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h i g h l i g h t s

• A dispersion relation is obtained and solved for surface waves on a doubly periodic Neumann surface.
• A dispersion relation is obtained and solved for surface waves on a two-dimensional randomly rough Neumann surface.
• These results are applicable to a system of a liquid in contact with a rough hard substrate.
• These are the first studies of surface waves in such systems.
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a b s t r a c t

A planar surface on which a scalar wave satisfies the Neumann boundary conditions does
not support a surface wave. However, a structured Neumann surface can support such
a wave. By means of a Rayleigh equation for a scalar field in the region above the two-
dimensional rough surface of a semi-infinite medium on which the Neumann boundary
condition is satisfied, we derive the dispersion relation for surface waves on both doubly
periodic and randomly rough surfaces. Dispersion curves for these waves on doubly peri-
odic surfaces with three forms of the surface profile function are presented together with
dispersion curves for surface waves on a two-dimensional randomly rough surface.
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1. Introduction

In recent years interest has arisen in surface waves that propagate on impenetrable surfaces, in particular on perfectly
conducting surfaces [1–18]. These surface waves cannot exist if the perfectly conducting surface on which they propagate
is planar: the surface must be periodically [1–18] or randomly [1,15] rough. The interest in such waves on periodically
rough perfectly conducting surfaces is due to the fact that their dispersion curves mimic those of surface plasmon
polaritons on planar metallic surfaces, even though a perfect conductor has no electronic plasma that can display collective
oscillations. In fact these surface waves are bound to the surface by its departure from planarity. Moreover, by varying
the periodic structuring of a perfectly conducting surface, for example, by changing its period, or the heights and depths
of its protuberances or indentations, or by changing the forms of these features, one can design these surface waves to
possess specified properties, such as the frequency range inwhich they exist. Such ‘‘tuning’’ of the properties of these surface
waves is not possible for surface plasmon polaritons on planar metallic surfaces. The existence of these waves on structured
perfectly conducting surfaces has created the possibility of surface plasmon polaritons on periodically structured metallic
surfaces in the gigahertz and terahertz frequency ranges, in which a metal is well represented by a perfect conductor. In
these frequency ranges a surface plasmon polariton is so weakly bound to a planar metallic surface that it is in fact a surface
current, not a surface wave. The existence of surface plasmon polaritons at gigahertz and terahertz frequencies is important
in technological applications [19–22].

In this paperwe study surfacewaves on a different type of impenetrable surface, namely a surface onwhich a scalarwave
satisfies the Neumann boundary condition, i.e. a surface on which the normal derivative of the wave function of the wave
vanishes. A physical situation inwhich this kind of surfacewave can occur is a liquid on a hard substrate. It is straightforward
to show that such awave cannot exist if the surface of the substrate is planar. To see this let us denote the scalar fieldΨ (x; t)
in the region x3 ≥ 0 byΨ (x; t) = ψ(x|ω) exp(−iωt). Then the amplitude functionψ(x|ω) satisfies the Helmholtz equation

[∇
2
+ (ω/c)2]ψ(x|ω) = 0 x3 ≥ 0, (1.1)

where c is the wave speed in this region. The solution of this equation that propagates in a wavelike fashion, in directions
parallel to the plane x3 = 0, and vanishes at x3 = +∞ can be written as

ψ(x|ω) = A exp[ik∥ · x∥ − β0(k∥)x3], (1.2)
where x∥ = (x1, x2, 0), k∥ = (k1, k2, 0), and

β0(k∥) = [k2
∥
− (ω/c)2]

1
2 , Reβ0(k∥) > 0, Imβ0(k∥) < 0. (1.3)

The dispersion relation that connects the frequency of the wave ω with the two-dimensional wave vector k∥ is obtained by
using the solution (1.2) in the Neumann boundary condition on the surface x3 = 0, namely

∂

∂x3
ψ(x|ω)


x3=0

= 0. (1.4)

In this way we obtain the condition
− Aβ0(k∥) exp(ik∥ · x∥) = 0. (1.5)

In order to obtain a nontrivial solution, i.e. one for which the amplitude A is nonzero, we have to require that β0(k∥) = 0,
which yields the dispersion relation ω = ck∥. The field ψ(x|ω) in the region x3 ≥ 0 then becomes

ψ(x|ω) = A exp(ik∥ · x∥). (1.6)
This function describes a surface skimming bulk wave that is not bound to the surface (β0(k∥) ≡ 0).

Thewave described by Eq. (1.6) is ‘‘unstable’’ [23], in that even a slight change of the boundary condition on the Neumann
surface converts it into a surface wave or a surface shape resonance, both of which are bound to the surface.

In this paper we demonstrate that this is the case by studying theoretically the propagation of surface waves on a
structured two-dimensional Neumann surface that is doubly periodically rough or randomly rough. The corresponding
problem for a one-dimensional periodically or randomly corrugated Neumann surface was studied several years ago in
Refs. [24] and [25], respectively, and will not be considered here.

In thework presented herewe first derive the Rayleigh equation for the scalar field in the region above a two-dimensional
rough Neumann surface. We then consider a doubly periodic surface and use the Rayleigh equation to obtain the dispersion
relation of the surfacewaves it supports, which is then solved numerically.We also obtain the dispersion relation for surface
waves on a two-dimensional randomly rough Neumann surface on the basis of the small roughness approximation to the
Rayleigh equation. Thus, for both types of two-dimensional surface roughness we find that a Neumann surface supports
surface waves.

2. The Rayleigh equation

The physical systemwe consider in thiswork consists of an isotropic and homogeneousmedium characterized by a scalar
wave speed c in the region x3 > ζ(x∥), and an impenetrable medium in the region x3 < ζ(x∥). The vector x∥ defined by
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x = (x1, x2, 0) is an arbitrary vector in the plane x3 = 0. The surface profile function ζ (x∥) is assumed to be a single-valued
function of x∥, that is differentiable with respect to x1 and x2.

We seek a solution of the scalar wave equation

(∇2
+ (ω/c)2)ψ(x∥|ω) = 0 (2.1)

in the region x3 > ζ(x∥), where ω is the frequency of the wave in this medium. A time dependence of the form exp(−iωt)
has been assumed for this field, but has not been indicated explicitly. We require that the solution of Eq. (2.1) satisfy the
Neumann boundary condition

−
∂ζ (x∥)

∂x1

∂

∂x1
−
∂ζ (x∥)

∂x2

∂

∂x2
+

∂

∂x3


ψ(x|ω)


x3=ζ (x∥)

= 0 (2.2)

on the surface x3 = ζ (x∥). Finally, we require that ψ(x|ω) vanish as x3 → +∞.
The solution of Eq. (2.1) that satisfies the boundary condition at infinity can be written in the form

ψ(x|ω) =


d2q∥

(2π)2
A(q∥) exp[iq∥ · x∥ + iα0(q∥)x3], (2.3)

where

α0(q∥) = [(ω/c)2 − q2
∥
]
1
2 Reα0(q∥) > 0, Imα0(q∥) > 0. (2.4)

When Eq. (2.3) is substituted into Eq. (2.2), we obtain as the equation for the amplitude A(q∥)
d2q∥

(2lπ)2
A(q∥)


−
∂ζ (x∥)

∂x1
iq1 −

∂ζ (x∥)

∂x2
iq2 + iα0(q∥)


exp[iq∥ · x∥ + iα0(q∥)ζ (x∥)] = 0. (2.5)

We now introduce the representation

exp[iγ ζ (x∥)] =


d2Q∥

(2π)2
I(γ |Q∥) exp(iQ∥ · x∥), (2.6)

so that

I(γ |Q∥) =


d2x∥ exp[−iQ∥ · x∥ + iγ ζ (x∥)]. (2.7)

By taking the derivative of both sides of Eq. (2.6) with respect to xα (α = 1, 2), we obtain

∂ζ (x∥)

∂xα
exp[iγ ζ (x∥)] =


d2Q∥

(2π)2
Qα
γ

I(γ |Q∥) exp[iQ∥ · x∥]. (2.8)

On substituting Eqs. (2.6) and (2.8) with γ = α0(q∥) into Eq. (2.5) the latter becomes
d2q∥

(2π)2


d2Q∥

(2π)2
A(q∥)

I(α0(q∥)|Q∥)

α0(q∥)
[−q1Q1 − q2Q2 + α2

0(q∥)] exp i(q∥ + Q∥) · x∥ = 0. (2.9)

The change of variable q∥ + Q∥ = k∥ transforms Eq. (2.9) into
d2k∥

(2π)2
exp(ik∥ · x∥)


d2q∥

(2π)2
I(α0(q∥)|k∥ − q∥)

α0(q∥)
[(ω/c)2 − k∥ · q∥]A(q∥) = 0. (2.10)

On equating to zero the k∥ Fourier coefficient in this equation we obtain as the equation satisfied by the amplitude A(q∥)
d2q∥

(2π)2
I(α0(q∥)|k∥ − q∥)

α0(q∥)
[(ω/c)2 − k∥ · q∥]A(q∥) = 0. (2.11)

The solvability condition for this homogeneous linear integral equation is the dispersion relation that gives the frequencies
ω for each value of the wave vector k∥. We see from Eq. (2.3) that only solutions of the dispersion relation for which the
imaginary part of α0(q∥) is positive correspond to waves localized to the surface x3 = ζ (x∥).

We now apply Eq. (2.11) to a study of surface waves on two-dimensional periodically and randomly rough surfaces.

3. A bigrating

We assume here that the surface profile function ζ (x∥) is a doubly periodic function of ζ (x∥),

ζ (x∥ + x∥(ℓ)) = ζ (x∥), (3.1)
where

x∥(ℓ) = ℓ1a1 + ℓ2a2. (3.2)
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In Eq. (3.2) a1 and a2 are the two noncollinear primitive translation vectors of a two-dimensional Bravais lattice, while ℓ1
and ℓ2 are any positive or negative integers, or zero, which we denote collectively by ℓ. The area of the primitive unit cell of
the two-dimensional lattice defined by Eq. (3.2) is ac = |a1 × a2|.

We also introduce the lattice reciprocal to the one defined by Eq. (3.2), whose sites are given by
G∥(h) = h1b1 + h2b2, (3.3)

where the primitive translation vectors b1 and b2 are defined by the conditions
ai · bj = 2πδij, (3.4)

and h1 and h2 are any positive or negative integers or zero that we denote collectively by h.
For a surface possessing the periodicity property described by Eq. (3.1) the function I(γ |Q∥) becomes

I(γ |Q∥) =


G∥

(2π)2δ(Q∥ − G∥)Î(γ |G∥), (3.5)

where

Î(γ |G∥) =
1
ac


ac
d2x∥ exp(−iG∥ · x∥) exp(iγ ζ (x∥)). (3.6)

In obtaining this expression we have used the result
ℓ

exp[−iQ∥ · x∥(ℓ)] =
(2π)2

ac


G∥

δ(Q∥ − G∥). (3.7)

In order that the field in the region x3 > ζ(x∥) satisfy the Floquet–Bloch condition

ψ(x∥ + x∥(ℓ), x3|ω) = exp(ik∥ · x∥(ℓ))ψ(x∥, x3|ω), (3.8)
we write the amplitude A(q∥) in the form

A(q∥) =


G∥

(2π)2δ(q∥ − k∥ − G∥)ak∥
(G∥), (3.9)

where k∥ is the two-dimensional wave vector of the surface wave.
When the results given by Eqs. (3.5) and (3.9) are substituted into Eq. (2.11) we obtain as the equation for the coefficients

{ak∥
(G∥)}

G′
∥

Î(α0(|k∥ + G′

∥
|)|G∥ − G′

∥
)
[(ω/c)2 − (k∥ + G∥) · (k∥ + G′

∥
)]

α0(|k∥ + G′

∥
|)

ak∥
(G′

∥
) = 0. (3.10)

The dispersion relation for surface waves on a bigrating on which the Neumann boundary condition is imposed is then
obtained by equating to zero the determinant of the matrix of coefficients in Eq. (3.10).

The solutions of this equation are even functions of k∥, ωs(−k∥) = ωs(k∥), where s labels the solutions for a given value
of k∥ in the order of increasingmagnitude. They are also periodic functions of k∥ with the periodicity of the reciprocal lattice,
ωs(k∥ + G∥) = ωs(k∥). The solutions can therefore be sought for values of k∥ inside the first Brillouin zone of the bigrating,
and inside the nonradiative region of ω and k∥ values, defined by |k∥| > (ω/c).

In the present work we have calculated the solutions of the dispersion relation obtained from Eq. (3.10) for three forms
of the surface profile function ζ (x∥). We consider them in turn.

3.1. A square lattice of hemiellipsoids

In our first example the surface profile function is represented by a square array of hemiellipsoids on an otherwise planar
Neumann surface. The primitive translation vectors of the square lattice are

a1 = a(1, 0), a2 = a(0, 1). (3.11)
The primitive translation vectors of the corresponding reciprocal lattice are

b1 =
2π
a
(1, 0), b2 =

2π
a
(0, 1). (3.12)

The surface profile function describing a square lattice of hemiellipsoids or radius R (<a) and height HR can bewritten as

ζ (x∥) =


ℓ

s(x∥ − x∥(ℓ)), (3.13)

where

s(x∥) =


H(R2

− x2
∥
)
1
2 |x∥| < R

0 |x∥| > R.
(3.14)
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Because each hemiellipsoid has circular symmetry the dispersion relation satisfies the relation

ωs(Sk∥) = ωs(k∥), (3.15)

where S is a 2 × 2 real orthogonal matrix representative of any of the point group operations that leave the square lattice
invariant. In the present case they constitute the point group C4v . The property expressed by Eq. (3.15) has the consequence
that all of the independent solutions of the dispersion relation are obtained if thewave vectork∥ is restricted to the irreducible
element of the two-dimensional first Brillouin zone. This is the region of the Brillouin zone that generates the entire zone
when transformed by the application of the operations of the point group C4v to it.

The function Î(γ |G∥) for the surface profile function defined by Eq. (3.13)–(3.14) is given by [26]

Î(γ |G∥) = 1 +
2πR2

a2

∞
n=1

(iγHR)n

(n + 2)n!
G∥ = 0 (3.16a)

=
2πR2

a2

∞
n=1

(iγHR)n

n!
2

n
2Γ ( n2 + 1)

(G∥R)
n
2 +1

J n
2 +1(G∥R) G∥ ≠ 0, (3.16b)

where Jν(x) is a Bessel function of the first kind of order ν, and Γ (x) is the gamma function. For the values of the parameters
used in the numerical calculations based on the results obtained in this section it was necessary to include only the first few
(≈15) terms in these rapidly convergent series.

To solve the dispersion relation obtained from Eq. (3.10) the infinite sum over G′

∥
has to be truncated. This was done by

restricting the reciprocal-lattice vectors G∥(h) = h1b1 +h2b2 and G′

∥
(h) = h′

1b1 +h′

2b2 to those that satisfied the conditions

(h2
1 +h2

2)
1
2 ≤ Nmax and (h′2

1 +h′2
2 )

1
2 ≤ Nmax. The convergence of a solution was tested by increasing Nmax systematically until

it stopped changing.
The determination of the dispersion curves was based on the search for real zeros of a real-valued determinant. For a

value of k∥ inside or on the boundary of the irreducible element of the first Brillouin zone the frequency ω was increased
systematically in the interval 0 ≤ ω ≤ ck∥ and changes in the sign of the determinant were sought. The frequencies at
which this occurred were labeled in the order of increasing magnitude. This collection constitutes the different branches of
the dispersion curve.

In Fig. 1(a)we present dispersion curves forwave vectorsk∥ on the boundary of the irreducible element of the first surface
Brillouin zone. This element is displayed in the inset to this figure. Note that these curves are plotted as functions of k∥ = |k∥|.
Thisway of plotting the dispersion curves gives rise to the discontinuity of their slope in the vicinity of the X̄ point. The values
of the parameters assumed in obtaining this figure were R/a = 0.375 and (a)H = 0.5,H = 1; (b)H = −0.5,H = −1. In all
of these calculations Nmax = 10. The surface thus consists of a square lattice of hemiellipsoidal protuberances (Fig. 1(a)) or
of hemiellipsoidal indentations (‘‘dimples’’) (Fig. 1(b)). For the values of the parameters defining the surface each dispersion
curve consists of only a single branchwithin the nonradiative region ofω and k∥ values. All frequencies above themaximum
frequency of the branch constitute a stop band. Each dispersion curve displays the phenomenon of wave slowing as k∥

approaches the boundaries of the Brillouin zone, i.e. the phase and group velocities of the surface wave decrease. Each curve
possesses a zero slope at the high symmetry points on the zone boundary. From a comparison of Figs. 1(a) and (b) it is seen
that increasing |H| depresses the dispersion curves for lattices of protuberances and indentations, but more strongly for the
latter type of surface than for the former.

It is an open question as to whether increasing themagnitude ofH further will lead to a second, higher frequency, branch
of the dispersion curve entering the nonradiative region. Numerical instabilities in the present calculations for values of |H|

larger than unity have prevented us from answering this question.

3.2. An orthogonal superposition of two sinusoidal gratings

The second form of the surface profile function we consider is given by

ζ (x∥) = ζ0


cos

2πx1
a

+ cos
2πx2
a


. (3.17)

For this profile function it suffices to calculate dispersion curves only for negative values of ζ0, because a change of the
sign of ζ0 corresponds to a shift of the origin of coordinates by (a/2, a/2), which does not change the dispersion curve. The
primitive translation vectors of the square lattice defined by this surface profile function and of the lattice reciprocal to it,
are given by Eqs. (3.11) and (3.12), respectively, and the symmetry point group of this surface is C4v .

The function I(γ |G∥) for this choice of surface profile function can be written

I(γ |G∥) = im+nJm(γ ζ0)Jn(γ ζ0), (3.18)

where Jm(x) is a Bessel function of the first kind of orderm. The integersm, n = 0,±1,±2, . . . are defined by

G∥ =
2π
a
(m, n, 0). (3.19)
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a

b

Fig. 1. Dispersion curves for surface waves on a square lattice of hemiellipsoids on an otherwise planar Neumann surface. The single branch of the
dispersion curve in the nonradiative region of ω and k∥ values is plotted as a function of k∥ along the boundary of the irreducible element of the first
surface Brillouin zone. The dotted line represents the dispersion curve ω = ck∥ . The values of the parameters assumed in obtaining these results are:
(a) R/a = 0.375, and H = 0.5 (− − −−), H = 1 (− · − · −); (b) H = −0.5 (− − −−),H = −1 (− · − · −). Nmax = 10 in all of these calculations. The
insets from left to right depict the irreducible element of the first surface Brillouin zone, an enlargement of the band structure in the vicinity of the X̄ point,
and an enlargement of the band structure in the vicinity of the M̄ point.

Fig. 2. Dispersion curves for surface waves on a Neumann surface defined by the surface profile function given by Eq. (3.17). The values of the parameters
assumed in obtaining these results are ζ0/a = −0.1(· · · · · ·), ζ0/a = −0.2(− · −·),Nmax = 12.

The dispersion relation for this surface, obtained from Eq. (3.10) is solved just as in the case of the surface defined by
Eqs. (3.13)–(3.14).

We plot the dispersion curve obtained in this way in Fig. 2 for the values of the parameters defining the surface profile
function given by ζ0/a = −0.1, ζ0/a = −0.2, and Nmax = 12. It consists of a single branch in the nonradiative region of ω
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Fig. 3. Dispersion curves for surface waves on a Neumann surface defined by the surface profile function given by Eq. (3.20). The values of the parameters
assumed in obtaining these results are H/a = 0.2, Nmax = 12 (· · · · · ·); H/a = 0.4,Nmax = 4 (− · − · −)..

and k∥ values. It displays wave slowing. Increasing |ζ0/a| depresses the dispersion curve in frequency, causing it to depart
from the dispersion curve ω = ck∥ into the nonradiative region at smaller values of k∥.

3.3. An orthogonal superposition of two symmetric sawtooth gratings

In our third example the doubly periodic surface is an orthogonal superposition of two identical symmetric sawtooth
gratings. The surface profile function ζ (x∥) has the form given by Eq. (3.13), where the function s(x∥) is now defined by

s(x∥) = H

1 −

2|x1|
a


+ H


1 −

2|x2|
a


; −

a
2
< x1 <

a
2
,−

a
2
< x2 <

a
2
. (3.20)

For this surface profile function it is sufficient to calculate dispersion curves only for positive values of H , because a change
of the sign of H corresponds to a shift of the origin of coordinates by (a/2, a/2), followed by a vertical displacement of the
surface by 2H , which does not change the dispersion curve. The primitive translation vectors of the square lattice defined
by this surface profile function, and of the lattice reciprocal to it, are given by Eqs. (3.11) and (3.12), respectively, and the
symmetry point group of this surface is C4v .

The function Î(γ |G∥) for this surface profile function is

Î(γ |G∥) = 4 exp(iγH)
(γH)2

[(γH)2 − (mπ)2][(γH)2 − (nπ)2]
j(m)j(n), (3.21)

where

j(m) =


sin

1
2
γH m even (a)

−i cos
1
2
γH m odd. (b)

(3.22)

The integersm, n = 0,±1,±2, . . . are defined by Eq. (3.19).
The dispersion curve obtained from the solvability condition for Eq. (3.10) is plotted in Fig. 3 for the values of the

parameters defining the surface profile function given by H/a = 0.2, Nmax = 12 and H/a = 0.4, Nmax = 4. It consists of a
single branch in the nonradiative region of ω and k∥ values for both values of H/a, and displays wave slowing. Increasing H
depresses the dispersion curve toward lower frequencies.

We believe that the small value of Nmax = 4 used in obtaining the dispersion curve when H/a = 4 is due to the
nonanalytic nature of the surface profile function (3.20). It is known that the Rayleigh hypothesis is invalid for a one-
dimensional periodic surface defined by a nonanalytic profile function [27]. It is assumed, without proof, that the same
result holds for a doubly periodic surface defined by a nonanalytic surface profile function.When a one- or two-dimensional
nonanalytic periodic surface profile function is expanded in a finite number of plane waves, it is an analytic function of the
coordinates, for which the Rayleigh hypothesis is valid when its amplitude to period ratio is sufficiently small. However, as
more andmore plane waves are included in the expansion of the surface profile function, i.e. when Nmax is increased, a point
is reachedwhere the nonanalytic nature of the surface profile function begins tomanifest itself, and the Rayleigh hypothesis
breaks down. A further increase in Nmax simply worsens the result. Thus the convergence of the expansion of the scalar field
in planewaves has an asymptotic character. In the calculations based on the profile function (3.20) the optimal value ofNmax
is 4 for the rough surface with H/a = 0.4, while it is Nmax = 12 for the smoother surface with H/a = 0.2.

Similar considerations apply to the results presented in Fig. 1 for another surface defined by a nonanalytic profile function.
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4. A randomly rough surface

We now assume that the surface profile function ζ (x∥), in addition to being a single-valued function of x∥ and
differentiable with respect to x1 and x2, constitutes a stationary, zero-mean, isotropic, Gaussian random process defined by

⟨ζ (x∥)ζ (x′

∥
)⟩ = δ2W (|x∥ − x′

∥
|). (4.1)

In this equation the angle brackets denote an average over the ensemble of realizations of the surface profile function, while
δ = ⟨ζ 2(x∥)⟩

1
2 is the rms height of the surface.

In what follows we will need the Fourier integral representation of ζ (x∥),

ζ (x∥) =


d2Q∥

(2π)2
ζ̂ (Q∥) exp(iQ∥ · x∥). (4.2)

The Fourier coefficient ζ̂ (Q∥) is also a zero-mean Gaussian random process that is defined by

⟨ζ̂ (Q∥)ζ̂ (Q′

∥
)⟩ = (2π)2δ(Q∥ + Q′

∥
)δ2g(|Q∥|). (4.3)

The function g(|Q∥|) entering this equation is the power spectrum of the surface roughness, and is defined by

g(|Q∥|) =


d2x∥W (|x∥|) exp(−iQ∥ · x∥). (4.4)

To obtain the dispersion relation for surface waves on a randomly rough Neumann surface we will use the small
roughness approximation. This consists of expanding the function I(α0(q∥)|k∥ − q∥) in Eq. (2.11) in powers of the surface
profile function and retaining only the first two terms:

I(α0(q∥)|k∥ − q∥) = (2π)2δ(k∥ − q∥)+ iα0(q∥)ζ̂ (k∥ − q∥)+ O(ζ 2). (4.5)

Eq. (2.11) can then be rewritten in the form

α0(k∥)A(k∥) =


d2q∥

(2π)2
V (k∥|q∥)A(q∥), (4.6)

where

V (k∥|q∥) = −i[(ω/c)2 − k∥ · q∥]ζ̂ (k∥ − q∥). (4.7)

The surface profile function entering Eq. (4.7) is a randomprocess. Consequently the solutionA(k∥) of Eq. (4.6) is a random
process. Just as ζ (x∥) is defined by the moments of its probability density function, so can A(k∥) be defined by the moments
of its probability density function. Of these a particularly important one is the first moment ⟨A(k∥)⟩, which describes the
propagation of the mean wave across the randomly rough surface.

To obtain the equation satisfied by ⟨A(k∥)⟩we introduce the smoothing operator P that averages every function to which
it is applied over the ensemble of realizations of the surface profile function [28]. We also introduce the complementary
operator Q = 1 − P , that produces the fluctuating part of every function on which it acts. On applying these operators to
Eq. (4.6) we obtain the pair of equations

α0(k∥)PA(k∥) =


d2q∥

(2π)2
PV (k∥|q∥)[PA(q∥)+ QA(q∥)] (4.8)

α0(q∥)QA(q∥) =


d2r∥
(2π)2

QV (q∥|r∥)[PA(r∥)+ QA(r∥)]. (4.9)

When we use the results that PV (k∥|q∥) = 0, because ζ (x∥) is a zero-mean random process, and that QA(r∥) is of order
ζ (x∥), Eqs. (4.8)–(4.9) simplify to

α0(k∥)PA(k∥) =


d2q∥

(2π)2
PV (k∥|q∥)QA(q∥) (4.10)

α0(q∥)QA(q∥) =


d2r∥
(2π)2

V (q∥|r∥)PA(r∥). (4.11)

On combining Eqs. (4.10) and (4.11) we obtain as the equation satisfied by the mean amplitude ⟨A(k∥)⟩

α0(k∥)⟨A(k∥)⟩ =


d2q∥

(2π)2


d2r∥
(2π)2

⟨V (k∥|q∥)V (q∥|r∥)⟩
α0(q∥)

⟨A(r∥)⟩. (4.12)
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The result that

⟨V (k∥|q∥)V (q∥|r∥)⟩ = −(2π)2δ(k∥ − r∥)δ2g(|k∥ − q∥|)[(ω/c)2 − k∥ · q∥]
2, (4.13)

which follows from Eqs. (4.3) and (4.7), reduces Eq. (4.12) to

α0(k∥)⟨A(k∥)⟩ = −δ2


d2q∥

(2π)2
g(|k∥ − q∥|)

[(ω/c)2 − k∥ · q∥]
2

α0(q∥)
⟨A(k∥)⟩. (4.14)

The dispersion relation for surface waves on a randomly rough two-dimensional Neumann surface is therefore

α0(k∥) = −δ2


d2q∥

(2π)2
g(|k∥ − q∥|)

[(ω/c)2 − k∥ · q∥]
2

α0(q∥)
. (4.15)

The power spectrum g(|k∥ − q∥|) can be written in the form

g(|k∥ − q∥|) =

∞
m=−∞

gm(k∥|q∥) exp[−im(φk − φq)], (4.16)

where

gm(k∥|q∥) = 2π


∞

0
dx∥x∥W (|x∥|)Jm(k∥x∥)Jm(q∥x∥)

= g−m(k∥|q∥), (4.17)

Jm(x) is a Bessel function of the first kind of order m, and φk and φq are the azimuthal angles of the vectors k∥ and q∥,
respectively. When Eq. (4.16) is substituted into Eq. (4.15) and the angular integration is carried out, the latter equation
becomes

α0(k∥) = −
δ2

2π


∞

0
dq∥

q∥

α0(q∥)
[Ag0(k∥|q∥)+ Bg1(k∥|q∥)+ Cg2(k∥|q∥)], (4.18)

where

A =

ω
c

4
+

1
2
k2
∥
q2
∥

(4.19a)

B = −2
ω
c

3
k∥q∥ (4.19b)

C =
1
2
k2
∥
q2
∥
. (4.19c)

If we now take Eq. (2.4) into account, we can rewrite Eq. (4.18) as

α0(k∥) = −
δ2

2π

 ω/c

0
dq∥

q∥

[(ω/c)2 − q2
∥
]
1
2
[Ag0(k∥|q∥)+ Bg1(k∥|q∥)+ Cg2(k∥|q∥)]

+ i
δ2

2π


∞

ω/c
dq∥

q∥

[q2
∥
− (ω/c)2]

1
2
[Ag0(k∥|q∥)+ Bg1(k∥|q∥)+ Cg2(k∥|q∥)]. (4.20)

We now make the Ansatz

ω2

c2
= k2

∥
− δ4∆2(k∥). (4.21)

It then follows from Eq. (2.4) that

α0(k∥) = iδ2∆(k∥, ω), (4.22)

where

∆(k∥, ω) =
1
2π


∞

ω/c
dq∥

q∥

[q2
∥
− (ω/c)2]

1
2
[Ag0(k∥|q∥)+ Bg0(k∥|q∥)+ Cg2(k∥|q∥)]

+
i

2π

 ω/c

0
dq∥

q∥

[(ω/c)2 − q2
∥
]
1
2
[Ag0(k∥|q∥)+ Bg1(k∥|q∥)+ Cg2(k∥|q∥)]. (4.23)
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Since according to Eq. (4.21) the deviation of (ω/c) from k∥ is of O(δ4)we can replace (ω/c) in the integrals in Eq. (4.23) by
k∥ in obtaining∆(k∥, ω) to the lowest order in δ. The result is

∆(k∥, ω) ∼= ∆(k∥, ck∥) = ∆1(k∥)+ i∆2(k∥), (4.24)

where

∆1(k∥) =
1
2π


∞

k∥
dq∥

q∥

(q2
∥
− k2

∥
)
1
2


1
2
k2
∥
q2
∥
+ k4

∥


g0(k∥|q∥)− 2k3

∥
q∥g1(k∥|q∥)+

1
2
k2
∥
q2
∥
g2(k∥|q∥)


(4.25a)

∆2(k∥) =
1
2π

 k∥

0
dq∥

q∥

(k2
∥
− q2

∥
)
1
2


1
2
k2
∥
q2
∥
+ k4

∥


g0(k∥|q∥)− 2k3

∥
q∥g1(k∥|q∥)+

1
2
k2
∥
q2
∥
g2(k∥|q∥)


. (4.25b)

From Eqs. (4.22) and (4.24) we obtain

α0(k∥) = δ2[−∆2(k∥)+ i∆1(k∥)]. (4.26)

Since from Eq. (2.3) we see that the imaginary part of α0(q∥) must be positive for the wave to be bound to the surface, it
follows from Eq. (4.26) that∆1(k∥)must be positive.

In obtaining numerical results for ∆1(k∥) and ∆2(k∥) we assume that the normalized surface height autocorrelation
functionW (|x∥|) has the Gaussian form

W (|x∥|) = exp(−x2
∥
/a2). (4.27)

The coefficient function gm(k∥|q∥), Eq. (4.17), in this case is given by

gm(k∥|q∥) = πa2 exp[−(k2
∥
+ q2

∥
)a2/4]Im(k∥q∥a2/2), (4.28)

where Im(x) is a modified Bessel function of the first kind of order m. The expressions (4.25a) and (4.25b) for ∆1(k∥) and
∆2(k∥) become

∆1(k∥) =
a2

2
exp(−a2k2

∥
/4)


∞

k∥
dq∥

q∥ exp(−a2q2
∥
/4)

(q2
∥
− k2

∥
)
1
2


1
2
k2
∥
q2
∥
+ k4

∥


× I0


1
2
a2k∥q∥


− 2k3

∥
q∥I1


1
2
a2k∥q∥


+

1
2
k2
∥
q2
∥
I2


1
2
a2k∥q∥


(4.29a)

∆2(k∥) =
a2

2
exp(−a2k2

∥
/4)

 k∥

0
dq∥

q∥ exp(−a2q2
∥
/4)

(k2
∥
− q2

∥
)
1
2


1
2
k2
∥
q2
∥
+ k4

∥


× I0


1
2
a2k∥q∥


− 2k3

∥
q∥I1


1
2
a2k∥q∥


+

1
2
k2
∥
q2
∥
I2


1
2
a2k∥q∥


. (4.29b)

If we introduce the definition x = k∥a, and make the changes of variables q∥ = (x/a) cosh θ in Eq. (4.29a) and q∥ =

(x/a) sin θ in Eq. (4.29b), we find that

∆1,2(k∥) =
x5

2a3
d1,2(x), (4.30)

where

d1(x) = exp(−x2/4)


∞

0
dθ cosh θ exp[−(x2/4) cosh2 θ ]

×


1
2
cosh2 θ + 1


I0


x2

2
cosh θ


− 2 cosh θ I1


x
2

2
cosh θ


+

1
2
cosh2 θ I2


x2

2
cosh θ


(4.31a)

d2(x) = exp(−x2/4)
 π

2

0
dθ sin θ exp[−(x2/4) sin2 θ ]

×


1
2
sin2 θ + 1


I0


x2

2
sin θ


− 2 sin θ I1


x2

2
sin θ


+

1
2
sin2 θ I2


x2

2
sin θ


. (4.31b)

In the long wavelength limit x → 0 the universal functions d1(x) and d2(x) take the forms [4]

d1(x) =

√
π

2


2
x3

−
3
2x

+ O(x)


(4.32a)

d2(x) =
4
3

−
9
10

x2 + O(x4). (4.32b)
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Fig. 4. (a) The function d1(x) defined by Eq. (4.31a) of the text (−−); (b) the function d2(x) defined by Eq. (4.31b) of the text (- - - -).
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Fig. 5. (a) The function ω1(x) defined by Eq. (4.34a) of the text (−−); (b) the function ω2(x) defined by Eq. (4.34b) of the text (− − −).

If we combine the results given by Eqs. (4.21), (4.24), and (4.30), we find that the dispersion relation for surface waves
on a two-dimensional, randomly rough, Neumann surface can be written in the form

ω(k∥) = ck∥


1 −


δ

a

4

ω1(x)− i

δ

a

4

ω2(x)


, (4.33)

where

ω1(x) =
x8

8
[d21(x)− d22(x)] =

π

8


x2 −

3
2
x4 + O(x6)


x → 0 (4.34a)

ω2(x) =
x8

4
d1(x)d2(x) =

√
π

3
x5


1 −

57
40

x2 + O(x4)


x → 0. (4.34b)

Thus, in the long wavelength limit the surface wave dispersion relation is

ω(k∥) = ck∥


1 −

π

8


δ

a

4

x2


− ick∥

√
π

3


δ

a

4

x5 x → 0. (4.35)

The function α0(k∥) obtained from Eqs. (4.26), (4.30), and (4.32) is given by

α0(k∥) =
δ2

2a3
x5[−d2(x)+ id1(x)] =

δ2

2a3


−

4
3
x5 + i

√
πx2


x → 0. (4.36)

In Fig. 4 we have plotted d1(x) and d2(x) as functions of x, while the functions ω1(x) and ω2(x) are plotted in Fig. 5.
The functions d1(x) and d2(x) are seen to be positive for all values of x. One of the consequences of these results is that

the inverse decay length of the wave into the vacuum, Imα0(k∥), is always positive. Thus thewave is bound to the surface for
all values of x = k∥a. In the long wavelength limit Imα0(k∥) is proportional to k2

∥
(Eq. (4.36)). This wave is therefore weakly

bound to the surface in this limit, but it is bound nonetheless.
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A second consequence of the positivity of d1(x) and d2(x) is that Imω(k∥) = −ck∥(δ/a)4(x8/4)d1(x)d2(x) is negative for
all x. This means that the surface wave is attenuated as it propagates along the randomly rough surface for all values of x.
In the long wavelength limit Imω(k∥) is proportional to k6

∥
(Eqs. (4.33), (4.34b)) which, in view of Eq. (4.33) means that it is

proportional to the sixth power of its frequency. The explanation for this dependence begins with the observation that the
frequency dependence of Rayleigh scattering is ωd+1, where d is the dimensionality of the scatterer. The protuberances and
indentations of the surface responsible for the scattering of the wave in the present case are three dimensional, since they
are defined by the equation x3 = ζ (x∥). The Rayleigh scattering law therefore gives us a ω4 frequency dependence of the
scattering rate in the low frequency long wavelength limit. The remaining factor of ω2 arises because the amplitude of the
surface wave decays exponentially with distance into the region x3 > ζ(x∥), increasing thereby the volume within which
its interactionwith the surface roughness occurs.We have seen that the decay length of thewave into the region x3 > ζ(x∥)

is proportional to the square of its wavelength parallel to the surface (Imα0(k∥) is proportional to (k∥a)2 in this case: see
Eq. (4.36)), and this dependence translates into a factor of ω2 multiplying the Rayleigh scattering rate .

These surface waves display wave slowing (ω1(x) > 0) for small x. However, ω1(x) becomes negative for values of x
greater than a critical value xc ∼ 1.8. Thus, although in the range x > xc the wave is still bound to the surface, Imα0(k∥) > 0,
its phase velocity is greater than the speed c of scalar waves in the region x3 > ζ(x∥), so that the surface wave turns out to
be in the radiative region of k∥ and ω values.

We also note that despite the difference between the physical systems studied, and the difference between the equations
to be solved, the dispersion relation for a surface wave on a two-dimensional randomly rough Neumann surface turns out
to be the same as the dispersion relation for surface electromagnetic waves on a two-dimensional randomly rough perfectly
conducting surface in contact with vacuum [15]. We have included the resulting dispersion curve for completeness.

We conclude this section by noting that the right-hand side of Eq. (4.15) is proportional to δ2. It might be thought that
including the next term in the expansion of I(α0(q∥)|k∥ − q∥) given by Eq. (4.5), namely −(1/2)α2

0(q∥)ζ̂
(2)(k∥ − q∥), where

ζ̂ (2)(Q∥) =


d2x∥ζ

2(x∥) exp(−iQ∥ · x∥), (4.37)

would add another term proportional to δ2 to the right-hand side of Eq. (4.15). In fact, the inclusion of this term in Eq. (4.5)
has the result that the left-hand side of Eq. (4.15) becomes [1− (1/2)α2

0(k∥)]α0(k∥). The presence of the term−(1/2)α2
0(k∥)

in this expression leads to a correction to Eq. (4.15) for α0(k∥) of O(δ4), which we have neglected.

5. Conclusions

The results presented here have been obtained for a simple system that demonstrates how the structuring of a surface
can make it support a surface wave that does not exist in the absence of the structuring. The structuring can be periodic
or it can be random. The resulting modes are dispersive because of the presence of a characteristic length in the problem:
the lattice parameter in the case of the bigrating, and the transverse correlation length in the case of the randomly rough
surface. They displaywave slowing. As the height of the protuberances, or depths of indentations of doubly periodic surfaces
and the rms height of a randomly rough surface is increased, the dispersion curve of the corresponding surface waves bends
away from the dispersion curve ω = ck∥ into the nonradiative region of ω and k∥ values at smaller and smaller values
of k∥. The frequency range within which these waves exist shrinks correspondingly. Increasing the period of the bigrating
for fixed values of the height of the protuberances or the depth of the indentations, or decreasing the value of δ/a for the
randomly rough surface, has the opposite effect: the surface wave dispersion curve moves closer to the dispersion curve
ω = ck∥. In general, the dispersion curves of these surface waves can be modified in desirable ways by suitable choices of
the parameters that define the roughness of the doubly periodic or randomly rough surface.
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