition of ad­
vected particles .

BBC 884-4327

40

Table 2.1.--Compression ratios for Figs. 2.2.a through 2.2.d.

com pressiOn (a) (b) (c) (d)

BTC only 7.6:1 7.5:1 6.7:1 6.7:1

BTC and color 10.3:1 10.2:1 9.4:1 9.4:1
map only

modification from advection advection rotation advection,
one frame to the rotation
next

BTC and frame- 43.5:1 27.2:1 12.9:1 12.8:1
frame

BTC, color map, 59 .3:1 37.8:1 18.8:1 18.6:1
and frame-frame

In each case the colormap does a better job of compressiOn . The frame-to-frame

differencing numbers are for a slightly modified version of each image, as indicated in

Table 2.1. As can be seen for the numbers for the 2D image, frame-to-frame

differencing is very effective for images with a large amount of constant background .

In general , scientific graphics synthetic images do not fill up the whole viewing surface

unless they are distorted, and the unused portion of the screen compresses very well.

However, if a portion of the image is enlarged by zooming in on it as in Fig. 2.2.b, the

enlarged portion may indeed fill up the entire screen, in which case the compression

ratios are not as good. Shaded 3D images do not compress as well as 2D images, as

indicated by the numbers for Fig. 2.2.c and Fig. 2.2.d. The modified (rotated) version

of Fig. 2.2.c compresses only slightly better than the modified version of Fig. 2.2.d, in

which many particles are changing their positions due to advection in addition to

changes due to rotation . However , there is a large amount of difference between

41

frames in both cases, even though the changes m color between Fig. 2.2.c and its

modified version are more subtle.

Three factors which must be balanced when choosing the type of compression to

use, or whether to use compression at all, are the speed of the decompression at the

video recording workstation, the bandwidth of the network, and the speed of the front

end system which does the compression. Speedy decompression is essential since the

video recording workstation is a PC. Decompression using either BTC by itself or

BTC with the addition of a color map requires only a table lookup for each pixel in a

block that changes.

A program displaying 7 frames of a rotating torus, one frame of which is Fig.

2.3, was timed three separate times, once using no compression, once using BTC

compression only, and once using BTC compression and a color map. The three tim­

ings differed by only one second in elapsed cpu time (102, 103, and 103 cpu seconds,

respectively). The cpu time spent in compression is justifiable; just as much cpu time

is spent in the RPC and transport levels when compression is not used. The amount

of real. time elapsed in each instance differed more because the time spent in transmit­

ting the data is not added into the cpu time. The color map option is more efficient

in compression than BTC by itself, which was reflected in the former option having 30

seconds less elapsed real time than the latter. Using no compression resulted in 45

seconds greater elapsed real time than when using the color map option. Much more

data is handled by the network protocol layers on the front-end and on the slower PC

side when transporting the entire software frame buffer . These three timings when

repeated several times gave much the same picture in real time elapsed .

Fig. 2.3. Smooth
shaded torus.

BBC 884-4335

42

The main variable in choosing between no compression, BTC encoding, or color

map encoding is the amount of data sent across the network. The color map

approach results in the least amount of data sent, which is especially valuable when

data is sent over a slower network . When an image is sent over a wide-area network,

which has an effective bandwidth of 1 to 2K bytes per second, saving even a few kilo-

bytes is worthwhile . Thus an image compressed using the color map approach is

compressed still further using Lempel-Ziv compression when the image is sent over a

wide-area network .

The Lempel-Ziv algorithm is an adaptive Huffman compression technique [23].

The distributed graphics package was modified to use an implementation of this algo-

rithm (a variation of the UNIX compress function) [18] as an additional compression

step after BTC or color map encoding. Decompression takes place on a 68020

43

coprocessor on the PC, since decoding is as expensive as encoding, unlike the BTC and

color map approaches.

Table 2.2 lists compression ratios for the four images in Fig. 2.2 using a color

map, frame-to-frame differencing, and Lempel-Ziv encoding. It should be noted that a

digitized natural scene has too much noise to be able to achieve these compression

ratios; however , synthetic images have a large amount of redundancy in them. As can

be seen, even the color-map, frame-to-frame differenced compressed image has redun-

clancy in it that Lempel-Ziv compression is able to exploit.

Table 2.2.--Compression ratios with the addition of Lempel-Ziv .

com presston (a) (b) (c) (d)

BTC, color map , 59 .3:1 37 .8:1 18.8:1 18.6:1
and frame-frame

Addition of 124.1:1 80.8:1 23 .9:1 22.2:1
Lempel-Ziv

Another reason why compression is preferred to no compression is that compres-

sion permits storage of the entire frame buffer on the PC so that maximum execution

overlap with the front end can occur. After the compressed image is stored, the PC

sends an acknowledgement to the front end, allowing it to continue while the stored

image is decompressed and displayed in the hardware frame buffer. When the front

end sends over an uncompressed image to the PC, it must do so several scan lines at a

time. The PC has only 640K of RAM available in its current configuration and

roughly 150K of this is used by the executable version of the server alone. There is

44

not enough space available for the full 409,600 bytes of uncompressed image. In this

case the front end must wait until the whole image is displayed before it can continue.

The compressed image fits because, as mentioned above, the maximum size of a

ETC-compressed frame buffer is 76,800 bytes.

The main drawback of using either the BTC or the colormap approach is that

they are not exact algorithms, that is, decompressing a compressed image does not

always result in an exact duplicate of the original image. As mentioned before, two

"best" colors are chosen to represent the colors of all pixels in a 4x4 block. If there

are more than two colors in a block, this results in inaccuracies [44] . For example,

Fig. 2.4 from the backward facing step movie with 10,000 particles shows that where

the cyan and magenta particles lie close together, some particles are given the wrong

color .

These inaccuracies are almost impossible to see when usmg the NTSC color

encoding. Even when compression is not used, colors of intermixed cyan and magenta

particles are difficult to distinguish [Appendix C, Fig. C2.1] . To get a clearer picture

of the situation in an intermixed region, that region is zoomed in on. In this case

cyan and magenta particles are less likely to lie within the same 4x4 block, since the

resolution is effectively increased, and the NTSC encoding is less likely to blur the

cyan and magenta particles together [Fig. 2.5] [Appendix C, Fig. C2.2]. (As men­

tioned in section 1.2.3, the photographs are not NTSC encoded. It is necessary to

view the videotape to see the effects of NTSC encoding.)

45

Fig 2.4. Result of
BTC and color map
encoding showing
inaccuracies.

BBC 884-4313

Fig. 2.5. Zoom on
outlined region in
Fig. 2.4.

BBC 884-4303

46

A potential problem with the color map approach is that 256 colors are chosen

which are most representative of the colors in the entire image, which may have a

much greater range of colors. The algorithm chooses the color of a pixel in such a

way that it is "close" to the true color. The inaccuracy is unnoticeable with the syn­

thetic images generated in this thesis to visualize fluid modelling. The limited

number of colors is much more noticeable in digitized images captured by a camera

that have been compressed using a color map [16].

2.5. User-Level Interfaces in the Two Approaches

GKS-style calls are the user-level interface to the routines implementing the

metafile and software frame buffer approaches to displaying images on the video

workstation. The semantics a.re different from GKS in that only one way of generat­

ing images is accessible at one time, since the metafile and the software frame buffer

approach access the same display.

The metafile approach is limited to displaying 2D images for several reasons.

The only information sent to the PC with the metafile approach is the position and

color of points, lines, and text. They must be scan converted into the hardware frame

buffer on the PC side. The process of scan converting 3D polygons is time consuming

even on a Sun 3/280; it would be much more so on a PC. The algorithm chosen for

hidden-surface removal of 3D objects uses a 0.8 megabyte buffer in addition to the

frame buffer. The frame buffer by itself does not fit into PC memory.

A listing of the user-level routines causing invocation of RPC's further illustrates

the difference between the two approaches. Following are the calls causing RPC's

with the metafile approach:

47

1. Dopwk (approach, connection-id}

Initializes the hardware frame buffer, the recording device, and the RPC pack­

age. approach chooses the metafile or software frame buffer approach.

connection-id has two values or'd together, the protocol value and a number

identifying which video workstation (#1 or #fl.) to connect to. Sets up the RPC

package to use UDP or TCP based on the protocol argument.

2. Dclwk (approach}

Closes the devices and the RPC package.

3. Dscr (approach, index, hue, sat, val)

Sets an entry in the color table resident on the PC via an RPC if the metafile

approach is used. The current point, line, or text color (set by other calls) is

identified by an index into this table. approach identifies whether the metafile or

software approach is to be used. ~·ndex is the location of the entry set in the

color lookup table. hue, sat, and val are the hue, saturation, and value com­

ponents of the color specified.

4. dtxt (x, y, str}

Writes the text str at location x, y via an RPC. Frequently used to include the

frame identifier as text in the graphics frame.

5. Dpl (numpts, x._array, y_array)

Draws a connected line made up of numpts number of points given by x._array

and y_array.

48

6. Dpt (x, y)

Plots a point at location (x, y). The point will not appear on the monitor

immediately. All points to be plotted are stored until the Duwk call. Thousands

of particles are advected after several injections have been made. One RPC per

point plotted would incur too much overhead.

7. Duwk (approach}

Sends all points stored as a result of the point command to the workstation to be

displayed if approach indicates the metafile approach is being used. If not in pre­

view mode, records what is stored in the frame buffer on a videotape or video­

disk frame(s). When preview mode has been set, the images are displayed and

not recorded.

8. Dclrwk (approach}

Clears the hardware display via an RPC in preparation for the next frame if

approach indicates the metafile approach is being used.

Following is a brief description of user routines causing an RPC call m the

software frame buffer approach:

1. Dopwk (approach, connection-id}

Performs the same functions as in the metafile approach.

2. Dclwk (approach}

Closes the devices and the RPC package.

3. Duwk (approach}

49

Copies the information in the software frame buffer into the hardware frame

buffer via RPC(s) if approach indicates the software frame buffer approach is

used. If not in preview mode, records what is stored in the frame buffer on

videotape or videodisk.

For reasons described above, 30 primitives are not displayed using the metafile

approach. When displaying 20 fluid flow, a choice is available between the metafile

and software approaches. The metafile approach is less computationally expensive on

the front end. However, the software frame buffer approach is far superior even when

only 500 particles are injected. With the metafile approach, many more RPC's are

needed to display a frame, and the front-end has to wait for the PC to finish on each

one but the recording RPC. If compression is used with the software frame buffer

approach, the front-end is free to continue once the data for the entire frame has been

received on the PC end. As mentioned before, display in the hardware frame buffer as

well as recording are overlapped with computation on the front-end. In addition, it

takes only 100 graphics calls on the PC to display the information in the

decompressed software frame buffer (at 4 scan lines per call). With the metafile

approach, a graphics call is made for each particle, which is wasteful if 20,000 parti­

cles are to be displayed.

3.0. Introduction

Chapter 3

Graphics Issues

In many, if not most, cases of modelling fluid flow, an object perturbs or con­

strains the flow. In these instances correct visualization of this object is an important

aspect of fluid flow display, especially in the 3D case. The geometry of the object is

used in modelling the flow, and aspects of that object such as surface discontinuities

are important for understanding what is going on in a particular region of the fluid.

To display a 3D object and show the 2D projection of 3D particles, it was neces­

sary to implement several graphics algorithms, and modify and add to already avail­

able software. The software available was an experimental 3D viewing package for

displaying line drawings that provides an easy means of changing the view of objects

[48]. Modifications to this package involved adding the ability to send points and

polygons through the 3D viewing pipeline and the addition of two types of polygon

clipping. These modifications, and the implementation of the graphics algorithms,

were guided by the desire to provide an unambiguous and illustrative display of the

object and the flow field in a timely manner, rather than the achievement of photo­

graphic realism.

The video workstation is designed more for scientists to gain insight into the

large amount of data produced by scientific modelling than for the final presentation

of the results, that is, it is designed more for discovery than presentation graphics.

50

51

For the purposes of discovery it is more important to be able to look rapidly through

the data than it is to have a polished representation. The more sophisticated graphics

algorithms for displaying surfaces are potentially very cpu time-consuming, and

would require a large expenditure of programming time to implement. Given the

desire for speed and economy of programming, an. attempt was made to find the

minimal implementation that would enable insight into the dynamics of the flow.

3.1. Representation of the Object

In 20 representations, all that is required to display the object constraining the

flow are line segments. The choice of what part of the object to display vis a vis the

modelling data may require some judgment. For example, the flow field for the

. backward-facing step is modelled on a rectangular grid [Fig. 3.1]. No modelling was

done for that area of the tube to the left of the step. To properly understand the vor-

tices forming to the right and below the step it is necessary to include the boundary of

this non-modelled area and not just the boundary of the flow field proper.

··· 0 I 0000110000000000000000000000000000t00000000000000000000010f0000000t00000010000000000000000000I000

... ·· ··· .. ··· ... ··· ...

. . ·· .. ···

Fig. 3.1. Gridded
portion is region
modelled.

The representation of a 30 object is much more difficult. When a polygonal

representation is available, there are well-known algorithms for rendering the object:

performing projection, scan conversion, solving the hidden surface problem, and

52

providing a lighting and shading model. Frequently, however, the object is not given

as a surface(s) described as polygons, in which case the algorithms for display are not

well developed or don't exist at all. In the general case (not just in flow visualization)

the object data available may be 2D cross-sections of an object, such as contour lines

representing some value in a scalar field (e.g. a terrain contour map), views of an

object taken from many different positions, such as in X-ray tomography [17], a 3D

array of scalar values obtained from mathematical modelling [41], or many other

representations. For the torus, the data was a collection of strands or fibers, a varia­

tion of a parametric representation [26, 32].

The process of generating a polygonal representation from a non-polygonal one

is called tessellation. One common method of tessellation used when planar contour

slices of an object are available is triangulation. In this method points on one contour

are connected to an adjacent contour to form a series of triangles [14] [Fig. 3.2].

53

Fig. 3.2. Triangula­
tion between contour
pairs. Reprinted
from Christiansen
and Stephenson [7],
14.2.

The torus is given as a series of criss-crossing inner and outer fibers [Fig. 3.3].

The points making up the fibers are given in such a way that it is possible to triangu-

late between one fiber and the next and achieve a good" triangulation [25]; that is,

where most polygons have roughly equal area, and where there are few very acute

angles [7]. Only the outer fibers are used in the triangulation.

54

Fig. 3.3. Torus given
in form of inner and
outer fibers.

BBC 884-4295

An attempt was originally made to find a more general method that would

tessellate several different representations of an object. In this method samples are

made of parallel slices of the outer strands of the torus to generate a collection of

points at each slice. After the points are connected to form contours, the Mosaic

package of movie. byu is used for triangulation [7] . This method was abandoned

because points from narrow slices of the torus are impossible to connect, and because

the Mosaic program has to be guided by hand owing to the complexity of the torus.

The Mosaic package especially has difficulty with connecting three contours at one

level to two contours at the next, which occurrs where the "bumps" on the torus

merge into its main body [Fig. 3.4] . In general, methods of tessellation by connecting

contours have problems with saddles [7] .

Fig. 3.4. Smooth
shaded torus.

BBC 884-4333

55

A major issue encountered after the torus was tesselated concerned the display

of that object in conjunction with the advected particles. The particles move in the

interior . If the object is a cylinder or a space shuttle wing [Fig. 3.5], the movement of

the particles around it gives a form of depth cueing. On the other hand, particles

moving inside the clipped torus are sometimes obscured by it, but always have it as a

background [Fig. 3.6] . In this case, the depth cues described in Section 1.2.4 become

much more important.

56

Fig. 3.5. "Flow over
the Space Shuttle
(Computer simula­
tions by Chaussee,
Rizk, and Burring)" .
Courtesy V. Watson,
figure from Watson,
eta!. [47], 7.

BBC 880-11631

Fig. 3.6. Smooth
shaded torus cut
away to show advect­
ed particles.

BBC 883-2585

57

Since the particles move in the interior, part of the torus must be clipped away

to see them. Two types of clipping are implemented. In both types, all graphics

primitives are tested to see if they should be clipped. Care must be taken to turn

clipping off before rendering the particles unless it is known beforehand that they are

all behind the front clipping plane. Otherwise particles will wink in and out of

existence as they pass through the clipping plane.

The first type of clipping implemented was the standard clipping which is part of

30 viewing [13]. This "viewing" clipping is done against the front of the view

volume. The part of the object which is not clipped is mapped into the view volume

as part of the viewing operation, in which, among other things, the object is rotated

and prepared for projection to 20. Viewing clipping is inappropriate for displaying

particles inside the torus if rotation of the torus is used to provide depth cueing. This

is because there is not a fixed relationship between the torus as it rotates and the

viewing clipping plane. As the torus is rotated, part of it moves behind the viewing

clipping plane. No longer clipped, that part hides the particles in the region behind it

[Fig. 3.7]. A different type of clipping had to be devised in which a fixed part of the

torus is clipped no matter what the rotation [Fig. 3.8] [Appendix C, Fig. C3.1]. The

implementation of this "object-oriented" clipping is described in Section 3.2.4.

0

58

Fig. 3 .7. Result of
rotation in conjunc­
tion with viewing
clipping. Note region
at right is not clipped
away.

BBC 884-4341

Fig. 3 .8. Result of
object-oriented clip­
ping with same rota­
tion specified as in
Fig. 3.7.

BBC 884-4339

59

Another problem involved with displaying particles inside the torus has to do

with the type of polygon shading used for the polygons that define the torus. Two

types of shading are implemented. In constant shading, a polygon is given one color

intensity depending on its geometric relation to the light source. This gives the object

made up of polygons a faceted appearance . When looking at some instances of

clipped objects with this type of shading, the interior appears to " pop out" , that is,

its curvature appears to be reversed . This happened, for example, to the interior of

the torus when it was triangulated using the Mosaic package [Fig. 3.9] . Particles

appear to be moving outside instead of inside the torus. Gouraud shading interpo-

lates the normal vectors of adjacent polygons to provide a continuous shading ·across

the surface. This gives a smoother appearance to the object and alleviates the prob-

lem [Fig. 3.10].

Fig. 3.9. Constant­
shaded torus. Po­
lygons arrived at by
Mosaic tessellation.
Note ambiguous re­
gion at upper left.

BBC 884-4319

0

3.2. Implementation Issues

60

Fig . 3.10. Same as
Fig .3.9 with Gouraud
shading. Polygons
arrived at by Mosaic
tessellation.

BBC 884-4321

The starting point for the display of polygons is a file containing a list of the

polygons and their vertices, which are given in world (or user) coordinates. Table 3.1

outlines the steps taken to arrive at the final shaded image. Rendering an object

made up of polygons entai.ls conversion of a geometric description to a raster (scan-

line) format . Rendering requires :

1. 3D viewing: establishment of the view of an object from a particular eye posi-

tion, and clipping of the object to a finite volume.

2. Projection from 3D to 2D.

3. Scan conversion: the process of determining which pixels of the display will be

used to represent each polygon.

61

Table 3.1.--Rendering steps.

coordinates

X y z
1. object given world world world

2. find polygon normal world world world

3. normalize to unit cube viewing viewing viewing

4. _project viewing viewing viewing_

5. convert x and y to NDC NDC NDC viewing

6. convert x and y to device coor- device device viewing
dinates

7. scan conversion device device viewing_

for each scan line crossed by polygon
for each pair of active edges

for each pixel between left and right edges
check z buffer to see if pixel hidden
if not hidden

find RGB color based on lighting and shading model
write pixel color into frame buffer
write pixel z value into z buffer

end
end

end

62

4. Hidden surface removal: the determination of which parts of an object made up

of polygons are visible from the given eye point.

5. Lighting and shading: the determination of what color to assign each pixel of

the object to account for the position of a light source and the nature of the sur­

face that is represented by, say, the polygons of a tessellated torus.

During this process the vertex coordinates undergo transformations between

several coordinate systems. Vertices are transformed from world to viewing coordi­

nates in preparation for clipping and projection. In the case of parallel projection, the

unclipped portion of an object transformed into viewing coordinates is confined within

a unit cube. The mathematics involved in this transformation and the projection step

are described in Foley arid van Dam [13] and Wishinsky [48].

NDC in Table 3.1 refers to normalized device coordinates, which is a device­

independent means of mapping an object to a portion of the hardware display screen.

Device coordinates are the integer, physical coordinates (i.e. number of pixels in the x

and y direction) of the hardware display [13]. · The z component of a vertex is not

transformed beyond viewing coordinates, since the further transformations are 2D.

Once the x and y components are transformed to device coordinates, the processes

involved with scan conversion begin.

3.2.1. Scan conversion and hidden-surface removal

The first graphics algorithm implemented, a modification of the scan line z­

buffer algorithm, performs scan conversion and hidden-surface removal. Scan conver­

sion find what pixels are to be used to represent a graphics primitive and proceeds by

63

finding the intersection of the raster scan lines with the graphics primitives. In the

case of a. polygon this process generates a filled area. in its interior. An efficient

method uses a. y bucket sort a.nd a.n active edge list. When the polygon routine is

called, it finds information about the polygon such as the number of scan lines inter-

sected, a.nd the top scan line intersected by each of its edges. The data. for each edge

is placed in a.n ordered list using a. y bucket sort based on its "highest" y point. After

the information for all edges has been placed on this ordered list, a separate call is

made to perform scan conversion.

Moving only once from the top to the bottom of the polygon, when a scan line is

visited, a. check is made in the corresponding y bucket for newly "active" edges {first

intersection with a. scan line). Fig. 3.11 gives the general idea. {the algorithm is more

complex than illustrated, to handle special cases).

c 14 ------,.r----.,

13 ----+----ltr--1

12--+---~8

11 ---#--~----;

1 0 ---'~------'
A

Fig. 3.11. Polygon to
scan convert.

The process begins a.t scan line 14, the highest scan line intersected by the triangle.

For each scan line crossed by the polygon a. check is made for new active edges, i.e.,

64

/

edges whose upper vertex intersects that scan line. In the example, edges AB and BC

are initially identified as active. Scan conversion between pairs of active edges is per-

formed using incremental calculations from scan line to scan line and from left inter-

section to right intersection on a scan line. When the count of scan lines for an edge

exceeds a pre-calculated number of scan lines crossed by the edge, it is dropped from

the active edge list. At scan line 12, edge BC drops from the active list and CA is

added. If no edges in the polygon are active scan conversion is complete. At scan line

10 the triangle has been scan converted.

As a polygon is scan converted, hidden surface removal using a z-buffer is also

being performed. Hidden surface removal is the elimination of parts of ~n object not

visible from the eye point. A z-buffer is an in-memory buffer holding the z, or depth,

values of each pixel in the frame buffer (which holds the color of each pixel). The z-

buffer and the frame buffer are identically-dimensioned arrays the size of the raster

image which appears on the screen. When the process of scan converting a polygon

gives ~ pixel to be displayed, the depth of that pixel is compared to the corresponding

z value in the z-buffer. If the depth of the pixel in the z-buffer is greater than that of

the current pixel, the current pixel is in front of the previously written one, in which

case the current depth is written into the z-buffer. The color of the current pixel is

written into the corresponding location in the frame buffer [37].

The z-buffer is the simplest hidden-surface removal algorithm. Implementing it

requires only a few lines of code. It easily solves special cases such as interpenetrating

polygons [Fig. 3.12] and can handle hidden point and line removal as well. The price

is the amount of memory required for the z-buffer [37]. In the case of the 512 x 400

65

frame buffer used for video animation, the z-buffer is 0.8 megabytes in size.

y

~------------------x b

Fig. 3.12. Triangle
interpenetrates the
two rectangles. Re­
printed, by permis­
sion, from Rogers
[37], 260.

A major motivation for the original developers of the scan line z-buffer algo-

rithm was the fact that the frame buffer and the z-buffer only have to contain one

scan line [37]. In the u,nmodified version a prepass is made for all polygons, during

which they are stored in y buckets. An active polygon list is used in addition to an

active edge list. Scan conversion proceeds from the top scan line in the frame buffer

to the bottom, visiting each scan line only once. However, if particles are advected,

the points have to be sorted in order to go through the image a. scan line at a time. In

addition, sufficient intermediate storage is required for each polygon when they a.re

stored in preparation for scan conversion that scan converting large numbers of

polygons becomes impractical due to lack of space. Thus the software frame buffer

and the z-buffer a.re the size of the hardware frame buffer used for display. Points,

lines, and polygons are rendered one at a time in random order.

..

66

3.2.2. Lighting model

A lighting model simulates light impinging on an object from various directions

and reflecting from it. The simplest model, using a version of Lambert's cosine law,

was implemented. Lambert's law models diffuse reflection, in which "light is scattered

equally in all directions" [37]. It takes the form:

(3.1)

where I is the intensity of the reflected light, 11 is the intensity of the light originating

from a point source at infinity, kd is a constant which determines the amount of light

reflected by the object, and 0 is th~ angle between the direction of the parallel inco~-

ing light rays and the normal to the surface (in this case, polygon). If 0 is greater

than ; , that polygon is hidden from the light source and is a special case [37]. The

calculation of the intensity was simplified by setting I1 and kd to 1 [Fig. 3.13].

n

Fig. 3.13. Lambert's
law models diffuse
reflection. Reprinted,
by permission, from
Rogers [37J. 312.

67

The direction of the light rays is specified by the light source vector. Specifying

it in vector form, e.g. {0.8, O.t, -0. 7}, is highly non-intuitive. Instead, a specification

of a rotation in 30 space of a unit vector is used to arrive at the light source vector.

For example, Seltsrc (.15, 45, ./5) specifies a unit vector rotated 45 degrees in x, y, and

z, in the same manner that Sparall (.15, ./5, ./5} specifies the rotated view point.

Using this specification of the light source in conjunction with rotation of the

object is not always satisfactory. Rotation is achieved by moving the eye point

around the object [Fig. 3.14] during the viewing step. As the eye point moves around

the object from A to C, it arrives at a point where only the side hidden from the fixed

light source is visible. Since in this simple model all polygons hidden from the light

source are colored the same (black), the result is an undifferentiated dark mass [Fig.

3.15] [Appendix C, Fig. C3.2].

Unit

~ 0t
E

~E
\\::J

\
\

Fig. 3.14. Rotation
achieved by moving
eye point from A to
C. Light source
eclipsed at C.

68

0

Fig. 3.15 . The blob.

BBC 884-4297

If the relationship of the light source to the eye point is held constant as the eye

point moves around the object, the above problem should not occur (if it does, it is

likely that a faulty specification of the light source is made) . In Fig. 3.16 the light

source is specified to the left and in front of the torus. The lower left side of the

object on the screen faces the light no matter what the movement of the eye point

[Appendix C , Fig 03.3] . This mode of lighting is achieved [Fig. 3.17] by rotating the

unit vector to arrive at the light source vector 87 as before, and then performing a

second rotation (3 to arrive at sz. (3 is the same as the rotation specified to move the

eye point from the original unrotated eye point er toe; .

69

Fig 3.16 . Light
source to the left and
in front of the torus.

BBC 884-4335

Fig 3.17 . As eye
point is moved from
~ to e; by angle /3,
light source is also
moved from Si to 5'2
by angle /3 to remain
at the same angle 0'

with the eye point.

70

The angle 8 between the light source vector and the- surface normal determines

the in tensity of the reflected light. 8 is not found directly. Instead, cos(8) is found

..
using the equation [34]:

norma 2 + norm b 2 + nor me 2
· srca 2 + srcb 2 + srcc 2

cos(8) = _._ _________ __._ _______ .._

normasrca + normbsrcb + normcsrcc
(3.2)

where norma, normb, and normc are the components of the surface normal, and srca,

srcb, and srcc are the components of the light source vector.

The normal to a polygon in 30 space is perpendicular to the plane of the

polygon, and is specified by three components a, b, and c, which are coefficients of the

plane equation:

ax + by + cz + d = 0 (3.3)

The normal is calculated by an algorithm [37] that takes as input the vertices of the

polygon. The normal is calculated while the vertices are still in world coordinates,

since the various coordinate transformations distort the output of the algorithm.

The ordering of the vertices supplied to the algorithm, clockwise or counter-

clockwise, is important. The direction of the normal conforms to the right-hand rule

applied to the vertex numbering. If the polygon were in the plane of this page, the

direction of the normal would be up out of the page if the vertices are given in coun-

terclockwise order, and down into the page if in the opposite order. If the vertices for

all polygons are given in a consistent order, normals of polygons hidden from the eye

point have opposite sign from those visible. Since the intensity of the light reflected

71

from a polygon is calculated using the angle between the light source vector and the

polygon normal, inconsistent order (and thus inconsistent normals) results in a quilt

of light and dark patches.

Another problem involving the direction of the surface normal is encountered

when the front of the torus is clipped to see the advected particles. This sort of clip­

ping ex'poses usually-hidden polygons. The lighting model is incorrect for these

polygons because the exposed side of a polygon is facing in the opposite direction of

the surface normal.

In Fig. 3.18, the normals at polygons B and C face away from the light source Si

and are thus given the color black. However, since the front of the torus is clipped

away, these polygons are visible from the light source. Another problem occurs at B

when the light source is at s;. The angle between the light source and the normal is

identical at A and B, so there is no differentiation in the intensity of their colors. The

result is that the part of the torus ordinarily visible (at A) blends in imperceptibly

with the interior (at B).

~ j

~ j

j

j
j
j

j

j

j

j

j

j
j

j

j
j

j
j

~ j

j
• j

j
j

j

j
j

j

j

j

j

j

j

j

j
j

j

j

j

j
I

..

+ + S
1

eye

72

Fig. 3.18. Cross sec­
tion of cut away of
t.Qtus· Eye point is at
eye. Light source at
either Si or s;. Solid
arrows are polygon
normals. ±e refers
to angle between nor­
mal and eye point.
::i:s refers to angle
between normal and
light source.

The solution to these problems takes into account the angle between the polygon

normal and the eye point [Table 3.2]. If this angle is positive, the lighting model is

used as before. If this angle is negative, a hidden polygon has been exposed by clip-

ping. Reversing the direction of the normal of such a polygon (dotted lines at B and

C) eliminates the problems described in the above paragraph. The reversed polygon

normals at B and C now form a positive angle 8 with the light source at Si and are lit

based on cos(8). With the light source at 52, the reversed normal at B forms a nega-

tive angle with the light source and the polygon is colored black. In implementing

this change, instead of reversing the direction of the normal, cos(8) between the

73

polygon normal and the light source is negated if the polygon is hidden from the eye

point, and the same effect is achieved.

Table 3.2.--Revised lighting model.

angle between eye angle theta between shading
point and normal light source and nor-

mal

positive positive based on cos(theta)
positive negative black
negative positive black
negative negative based on -cos(theta)

It should be noted that this change does not model shadows, though a shadow

effect is produced at B when the light source is at s;. For example, the polygons to

the left of C should be in shadow if the light source is at s;, but are not [Fig. 3.19].

3.2.3. Shading techniques

Fig. 3.19. Clipped
torus with light
source at sz.

BBC 884-4337

74

When a polygon is scan converted, each pixel must be colored based on the light-

mg model. The intensity reflected is represented using the value component of the

HSV color scheme described in section 1.2.4, that is, lower in tensity is modelled by

decreasing the value component of the color of a pixel. Shading techniques involve

various geometry-dependent modifications of the intensity across a scan line of a sin-

gle polygon face . Three techniques for varying the intensity with scan conversion are

constant, Gouraud, and Phong shading [37]. As mentioned above, only the first two

are incorporated in the current implementation.

Using constant shading, the same color is given to all pixels in the polygon,

based on the polygon normal. Thus, individual polygons making up the object can be

75

seen, giving the object a faceted appearance [37] [Fig. 3.9]. In addition to the illusory

curvature reversal described in section 3.1, the faceted appearance is detrimental in

..
that it distracts attention from the particles when the torus is rotated. This distrac-

tion is caused by the many moving edges of the facets [Appendix C, Fig. C3.4].

Gouraud shading gives a smooth appearance to the object and eliminates much

of the distracting discontinuities. Instead of using the single polygon normal to calcu-

late the intensity for the whole polygon, "normals" at each vertex are found. A ver-

tex normal is approximated by averaging the normals of all the polygons incident

upon it. The intensity at the vertex is then found using the lighting model. A form

of bilinear interpolation similar to that used in advecting particles [see Equation 1.2]

. is employed to find the intensity at each pixel during the process of scan conversion.

Incremental calculations are used instead of using interpolating equations for each

pixel. For two active edges AB and CB [Fig. 3.20], the difference- in intensity between

A and B, and C and B, is used to find the increment in intensity fly along each edge

from scan line to scan line [13]. The increment in intensity 6x along each scan line is

found by taking the difference in the intensity at the current scan line between the left

edge AB and the right edge CB and dividing it by the difference in x values between
I

the two edges [37].

..

Plane of
- - -scan line

76

Fig. 3.20. Bilinear
interpolation to ar­
rive at intensity com­
ponent of pixel. Re­
printed, by permis­
sion, from Rogers
!37), 324.

Phong shading finds the vertex normals as before. However, instead of finding

the intensity at each vertex and then interpolating in intensity, this technique interpo-

lates to find the normal at each pixel, and then applies the lighting model at each

pixel. Phong shading provides a more realistic result than Gouraud, pa~ticularly a

better representation of specular highlights (for example, the bright spots on a

reflective surface such as a metal ball). However, it is also much more computation-

ally expensive. Given the goals of a unambiguous, but not necessarily most realistic,

representation of an object, and the desire for speed, this shading technique was not

implemented. Gouraud shading was judged to be sufficient for most purposes.

In both Gouraud and Phong shading, the vertex normals must be calculated. To

do this, advantage is taken of the fact that the polygon data base read to produce an

object consists of a list of all vertices with no vertices duplicated, and a polygon list,

where each polygon vertex is indicated by an index into the vertex list [7]. A prepass

is made before scan conversion in which the normal of each polygon is found. As

mentioned above, a vertex normal is found by averaging (adding) the normals of each

polygon incident upon that vertex. An array parallel to the vertex array is used to

77

hold the vertex normals to be built up. When a polygon normal is found it is added

to the vertex normals in the normal list at the same positions as the positions of each

vertex of that polygon in the vertex list. Since there is no duplication in the vertex

list, when all polygon normals have been found and added to the vertex normals, the

process of calculating all vertex normals is complete.

Once the vertex normals are found, Gouraud shading performs interpolation in

intensity as described above. A problem arises because of the limited number of

intensities of a single color provided by the particular hardware frame buffer used (5

bits for intensity of each primary color). Color aliasing gives a clearly-visible scal­

loped appearance [Fig. 3.21]. Here for once NTSC encoding provides an advantage.

Its blurring effect alleviates scalloping except when polygons with areas that are large

compared to the frame buffer are used, as in the "top" [Appendix C, Figs. C3.3,

C3.5].

0

78

Fig. 3.21. Gouraud­
shaded image of
"top" . Scalloping
due to color aliasing.

BBC 884-4299

Another problem occurs because colors are calculated in the HSV color model,

but the hardware frame buffer expects an RGB representation of color . The conver-

sion is simple [42], but an execution profile of the program performing Gouraud shad-

ing pointed out that most of the CPU time was being spent in the HSV to RGB

conversion routine . With Gouraud shading, each pixel may have a different value and

hence the conversion routine was called for each pixel, i.e. millions of times in produc-

ing a sequence of frames .

Using a table with precalculated RGB values as entries eliminates this problem .

The user specifies a HSV representation for a particular color table entry, which is

then converted to RGB. The only component of the polygon color modulated during

Gouraud shading is the value (intensity). The intensity range of the hardware frame

buffer is limited; as mentioned above, there are only 5 bits each for the red, green , and

..

"

79

blue components. When a HSV representation is entered into the color table, the

RGB representation is found for 128 intensities with that particular hue and satura-

tion. In the case of the torus, all polygons are given the same HSV values. Thus

instead of performing the HSV to RGB conversion routine millions of times, it is done

only 128 times when a color is entered into the color table. During scan conversion,

the intensity of a pixel is used to perform a simple table lookup. Using a color table

saves around 20 seconds per frame for the clipped torus.

3.2.4. Clipping

The front of the torus must be cut away to see the advected particles. Rather

than trying to clip 3D polygons, which is a. very complex process, once again an

approximation is resorted to which· is appropriate to the final display: a video movie.

A prepass part way through the viewing pipeline identifies completely clipped, not

clipped, or partially clipped polygons with respect to the clipping plane [Fig. 3.22].

A 8

Fig. 3.22. Polygons
A and B unclipped, C
and D partially
clipped, and E and F
clipped.

,.

80

This identification is made using the Cohen-Sutherland line clipping algorithm [13],

which takes advantage of the fact that the object is at this point in viewing coordi­

nates. The portion that will not be clipped has been mapped into a unit volume [see

Table 3.1]. If any of the edges of a polygon intersect the clipping plane (the front of

the unit volume), that polygon is identified as partially clipped. Fully clipped

polygons are discarded at this point.

During scan conversion, each pixel in a partially clipped polygon is tested to see

whether it lies in front of or behind the clipping plane. In the case of the parallel pro­

jection used in this implementation, the z coordinate of the front of the unit volume

(the front clipping plane) is zero. Thus this test only involves a comparison against

zero. However, this simple mechanism is inappropriate for displaying particles inside

the torus. As described in section 3.1, particles are hidden by part of the object mov­

ing behind the front clipping plane when the torus is rotated. To deal with this, clip­

ping is done against a clipping plane which is kept in a fixed relationship to the

geometry of the torus (irrespective of the rotation) from one frame to the next

("object-oriented" clipping).

The prepass identifies partially clipped polygons as before. Three points in

world coordinates on the clipping plane are used to find the equation of the plane.

After the prepass, as the torus is rotated the three points are rotated also and are

used to find the equation of the rotated clipping plane during the scan conversion pro-

cess.

Equation 1.6 finds the distance of a point from a plane. If the distance of a pixel

to the clipping plane is negative, that pixel should be clipped, since it is in front of the

81

rotated clipping plane. ~ those polygons that were identified as partially clipped are

scan converted, each pixel is tested to see if its distance from the plane is positive, and

only if so, its color placed in the frame buffer. Equation 1.6 is modified to:

clip =- (ax +by + cz +d) (3.4)

since the denominator in 1.6 is always positive and only the sign of the result matters.

This method is not as inefficient as it might seem, for unless the object is a

honeycombed structure, only a relatively few polygons are identified as partially

clipped. Its main drawback is that the object must be in the proper orientation in

world coordinates to use the viewing pipeline front clipping plane at {0, 0, 0} rotation

as the clipping mechanism. This is completely outside of the 3D viewing model, and

represents an added (ad hoc) complexity at the user interface. This drawback might

be rectified if a prepass modelling transformation [13] on the object in world coordi­

nates were .performed to rotate the object to the desired orientation for clipping.

•

4.0. Introduction

Chapter 4

Video Recording

Properly understanding the information in a sequence of flow fields requires

graphical display at speeds at which the viewer can understand the temporal evolu­

tion of the flow, i.e. at least 10 to 15 frames per second. The data must be either

displayed in real time or recorded a frame at a time on video or film for later play­

back. The workstation used is generally not powerful enough to generate images in

real time except for the display of the tracks of a few 2D particles. The approach

taken for this thesis was to use video recording almost exclusively.

Watson, et al. [47] describe a system in which not only real time display but

interactive walk-through of a flow field is possible. This use of interactivity, along

with high-quality video recording for permanent storage, is obviously a good way to

understand the results of fluid modelling. Unfortunately, the expense of this system is

beyond the reach of the funding available to many scientists. Another drawback is

that even this system cannot render complex Gouraud-shaded objects such as the

space shuttle shown in Fig. 3.5 in real time.

Recording using the video workstation offers the ability to inexpensively display

a sequence of highly complex images at real-time playback speeds. Two different

mechanisms of recording are used, videotape and videodisk. The price of the video­

disk unit is roughly twice that of the videotape recorder (VTR). The device drivers

82

83

for the two recording units are described in Johnston, et al. [20] and Johnston, et al.

[21] and were integrated into the distributed graphics package.

4.1. Advantages and Disadvantages

Video recording offers many advantages. As mentioned earlier, the time to

arrive at a finished product is much less than when usmg film. Video allows the

dynamic and inexpensive display of complex 3D smooth-shaded objects, and scenes

with tens of thousands of advected particles. It allows repeated viewings of flows that

are too complex to grasp as a whole, without tying up CPU time for each viewing. It

provides a permanent record that can be viewed anywhere a home VTR is available,

and under normal lighting conditions. With a more sophisticated VTR or videodisk,

playback is possible at slower speeds, a single frame can be. held for closer inspection,

and the movie can be reversed if desired without image degradation.

One of the main disadvantages of video is the use of NTSC encoding. To use

NTSC encoding, the resolution of the image should ideally be 525 x 486. If the resolu­

tion is higher, it must be reduced [10]. In addition, as mentioned in section 1.2.3, the

spatial resolution of colors such as blue is limited, and there is a complex interaction

between various-sized colored swatches. A higher-quality (but more expensive) means

of generating a NTSC signal would somewhat mitigate the latter two problems.

A disadvantage of recording on videotape is the slow recording process, typically

from 10 to 20 seconds per frame. When using the videodisk, however, a frame can be

recorded in 0.5 seconds. At 0.5 seconds per frame it is possible to record a minute's

worth of video in 5 minutes, at 10 frames a second. A disadvantage of videodisk is

the cost ($130) of the recording media.

•

,.

84

4.2. Previewing

Given the time necessary to record an image in the case of videotape and the

expense of the recording media in the case of videodisk, it makes sense to preview a

movie before recording it. Bugs in the images can be identified and corrected before­

hand, saving time and/or money. Previewing was especially valuable when develop­

ing new graphics software, and in integrating the compression algorithms. When the

preview option is set, the image is displayed as before but recording does not take

place. As mentioned in section 2.4, the process of placing the image a scan line at a

time into the hardware frame buffer is overlapped with advection and rendering, thus

saving several seconds for each frame previewed.

Previewing still takes too long for images such as the torus. The speed of the

CPU performing the rendering is the main bottleneck. The video workstation can be

upgraded by using a more powerful computer as the front end. If that is not available

it would be a simple matter to select and display periodic images from a movie. This

strategy is based on the assumption that many mistakes will not occur at isolated

frames but will have temporal continuity. Another option is to display only polygon

edges and not perform scan conversion [3].

Some mistakes, such as discontinuities in motion, can not be caught until the

movie is in the process of being recorded [Appendix C, Fig. C4.1]. Previewing has to

occur at close to real time to catch this type of problem. The preroll mechanism on

the VTR turns out to be useful in identifying these mistakes before an entire movie is

made and thus wasted.

85

The preroll on the VTR brings its complex inner mechanisms necessary for

single-frame recording up to speed before the actual split second of recording. This

preroll accounts for much of the time necessary to record a frame on videotape.

While the preroll is occurring, the last several seconds recorded are played back for

each frame. While recording a movie it is only necessary to check the process during

the preroll every 15 minutes or so to be sure that mistakes such as motion discon­

tinuities have not occurred.

Recording on videodisk does not require a preroll, thus contributing to its 0.5

second recording speed. However, none of the movie is seen at video speed until the

entire movie is done. For this reason a simulated preroll every 20 frames or so is

incorporated into the videodisk driver.

4.3. Videotape vs. Videodisk

Recording on videodisk is more than an order of ma.gnitude faster than recording

on videotape. In addition, videodisk is random access; any portion of it can be

accessed in 0.5 seconds [31]. Videotape is sequential; to access frame 20000 it is neces­

sary to pass through all the preceding frames.

It is a simple matter to play back a movie recorded on videodisk at any integral

multiple or fraction (i.e. 1/3, 1/4) of the normal playback speed, either forward or

backward [31]. The VTR has only a few speeds available; to play back at exactly one

half speed it is necessary to record an image on two consecutive frames. This problem

can be mitigated (obviously at additional expense) by acquiring a VTR that has more

sophisticated playback facilities but which does not have the ability to record a frame

at a time. Tapes produced with the recording unit can be dubbed (copied) onto tapes

·~

,.,

86

that can be displayed by a playback-only unit.

The videodisk unit can also be programmed to hold a frame for any length of

time. It was found to be desirable to hold the first and last image of a movie for

several seconds; to do this is trivial with the videodisk unit, but the image must be

recorded on .videotape on several seconds' worth of frames to achieve this effect.

A videotape must undergo a process called blackstriping before it can be

recorded on. To be able to record a single frame, each frame has a time code, giving

its absolute position on the tape, recorded in one of the two audio tracks. Blackstrip­

ing lays down this time code sequentially from the beginning to the end of the tape.

It does this in real time, and so takes about one half hour to an hour depending on the

tape length [46]. Videodisks are preformatted and do not require this preparation.

A drawback of videodisk is that it is Write Once Read Many times (WORM). If

500 frames are recorded and the 150th frame contains an error due to a bug in the

movie-making program, it is necessary to go through and record all 500 frames again

since a videodisk frame can not be recorded over, an unfortunate prospect since the

videodisk media is expensive. The videodisk unit could be programmed to play from

frame 1 to 149, jump to a newly recorded ungarbled frame, and then jump back to

frame 151. The problem is that with the 0.5 second access time, there would be a

noticeable glitch in the video signal at that point.

In practice, however, this problem has not been so severe. Five hundred frames

are not recorded in one session unless the movie has been well debugged and pre­

viewed. Videotape was used for almost a year before the videodisk was acquired.

Mistakes were such that it was often necessary to re-record the whole section of

87

movie. For example, if particles are being advected it is necessary to start again from

the last checkpoint (see section 1.2.3) to arrive at their state at a glitched frame.

It is not always possible to record over a frame on videotape either.

For unknown reasons, a glitch occasionally occurs m the recording process, and a

frame is skipped, causing a highly-noticeable blank spot when the tape is played back.

This blank spot can almost never be recorded over. It is hypothesized that the time

code on such a frame has been corrupted in some manner, preventing both the origi­

nal recording and subsequent attempts.

A disadvantage of videodisk is that an image is noisier than a videotape one.

This noise is more noticeable in 30, shaded images than in 20 ones [Appendix C, Fig.

C4.2]. It also contains occasional horizontal colored spots and streaks called dro­

pouts, resulting from a recording error due to a media defect. In addition, the faster

recording time is inconsequential for images that take longer to render than the video­

tape recording speed. Since recording is overlapped with computation, these images

take the same time to render and record on videodisk as on videotape. However,

what takes 20 seconds on one CPU may take 2 on another, in which case this equality

is eliminated.

Given the fast recording time and ease of use, in cases where a higher quality

image is not essential, recording on videodisk has been preferred. If material were to

be presented at a conference a workable strategy would be to fine tune the movie on

the videodisk and then record once on a rented unit.

88

4.4. Ancillary Information

A video movie presents many megabytes of data, but without ancillary informa­

tion such as frame numbers and titling its usefulness is diminished. The same data

may be recorded in several different ways. For example, one movie may show the

whole range of the data set while another may zoom in on a part of it. A frame

number identifies corresponding images in the two movies. It also indicates exactly

where a problem occurred if a movie is made without someone to continuously watch

over its production.

Titling is used in the finished form of the movie. It indicates in summary form

the modelling involved in producing the data as well as credits and funding informa­

tion. It should be as concise as possible since the point of using this media is to

display pictorial information. An accompanying paper should provide the details of

the modelling and its implications.

A video movie is as much a form of scientific data as the numbers produced by

the modelling, so it should be reproducible. Enough information should be per­

manently stored to be able to remake the movie. One form of accomplishing this is to

have every parameter that is set, such as the colors of graphics primitives, the posi­

tion of the clipping plane, the light source, etc., recorded in a log for the movie. This

process could be accomplished by having a parameter-setting routine write to a file

whenever it is called if a "log" command-line option is given. Alternatively, in more

sophisticated animation packages, a file of commands is used to drive the making of

the movie [3], in which case it is only necessary to save that file.

89

A log is only useful if a general purpose movie-making program is used, not an

ad hoc program for each movie. Otherwise the entire program must be stored to be

able to reproduce a movie. Reproducibility was a problem during the course of this
~

thesis, since the modules involved in the distributed graphics package were under con-

stant development. Some movies, while pointing out interesting errors, could not be

remade at this time without considerable effort. The moral is to use a program that

has been well-tested and is no longer in development when recording the final form of

a scientific movie.

..

Chapter 5

Conclusions

5.1. Evaluation

The major design goals guiding the writing of the software for the distributed

graphics system used for flow visualization were {1) achieving rapid image generation

from, and recording of, the data; {2) finding the minimal implementation providing an

unambiguous and illustrative graphics display; {3) gaining the ability to visualize

important features of the flow starting from the information contained in flow fields;

and (4) when finished, having a set ·of tools usable for the display of a wide variety of

scientific data. Were {and how were) these goais met?

5.1.1. Distributed Graphics Package Implementation

Rapid image generation and recording is essential for "discovery" graphics, i.e.

graphics whose purpose is insight and not that of providing a polished, finished pro­

duct. "Rapid" does not necessarily mean close to real time; recording a video movie

overnight is more than ten times faster than other techniques such as film recording

are able to achieve. In practice, the video movies referenced in this thesis took from

several minutes to around ten hours to record. Alternative algorithms were not

implemented to discern whether the algorithms that are implemented are any faster;

however, many measures were taken to improve the rate of image generation and

recording over the history of the development of the algorithms for the distributed

graphics system described herein.

90

91

The first major change made to improve the rate of recording was the porting of

the server portion of the Sun RPC library to the PC. Instead of the three-step pro­

cess of generating a metafile on the front end, transferring the metafile over the net­

work, and then reading the metafile and generating the graphics calls on the PC, a

one-step process occurs in which the data is automatically sent across the network

and displayed and recorded. Recording the full 760 frames of the backward facing

step movie using the three-step approach took about two days; using the RPC server

approach, it took about 1/7 the time: a little over an hour real time to record 100

frames.

The recording process on the VTR took about 10 seconds (the preroll was later

increased to reduce the number of glitched frames, increasing the recording time to

about 20 seconds). To allow the process of recording to be overlapped with computa­

tion on the front end, the server on the video workstation was changed to send an

acknowledgement back to the front end before commencing the recording process.

This change saved about 20 minutes real time in recording 100 frames of the back­

ward facing step movie.

The use of compression of the frame buffer saves at least 10 seconds per frame

real time (sometimes more depending on the image) because much less data is

transmitted over the local-area network. Over a wide-area network with a 2K per

second effective bandwidth, the savings are much more substantial. It would take

over 200 seconds to send the whole 400K image over a wide-area network, but a typi­

cal compressed image of from 10 to 20K would only take five to 10 seconds to

transmit. The use of compression also allows the building up of the image in the

92

hardware frame buffer to be overlapped with execution, saving several seconds per

frame in both previewing and recording (see section 2.4).

In the 2D case, creation of a software frame buffer on the front end machine,

instead of the metafile approach, saves time because many fewer graphics calls are

made to the hardware frame buffer, which is driven by a slow processor. As men­

tioned in the preceding paragraph, display generation is overlapped with graphics gen­

eration on the front end. Also, a raster image compresses much better than the

graphics primitives that it represents.

Previewing a graphics representation saves time (in the case of the VTR) and

money (in the case of the videodisk). It allows mistakes and poor choices in the design

of the graphics representation to be caught before the recording process takes place.

Another feature, the preroll, enables correction of mistakes that are only seen at video

speed, before the whole movie is made.

Recording became much easier when a video optical disk was added to the sys­

tem. Recording with the optical disk takes 0.5 instead of 20 seconds (with the VTR).

Improvements in software that had caused faster previewing time now also caused

faster recording time. For example, generating a 2D image of the backward facing

step (500 particles per injection) in the software frame buffer and compressing it on a

front-end workstation takes only a few seconds, after which the front-end has to wait

if the VTR is being used. With all the improvements mentioned above, it still takes

at least 35 minutes to record 100 frames of the backward facing step. Using the

videodisk, the video workstation is idle instead of the front end. The same 100 frames

now takes 4 1/2 minutes.

93

In addition to rapid image generation and recording, an unambiguous presenta­

tion of the data is necessary. For the display of the clipped torus, achieving this goal

requires Gouraud shading. Using constant shading has the potential of causing the

curvature reversal described in section 3.1. Furthermore, the lighting model has to be

adjusted to account for normally-hidden polygons that become visible when the front

of the torus is clipped away. Otherwise there is the possibility that a large portion of

the interior will be shaded ambiguously, i.e. be assigned all black or merge into the

exterior portion of the torus.

The minimal implementation necessary to display the data was also strived for,

for reasons of both speed of execution and programming constraints. The potentially

expensive and most difficult algorithms to implement are those necessary to display a

shaded 3D surface with its hidden portions removed. The simplest means of hidden

surface removal, the z-buffer, is used. Keeping the z-buffer and frame buffer a fixed

size, expense increases at most linearly with additional polygons. As the number of

polygons in an image increases, the area of each polygon decreases. There are thus

fewer pixels to be tested against the z-buffer for each polygon [37]. A rough com­

parison of various hidden-surface removal algorithms shows that the z-buffer is more

expensive for small numbers of polygons (100), but less expensive for large numbers

{60,000) [13].

The simplest version of the simplest lighting model, that using Lambert's law, is

used. Ambiguity is high if a fixed light source is used and the eye point is moved to

the side of the object facing away from the light (the result is a featureless mass).

Using a specification of the light source relative to the eye point eliminates much of

94

the difficulty, though that part completely in shadow is featureless. However, rota­

tion brings the parts in shadow to a point where they are not hidden from the light

source.

Constant shading is inadequate: the curvature reversal mentioned above occurs,

and the many moving facets are distracting when displayed at video speeds. Gouraud

shading does not produce as realistic a result as Phong shading. However, Phong

shading is more computationally expensive. Gouraud shading is judged to be

sufficient for the purposes of accurately illustrating the geometry of the object in most

cases.

Another simple algorithm is used to clip 3D polygons. A test is made for each

pixel during scan conversion of a polygon previously identified as partially clipped to

see whether the pixel should be clipped or not. Two versions· of the algorithm are

used. "Object-oriented" clipping requires solving the equation for the distance from a

plane for each tested pixel, while "viewing" clipping only requires a comparison

against zero. Object-oriented clipping is used to display particles inside the torus

since it allows more particles to be seen (see below and section 3.2.4).

No formal analysis is known to have been made of the clipping algorithm's

efficiency, but an argument can be made, similar to that made for use of a z-buffer,

that it is not very expensive for larger numbers of polygons. As the number of

polygons in an image increases, the area of a polygon and thus its number of pixels

decrease. With more polygons, more polygons will be partially clipped, but the

number of tested pixels will not increase much.

•

95

The mam purpose for implementing clipping was to enable the viewing of the

advected particles in the torus' interior. Thus only front clipping was implemented .

It is planned to implement viewing clipping against the sides of the view volume to

enable zooming in on a region of a surface; otherwise polygons will be written outside

the bounds of the frame buffer. Most polygons in an image do not intersect a clipping

plane (unless there are very few polygons), and of those that do, few will intersect

more than one clipping plane. Thus the expense in most cases will be an additional

field in the polygon data structure stating which edge of the clipping volume is inter­

sected by a polygon and a comparison during scan conversion of each pixel in a par­

tially clipped polygon against the relevant coordinate of that edge.

No attempt was made to use anti-aliasing. Aliasing occurs because of the lim­

ited resolution of display devices. The main manifestation of aliasing is jagged lines,

especially for nearly horizontal or nearly vertical lines or polygon edges. The scan­

line z-buffer and the clipping algorithms used do not provide for anti-aliasing. The

two main reasons for not attempting anti-aliasing are (1) the goal is not the achieve­

ment of realism; and (2) the algorithms are complex and expensive.

5.1.2. Fluid Flow VISualization

Advection was chosen as the method of flow visualization because it is simple to

implement, effective in conveying features of the flow, and well-suited for animated

display. In the 3D case, neither converting the data to scalar form (such as pressure

contours), nor displaying vectors of the flow field directly, conveys as much global

information as advection. Only a few surfaces can be used to display scalar data, and

only one surface made up of vectors in a 3D flow field can be usefully displayed at one

96

time.

Advection requires calculating the new position of each particle at each time

step. The Runge-Kutta method for solving a differential equation numerically was

chosen for finding the new position. Several other methods were tried and did not

provide sufficient accuracy. Interpolation in time of the velocity components of the

flow fields was also chosen to improve accuracy.

Two issues will have to be addressed before actual 3D flow fields can be used in

advecting particles. The first issue involves the size of 3D flow fields; a single time

step of the flow fields obtained from modelling flow inside the torus is several mega­

bytes in size. To interpolate in time, two time steps must be accessible at the same

time. A way must be found to manage the large amount of memory required in addi­

tion to the already large amount required for the frame and z-buffers, and the particle

data. This problem has not been encountered so far, because the test case of section

1.2.2 constructs a 3D flow field from a much smaller 2D flow field, letting the y com­

ponent serve for the z component as well.

Another issue that will have to be addressed is the possibility of particles

overshooting the boundary of the torus. This problem does not occur in the test case

because particles are advected using the 2D flow field for the backward facing step

(particles do not overshoot -- see section 1.2.1), and their positions mapped to torus

space. It may be necessary to use a smaller time step when using the real 3D data.

Many Issues involved with the visual aspect of advecting particles have been

addressed. Showing the track a particle makes as it is advected was found to be

counter-productive except for small numbers of particles. Instead, larger numbers of

97

particles are "injected" at various points to simulate the motion of dye tracers

dropped into a fluid. The use of NTSC encoding for particle colors has to be taken

into account, since particles produce high spatial frequencies, which the NTSC encod­

ing tends to filter out. The positions at which particles are injected, the particle size,

the number of particles injected, the frequency of injection, and the spacing of parti­

cles at injection have to be adjusted carefully to maximize the amount of information

gained, especially if a portion of the region of interest is enlarged for viewing. Zoom­

ing reduces the ambiguity in viewing complex regions of the flow, both by enabling

greater detail, and by eliminating inaccuracies in particle color due to the compression

scheme used. On the other hand, it also reduces the amount of contextual informa­

tion which is presented.

In the 3D case, the depth of a particle is impossible to see on a 2D display unless

depth cueing is used. Of the three types of depth cueing tried, rotation, intensity

variation, and size variation, rotation is the most effective. The angular change per

frame during rotation has to be chosen carefully. If it is too great, it is hard to tell

whether the motion of particles through the torus is due to the global rotation or fluid

advection. If it is too slow, the depth cueing is lost. The rate of change of rotation

must also be adjusted to avoid distracting jerkiness of movement.

Intensity cueing is the next most effective depth cueing. Two types are imple­

mented, one in which the intensity component of a particle's color is based on the z

coordinate, and one in which it is based on the particle's distance from the front of

the object. The latter is used for displaying particles inside the torus, since the shape

of the torus makes intensity cueing based on z coordinate alone redundant as the

•.

98

torus is rotated (all the particles m the forward "arm" become bright; see section

1.2.4).

Size cueing is the least effective, and has been discarded as a form of depth cue­

mg. It introduces ambiguity as to whether clumps of particles are coming together or

whether particles are moving towards the front of the object. It also effectively

decreases the resolution for the larger particle sizes.

If particles are moving in the interior of a hollow object, as in the case of fluid

flow inside the torus, the front of the object must be clipped. Clipping with respect to

the front of the view volume ("viewing" clipping) results in part of the torus obscur­

ing particles as the torus is rotated and rotates into and out of the clipping plane.

Clipping with respect to a plane fixed with respect to the object ("object-oriented"

clipping) ensures that the same part of the torus is always clipped regardless of rota­

tion. The problem is not completely solved, because the walls of the torus obscure

particles if the torus is rotated too far.

Future work addressing this problem involves implementing an algorithm to

simulate transparency. This effect may be useful in order to see particles through the

walls of the torus. Transparency may also be useful in depicting large numbers of

advected particles. Large numbers (millions) of dark transparent particles are more

informative than more moderate numbers {thousands) of brightly colored ones [45],

though the use of zooming increases the effectiveness of the latter. Two difficulties

with transparency are that intensity cueing will be more difficult to use, and the dis­

tortions caused in color by NTSC encoding might overcome the subtlety of tran­

sparency, though this remains to be seen.

"

99

The z-buffer algorithm cannot be used to achieve the simulation of transparency.

If a polygon is transparent, its color must be blended with that of the polygon(s)

behind it. The z-buffer itself does not save enough information in order to do this. It

is planned to implement an algorithm that uses "separate transparency, intensity,

and weighting factor buffers" [37], in addition to the z-buffer, to achieve transparency

effects [29].

5.2. Usability

The distributed graphics system is designed to be easy to use. A high-level inter­

face hides the details of RPC's, the socket level, and the video workstation from the

user. Calls made to control the display on the workstation are similar to the GKS 2D

standard. In the 2D case, the graphics primitives in both the software frame buffer

and the metafile approach are the same; the GKS level transparently chooses the

appropriate lower-level calls based on the approach chosen. The 3D viewing package

adapted from Wishinsky [48] uses SIGGRAPH Core-style 3D calls [13].

The details of clipping, shading, and intensity cueing are hidden from the user.

Each requires only making a call to set an attribute such as "object-oriented" or

"viewing" (clipping), constant or Gouraud (shading), or to select one of the two types

of depth cueing. In object-oriented clipping, for example, the z range of the object in

world coordinates and the equation of the rotated clipping plane must be found.

These items are taken care of automatically by the package when object-oriented clip­

ping is specified. In general, the user-level calls are kept to a minimum and kept as

simple as possible.

..

100

Color is specified in the easy-to-use HSV format. Rotation and light source

orientation are not required in the non-intuitive viewing vector format [48]. Both are

specified by a rotation in x, y, and z. If a relative light source is chosen, its new orien­

tation is calculated automatically every time the eye point changes.

The distributed graphics system is modular by design. The advection, 3D view­

ing, rendering (scan conversion, hidden surface removal, etc.), compression, and RPC

levels are, for the most part, self contained modules. (The modules are listed in Fig.

2.1 and are further described in Appendix B.) In one experiment, advection, 3D view­

ing, and rendering have been run on one machine, and the resulting information in the

software frame buffer piped to another machine to be compressed and sent to the

video workstation. Potentially all the modules mentioned above could be run as pipe­

lined processes on different machines, with only minor changes. Since the modules are

connected by a procedure call interface, this would provide a useful coarse-grained

parallelism.

More sophisticated 30 rendering algorithms could replace the current algorithms

m the rendering module as long as they write their results to the software frame

buffer in the form expected by the compression module and RPC transport interface.

Polygons and advected particles could be displayed on different devices than the video

workstation by adding new device drivers to the GKS level situated between 3D view­

ing, and rendering. The GKS calls themselves are device and approach independent.

The compression and RPC transport interface is written so that it can be used

by itself, without any of the above modules; In a separate project, a driver for the

software frame buffer was added below a PostScript interpreter, allowing PostScript

101

files to be displayed on the video workstation . The compression and RPC level only

expects a raster image in a specified form, and does not care how that image is

arrived at .

The distributed graphics system is designed to be usable for many scientific

applications, and not just fluid flow visualization. It has been used in work unrelated

to this thesis to make a movie of two groups of vortices interacting [Fig. 5.1] [Appen-

dix C, Fig. C5 .1], and to display 3D, scalar surfaces [Fig. 5.2] [Appendix C, Fig. C5.2] .

In general, it is well suited for the dynamic display of particle and 3D polygon data.

3261

Fig. 5.1. Two vor­
tices interacting.
Simulation described
in Baden [1] .

BBC 883-2581

0

102

Fig. 5.2. Kummer
surface.

BBC 883-2583

The distributed graphics system is proving a valuable aid for the interpretation

of data produced at remote supercomputer centers. Many types of scientific model-

ling generate huge amounts of floating-point data, which are incomprehensible unless

translated into visual form [24] . Sending uncompressed raster images across a wide-

area network is impractical. The distributed graphics system , in conjunction with the

video workstation , provides a way to automatically display and record images gen-

erated at remote supercomputer sites, and takes into account the low bandwidth

available for cross-country networking using a fairly sophisticated, multistage

compressiOn.

As a feasibility study, the 2D portion has been ported to a remote Cray 2 in

Minneapolis, Minnesota, where frames of the backward facing step movie have been

generated, compressed, and then sent over the ARPA Net (a wide-area network) to be

103

displayed and recorded on the video workstation. Typically a raster image can be

compressed to a much smaller size than the floating point data which was used to pro­

duce the graphics primitives that went into the raster [18]. Transporting the giga­

bytes of raw floating point data in a sequence of 3D flow fields across a network is

completely unfeasible. Sending the orders-of-magnitude smaller, compressed raster

image resulting from advection and rendering of the boundary makes possible the

achievement of an original goal of this thesis, the visualization of information in 3D

flow fields.

REFERENCES

1. Baden, Scott. Very Large Vortex Calculations in Two Dimensions. Proceedings

from the UCLA Workshop on Vortex Methods, Los Angeles, CA, 20-22 May.

Lecture Notes in Mathematics. Springer-Verlag, New York. 1988.

2. Bell, R. J. T. An Elementary Treatise on Coordinate Geometry of Three

Dimensions. 3rd ed. Macmillan & Co., Ltd., London. 1960.

3. Blinn, J. F. The Mechanical Universe: An Integrated View of a Large Scale Ani­

mation Project. Notes accompanying Course #6, presented at SIGGRAPH

1987, 27-31 July, Anaheim, CA. 1987.

4. Buning, P. G., and J. L. Steger. Graphics and· Flow Visualization in Computa­

tional Fluid Dynamics. 7th AIAA Computational Fluid Dynamics Conference

(1985), 162-167.

5. Burden, R. L., and J. D. Faires. Numerical Analysis. 3rd ed. PWS Publishers,

Boston. 1985.

6. Campbell, G., T. A. DeFanti, J. Frederiksen, S. A. Joyce, L. A. Leske, J. A.

Lindberg, and D. J. Sandin. Two Bit/Pixel Full Color Encoding. SIGGRAPH

1986 Proc. 20, 4 (Aug. 1986), 215-223.

7. Christiansen, H., and M. Stephenson. Graphics Utah Style- 80. A Workshop on

Interactive Computer Graphics with Emphasis on the MOVIE system.

Workshop presented July 28- August 1, 1980,.Salt Lake City, UT.

104

• j

• j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

c j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j
I

..

105

8. Comer, D. Operating System Design. Volume II, Internetworking with XINU.

9 .

10.

Prentice Hall, Inc., Englewood Cliffs, NJ. 1987.

Cowan, W. B., and C. Ware. Colour Perception Tutorial Notes: SIGGRAPH

'85. Notes accompanying course presented at SIGGRAPH 1985, 22-26 July, San

Francisco, CA. 1985.

DeFanti, T., and D. Sandin. The Usable Intersection of PC Graphics and NTSC

Video Recording. IEEE Computer Graphics and Applications 7, 10 (Oct. 1987),

50-58.

11 Enderle, G., K. Kansy, and G. Pfaff. Computer Graphics Programming: GKS­

The Graphics Standard. Springer-Verlag, Berlin. 1984.

12. External Data Representation Protocol Specification. Sun 3.0 Documents, Revi­

sion G of 17 February 1986. Sun Microsystems, 2550 Garcia Avenue, Mountain

View, CA 94043.

13. Foley, J. D., and A. van Dam. Fundamentals of Interactive Computer Graphics.

Addison-Wesley Publishing Company, Reading, MA. 1982.

14. Fuchs, H., Z. M. Kedem, and S. P. Uselton. Optimal Surface Reconstruction

from Planar Contours. Communications of the ACM 20, 10 (Oct. 1977), 693-

702.

15. Grotjahn, R., and R. M. Chervin. Animated Graphics in Meterological Research

and Presentations, Bull. Am. Meteorol. Society (USA) 65, 11 (Nov. 1984), 1201-

1208.

106

16. Heckbert, P. Color Image Quantization for Frame Buffer Display. SIGGRAPH

1982 Proc. 16, 3 (July 1982), 297-307.

17. Herman, G. T. and H. K. Liu. Three-Dimensional Display of Human Organs

from Computed Tomograms. Computer Graphics and Image Processing 9, 1

{Jan. 1979), 1-21.

18. Huang, J. Numeric Data Compression for Graphics. LBL-25037, University of

California, Lawrence Berkeley Laboratory, Berkeley, CA. 1988.

19. Irani, N.B. Networked Graphics Workstation for Computational Fluid Dynam­

ics. Proc. Trends and Applications 1985: Utilizing Computer Graphics {1985),

63-71.

20. Johnston, W. E., D. E. Hall, F. Renema, and D. Robertson. Low Cost Scientific

Video Movie Making. Computer Physics Communications 45 {1987), 479-484.

North Holland, Amsterdam.

21. Johnston, W. E., D. E. Hall, J. Huang, M. Rible and D. W. Robertson. Distri­

buted Scientific Video Movie Making. LBL-24996, University of California,

Lawrence Berkeley Laboratory, Berkeley, CA. 1988.

22. Kroos, K. A. Computer graphics techniques for three-dimensional flow visualiza­

tion. Frontiers in Computer Graphics: Proceedings of Computer Graphics

Tokyo '84, edited by T. L. Kunii. Springer-Verlag, New York. 1985.

23. Lynch, T. J. Data Compression: Techniques and Applications. Wadsworth,

Inc., London. 1985.

..

107

24. McCormick, B. H., T. A. DeFanti, and M. D. Brown, eds. Visualization in

Scientific Computing. Special Issue on Visualization in Scientific Computing.

Computer Graphics 21, 6 (Nov. 1987) .

25. McQueen, D. M. Telephone conversation with author, May 1987.

26. McQueen, D. M., and C. S. Peskin. Three-Dimensional Computational Method

for Blood Flow in the Heart: (II) Contractile Fibers. Submitted to Journal of

Computational Physics.

27. Microsoft C Compiler for the MS-DOS Operating System. Run-Time Library

Reference. Version 5.0. 1987. Microsoft Corporation, 16011 NE 36th Way, Box

97017, Redmond, W A.

28 Moler, C. Single-User Supercomputers or How I Got Rid of the BLAS. Proc.

Thirty-Third Computer Society International Conference (1988), 448-451.

29. Myers, A. J. An Efficient Visible Surface Program. Rep. to NSF, Div. of Math.

and Comp. Sci., Computer Graphics Res. Group, Ohio State University, July

1975. Cited in Rogers [1985J.

30. Network Software for IBM Personal Computers Running DOS. Reference

Manual. Revision A, May 1986. Excelan, Inc., 2180 Fortune Drive, San Jose,

CA.

31. Operating Instructions. Panasonic Optical Disc Recorder TQ-2026F, Optical

Disc Player TQ-2027F. Panasonic Industrial Company, Division of Matsushita

Electric Corporation of America, One Panasonic Way, Secaucus, NJ 07094.

..

108

32. Peskin, C. S. and D. M. McQueen. Three-Dimensional Computational Method

for Blood Flow in the Heart: {I) Immersed Elastic Fibers in a Viscous

Incompressible Fluid. Submitted to Journal of Computational Physics.

33. Peyret, R., and T. D. Taylor. Computational Methods for Fluid Flow.

Springer-Verlag, New York. 1983.

34. Rektorys, K., ed. Survey of Applicable Mathematics. The M.I.T. Press, Cam­

bridge, MA. 1969.

35. Remote Procedure Call Programming Guide. Sun 3.0 Documents, Revision G of

17 February 1986. Sun Microsystems, 2550 Garcia Avenue, Mountain View, CA

94043.

36. Robertson, D. W., W. E. Johnston, D. E. Hall, and M. Rosenblum. Video Movie

Making Using Remote Procedure Calls and UNIX IPC, LBL-22767, University of

California, Lawrence Berkeley Laboratory, Berkeley, CA. 1986.

37. Rogers, D. F. Procedural Elements for Computer Graphics. McGraw-Hill Book

Company, New York. 1985.

38. Rosenblum, M. The Performance of Sun's Remote Procedure Call. Term paper,

CS266, Computer Science Division, Department of Electrical Engineering and

Computer Sciences, University of California, Berkeley, Berkeley, California

94720.

39. Sechrest, S. An Introductory 4.3 BSD Interprocess Communication. Tutorial.

4.3 Berkeley Software Distribution, Virtual VAX-11 Version. University of Cali­

fornia, Berkeley, CA. April, 1986.

•·

..

109

40. Sethian, J. A. Identifying and Tracking Coherent Structures in Turbulent Flow.

To be submitted to Journal of Fluid Mechanics.

41 Sethian, J. A., and A. F. Ghoniem. A Validation Study of Vortex Methods. J.

Computational Physics 74, 2 (Feb. 1988), 283-317.

42. Smith, A. R. Color Gamut Transformation Pairs. SIGGRAPH 1978 Proc., 12

(Aug. 1978), 12-19. Cited in Rogers [1985].

43 Sporer, M., F. H. Moss, and C. J. Mathias. An Introduction to the Architecture

of the Stellar Graphics Supercomputer. Proc. Thirty-Third Computer Society

International Conference (1 988), 464-467.

44. Texier, N., W. E. Johnston and D. W. Robertson. Encoding Synthetic Animated

Pictures. LBL-24236, University of California, Lawrence Berkeley Laboratory,

Berkeley, CA. 1987.

45. Upson, C .. The Visual Simulation of Amorphous Phenomena. The Visual Com­

puter 2, 5 (Sept. 1986), 321-326.

46. Video Animation Software for the DQ-400V System. DIAQUEST Documenta­

tion DQ-400. 1985. DIAQUEST, Inc., 1442 San Pablo Avenue, Berkeley, CA

94702.

47. Watson V., P. Buning, D. Choi, G. Bancroft, F. Merritt, and S. Rogers. Use of

Computer Graphics for Visualization of Flow Fields. Paper read at the AIAA

Aerospace Engineering Conference and Show, 17-19 Feb., Los Angeles, CA.

1987.

110

48. Wishinsky, B. J. A Simplifed Interface for SIGGRAPH Core Viewing. LBL-

25038, University of California, Lawrence Berkeley Laboratory, Berkeley, CA.

1987.

,,.

Appendix A

Video Workstation Configuration

The following page is a diagram of the video workstation configuration from

Johnston, et al. [21], It includes the PC controller, the frame buffer, the monitor, and

the Ethernet board. This particular configuration is for the version using videotape,

and includes the video controller and the video tape recorder.

111

......

......
N

..

llSl v 0 cQJ (8) (Q)

Master Control

Communication
Interface

'TCPIIPvia
Elhernllll

IBM PC/AT

.iii
~s •c-
;; _g .2
Jlr
a.8i
.!i~
~:ij
~

Image Generation

1) T ranslale inpiA dala
from:

-melalile
-compressed raster
<odedscan b

lo gr aphQ primilives
1or ahe Tarua board.
2) Sequence video
recording .

: Image Modification
I
I 'lilling
I 0 annolalion I I_--------------- _I

VTA Control:
0 Manual control of
VTR lor search and
preview.

Black-stripe Utility:
.formal video lape wilh
frame codes and bladl
video

I $4800 (aruern unit, monilor, hard disk, mulidunction board, 1

: malh. co-processor, aoltware) I

---------------------------------·

Arr11 o mtat~~(Q)ffl1

Frame Buffer
(Targa-16 or

Number Nine Pro-16)

.,

PW(Q)j®(C~

NTSC

Sync
decodllf
(lrame

and
lield)

I $3600 1 '------·

W.E.Johnslon, LBL
8125188

..

..

Appendix B

Documentation of System

The following pages documenting the distributed movie-making system are

organized as follows:

Section 1: Overview

1. summary of system

2. diagram of modules

3. description of applications using system

Section 3: Program modules' descriptions

Note on this LBL report version of the thesis:

Much of the code written for this thesis was originally included as part of

Appendix B. It is now available in an expanded form as public domain software,

called Scry, and is thus not included here. The original thesis also included call

graphs resulting from profiling, which are not provided here because routine names

and calling sequences have been changed since that time .

Scry is provided as a professional academic contribution for joint exchange.

Thus it is experimental, is provided "as is", with no warranties of any kind whatso­

ever, no support, promise of updates, or printed documentation. Scry is available by

anonymous ftp (login: "anonymous", password: "guest") from csam.lbl.gov

113

·~

114

(128.3.254.6) in pub/scry.tar.Z (a compressed tar file, so don't forget to set binary

mode in ftp). Be aware that the compressed file is just under 1 megabyte. Once on

your machine, run uncompress on scry.tar.Z, and extract the files using

tar xvf scry. tar scry

MOVIE-MAKING(L) UNIX Programmer's Manual MOVIE-MAKING(L)

NAME
distributed movie-making system

DESCRIPTION
The distributed movie-making system consists of a video workstation that acts as a movie server
for a client program running on a variety of systems, including Suns, V ax en, and Crays. The
components of the video workstation are a PC compatible equipped with an Ethernet board, an
AT&T TARGA 16-bit frame buffer, and a recording device. At. the present there are two video
workstations located in Building SOB, Rooms 2265 and 2267, at the Lawrence Berkeley Labora­
tory. Workstation #2 is equipped with a videotape recorder and animation controller. Worksta­
tion #1 has a video optical disk recorder and a 68020 coprocessor to aid in decompression.

The client program converts the results of time-dependent scientific simulations into a graphics
representation such as points, lines, and polygons. These graphics primitives are either displayed
directly via remote procedure calls or rendered into a software frame buffer located in main
memory on the front-end machine. This software frame buffer is then compressed and sent using
remote procedure calls to the video workstation, where it is decompressed and displayed. The
latter approach is used almost exclusively, especially when the front-end is communicating over a
wide-area network.

The client program is logically separated into several modules which are described in section 3 of
this appendix. The organization of the modules is illustrated in Fig. B.1 (following page). When
the data to be displayed is two dimensional, there is a GKS module, a 2D scan conversion module,
and two modules at the RPC level that implement the two different means of displaying the
graphics primitives. When the data to be displayed is three dimensional, 3D viewing, GKS, and

. 3D scan conversion modules are used, as well as the RPC module implementing the software frame
buffer approach.

Three sample applications are described in dye2d(L), woggle(L),and dye3d{L). Assuming sym­
bolic links to the various libraries in the application program's directory, one links in the 2D
libraries with:

cc -o dye2d dye2d.o dye2dsupt.o gks2d.a client.a metaclient.a -lrpcsvc -lm

for example, and 3D libraries with:

cc -o woggle woggle.o bj3d.a gks3d.a scan3d.a client.a metaclient.a -lrpcsvc -F77 -177 -U77 -1m

for example.

The 3D polygon input data format is described in triang(L).

SEE ALSO
triang(L),woggle(L),dye2d(L),dye3d(L),
bj3d.a(3),gks(3),sean2d.a(3),sean3d.a(3),
client.a(3),metaelient.a(3),server(3)

BUGS
metaclient.a has to be linked in with 3D code even though it is never used by it. Such linking
makes it easier for 2D and 3D GKS libraries to share code. It would be better to have two
different versions of GKS for 2D and 3D.

May 6 1988 Lawrence Berkeley Laboratory 115

116
Fig. 8.1. Module Diagram

metafile both frame buffer

tesselation I
f 20 advection 1 \

130 advectionj

II ~ ' ~
GKS

~
30 package!

metafile V 1------RPC calls r- 20 scan - 30 scan
conversion conversion

'\. /
compression

1\ . software frame

----- buffer RPC
I Sun RPC package L.--- calls

•
client

[SunXDRj

/

network

1/

video
I SunXDR I workstation

frame buffer -. remote procedures
f Sun RPC package I .. metafile remote v decompression

procedures

~
display

display :f recording~
1--

DYE2D(L) UNIX Programmer's Manual DYE2D(L}

NAME
dye2d - view flow over a backward-facing step

SYNOPSIS
dye2d [-1 -2 -p protocol -r frame

-e compression -a x1 y1 x2 y2

-s -w approach -h]

DESCRIPTION
dye2d allows one to periodically inject dye particles at 2 arbitrary points within the flow over the
2D backward facing step. The input data is a sequence of flow fields generated by J. Sethian of
U.C. Berkeley and A. Ghoniem of M.I.T. It is an example of an application program using the 2D
portion of the movie-making system. dye2d creates the files endframe2, begin, and position in the
directory the program is running in. Do not delete these if you want to use the -s option (see
below).

OPTIONS
-1 or -2

Video workstation #1 or #2. Default is #1.

-p protocol
Selects Internet protocol to use in sending data to the video workstation. protocol is
either udp or tcp. Default is udp.

-r frame
Record starting at frame number frame. Be sure if using videodisk that it is possible to
record at that location. If videotape is used, check to see if something is already recorded
at that location. If this option is not specified, the video workstation goes into preview
mode.

-c compression
Sets compression type. compresBion can be none, bte, or color (for color map). Default
is color map.

-a x1 yl x2 y2
2 injection points. 0.0 < x < 9.9, 0.0 < y < 1.0. For best results, 0.2 < x, 0.05 < y <
0.95. Default is (0.3, 0.34), (0.9, 0.7).

-s Start with checkpoint file endframe2, which should be generated on a previous run (one
run is 100 frames or to the last frame possible). Default is to start from the beginning.
The maximum number of frames is 764 (frame number is in upper right hand corner of
display). Do not attempt to use-s for frames past this.

-w approach
approach can be meta (for metafile) or frameb (for software frame buffer). Default is
frame b.

-h Help message.

SEE ALSO
movie-making(L)

.BUGS
Doesn't die gracefully if injection point out of bounds.

May 6 1988 Lawrence Berkeley Laboratory 117

TRIANG(L) UNIX Programmer's Manual TRIANG(L)

NAME
triang - triangulates a torus data file

SYNOPSIS
triang infile outfile

DESCRIPTION
triang is an example of generating polygon data in the form required by the 3D viewing package.
The torus is generated from data provided by Charles Peskin and David McQueen of the Courant
Institute of New York University. The data is provided as a series of strands or fibers. triang
laces together the points on one strand and the next to form a series of polygons (in this case, tri­
angles). The graphics algorithms used by the 3D viewing and 3D scan conversion modules expect
surfaces to be made up of polygons. The proceS.s of generating polygons is called triangulation.

The specific polygon input format expected by the 3D viewing package is very similar to the input
format expected by the Mosaic package of movie.byu. The following file will be rendered as two
filled triangles.

46
0.80000e+02 O.OOOOOe+OO 0.13000e+03 0.69282e+02 0.40000e+02 0.14000e+03
0.40000e+02 0.69282e+02 0.13000e+03 0.00000e+00 O.OOOOOe+OO 0.14000e+03

4 1 -2 4 2 -3

The first line contains the number of vertices in the vertex list and the number of vertices in the
edge list. The vertex list is contained in the next two lines, i.e. x1, y1, z1, x2, y2, z2, etc. The
third line is the edge list, consisting of indices into the vertex list. A negative index signals the end
of a polygon. Vertices are numbered starting with 1 rather than 0. The 3D scan conversion
module connects the last vertex to the first vertex - don't do that in this file. It is important that
the vertices of all polygons be listed in a consistent counter-clockwise order. Otherwise the
polygon normals will be computed incorrectly.

OPTIONS
infile Strand data file.

outfile Mosaic-style polygon data file.

SEE ALSO
movie-making(L),dye3d(L)

May 6 1988 Lawrence Berkeley Laboratory 118

..

...

..

WOGGLE(L) UN1X Programmer's Manual WOGGLE(L)

NAME
woggle - makes movie of rotating object

SYNOPSIS
woggle [-1 -2 -p protocol -r frame

-c compression -t total -d rotation-increment

-b rotx roty rotz -g -h

-i file]

DESCRIPTION
woggle provides a smoothly changing view of an object described by a Mosaic-style polygon file,
and optionally records the sequence of frames generated on videotape or videodisk.

OPTIONS
-1 or -2

Video workstation #1 or #2. Default is #1.

-p protocol
Selects Internet protocol to use in sending data to the video workstation. protocol is
either udp or tcp. Default is udp.

-r frame
Record starting at frame number frame. Be sure if using videodisk that it is possible to
record at that location. If videotape is used, check to see if something is already recorded
at that location. If this option is not specified, the video workstation goes into preview
mode.

-c compression
Sets compression type. compression can be none, btc, or color (for color map). Default
is color map.

-t total
Total number of frames in sequence. Default is 2.

-d rotation-increment
Increment in x, y, and z rotation from frame to frame. Default is 1.

-b rotx roty rotz
Starting view of object specified by rotation in x, y, and z. Default is 0, 0, 0.

-g Use Gouraud shading. Default is constant shading.

-h Help message.

-i file Polygon input file. Default is a chambered torus.

SEE ALSO
movie-making(L), triang(L)

May 6 1988 Lawrence Berkeley Laboratory 119

..

DYE3D(L) UNIX Programmer's Manual DYE3D(L)

NAME
dye3d - view flow through a cut-away torus

SYNOPSIS
dye3d [-1 -2 -p protocol -r frame

-e compression -a xl yl zl x2 y2 z2

-s-h]
DESCRIPTION

dye3d allows one to periodically inject dye particles at 2 arbitrary points within the "flow"
within a torus. Injections stop after the 210th frame to avoid filling the torus with particles.
Input data is a sequence of 2D flow fields for a backward-facing step generated by J. Sethian of
U.C. Berkeley and A. Ghoniem of M.I.T that has been promoted to 3D by letting y velocities
stand for z velocities as well. Particles are advected in step space and then transformed into torus
space. This is not a useless exercise, since it tests the ability of the movie-making system to
display particles in such a way that it is obvious they are moving in 3D space. Global rotation
and depth intensity cueing are used to achieve the 3D effect.

dye3d creates the files endframe, begin, and position in the directory the program is running in.
Do not delete these if you want to use the -s option (see below).

The torus is generated from data provided by Charles Peskin and David McQueen of the Courant
Institute of New York University. Transformation of this data to polygonal form is accomplished
with triang.

OPTIONS
-1 or -2

Video workstation #1 or #2. Default is #1.

-p protocol
Selects Internet protocol to use in sending data to the video workstation. protocol is
either udp or tep. Default is udp.

-r frame
Record starting at frame number frame. Be sure if using videodisk that it is possible to
record at that location. If videotape is used, check to see if something is already recorded
at that location. If this option is not specified, the video workstation goes into preview
mode.

-e compression
Sets compression type. compression can be none, bte, or eolor (for color map). Default
is color map.

-a xl yl zl x2 y2 z2
2 injection points. 0.0 < x < 9.9, 0.0 < y < 1.0, 0.0 < z < 1.0. For best results, 0.2 <
x, 0.05 < y < 0.95, 0.05 < z < 0.95, y not equal to z. Default is (0.3, 0.34, 0.7), (0.9,
0.7, 0.34).

-s Start with checkpoint file endframe, which should be generated on a previous run (one run
is 100 frames or to the last frame possible). Default is to start from the beginning. The
maximum number of frames is 764 (frame number is in upper right hand corner of
display). Do not attempt to use -s for frames past this. In practice the display is too
busy after frame 300.

-h Help message.

SEE ALSO
movie-making(L), triang(L)

May 6 1988 Lawrence Berkeley Laboratory 120

DYE3D(L) UNIX Programmer's Manual DYE3D(L)

BUGS
Doesn't die gracefully if injection point out of bounds.

May 6 1988 Lawrence Berkeley Laboratory 121

BJ3D.A(3) UNIX Programmer's Manual BJ3D.A(3)

NAME
bj3d.a - 3D viewing library

DESCRIPTION
Performs 3D viewing. This process includes setting up a view from a certain angle of an object
made up of polygons, for example, as part of the projection to 2D, and also 3D clipping. Informa­
tion necessary for scan conversion of 3D polygons, such as the polygon normal and the light source
vector, is also calculated using this library. Calls GKS routines to display projected graphics
primitives (points, lines, and polygons).

A large proportion of the library was modified from an experimental 3D viewing package, for
displaying line drawings, that provides an easy means of changing the view of an object. The
experimental package was coded in FORTRAN by BJ Wishinsky. User-level routines starting
with "S" are C routines that make it easier to access the FORTRAN 3D routines from within C.
For example, these C routines make sure that each argument is passed by reference to FORTRAN.
Additions to the package were made both in C and FORTRAN. Routines written by BJ Wishin­
sky and those written or modified by David Robertson are identified in the code.

The first statement of the C application program must be Linit() and the last statement Lexit()
to allow the use of FORTRAN routines from within C. (Linit and Lexit deal with FORTRAN
1/0.)

SEE ALSO
movie-making(L), triang(L), woggle(L), gks(3)

May 6 1988 Lawrence Berkeley Laboratory 122

·•

GKS(3) UNIX Programmer's Manual GKS(3)

NAME
GKS - device-independent graphics calls

DESCRIPTION
GKS (the Graphical Kernel Standard) provides a device-independent manner of writing graphics
applications programs. It is described in GKS- the Graphics Standard, by G. Enderle, K. Kansy
and G. Praff [11].
Routines in the gks2d.a and gks3d.a libraries are best described as GKS-like, rather than as even a
minimal GKS implementation. GKS does not support 3D; 3D graphics primitives have an addi­
tional non-standard z argument for use by the z-buffer. The HSV rather than the RGB color
model is used. Calls are routed to one of two device drivers in the 2D case. Instead of controlling
two different workstations, however, the device drivers are for two different ways of generating
graphics on the same workstation, i.e. the metafile and software frame buffer approaches. Only
one approach can be "open" at a time. In the 3D case only the software frame buffer approach
can be used.

User-level routines starting with "D" are callable from C. These perform no action other than to
call the real GKS routines which start with "d" and have an underscore appended. All arguments
are passed to the "d" routines by reference. The "d" user-level routines are designed to be call­
able from FORTRAN, which unfortunately makes them more difficult to call from C, hence the
"D" routines.

Routines common to the 2D and 3D version include those controlling GKS and the workstation,
controlling the use of color, converting from world to normalized device coordinates, and setting
the workstation window and workstation viewport. Strictly 2D graphics primitives (points, lines,
and text) are callable by the user. Strictly 3D calls are not user-level. They are only made from
within the 3D viewing package (see bj3d.a). Besides the 3D graphics primitives (points, lines, and
polygons), information relating to polygon shading, clipping, and the use of depth intensity cueing
is routed to the software frame buffer device driver.

SEE ALSO

BUGS

movie-making(L), bj3d.a(3), sean2d.a(3), sean3d.a(3), elient.a(3), metaelient.a

dtxt has no corresponding "D" routine and is not callable from FORTRAN. There IS no 2D
polygon primitive. Virtually no error checking is done.

May 6 1988 Lawrence Berkeley Laboratory 123

"

SCAN2D.A(3) UNIX Programmer's Manual SCAN2D .A(3)

NAME
scan2d.a- 20 scan conversion library

DESCRIPTION
GKS routes 20 calls into routines in this library when the software frame buffer approach is
chosen. Clips points and lines to the intersection of the current Normalized Device Coordinates
viewport and the workstation window. Scan converts remaining points and lines, as well as
unclipped text, into the software frame buffer. The software frame buffer has the same dimensions
as the hardware display frame buffer. The other component library of the driver for this
approach, client.a, optionally compresses the software frame buffer, and transmits it to the video
workstation for display.

SEE ALSO
movie-making(L), gks(3), client.a(3)

May 6 1988 Lawrence Berkeley Laboratory 124

..

SCAN30.A(3) UNIX Programmer's Manual SCAN3D.A(3)

NAME
scan3d.a - 30 scan conversion library

DESCRIPTION
GKS routes 30 calls into routines in this library. Scan converts points, lines, 20 text, and
polygons into software frame buffer. Polygons are rendered depending on the lighting and shading
model, and optionally clipped during scan conversion. Hidden points, lines, and polygons are
removed using a z-buffer. The software frame buffer has the same dimensions as the hardware
display buffer. The other component library of the 30 driver, client.a, optionally compresses the
software frame buffer and transmits it to the video workstation for display.

SEE ALSO
movie-making(L), gks(3), scan2d.a(3), client.a(3)

May 6 1988 Lawrence Berkeley Laboratory 125

CLIENT.A(3) UNIX Programmer's Manual CLIENT.A(3)

NAME
client.a - library for software frame buffer compression and transmittal

DESCRIPTION
Takes software frame buffer generated by routines in sean3d.a· or sean2d.a, optionally
compresses it, and transmits to the video workstation via Sun RPC's for decompression and
display. If record mode is set, controls recording as well. Over a local-area network, Block Trun­
cation Coding combined with a color map encoding is usually used, since it is the least time con­
suming option (the other two options are no compression and BTC by itself). Over a wide-area
network a further compression step, using Lempel-Ziv encoding, is used as well. To use Lempel­
Ziv include the -DWIDEAREA option in the compile line (which #define's WIDEAREA).

This library can also be used in a stand-alone fashion. It has been used, for example, to display
Postscript files on the video workstation. If the appropriate header file is included in the user's
program and pixels written into the software frame bufferin TARGA format, this library does not
care how the image was generated.

SEE ALSO
mov;ie-making(L), woggle(L), sean2d.a(3), sean3d.a(3)

&. .

May 6 1988 Lawrence Berkeley Laboratory 126

II

METACLIENT.A(3) UNIX Programmer's Manual META CLIENT .A(3)

NAME
metaclient.a - library for metafile approach for transferring 2D graphics primitives

DESCRIPTION
GKS routes 2D calls into routines in this library when the metafile approach to displaying points,
text, and lines is chosen. Clips points and lines to the intersection of the current Normalized Dev­
ice Coordinates viewport and the workstation window. Transmits positions and colors of text,
and remaining points and lines, to the video workstation via Sun RPC's, where display via scan
conversion into the hardware frame buffer takes place. All points to be displayed are stored until
the Duwk (update workstation) call is made, when they are transmitted in blocks of 100. If record
mode is set, controls recording as well.

SEE ALSO
movie-making(L), dye2d(L), gks{3), client.a(3)

May 6 1988 Lawrence Berkeley Laboratory 127

,Ji

SERVER(3) UNIX Programmer's Manual SERVER(3)

NAME
server - remote procedure call server running on video workstation

DESCRIPTION
Serves incoming remote procedure calls (RPC's) to display and optionally record graphics sent
using either metafile or software frame buffer approach. Sun RPC package calls the remote "pro­
gram" (actually a dispatch procedure) based on information in header of RPC call. Cases in the
dispatch procedure correspond to remote procedures. The remote procedure number identifying a
particular case is also located in the RPC call header, which is internal to the Sun RPC package.
Routines starting with xdr_ decode incoming information from network byte to PC byte order.
See Robertson [34] for more information on how RPC's are implemented on the PC.

SEE ALSO
movie-making(L), elient.a(3), metaelient.a(3)

May 6 1988 Lawrence Berkeley Laboratory 128

..

Appendix C

Videotape and Color Print Availability

Color prints are necessary in the case of about half the photos, especially where

particles are color coded by injection point. The videotape is also necessary: visualiz­

ing scientific data via video movies is a main thrust of this thesis.

If this copy of the thesis has black and white photographs, copies which have

color photographs are available elsewhere. A copy of the thesis with color prints is

located in the Computer Science department office, located in Thornton Hall, Room

969, San Francisco State University. A copy of the videotape is available from the

Audio-Visual section of the San Francisco State J. Paul Leonard Library.

A copy of the thesis with color prints is also available as a Lawrence Berkeley

Laboratory technical report, LBL-2527 4, available from the Building 50 library at

Lawrence Berkeley Laboratory, 1 Cyclotron Road, Berkeley, CA 94720. The phone

number for the Building 50 library is (415) 486-5621. A copy of the videotape is avail­

able from the same location as technical report LBL-25275 (video).

Following are the captions for each video clip on the videotape.

Captions for Video Figures

Figure Cl.l. Note continuous color coding of magnitude and tracking of vor­

tices [41].

129

) .

130

Figure Cl.2. Remake of Figure Cl.1 [41]. 500 particles per injection point.

Time step= 0.125 s.

mg.

Figure Cl.3. 10000 particles per injection point.

Figure C1.4. Color inaccuracies due to NTSC encoding.

Figure Cl.5. Zoom on outlined region.

Figure Cl.6. Zoom on outlined region. Note passage of vortices.

Figure Cl.7. Too little rotation to give proper depth cueing for particles.

Figure Cl.8. Note concealment of particles by walls of torus and use of size cue-

Figure Cl.9. Final version. No size cueing.

Figure C2.1. Inaccuracies due to BTC and NTSC encoding of color.

Figure C2.2. Zoom on Figure C2.1. Note almost all inaccuracies removed.

Figure C3.1. First sequence: "viewing" clipping. Second sequence: "object­

oriented" clipping.

Figure C3.2. Fixed light source at (0,0,0) rotation.

Figure C3.3. Relative light source at (-45,0,45) rotation.

Figure C3.4. Constant shaded torus.

Figure C3.5. Color aliasing (scalloping).

Figure C4.1. Motion discontinuity at middle of sequence.

Figure C4.2. First sequence: recorded on videotape. Second sequence: recorded

on videodisk.

a

131

Figure C5.1. Two vortices interacting [1].

Figure C5.2. Level surfaces of equation for Kummer surface. Kummer surface

proper is held frame in middle of sequence.

.... I ~~,.,

LA~NCEBERKELEYLABORATORY·

TECHNICAL INFORMATION DEPARTMENT
1 CYCLOTRON ROAD

BERKELEY, CALIFORNIA 94720

\'
--·,~-• ~

