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Abstract

Essays on consumption cycles and corporate finance

by

Paulo Floriano Issler

Doctor of Philosophy in Business Administration

University of California, Berkeley

Professor Nancy E. Wallace, Chair

This dissertation consists of two chapters that concern with the consumption cycle and
corporate finance. The first chapter analyzes the role of durability in characterizing the
consumption cycle. There is strong empirical evidence demonstrating that decreases in res-
idential investments and durable expenditures are early indicators of economic downturns.
Analogously, once the economy goes into recession, early increases in residential investments
and durable expenditures signal economic recoveries. So far, little work has been done de-
tailing the mechanisms explaining these important empirical stylized facts. In this article,
I develop a general equilibrium asset pricing production model that includes durability and
substitutability between perishable and durable service consumption. Results indicate that
large shocks in the productivity of the capital accumulation process and a high elasticity of
intertemporal substitution are both needed to create the correct timing of changes in durable
expenditures and nondurable consumption characterized in the data. The study also uses
this general equilibrium model as a framework to make predictions about the term structure
of forward contracts settled on a national housing price index. Such work will create a foun-
dation for further developing this important derivatives market.

The second chapter analyzes the link between debt maturity and the term spread. This
chapter is co-authored with Pratish Anilkumar Patel. Evidence shows that a firm’s debt
maturity and term spread are intricately linked. Firms issue short term debt when the term
spread is significantly positive and they increase maturity as the term spread decreases. The
current literature explains this link with market frictions such as agency problems, asym-
metric information, and liquidity risk. We explain the link between debt maturity and term
spread using the trade-off theory of capital structure. When the term spread is small or even
negative, transaction costs of debt rollover outweigh bankruptcy costs. Therefore, the firm
optimally chooses to increase debt maturity. On the other hand, when the term spread is
significantly positive, bankruptcy costs outweigh transaction costs of debt rollover. There-
fore shorter debt maturity is optimal as it minimizes the chance of bankruptcy. In addition,
we contribute to the current discussion in the literature concerning the speed of adjustments
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of capital structure, finding that firms are active in adjusting their capital structure. The
model is consistent with a variety of stylized facts concerning debt maturity.
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Chapter 1

Durability and the consumption cycle

1.1 Introduction

Since World War II, nine out of a total of eleven recessions in the U.S. have been preceded
by steep declines in housing investments, making housing starts the best forward-looking
indicator of economic cycles. This can be seen clearly in Figure 1.1 below, which shows the
smoothed percentage change in consumption, expenditures and residential investment for
the household sector, as well as investments in structures from the business sector for the
1981-Q3 National Bureau of Economic Research (NBER) recession.

Note the remarkable negative percentage change in residential investment characterizing
steep declines in new home construction two quarters before the recession starts. Note also
that, to a lesser extent, household expenditures in durable goods such as cars and appliances
follow the same pattern. Percentage change in business structures goes into negative terri-
tory only after 1981-Q3. This shows that the declines in residential investment preceding
recessions are not due to phenomena occurring in the construction industry. Once into the
recession, demand softens on nondurable consumption and services, and stays low until the
end of the recession period. Finally, note that before recession ends in 1982-Q4 there is a
markedly strong recovery in residential investment and durables expenditures.

Appendix 3.1.1 presents the same type of graph for all eleven post-WWII recessions. With
the exception of the 1953-Q1 Korean War and the 2001-Q1 dot-com recessions, all others
show a similar pattern. These findings are not new. Leamer (2007) provides a detailed
empirical analysis of the relevance of residential investment and durable expenditures for
predicting economic fluctuations. His article, however, provides little work on framing an
economic model that explains the mechanisms leading to such patterns.

In this paper, I construct a rational expectation consumption-based asset pricing model
consistent with the stylized facts above. The model establishes a framework for explaining
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Figure 1.1: National Income and Product Accounts’ (NIPA’s) smoothed percentage change
in residential investment, durable expenditures, nondurable consumption, services, and non
residential investment for the 1981-Q3 NBER recession ending in 1982-Q4.

how the sustainable flow of services provided by the housing stock (the durability aspect of
consumption) and the substitutability between durable and nondurable consumption inter-
act to create the timing of events laid out by the empirical evidence. In addition, in the spirit
of Routledge, Seppi, and Spatt (2000) and Casassus, Collin-Dufresne, and Routledge (2005),
I use the general equilibrium model as a structural framework to make predictions about the
term structure of forward contracts settled on a national housing price index. The general
equilibrium model creates a foundation for investigating this important but underdeveloped
derivatives market.

Substitutability creates an interesting dynamics as the economy transitions from recovery to
boom and from downturn to recession. In the early stages of an economic downturn, house-
holds are able to cut durable and housing expenditures deeply, while maintaining high levels
of services from their current durable stocks. This allows them to reallocate their income to
avoid significant cuts in nondurable consumption. Conversely, in recoveries consumers face a
depleted stock of housing and other durables. A shift to a regime of high capital productivity
induces a demand for durables and a significant positive change in durables expenditures,
thus marking the beginning of a new economic cycle.
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To fully capture the interaction between producers and consumers and the feedback of their
optimal decisions, I model the economy in general equilibrium. On the consumer’s side of
the economy, I model individuals with standard preferences over durable and nondurable
consumption. I assume complete markets. Individuals invest their wealth in financial secu-
rities which enable them to fully hedge the risks embedded into their optimal consumption
plans. Individuals also hold the stock of capital which is used as input flows by producing
firms.

On the producing side of the economy, I assume two production sectors — durable pro-
ducers and nondurable producers. Each sector has an infinite number of firms using capital
supplied by individuals to produce goods for final consumption. More particularly, capital
is a factor input for producing two types of goods: a nondurable (perishable) consumption
good, and a finished durable good (housing), which ultimately provides a continuous stream
of services to consumers. The model also implements a third production technology in which
capital is employed to produce capital that would be available for producing durable and
perishable goods for subsequent periods. More specifically, uncertainty in the economy is
implemented by a Wiener process driving the law of motion for the capital accumulation pro-
cess and a 2-state Markov chain governing changes in its production efficiency and volatility.

I make the simplified assumption that the durable stock is represented by the sum of the
aggregate housing stock plus other durable goods such as automobiles, furniture, and ap-
pliances. As a result, unless stated otherwise I use the terms housing and durables inter-
changeably throughout the article. Moreover, since the economic value of the housing stock
is larger than the stock of other types of durables, I set the depreciation rate of the durable
stock to a value matching that of the housing stock.

With the proper set of parameters, the model is able to produce the correct timing of
events characterizing the consumption cycle. In particular, the leading indicator aspect of
residential investment and durables expenditures for recessions and recoveries can only be
reproduced with large shocks in the productivity of the capital accumulation process, as
implemented by the Markov chain. Small continuous changes in the productivity of capi-
tal driven just by the Wiener process can only generate continuous changes in the durable
expenditure process. This cannot explain large variations in residential investment marking
incoming recessions and recoveries.

Furthermore, in order to replicate the stylized facts, the model must be parameterized with
a large elasticity of intertemporal substitution (EIS). When the economy is modeled with
low EIS values the results are contrary to the observed facts – a shock in the efficiency of
the capital accumulation process is immediately followed by a sizable discontinuous change
in perishable consumption, with a small, negligible change in durables expenditures.

In spite of its single Wiener process, the general equilibrium model is able to produce a
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wide variety of shapes for the term structure of forward housing prices. Furthermore, the
resulting dynamics of the modeled housing forward price curve supports the idea that, simi-
lar to the interest rate market, the slope of the term structure of the housing market would
be a good predictor of upcoming shifts in the business cycle.

There is a vast literature studying the role of durability on asset pricing. The effects of
incorporating the consumption of durable services in the representative agent’s utility in-
dex has been analyzed in Hindy and Huang (1993). They look into the agent’s optimal
consumption and investment decisions considering that households derive utility solely from
the consumption of durable services. In their formulation, purchases of durable goods are
irreversible. The representative household cannot scale down the level of durable services by
selling durable assets. This happens either because there is no market for such transactions,
or because the agent would have to pay a very high transaction cost to adjust the durable
stock. This situation might be viewed as a limiting case of Grossman and Laroque (1990)’s
model by specifying infinite selling costs. With these frictions, adjustments in the durable
stock are sporadic and happen in gulps. Though groundbreaking, these papers focus on the
impact of durability on the consumption and investment decisions for an individual agent
in the economy. As highlighted by Marshall and Parekh (1999), the modeled frictions im-
pose severe restrictions for analyzing the economy at an aggregate level. Furthermore, they
model the economy in partial equilibrium with exogenous durable prices. As a result, their
framework is not able to provide any insights about how the housing markets respond to
changes in the economic environment.

Yogo (2006) explores the effects of durability in a frictionless environment. He models the
consumer’s problem with the representative agent deriving utility from nondurable goods
and a flow of durable services obtained from durable stock holdings. The representative
household’s intertemporal utility has a recursive form, as in Epstein and Zin (1989) and
Weil (1989). The study demonstrates that non-separable within-time preferences on the
consumption of perishable goods and durable services can explain the predictability of stock
price returns in both time-series and cross-sectional samples, when the intratemporal elas-
ticity of substitution between both types of goods is higher than the intertempotal elasticity
of substitution. By including durability, Yogo (2006)’s framework is able to provide an ex-
planation for the value premium in the U.S. equity market. Unfortunately, in his analysis
durable consumption is restricted to NIPA’s durable good expenditures and consequently
his results might change significantly when residential investment is included in the analysis.

Though motivated by rather different reasons, my modeling approach is to some extent
related to that of Gomes, Kogan, and Yogo (2009). Their article extend Yogo (2006)’s by
modeling a general equilibrium with firms producing durables and nondurable goods. In
their model setup, there is an inelastic supply of capital provided by households to non-
durable and durable producers. By contrast, my framework models the supply of capital in
the economy as evolving over time. Also, since the focus of my study is on characterizing the
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production and consumption behavior across business cycles, as opposed to differences in
equity returns, I model consumers’ preferences more parsimoniously by employing a simpler
CRRA specification over an intratemporal Cobb-Douglas utility function. Finally, by using
a fixed supply of capital, Gomes, Kogan, and Yogo (2009)’s setup cannot provide insights
about how durable expenditures respond to sudden and large changes in the productivity of
capital accumulation — a critical model component for explaining the timing of consumption
and expenditures, as shown in the NIPA data. They are mute about the empirical findings
described in Leamer (2007)’s study.

I organize the paper in the following way. In Section 2, I describe the general structure
of the model, its assumptions, and the details of the market players. In Section 3, I derive
the economic equilibrium including the main steps to derive the base case model, which
is characterized by consumers’ preference implemented with a logarithm utility. Section 4
explores the implementation of the numerical approach taken to solve the model, including
the choice of model parameters. In Section 5, I explore the economic implications of the
model results, focusing on the timing of events that characterize the consumption cycle and
the resulting forward markets for housing. Section 6 shows potential generalizations of the
model. Section 7 contains my concluding remarks.

1.2 Model

I develop a model of general equilibrium with producing firms using capital as the sole input
for the production processes. In the spirit of Cox, Ingersoll, and Ross (1985) and Casassus,
Collin-Dufresne, and Routledge (2005), I consider a capital growth model. However, instead
of assuming that labor is not necessary in production, I make the assumption that, at time
t, the capital stock in the economy, named Kt, is a fixed-proportion blend of both physical
and human capital.

1.2.1 Production of goods

Capital is employed as a factor for producing two types of goods: a nondurable (perishable)
consumption good Nt, which is taken as the numeraire for the economy, and a durable good
Et, which is used to provide a continuous stream of services to consumers. Production of
nondurable goods YNt employs a linear technology. It takes ψ units of capital to produce
one unit of nondurable good. Imposing the market clearing condition gives
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YNt = Nt = ψKNt. (1.1)

Production of durable goods YDt employs a non-linear technology. A capital flow KDt is
employed as the single input for the production process. Moreover, the efficiency of the pro-
cess depends on the level of the durable stock in the economy, or equivalently on the service
level of the durable stock Zt, as well as on an efficiency factor α. The durable good pro-
duction flow, which with market clearing is equal to the durable expenditures Et, is defined as

YDt = Et = αKη
DtZ

1−η
t . (1.2)

The convex functional form for durable production generates interior solutions for the flow of
durable expenditures. The efficiency dependence on the durable stock Z is a mathematical
choice to establish a production technology that is homogeneous of degree one on KDt and
Z. This choice is critical for reducing the state space and simplifying the model solution as
shown in subsection 1.3.3.

1.2.2 Capital

The third production technology relates to the capital accumulation process. New capital
is produced by means of a linear technology using capital itself as the only factor for pro-
duction. The stock of capital in the economy evolves according to the following law of motion

dKt = (µiKt −KNt −KDt) dt+ σiKKtdωt. (1.3)

All agents in the economy construct their information set exclusively from the history of
a continuous time standard Brownian motion ω ≡ {ωt, t ∈ [0,∞)}, and an independent
Poisson process representing changes in the productivity regime of the capital accumulation
process. More specifically, the Poisson process drives a 2-state Markov chain with regimes
(states) labeled as h for the “high productivity” of capital regime and ` for the “low pro-
ductivity” of capital regime. In this framework, regime i switches into regime j 6= i at the
first jump time of the Poisson process with intensity λj, i.e, λ` is the intensity of the Poisson
process when switching from the high productivity regime to the low productivity regime.
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The parameters µi and σik in equation (1.3) define the productivity and the volatility of
capital reinvestment for the productivity regime i, respectively.

Note that a change in regime does not impact the level of capital stock in the economy.
Immediately after a switch in regime, the capital stock remains the same. The impact, how-
ever, is in the rate in which capital grows in the economy, or equivalently, the productivity
of capital accumulation µi, as well as in the volatility of the capital accumulation σik.

The economic motivation for implementing a Markov chain follows from the fact that large
“shocks” are at the heart of business cycles, as documented by Fuhrer and Schuh (1998).
They point out that modern macroeconomic theory identifies different causal factors behind
recessions: technology shocks, energy price shocks, actions taken by monetary policymakers,
and international disturbances. In my modeling approach, I do not attempt to endogenously
identify each individual causal channel. I assume that, all these events ultimately create a
significant and abrupt negative change in the productivity of capital accumulation prior to
an economic downturn. In my general equilibrium model, capital productivity shocks are
exogenously defined. After occurring, they propagate to producers and consumers, as these
agents respond to negative shocks by adjusting their supply and demand functions to lower
levels.

As a result, the model does not provide any insights about which individual channel leads
to an economic downturn. For instance, Bernanke et al. (1997) and Hamilton (1985) at-
tribute rising oil prices, induced by disruptions in supply, as the main cause for the 1973-Q4,
1980-Q1, 1981-Q3, and 1990-Q3 recessions. In the model framework, all these events trans-
lates into a shift in regime from a high to a low productivity of capital accumulation as
implemented by the the Markov-Chain. Similarly, the model is not designed to explain the
remarkable escalation in house prices that preceded the most recent recession in 2007-Q4.
From the model point of view, the main source of inefficiencies in the capital accumulation
process results from the significant reduction in the supply of capital by financial interme-
diaries, triggered by a significant shortfall in capital reserves after the collapse of house prices.

1.2.3 Households

Households in the economy are infinitely lived. At each point in time t ∈ [0,∞) they con-
tinuously purchase two types of goods: a nondurable (perishable) good Nt, and a durable
good Et. The nondurable good deteriorates immediately and becomes worthless if not used
for consumption.

The flow of purchases of durable goods Et, or durable expenditures, is added to the house-
hold’s durable stock Zt. A unit of durable expenditure starts providing a flow of services
to consumers immediately after its purchase, and keeps providing a flow of services into the
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future with its level depreciating at a constant rate δ. As common in the literature, e.g.,
Grossman and Laroque (1990), Hindy and Huang (1993), and Yogo (2006), I assume that
the service flow from finished durable goods at time t is a linear function of the stock level
of durables. More precisely, the following expression defines the relation between the service
level of the durable stock and the history of durable expenditures

Zt = Z0e
−δt +

∫ t

0

e−δ(t−s)Esds. (1.4)

I emphasize that the durable service level Zt is proportional to the aggregate stock of durable
goods. In addition, production of any additional unit of durable good is irreversible since
this same unit cannot be converted back into capital. More specifically, in the context of the
housing markets, once a new home is built it might change hands between households, but
it will always count as part of the existing stock.

Also, the equation above establishes a clear distinction between durable expenditures and
durable consumption. Durable expenditures Et equates to additions to the durable stock.
Durable consumption equates to the level of services Zt provided by the durable stock. Fi-
nally, this distinction does not exist in the case of nondurable goods. Due to its perishable
nature, nondurable consumption and nondurable expenditures must be the same at any
point in time.

Applying the first derivative to equation (1.4) provides the following law of motion for the
aggregate durable service level in the economy

dZt =
(
αKη

DtZ
1−η
t − δZt

)
dt.

1.2.4 Markets

I assume complete markets. In the modeled economy, households can invest their wealth
in three long-lived securities traded continuously in a frictionless market: a riskless money-
market account valued Bt and two risky securities valued S1t and S2t that provide hedges for
both the standard Brownian motion ω ≡ {ωt, t ∈ [0,∞)} and the Poisson counting process
n ≡ {nt, t ∈ [0,∞)}. I assume that the value of these securities evolve according to the
following processes
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dBt

Bt

= rtdt,

dS1t

S1t

= µ1tdt+ σ1tdωt + ν1tdnt,

dS2t

S2t

= µ2tdt+ σ2tdωt + ν2tdnt

respectively, where rt represents the known rate of return of the riskless security at time t,
µ1t and µ2t specify the drift parameters of the risky securities, and σ1t, σ2t, ν1t, and ν2t char-
acterize the volatility parameters for the standard Brownian motion and Poisson counting
processes, respectively.

Any feasible plan for nondurable consumption N ≡ {Nt, t ∈ [0,∞)} and durable expen-
ditures E ≡ {Et, t ∈ [0,∞)} can be established from a unique investment strategy in the
securities above.

1.2.5 Household’s preferences

The intraperiod utility is specified by a time-separable logarithm utility function on both
the consumption of nondurable goods N and the service level provided by the durable stock Z

u(N,Z) = ln
(
NβZ1−β) = β lnN + (1− β) lnZ. (1.5)

The utility specification above has the feature that the agent’s felicity at time t depends on
a combination of both nondurable consumption and the service flow provided by her hold-
ings of the durable stock. Nondurable consumption contributes with weight β and durable
service consumption contributes with weight (1 − β). The Cobb-Douglas functional form
above can be seen as a limiting case of a constant elasticity of substitution (CES) aggre-
gator utility specification with the elasticity of substitution parameter taken to the value one.

I emphasize that the main objective of this paper is to understand the timing of events
characterizing economic cycles. In this sense, it is expected that the elasticity of intertem-
poral substitution (EIS) plays an important role in defining the correct timing of changes in
the optimal nondurable consumption and durable expenditures as the economy cycles. With
this in mind, I first solve the general equilibrium economy with the logarithm preference
as a base case. As is well known in the literature, this type of preference is a special case
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of a more general specification in which consumers have preferences defined by a constant
relative risk aversion (CRRA) utility function. In the CRRA setting the EIS equates to the
reciprocal of the coefficient of relative risk aversion, named γ, and the logarithm specification
is attained as a limiting case where γ converges to one.

I also note, that in spite of its dual role, the preference parameter γ should actually be
thought to express the trade-offs of intertemporal consumption, or its role governing the
EIS. The role of γ as the coefficient of relative risk aversion could in future studies be disen-
tangled from the EIS by applying an even more general preference representation, such as
the stochastic differential utility as defined in Duffie and Epstein (1992).

I assume that an infinite number of identical households exist in the economy. The equilib-
rium price of durable goods is not influenced by durable expenditures of a single individual
household. Agents are price takers in this economy. To model the durable (housing) price
dynamics at a macroeconomic level, I abstract from several details of firms’ operations and
the fact that firms might finance their operations by issuing both equity and debt. As a re-
sult, I use the simplifying assumption that the representative firm is constrained by financing
its operation through equity issued to households.

1.3 Equilibrium

In this section, I provide the derivation of the equilibrium in the economy for both capi-
tal productivity regimes. First, I characterize the Hamilton-Jacobi-Bellman equation. This
yields a system of partial differential equations along the optimal durable consumption and
nondurable expenditures paths. Homogeneity of the production technologies allows me to
reduce the state space. This results in a model formulation for a value function scaled for
the size of the economy, i.e, an economy where the total stock, as defined by the sum of
capital and durable stock, is equal to a value of one.

1.3.1 The Hamilton-Jacobi-Bellman equation

The general equilibrium model is solved from a social planner’s perspective. For a given
state of the economy defined by the productivity regime i ∈ {h, `}, the level of the capital
stock K, and the durable service level Z, at every point in time t, the planner maximizes
the representative household lifetime utility by choosing the corresponding capital flows em-
ployed in the production technologies YNt and YDt. The social planner solves
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sup
{KNs,KDs}

E

[∫ ∞
t

e−ρsu(Ns, Zs)ds

]
.

The value function for the social planner takes the form

Ji(K,Z, t) = sup
{KNs,KDs}

Et

[∫ ∞
t

e−ρsu(Ns, Zs)ds

]
subject to

dKt = (µiKt −KNt −KDt) dt+ σiKKtdωt

dZt =
(
αKη

DtZ
1−η
t − δZt

)
dt

Nt = ψKNt, (1.6)

where ρ denotes the rate of time preferences for the representative agent.

Building the Hamilton-Jacobi-Bellman (HJB) for the planner’s problem involves, first, adding
an integral term taken along the optimal path to both sides of the objective function above

Mi(K,Z, t) =

∫ t

0
e−ρsu(N∗s , Z

∗
s )ds+ Ji(K,Z, t) = sup

{KNs,KDs}
Et

[∫ ∞
0

e−ρsu(Ns, Zs)ds

]
.

This new modified process Mi(K,Z, t) is a martingale since the expression on the right-hand-
side does not depend on t. Applying the generalized Ito’s lemma to assess Et[dMi(K,Z, t)] =
0 results in the following HJB equation for the logarithm preference case

0 = sup
{KiN ,KiD}

{
e−ρt (β lnψ + β lnKiN + (1− β) lnZ) + Jit + JiK (µiK −KiN −KiD)

+
1

2
JiKKσ

2
iKK

2 + JiZ
(
αKη

iDZ
1−η − δZ

)
+ λj (Jj − Ji)

}
. (1.7)
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1.3.2 Optimal nondurable consumption and durable
expenditures

First order conditions for the controls KiN and KiD yield the optimal decisions for non-
durable consumption and durable expenditures at time t. Applying first partial derivatives
to equation (1.7) yields

K∗iN =e−ρtβJ−1iK , (1.8)

K∗iD =Z

(
αη

JiZ
JiK

) 1
1−η

. (1.9)

Optimal durable expenditures results in

αK∗ηiDZ
1−η =αZ

(
αη

JiZ
JiK

) η
1−η

. (1.10)

1.3.3 Reducing the state space

All production technologies are homogeneous of degree one. This formulation, together with
the logarithm utility, the homogeneity of degree one of the intraperiod consumption, and the
linearity of the constraint equations, allows the reduction of the state space. Consequently,
I define a new state variable y representing the ratio of the stock of capital to the sum of
the durable service level and the capital stock

y =
K

K + Z
. (1.11)

This new variable and the capital accumulation regime indicator i ∈ {h, `} fully characterize
the state of the economy. Also note that y is bounded in the interval (0, 1). For a fixed
durable service level Z > 0, as the stock of capital K → 0, y → 0. When K → ∞, y → 1.
Analogously, for a fixed stock of capital K > 0, as the durable service level Z → 0, y → 1.
When Z →∞, y → 0.

I seek a candidate solution for the HJB equation of the form
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Ji(K,Z, t) = e−ρt (Ai ln (K + Z) + gi(y)) , (1.12)

with Ai and gi(y) representing a constant term and a scaled value function for each produc-
tivity regime respectively.

I interpret the candidate value function in the following way. The term e−ρt simply ac-
counts for the household’s impatience for later consumption. The term ln(K + Z) accounts
for the “size” of the economy since it relates to the total stock of the economy. From this
perspective, two distinct economic states (K1, Z1) and (K2, Z2) with the same sum of capital
stock and durable service level K1 + Z1 = K2 + Z2 produce the same value for this term.
In particular, when the total stock adds to one, K + Z = 1, this term vanishes and the
value function equates to the discounted value of gi(y). Consequently, the function gi(y) is
interpreted as the value function scaled by the size of the economy.

In fact, the term gi(y) has a more complex interpretation. First, the indicator i adjusts
the value function for different productivity regimes of the capital accumulation process.
Second, as explained below, for a fixed regime i the function gi(y) adjusts the value function
by taking into account both the irreversibility and the varying efficiency of the durable pro-
duction process.

At one extreme, when y → 0, the economy has a low capital stock K relative to its size
K + Z. In this range, for a constant size of the economy K + Z, the representative agent
would be better off if she could rebalance her consumption pattern by consuming more non-
durable goods at the expense of a lower durable service level. However, she cannot convert
durable stock back into capital stock. As a consequence, the value function is lower relative
to one with a more balanced nondurable and durable service consumption.

At another extreme, where y → 1, the economy has a high capital stock K relative to
its size K + Z. In this range the representative agent is starving for durable services. As
before, considering a constant size of the economy K+Z, the agent would be better off if she
could employ the abundant capital stock into the durable production process and increase
her durable service level. However, durable production efficiency is very low in this range,
and as a result the agent will keep suffering from low durable consumption until durable
production efficiency increases. As in the case for the state variable y → 0 described above,
the value function is lower relative to one with a more balanced nondurable and durable
service consumption.

Applying the candidate solution to the Hamilton-Jacobi-Bellman equation (1.7) yields a
one-dimensional ordinary differential equation (ODE) for each productivity regime gh(y)
and g`(y). Appendix 3.1.2 contains the details for deriving this system of ODEs in its com-
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pact form

0 =− β (1− ln (ψβ))− β ln (MiK(y)) + (1− β) ln (1− y)− (ρ+ λj) gi(y) + λjgj(y)

+ µiyMiK(y)− (αη)
1

1−η MiZ(y)
1

1−η (1− y)MiK(y)
−η
1−η +

1

2
σ2
iKy

2MiKK(y)

+ α (αη)
η

1−η MiZ(y)
1

1−η (1− y)MiK(y)
−η
1−η − δ (1− y)MiZ(y), (1.13)

where I use the following notation for the marginal values of the capital stock and the durable
service level for a unit size economy (K + Z = 1) at time zero

MiK(y) ≡ φ+ g′i(y) (1− y) , (1.14)

MiZ(y) ≡ φ− g′i(y)y, (1.15)

and

MiKK(y) ≡ g′′i (y) (1− y)2 − 2g′i(y) (1− y)− φ (1.16)

for the convexity term. The derivation in appendix 3.1.2 also shows that for the candidate
solution to be valid, the constant terms Ah and A` must both equate to the value φ = 1/ρ.

To the best of my knowledge the system of ODEs in equation (1.13) does not have a closed-
form solution. I obtain the the value function by employing numerical procedures. More
particularly, the discretization scheme for the state space is guided by the dynamics of the
state variable y.

1.3.4 The dynamics of the state variable

The dynamics of the state variable y in terms of the scaled value function gi(y) and its
derivatives is obtained from the application of Ito’s lemma

dy = µydt+ σydωt, (1.17)

where

µy =µiy (1− y) + δy (1− y)− σ2
iKy

2 (1− y)− β 1− y
MiK(y)

− (αη)
1

1−η (1− y)2
(
MiZ(y)

MiK(y)

) 1
1−η

− α (αη)
η

1−η y (1− y)

(
MiZ(y)

MiK(y)

) 1
1−η

, (1.18)

σy =σKy (1− y) . (1.19)
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By construction, the state variable y increases when the capital stock K increases relative
to the durable service level Z, and decreases otherwise. Each term contributing to the drift
of y has an economic interpretation. The first term has a positive sign since it relates to
increases in the capital stock from the capital accumulation production process. The second
term is also positive since it expresses the effects of depreciation in the durable service level
(a decrease in Z yields to an increase in y). The negative third term refers to the concavity
of the scaled value function. The fourth term relates to the flow of capital employed in
the nondurable production processes. Its negative sign expresses the fact that the stock of
capital diminishes as capital outflows into production. The fifth term is analogous to the
forth term: it refers to the capital flow for the durable production process. The last term
expresses the effects of the output of the durable production process on the state variable.
The negative sign indicates that increases in the durable service level yield to decreases in
the state variable.

Note that the volatility of the state variable depends on the state variable itself. Since
the ratio of capital stock K to the total stock (K + Z) must be bounded between zero and
one, the volatility σy must go to zero as y approaches these bounds. Also, the state variable
volatility does not depend on the value function gi(y) or any of its derivatives. It has just
a simple dependence on y. This last aspect will drive the choice of lattice for numerically
solving the system of ODEs.

Driven by shocks in the capital accumulation process in equation (1.3), the economy evolves
along its optimal path and the state variable y tends to mean revert. When the durable ser-
vice level is large relative to the capital stock, i.e. y is low, the representative agent decreases
her demand for durables. Production capital employed for creating durable goods is small
and depreciation takes its toll. In this situation the absolute value of the fifth drift term is
small and depreciation given in the third term dominates the sixth term. In this case y tends
to increase. In contrast, when the durable stock is small compared to the capital stock, the
representative agent is starving for durable service. A larger part of the production capital
is used for the durable production process. In this case, the absolute value of the fifth term
is large and the sixth term dominates the third term. In this case, y tends to decrease.

1.4 Model solution

1.4.1 Numerical approach

I employ a numerical scheme for solving the system of ODEs in equation (1.13). First, I
assume that the efficiency parameter α for the durable production function in equation (1.2)
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is dependent on the ratio variable y according to

α(y) = θ (1− y) . (1.20)

The motivation for this specification is two-fold:

a) The (1− y) functional form expresses the stacking order in which durable producers allo-
cate productive resources. A downward drift of the state variable y indicates a relatively
low durable expenditures. This implies that when y decreases overall efficiency increases,
since producers retain the more efficient resources and relinquish the less efficient ones.
Conversely, an upward drift in the state variable increases the demand for additional
production resources, which induces firms to employ less efficient capital at the margin.
The ultimate effect is that overall productivity decreases as y increases.

b) This approach yields a well-behaved scaled value function gi(y) in the limiting case where
y → 1. In this extreme range of the state variable the representative consumer holds very
little durable stock relative to capital stock and, for a constant parameter α, the optimal
choice is to employ lumpy amounts of capital to create lumpy durable expenditures as in
Grossman and Laroque (1990). This lumpy discontinuous use of capital creates numerical
instabilities in this far range of the state variable. The specification in equation (1.20)
reinforces a lower productivity in the vicinity y ≈ 1 and guarantees stable solutions for a
wide range of the parameters θ and η.1

Second, I establish a lower bound Ĵi(K,Z, t) for the value function Ji(K,Z, t) in equation
(1.6) for the logarithm preference case. I evaluate the lower bound by considering a non-
optimal feasible strategy where the social planner commits to zero durable expenditures
(Et = 0), and allocates capital exclusively into the capital accumulation and nondurable
production processes. In this setting the planner simply lets the current durable stock de-
preciate at a rate δ. Equation (1.21) below defines the expression for the value function with
this suboptimal strategy. Appendix 3.1.3 presents the details of its derivation.

Ĵi(K,Z, t) =
e−ρt

ρ

[
ln (K + Z) + β

(
ln y +

ρ

β
Ci

)
+ (1− β)

(
ln (1− y)− δ

ρ

)]
, (1.21)

1The state variable dependence in equation (1.20) makes the economic interpretation of the parameter
θ more difficult. This drawback, however, is compensated by a tractable and stable numerical procedure.
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where

Ci =
β

ρ2

[
(λi + ρ)µi + λjµj

ρ+ λi + λj
− ρ (1− ln ρ)− 1

2

(λi + ρ)σ2
iK + λjσ

2
jK

ρ+ λi + λj

]
.

Moreover, this expression for the lower bound provides a limiting case for the value function
when the durable stock is very large compared to the capital stock, which characterizes the
behavior of the value function when y → 0. This expression also gives the solution for the
value function when y → 1 for the efficiency specification in equation (1.20). In these ex-
tremes the value function Ji(K,Z, t) converges to Ĵi(K,Z, t). Formally,

lim
y→{0,1}

Ji(K,Z, t) =
e−ρt

ρ

[
ln (K + Z) + β

(
ln y +

ρ

β
Ci

)
+ (1− β)

(
ln (1− y)− δ

ρ

)]
,

(1.22)

or equivalently

lim
y→{0,1}

gi(y)→ β

ρ

(
ln y +

ρ

β
Ci

)
+

1− β
ρ

(
ln (1− y)− δ

ρ

)
. (1.23)

This limiting expression for gi(y) motivates recasting the ODE in equation (1.13) by apply-
ing the following transformation for the scaled value function

gi(y) = φ [β ln y + (1− β) ln (1− y) + fi(y)] . (1.24)

This new formulation has the advantage of establishing a convergence value for fi(y) in
the limits where y → {0, 1}, which yields numerically stable procedures. Appendix 3.1.4
provides the steps for deriving the new system of ODEs in terms of the transformed value
function fi(y). Appendix 3.1.5 defines the steps for numerically solving the ODE system for
fi(y), and gives a sketch of the employed algorithm.

1.4.2 The model with CRRA preferences

The steps taken to solve the economy with consumer preferences defined with a constant
EIS 1/γ > 0 parallel those of the logarithm case. More specifically, with CRRA intraperiod
preferences
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u(N,Z) =
1

1− γ
[
NβZ1−β]1−γ ,

the major changes in the derivation relate to the functional form of the candidate value
function and the first-order condition on the capital employed in the nondurable production
process. More specifically,

J(K,Z, t) =
1

1− γ
(K + Z)1−γ gi(y),

ψK∗N =

[
JiK
ψβ

] 1
β(1−γ)−1

Z
(1−β)(1−γ)
β(γ−1)−1 .

The numerical approach for solving the system of ODEs, however, differs depending on the
magnitude of γ. For γ in the interval (0, 1) the scaled value function should converge to zero
at the extremes y = 0 and y = 1. In this situation, there is no need to further transform
gi(y). Conversely, for values of γ > 1 the numerical approach is analogous to the logarithm
case after applying the following transformation to the scaled value function

gi(y) = yβ(1−γ) (1− y)(1−β)(1−γ) fi(y). (1.25)

1.4.3 Model parameterization

By numerically solving the transformed value function fi(y), I am able to characterize the
scaled value function gi(y) by simply employing the transformation equations (1.24) and
(1.25). I note that the function gi(y) and its partial derivatives are the key elements for
deriving optimal patterns for nondurable consumption and durable expenditures, as well as
the drift and volatility of the state variable. In addition, as shown later in subsection 1.5.4,
the function gi(y) is also the main ingredient for establishing the state price deflator and
durable prices for the economy. In summary, the solution for fi(y) is central for deriving all
results.

The choice of parameters for the model is also central for the solution, answering why
and under which conditions residential investment is a leading indicator for changes in eco-
nomic cycles, as well as the behavior of durable (housing) prices (spot and forwards). Table
1.1 reports the parameters used for the base case model specified with logarithm preferences.
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Parameter Symbol Value

Durable (housing) depreciation rate δ 1.00%
Preferences

Discount factor ρ 1.00%
Elasticity of intertemporal substitution - 1.00
Relative risk aversion - 1.00
Utility weight on durable goods β 0.46

Capital Accumulation Technology
High regime productivity µh 5.50%
Low regime productivity µl -2.50%
High regime volatility σKh 2.4%
Low regime volatility σKl 2.4%

Durable & Nondurable Production Technology
Durable elasticity of variable input η 0.75
Durable production efficiency θ 0.80
Nondurable production efficiency ψ 7.00

Markov Chain Transition Rates
High to low intensity λl 0.20
Low to high intensity λh 1.10

Table 1.1: Parameters for the base case model – logarithm preferences.

Wilhelmsson (2008) estimates different values for the rate of depreciation of houses. His
results indicate depreciation rates varying between 0.42% to 1.10% depending on house age
and the level of maintenance. In the model, I set the depreciation rate to 1.00%. This choice
assumes that without any investments in maintenance a typical home will lose about 10%
of its value over a period of 10 years. As common in the literature, I set the rate of time
preference to 1.00%. The logarithm preference for the representative consumer implies a
unit value for the elaticity of intertemporal substitution and the coefficient of relative risk
aversion. I set the preference weights between the consumption of perishable goods and
durable services to 0.46, which is close to the value 0.50 chosen by Gomes, Kogan, and Yogo
(2009).

The productivity of the capital accumulation process for the high (5.5%) and low (−2.5%)
states is set to match the average real return on the market portfolio, which is about 4.25%
(see for instance Campbell, Lo, and MacKinlay (1997)). The volatility of capital accumula-
tion for the high and low production regimes are set to the same value of 2.4%. With this
choice, the model generates a volatility of nondurable consumption which matches NIPA’s
historical volatility of nondurable consumption plus services of 2.6%. This relatively low
value for the volatility of capital accumulation simply reflects the difficulties of standard
models, with logarithm and constant relative risk aversion preferences, to simultaneously
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match a high volatility for the market portfolio and a low volatility for the perishable con-
sumption process. Appendix 3.1.6 provides the details for deriving expressions for the drift
and volatility of the perishable consumption process in terms of the scaled value function
gi(y) and its derivatives.

The parameter η describing the curvature of the durable production process is set equal
to 0.75, which is similar to Gomes, Kogan, and Yogo (2009). The parameters for durable
and nondurable production efficiencies, θ and ψ respectively, are adjusted to produce a
modeled perishable consumption that is on average about 4.2 times the modeled durable
expenditures. This choice reflects the average historical ratio of NIPA’s nondurable expen-
ditures plus services to NIPA’s durable expenditures plus residential investment.

Contraction Duration in Months
Beginning End Contraction Expansion

Nov-1948 Oct-1949 11 37
Jul-1953 May-1954 10 45
Aug-1957 Apr-1958 8 39
Apr-1960 Feb-1961 10 24
Dec-1969 Nov-1970 11 106
Nov-1973 Mar-1975 16 36
Jan-1980 Jul-1980 6 58
Jul-1981 Nov-1982 16 12
Jul-1990 Mar-1991 8 92
Mar-2001 Nov-2001 8 120
Dec-2007 Jun-2009 18 73

Average (months) 11 58
Average (years) 0.9 4.9

Table 1.2: Number of months of contractions (duration of the recession), and number of
months of expansions before the beginning of the recession for each recession period after
World War II.

Finally, from the post-World War II NBER data listed in Table 1.2, I set the intensities λl
and λh, governing the change in productivity regimes, to produce business cycles with an
average contraction (recession) period of 0.9 years and an average expansion (boom) period
of 4.9 years.
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1.5 Results

1.5.1 State variable dynamics

I start by characterizing the probability density function (pdf) of the state variable. This
gives a better understanding of the valid range and frequency within which the state variable
varies as both the Poisson and Wiener shocks move the economy over time. Figure 1.2 dis-
plays the empirical marginal pdf of the state variable y. Using equation (1.17) and the model
parameters shown in Table 1.1, a simulation tracks the ending values and the ending regimes
of y after generating 30, 000 paths of the state variable over a period of approximately 500
years.

0.45 0.50 0.55 0.60 0.65 0.70 0.75
0

200

400

600

800

1000

1200

y = K/(K+Z)

F
re
q
u
en

cy

Figure 1.2: Unconditional probability density function of the state variable y for the loga-
rithm preference case, with model parameters defined in Table 1.1. The figure results from
simulating the state variable dynamics in equation (1.17) for 30, 000 paths for a period of
approximately 500 years.

For simplicity, I omit the figures for the empirical distributions of y conditional on the pro-
ductivity regimes since they show similar patterns to those of the unconditional pdf. Table
1.3 displays the statistics of the first two moments of the empirical unconditional and con-
ditional distributions, as well as the ranges of the state variable for a two-tailed confidence
level of 99%.
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Range (99% confidence)

Distribution Count Mean Std. Min Max

Unconditional 30,000 0.6303 0.0324 0.5306 0.6982
High Regime 25,385 0.6322 0.0318 0.5335 0.6982
Low Regime 4,615 0.6201 0.0342 0.5139 0.6909

Table 1.3: Statistics of the state variable y for the unconditional distribution, the distribution
under the regime of high productivity of capital, and the distribution under the regime of
low productivity of capital.

Figure 1.3 plots the drift of the state variable, as indicated in equation (1.18), for the model
parameters defined in Table 1.1. Although the figure plots the drift for the entire range
of the state variable, the distribution results shown in Figure 1.2 and Table 1.3 indicate
that, in fact, the state variable takes value in a much tighter range. For convenience, the
figure includes three vertical lines identifying the respective leftmost and rightmost values
of y for a 99% confidence level for each regime, as well as its average. This indicates that
within its range of interest, the state variable takes a positive drift for a high productivity
of capital accumulation, and a negative drift for a low productivity of capital accumulation.
The changing sign of the drift makes evident why the ratio variable y tends to mean-revert.
Furthermore, note that if the economy stays in a high productivity regime for a long period
of time, the state variable is expected to increase due to the positive drift. However, as y
increases, the magnitude of the drift decreases.2 An analogous analysis applies when the
economy is in a low productivity state.

The mean-reverting behavior of the state variable has important economic implications. It
means that the law of motion of the logarithm of the capital stock and the logarithm of the
durable stock processes are cointegrated. In addition, the results from this general equilib-
rium model indicate that the ratio variable y has the potential to predict asset returns in the
economy. In an empirical study, Lettau and Ludvigson (2001) find that the logarithm of the
ratio of consumption to aggregate wealth, named cay, is a good predictor of asset returns.
Their empirical findings also show that consumption, asset holdings, and labor income (prox-
ying for human capital) are cointegrated. Deviations from a shared trend indicate expected
future returns on the market portfolio. Analogously to cay, my model state variable y (the
ratio of capital stock to durable stock plus capital stock) provides predictability to asset
returns. This predictive power is also in line with Gomes, Kogan, and Yogo (2009)’s article.
Since the supply of capital is constant in their general equilibrium framework, their key
forecasting variable is simply the ratio of net durable expenditures to the stock of durables.

Figure 1.3 also shows how the the durable efficiency dependence on the state variable, as

2In fact, the drift becomes slightly negative as the state variable approaches its rightmost 99% confidence
value.
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Figure 1.3: Drift rate of the state variable y for the base case model (logarithm preferences)
as defined in equation (1.18). The solid line shows the drift of y when the the economy has
a high productivity of capital accumulation. The dotted line shows the drift rate for a low
productivity of capital accumulation. The respective solid and dotted vertical lines indicate,
from left to right, the minimum, mean, and maximum values of the conditional distributions
as listed in Table 1.3.

defined in equation (1.20), makes the model tractable for values of y in the vicinity of one.
In this region the drift converges to zero, showing that the model predicts no gulp durable
expenditures when the representative consumer has an extremely low durable stock and an
abundant capital stock. I emphasize that the range in which the durable efficiency decaying
functional form is heavily influencing the solution is far from the range of interest of the state
variable. Still, it is illustrative to analyze the behavior of the drift function for y ≈ 0.97. In
this region, the weighted average drift quickly changes from negative to positive as y increases
beyond 0.97.3 Economically, this expresses the decision of the representative consumer to
stop adding to the durable stock. In this region of the state variable, the productivity of
the durable technology is extremely low, making any durable expenditures prohibitive. The
representative agent simply lets the existing stock depreciate, and allocates capital only for
the production of perishable goods.

3This is because the positive drift of the high productivity regime contributes much more to the weighted
average than the negative drift of the low productivity regime.
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1.5.2 Timing of durable expenditures and nondurable
consumption

Figure 1.4 plots nondurable consumption and durable expenditures for both productivity
regimes over the 99% confidence interval of the state variable. The left and right vertical
lines mark the average values of y for the low and high productivity regimes respectively, as
defined in Table 1.3.
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Figure 1.4: Scaled durable expenditures and nondurable consumption for the high and low
productivity of capital regimes, over the 99% confidence interval of the state variable for the
logarithm case. The right and left vertical lines indicate the averages of the state variable
y for the high and low productivity regimes (see Table 1.3), respectively. The nondurable
consumption plots for high and low regimes are almost identical and fall on top of each other.

This figure highlights the significant change in durable expenditures as the economy switches
between states. This is in clear contrast with the much smaller change in nondurable con-
sumption. When the state of the economy switches from a low to a high productivity state,
the relative change in the scaled durable expenditures amounts to an average of 2.17%, com-
pared to a 0.37% change in nondurable consumption.

Furthermore, the jump is slightly greater when the economy moves from boom to reces-
sion. This happens because when the economy stays in a high productivity state (boom) for
a longer period of time, the state variable y tends to take values around its conditional mean
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of 0.6322 (see Table 1.3). At this point, the gap in durable expenditures is clearly higher
than the gap when y is at its conditional low productivity average of 0.6201.

The economic interpretation is that right after a negative shock in the productivity of capital
accumulation, the immediate reaction of the representative consumer is to decelerate the rate
of durable expenditures in favor of maintaining a high level of perishable consumption. This
abrupt change in durable expenditures occurs immediately after the realization of the shock.
The reverse pattern occurs after a positive shock in the productivity of capital. In this case,
the economic interpretation is that consumers accelerate the rate of durable expenditures to
replenish a depleted durable stock. More precisely, a negative (positive) shock in durable
expenditures, immediately after a negative (positive) shock in the productivity of capital
accumulation, is what signals that further declines (rises) in consumption and expenditures
are expected ahead.

Figure 1.5 is a zoomed version of Figure 1.3. It gives a more detailed view of the drift of the
state variable for the 99% confidence range. When the economy is booming long enough, the
state variable tends to move around its conditional mean (marked by the vertical line on the
right). Right after the economy switches regimes, there is a marked discontinuity in the flow
of durable expenditures (as shown in Figure 1.4). The state variable y remains the same,
however, since the jump in capital productivity does not immediately impact any compo-
nent of the state variable y (the capital stock and the durable stock). In fact, the effect of
a downward shock in capital productivity is a flip of the sign of the drift of the state variable.

Economically, after a negative productivity shock the capital stock grows at a negative pace
and, in response, consumers slow down their nondurable consumption and further decrease
their durable expenditures. Eventually, the economy goes into recession. A positive shock in
capital productivity signals that the end of the recession is near. In response, durable expen-
ditures jump upwards (nondurable consumption follows the pattern, but with a negligible
change). As Figure 1.5 indicates, right after the positive shock, the sign of the drift of the
state variable flips to a large positive value. Durable expenditures further increase after the
jump, and perishable consumption starts to increase. Eventually the economy moves out of
recession. As the economy fully recovers, the drift rate of y slows down. This completes the
economic cycle.

The key point is that a jump in durable expenditures occurs only when there is a sizable shock
in the productivity of the capital accumulation process. Small continuous changes in pro-
ductivity, as frequently implemented with a persistent and slow moving variable, would yield
continuous changes in the expenditure process. Without the sizable shock in the productiv-
ity of capital (from 5.5% to −2.5%), the model cannot produce quick and large variations in
durable expenditures and residential investment marking incoming recessions and recoveries.4

4As an alternative, one could implement an heteroscedastic mean-reverting process for the capital pro-
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Figure 1.5: Drift of the state variable under regime switching. This figure is a zoomed version
of Figure 1.3 for the 99% confidence interval of the state variable. The left and right dashed
vertical lines correspond to the leftmost 99% confidence level and the conditional average
of y for the low productivity regime. The left and right solid vertical lines correspond to
the conditional average and rightmost 99% confidence level of y for the high productivity
regime.
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Figure 1.6: Nondurable consumption volatility and durable expenditures volatility for the
99% confidence interval of the state variable y.

Figure 1.6 depicts the derived model’s volatility of nondurable consumption and durable
expenditures as defined in equation (3.33) of Appendix 3.1.6. The model generates a very

ductivity in order to produce the same type of sizable changes as implemented by the Markov chain.
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flat volatility for the nondurable consumption process for both productivity regimes within
the range of interest of the state variable. The nondurable volatility is increasing in the
state variable, and ranges from 2.51% to 2.63%. The same flat shape is also present in the
case of durable expenditures volatility. The nondurable volatility also increasing in the state
variable, and ranges from 7.82% to 8.35%. More interesting, though, the model predicts that
the average volatility of durable expenditures is more than 3 times higher than the volatility
of nondurable consumption. This result is in line with the observed data for the post-WWII
period when the NIPA’s volatility of nondurable consumption plus services, is 2.6%, while
the NIPA’s volatility of residential investment plus durable expenditures amounts to 12.3%.

1.5.3 EIS and the timing of durable expenditures and
nondurable consumption

The results for the timing of durable expenditures and nondurable consumption in the pre-
vious subsection relate to a model parameterized with a high EIS. As already noted, with
CRRA preferences, the curvature parameter γ governs both the EIS and the relative risk
aversion. Since this paper focuses on the timing pattern of durable expenditures and non-
durable consumption, I focus on the EIS aspect of the parameter γ in the subsequent analysis.

I derive the optimal durable expenditures and nondurable consumption by solving the ODE
system for CRRA case, employing the same techniques used for solving the logarithm pref-
erence case. The parameters governing the production processes were modified to reproduce
the same results for the levels of nondurable consumption and durable expenditures of the
logarithm utility case. Table 1.4 shows the parameterization for the CRRA case.

Figure 1.7 is analogous to Figure 1.4. It shows optimal nondurable consumption and durable
expenditures for the CRRA utility specification and for an EIS value of 0.50. These plot-
ted values result from solving the ODE system for the CRRA case by employing the same
techniques used for solving the logarithm preference case. The parameters θ and ψ for the
production processes, however, were modified to produce the same results for the levels of
consumption and expenditures of the logarithm utility case.

In this figure changes in durable expenditures and nondurable consumption, immediately af-
ter the productivity shock, are opposite to those of the logarithm preference case (EIS = 1).
Note that the response of durable expenditures to shocks in capital productivity is smaller
than in the logarithm case. When the state of the economy switches from a low to high
productivity state, the relative change in scaled durable expenditures amount to an average
of 0.76%, compared to 2.17% for the case of logarithm preferences. The average change in
nondurable consumption is 2.37% for the CRRA case compared to an average of 0.370% for
the logarithm utility case. Contrary to empirical evidence, the low EIS case shows that it is
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Parameter Symbol Value

Durable (housing) depreciation rate δ 1.00%
Preferences

Discount factor ρ 1.00%
Elasticity of intertemporal substitution 1/γ 0.50
Relative risk aversion γ 2.00
Utility weight on durable goods β 0.46

Capital Accumulation Technology
High regime productivity µh 5.50%
Low regime productivity µl -2.50%
High regime volatility σKh 2.4%
Low regime volatility σKl 2.4%

Durable & Nondurable Production Technology
Durable elasticity of variable input η 0.75
Durable production efficiency θ 0.99
Nondurable production efficiency ψ 3.59

Markov Chain Transition Rates
High to low intensity λl 0.20
Low to high intensity λh 1.10

Table 1.4: Parameters for the CRRA model. By changing in the the durable and nondurable
production efficiency parameters θ and ψ, the CRRA model generates the same level of
nondurable consumption and durable expenditures with logarithm preferences.

nondurable consumption, as opposed to durable expenditures, that responds to shocks in the
productivity of capital accumulation. These important results establish the case for setting
economic models with high EIS.

1.5.4 Housing prices – spot and forward markets

The equilibrium house price pt (durable price in the model) for the modeled economy is sim-
ply the ratio of the marginal value of durable service to the marginal value of the perishable
good, or simply

pit = ψ
JiZ
JiK

= ψ
MiZ(y)

MiK(y)

. (1.26)

The marginal value of durable services reflects the lifetime utility gain from increasing the
durable stock by one unit. This marginal value is then divided by the marginal value of
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Figure 1.7: Scaled durable expenditures and nondurable consumption for the high and low
productivity of capital regimes, over the 99% confidence interval of the state variable for the
CRRA case (γ = 2, EIS = 0.5). The right and left vertical lines indicate the average of the
state variable y for the high and low productivity regimes.

the perishable (the numeraire in the economy) to derive the durable price. For the modeled
economy, the durable price equates to the value of a nationwide house price index.

Figure 1.8 displays durable prices as a function of the state variable y at the 99% confidence
interval for both regimes. The graph shows that house prices are an increasing monotone
function of y. This follows from the fact that, for a fixed level of capital stock, the higher
the state variable, the more the representative agent is starving for durable services, i.e.,
the more she values an additional unit of durable good relative to an additional unit of
perishable good. Note that the house price index is almost the same for the high and low
productivity regimes. The plots are almost on top of each other. This means that jumps in
capital productivity yield small changes in the house price index. In particular, for the 99%
confidence interval of the state variable y the average price jump is 0.72%.

The figure also shows that the model’s house price index ranges in the interval [7.0, 16.0].
This wide range indicates that in case of extreme events, when the state variable y moves
from its highest to its lowest value on the 99% confidence level, the house price index drops by
more than 50%. Interestingly, this large change comes close to the house price drops reported
for the most recent housing markets crisis. The S&P/Case-Shiller Home Price Indices track
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Figure 1.8: Model’s house price index (durable price) as a function of the state variable y
for the 99% confidence interval.

changes in the value of residential real estate both nationally and in 20 metropolitan regions.
Table 1.5 lists percentage drops in the house price index for the national and metropolitan
regions. The time series for the national Composite-20 index, for instance, shows an index
level of 206.65 in April 2006, at its peak just before the NBER 2008-Q4 recession. This index
drops to minimum of 136.77 in January 2012, representing a 34% drop. The table shows
that, as predicted in the model, some metropolitan indices suffered declines of more than
50%, such as AZ-Pheonix, FL-Miami, and NV-Las Vegas.

The model can make predictions about the term structure of forward prices. The choice of
forward contracts, as opposed to futures, is a natural one. The implementation of a futures
contract would demand clauses for optional physical delivery by the seller – clauses similar
to those used in commodity markets. Physical delivery, however, would be very difficult
to manage given the wide spectrum of housing quality and the indivisibility of a dwelling
unit, not to mention different regions in which the delivery units could be located. Forward
contracts, in contrast, are typically settled over benchmark indices such as the S&P/Case-
Shiller. These indices are constructed from periodic market surveys that can reference either
a wide region such as the whole nation, or subregions such as metropolitan areas.

Following its definition, a forward contract involves no exchange of cash at the time of
its inception. The time-t forward price F (t, T ) for a contract maturing at time T has the
following expression
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Maximum Minimum

Level Month Level Month Drop (%)

AZ-Phoenix 228.07 May-06 99.24 Aug-11 56%
CA-Los Angeles 273.10 Apr-06 159.92 May-09 41%
CA-San Diego 251.71 Mar-06 145.46 May-09 42%
CA-San Francisco 219.27 Mar-06 120.11 May-09 45%
CO-Denver 139.36 Mar-06 123.38 Sep-11 11%
DC-Washington 252.90 Mar-06 169.53 Jan-04 33%
FL-Miami 280.04 May-06 136.77 Nov-11 51%
FL-Tampa 239.05 May-06 124.92 Nov-11 48%
GA-Atlanta 136.11 Apr-07 85.59 Mar-12 37%
IL-Chicago 171.53 Mar-07 108.03 Mar-12 37%
MA-Boston 180.79 Nov-05 149.17 Apr-09 17%
MI-Detroit 127.92 Mar-06 67.15 Apr-11 48%
MN-Minneapolis 173.89 Apr-06 110.97 Mar-11 36%
NC-Charlotte 133.85 Aug-07 110.03 Nov-11 18%
NV-Las Vegas 235.74 Apr-06 90.20 Jan-12 62%
NY-New York 216.61 May-06 160.67 Mar-12 26%
OH-Cleveland 123.40 Jan-06 97.24 Feb-12 21%
OR-Portland 185.44 Apr-07 123.14 Jan-04 34%
TX-Dallas 125.67 Apr-07 113.81 May-11 9%
WA-Seattle 190.58 May-07 125.58 Jan-04 34%

Composite-10 226.91 Apr-06 149.46 Feb-12 34%
Composite-20 206.65 Apr-06 136.77 Jan-12 34%

Table 1.5: S&P/Case-Shiller Home Price Indices, representing the value of residential real
estate both nationally and in 20 metropolitan regions. For each region, it shows the peak
levels preceding the NBER 2008-Q4 recession, the minimum level after the recession, and
the percentage drop in the price index.
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, i, k ∈ {h, `}, (1.27)

where rks is the time-s value of the riskless rate, pkT is value of the housing price index at
maturity, Q refers to the risk-neutral measure, and ζks is the state price deflator.

With the assumption of complete markets, the state price deflator ζit is unique. In this
modeled production economy it equates to the marginal value of capital (see Cox, Ingersoll,
and Ross (1985)). More precisely,

ζit = JiK . (1.28)

Appendix 3.1.6 provides the details for deriving the stochastic behavior of the housing price
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index and the state price deflator (SPD) as an expression of the scaled value function and its
derivatives. Following these results, I implement a numerical approach for characterizing the
term structure of forward prices in equation (1.27). More specifically, I extend the simulation
algorithm used for deriving the empirical probability density function of the state variable
to create random paths for both the state price deflator and the house price index. The term
structure of forward prices is simply the average of the product of the state price deflator
and the spot house price index at each maturity date.
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Figure 1.9: Term structure of forward house prices for both productivity regimes when the
state variable y is 0.57.

Figure 1.9 displays the term structure of forward housing prices for both productivity regimes
with a relatively low starting value of the state variable (y0 = 0.57). Note that both curves
are in contango (upward sloping), with the low regime forward curve posing a more pro-
nounced slope. At first, this result might seem counterintuitive. When the economy is in
the low productivity state, the drift of the state variable is negative, as indicated in Figure
1.5. This in turn implies that the house price index drifts to lower levels, since the house
price is a positive monotone function of the state variable as depicted in Figure 1.8. Indeed,
a plot of the average spot housing price pt in Figure 1.10 shows exactly this mechanism.

A plot of the average SPD in Figure 1.11 is rather revealing. Recall that the SPD reflects
the level of marginal utility of consumption, which is much higher when the economy is in
recession. In this case, the increasing trend in the SPD dominates the decreasing trend in
housing prices, explaining the reason for the more pronounced contango of the low produc-



CHAPTER 1. DURABILITY AND THE CONSUMPTION CYCLE 33

0 20 40 60 80 100 120
8.5

9.0

9.5

8.5

9.0

9.5

8.5

9.0

9.5

Month

H
o
u
se

p
ri
ce

in
d
ex

 

 

High productivity regime
Low productivity regime

Figure 1.10: Expected house price index for
y0 = 0.57.
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Figure 1.11: State price deflator (SPD)for
y0 = 0.57.

tivity state forward curve.

Figures 1.12 and 1.13 show plots of the forward curve for two initial states of the ratio
variable at y0 = 0.66 and y0 = 0.68, respectively. These pictures characterize the slope
dependence of the forward curve on the state variable. For relatively lower values of y the
general shape is in contango, moving to flat when the state variable is near its unconditional
average, and being in backwardation for higher values of y.
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Figure 1.12: Term structure of forward
house prices for both productivity regimes
with y0 = 0.66.
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Figure 1.13: Term structure of forward
house prices for both productivity regimes
with y0 = 0.68.

Also interesting is the hump-shaped result for the lower productivity regime when y0 = 0.68.
This situation occurs when the economy is in recession and the ratio of capital stock to
durable stock is relatively high. It also highlights that in spite of having a single Wiener
process driving the economy, the general equilibrium model is able to produce a rich variety
of shapes for the forward curve.

Common to the three analyzed cases, a shift in the productivity regime results in a twist of
the forward curve. This aspect is in accordance with the typical dynamics of the term struc-
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ture of commodity prices and the interest rates resulting from a principal component analysis
as demonstrated in Tolmasky and Hindanov (2002) and Cochrane and Piazzesi (2005). More
importantly, the general equilibrium model has the ability to shed some light on the linkages
between macroeconomic factors and empirical data.

1.6 Extensions

The present study can be extended in several potential areas. There is much more to explore
empirically. At its current stage, the model show that with a reasonable choice of parameters
it has the potential to explain key empirical facts about consumption and expenditures as
the economy cycles. Clearly, the next step is to enhance the calibration of the model pa-
rameters. This effort, however, should be taken in parallel with modifications to the current
structure of the general equilibrium model.

Another possible extension involves exploring the performance of a suitable measure of the
ratio of capital stock to total stock (durable plus capital) for predicting future asset price
returns. This study would employ an analogous approach to that used in Lettau and Lud-
vigson (2001).

With respect to the modeling framework, I see a list of enhancements that might prove
fruitful. The first relates to relaxing the current structure for the durable production func-
tion to accommodate different specifications for the efficiency parameter. Though the current
version is founded by economic arguments, other more general structures allowing for a con-
stant efficiency or non-linear functional forms would certainly provide more realism and
consequently generate a better model calibration. Along these lines, the model could adopt
a more flexible intraperiod preference. The Cobb-Douglas structure pins down the elasticity
of substitution between durable and nondurable consumption. A constant elasticity of sub-
stitution (CES) specification relaxes this constraint and provides more realism for modeling
the agent’s ability to substitute between nondurable and durable consumption.

The second enhancement refers to extending the durable production environment by intro-
ducing inventories. A realistic approach involves creating an intermediary step in the housing
production process. This two-stage process relates to housing production in the sense that
home developers keep units of developed land in inventory before actually engaging in the
process of building the final structure and selling finished units to the market. More specifi-
cally, the model would accommodate a first production stage in which an intermediary good
(developed land) is created and held in inventory. In a second stage, units of the intermediary
good are taken out from inventory and serve as input for producing the finished housing unit.
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Given the relevance of the EIS in defining the proper timing of consumption and expen-
ditures, the third improvement relates to disentangling this parameter from the coefficient
of relative risk aversion. This would require the implementation of a recursive type of utility
representation in the fashion of Epstein and Zin (1989) for discrete time models or Duffie
and Epstein (1992) for continuous time models.

Finally, the current model can be extended for studying the differences between rental prices
and purchase prices in the housing markets when the economy cycles. The empirical evi-
dence is that these two variables are co-integrated and that rental prices accelerate ahead of
purchase prices during economic recoveries.

1.7 Conclusion

Empirical studies show a distinct sequence of events characterizing economic transitions into
recessions and recoveries. In particular, NIPA’s durable expenditures and residential invest-
ment are key economic variables signaling these transitions. In this study, I build a general
equilibrium production model showing that large shocks in the productivity of capital accu-
mulation, marking transitions to recessions and booms, are necessary to explain the cycles of
nondurable consumption and durable expenditures shown in the data. In addition, the model
is able to reproduce the leading aspect of residential investment and durable expenditures
only when the consumer preference is set with a high elasticity of intertemporal substitution.

Finally, the paper proposes adopting the general equilibrium framework as a structural
model for analyzing the dynamics of the forward market for a national house price index.
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Chapter 2

Debt maturity and term spread

2.1 Introduction

Along with optimal leverage and seniority, firms also choose the time to maturity of their
debt issuance. Overwhelming evidence (see Section 2.1) suggests that firms choose debt ma-
turity based on the the term spread where term spread is defined as the difference between
the 10-year Treasure note yield and the 90-day Treasury bill yield. Specifically, firms issue
short term debt when the term spread is significantly positive and increase maturity as the
term spread decreases. That is, debt maturity and term spread are inversely related. In
this paper, we provide a theoretical explanation of how term spread affects optimal debt
maturity using the trade-off theory of capital structure.

Our explanation is in contrast with the current theoretical literature that relies on the exis-
tence of either informational asymmetry, lack of liquidity, or agency conflicts. For instance,
Flannery (1986) and Diamond (1991) show that good quality firms issue short-term debt as
a signalling device to separate themselves from poor quality firms when there is asymmetric
information between debt investors and firm managers. Milbradt and He (2012) create a
model framework in which liquidity in the secondary market plays a central role in determin-
ing the optimal debt maturity of firms facing debt rollover risk. Myers (1977) and Johnson
(2003) show that firms issue short-term debt to overcome the problem of under-investment
created by agency conflicts. In our model, firms face the following trade-off. On one hand,
debt issuance provides tax benefits to the firms; on the other hand, debt issuance is also
accompanied by higher bankruptcy and transaction costs.

We develop a dynamic capital structure model with stochastic interest rates to highlight
that optimal debt maturity mainly depends on the trade-off between bankruptcy costs and
transaction costs of debt rollover. A significantly positive term spread induces a higher
risk of financial distress because the firm’s expected growth rate is lower than the long run
equilibrium growth rate. Therefore, bankruptcy costs outweigh transaction costs, and firms
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optimally reduce debt maturity in response. Conversely, a flat or negative term spread
reduces the risk of financial distress, and firms optimally increase their debt maturity in re-
sponse. In other words, as the economy cycles, the resulting term structure creates natural
incentives for firms to shift their debt maturity.

In our framework, firms choose debt maturity to maximize the total firm value. Specifi-
cally, there are no agency problems between debt holders and equity holders. The firm’s
managers and debt investors are perfectly informed about all the relevant variables that
characterize the firm and the economy. Furthermore, there is no liquidity risk in our setup.
At time zero, the firm issues a T -year coupon bond after paying transaction costs related to
debt issuance. If the firm has not gone bankrupt in T years, the firm rolls over its debt by
issuing a new T -year coupon bond at time T , after paying transaction costs. If at the end
of the second T -year period the firm is still solvent, it issues another T -year coupon bond.
This process goes on indefinitely as long as the firm is solvent. If the firm goes bankrupt,
debt holders take over the firm’s operations after paying bankruptcy costs.

We extend the existing modeling literature by incorporating two additional stylized facts:

1. Target leverage ratio — According to the survey results of Graham and Harvey
(2001), 44% of CFOs report having a strict or somewhat strict target leverage ratio.
37% claim to have a flexible target leverage ratio. Remarkably, only 19% of the CFOs
claim that they have neither a target ratio nor a target range. Lemmon, Roberts, and
Zender (2008) reinforce the evidence of target leverage ratios. They show that capital
structures are remarkably stable over time; and that firms with high (low) leverage
maintain relatively high (low) leverage for over twenty years, independent of being
public or private. Frank and Goyal (2003), Leary and Roberts (2005), Flannery and
Rangan (2006), and Huang and Ritter (2009) also corroborate that managers adjust
their capital structure towards a specific target.

2. Lumpy debt maturity — Choi, Hackbarth, and Zechner (2011) provide empirical ev-
idence confirming that the debt maturity structure of firms is lumpy and not granular.
That is, debt maturity tends to be concentrated, as opposed to being scattered across
different points in time. For example, if debt maturities are distributed uniformly in an
interval [T , T ], then the maturity structure is granular. In our setup, firms issue debt
with maturity T at every rollover date, characterizing a lumpy maturity structure.

The short rate follows a mean-reverting process as in Vasicek (1977). This approach allows
us to examine the impact of the dynamics of the term spread. The term spread is a state
variable that proxies economic conditions. As the term spread cycles, so does the economy.
In the risk neutral measure, the drift of the firm value is the short rate. Therefore, when
the term spread is relatively high, i.e., when the short rate is significantly lower than the
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long rate, the firm growth rate is initially low and accelerates towards its long run equilib-
rium. This indicates that economic recovery is ahead, as would be the case at the end of
a recession. On the other hand, when the term spread is relatively low, the firm growth
rate is initially high and decelerates towards its long run equilibrium. This indicates a grim
economic future, as would be the case at the beginning of a recession.

The economic intuition about the link between term spread and debt maturity is the follow-
ing. When the term spread is significantly positive, the short rate is significantly below the
long run equilibrium rate. Even though the short rate increases on average in the future,
it is expected to remain below the long rate for a significant time. With the prospect of
low growth ahead, the firm’s probability of default is high. Therefore, the firm chooses to
decrease maturity at the expense of paying higher transaction costs related to debt rollover.
Conversely, when the term spread is negative, the short rate is greater than the long rate. In
this case, the probability of default is low because the firm is expected to grow at higher than
normal rates. Therefore, the firm chooses to increase maturity to minimize the transaction
costs related to debt rollover.

Our paper contributes to the existing literature in three different ways. First, it adds to
the corporate finance literature that deals with the speed of adjustment in the firm’s capital
structure. There is a debate in the literature about how frequently firms adjust their capital
structure. Strebulaev (2007) employs a trade-off theory of capital structure model to show
that firms adjust their capital structure infrequently. That is, managers optimally choose
to be inactive in the process of maximizing firm value. Conversely, Welch (2012) uses em-
pirical evidence to argue that managers are actually quite active in adjusting their capital
structure. Our results indicate that the optimal maturity of firms varies between 1-3 years
for a wide range of parameters. This level of activity is in line with Welch (2012). In our
framework, firms incur transaction costs during debt rollover, as in Strebulaev (2007)’s. The
main difference, however, concerns the choice of debt. In Strebulaev (2007)’s model, firms
either increase or decrease leverage by issuing perpetual debt. In our model, firms issue a
finite T -maturity debt to reach a target leverage ratio. Consequently, firms are forced to
readjust their capital structure every T periods in our model while small transaction costs
lead to large waiting times (inactivity) in Strebulaev (2007)’s model.

Second, our paper adds to the literature concerning debt maturity and systematic risk,
as measured in our model by the term spread. Chen, Xu, and Yang (2012) explain this
link in a setting with liquidity risk, whereas in our framework, markets are perfectly liquid.
Lastly, our paper is closely related to Ju and Ou-Yang (2006), who explain the effect of
stochastic interest rates on leverage, debt maturity, and credit spreads. To achieve a closed
form solution, Ju and Ou-Yang (2006) assume that debt is not issued at par during debt
rollover. An artifact of this assumption is that debt maturity is independent of the short
rate, which is inconsistent with the empirical evidence. We enhance their model by assum-
ing that debt is issued at par and that firms adjust their capital structure toward a target
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leverage ratio. These features allow our model to produce results that are consistent with
the empirical data, showing that debt maturity is inversely related to the term spread.

Our theoretical predictions match the empirical findings of Barclay and Smith (1995) and
Julio, Kim, and Weisbach (2008). The first prediction concerns leverage. Julio, Kim, and
Weisbach (2008) find that there is no substantial difference in leverage between firms that
issue short-term and long-term debt. In our model, this result is mechanical as the firms
re-balance their capital structure towards a target leverage ratio. The second prediction
concerns volatility. Barclay and Smith (1995) and Julio, Kim, and Weisbach (2008) find
that more volatile firms issue shorter term debt. They attribute this empirical finding as
a validation of the agency theory of Myers (1977). Our setup matches this finding natu-
rally. When the firm value is more volatile, big changes in the firm value are more likely.
Therefore, the firm optimally decides to rebalance its capital structure more frequently as
its probability of default is higher. To summarize, we find that the long run interest rate,
the volatility of the interest rate process, the correlation between the short rate and the firm
value, and the volatility of the firm’s value are all important parameters for determining the
optimal debt maturity.

The remainder of this article is organized as follows. Section II presents motivating em-
pirical evidence that shows the inverse relationship between debt maturity and term spread.
Section III presents the model setup. In order to get an intuition for the link between in-
terest rates and default risk, we analyze the value of a risky zero coupon bond in Section
IV. Section V derives the leveraged firm value using the trade-off theory of capital structure.
Section VI presents the quantitative analysis. Section VII summarizes the article and makes
concluding remarks.

2.2 Empirical evidence on debt maturity and term

spread

We divide this section into two parts. First, we analyze the time series data of aggregate
debt maturity using data from the Flow of Funds Accounts. Specifically, this part shows
that in aggregate, firms reduce debt maturity when the term spread is significantly positive
and they increase maturity as the term spread decreases. We also show that aggregate debt
maturity is high prior to the beginning of a recession and it decreases by the end of a reces-
sion. Second, we review cross-sectional evidence of debt maturity and term spread from the
corporate finance literature.
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2.2.1 Analysis of aggregate debt maturity and term spread

The dark solid line in Figure 2.1 shows the cyclical component of the share of the long
term debt1 calculated by applying the Hodrick-Prescott filter.2 The data pertains to debt
issued by non-financial corporate firms. The maturity is classified as “long term” if it is
greater than one year. The shaded bands indicate recessions as designated by NBER. The
link between the cyclical share of long term debt and macroeconomic conditions is clear.
During recessions, the long term debt share appears to dip below the trend. For example,
during the first quarter of 2008, at the start of the past recession, the share of the long
term debt was 3% below the trend. During the third quarter of 2009, the first quarter after
the end of the past recession, the share of the long term debt was only 0.04% below the trend.

Figure 2.1: Long term debt share of non-financial corporate business. The dark line is the
cyclical component of the long term debt share calculated via the Hodrick-Prescott filter.
The data for the long term debt share is from the Fed Funds flow database (series L.102).
The shaded bands in gray are the NBER recession dates.

Table 2.1 contains descriptive statistics of the share of long term debt since the first quarter
of 1952. The share of the long term debt is 1.31% below the trend during recessions, while
the share is 0.23% above the trend during non-recessionary times. Chen, Xu, and Yang
(2012) and Julio, Kim, and Weisbach (2008) corroborate the results above by showing that
debt maturity decreases during recessions.

1The data for the long term debt share is from the Fed Funds flow database (series L.102). The data
spans from first quarter of 1952 to third quarter of 2012 — a total of 243 quarters. Additionally, the data
spans 10 recessions — a total of 36 quarters.

2For completeness, we plot the trend portion of the share of the long term debt in subsection 3.2.1 of
the Appendix.
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Figure 2.2: Cyclical portion of the term Spread (difference between 10-year Treasure note
yield and the 3-month Treasury bill). The data is taken from Global Financial database.
The shaded bands in gray are the NBER recession dates.

Event Mean Std. Dev Min Max

Recession -1.31 1.09 0.57 -3.86
No Recession 0.23 1.10 2.67 -3.03

Table 2.1: Descriptve statistics of the percent long term debt share.

We now focus on the relationship between term spread and the state of the economy. The
dark solid line in Figure 2.2 shows the cyclical portion of the term spread. A negative term
spread is often a harbinger of a recession. Estrella and Hardouvelis (1991) shows that there
is a marked dip in the term spread roughly six quarters prior to a recession. Figure 2.2,
for instance, shows that the term spread first became negative in the third quarter of 2006,
approximately five quarters before the beginning of the past recession. The dynamics of
the term spread are even more evident from the descriptive statistics in Table 2.2. Three
quarters prior to a recession, the term spread is flat, averaging 0.05% over the past ten re-
cessions. Then it increases to an average of 0.93% at the beginning of a recession, and rises
to its apex of 2.30% by the end of the recession. Finally, three quarters after a recession,
the term spread begins to decrease, reaching an average of 2.10%.

From both figures and descriptive statistics tables, it is evident that debt maturity and term
spread are intimately linked. We now review cross-sectional evidence from the corporate
finance literature.
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Event Mean Std. Dev

Term spread three quarters prior to a recession 0.05% 0.72%
Term spread at the beginning of a recession 0.93% 1.21%
Term spread at the end of a recession 2.30% 0.86%
Term spread three quarters after the end of a recession 2.10% 0.95%

Table 2.2: Dynamics of the term spread.

2.2.2 Cross-sectional evidence linking debt maturity and the
term spread

Empirical evidence finds that managers time their borrowing activity. They use their beliefs
about future interest rate movements to lower the cost of funds. A prominent example is
the CFO survey conducted by Graham and Harvey (2001). Based on their results, CFOs
say that they issue short-term debt when “short-term rates are low compared to long-term
rates,” or when “we are waiting for long-term rates to come down.”

The fact that managers are speculating is further reinforced by Faulkender (2005)’s em-
pirical study of financial policies for firms in the chemical industry between 1994 and 1999.
Faulkender finds that firms that issue floating rate debt do not swap floating interest pay-
ments for fixed interest payments. Firms seem to be amplifying their interest rate risk as
opposed to reducing it.

Using data from corporate bond issuances, Barclay and Smith (1995), Guedes and Opler
(1996), Faulkender and Petersen (2006) and Julio, Kim, and Weisbach (2008) also find that
firms issue shorter-term debt when the term spread is significantly positive. This result is
robust to the addition of other firm-specific variables such as credit ratings, book to market
ratio, and stock return volatility.

In our paper, we provide a natural explanation of why firms vary debt maturity with term
spread. Based on our model, changes in the term structure resulting from economy cycles
create natural incentives for firms to shift their debt maturity. The explanation does not rely
on either agency conflicts or asymmetric information. This is also consistent with Graham
and Harvey (2001), who show evidence that the CFOs are not concerned with either agency
conflicts or asymmetric information when issuing debt. Finally, they show that CFOs are
concerned with transaction costs associated with debt rollover, which supports our theoret-
ical approach.
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2.3 Model setup

In this section, we modify the setup of Leland and Toft (1996) in three ways. First, we relax
the assumption of constant interest rates by assuming that the short rate process follows a
mean reverting process. This assumption implies that the term spread is stochastic which
in turn allows us to link debt maturity and term spread.

Second, for expositional clarity, we assume an exogenous default boundary as opposed to an
endogenous default boundary. The assumption of exogenous versus endogenous boundary is
important when one is concerned with agency conflicts. For example, the debt holder’s in-
centives to default are obviously different from equity holder’s incentives. We show in Section
IV that the choice of an exogenous default boundary produces the same qualitative results
for credit spreads as other structural credit models with an endogenous default boundary.

Third, we assume that our default boundary, which is in the spirit of Black and Cox (1976),
is stochastic and not constant. This approach may seem counterproductive, but we show
that our parametric form of default boundary allows us to evaluate the model in closed form.
Particularly, we show with our parametric form that distance to default is directly related
to the short rate. That is, when the short rate is high, firms are less likely to default. This
feature forms the basis of our model.

We perform our analysis in partial equilibrium and we assume complete markets. This
allows us to perform our analysis directly under the risk-neutral measure. The details of the
assumptions are discussed below.

2.3.1 Environment

ASSUMPTION 1. (Interest rate dynamics) Let rt denote the short-term riskless in-
terest rate. The dynamics of rt are given by

drt = β (α− rt) dt+ σr dWrt, (2.1)

where β, α and σr are constants and Wrt is a standard Wiener process under the risk-neutral
measure.

The dynamics of rt are drawn from the term structure model of Vasicek (1977). Let Λ(rt, t, T )
be the time t price of a zero coupon bond with maturity T . Standard calculations yield the
following expression for the value of a riskless bond:

Λ(rt, t, T ) = eA(t,T )−B(t,T ) rt , (2.2)
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where

B(t, T ) =
1− eβ(T−t)

β
; A(t, T ) = (α− σ2

r

2β
) [B(t;T )− (T − t)]− σ2

rB(t;T )2

4β
.

We define the term spread as the difference in the yield of a ten-year zero coupon Trea-
sury bond and a 3-month zero coupon Treasury bill. Mathematically, the term spread
TermSpread(r0, T ) is

TermSpread(r0, T ) = − ln Λ(r0, 0, 10)

10
− (− ln Λ(r0, 0, 0.25)

0.25
).

Loosely speaking, the term spread is well approximated as

TermSpread(r0, T ) ≈ α − r0.

ASSUMPTION 2. (Firm dynamics) Let Vt designate the market value of the firm’s
unleveraged assets before tax. The dynamics of Vt are given by

dVt
Vt

= (rt − y) dt + σV dWvt, (2.3)

where y and σV are constants, Wvt is also a standard Wiener process. The instant correla-
tion between dWvt and dWrt is ρ dt.3

The firm pays a constant fraction y of its unleveraged assets to its equity holders as divi-
dends. If the firm does not issue any debt, equity holders are entitled to a fraction (1 − θ)
of the dividends generated from the firm’s unleveraged assets. In this case the after-tax
unleveraged value of the firm is (1− θ)Vt where θ is its marginal corporate tax rate.

ASSUMPTION 3. (Default threshold dynamics) Following Black and Cox (1976),
we assume there is an exogenous threshold value VD at which the firm defaults on its debt.
The threshold VD(t) is given by

3Technically, uncertainty is described by two dependent Brownian motions, {Wvt,Wrt} for t ≥ 0 de-
fined on a complete probability space (Ω,F,Q) where F = F{t≥0} is the augmented filtration generated by
{Wvt,Wrt}.
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VD(rt, t, T ) = PΛ(rt, t, T ) ey(T−t) / (1− θ) (2.4)

where P is the face value (principal) of debt. The debt holder receives 1− γ times the after-
tax unleveraged firm value upon default.

Note that the threshold has the desired property that at the maturity date T , its value is
equal to the face value of debt. Therefore, as long as the after-tax market value of assets
(1 − θ)VT remains higher than (1 − θ)VD, debt holders will be compensated fully. At any
time prior to T , the threshold value indicates that the after-tax market value of assets should
remain higher than the present value of the principal. This expression for the threshold is in
the spirit of that used by Black and Cox (1976) after adjusting for stochastic interest rates
and dividend yield. This definition of financial distress is consistent with covenants referring
to a violation of minimum net worth or working-capital requirements as implemented in
Kim, Ramaswamy, and Sundaresan (1993).

Most notably, the threshold value is exogenous and not endogenous, as in Leland (1994) or
Leland and Toft (1996). The magnitude of the difference in credit spreads between assuming
an exogenous versus endogenous bankruptcy boundary is not significant, as highlighted in
Fong (2006).

Note that the default threshold VD depends on rt and hence it is stochastic. At first glance,
imposing such a structure might seem counterproductive. However, the study of first passage
time of default is made simpler by studying the dynamics of

Xt ≡ log

[
Vt
VDt

]
,

which measures distance to default. By Ito’s Lemma, the dynamics of Xt are

dXt =

[
σ2
p(t;T )

2
− σ2

V

2

]
dt+ σV dWvt + σp(t, T )dWrt. (2.5)

where σp(t, T ) ≡ σrB(t;T ). Note that both the drift and volatility of Xt simplify to a deter-
ministic expression. This is crucial for obtaining a closed form expression of the first passage
time until default, as shown in a later section.

Figure 2.3 shows the relationship between the distance to default measured by X and the
short rate r0 for different times to maturity T . For a given time to maturity, the distance to
default X is an always increasing function of the short rate. This is because the higher the
short rate, the higher the drift of the firm value. Therefore, for a given bond with principal
P0, there is a lower chance that the firm value will breach the default threshold. The sensi-
tivity of the distance to default X and short rate r0 increases with time to maturity. This



CHAPTER 2. DEBT MATURITY AND TERM SPREAD 46

is evident from the graph in which the dashed line representing a maturity of 3 years has a
higher slope than the solid line representing a maturity of 1 year.
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Figure 2.3: Relationship between the distance to measure X and the short rate r0 for different
time to maturity T .

The fact that X increases with the short rate is crucial for our results. A high short rate
means that the term spread is low. Consider the decision making process of a firm when the
term spread is low. Suppose the manager chooses a maturity T1 of 1 year. From Figure 2.3,
it is clear that the measure of distance to default is high, which means that probability of
bankruptcy is low. In this case, the manager can afford to increase maturity to T2 > T1 to
minimize transaction costs associated with debt rollover. Conversely, if the short rate is low
so that the term spread is high, the probability of default is high. Therefore, the manager
will optimally decrease maturity to minimize bankruptcy costs.

ASSUMPTION 4. (Debt rollover dynamics) The firm adjusts its capital structure
every T years. At time zero, the firm issues a T-year coupon bond with principal P0 and
coupon rate c0. The firm chooses principal P0 to achieve an exogenously specified target
leverage ratio. If the firm does not default in T years, it issues another T -year coupon bond
at time T . This process continues indefinitely as long as the firm is solvent. The firm incurs
transaction costs equal to φ times the value of debt at every debt issuance.

Most models of trade-off theory of capital structure assume either (i) perpetual debt (based
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on Leland (1994))4 or (ii) static debt (based on Leland and Toft (1996)). However, these
types of specifications are clearly not suitable for analyzing optimal debt maturity. The
assumption of finite maturity debt is critical for analyzing optimal debt maturity.

ASSUMPTION 5. (Market value of debt) Debt is issued at par. Specifically, at every
debt issuance nT where n ∈ {0, 1, 2, ...}, conditional upon not defaulting prior to nT , the
market value of debt, LnT , is equal to the face value of the bond, i.e. LnT = PnT .

Assumption 5 is standard in the trade-off theory of capital structure literature.

ASSUMPTION 6. (Specific target leverage ratio) At every debt issuance nT where
n ∈ {0, 1, 2, ...}, conditional upon not defaulting prior to nT , the manager adjusts the capital
structure toward a specific target leverage ratio ζ, where

ζ ≡ Pn
(1− θ)VnT

=
P0

(1− θ)V0
.

This assumption is in the spirit of the stylized facts identified by Graham and Harvey (2001)
and Lemmon, Roberts, and Zender (2008), which states that managers adjust their capital
structure toward a specific target leverage ratio. Note that in our setup, leverage is not a
choice variable. That is, firms only choose maturity to maximize the firm value. In this
manner, we differ from the existing literature on the trade-off theory of capital structure
which focuses primarily on maximizing firm value by choosing the leverage ratio.

In order to better understand the implications of Assumption 6, it is useful to show the
firm’s debt issuances and default dynamics with a hypothetical sample path as in Figure
2.4. In this example, we set the time to maturity T to four years and the target leverage
ratio to 64%. Therefore, at time zero, the firm issues a bond with a face value of $42.00.
The black line shows the sample path of the unleveraged firm value {Vt} prior to default.
The red line depicts the default threshold {VD}t. From equation (2.4), the dynamics of the
default threshold depend on the dynamics of the interest rate {rt}. Since the volatility of
the interest rates is low, the fluctuations in the dynamics of the default threshold are smaller
than the fluctuations in the firm value.

4Models that allow for capital structure adjustment also assume perpetual debt as in Goldstein, Ju, and
Leland (2001) and Strebulaev (2007).
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Note that the firm value remains above the default threshold for the first four years. In
this first debt issuance, the firm does not default and it readjusts its capital structure to the
specified target leverage ratio. Furthermore, since the asset value increases at the end of the
fourth year, the firm rolls its debt by issuing a bond with a higher face value of $80.70. A
little before year six, the firm value breaches the default threshold. At this point, the firm
declares bankruptcy, and debt holders lose a fraction γ of the after-tax unleveraged firm
value due to bankruptcy costs. The gray line shows the hypothetical firm value after debt
holders take over the operations of the firm.
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Figure 2.4: Sample path of the firm value and default threshold. The simulation shows a
sample path in which 1) the firm does not default at the end of the 4th year (the time to
maturity), 2) it defaults after it re-adjusts its capital structure in the 6th year. Furthermore,
the firm rebalances, so that the log ratio ln V0

P0
is the same at every re-adjustment date. The

dark black and gray lines show the unleveraged firm values. The gray line shows the entire
sample path of the firm value even though firm defaults in the 6th year. The red line shows
the stochastic default threshold.

To summarize, our model set up is an enhanced version of Leland and Toft (1996) with the
following modifications: stochastic interest rates, exogenous and stochastic default threshold,
and exogenous target leverage ratio. Prior to analyzing the trade-off between tax benefits
and the sum of bankruptcy costs and transaction costs related to debt rollover, it is use-
ful to analyze the value of a simpler security — a zero risky coupon bond. We use the
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change of numeraire technique to derive a closed-form expression for the value of such a se-
curity. This technique will be used again in later section to derive the optimal debt maturity.

2.4 Valuation of a risky zero coupon bond

In this section, we value a hypothetical risky zero coupon bond to show three features of
the model. First and most importantly, we show that the credit spreads are directly related
to the term spread. That is, when the term spread is low, so that the short rate is high,
the probability of default is low. Therefore, the firm can afford to increase the maturity to
minimize transaction costs of debt rollover. Second, we show that our model can reproduce
credit spreads that are broadly consistent with other structural models of capital structure.
The third motivation of this section is technical in nature. We show that the technique of
change of numeraire allows us to get a closed form expression for the value of a risky zero
coupon bond.

2.4.1 Setup

Let Dzero(t, T, rt;X0) denote the price of a risky zero coupon bond with maturity date T at
time t ≤ T . The payoff on this contingent claim is $1 if default does not occur during the
life of the bond, and $(1− γ) otherwise. This payoff function is expressed as

1− γ I(Default happens prior to T ).

where I is an indicator function that takes the value one if Vt reaches VDt during the life of
the bond, and zero otherwise. Since both Vt and VDt are stochastic, it is prudent to work
with their ratio. From the definition of Xt = ln Vt

VDt
, default takes place when Xt reaches

zero from above. Formally, I takes the value of one if τ ≤ T , where

τ
.
= inf{t ≥ 0 : Xt ≤ 0},

and zero otherwise. Therefore, the value of the risky zero bond is

Dzero(t, T, rt;X0) = Et
[
e
∫ T
t ru du × {1− γ I(τ ≤ T )}

]
= Et

[
e
∫ T
t ru du × 1

]
− γ Et

[
e
∫ T
t ru du × I(τ ≤ T )

]
(2.6)

The first term represents the present value of one dollar upon no default. This expression is
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simply the value of a default-free zero coupon bond Λ(rt, t, T ). The second term represents
the loss given default. The expectation depends on the sample path of both interest rates
and firm values; hence it is difficult to derive an expressin in closed form upon first glance.
In the fortunate case in which the interest rate process and firm values are independent, the
second term can be written as a product of two expectations, i.e.

Et
[
e
∫ T
t ru du × I(τ ≤ T )

]
= Et

[
e
∫ T
t ru du

]
× Et [I(τ ≤ T )]

= Λ(rt, t, T )× Pr(τ ≤ T ).

Given the dynamics of Xt in equation 2.5, the first passage time probability can be calculated
in closed form by using the Kolmogorov backward equation. However, it is hard to justify
independence between the firm value and the interest rate process under the risk-neutral
measure.5 The change of measure technique, which is introduced in the Appendix (subsec-
tion 3.2.3), allows us to write the second term on the right hand side in equation 2.6 as a
product of two expectations without assuming independence.

In subsection 3.2.3 of the Appendix, we show that

Et
[
e
∫ T
t ru du × I(τ ≤ T )

]
= Λ(rt, t, T )× ET

t [I(τ ≤ T )] = Λ(rt, t, T )× PrT(τ ≤ T ),

where ET
t is calculated using a new measure QT. Mathematically, the expectation above is

the cumulative distribution function of the first passage time evaluated under the new QT

measure. The firm value as normalized by the price of a default free bond is a martingale
under the new measure. In other words, under the QT measure, a T maturity default-free
zero coupon bond is used as the numeraire. By comparison, the money market account is
used as the numeraire under the risk neutral measure. After deriving the dynamics of {Xt}
under the new QT measure, we express the distribution of the first passage time in closed
form using the Kolmogorov backward equation.

To summarize, the value of a zero coupon bond at time t = 0 is

Dzero(0, T, r0;X0) = Λ(r0, 0, T )(1− γ G(T, T,X0)),

where

G(t, T,X0) =
1

Λ(r0, 0, T )
Et
[
e−

∫ T
0 ru du × I(τ ≤ t)

]
.

5In the risk neutral measure, the drift of Vt is the rt − y and hence they cannot be independent.
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The exact expression for G(.) is given in equation (3.45) in the Appendix.

2.4.2 Credit spread and the shape of the term structure

Given the explicit solution for risky zero coupon bond, we can solve for the credit spread,
which is defined as the difference between the yields of a risky and a riskless bond with the
same maturity. Figure 2.5 graphs the term structure of credit spreads for a low leveraged
firm. For this example, we set the principal P0 to $20.00 and the after-tax firm value to
$65.00 = $100.00 × (1 − 0.35). The figure graphs the credit spreads for different levels of
the short rate r0. We choose the parameters α, β, and σr governing the short rate stochastic
process to closely match the observed moments given in Ju and Ou-Yang (2006). The term
structure of credit spreads are monotonically increasing as a function of maturity. This re-
sult aligns well with the empirical evidence found by Sarig and Warga (1989), who suggest
that the term structure of credit spreads increases with maturity for bonds with high credit
ratings.

Figure 2.6 graphs the term structure of credit spreads for highly leveraged firms where
we set the principal P0 to $50.00, while keeping the same value for the other parameters.
The term structure of credit spreads is hump shaped, which is also consistent with Sarig and
Warga (1989).

The credit spread is directly proportional to the term spread. From both graphs, the credit
spreads are higher when the term spread is higher, a pattern which holds true for both
highly leveraged and low leveraged firms. Lastly, the concavity of the term structure of
credit spreads for intermediate maturities is also dependent on and directly proportional to
the term spread.

We conclude this section by pointing out that our default mechanism generates credit spreads
consistent with other well-established structural default models. In the next section, we de-
velop a model in which firms optimally choose maturity to maximize the firm value.

2.5 Leveraged firm value

In this section, we derive the firm value taking into account the trade-off between tax ben-
efits and the sum of bankruptcy costs and transaction costs. We divide this section into
two parts. In the first part, we derive closed form expressions for the present value of tax
benefits, bankruptcy costs and transaction costs for one bond issuance. In the second part,
using a fixed point argument, we solve for the firm value considering infinite debt issuances.
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Figure 2.5: Credit spreads of low leveraged firms for different shapes of the term structures.
The parameters are as follows: β = 0.261, V0 = 100, α = 0.0716, γ = 0.5, θ = 0.35,
y = 0.05, P0 = 50 and r0 = 0.01, 0.07, 0.13 for upward sloping, flat and downward sloping
term structures. Credit spread is the implied yield of the bond minus the short rate.

2.5.1 One time debt issuance

Assume that the firm issues a T maturity bond so that the leverage ratio is equal to the tar-
get level ζ. This means that the firm issues a bond with principal P0 to satisfy Assumption 6.

2.5.1.1 Expression for transaction costs

From Assumptions 4 and 5, the transaction costs for issuing debt is given by

tc(r0, ζ, T, V0) = φ× L0 = φ× P0 = V0 × ntc(ζ) (2.7)

where
ntc(ζ) ≡ φ× ζ × (1− θ).

The function ntc(ζ) can be interpreted as the transaction costs per unit of unleveraged firm
value, so it is the normalized transaction costs. Equation (2.7) shows that transaction costs
is a function of the target leverage ratio and, more importantly, it is a linear function of the
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Figure 2.6: Credit spreads of highly leveraged firms for different shapes of the term structures.
The parameters are as follows: β = 0.261, V0 = 100, α = 0.0716, γ = 0.5, θ = 0.35,
y = 0.05, P0 = 20 and r0 = 0.01, 0.07, 0.13 for upward sloping, flat and downward sloping
term structures. Credit spread is the implied yield of the bond minus the short rate.

unleveraged firm value V0.

2.5.1.2 Expression for bankruptcy costs

When default occurs, a fraction γ of the unleveraged firm value is lost in bankruptcy proce-
dures. Formally, the value of bankruptcy costs is

bc(r0, ζ, T, V0) = E0

[∫ T

0

ds γ VD(rs, s, T ) δ(s− τ) e−
∫ τ
0 rudu

]
,

where δ(.) is the dirac-delta function. Consider the term inside the integral. Suppose default
takes place at some time τ = s ∈ [0, T ] so that the function δ takes a value of 1 at that
moment. The bondholders will recover the present value of γVτ . At default, the firm value is
equal to the default threshold, i.e. Vτ=s = VD(rs, s, T ). Therefore, the term in the integral is
the present value of the loss suffered by the bondholders in the event default takes place at
time τ . The integral represents the loss considering the fact that default can take place at any
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time between 0 and T . In the Appendix, we show that the expression for bankruptcy costs is

bc(r0, ζ, T, V0) = V0 × nbc(r0, ζ, T ) (2.8)

where
nbc(r0, ζ, T ) = ζ γ Λ(r0, 0, T )

[
G(T ;T,X0) + Ĝ(T ;T,X0)

]
,

and

Ĝ(T ;T,X0) = y

∫ T

0

ds ey(T−s)G(s;T,X0).

The function nbc(r0, ζ, T ) can be interpreted as the value of bankruptcy costs per unit of
unleveraged firm value or the normalized value of bankruptcy costs. Note that the vlaue of
bankruptcy costs is a linear function of the unleveraged firm value V0. Also note that X0 is
implicitly a function of the short rate r0.

2.5.1.3 Expression for tax benefits of debt issuance

Out of the gross coupon payment C, a fraction θC is deducted to pay corporate taxes. Fur-
thermore, the firm only enjoy tax benefits if it remains solvent. Formally, the expression for
tax benefits for one debt issuance is

tb(r0, ζ, T, V0) = E0

[∫ T

0

ds Is<τ θC e−
∫ s
0 rudu

]
.

The integral represents the present value of tax benefits considering the fact that default can
take place at any time between 0 and T . Suppose default takes place at some time τ ≤ T
so that I takes a value of one in the interval [0, τ ] and zero otherwise. The interval [0, τ ]
represents the times in which the firm was solvent.

We can evaluate the expression for tax benefits indirectly by using Assumption 5. The
market value of debt is given by

L0 = E0

[∫ T

0

Ce−
∫ s
0 r(u)duIs<τds

]
+ E0

[
P0Iτ>T e−

∫ T
0 rudu

]
+ E0

[
(1− θ)(1− γ)

∫ T

0

VD(rs, s, T )δ(s− τ)e−
∫ τ
0 rududs

]
.
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The value of debt is composed of three parts: (i) present value of the flow of coupon payments
prior to maturity while the firm remains solvent; (ii) present value of principal payment at
time T conditional upon not defaulting prior to T and (iii) the present value of the recovery
amount conditional upon defaulting at any time before T .

In subsection 3.2.5 of the Appendix, we show that the expression for tax benefits is

tb(r0, ζ, T, V0) = V0 × ntb(r0, ζ, T ) (2.9)

where

ntb(r0, ζ, T ) ≡ θ(1−θ) ζ
[
1 − Λ(r0, 0, T )(1−G(T, T,X0)) − (1− γ) {G(T, T,X0) + Ĝ(T, T,X0)}

]
.

The function ntb(r0, ζ, T ) can be interpreted as tax benefits per unit of unleveraged firm
value, so it is the normalized tax benefits. Note that tb(r0, ζ, T, V0) is a linear function of
the unleveraged firm value V0.

At this point, we can also back solve for the value of the coupon rate C. Mathemati-
cally,

C =
tb(r0, ζ, T, V0)

θE0

[∫ T
0
e−

∫ s
0 r(u)du Is<τ ds

] =
tb(r0, ζ, T, V0)

θ G̃(T, T,X0)
, (2.10)

where

G̃(T, T,X0) =

∫ T

0

dsΛ(r0, 0, s) (1−G(s, s,X0)).

The details of the derivation are given in subsection 3.2.6 of the Appendix.

2.5.2 Infinite debt issuances

2.5.2.1 Markov-Chain approximation of {rt}

In order analyze the firm value with infinite debt issuances, it is useful to approximate the
continuous time interest rate process {rt} by a Markov-Chain. It is well known that the
Vasicek interest rate process can be expressed as an AR(1) process. We closely follow the
approach outlined in Tauchen (1986), who discusses accuracy of approximating an AR(1)
process with a Markov-Chain.
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First note that the conditional expectation and variance of the short rate process in equation
(2.1) are given by

rmean
s|t ≡ Et [rs] = α + (rt − α) e−β(s−t) for s ≥ t;

and

rvar
s|t ≡ Vt [rs] =

σ2
r

α
(1 − e−2β(s−t)) for s ≥ t.

Let {r̃t} denote the discrete valued process that approximates the continuous valued process
{rt}. Let r1 < r2 < r3, . . . , rM denote the values that r̃t may take on. A method of selecting
the values r1 and rM is to let the absolute value of the difference between r1 (rM) and rmean

s|t
be a multiple m of the conditional variance rvar

s|t . Mathematically,

r1 = rmean
s|t −m× rvar

s|t ; rM = rmean
s|t +m× rvar

s|t .

Let the remaining rks be equispaced in the interval [r1, rM ] and denote 4r = rj−rj−1 where
j ∈ {2, 3, . . . ,M}.

We set one period in the Markov-Chain to be T years. The probability of making a transi-
tion from node rj to node rk in T years is calculated as follows. For each node j and for all
n ∈ {0, 1, . . .}

πjk = Pr[r̃(n+1)T = rk | r̃nT = rj]

= N

rk − rmean
T |0 +4r/2√
rvar
T |0

 − N

rk − rmean
T |0 −4r/2√
rvar
T |0

 if k ∈ {2, 3, . . . ,M − 1}

= N

rk − rmean
T |0 +4r/2√
rvar
T |0

 if k = 1

= 1 − N

rk − rmean
T |0 +4r/2√
rvar
T |0

 if k = M.

Intuitively, the approximation works for the following reason. As the number of nodes M
increases, the conditional distribution of r̃(n+1)T |r̃nT = rj will closely approximate that of
r(n+1)T |rnT = rj in the sense of weak convergence.
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With the discrete approximation of rt in place, tax benefits, bankruptcy costs, and transac-
tion costs can be written as

tb(r, ζ,T,V0) = V0 ×
[
ntb1 , ntb2 , . . . , ntbM

]′
with ntbj

.
= ntb(rj, ζ, T ),

bc(r, ζ,T,V0) = V0 ×
[
nbc1 , nbc2 , . . . , nbcM

]′
with nbcj

.
= nbc(rj, ζ, T ),

tc(ζ,V0) = V0 ×
[
ntc1 , ntc2 , . . . , ntcM

]′
with ntcj

.
= ntc(ζ).

Note that tb(r, ζ,T,V0),bc(r, ζ,T,V0), tc(ζ,V0) is a M × 1 vector.

2.5.2.2 Scalability

Assume for the moment that the horizon is finite so that the firm can only issue debt for
N − 1 periods. Economically, the firm exogenously dies at time NT . The present value of
tax benefits at time (N − 1)T are

TBj;N−1
.
= TBN−1(rj, ζ, T, V(N−1)T ) = V(N−1)T × ntbj.

The following derivation shows that tax benefits at time (N−2)T is linear in V(N−2)T . Define
τN−2 as the first passage time when the unleveraged firm value breaches the default threshold
after firm issues debt at time (N − 2)T . Using backward induction, the present value of tax
benefits at time (N − 2)T is

TBj;N−2
.
= TBN−2(rj , ζ, T, V(N−2)T )

= V(N−2)T × ntbj +
M∑
k=1

πjkEN−2
[
TBj;N−1 IτN−2>T e

∫ (N−1)T
(N−2)T

−ru du|r(N−1)T = rk

]
(2.11)

The first term of equation (2.11) is the present value of tax benefits from the debt issued
at (N − 2)T . The second term of equation (2.11) is the present value of tax benefits from
the subsequent debt issuance at (N − 1)T conditional upon surviving until (N − 1)T . In
subsection 3.2.7 of the Appendix, we show that

TBj;N−2 = VN−2 e
−yT ntbkHjk (2.12)
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where

Hjk
.
= H(rj, rk, T ) = EN−2

[
e
∫ (N−1)T
(N−2)T

−0.5σ2
vdu+

∫ (N−1)T
(N−2)T

σvdWvudu IτN−2>T |r(N−1)T = rk

]
.

We solve for Hjk by numerical simulation. In subsection 3.2.8 of the Appendix, we also
give a closed form expression that provides a very good approximation of Hjk. Equation
(2.12) says that the present value of tax benefits at time (N − 2)T is a linear function of
the unleveraged firm value V(N−2)T . By induction, the present value of tax benefits at time
zero is linear in V0. Mathematically, it means that tax benefits at time zero can be written as

TBj;0 = V0 × ftbj
where ftbj is some function independent of the firm value V0. The function ftbj is the
normalized present value of tax benefits per unit of unleveraged firm value. By letting
N →∞, we apply a fixed point argument to TBj;0, yielding

TBj;0 = tbj +
M∑
k=1

πjkHjk TBk;0.

In matrix notation, we have that
TB1;0

TB2;0
...

TBM ;0

 =


tb1
tb2
...

tbM

 +


ψ11 ψ12 . . . ψ1M

ψ21
. . . · · · ...

...
...

. . .
...

ψM1 · · · · · · ψMM




TB1;0

TB2;0
...

TBM ;0


where ψjk = πjkHjk. Define I as the identity matrix with M dimensions, and Ψ as a matrix
with elements ψjk, then we have that

ftbj =
ntbj

I − e−ytΨ
.

Analogously, the normalized transaction costs and bankruptcy costs are

ftcj =
ntcj

I − e−ytΨ
; fbcj =

nbcj
I − e−ytΨ

.

Finally, the total leveraged firm value equals the after tax unleveraged firm value, plus the
value of tax benefits, less the value of bankruptcy and transaction costs. The firm value for
a given rj is given by
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TVj;0 = V0 × [(1− θ) + ftbj − fbcj − ftcj] . (2.13)

The firm chooses maturity T to maximize the total firm value in equation (2.13).

2.6 Quantitative analysis

Before we analyze the optimal debt maturity, it is useful to analyze the leveraged firm value,
tax benefits, bankruptcy costs and transaction costs for an arbitrary maturity. In Figures
2.7, 2.8 and 2.9, we plot the normalized value of each component as a function of maturity for
positive, negative and zero values of the term spread, respectively. For example, bankruptcy
costs of $0.1 means that bankruptcys costs are 10 cents per dollar of unleveraged firm value.
These graphs show the trade-off faced by the firm when choosing optimal debt maturity. We
analyze each component sequentially.

First, consider the plot for transaction costs, as shown in the dark solid line with square
markers in the three figures. As expected, transaction costs decrease with maturity. This
result is mechanical: as debt maturity increases, the need to roll over debt decreases, which
in turn reduces transaction costs. The dependence of transaction costs on the term spread
is more interesting. From the graphs, it is evident that transaction costs are almost inde-
pendent of the term spread, as indicated by the small magnitude of the slope of these lines.
From equation (2.7), the value of a one period transaction costs is not a function of the short
rate. However, from (2.13), it is clear that transaction costs depends on the sample path
of short rate {rt}. It turns out that for choice of parameters within the range of economic
interest, the dependence between transaction costs and the short rate is insignificant.

Second, consider the plot for bankruptcy costs, as shown in the dotted solid line in Fig-
ures 2.7-2.9. For each level of the term spread, bankruptcy costs approach zero as time
to maturity decreases to zero. This result is expected, since in our model interest rates
and firm value are driven by continuous Wiener processes. Therefore, the probability of
bankruptcy smoothly reaches zero as the time to maturity decreases to zero (Duffie and
Lando (2001)). In addition, observe that for a given maturity, bankruptcy costs are lowest
when the term spread is negative and are highest when the term spread is positive. The
intuition for this result also follows directly from Figure 2.3. When the term spread is pos-
itive, that is when the short rate is low, the chance of breaching the default threshold is high.

Third, consider the plot for tax benefits, as shown in the dark solid line with round markers
in in Figures 2.7-2.9. Note that the slope of tax benefits is almost zero in all figures, and
the level of tax benefits is almost the same for different term spreads. In addition to the
slope, note that the level of tax benefits is the same across different term spreads. From the
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figures, it is clear that tax benefits will play a minor role when firms optimize debt maturity.
This evidence is consistent with Graham and Harvey (2001) whose survey results point out
that CFOs do not consider tax benefits while choosing debt maturity.
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Figure 2.7: Relationship between debt maturity and (i) the total firm value (ii) tax benefits
(iii) bankruptcy costs, and (iv) transaction costs. The parameters are as follows: β = 0.261,
V0 = 100, α = 0.0716, γ = 0.5, θ = 0.35, y = 0.05, P0 = 40, σv = 20%, φ = 2%, and
r0 = 2.16%. Note that the term spread is significantly positive since the short rate r0 is
significantly lower than the long rate α.

Lastly, with all the components in place, we analyze the effect of different parameters on the
firm value.

2.6.1 Effect of term spread on firm value

Consider firm values, as shown in the dark solid line in Figures 2.7, 2.8 and 2.9. The firm
value is highest when the term spread is negative and is lowest when the term spread is
positive. This is also consistent with empirical evidence. Firm values are high prior to
the beginning of a recession when the term spread is negative. Conversely, firm values are
the lowest at the end of a recession when the term spread is positive. This result matches
the literature concerning the predictability of equity returns as surveyed by Cochrane (2011).
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Figure 2.8: Relationship between debt maturity and (i) the total firm value (ii) tax benefits
(iii) bankruptcy costs, and (iv) transaction costs. The parameters are as follows: β = 0.261,
V0 = 100, α = 0.0716, γ = 0.5, θ = 0.35, y = 0.05, P0 = 40, σv = 20%, φ = 2%, and
r0 = 12.16%. Note that the term spread is significantly negative since the short rate r0 is
significantly greater than the long rate α.

2.6.2 Effect of term spread on optimal debt maturity

Figure 2.10 plots the optimal maturity as a function of the term spread for different values
of firm leverage. The solid line plots the optimal maturity for highly leveraged firms; the
solid line with round markers shows the optimal maturity for medium leveraged firms; and
the dotted dashed line shows the optimal maturity for low leveraged firms. From the slightly
decreasing nature of the plots, it is clear that optimal maturity is a decreasing function of
the term spread. This result is consistent with the empirical findings of Barclay and Smith
(1995), Guedes and Opler (1996), Ozkan (2000), Graham and Harvey (2001), Faulkender
and Petersen (2006), Julio, Kim, and Weisbach (2008), and Chen, Xu, and Yang (2012).

2.6.3 Effect of leverage on optimal debt maturity

From Figure 2.10, it is also clear that optimal debt maturity is inversely related to the lever-
age ratio. For example, for a given term spread, the optimal maturity for highly leveraged
firms is lower than the optimal maturity for low leveraged firms. That is, highly leveraged
firms choose lower debt maturity than low leveraged firms. This is also consistent with the
evidence in Barclay and Smith (1995), and Julio, Kim, and Weisbach (2008).
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Figure 2.9: Relationship between debt maturity and (i) the total firm value (ii) tax benefits
(iii) bankruptcy costs, and (iv) transaction costs. The parameters are as follows: β = 0.261,
V0 = 100, α = 0.0716, γ = 0.5, θ = 0.35, y = 0.05, P0 = 40, σv = 20%, φ = 2%, and
r0 = 7.16%. Note that the term spread is approximately zero since the short rate r0 is equal
to the long rate α.
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Figure 2.10: Optimal maturity as a function of the term spread for different leverage ratios.
The parameters are as follows: β = 0.261, V0 = 100, α = 0.0716, γ = 0.5, θ = 0.35, y = 0.05,
σv = 20%, φ = 2%, and r0 = 7.16%.
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2.6.4 Effect of transaction costs, firm volatility and correlation
on optimal debt maturity

Table 2.3 summarizes the effect of a small positive change in either transaction costs pa-
rameter φ, firm volatility σv or correlation ρ on the various components of the firm value.
Not surprisingly, an increase in the transaction costs parameter φ lowers the firm value and
increases optimal debt maturity. Less obvious is the comparative statics with firm volatility.
An increase in firm volatility σv increases the probability of bankruptcy for a given leverage
ratio, which increases bankruptcy costs. An increase in the probability of bankruptcy also
lowers the chance of future debt issuances, which in turn lowers both tax benefits and trans-
action costs. However, the increase in bankruptcy costs outweighs the decrease in transaction
costs. Therefore, firms optimally choose to decrease maturity. The same intuition holds for
the comparative statics for correlation ρ.

Change in Tax Bankruptcy Transaction Firm Optimal
variable benefit cost cost value maturity

Transaction costs parameter φ 0 0 + - +
Firm volatility σv - + - - -
Correlation ρ - + - - -

Table 2.3: Comparative statics.

2.6.5 Discussion of the speed of adjustment toward the target
leverage ratio

A primary assumption of our model is that firms adjust their capital structure toward a tar-
get leverage ratio. For a wide variety of parameters, we show that firms adjust their capital
structure every 1-3 years. Specifically, our model results indicate that highly leveraged firms
rollover their debt every year, while low leveraged firms roll over their debt every 2-3 years.
Regardless of the leverage ratio, firms are active in adjusting their capital structure. This
result is in contrast with Strebulaev (2007), who shows that firms are inactive in adjusting
their capital structure most of the time.

The fact that in our results firms are active in adjusting their capital structure is consistent
with Faulkender et al. (2011), who show that overleveraged firms close more than 70% of the
gap between actual and target leverage ratio upon realizing positive cashflows. Even firms
with near zero cash flow realization close the gap between actual and target leverage ratio
by 25%. Flannery and Rangan (2006) show that a typical firm closes about one-third of the
gap between actual and target leverage ratio each year. Marcus (1983), Jalilvand and Harris
(1984), Leary (2002), Leary and Roberts (2005) and Welch (2012) also show that managers
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are active in adjusting their capital structure.

We conclude this section by highlighting the following observation. The present literature
overwhelmingly attributes the fact that firms issue short term debt during bad times to the
validation of either agency theory, such as in Myers (1977), asymmetric information, such
as in Diamond (1991) and Flannery and Rangan (2006), or liquidity risk, such as in Chen,
Xu, and Yang (2012). Our results show that this empirical evidence is also consistent with
the trade-off theory of capital structure.

2.7 Conclusion

In this paper, we explain the link between debt maturity and term spread using the trade-off
theory of capital structure. Specifically, we show that:

1. Firms issue shorter term debt when term spread is positive, and increase maturity as
term spread decreases.

2. Firms are incredibly active in adjusting their capital structure.

3. Highly leveraged firms issue shorter term debt compared with low leveraged firms.

4. High volatility firms issue shorter term debt compared with low volatility firms.

5. Firms choose maturity by balancing bankruptcy costs and debt rollover costs. Tax
benefits play a minor role in debt maturity choice.

We develop a model of optimal maturity structure with a Vasicek (1977) interest rate process.
Valuation formulas are obtained in semi-closed form. We use a novel fixed-point argument
with stochastic interest rates to obtain the value of total tax benefits, bankruptcy costs, and
transaction costs for a dynamic model with an infinite number of debt issuances.

We can extend the model in three major directions. First, we can endogenize the cash-
flows generated by the firm. This allows us to express Tobin’s Q as a function of the term
spread. Second, we can add one more factor for interest rates to decompose debt maturity
as a function of both term spread and level of interest rates. Lastly, we can incorporate asset
substitution and other agency related frictions by endogenizing the default boundary as in
Leland (1994).
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Chapter 3

Appendix

3.1 First chapter

3.1.1 Recessions and the consumption cycle

The following graphs show average percentage changes in consumption/expenditures and
real-estate investments (residential and nonresidential) for the 11 NBER recessions dating
from 1947-Q2 to 2012-Q2. Average percentage changes are calculated as 3-period rolling
averages centered at the period. In each graph, the left vertical line marks the beginning of
the recession period. The right vertical line marks its end.
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Figure 3.1: NBER recession 1948-Q4.
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Figure 3.2: NBER recession 1953-Q2.
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Figure 3.3: NBER recession 1957-Q3.
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Figure 3.4: NBER recession 1960-Q2.
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Figure 3.5: NBER recession 1969-Q4.
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Figure 3.6: NBER recession 1973-Q4.
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Figure 3.7: NBER recession 1980-Q1.
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Figure 3.8: NBER recession 1981-Q3.
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Figure 3.9: NBER recession 1990-Q3.
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Figure 3.10: NBER recession 2001-Q1.
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Figure 3.11: NBER recession 2007-Q4.

3.1.2 System of ODEs for the scaled value function

The planner’s problem is characterized by Hamilton-Jacobi-Bellman equation (1.7). Reduc-
ing the state space involves establishing a candidate solution of the form

Ji(K,Z, t) = e−ρt (Ai ln (K + Z) + gi(y)) , (3.1)

with y = K/(K + Z) representing the ratio of capital stock to total stock of the economy.
After recognizing

Z

K + Z
= 1− K

K + Z
= (1− y) ,

∂y

∂K
=

1

K + Z

(
1− K

K + Z

)
=

(1− y)

(K + Z)
,

∂y

∂Z
=

−K
(K + Z)2

=
−y

(K + Z)
,

the partial derivatives of this candidate function take the following forms
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Jit = −ρe−ρt [Ai ln (K + Z) + gi(y)] , (3.2)

JiK =
e−ρt

(K + Z)
[Ai + g′i(y) (1− y)] , (3.3)

JiKK =
e−ρt

(K + Z)2
[
g′′i (y) (1− y)2 − 2g′i(y) (1− y)− Ai

]
(3.4)

JiZ =
e−ρt

(K + Z)
[Ai − g′i(y)y] , (3.5)

where for clarity, I use a shorter notation with dgi(y)/dy = g′i(y), d2gi(y)/dy2 = g′′i (y).

I then express the optimal controls, the optimal durable production function, and the in-
traperiod utility function in terms of gi(y) and its derivatives. Use equation (1.8) and the
candidate value for JiK in equation (3.3) to derive

K∗iN = β
(K + Z)

Ai + g′i(y) (1− y)
, (3.6)

lnK∗iN = ln β + ln (K + Z)− ln [Ai + g′i(y) (1− y)] . (3.7)

Dividing equation (3.5) by equation (3.3) gives

JiZ
JiK

=
Ai − g′i(y)y

Ai + g′i(y) (1− y)
. (3.8)

Plug equation (3.8) into equation (1.9). The optimal capital for the durable production
process becomes

K∗iD = Z

[
αη

Ai − g′i(y)y

Ai + g′i(y) (1− y)

] 1
1−η

. (3.9)

The optimal production flow of durable goods in equation (1.10) gives

αK∗ηiDZ
1−η = αZ

[
αη

Ai − g′i(y)y

Ai + g′i(y) (1− y)

] η
1−η

. (3.10)
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Use equation (3.7), and that lnZ = ln (K + Z)+ln (1− y), to express the intraperiod utility
term as

β lnK∗iN + (1− β) lnZ =β
(
lnβ + ln (K + Z)− ln

[
Ai + g′i(y) (1− y)

])
+ (1− β) (ln (K + Z) + ln (1− y))

=β lnβ − β ln
[
Ai + g′i(y) (1− y)

]
+ (1− β) ln (1− y) + ln (K + Z) .

(3.11)

I now plug into the HJB equation (1.7) the partial derivatives of the candidate solution,
the optimal controls, and the intraperiod utility. After recognizing that Jit = −ρJi, I ex-
press the HJB equation as

0 =e−ρt (β lnψ + β lnK∗iN + (1− β) lnZ)− (ρ+ λj) Ji + λjJj + JiK (µiK −K∗iN −K∗iD)

+ JiZ
(
αK∗ηiDZ

1−η − δZ
)

+
1

2
JiKKσ

2
iKK

2. (3.12)

I now plug into the equation above the solutions expressed in terms of the new state variable
y in equations (3.6)–(3.11), as well as the candidate value function and its derivatives in
equations (1.12)–(3.5). Note that the term e−ρt cancels out

0 =β lnψ + β lnβ − β ln
[
Ai + g′i(y) (1− y)

]
+ (1− β) ln (1− y)

+ ln (K + Z)− (ρ+ λj) [Ai ln (K + Z) + gi(y)] + λj [Aj ln (K + Z) + gj(y)]

+
[
Ai + g′i(y) (1− y)

] 1

(K + Z)

[
µiK − β

(K + Z)

Ai + g′i(y) (1− y)
− Z

[
αη

Ai − g′i(y)y

Ai + g′i(y) (1− y)

] 1
1−η
]

+
[
Ai − g′i(y)y

] 1

(K + Z)

[
αZ

[
αη

Ai − g′i(y)y

Ai + g′i(y) (1− y)

] η
1−η
− δZ

]
+

1

2
σ2iK

[
g′′i (y) (1− y)2 − 2g′i(y) (1− y)−Ai

] 1

(K + Z)2
K2. (3.13)

Using y = K/(K + Z) and (1− y) = Z/(K + Z), the equation above becomes
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0 =β ln (ψβ)− β ln
[
Ai + g′i(y) (1− y)

]
+ (1− β) ln (1− y)

+ ln (K + Z)− (ρ+ λj) [Ai ln (K + Z) + gi(y)] + λj [Aj ln (K + Z) + gj(y)]

+ µi
[
Ai + g′i(y) (1− y)

]
y − β −

[
Ai + g′i(y) (1− y)

]
(1− y)

[
αη

Ai − g′i(y)y

Ai + g′i(y) (1− y)

] 1
1−η

+ α
[
Ai − g′i(y)y

]
(1− y)

[
αη

Ai − g′i(y)y

Ai + g′i(y) (1− y)

] η
1−η
− δ

[
Ai − g′i(y)y

]
(1− y)

+
1

2
σ2iK

[
g′′i (y) (1− y)2 − 2g′i(y) (1− y)−Ai

]
y2. (3.14)

The right-hand side of the equation above is equal to zero for all positive values of K, Z and
y. Consequently, after grouping all terms in ln (K + Z), it must be the case that for each
production regime i, j ∈ {h, `}, j 6= i the following holds

0 =1− (ρ+ λj)Ai + λjAj

0 =1− (ρ+ λi)Aj + λiAi.

The system above is solved by setting Ai = Aj = 1/ρ = φ. After plugging this result into
equation (3.14), the system of ODE becomes

0 =− β (1− ln (ψβ))− β ln
[
φ+ g′i(y) (1− y)

]
+ (1− β) ln (1− y)− (ρ+ λj) gi(y) + λjgj(y)

+ µi
[
φ+ g′i(y) (1− y)

]
y −

[
φ+ g′i(y) (1− y)

]
(1− y)

[
αη

φ− g′i(y)y

φ+ g′i(y) (1− y)

] 1
1−η

+ α
[
φ− g′i(y)y

]
(1− y)

[
αη

φ− g′i(y)y

φ+ g′i(y) (1− y)

] η
1−η
− δ

[
φ− g′i(y)y

]
(1− y)

+
1

2
σ2iK

[
g′′i (y) (1− y)2 − 2g′i(y) (1− y)− φ

]
y2. (3.15)

I rewrite the equation above in a more compact form using the following notation for the
marginal values of the capital stock and the durable service level for a unit size economy, or
formally the marginal values of these state variables to the value function J(K,Z, t) when
K + Z = 1 and t = 0. Name these terms as

MiK(y) ≡ φ+ g′i(y) (1− y) , (3.16)

MiZ(y) ≡ φ− g′i(y)y. (3.17)
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In the same spirit, I name the convexity term

MiKK(y) ≡ g′′i (y) (1− y)2 − 2g′i(y) (1− y)− φ. (3.18)

As a result, the ODE system in its compact form becomes

0 =− β (1− ln (ψβ))− β ln (MiK(y)) + (1− β) ln (1− y)− (ρ+ λj) gi(y) + λjgj(y)

+ µiyMiK(y)− (αη)
1

1−η MiZ(y)
1

1−η (1− y)MiK(y)
−η
1−η +

1

2
σ2
iKy

2MiKK(y)

+ α (αη)
η

1−η MiZ(y)
1

1−η (1− y)MiK(y)
−η
1−η − δ (1− y)MiZ(y). (3.19)

3.1.3 Lower bounds and the limiting case of the value function

In this appendix, I investigate a non-optimal feasible strategy to both establish a lower bound
for the value function and to characterize the behavior of the function gi(y) in the vicinity
of the bound y = 0.

Consider a situation in which the social planner commits to an infinitesimal durable expendi-
ture KDt → 0, and allocate capital exclusively into the capital accumulation and nondurable
production processes. As mentioned above, the representative agent would face a decreasing
utility from the durable stock Zt as it depreciates at a constant rate δ. More precisely,

Ĵi(K,Z, t) = sup
{KNs}

Et

[∫ ∞
t

e−ρsβ ln (ψKNs) ds

]
+ (1− β)

∫ ∞
t

e−ρs ln
[
Ze−δ(s−t)

]
ds

subject to

dKt = (µiKt −KNt) dt+ σiKKtdωt.

The integral in the last term of the objective function can be evaluated directly
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∫ ∞
t

e−ρs ln
[
Ze−δ(s−t)

]
ds = (lnZ + δt)

∫ ∞
t

e−ρsds− δ
∫ ∞
t

e−ρssds

= (lnZ + δt)
e−ρt

ρ
− δ e

−ρt

ρ
t− δ e

−ρt

ρ2

=
e−ρt

ρ

(
lnZ − δ

ρ

)
.

Define

Vi(K, t) = sup
{KNs}

Et

[∫ ∞
t

e−ρsβ ln (ψKNs) ds

]
.

Then, the HJB equation for this problem becomes

0 = sup
{KN}

[
e−ρt (β lnψ + β lnKN) + Vit + ViK (µiK −KN) +

1

2
ViKKσ

2
iKK

2 + λj (Vj − Vi)
]
.

Assume a candidate solution of the form Vi(K, t) = e−ρt (Ai lnK + Ci). This yields the fol-
lowing partial derivatives of the value function

Vit = −ρe−ρt (Ai lnK + Ci)

ViK = e−ρt
Ai
K

ViKK = −e−ρt Ai
K2

.

First-order condition on KN implies

K∗N = e−ρtβV −1iK =
βK

Ai
.

Plugging these results into the HJB equation gives
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0 = β

(
lnK + ln

ψβ

Ai

)
+ λj (Aj lnK + Cj)− (λj + ρ) (Ai lnK + Ci) +

Ai
K

(
µiK −

βK

Ai

)
− 1

2
σ2iKAi

= lnK (β + λjAj − (λj + ρ)Ai) + β ln
ψβ

Ai
+ λjCj − (λj + ρ)Ci +Aiµi − β −

1

2
σ2iKAi.

Similarly to the more general case, it must be that for each production regime i, j ∈
{h, `}, j 6= i the following equations hold

0 =β + λjAj − (ρ+ λj)Ai

0 =β + λiAi − (ρ+ λi)Aj.

The system above is solved by setting Ai = Aj = β/ρ. Then, for i, j ∈ {h, `}, j 6= i

ρCi + λj (Ci − Cj) =− β (1− ln (ψρ)) +
β

ρ

(
µi −

1

2
σ2
iK

)
(3.20)

ρCj + λi (Cj − Ci) =− β (1− ln (ψρ)) +
β

ρ

(
µj −

1

2
σ2
jK

)
. (3.21)

This is a system of two equations for the unknowns Ci and Cj. Subtracting the first equation
from the second yields

Ci − Cj =
β

ρ

[(
µi − 1

2
σ2
iK

)
−
(
µj − 1

2
σ2
jK

)
ρ+ λi + λj

]
. (3.22)

Substitute this into the first equation and solve for Ci. This gives

Ci =
β

ρ2

[
(λi + ρ)µi + λjµj

ρ+ λi + λj
− ρ (1− ln (ψρ))− 1

2

(λi + ρ)σ2
iK + λjσ

2
jK

ρ+ λi + λj

]
. (3.23)

Then, the value function for this strategy takes the form



CHAPTER 3. APPENDIX 80

Ĵi(K,Z, t) =
e−ρt

ρ

[
β lnK + ρCi + (1− β) lnZ − (1− β)

δ

ρ

]
.

The equation above can be re-expressed in terms of the new state variable y. This gives

Ĵi(K,Z, t) =
e−ρt

ρ

[
ln (K + Z) + β

(
ln y +

ρ

β
Ci

)
+ (1− β)

(
ln (1− y)− δ

ρ

)]
. (3.24)

Since Ji(K,Z, t) ≥ Ĵi(K,Z, t), a comparison of the expression above with the candidate
value function for the general case in equation (1.12) establishes the following lower bound
for the function gi(y)

gi(y) ≥ ĝi(y) =
β

ρ

(
ln y +

ρ

β
Ci

)
+

1− β
ρ

(
ln (1− y)− δ

ρ

)
. (3.25)

This result shows that at the extremes when y → 0 and y → 1, the function gi(y) cannot
decrease at a faster rate than that of the logarithm functions in the first and second terms
in the right-hand side of the equation above, respectively.

3.1.4 Recasting the system of ODEs

In this appendix, I derive the new system of ODEs for the scaled value function using the
transformation

gi(y) = φ [β ln y + (1− β) ln (1− y) + fi(y)] . (3.26)

I start by assessing the derivatives

g′i(y) = φ

[
β − y

y (1− y)
+ f ′i(y)

]
,

g′′i (y) = φ

[
−(β − 2βy + y2)

y2 (1− y)2
+ f ′′i (y)

]
,
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and applying these results to the scaled marginal values

MiK(y) =
φ

y
[β + fi(y)y (1− y)] ,

MiZ(y) =
φ

1− y
[(1− β)− fi(y)y (1− y)] ,

MiK(y) =
φ

y2
[
−β − 2f ′i(y)y2 (1− y)− f ′′i (y)y2 (1− y)2

]
.

After plugging these partial results into the ODE system in equation (1.13), the terms β ln y
and (1− β) ln(1− y) cancel out. The recasted ODE system becomes

0 =− ρβ (1− ln [ψρβ])− ρβ ln
[
β + f ′i(y)y (1− y)

]
− (ρ+ λj) fi(y) + λjfj(y)

+ µi
[
β + f ′i(y)y (1− y)

]
− (αη)

1
1−η

(
y

1− y

) η
1−η [

(1− β)− f ′i(y)y (1− y)
] 1

1−η
[
β + f ′i(y)y (1− y)

] −η
1−η

+
1

2
σ2iKy

2
[
−β − 2f ′i(y)y2 (1− y)− f ′′i (y)y2 (1− y)2

]
+ α (αη)

η
1−η

(
y

1− y

) η
1−η

[(1− β)− fi(y)y (1− y)]
1

1−η
[
β + f ′i(y)y (1− y)

] −η
1−η

− δ [(1− β)− fi(y)y (1− y)] . (3.27)

It is easy to verify that the dependence of the efficient parameter α on the state variable y
yields a numerically manageable system of ODEs. Applying the efficiency specification to
equation (1.20) and the compact notation

M f
iK(y) = β + f ′i(y)y (1− y) , (3.28)

M f
iZ(y) = (1− β)− f ′i(y)y (1− y) , (3.29)

M f
iKK(y) = −β − 2f ′i(y)y2 (1− y)− f ′′i (y)y2 (1− y)2 , (3.30)

results in

0 =− ρβ (1− ln [ψρβ])− ρβ ln
(
M f

iK(y)
)
− (ρ+ λj) fi(y) + λjfj(y) + µiM

f
iK(y)

− (θη)
1

1−η y
η

1−η (1− y)M f
iZ(y)

1
1−ηM f

iK(y)
−η
1−η +

1

2
σ2
iKy

2M f
iKK(y)

+ θ (θη)
η

1−η y
η

1−η (1− y)M f
iZ(y)

1
1−ηM f

iK(y)
−η
1−η − δM f

iZ(y). (3.31)
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Note that the durable capital and durable expenditure terms (the first terms in the second
and third lines in the equation above) converge to zero in the limits y → {0, 1}. Note also
that the newly transformed value function converges to bounded values in these limits since

lim
y→{0,1}

M f
iK(y) = β,

lim
y→{0,1}

M f
iZ(y) = 1− β,

lim
y→{0,1}

M f
iK(y) = β,

given that first derivative of fi(y) does not grow at a faster rate than 1/y
η

1−η and 1/(1− y)
when the state variable y approach the limits zero and one respectively.

3.1.5 Numerical techniques

I solve the ODE system by assuming a finitely lived representative agent. As a result, I
use the explicit method for solving a system of partial differential equations (PDEs), which
parallels the ODE system in equation (3.31). The solution for the infinitely lived agent is
simply the steady state solution resulting from extending the life of the representative agent
to infinity.

The system of PDEs for the finitely lived agent is analogous to equation (3.31) with an
additional term fit(y, t) reflecting the fact that the scaled and transformed value functions
are time dependent. Formally,

Ji(K,Z, t) = φ ln (K + Z) + gi(y, t),

gi(y, t) = φ [β ln y + (1− β) ln (1− y) + fi(y, t)] .

The PDE system is written as

0 =− ρβ (1− ln [ψρβ])− ρβ ln
(
M f

iK(y)
)
− (ρ+ λj) fi(y, t) + λjfj(y, t) + fit(y, t)

+ µiM
f
iK(y, t)− (θη)

1
1−η y

η
1−η (1− y)M f

iZ(y, t)
1

1−ηM f
iK(y, t)

−η
1−η +

1

2
σ2
iKy

2M f
iKK(y, t)

+ θ (θη)
η

1−η y
η

1−η (1− y)M f
iZ(y, t)

1
1−ηM f

iK(y, t)
−η
1−η − δM f

iZ(y, t), (3.32)
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where

M f
iK(y, t) = β + fiy(y, t)y (1− y) ,

M f
iZ(y, t) = (1− β)− fiy(y, t)y (1− y) ,

M f
iKK(y, t) = −β − 2fiy(y, t)y

2 (1− y)− fiyy(y, t)y2 (1− y)2 ,

The space-time mesh used for the explicit method is carefully chosen to avoid numerical in-
stability. Define an equally spaced mesh for the time dimension as t ∈ {t0 = 0, t1 = ∆t, t2 =
2∆t, . . . T}. As for the state space, define a more general discretization y ∈ {y0, y1, . . . , yN}
were ∆yn = yn− yn−1. A successful implementation of the explicit method requires that the
stability parameter

sn ≡
σ2
yn∆t

∆y2n
= σ2

K∆t
y2n (1− yn)2

∆y2n
<

1

2
,

where in the first equality I used equation (1.19), which defines the time dependency of σy
on the state variable y. The expression above suggests that the state variable dependence
on the stability parameter goes away by choosing an adaptive mesh for y. I choose the spacing

∆yn = 4× yn (1− yn) ∆ymax,

which yields the following condition for numerical stability

s =
σ2
K∆t

(4∆ymax)
2 <

1

2
.

The actual implementation uses values of ∆t ranging from 30 to 90 days depending on the
chosen model parameters. The value of ∆ymax is set such that s = 1/3.

The backward recursion mechanism employed in the explicit method involves assessing the
transformed value function at time t with the approximated time and space derivatives taken
at time t+∆t. This gives the following recursive relationship for the transformed value func-
tion
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fi(yn, t) =
1

1 + ρ∆t

[
(1− λj∆t) fi(yn, t+ ∆t) + λj∆tfj(yn, t+ ∆t)

+ ∆t

(
− ρβ (1− ln [ψρβ])− ρβ ln

(
Mf
iK(yn, t+ ∆t)

)
+ µiM

f
iK(yn, t+ ∆t)

− (θη)
1

1−η y
η

1−η
n (1− yn)Mf

iZ(yn, t+ ∆t)
1

1−ηMf
iK(yn, t+ ∆t)

−η
1−η +

1

2
σ2iKy

2
nM

f
iKK(yn, t+ ∆t)

+ θ (θη)
η

1−η y
η

1−η
n (1− yn)Mf

iZ(yn, t+ ∆t)
1

1−ηMf
iK(yn, t+ ∆t)

−η
1−η − δMf

iZ(yn, t+ ∆t)

)]
.

The implemented algorithm starts by populating the ending nodes of the transformed value
function with their corresponding lower bounds. The final solution is achieved when the ab-
solute relative change on ‖fi(yn, t)−fi(yn, t+∆t)‖ is negligible between backward iterations,
which indicates numerical convergence to the value function for an infinitely lived agent.

3.1.6 Optimal consumption, expenditures and prices

In this section, I provide the derivation of the processes for the optimal consumption, optimal
expenditure, the equilibrium durable price, and the state price deflator. Before proceeding,
I extend the definitions in equations (1.14)-(1.16) in order to keep the notation compact

MiKZ(y) ≡ −φ− g′i(y) (1− 2y)− g′′i (y)y (1− y) ,

MiZZ(y) ≡ −φ+ 2g′i(y)y + g′′i (y)y2,

MiKKK(y) ≡ 2φ+ 6g′i(y) (1− y)− 6g′′i (y) (1− y)2 + g′′′i (y) (1− y)3 ,

MiKKZ(y) ≡ 2φ+ 2g′i(y) (2− 3y)− 2g′′i (y) (1− 3y) (1− y)− g′′′i (y)y (1− y)2 .

All derivations involve a straightforward application of the generalized Ito’s lemma and a
long chain of algebraic manipulations. The following equations provide the stochastic pro-
cess for nondurable consumption and durable expenditure respectively

dY ∗iNt = Y ∗iNt (µiNdt+ σiNdωt) + λj
(
Y ∗jNt − Y

∗
iNt

)
dnt, (3.33)

dY ∗iDt = Y ∗iDt (µiDdt+ σiDNdωt) + λj
(
Y ∗jDt − Y

∗
iDt

)
dnt, (3.34)

where the drift and volatility are expressed as
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µiN =− MiKK(y)

MiK(y)

(
µiy −

β

MiK(y)
− (α(y)η)

1
1−η (1− y)

(
MiZ(y)

MiK(y)

) 1
1−η

)

− (1− y)
MiKZ(y)

MiK(y)

(
α(y) (α(y)η)

η
1−η

(
MiZ(y)

MiK(y)

) η
1−η

− δ

)

+
1

2
σ2
Ky

2

[
2

(
MiKK(y)

MiK(y)

)2

− MiKKK(y)

MiK(y)

]
,

σiN =− σKy
MiKK(y)

MiK(y)
,

and

µiD =
η

1− η

[
MiKZ(y)

MiZ(y)
− MiKK(y)

MiK(y)

](
µiy −

β

MiK(y)
− (α(y)η)

1
1−η (1− y)

(
MiZ(y)

MiK(y)

) 1
1−η

)

+

[
η

1− η
(1− y)

(
MiZZ(y)

MiZ(y)
− MiKZ(y)

MiK(y)

)
− 1

](
α(y) (α(y)η)

η
1−η

(
MiZ(y)

MiK(y)

) η
1−η

− δ

)

+
1

2
σ2
K

η

1− η
y2

[
η

1− η

(
MiKZ(y)

MiZ(y)
− MiKK(y)

MiK(y)

)2

+
MiKKZ(y)

MiZ(y)
−
(
MiKZ(y)

MiZ(y)

)2

+

(
MiKK(y)

MiK(y)

)2

− MiKKK(y)

MiK(y)

]
,

σiD =σK
η

1− η
y
MiKK(y)

MiK(y)
,

The dynamic of the state price deflator becomes

dζit = ζit (µiζdt+ σiζdωt) + λj (ζjt − ζit) dnt (3.35)

where

µiζ =
MiKK(y)

MiK(y)

(
µiy −

β

MiK(y)
− (αη)

1
1−η (1− y)

(
MiZ(y)

MiK(y)

) 1
1−η
)

+ (1− y)
MiKZ(y)

MiK(y)

(
α (αη)

η
1−η

(
MiZ(y)

MiK(y)

) η
1−η

− δ

)
+

1

2
σ2
Ky

2MiKKK(y)

MiK(y)
− ρ, (3.36)

σiζ =σKy
MiKK(y)

MiK(y)
. (3.37)

Finally, the durable price dynamic is derived by a straightforward application of the gener-
alized Ito’s lemma on equation (1.26)
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dpit = pit (µipdt+ σipdωt) + λj (pjt − pit) dnt. (3.38)

where

µip =

[
MiKZ(y)

MiZ(y)
− MiKK(y)

MiK(y)

](
µiy −

β

MiK(y)
− (αη)

1
1−η (1− y)

(
MiZ(y)

MiK(y)

) 1
1−η
)

+ (1− y)

[
MiZZ(y)

MiZ(y)
− MiKZ(y)

MiK(y)

](
α (αη)

η
1−η

(
MiZ(y)

MiK(y)

) η
1−η

− δ

)

+ σ2
Ky

2

[
−MiKKK(y)

MiZ(y)
− 2

MiKK(y)

MiK(y)

(
MiKZ(y)

MiZ(y)
− MiKK(y)

MiK(y)

)
+
MiKKZ(y)

MiZ(y)

]
, (3.39)

σip =σKy

[
MiKZ(y)

MiZ(y)
− MiKK(y)

MiK(y)

]
. (3.40)
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3.2 Second chapter

3.2.1 Time series plot of the percent long term debt share

Figure 3.12: Long term debt share of non-financial corporate business. The solid
line is the raw data and the dashed dotted line is the trend as calculated by the
Hodrick-Prescott filter. Shaded bands in gray are NBER recession dates.

3.2.2 Time series plot of the term spread

Figure 3.13: Term Spread (difference between 10-year Treasure note yield and the
3-month Treasury bill). The solid line is the raw data and the dashed dotted line
is the trend as calculated by the Hodrick-Prescott filter. Shaded bands in gray are
NBER recession dates.
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3.2.3 Derivation of the value of a risky zero coupon bond

Dzero(t, T, rt;X0) = Et
[
e
∫ T
t ru du × {1− γ I(τ ≤ T )}

]
= Et

[
e
∫ T
t ru du × 1

]
− γ Et

[
e
∫ T
t ru du × I(τ ≤ T )

]
(3.41)

The first term represents the present value of one dollar upon no default. This expression is
simply the value of a default free zero coupon bond Λ(rt, t, T ). We use a change of measure
to evaluate the second term.

Using Ito’s Lemma, the dynamics of the zero coupon bond price are

dΛ(rt, t, T ) = Λ(rt, t, T ) (rtdt + σp(t, T ) dWrt) ,

where

σp(t, T ) =
σr Λr(rt, t, T )

Λ(rt, t, T )
= σr B(t, T ).

Let
ηt = e

∫ t
0 σp(s,T )dWrs−

∫ t
0 σ

2
p(s,T )ds.

Note that η0 = 1 and dηt = ηt σp(t, T ) dWrt. Furthermore, the since σp(t, T ) is deterministic,
the Novikov condition

E
[
e

1
2

∫ T
0 σ2

p(s,T ) ds
]
<∞

is satisfied trivially. Therefore, it follows from Girsanov theorem that

(
WT

vt

WT
rt

)
=

(
Wvt

Wrt

)
−
∫ t

0

ds

(
1 ρ
ρ 1

)(
0

σp(s, T )

)
(3.42)

is a martingale under probability measure QT, which is given by

dQT

dQ

∣∣∣∣
Ft

= ηt ∀ t ≤ T.

Standard calculations yield that

Λ(rt, t, T ) = Λ(r0, 0, T )× ηt × e
∫ t
0 rsds, (3.43)

and
e−

∫ T
0 rsds = Λ(r0, 0, T )× ηT . (3.44)
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Then, we have that

Et
[
e−

∫ T
t ru du × I(τ ≤ T )

]
= Et

[
e−

∫ T
0 ru du × e

∫ t
0 ru du × I(τ ≤ T )

]
= e

∫ t
0 ru du Et

[
e−

∫ T
0 ru du × I(τ ≤ T )

]
= e

∫ t
0 ru du Et [Λ(r0, 0, T )× ηT × I(τ ≤ T )]

= e
∫ t
0 ru du Λ(r0, 0, T )Et [ηT × I(τ ≤ T )]

= e
∫ t
0 ru du Λ(r0, 0, T )ET

t [I(τ ≤ T )× Et [ηT ]]

= e
∫ t
0 ru du Λ(r0, 0, T ) ηtET

t [I(τ ≤ T )]

= Λ(rt, t, T )ET
t [I(τ ≤ T )]

Where we apply equation (3.44) in the third equality, abstract Bayes’ rule in the fifth equal-
ity, and equation (3.43) in the last equality. Next we show that

ET
t [I(τ ≤ T )] = G(T, T,X0)

where

G(t;T,X0) = N

(
−X0 − µg(t;T )√

Σ(t;T )

)
+ e−

2X0µg(t;T )

Σ(t;T ) N

(
−X0 + µg(t;T )√

Σ(t;T )

)
(3.45)

with

µg(t;T ) =

∫ t
0
−σ2(s;T )ds

2
=
−Σ(t;T )

2
;

and

Σ(t;T ) =

∫ t

0

σ2(s;T )ds =σ2
V t+

σ2
r

β2

(
t+ e−2β(T−t)B2(t)− 2e−β(T−t)B1(t)

)
+

2ρσV σr
β

(
t− e−β(T−t)B1(t)

)
.

and

σ(t;T ) =
√
σ2
V + σ2

p(t;T ) + 2ρσV σp(t;T ); B1(t) =
(1− e−βt)

β
;B2(t) =

(1− e−2βt)
2β

.

Proof for the expression of G(t, T,X0)
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Given the dynamics of Xt, it is well known that the distribution of the first passage hitting
times G() in equation (3.45) satisfies the Kolmogorov Backward Equation (KBE). Substi-
tuting the dynamics of Xt, KBE could be written as

(−1

2
σ2(t;T ))

∂G

∂X0

+
1

2
σ2(t;T )

∂2G

∂X2
0

− ∂G

∂t
= 0

with the boundary conditions:

G(0;T,X0) = 0 forX0 > 0 andG(t;T, 0) = 1.

It is sufficient to verify that equation (3.45) satisfies the Kolmogorov Backward Equation.
A few tricks are useful. We define the pdf of a standard normal as

n(x) = n(−x) =
e
−x2

2

√
2π

. Straightforward calculations show that

n
′
(x) = −xn(x); µg(t;T ) =

−Σ(t;T )

2
.

Next, we evaluate the partial derivatives by brute force. Tedious algebra shows that

∂G

∂X0
= −n

(
X0 − Σ(t;T )

2√
Σ(t;T )

)
1√

Σ(t;T )
− n

(
X0 + Σ(t;T )

2√
Σ(t;T )

)
eX0√
Σ(t;T )

+ eX0N

(
−X0 − Σ(t;T )

2√
Σ(t;T )

)
,

∂G

∂t
= n

(
X0 − Σ(t;T )

2√
Σ(t;T )

)(
X0σ

2(t;T )

2Σ3/2
+

σ2(t;T )

4Σ(t;T )1/2

)
+ eX0n

(
X0 − Σ(t;T )

2√
Σ(t;T )

)(
X0σ

2(t;T )

2Σ3/2
+

σ2(t;T )

4Σ(t;T )1/2

)
,

and

∂2G

∂X2
0

= n

(
X0 − Σ(t;T )

2√
Σ(t;T )

)
X0 − Σ(t;T )

2

Σ(t;T )
3
2

+ n

(
X0 + Σ(t;T )

2√
Σ(t;T )

)
(X0 + Σ(t;T )

2 )eX0

Σ(t;T )
3
2

− 2n

(
X0 + Σ(t;T )

2√
Σ(t;T )

)
eX0√
Σ(t;T )

+ eX0N

(
−X0 − Σ(t;T )

2√
Σ(t;T )

)
.

Substituting the partial derivatives in the Kolmogorov Backward Equation, we see that equa-
tion (3.45) is satisfied.
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3.2.4 Proof of the expression of the bankruptcy cost in a one
period debt issuance model

bc(r0, ζ, T, V0) =E0

[∫ T

0

ds γ VD(rs, s, T ) δ(s− τ) e−
∫ τ
0 rudu

]

=E0

[∫ T

0

ds γ
P0

1− θ
Λ(s;T,X0) e

y(T−s) δ(s− τ) e−
∫ τ
0 rudu

]

=E0

[∫ T

0

ds γ
P0

1− θ
Es
[
e
∫ T
s rudu

]
ey(T−s) δ(s− τ) e−

∫ τ
0 rudu

]

=E0

[∫ T

0

ds γ
P0

1− θ
Es
[
e
∫ T
0 rudu

]
ey(T−s) δ(s− τ)

]
.

We now move the outer expectation into the integral and apply the law of iterated expecta-
tions. The bankruptcy cost for a one period debt issuance becomes

bc(r0, ζ, T, V0) =γ
P0

1− θ
×
∫ T

0

ds ey(T−s) E0

[
e
∫ T
0 rudu δ(s− τ)

]
=γ

P0

1− θ
× Λ(r0, 0, T )

∫ T

0

ds ey(T−s) E0

[
e
∫ T
0 rudu

Λ(r0, 0, T )
δ(s− τ)

]

=γ
P0

1− θ
× Λ(r0, 0, T )

∫ T

0

ds ey(T−s) ET
0 [δ(s− τ)]

=γ
P0

1− θ
× Λ(r0, 0, T )

∫ T

0

ds ey(T−s) g(s, T,X0)

=γ
P0

1− θ
× Λ(r0, 0, T )

[
G(T ;T,X0) + Ĝ(T ;T,X0)

]
.

We have used the following property of the dirac delta function. Suppose, we have a random
variable x̃, then E[δ(x̃− x)] yields the density at x. To see this, let the density of x̃ be f(t),
then E[δ(x̃−x)] =

∫∞
−∞ δ(x̃−x)f(t)dt = f(x). In our case, G(t;T,X0) is equal to Pr(τ ≤ t)

in the T forward measure.

EQ
0

[
e
∫ T
0 rudu

Λ(0;T,X0)
δ(s− τ)

]
= ET

0 [δ(s− τ)] = Pr(τ = s) ≡ g(s, T,X0).
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3.2.5 Proof of the expression for tax benefits in a one period
debt issuance model

The market value of debt is given by

L0 = E0

[∫ T

0

Ce−
∫ s
0 r(u)duIs<τds

]
+ E0

[
P0Iτ>T e−

∫ T
0 rudu

]
+ E0

[
(1− θ)(1− γ)

∫ T

0

VD(rs, s, T )δ(s− τ)e−
∫ τ
0 rududs

]
.

The value of debt is composed of three parts: (i) present value of the flow of coupon payments
prior to maturity while the firm remains solvent; (ii) present value of principal payment at
time T conditional upon not defaulting prior to T and (iii) the present value of the recovery
amount conditional upon defaulting at any time before T .

The expression for tax benefits is simply θ times the first expectation which represents the
present value of the flow of coupon payments. We evaluate this expression as a difference
equation using the fact that debt is issued at par, i.e. L0 = P0. So,

θ × E0

[∫ T

0
Ce−

∫ s
0 r(u)duIs<τds

]
= θ × P0 − θ × E0

[
P0Iτ>T e−

∫ T
0 rudu

]
︸ ︷︷ ︸

Term 1

− θ × E0

[
(1− θ)(1− γ)

∫ T

0
VD(rs, s, T )δ(s− τ)e−

∫ τ
0 rududs

]
︸ ︷︷ ︸

Term2

.

Note that Term 2 is a (1−γ)(1−θ)
γ

times bc(r0, ζ, T, V0) and hence we have an expression for it.
Term 1 can be evaluated as follows:

E0

[
P0Iτ>T e−

∫ T
0 r(u)du

]
= E0

[
P0 Iτ>T

e−
∫ T
0 rudu

Λ(r0, 0, T )

]
Λ(r0, 0, T )

= E0

[
Iτ>T

e−
∫ T
0 r(u)du

Λ(r0, 0, T )

]
P0 Λ(r0, 0, T )

= ET
0 [Iτ>T ] P0 Λ(r0, 0, T )

= P0 Λ(r0, 0, T ) (1−G(T, T,X0)). (3.46)
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The third equality uses the change of measure formula. The expression for tax benefits fol-
lows.

3.2.6 Derivation of the expression of the coupon C

With the expression for tax benefits, the coupon rate C can be calculated immediately.
Mathematically,

C =
tb(r0, ζ, T, V0)

θE0

[∫ T
0
e−

∫ s
0 r(u)du Is<τ ds

] =
tb(r0, ζ, T, V0)

θ G̃(T, T,X0)
, (3.47)

where

G̃(T, T,X0) =

∫ T

0

dsΛ(r0, 0, s) (1−G(s, s,X0)).

Proof of the expression of G̃(T, T,X0)

E0

[∫ T

0

e−
∫ s
0 r(u)du Is<τ ds

]
=

∫ T

0

dsΛ(r0, 0, s)E0

[
e−

∫ s
0 r(u)du

Λ(r0, 0, s)
Is<τ ds

]

=

∫ T

0

dsΛ(r0, 0, s) (1−G(s, s,X0)

≡ G̃(T, T,X0)

The second inequality uses the definition of G(t, T,X0).

3.2.7 Expression for the present value of tax benefits at (N − 2)T

First note that
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EN−2
[
TBj;N−1 × IτN−2>T e

∫ (N−1)T
(N−2)T

ru du|r(N−1)T = rk

]
= EN−2

[
VN−1 × ntbk × IτN−2>T e

∫ (N−1)T
(N−2)T

−ru du|r(N−1)T = rk

]
= EN−2

[
VN−2e

∫ (N−1)T
(N−2)T

(ru−y−0.5σ2
vdu)+

∫ (N−1)T
(N−2)T

σvdWvudu × ntbk IτN−2>T e
∫ (N−1)T
(N−2)T

−ru du|r(N−1)T = rk

]
= VN−2e

−yTEN−2
[
e
∫ (N−1)T
(N−2)T

−0.5σ2
vdu+

∫ (N−1)T
(N−2)T

σvdWvudu × ntbk IτN−2>T |r(N−1)T = rk

]
= VN−2 e

−yT ntbkHjk

where

Hjk
.
= H(rj , rk, T ) = EN−2

[
e
∫ (N−1)T
(N−2)T

−0.5σ2
vdu+

∫ (N−1)T
(N−2)T

σvdWvudu IτN−2>T |r(N−1)T = rk

]
.

The present value of tax benefits at time (N − 2)T is

TBj;N−2
.
= TBN−2(rj, ζ, T, VN−2)

= VN−2 × ntbj +
M∑
k=1

πjk EN−2
[
TBj;N−1 × IτN−2>T e

∫ (N−1)T
(N−2)T

−ru du|r(N−1)T = rk

]

= V(N−2)T × ntbj +
M∑
k=1

V(N−2)T e
−yT πjk ntbkHjk. (3.48)

3.2.8 A Closed form approximation of Hjk

First, note the expression for Hjk:

Hjk
.
= H(rj, rk, T ) = EN−2

[
e
∫ (N−1)T
(N−2)T

−0.5σ2
vdu+

∫ (N−1)T
(N−2)T

σvdWvudu IτN−2>T |r(N−1)T = rk

]
.

This expression involves the sample paths of both the interest rate process and the firm
value. Additionally, the expectation is complicated by the fact that the expectation is only
derived for paths that start at r(N−2)T = rj and end up at r(N−1)T = rk. A appropriate way
of evaluating this expression involves working with Brownian Bridges for the short rate paths.
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We choose a different route. Empirically, the volatility of the firm value is on the order
of 20% while the volatility of the interest rate process is on the order of 2%. That is, the
firm value is significantly more volatile than the interest rate process. Therefore, chances
are that the default would take place primarily because of the decline in firm value and not
due to the changes in the short rate. Consequently, we ignore the conditional expectation
involved in Hjk. We show that Hjk can be well approximated by H̃(T, T,X0) where

H̃(t, T,X0) = E0

[
e−σ

2
V t/2+σVWvtIτ>t

]
= N

(
−X0 − µh(t, T )√

Σ(t, T )

)
+ e−

2X0µh(t;T )

Σ(t,T ) N

(
−X0 + µh(t, T )√

Σ(t, T )

)
(3.49)

where

Σ(t, T ) =

∫ t

0

σ2(s;T )ds,

= σ2
vt+

σ2
r

β2

(
t+ e−2β(T−t)B2(t)− 2e−β(T−t)B1(t)

)
+

2ρσvσr
β

(
t− e−β(T−t)B1(t)

)
,

µh(t, T ) =

∫ t
0
σ2(s, T )ds

2
=

Σ(t, T )

2
,

σh(t, T ) =
√
σ2
v + σ2

p(t, T ) + 2ρσV σp(t, T ),

and

B1(t) =
(1− e−βt)

β
; B2(t) =

(1− e−2βt)
2β

The derivation is analogous to that of G(). We apply the following steps.

1. Upon inspection, H̃(t, T,X0) = E
[
e−σ

2
vt/2+σVWvtIτ>t

]
is already in a change of measure

form.

2. After applying the change of measure, we have that

H̃(t, T,X0) = E
[
e−σ

2
V t/2+σVWvtIτ>t

]
= EV

0 [Iτ>t] .

The new measure QV uses the unleveraged firm value as the numeraire.

3.
EV

0 [Iτ>t] = PrV(τ > t) = 1− PrV(τ < t) = 1− H̃(t, T,X0)
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As a measure of robustness, we checked the approximation of Hjk with H̃(t, T,X0) using
Monte Carlo simulation. The approximation falls within 5% of the true value for a wide
variety of parameter choices. The approximation worked well even when the interest rate
process and the firm value are correlated.




