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June 2019



Application of Koopman Mode Analysis in Residential Environments

Copyright c© 2019

by

Ljuboslav Boskic

iii



Acknowledgements

I express my deepest graditude to my parents Drasko and Mirjana Boskic, brother

Borislav and sister-in-law Andrea for their continuous love and support. I would also

like to thank Jim and Beverly Zaleski, their support made this project possible. The

continuous help from my group members (past and present): Emir, Hassan, Nithin,

Allan, Cory, Travis, Poorva, Gowtham and Corbinian, and for much guidance from

Milan Korda- thank you. I would like to express my sincere gratitude to my PI Dr. Igor
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Abstract

Application of Koopman Mode Analysis in Residential Environments

by

Ljuboslav Boskic

As a step towards our goals of energy efficiency, we investigate data-driven, simple-

to-implement residential environmental models that can serve as the basis for energy

saving algorithms in both retrofits and new designs of residential buildings. We find

that currently used models of thermal behavior of buildings are lacking in a fundamental

way associated with the thermal mass of buildings. Despite the nonlinearity of the

underlying dynamics, in this study we show that a linear second order model embedding,

that captures the physics that occur inside a single or multi zone of a space does well in

comparison with data. In order to validate our model, we used EnergyPlus to simulate

indoor air temperature. The error ranges from 3.3% to 7.2% according to different

thermal mass properties of the residential building. Using data-driven methods such as

Koopman mode decomposition we analyze thermal data from a single zone space. With

this analysis we are able to identify stability or instability of the modes present in the

dynamics. Using data we were able to find the mode that corresponds to heating and

cooling control, as well as identify the location this control originated from and it’s period

of occurrence to be every 1.5 hours.
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Chapter 1

Introduction

The ”House as a System” approach is gaining traction as a protocol to gain deep en-

ergy efficiency in residential buildings [1]. However, the current approach is focused on

scheduling the order of retrofits (insulation first, replacement of furnace second, etc.) and

thus high capital expenditure actions. In commercial buildings, the cost of such retrofits

has led to development of strategies for optimizing operations of existing systems, focus-

ing first on fault detection and returning the building operation to a ”healthy” state [2].

Beyond the fault detection methodologies, model-based approaches lead to optimization

of existing systems and potential of deep energy savings for new commercial builds [3],

and even US Army facilities [4]. However, these gains are not currently utilized in the

context of residential buildings.

Therefore, residential buildings have recently gained more attention within the topic

energy efficiency. There are about 136.5 million residential buildings in the United States

[5], creating a large opportunity for energy savings via retrofits and new designs, to

create more efficient homes. Through addition of sensing, communication and actuation

of components, devices are made ”smart”, such that they communicate wirelessly with

each other and transmit data to help reduce use during peak demand periods. With
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Introduction Chapter 1

energy monitoring and cost savings, smart home technologies have potential to deliver

benefits such as convenience, control, security and monitoring, environmental protection,

and simply enjoyment from engaging with the technology itself [6]. In order for retrofits

and newly designed systems to work properly, smart technology must be introduced and

implemented. Smart technology incorporates sensors, actuators and algorithms. Here

we present a reduced order model (ROM) for indoor temperature of a single zone and

multi-zone, with the goal of improving energy efficiency for residential buildings that can

serve as a basis for all energy saving algorithms which requires no cloud computing.

1.1 Zero Net Energy

Many states in the USA are advancing very aggressive goals towards commercial and

residential building energy efficiency. As spelled out in the California Energy Efficiency

Strategic Plan, the state has ambitious goals for the development of Zero Net Energy

buildings. These include:

• All new residential construction will be zero net energy (ZNE) by 2020.

• All new commercial construction will be ZNE by 2030

• 50% of commercial buildings will be retrofit to ZNE by 2030

• 50 % of new major renovations of state buildings will be ZNE by 2025.

In 2016, the Department of General Services issued these definitions of zero net energy:

• ZNE building - An energy-efficient building where, on a source energy basis, the

actual annual consumed energy is less than or equal to the on-site renewable gen-

erated energy.

2
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• ZNE campus - An energy-efficient campus where, on a source energy basis, the ac-

tual annual consumed energy is less than or equal to the on-site renewable generated

energy.

• ZNE portfolio - An energy-efficient portfolio in which, on a source energy basis,

the actual annual consumed energy is less than or equal to the on-site renewable

generated energy.

• ZNE community - An energy-efficient community where, on a source energy basis,

the actual annual consumed energy is less than or equal to the on-site renewable

generated energy.

In regards to the ZNE plan, the aim of this study is to create a simple ROM for the

residential setting that can be easy to implement in energy saving algorithm retrofits. In

conjunction it would serve as a basis for energy saving for new design. Furthermore, we

investigate how changing the thermal properties of a house such as a structural change

like wood to brick would affect certain coefficients of our model. Having a ROM that can

capture all the physics like previous models but without the complexity would be critical

in saving computational time.

1.2 Methodology

Building energy management systems (BEMS) have gained much awareness from the

energy efficieny community to act as a standard for controlling buildings [7]. BEMs are

computer-based systems that help control and monitor the indoor climatic conditions

while still maintaining optimal operational performance and safety comfort levels for

occupants [8]. BEMs usually use classical control algorithms such as on-off control,

PI control, PID control and optimum start-stop loop routines. These algorithms are
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generally very good for single-input-single-output (SISO) systems but buildings usually

have multi-input behaviors. Buildings have interesting heat dynamics due to thermal

interactions between different thermal zones and heating, ventilation and air-conditioned

(HVAC) systems [9]. Therefore buildings are complex, not SISO, and sustainability goals

would benefit from advanced sensing, actuation, and control.

Large advances have been achieved in commercial building sector research for energy

efficiency. The commercial sector is of interest as 5% of the largest buildings consume

50% of energy in commercial buildings. One of the simplifying feature of this sector

is predictable work schedules. With predictable work schedules, it is easier to control

HVAC units that have adjustable air flow, providing solutions to one of the biggest energy

consumption factors in buildings. For example, it was shown in [10] that having variable

air volume (VAV) during the day and constant volume (CV) throughout the night time

has potential to save over 25% in climate areas like New York and well over 35% in

Phoenix. In this work, peak power demand was controlled by switching on the HVAC

system prior to peak demand and this offsetting the demand. A lot of work has been

done to implement occupancy sensors in order to help control the HVAC unit and also

control the lights. While there is much room for further gains, with the combination

of control techniques with predictable work schedules, energy savings procedures in the

commercial sector have been a success.

Unlike the commercial sector, the residential sector does not have have predictable

work schedules so it is not a trivial solution to improve efficiency. In the residential

environment, as stated above you have a multi-input-single-output (MISO)system which

is hard to model yet alone control. Recent research has developed models that consist

of as much as 6 coupled ordinary differential equations (ODEs) [11, 12]. Other work

has consisted of trying a transfer function approach of identifying a model [13]. All of

these mathematical models include lots of complex factors which do not capture all of
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the physics of the most important coefficient, thermal mass.

We strongly believe a ROM is needed for these energy savings to transition from the

commercial to the residential sector. Having to many complex models, not only drive

computational time up but also might not be the dominant coefficients that are needed to

capture the most important thing, indoor air temperature. For a residential environment,

people along with their comfort level are the most important aspect. We need a ROM

that will capture indoor air temperature and then this kind of model can be implemented

in the latest control algorithms and sensing.

5



Chapter 2

Smart Sensing Technologies and

Techniques

Figure 2.1 shows energy use for residential buildings in the United States. It is clear that

most of the energy (over 50%, which constitutes 10% of all the energy consumed in the

united states!) is consumed by space heating and cooling, which makes this sector even

more important than in commercial buildings, where it varies between 30% and 40%.

Figure 2.1: Energy use for residential buildings.

2.1 Technologies

6
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2.1.1 Occupancy Sensors

Occupancy sensors are of major interest due to past research showing the use

of these sensors for controlling lighting and HVAC could potentially save 30% and more

of electrical energy used for lighting [14]. Residential code reuquires at least one light

fixture in every room, hallway, stair way, attached garage, and outdoor entrance [15]

getting the use of occupancy sensors a natural value proposition. Occupancy sensors

combined with algorithms and actuators can be used to control HVAC and artificial

light devices to maximize energy savings. Smart occupancy sensors are distinct from

occupancy sensors with preset time delays (the time after the device will switch off) or

schedules. A common problem with such sensors is unwanted switching of a particular

integrated device/section or misprogrammed schedules.

Smart occupancy sensors [14] are adaptive to changing activity levels and are in effect

a closed-loop devices, in contrast with the open loop discussed before. With adaptive

control, the change-of-operation time delay is adapted to different activity levels. Savings

will be dependent on both the space type and schedule of resident’s activities. The savings

are highly dependent on peak occupancy e.g. the kitchen, living room and bathroom are

rooms the people in the house usually interact with the most while other rooms might

see increased energy savings due to occupancy sensors. Roughly, the cost benefit of an

occupancy sensor is inversely proportional to occupancy. The issue of ”false alarms” is

important, in the sense that fast off and on switching is undesirable. Smart occupancy

sensors provide savings in both in energy and maintenance. First, the device (lights

or HVAC) turns off adaptively causing decreased electricity consumption; secondly, it

extends the overall life of devices such as light bulbs.

In order to maintain a good indoor-air-quality (IAQ) and thermal comfort, devices

like the smart thermostat can control the HVAC directly based e.g. on the learned user
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behavior or feedback. For example, the ’CO2 meter’ [16] device works based on a feedback

response where it shows the IAQ in three colors; green, orange and red. This was done in

early development to help the user implement energy saving techniques that can either be

done through the HVAC unit or done by ventilation techniques; that are discussed later

in the paper. This device is very important to have due to always needing to maintain an

acceptable IAQ according to ASHRAE Standard 62.2 [17]. Many sensors have now been

integrated with technology similar to this but no longer have a color indicator. Most

CO2 sensors have now been put into the automatic feedback loop and are used as or in

conjunction with other sensors to detect occupancy.

2.1.2 Thermostats

Heating, ventilation and cooling (HVAC) is the single largest contributor to home

energy bills and carbon emissions, accounting for 45% of residential energy consumption

in the U.S., as seen in Figure (2.1). Studies have shown that 9-18% of this energy

can be saved by simply turning down the HVAC unit when the residents are sleeping

or the space is unoccupied [18]. However, residents do not typically manually adjust

thermostat set points multiple times of the day to account for the conditions outside and

inside their house. In addition, many residents find programmable thermostats difficult

to use effectivity. If programmed poorly, these thermostats can cause energy consumption

increase rather than decrease, as seen in [19, 20]. The problem is that programmable

thermostats are open loop. In contrast, the closed loop thermostat (smart thermostat

[21]) could resolve some of the problems stated above and provide a substantial amount

of savings. This thermostat uses occupancy sensors to automatically turn off the HVAC

system when the residents are sleeping or the space is vacant. Then, the problem reduces

to smart thermostat placement and algorithms for feedback control.
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The new Nest Learning thermostats have generated a lot of interest. However, we

find their algorithms inadequate as they 1) do not take into account multiple zones of

the building and 2) do not rely on occupancy sensors. Still, Nest learning thermostats

showed that energy savings could equal 10% − 12% of heating usage and about 15%

of cooling usage [22], indicating that substantial additional savings, for electricity and

natural gas are still to be obtained by better control algorithms. The potential impact of

smart thermostats is large, but they need to be coupled with better control algorithms

in order to achieve them.

2.2 Techniques

As argued above, smart feedback control algorithms are needed to fulfill the po-

tential of occupancy-based and smart thermostat technologies. However, energy savings

are impacted by the combination of, weather, occupancy patterns and home equipment

schedules that can be complex and have uncertainties associated with them. In order to

maximize energy savings, there are both manual and automation techniques that can be

implemented using feedback from sensors as discussed above.

2.2.1 Shock ventilation

Shock ventilation (SV) was first introduced in connection with the ’CO2 meter’

which provided the user feedback in order to preform a task. SV is a simple energy

saving technique where the resident opens the windows for 5 minutes two to four times

a day. This kind of ventilation in current research has shown to save up to 25% of

heating energy [16]. SV is done based on the provided feedback the user gets based on

the IAQ measurement. IAQ can be affected by the CO2, mass or energy stressor, and

microbial contaminants (i.e. mold) that may be present in the living space. We will
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mostly focus on the CO2 and air temperature in the room. The possibility of detecting

bacterial contamination in home automation is interesting and we looked as some aspects

of biological material sensing for those. We concluded that the maturity of the technology

is too early for implementation but it is worth trying to develop better, faster sensors in

this direction. This could be of huge consequence for in-home health diagnostics.

2.2.2 Night ventilation

Passive energy saving techniques have been developed to maximize energy savings

through cooling. Night ventilation is used primarily for areas that may not be occupied

during the night time. Night ventilation is defined as a set of procedures using either

natural or mechanical ventilation to cool the structure of the building at night and is most

effective if the building has a high thermal mass. The cooled structure can then absorb

the heat the following day and provide comfortable living conditions. It can affect internal

conditions during the day in four ways: 1) reducing peak air-temperatures, 2) reducing

air temperatures throughout the day, 3) reducing slab temperatures, and 4) creating a

time lag between the occurrence of external and internal maximum temperatures. [23]

2.2.3 Night Setback

We are interested in capturing thermal mass effects in a physical model, and have

provided the methodology for doing so. Comfortable temperatures along with safe level

of IAQ need to be maintained in occupied spaces. Temperatures may be dropped dur-

ing unoccupied periods and nights which would result in possible energy savings. This

strategy of dropping temperature during those periods and then raising it back up during

the temperature recovery period is called the night setback illustrated in Figure (2.2).

Generally if the temperature is already in the comfort range prior to occupancy, then the

10
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startup was too fast and energy is wasted. In contrast, if the temperature reaches the

comfort level after the space is being occupied, then this may cause uncomfortable con-

ditions for the occupants. Thus, it is important to find the optimal start time. However,

the problem of finding the optimal night setback procedure is difficult, due to HVAC

units heating the building depend on changing climate conditions, building structure,

HVAC system capacity, etc. [24].

Figure 2.2: The temperature variation in residential buildings with known occupancy.

The model that we have developed in this research, described below, has a potential to

make this optimization procedure easier.

2.2.4 Variable Air Volume

So far we have discussed passive control techniques which may not directly in-

volve the use of the HVAC unit. which we now discuss. Variable Air Volume unit (VAV)

11
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is a type of HVAC system. This kind of system varies air flow at a constant tempera-

ture unlike most CAV (constant air volume) systems. The advantage of VAV systems

is that they include more precise temperature control, reduce wear on the system itself,

and lower energy consumption by system fans. In residential sectors most people have

a variable schedule where there are periods that the house in unoccupied which is when

reducing the ventilation rate is ideal. However, existing residential systems with constant

ventilation rate can conflict with ventilation on demand and thus can result in periods

with wasting energy on heating unnecessary airflow; hence, to achieve energy-efficient

residential buildings, the ventilation rate should be varied according to demand, depend-

ing on occupancy level or pollutant emission. [25]. This suggests need for VAV systems

where the amount and conditioning of air should be varied based on occupancy levels.

VAV systems have become popular due to improved energy efficiency in comparison

with CAV systems [26]. In combination with proper adjustment of setpoints, VAV sys-

tems can possibly provide huge savings for the residential sector. In order to implement

the demand-controlled ventilation (DCV), there are many variables that come into play

for controlling the airflow of VAV systems. In order to have control with acceptable IAQ,

CO2 concentration, room temperature, relative humidity, and occupancy level all need

to be considered. For high occupancy areas CO2 sensors are needed, while if the build-

ing has stable periods of occupancy, then schedule-based control or occupancy detection

could do. Given the cost of implementation, both manual and automatic means of control

should be considered. The data analytic work we present below indicates ways for manual

control, and provides data for feedback to automated control.

12



Chapter 3

Commercial Buildings

3.1 Implementation

With typical estimated energy saving potential from one-fourth to more than one-

half of light energy, occupancy sensors have frequently been promoted as one of the most

cost-effective technologies available for retrofitting commercial light systems [27]. In office

space buildings the schedule is often set when for example, office spaces are occupied,

and delay occupancy sensor based control can be effective. In [27], it was shown that

without any occupancy sensor the energy waste for certain areas in a commercial building

is tremendously high and the percentage of wasted energy goes up to 67% during the day

time for private offices (see Table 3.1). It was also shown that most of the energy waste

actually occurred during the weekdays which is when the offices were mostly occupied,

as opposed to weekends when the offices are generally empty. Based on the study, the

authors were able to integrate occupancy sensors and save large amounts of energy.

More recent work has involved incorporating fine grained occupancy sensors. This

has been shown to improve HVAC system control and result in energy savings. Using

a low-cost wireless occupancy sensor with an emphasis in accurate detection, reduction

13
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Table 3.1: Percentage of energy waste incurred on weekdays, weekends, and for total
monitoring period for each application. [27]

Energy Waste (%)
Weekdays Weekends Total monitoring period

Day Night Total Day Night Total Day Night Total
Break room 50% 29% 79% 12% 8% 21% 63% 37% 100%
Classroom 40% 36% 76% 13% 11% 24% 53% 47% 100%
Conference 55% 24% 80% 12% 9% 20% 67% 33% 100%
Private office 67% 21% 87% 8% 5% 13% 75% 25% 100%
Restroom 29% 41% 70% 14% 16% 30% 42% 58% 100%

of 10-15% building energy was shown through simulation [28]. This low-cost occupancy

sensor is a combination of magnetic reed switch door and PIR (passive infrared) sensor.

This combination enables high accuracy occupancy detection. The reed sensor works

as a pressure sensor for doors and the PIR sensor detects occupants. The reed sensor

detects when a door is opened or closed and then the PIR sensor detects if the person

is there or not. Thus if the space is occupied or unoccupied. This is a way to improve

on with false offs or unwanted switching off. With the combination of these two sensors,

accuracy is greatly increased and thus energy savings increase.

Figure 3.1: Generic scheme for the implementation of a zone-level control algorithm.

Working with commercial buildings tends to be easier due to 30% of them being al-

14
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ready equipped with VAV systems [29]. With VAV systems the building can be divided

into separate zones where each zone can either be a single zone or having similar char-

acteristics and be grouped. Then in order to improve energy savings, demand control

ventilation (DCV) can be implemented which then changes the supply of air flow rate

based on observed occupancy. With the combination of the right sensors and thermostat

control, near-optimal control is usually obtainable for commercial settings. With the use

of DCV for VAV systems, along with control algorithms (see the scheme of VAV control

in figure 3.1) it was shown that over-the-baseline energy savings of about 50% on average

depending on zone type, weather, climate, design occupancy, ect.) with negligible impact

on IAQ or thermal comfort can be achieved [30]. Thus, residential building space would

benefit strongly from implementing VAV systems in new builds.

Figure 3.2: EnergyPlus Program Schematic.

In order for commercial buildings to take advantage of these and other various energy

saving ideas, they need to be cost-effective. In order for this to be feasible retrofits are

preferable to building new structures or buying new equipment. In order to retrofit com-

mercial buildings, studies have been done of using DEEP (database of energy efficiency
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performance) that provides a direct resource for quick retrofit analysis [31]. DEEP uses

data recorded from buildings and includes information like climate zone and building

type. With this information, the data is compiled evaluating results from 10 million

simulation parametric runs using EnergyPlus [32]. DEEP then serves as a database for

screening and retrofitting for commercial buildings. With DEEP it was shown through

simulations for small to medium offices that a saving of 8.90− 18.70% is possible. How-

ever, EnergyPlus type simulations are too expensive to be included in control schemes

discussed in the previous section, especially for residential buildings. Thus, next we dis-

cuss development of a cost-effective modeling technology for residential buildings.

16



Chapter 4

Reduced Order Model

In order to fully understand building physics, and enable control, we need to create a

model. Building physics is affected by the building interaction with its surroundings

through heat transport, with conduction, convection, and radiation. Even more com-

plexity is introduced in mass transport with air, vapour, and moisture. This is where

revolutionary programs such as EnergyPlus [32] come into play. The program was devel-

oped to combine heat and mass transfer, along with other physical features to provide

year long energy simulations. In figure 3.2 we provide a schematic representation of the

Energy Plus simulation.

EnergyPlus is the norm when it comes to energy simulating software but its draw-

back is its complexity. The full development of EnergyPlus scripts that defined everything

about the building, HVAC systems, lighting, etc. leads to difficulties. In order to make

the Model Predictive Control technology available for modern control systems in resi-

dential buildings, there is a need to create a model that is at the simplest form needed

to understand and control the building physics. Namely, It is difficult to rely on people’s

ability to control their environment by monitoring temperatures and opening/closing

windows accordingly. Thus, a good physical model is needed to provide such informa-

17
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tion, and, in conjunction with smart sensors and actuators, could be a revolutionary tool

for enabling home energy efficiency.

4.1 Model Description

The residential building model used for this analysis was constructed in Sketchup

(Computer-aided design (CAD) software) [33] and then applied in combination of Open-

Studio [34] and EnergyPlus software to run a year long simulation. The location used in

this study is Santa Barbara, California, United States of America. The outdoor temper-

ature for Santa Barbara is obtained from the Department of Energy EnergyPlus website.

The data in this study pertains to outdoor temperature readings in the year 2009. The

model zone of a building, as seen in figure 4.1 has dimensions of 7.72m×7.72m×3.046m

with an approximate volume of 181.5m3. The building has 3 windows and one door. All

the material used is based on ASHRAE 189.1 standard corresponding to the location of

the test area, in our case Santa Barbara, California.

Figure 4.1: Sketchup constructed model of single thermal zone house.

In OpenStudio, we can specify a wide-variety of conditions such as setpoints, occu-

pant schedules, HVAC equipment, loads, and more (see figure 4.1). We first develop the

nominal, no-actuation, no-load model, that enables us to parametrize important phys-
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ical concepts such as the thermal mass. So we first turned off all loads and just had

the building take radiation from the sun, and ran a simulation on that in EnergyPlus.

This was a way to understand the type of model needed, either linear or nonlinear and

possibly what order. Based on work conducted so far, we are planning on designing and

implementing a Model-Based Controller of the type we present below.

Figure 4.2: Openstudio work flow

4.2 Our Model

In order to fully understand the physics of heating and cooling in residential

buildings, we first need to develop a model. In our case we will use a model to represent

our system which then we can use to describe the phenomena that we can not directly

explain at first. Once we have developed a model, we can then start to understand

the physics behind it and try to identify the most influential components. The model of

building physics we developed is extremely simple, and yet it captures the physical effects
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necessary for design of new builds and control of old builds. We developed a second order

linear differential equation with constant coefficients as our model for temperature inside

a particular space/thermal zone. On the right hand side we have the input to the system

labeled (u) but we also have a constant term (d) being added to that in order to model

the thermal radiation term, which we discuss later. State x is the temperature. The

equation reads,

c1ẍ+ c2ẋ+ c3x = u+ c4,

or , solving for ẍ and dividing by a,

ẍ = −c3
c1
ẋ− c2

c1
x+

1

c1
u+

c4
c1
, (4.1)

We rewrite the equation in a state space representation:

ẋ =

 0 1

−c3
c1

−c2
c1

x+

 0

1
c1

u+

1

0

 c4
c1

(4.2)

The mathematical model is implemented in MATLAB [35] for the model of the single

thermal zone house. The model was parameterized by discretizing it and finding the

optimal coefficients that best describe the nature of the indoor temperature compared to

the known indoor temperature of that thermal zone. We tested the model for the indoor

temperature at two different time scales, of two weeks and for six months, the results

of which we show below. Our model does have some irregularity in certain regions

where the temperatures either spikes up too fast or drops down rapidly but overall it

describes the the behavior of indoor temperature extremely well, thus making it suitable

for implementation of optimization and control procedures.

We now discuss what every term in equation (4.2) represents in terms of thermal
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physics of the space. The thermal mass influences the c1 term strongly. Thermal mass

is a very important aspect in buildings due to it being the main source of absorption of

outside and inside thermal and passive control of the living space inside. The thermal

mass is influenced by the physical structure of the walls of the building, because of the

varying ability of the material to absorb and store heat energy. For example, a lot of

thermal energy is needed to change the heat inside a building that has been constructed

out of brick, due to the fact that the density of the material is high. In fact, any material

that has greater thermal mass can store more heat and therefore it will take longer to

release the thermal energy after the heat source or the sun is gone.

Thermal insulation affects the ”damping term” c2. It is used to reduce heat loss or

gain by providing a barrier between areas that are significantly different in temperature.

Insulation is commonly added between the outside walls and inside walls of the house,

this is what provides that barrier of protection from the sun. Insulation and thermal mass

both slow down the movement of heat between exterior and interior space. Insulation is

used when a desired temperature differential is wanted between the indoor and outdoor

space. Thermal mass is inertial, as it involves a substance that will slowly take on heat

and then slowly release it over time [36].

Heat conduction affects the c3 term. Thermal conduction is when internal energy

or heat is transferred by collision of particles and movement of electrons. More easily

understood conduction is heat flow within and through a body itself (such as walls). This

type of reaction takes place in all phases of matter including solids, more specifically in

our case the house and all of it’s objects within. All the walls and material within the

walls have different properties of how heat is moved from either inside the house or

from the outside (sunlight). We noticed adjusting the materials in the walls affected the

thermal mass greatly but also affected the thermal conduction term.

We found that thermal radiation affects the term c4 in our equation. Thermal ra-
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diation is heat transferred by electromagnetic waves such as the visible light or transfer

of heat within or through two bodies. It was shown in [37] that radiation heat transfer

results in an increase in the heat transfer rate reflecting significant radiation effects that

contribute to less thermal resistance.

The other strong effect on the coefficients in the equation is the orientation of the

building. Orientation is an important factor when it comes to building design. Proper

orientation would allow for passive solar gain and day lighting which would require less

use of lighting sources inside the home. The orientation of the building could either

provide not enough sunlight or cause overheating. In the northern hemisphere, south

facing windows have the greatest exposure to light while west facing windows need to be

properly designed, due to the nature of the low angle of the setting can cause overheating.

This term is very important in the design aspect of homes and in this case can not really

be changed for retrofits, but it is a factor in new designs.

Thus, roughly, thermal mass affects c1, insulation affects c2, heat conduction coeffi-

cients c3, and thermal radiation c4. The Reduced Order Model (ROM) (4.1) we have

developed reduces computational complexity of modeling problems of indoor tempera-

ture, from a very computationally expensive EnergyPlus simulation to the simple model

that can be implemented using embedded controllers and has all the essential physics

encoded in its coefficients. Having ROM’s it is also easier to understand the nature of

systems due to its simplicity. In our case, we just have a second order model where we

have postulated what each term means and strongly believe have run different analysis

that support our assumptions.
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Reduced Order Model II

5.1 Second Order Model Single Zone

In order to illustrate some of the complexity of temperature changes, we provide

the indoor-outdoor temperature plots for one case of 286 operational hours. It can

be noticed that there is a shift (delay) between the peaks of temperature between the

indoor and outdoor temperature in Figure (5.2). Understanding of this shift affects the

old fashioned manual implementation of opening the window before the sun is out and

closing it afterwords in order to cool the home. The complexity of the delay timing

indicates a machine would be better in determining the exact times for such action. For

example, if the outdoor temperature is higher than indoor temperature (as illustrated

below), that would result in ventilation doing more harm than good.

The nominal model that we call a ROM is given only input data only (outdoor

temperature) and from that we can implement out system identification technique to

get the optimal coefficients as described in the previous chapter. After we obtain the

optimal values, we plot the modeled indoor temperature compared to the ”actual” indoor

temperature from that particular zone from the EnergyPlus simulation. Below is our

23



Reduced Order Model II Chapter 5

Figure 5.1: Hourly indoor-outdoor temperature plots during 2/26 to 3/09

Figure 5.2: Indoor-outdoor temperature plot of 72 hour close up.

model for 286 operating hours 5.3. The percentage error found between the actual indoor

temperature from simulation to our model is 6.3512%.
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Figure 5.3: ROM for indoor air temperature from 2/26 to 3/09

5.2 Second Order Model Multi-Zone

So far we have developed a model that fits well for the physics of a single zone building.

A single zone thermal zone does exist when talking about an apartment complex or

separate living quarters (by a wall). Now we will investigate how our model holds for

a simulation where we may have multiple spaces and thermal zones but also have one

thermal zone which encompasses them all. The overall thermal zone of the building is

calculate by taking the average temperature of each smaller zone.

From Figure 5.7 we can specifically see that the model holds and even has better

results with a 4.1515% difference from the true indoor temperature. Even with having

one thermal zone but four different spaces in a house, we see that the model will hold. In

EnergyPlus and Openstudios we had four separate spaces along with their own thermal

zone and then we added a single thermal zone for the whole house. This single thermal

would do the calculations needed to average the thermal properties from each thermal
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Figure 5.4: Sketchup construction of the multi-zone model used in this section of the study.

Figure 5.5: Four different space types are illustrated above for the multi-zone model.

Figure 5.6: Single thermal zone for the four different space type model.
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Figure 5.7: MODEL, 4.1515

zone and put four of them into one. Thermal zone averaging and other methods have

been used in the past. Zoning based on thermal properties of neighboring spaces was

seen to have great success in [3, 38].

5.3 Thermal Property Variation and Validation

• Standard Model

From the work done so far we have seen that our model will work for a single space

or multi-space residential building. The next step will be for us to analyze and verify

the coefficients are what we believe them to be. We will create different test models in

OpenStudios which will have different structural builds (steel and brick) and different

material that will be in the walls and in between the interior and exterior wall. For this

section only the house will be a different size as to the one we have discussed earlier. The
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size of the house for the following section will be 11.86m× 13.99m× 4.57m and will have

three windows and one door.

Figure 5.8: The new standard model used in this section to analyze thermal differences
based on material adjustments.

In order to maintain the best accuracy possible for these models we did not adjust the

frame of observation and kept that fixed. We observed the data at the following dates

2/26 to 3/09 with a total of 288 data points corresponding to hourly data. We also were

able to keep the same outdoor temperature fixed for all of the simulations preformed in

EnergyPlus.

Our standard model that was developed above used the ASHRAE 189.1 standards

and were not adjusted. The specific area of interest we are looking at (the exterior walls)

has the following construction corresponding to the standards,

Name Material External Wall Setting

Standard Model
1/2in gypsum

Wall insulation [39]
MAT-sheath

Steel-framed

Table 5.1: Standard model construction layout.

For both systems we will use this type of matrix analyzing in order to see the dif-

ferences in the numeric change due to the specific coefficient. Again we fix the thermal

radiation term, c4 = 1.1. Each system will be displayed prior to discretizing the matrices

for easier comparison.
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Figure 5.9: The outdoor temperature used for all simulations that is treated as the
input variable (u).

ẋ = Ax+Bu+B1
c4

c1
(5.1)

When analyzing the standard model, this is what was observed: c1 = 0.4350, c2 =

10.2650, c3 = 2.2750. With an error of 6.1112%.

ẋ =

 0 1

−5.2299 −23.5977

x+

 0

2.2989

u+

1

0

 1.10

0.4350
(5.2)
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Name Material External Wall Setting

Brick Model

1in stucco
8in concrete
1/2 gypsum

Wall insulation [40]

Brick-framed

Brick and Insulation

1in stucco
8in concrete
1/2 gypsum

Wall insulation [40]
Wall insulation[40]

Brick-framed

Brick, Insulation, and Gypsum

1in stucco
8in concrete
1/2 gypsum

Wall insulation [40]
Wall insulation[40]

1/2in gypsum

Brick-framed

Brick, Insulation, and Concrete

1in stucco
8in concrete
1/2 gypsum

Wall insulation [40]
Wall insulation[40]

8in concrete

Brick-framed

Table 5.2: Brick case study construction layout.

• Brick Model

The brick design will have four different case studies. In each case study, we will keep

the same conditions in EnergyPlus for the simulation but the only difference will be the

wall material. Table 5.2 has the four case studies we will be investigating and how the

wall material will be adjusted. The top row is representing the preset setting for a brick

construction of a building in EnergyPlus. With these different case studies, we expect to

see the variables in our ROM change accordingly and adjust to the best parameters.

The brick model full identified. The terms were found to be, c1 = 0.3800,c2 = 15.2800,
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Figure 5.10: Comparison of the indoor temperature for the three different internal
structures of the model.

c3 = 3.2550 and c4 = 1.1. Error=7.7222

ẋ =

 0 1

−8.5658 −40.2105

x+

 0

2.6316

u+

1

0

 1.10

0.3800
(5.3)

The brick mode with added insulation full identified. The terms were found to be,

c1 = 0.1240, c2 = 7.7750, c3 = 4.6750 and c4 = 1.1. Error=6.0809

ẋ =

 0 1

−37.7016 −62.7016

x+

 0

8.0645

u+

1

0

 1.10

0.1240
(5.4)

The brick mode with added insulation and gypsum full identified. The terms were found
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Figure 5.11: ROM plot of the four test cases with a brick construction.

to be, c1 = 0.1400, c2 = 8.950, c3 = 4.7650 and c4 = 1.1. Error=5.9672

ẋ =

 0 1

−34.0307 −64.1786

x+

 0

8.33

u+

1

0

 1.10

0.1400
(5.5)

The brick mode with added insulation and concrete full identified. The terms were found

to be, c1 = 0.0600, c2 = 6.3350, c3 = 7.3400 and c4 = 1.1. Error=3.3882

ẋ =

 0 1

−122.3330 −105.5833

x+

 0

16.667

u+

1

0

 1.10

0.0600
(5.6)
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Chapter 6

Koopman Mode Analysis

The Koopman operator is an infinite-dimensional, linear operator that acts on a Hilbert

space of functions called the space of observables [39, 40]. The eigenvalues and eigen-

functions of this linear operator are capable of capturing key dynamics charactersticis of

a linear or nonlinear dynamical system. Additionally, the Koopman modes, correspond-

ing to a particular choice of observable function, allow one to reconstruct and forecast

(predict) the observed quantity. Togethere these three values of Koopman eigenvalues,

eigenfunctions, and modes yield the Koopman mode decomposition (KMD) of an arbi-

trary observable [41, 42]. Data-driven algorithms have been created and utilize data or

measurements to approximate the KMD of the system. With this analysis in hand, one

is able to identify stability or instability of the modes present within the dynamics.

6.1 Background on Koopman mode decomposition

In the context of deterministic dynamical systems, state-variables are those variables

that if known for a system at a particular time, the dynamics of the system would be

determined for all of time (e.g. angle and angular velocity for the mathematical pendu-
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lum). The classical approach in dynamical systems theory is to work in a mathematical

framework in which variables which describe the current state of the system are the main

objects of interest, i.e. state-space. When recording dynamic data from complex systems

such as buildings, the state variables which fully describe the system are not known and

there may be too many to ever measure. This poses no problem for the operator view

of dynamical systems in which the main objects of interest are functions whose domain

is the state-space - known as observables. In the case of the pendulum, this could be

kinetic energy, potential energy, or any function of angle and angular momentum one

could think of. In this view, we can think of any measurements (or possibly functions

of measurements) we take of a system of interest as a function of some unknown state.

In the context of buildings this could be temperature, light, noise, humidity, or another

measurement at different locations of the structure.

The simplest context in which to introduce the Koopman view is for discrete-time

dynamical systems which can be described by repeated application of a single function

T : M →M , i.e.

x′ = T (x) (6.1)

where M is any set whose elements label all possible states (e.g. temperatures) of the

system and x′ is the updated state, corresponding to x, after a single time step. The

Koopman operator framework was originally described for time-invariant continuous-time

systems [43] and has been extended to the case of stochastic [44, 41] and time-varying [45]

systems. For the dynamical system described by equation (6.1) the induced Koopman

operator U represents a new discrete-time dynamical system whose state-space is the set

of all complex-valued measurables with domain M (denoted by CM):

f ′ = U(f) = f ◦ T (◦ is function composition).
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It is easy to show that U is linear (c ∈ C and f, g ∈ CM),

U(cf + g) = (cf + g) ◦ T = c(f ◦ T ) + g ◦ T = cU(f) + U(g),

thus we can consider eigenvalues λ and eigenfunctions φ,

U(φ) = λφ.

Research into the spectral expansion of the Koopman operator for data-driven analysis

of dynamical systems was initiated by [46, 47].

Considering the repeated action of U , p times, on a finite collection of n observables

{f1, . . . , fn} that lie in the span of a finite collection of m eigenfunctions {φ1, . . . , φm},

with eigenvalues {λ1, . . . λm} and dual basis {ψ1, . . . , ψn}, leads to a special case of the

Koopman mode decomposition (KMD):


Up(f1)

...

Up(fn)

 =


m∑
k=1

λpkφkψk(f1)

...
m∑
k=1

λpkφkψk(fn)

 =
m∑
k=1

λpkφk


ψk(f1)

...

ψk(fn)

 . (6.2)

This decomposition allows us to evolve our observables {f1, . . . , fn} by simply multiplying

each term in the sum above by its corresponding eigenvalue λk. This gives us the intuitve

interpretations of the magnitude and complex phase of λk as corresponding to rate of

growth and rate of oscillation, respectivley. If we are only interested in the evolution

of the observables along a single trajectory of (6.1) starting at x, then the φ′ks could be
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chosen so that φk(x) = 1, and KMD would take the following simpler form


[Up(f1)](x)

...

[Up(fn)](x)

 =


m∑
k=1

λpkφk(x)ψk(f1)

...
m∑
k=1

λpkφk(x)ψk(fn)

 =
m∑
k=1

λpk


ψk(f1)

...

ψk(fn)

 . (6.3)

6.1.1 Koopman-Dynamic Mode Decomposition

The last column vector appearing in (6.2) and (6.3) is known as the Koopman Mode

of the observables {f1, . . . , fn} relative to the discrete-time system descibed by (6.1).

From (6.3) we see that the magnitude of ψk(fi) tells us how much of a role the growth

and oscillations rates given by λk play a role in evolution of fi along the single trajectory

starting at x. Similarly, the complex phase of ψk(fi) gives a relative phase correspsonding

to the oscillations give by λk.

Motivated by the fact that several results have been shown regarding the approxima-

tion of the Koopman operator and its spectral quantites by dynamic mode decomposition

(DMD) [48, 49, 50, 51, 52], we have used it on building data; first we give a brief descrip-

tion of DMD.

Consider the case where we have a discrete-time dynamical system as in (6.1) and

we have evaluated a set of observables {f1, . . . , fn} along the first m+ 1 time points of a

trajectory starting at x. We can put this into a matrix D such that each row corresponds
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to a different observable and the columns are ordered by time:

D =


f1(x) f1(T (x)) . . . f1(T

m(x))

...
...

. . .
...

fn(x) fn(T (x)) . . . fn(Tm(x))



=


f1(x) [U(f1)](x) . . . [Um(f1)](x)

...
...

. . .
...

fn(x) [U(fn)](x) . . . [Um(fn)](x)

 .

We can split D into the matrix X of the first m columns and Y of the last m columns,

i.e.

X =


f1(x) f1(T (x)) . . . f1(T

m−1(x))

...
...

. . .
...

fn(x) fn(T (x)) . . . fn(Tm−1(x))

 ,

Y =


f1(T (x)) f1(T

2(x)) . . . f1(T
m(x))

...
...

. . .
...

fn(T (x)) fn(T 2(x)) . . . fn(Tm(x))

 .

The main idea in Dynamic Mode Decomposition (DMD) is to find a matrix A such

that AX is close to Y in some sense. In this way A would be mapping the vector

of samples taken at the point T i(x) close to those taken at the point T i+1(x), for all

i ∈ {0, . . . ,m− 1}. With this, it may seem intuitive to the reader that as our number of

time points goes to infinity or as we add more observables (which could just be functions

of our original ones), we should better and better approximate the Koopman operator

U by the linear operator we are representing by the matrix A. One such A we could

use is A = Y X†, where X† is the pseudo-inverse of X. Such an A happens to satsfy the
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following [53]

‖AX − Y ‖F = inf
B∈Rm×n

‖BX − Y ‖F .

If we let M = Rn and T (x) = Ax as in equation (6.1), then DMD of the data matrix D

boils down to a KMD of the functions {f1, . . . , fn} with respect to the system descibed by

equation (6.1). In paticular, given any basis {v1, . . . , vn} of eigenvectors of A (assuming

A is diagonalizable as the generic matrix is) with eigenvalues {λ1, . . . , λn}, its dual basis

{ψ1, . . . , ψn} is a set of n eigenfunctions of the Koopman operator induced by equation

(6.1), also with eigenvalues {λ1, . . . , λn}. Finally, the eigenvectors of A serve as the

corresponding Koopman modes.

6.2 Sensor Implementation

In order to understand effect of occupancy patterns on temperature variations, we

have incorporated Omron Environment Sensors into our laboratory space. In this section

we describe their implementation and data analytics. The use of the sensors in residential

building energy savings is quite promising and the current implementation with single

thermostats is found woefully inadequate.

The data is exported from the sensors and stored in a CSV file. The data that we

present the analysis for is for the period May 6th 0:00 to May 11th 0:00. The outdoor

temperature was gathered from the National Weather Service, taken by Santa Barbara

Municipal Airport, which is right next to UCSB. In Figure (6.4) we show the plot of

the indoor and outdoor temperatures. The sensors detect temperature, humidity, light,

UV index, pressure, and sound in one compact package. The Figure (6.1) shows the full

schematic of the sensor. The sensor uses Bluetooth to sync with a cell phone, as seen in

Figure (6.2). We collected the data on 5-minute intervals.
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Figure 6.1: Block diagram of the sensor module [54].

We kept the sensors at similar heights and also kept them away from any blowing air

from the HVAC systems. We also kept to keep the sensors at a reasonable distance away

from the light sources and any pipes that may radiate heat. Figure (6.3) shows the area

where the sensors are placed throughout the office area.

The data is exported from the sensors and stored in a CSV file. The data that we

present the analysis for is for the period May 6th 0:00 to May 11th 0:00. The outdoor

temperature was gathered from the National Weather Service, taken by Santa Barbara

Municipal Airport, which is right next to UCSB. In Figure (6.4) we show the plot of the

indoor and outdoor temperatures.
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Figure 6.2: Environment sensor application used to export and examine data collection.
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Figure 6.3: Sensor placement throughout the office. (a) shows the front sensor right as
one walks into the office. (b) shows the sensor in the middle part of the office labeled
as middle right, also can see relation to door from that picture. (c) shows the general
placement of the other sensors and their corresponding names.
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Figure 6.4: Indoor-Outdoor Temperature for May 6th 0:00 to May 11th 0:00 in our
office. This data was taken from the middle right sensor.
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6.3 Analysis of Temperature Data

We have collected temperature readings at five locations within our Laboratory at

UCSB and an outdoor reading from the Santa Barbara Municipal Airport (∼ 2 miles

away). In addition, we also have humidity, light, pressure, and noise measurments for

the indoor sensors. Measurements from these sensors (along with outdoor temperature)

taken every 5 minutes over the course of 5 days can be found in figure (6.5). In the

following we describe a basic use of Koopman spectral analysis on this data. In the

second section we give a simple description of the Koopman view of dynamical systems.

In the third section we introduce the basics of dynamic mode decomposition (DMD)

and briefly explain its connection to Koopman mode decomposition (KMD). Finally, we

apply this framework on the temperature signals we have in figure (6.5).

6.3.1 Dynamic Mode Decomposition on Sensor Data

In the following, we perform Koopman spectral analysis on the temperature data in

figure (6.5) via the use of DMD. In particular we used the DMD algorthim in [55], which

includes a way to assign a ”power” that each DMD mode represents in the data matrix

X. In addition, since the algorithm invovles inverses of the diagonal matrix of singular

values of X, we treat any singular value less than σ
106

as zero, where σ is the largest

singular value.

The main assumption here is that there is some underlying dynamical system which

describes the real world dynamics of our building which we measure in a localized area

of the laboratory, with a measurement rate (every 5 minutes), and that we can represent

the restriction of this dynamical system to a discrete time set (with difference between

time points corresponding 5 minutes) as in (6.1). We can then use DMD to approximate

the Koopman operator U induced by T . To do this we need to choose a set of observ-
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ables. Here we use the temperature measured at 5 different points in our office and the

local outdoor temperature; even though we do not know the state-space of the under-

lying system we are observing,i.e. the domain of T , we assume that our temperature

measurements are a sampling of a set of observables at a single point in state-space and

at a single point in time. We denote these corresponding observables by {f1, . . . , f6}. We

also use time shifted versions of these observables to generate new ones, i.e. we could use

f7 = f1 ◦ T.

Lastly to compute the optimal amount of time delays used in the construction of the

data matrix, we use the following for relative error

‖AX − Y ‖F
‖Y ‖F

(6.4)

Due to our system only consisting of six obseravbles and have data sampled at 5 minute

intervals, we have a very ’fat’ matrix meaning we have an under determined system.

In the following figures we have several plots representing Koopman spectral quan-

tities related to our chosen obsevables. In figures (6.6) and (6.9) we use 200 and 300,

respectively, time shifted observables for each of our six temperature sensors. Both of

these figures are structured in the same way:

1. The top left plot contains the frequency of each DMD eigenvalue with its power.

Notice the two bumps in the spectrum around a frequency of 15 and 25.

2. The top right plot contain the growth rate of each DMD eigenvalue with its power.

3. The second row contains a representation of the first six components of the highest

power DMD mode with frequency close to one. The magnitude (left) and complex
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phase (right) of each of the components of this mode are represented using colors

over a simplified diagram of our office.

4. The third row is similar to the second, but this row represents the highest power

mode with frequency near 15. Notice the similarity across changes in observables.

The mode with frequency near one has much larger magnitude for the outside com-

ponent than for any inside component as we would expect since indoor temperature

should be more stable and the outdoor temperature has an obvious one day pe-

riod. The bumps in the frequency plot near frequencies of 15 and 25 are another

consistent feature amongst the plots for different numbers of time-shifted observ-

ables. The second DMD mode represented is for the dominant frequency in the

first of these bumps. This mode, having a period near 1.5 hours, has much larger

components indoor than outdoor, and is related to heating and cooling control.

5. Figure (6.12), shows the relative error compared to the number of delays used in

the hankel matrix. Relative error was computed using equation (6.4).

The analysis using Koopman modes gives us a remarkable insight into the thermal

dynamics of indoor spaces. Namely, the distinction between the zones affected strongly

by the outside conditions, near the window, are evident. In addition, there are modes

that clearly indicate dynamics of the controllers. In this way, the external influences are

separated from control dynamics and the refinement of the analysis using the model in

the previous section is possible. For use in residential buildings, such understanding of

thermal behavior is of essence in design and control and we have provided the tools for

it.
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6.3.2 Dynamic Mode Decomposition on Simulation Data

We have also run simulations using EnergyPlus and found interesting behavior going

on in the dynamics of the system. In these simulations we used the -HouseModelDefine–

and created actuation or a simple kick in the system. This kick to the system was to turn

off all loads like before but now to add heating or cooling to the system at a particular

time. In this case we added heating of 20◦C to the simulation between the hours of 7am

to 8am. This now presents a controlled environment to our system where this will repeat

throughout the entire simulation. Figure (6.13) shows the signals analyzed corresponding

to 5 minute sampling.
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Figure 6.13:

1. The top row of plots in Figure (6.14) contains the frequency of each DMD eigenvalue

with its power (left) and the growth rate of each DMD eigenvalue with its power

(right). These plots only correspond to the indoor signal with 600 time shifted

observables.

2. The second row has figure (6.15) has frequency vs growth rate along with the

coloring of each Dynamic Mode relative to it’s power.

3. The third row has figure (6.16) has frequency vs growth rate along with the coloring

of each Dynamic Mode relative to it’s power but is a close up to look at the Dynamic

Modes close to the highest power.

4. Last row, shows the relative error compared to the number of delays used in the

hankel matrix, again computed from equation (6.4).

When analyzing the system we notice something interesting. We know that we gave
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this kick to the system to be everyday between the hours of 7am and 8am but that is

not what the data analysis is showing us. From the second and third row of figures we

notice the highest power Dynamic Mode corresponding to a frequency of 3 which means

a period of 8 hours. This is something strange due us knowing we kicked the system

between 7am and 8am but then didn’t re-kick the system for another 24 hours. This

is capturing the normal mode or the daily harmonic in the system which turn out to

be that actuation that occurs daily. This is the mode that is also associated with the

interaction with natural forcing or in our case heating. Another Dynamic mode that we

observe is the growing mode which also corresponds to the heating in the system at a

frequency of 1 or once per day. We can see this even from the data due to the indoor

temperature rapidly growing once the heating is turned on for the one hour period.
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6.3.3 Koopman Relation to Reduce Order Model

In order to see if a ROM can fit temperature data of a particular space which also

has control (heating or cooling), we can examine the eigenfunctions of the following,

λ̇ = λφ

=

[
Re(λ) + iIm(λ)

] [
Re(φ) + iIm(φ)

]

This can now have a further expansion,

[
˙Re(φ) + iIm(φ)

]
=

[
Re(λ)Re(φ)− Im(λ)Im(φ)

]
+ i

[
Im(λ)Re(φ) +Re(λ)Im(φ)

]

Finally this system can be simplified to something that looks like a second order linear

model,  ˙Re(φ)

˙Im(φ)

 =

Re(λ) −Im(λ)

Im(λ) Re(λ)


Re(φ)

Im(φ)

 (6.5)
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Based on the analysis done above, we can see equation (4.2) and (6.5) relate and both

correspond to a second order linear system. We originally derived the second order linear

model from simulations and basic physic principals and now we can see even from a

data-driven approach we can establish a close connection to that model. This is extremly

helpful to have a linear model because we can relate systems and hope to extract more

important details of the system such as control or even possibly thermal properties.
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Chapter 7

Conclusion

Building good energy models is required in order to obtain the energy efficiency standards

required. In our work, we have seen good energy models developed and implemented in

the commercial sector but not not in the residential areas which make up the majority

of our energy use. We have proposed a reduced order model that can serve as a basis

for energy saving algorithms and cost-efficient in terms of computation time. Along with

implementing smart sensing technologies to build this ”house as a system” methodology,

we can achieve the Zero Net Energy goal by 2020 and help millions of home owners save

money. Our approach of the model proposed here is supporting single or multi-zone

buildings and different thermal properties of the structure. We have demonstrated a

method based on spectral properties of the Koopman operator to help analyze temper-

ature data from a controlled standpoint. Using KMD we have been able to extract the

dynamics of the controllers in that particular zone.

Future work would consist of adding full control to the simulations of not only heat-

ing and cooling but variable thermal mass. Variable thermal mass is seen in homes

now which have heated floors, i.e pipes under the tiles that get hot/cold water pumped

through them when needed. The Koopman model predictive control framework [56] pro-
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ceeds by constructing a linear model for the building from data. Since the building is

nonlinear (e.g. due to the nonlinearities introduced by low-level control), the state of

this linear model has evolved to high-dimensional, so called lifted state-space, in order

for accurate predictions to be obtained. This linear model is subsequently used within

the model predictive control (MPC) framework to obtain high-performance control for

the building. The distinctive feature of the Koopman MPC is its ability to handle non-

linear dynamics within a purely convex optimization-based framework, thereby allowing

for rapid evaluation of the control as required in practical applications. In particular, the

MPC framework allows for a seamless incorporation of constraints (e.g., actuator satu-

ration or room temperature bounds) while optimizing a user-specified objective function

(e.g., energy consumption). Also importantly, the linear predictor is constructed purely

from data collected from the building without the need for a first-principle model, which

dramatically reduces modeling costs.

We believe the use of Model Predictive Control in conjunction with data analytics

and embedded model of the type we have discovered will lead to deep energy savings of

the magnitude that was estimated in the reviewed literature, and go towards the goal

of building and retrofitting for Zero Net Energy. With the work we have done so far,

we have identified this ROM with percent differences as low as 3.5% and shown KMD

analysis can extract the nonlinear behavior from a controlled environment setting.
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[42] H. Arbabi and I. Mezić, Study of dynamics in post-transient flows using koopman
mode decomposition, Physical Review Fluids 2 (2017), no. 12 124402.

[43] B. O. Koopman, Hamiltonian systems and transformation in hilbert space,
Proceedings of the National Academy of Sciences of the United States of America
17 (1931), no. 5 315.
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