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ABSTRACT OF THE DISSERTATION 

Network-wide truck tracking using advanced point detector data 

By 

Kyung Kate Hyun 

Doctor of Philosophy in Civil and Environmental Engineering 

University of California, Irvine, 2016 

Professor Stephen G. Ritchie, Chair 

 

Trucks contribute disproportionally to traffic congestion, emissions, road safety issues, 

and infrastructure and maintenance costs.  In addition, truck flow patterns are known to vary by 

season and time-of-day as trucks serve different industries and facilities.  Therefore, truck flow 

data are critical for transportation planning, freight modeling, and highway infrastructure design 

and operations. However, the current data sources only provide partial truck flow or point 

observations.  This dissertation developed a framework for estimating path flows of trucks by 

tracking individual vehicles as they traverse detector stations over long distances.  Truck 

physical attributes and inductive waveform signatures were collected from advanced point 

detector systems and used to match vehicles between detector locations by a Selective Weighted 

Bayesian Model (SWBM).  The key feature variables that were the most influential in 

distinguishing vehicles were identified and emphasized in the SWBM to efficiently and 

successfully track vehicles across road networks.   

The initial results showed that the Bayesian approach with the full integration of two 

complementary detector data types – advanced inductive loop detectors and Weigh-in-Motion 
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(WIM) sensors – could successfully track trucks over long distances (i.e., 26 miles) by 

minimizing the impacts of measurement variations and errors from the detection systems.  The 

network implementation of the model demonstrated high coverage and accuracy, which affirmed 

the capability of the tracking approach to provide comprehensive truck travel patterns in a 

complex network.  Specifically, the model was able to successfully match 90 percent of multi-

unit trucks where only 67 percent of trucks observed at a downstream site passed an upstream 

detection site.  

 A strategic plan to identify optimal sensor locations to maximize benefits from the truck 

tracking model was also proposed.  A decision model that optimally locates sensors to capture 

the maximum truck OD and route flow was investigated using a goal programming approach.  

This approach suggested optimal locations for tracking implementation in a large truck network 

considering a limited budget. Results showed that sensor locations from a maximum-flow-

capturing approach were more advantageous to observe truck flow than a conventional sensor 

location approach that focuses on OD and route identifiability.   
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1. Introduction 

Trucks contribute disproportionally to traffic congestion, emissions, road safety issues, 

and infrastructure and maintenance costs.  Therefore, timely and reliable truck flow data are of 

importance for transportation planning and investment analysis, traffic management, 

environmental and safety analyses, and operation and maintenance of infrastructure.  In 2012, the 

most recent surface transportation authorization act, the Moving Ahead for Progress in the 21st 

Century Act (MAP-21) (FHWA, 2013), was enacted with the establishment of the national 

freight strategic plan (NFSP) (US DOT, 2016).  The NFSP specifically focuses on increasing 

competitiveness and efficiency of freight movement.  Main strategies of these programs are: i) 

reducing congestion to improve performance of the freight transportation system, ii) identifying 

and monitoring major freight corridors to support congestion mitigation and facilitate freight 

flows, iii) developing data collection and analytic tools for freight modeling that assists public 

and private sectors decision-making process.  However, insufficient information on freight 

corridors, facilities, and movements creates a number of obstacles in freight planning and 

support.  For example, incorrect information on truck activity on roadways often leads to 

inadequate restrictions or displacements of freight activities (US DOT, 2016).  Due to the lack of 

data on freight movements, there have been difficulties in making accurate long-term forecasts of 

freight demands and facilities.  

This dissertation develops a framework for estimating truck flow data utilizing advanced 

point detector systems.  This study seeks solutions to identify primary truck routes and provide 

path flows of trucks along the truck corridors.  An initial research was performed to estimate 

path flows along the same freeway corridor by tracking individual vehicles as they traverse 
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advanced point detector stations — Inductive loop detectors (ILD) and Weigh in motion (WIM).  

To capture dynamic truck activity in a more complex road network, the link-based tracking 

approach was further developed to enable network-wide tracking across multiple detector 

stations (ILDs) along different freeways.  Using tracked vehicles, various applications were 

introduced including travel time estimation, detection calibration, and truck monitoring.  To 

maximize benefits from the truck tracking model using point detector systems, a strategic plan 

that identifies the optimal sensor location was investigated and analyzed the impacts of sensor 

locations on OD and route flow measurements.   

One of the main benefits of this study is leveraging existing point detection systems to 

anonymously track individual vehicles.  Since ILDs collect temporally continuous real-time 

traffic data for the truck population, the ILD-based tracking framework facilitates the 

understanding of spatial and temporal truck flow patterns.  Even though new technologies such 

as GPS, RFID tags and AVI systems have been used for traffic monitoring and performance 

measures, the proposed vehicle tracking approach has critical advantages in path flow 

estimations.  While GPS and AVI systems only collect sample populations from the vehicles that 

are equipped with tracking devices, the proposed solutions can collect path flow data from the 

total truck population without any privacy concerns.  Along with path information, detailed truck 

attributes such as axle configuration and truck type can be also obtained in the tracking process.  
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1.1 Key trends in truck movement 

The vehicle miles traveled (VMT) of trucks have increased substantially in the US, with 

the VMT of multi-unit and single-unit trucks rising 365% and 282%, respectively, between 1970 

and 2011 (Research and Innovative Technology Administration, 2011).  Not surprisingly, 

increased truck movements have led to higher fuel and energy consumption despite technological 

advancements in drivetrain technology.  It has been estimated that trucks are responsible for 25 

percent of total fuel and energy consumption among highway transportation modes in the US 

(Research and Innovative Technology Administration, 2011).  

According to NFSP (US DOT, 2016), the US population is expected to increase to 389 

million by 2045 compared to 321 million in 2015, with economic growth doubled in size.  

Consequently, freight movements are expected to increase approximately by 42 percent by the 

year of 2040, which is equivalent to roughly 1.3 percent increase per year.  Among various 

modes in freight transportation, trucks show the largest expected increase in flows by 2040 since 

they handle the most ton-miles in the US.  Increasing freight demand will consequently yield 

substantial negative impacts on road networks.  NFSP (US DOT, 2016) reported that if there is 

no capacity changes, truck and passenger vehicle traffic will increase peak-period congestion by 

34 percent in 2040, compared to 10 percent in 2011.  This increased traffic would slow vehicles 

nearly 30,000 miles and create stop-and-go conditions on an addition 46,000 miles in the US.  

Trucks significantly contribute greenhouse gas emissions (GHG).  As shown in Figure 

1.1, trucks emit a much larger amount of carbon dioxide compared to other freight modes such as 

rail, waterborne transportation, and air cargo.  Therefore, the increased truck flow will bring 
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considerable localized negative environmental impacts especially in neighborhoods adjacent to 

truck corridors and facilities.   

 

Figure 1.1 Freight transportation GHGs emissions from truck and other modes
1
 

1.2 Limitation on current data sources  

 Truck traffic varies by location and time.  Typically, passenger cars and local service 

trucks show heavy traffic during the morning and afternoon peak hours but very low during the 

night time.  On the other hand, through trucks are reported to show constant traffic throughout 

the 24 hours, seven days a week (US DOT, 2016; Hallenback, 1997; Ogden, 1991). 

 Figure 1.2 presents traffic patterns of trucks and passenger vehicles by Day of Week 

(DOW) and Time of Day (TOD) at two different locations: (a) port of Long Beach area and (b) 

urban area on interstate highway I-5, in Los Angeles, California.  As is known, passenger vehicle 

traffic shows two peaks at morning and evening hours at both locations during the weekdays. 

However, on the weekend, traffic volume is higher during the afternoon between 12PM to 6PM.  
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Even though the traffic volumes were much higher at port area, the passenger vehicles showed 

similar travel patterns at two locations.  However, trucks near port and urban areas have quite 

distinct travel patterns.  In the port area, we observed three peaks that correspond to morning and 

afternoon peak during the day-time port operation hours, and night-time operation hours 

(PierPass program, 2016).  Since the traffic was observed near the ports, truck travel patterns are 

expected to follow port operation hours.  In addition, low weekend traffic could be because the 

port is not operated on the weekends.  However, in the urban area, truck traffic has similar 

patterns for both weekdays and weekends where high volume was observed during the early 

morning (5AM-8AM), day time (10AM-2PM), and night time (8PM-10PM) although the 

weekends have lower volumes than the weekdays.  This shows that the truck traffic has distinct 

spatial and temporal patterns which are closely related to their service industry and facility.   

Trucks also show different monthly and seasonal trends compared to passenger vehicles. 

While some trucks show constant travel patterns throughout the year, others show higher volume 

at particular season, such as the harvest season for agricultural trucks and the holiday season for 

import and export containers.  Directional variations in truck volume are also reported in several 

studies (Tok et al., 2016; US DOT, 2016).  
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Figure 1.2 TOD and DOW traffic patterns of car and trucks at (a) port and (b) urban area 

 

Hence, it is important to capture such variations in truck flow.  However, limited 

availability of truck data makes it difficult to understand truck activity and movement.  The main 

sources of truck data are truck surveys usually either from non-permanent limited duration 

studies, or truck counts at permanent facilities such as automated count stations and weigh-in-

motion (WIM) sites, or temporary installed active sensor technology.  The representative types 

and sources of the current truck data are summarized in Table 1.1. 
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Table 1.1 Truck data sources 

Type Source Advantage Limitation 

Survey 

 National level survey 

(Vehicle inventory and 

use survey (VIUS)) 

 State level intercept 

survey 

 Detailed information on OD, 

truck category, weight, and 

VMT 

 Extensive data collection 

throughout the US or by 

State 

 Obtain partial data from 

sampled population 

 Inaccurate responses and 

biased survey sampling 

 Limited spatial and temporal 

data collection span 

Passive sensor 

technology 

 Weigh in Motion 

(WIM) 

 Inductive Loop 

Detector (ILD)  

 Obtain population data 

 Potential in obtaining truck 

flow and body type data with 

an additional modeling effort 

 Obtain point observation  

 Measurement error from 

sensor calibration and 

sensitivity issues  

Active sensor 

technology 

 Automatic Vehicle 

Identification (AVI) 

 Electronic tolling 

 GPS and Bluetooth 

 Flow data potentially with 

detailed truck information 

without additional modeling 

 Typically short term 

observation for sampled 

population 

 Costly and privacy concerns 

 

Surveys typically provide partial data obtained from sampled populations.  The Vehicle 

Inventory and Use Survey (VIUS) (US Census Bureau, 2004) is the most common source used 

for truck activity data since it provides extensive information, including truck body 

configuration, average weight, and annual truck miles.  However, these data are associated with 

significant limitations in their sample population.  For one, VIUS cannot identify truck 

population statistics at the state level due to discrepancies in how the survey captures in-state and 

out of state trucks traveling in each state.  In specific, trucks operating on California routes may 

be registered in California or in any other state.  However, only trucks that have a home base and 

indicated their home base as California would have their vehicle miles traveled (VMT) reported 

for California.  By definition, trucks with a home base perform at least 50 percent of their travel 

within their home base state.  As a consequence, there is an inherent bias of under-sampling 

long-haul interstate truck activity at the state level.  Furthermore, VIUS only captures trucks 
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owned or operated by carriers.  Hence, intermodal containers and chassis typically owned by 

shippers are not included in the data.  This is a concern for California, in particular, since it is 

home to three major US ports.  The absence of intermodal container movement in the survey 

would introduce a significant bias in representing goods movement activity in the state.  

Alternatives to VIUS include state level truck surveys, state or international truck 

registration records, state level truck intercept surveys (Lutsey, 2008), the International 

Registration Plan (IRP) (IRP, 2016), and the International Fuel Tax Agreements (IFTA) (IFTA, 

2016).  However, none of these commercial vehicle survey data provide temporal variations in 

truck path flow because of their limited temporal data collection spans.   

Passive data collection through traffic sensors such as Weigh-in-Motion (WIM) and 

inductive loop detector (ILD) is able to provide permanent point observations of truck 

population.  WIM systems provide truck volume, GVW, axle spacing and weight, axle count, 

vehicle length, and speed, from which axle based classification can be predicted (Lu et al., 2002).  

ILDs measure aggregate traffic volumes and occupancies.  Through additional modeling efforts, 

conventional ILDs in double-loop configuration can be used to classify vehicles into length-

based categories (Coifman et al., 2007); however, this coarse level of detail at point observation 

is insufficient to meet advanced freight modeling needs.  Many researchers have utilized the 

point detection systems to obtain additional traffic information such as travel time and path flow.  

This approach is referred to as vehicle re-identification or vehicle tracking since individual or 

platoon of vehicles are tracked at point detector location.  This approach obtains a greater level 

of details than that obtainable from simple extrapolations of point observations.  The details and 

limitations of these studies will be discussed in the next chapter.   
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Along with increased implementation of Intelligent Transportation Systems (ITS) 

technologies, various types of path flow sensors have been applied to obtain truck flows (Srour, 

F., and Newton, D., 2006).  Vehicle-identification sensors such as automatic vehicle 

identification (AVI) systems, electronic tolling technology, and license plate scanning are some 

of the widely utilized technologies that can measure traffic flows.  The vehicle-identification 

sensors identify vehicle id and track vehicles between sensor locations.  In the AVI system, for 

example, vehicles equipped with transponders communicate with AVI reader stations located in 

transportation networks.  However, sampling bias is the main shortcoming of these sources, since 

travel information was only collected from a small fraction of vehicles that were equipped with 

electronic tags or captured by detection systems (Dion and Rakha, 2006).  

Global Positioning System (GPS) is also capable of providing route choice, origin-

destination and travel time.  Even though the GPS monitors and collects vehicle path flow, the 

information can be obtained from only a small portion of vehicle, which would result in biased 

estimates in traffic flow or travel time.  Bluetooth has similar capabilities and limitations in 

collecting truck information as the vehicles that connected to Bluetooth devices can be collected 

as samples.  

In general, truck travel behavior is more complex than passenger vehicle travel since 

trucks serve different industries, facilities and commodity types.  Hence, truck travel can vary 

significantly by season and time-of-day as mentioned earlier.  Because of this complex behavior, 

path flow information from the total population would provide significant insight compared with 

point-based observations or sampled populations for freight modeling, highway infrastructure 

design and operation, capacity and level of service analysis, and energy and environmental 

impact analysis.   
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1.3 Objectives of proposed study 

This study presents a novel framework that aims to estimate path flows of trucks across a 

region utilizing advanced point detector systems.  Physical features of individual trucks were 

extracted from loop detectors and WIM systems.  The truck features integrated in a Bayesian 

probabilistic model were used to match vehicles between detection locations.  In addition, key 

features – ones that were the most influential in distinguishing matched vehicles – were further 

emphasized in the algorithm to improve matching accuracy over long distances.  Figure 1.3 

illustrates an overview of the tracking framework categorized into two phases: tracking model 

development and model implementation.  Model development includes tracking feature 

processing and Bayesian modeling development; and model implementation describes detailed 

steps of vehicle tracking at detection locations.  
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Figure 1.3 Flow chart of the tracking framework 

 

Feature processing starts with a feature preparation.  Vehicles’ inductive signatures and 

physical attributes are extracted as vehicle matching features.  Considering measurement errors 

from detection systems, feature noise elimination step is performed prior to fitting the features 

into probabilistic distributions.  Separately, features with more discerning ability in 

distinguishing vehicles are selected and weighted in a Bayesian model.  Since the tracking is 
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implemented over a long distance, some vehicles detected at a downstream location may not pass 

at an upstream location, which refers to missing vehicles in this study.  To handle these missing 

vehicles, the tracking algorithm consists of two models, one for vehicle pair matching and 

another for missing pair filtering.  The matching model finds potential matched vehicles at 

upstream for all detected trucks at the downstream location.  The filtering model identifies 

potential missing vehicles among the matched pairs obtained from the first model.  Any 

duplicate vehicles are eliminated in the last step of the tracking process.  

This algorithm was initiated at a corridor level with one downstream and one upstream 

location.  A full integration of the two advanced detection technologies – advanced inductive 

loop detectors and WIM sensors – at existing WIM sites were applied to the corridor level truck 

tracking.  These two technologies collect complementary vehicle attributes, which allow vehicles 

to be more accurately and effectively identified when both systems are simultaneously utilized. 

A linear data fusion method was applied to the WIM and signature data to improve matching 

accuracy.  This method allows both detection systems to complement each other by reducing 

impacts from errors in the measurements.   

It should be noted that the challenge of vehicle tracking goes beyond just distinguishing 

different truck types, but further requires successful matching of trucks even within a candidate 

pool of ones that share similar physical configurations.  Hence, the use of features with the 

selective weighting technique is ideal for capturing the salient differences in truck populations 

especially the trucks with the same body configurations.  

The corridor level tracking was further developed to perform a network-wide tracking 

that captures dynamic truck activity in a more complex road network.  This extension proposes 
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truck tracking across multiple detector stations along different routes utilizing inductive loop 

detector (ILD) infrastructure.  To account for additional complexities in a larger spatial scope 

uch as varying distances and traffic states between tracking sites in the vehicle matching process, 

supplementary data sources are considered.  These supplementary data sources include historical 

GPS trajectories which contain truck path flow data and body configuration estimates at all 

detection locations.  Multiple scenarios are proposed with different combinations of the data 

sources.  Bayesian updating approach was applied to integrate different data sources are t 

matching performances were compared by scenarios.  

To accurately track trucks at point detector locations, it is important to determine the 

optimal sensor locations.  Even though there have been considerable efforts devoted to 

determining optimal sensor locations to measure or estimate accurate traffic flow, general traffic 

OD or route identification was the main focus.  However, considering the long travel distances of 

trucks, sensor locations that seek observability of ODs and routes may not acquire meaningful 

proportions of truck movements in a large-sized truck network.  Therefore, this dissertation 

provides a decision model that optimally locates sensors to capture the maximum truck OD and 

route flow.  This approach allows the tracking model to maximize its benefits with optimally 

locating sensors considering the primal interests of truck flows.  Goal programming approaches 

with different weights that prioritize ODs or route flow were investigated.  The proposed model 

was implemented in a real network in Los Angeles, California with actual truck flow data 

obtained from sampled truck GPS trajectories.  The proposed approach provides optimal location 

solutions for not only point sensors with an integration of the vehicle tracking model but also 

alternative active sensors that already have vehicle tracking capability.  Figure 1.4 describes an 

overall flow of the sensor location problem. 
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Figure 1.4 Flow chart of the sensor location problem 

1.4 Organization 

This dissertation consists of seven chapters.  

Chapter 1 introduces key trends in truck movement and objectives of this dissertation. 

Chapter 2 presents background of detection systems including ILD and WIM 

technologies and summarizes previous studies on vehicle tracking.  

Chapter 3 demonstrates modeling approaches of the truck tracking framework. Bayesian 

classifier is first introduced and an extended form of selected and weighted Bayesian modeling 

(SWBM) is further discussed.  Feature preparation such as noise elimination, key feature 
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selection and weighting methods are described.  In addition, a step-by-step procedure of tracking 

algorithm is described to provide field implementation. 

Chapter 4 introduces the corridor level tracking with the full integration of WIM and ILD 

systems using a linear data fusion method.  Results from the Selective Weighted Bayesian Model 

(SWBM) are presented by truck categories (i.e., single unit and tractor-trailer units) with 

different linear fusion weights.  The proposed modeling is compared to the previous approaches 

with the same tracking dataset.  In addition, three applications on the corridor level tracking are 

introduced including travel time estimation, WIM calibration, and detailed truck monitoring with 

an integration of a body classification model.  

Chapter 5 provides results of the network-wide tracking model using ILD technologies.  

Truck detection algorithm is introduced to identify vehicle types and validated with over 28,000 

vehicles collected in California.  In addition, three supplementary data sets, which correspond to 

GPS, truck body configuration estimates, and travel time, are integrated in tracking process using 

linear data fusion method.  Results are compared with different linear fusion weights by truck 

types.  As applications of the network-wide tracking, travel time estimation and truck monitoring 

results implemented over a larger network system are introduced.   

Chapter 6 introduces the optimal sensor location problem. A decision model that 

optimally locates sensors to capture the maximum OD and route flow is investigated using a goal 

programming approach.  The proposed model is implemented with a network of Los Angeles, 

California with actual truck flow data obtained from the sampled truck GPS trajectories. 

Chapter 7 provides conclusion remarks.  Contribution of this study and future studies are 

presented.   
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2. Background 

Advanced point detection technologies of Weigh in Motion (WIM) and inductive loop 

detector (ILD) signature are the main data sources for truck tracking.   Since WIM collects 

physical attributes of vehicles and loop records metallic inductance when vehicle passes over the 

sensor, different types of vehicle attributes are collected from these two detection systems.  This 

chapter first introduces the WIM and ILD technologies and compares vehicle attributes collected 

from the detection systems. 

Using the advanced point detection systems or other data sources such as active sensors, 

studies on vehicle tracking has been performed since 1990s.  However, the main focus in 

previous studies was general traffic or passenger vehicles, and only recently more attention was 

given to commercial vehicles.  This chapter introduces the general traffic tracking studies into 

two categories: (i) general vehicle tracking utilizing inductive signature technologies, (ii) general 

vehicle tracking utilizing other technologies.  In addition, limitations on previous truck tracking 

studies are discussed with key literatures.  

2.1 Weigh in Motion (WIM) 

WIM devices have been used since the 1980s to collect data for truck routing, pavement 

management and design, weight enforcement, traffic safety, and transportation policy (Nichols, 

A., and D. M. Bullock, 2004).  WIM systems initially introduced to improve operational 

efficiency of traditional static weigh stations (Lu et al., 2002).  While trucks are required to stop 

to be weighted at the traditional weigh station, the WIM records instantaneous dynamic axle 

loads and spacing, number of axles, vehicle speed, lane, and time stamp with full a speed when a 
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truck traverses the sensors (FHWA, 2013).  Detailed information recorded at WIM is described 

in Table 2.1. 

Table 2.1 WIM records  

In California, there are approximately 106 operational WIM data collection sites along 

the major and minor truck corridors as shown on the map in Figure 2.1.  The typical WIM 

system includes bending plate scales or pressure sensors that measure axle weight, and inductive 

loops sensors that detect the presence of the vehicle.  A general WIM system in California 

classifies trucks into 14 FHWA axle-based classification categories using axle spacing and 

weight measurements and into 13 categories in FHWA schemes (FHWA, 2013) as shown in 

Figure 2.2.  Based on the FHWA classification, a vehicle can be grouped as a passenger vehicle 

(FHWA class 2 and 3), bus (FHWA class 4), single-unit truck (FHWA class 5 to 7), or multi-unit 

truck (FHWA class 8 to 14).  

 

Field Data Type By Field Field Data Type By Field 

1 Lane 16 Axle 2 Right Side weight (kips) 

2 Month 17 Axle 2 Left Side weight (kips) 

3 Day 18 Spacing between Axles 1 and 2 (feet) 

4 Year 19 Axle 3 Right Side weight (kips) 

5 Hour 20 Axle 3 Left Side weight (kips) 

6 Minute 21 Spacing between Axles 2 and 3 (feet) 

7 Second 21 Axle 4 Right Side weight (kips) 

8 Vehicle Number 22 Axle 4 Left Side weight (kips) 

9 Type 23 Spacing between Axles 3 and 4 (feet) 

10 Gross Weight (kips) 24 Axle 5 Right Side weight (kips) 

11 Overall Length (feet) 25 Axle 5 Left Side weight (kips) 

12 Speed (mph) 26 Spacing between Axles 4 and 5 (feet) 

13 Violation code 28 -39  Unused 

14 Axle 1 Right Side weight (kips) 40 Direction (PAT System), unused (IRD System) 

15 Axle 1 Left Side weight (kips) 41 Axle Number (PAT System only) 
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Figure 2.1 WIM systems in California 
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Figure 2.2 FHWA vehicle classification scheme of WIM systems 

Agencies using WIM data are aware that WIM data may possess errors in speed, spacing, 

and weight measurements (FHWA, 2013).  The inaccuracies are the result of several possible 

factors: (i) vehicle dynamics such as speed, acceleration, tire condition, load, and body 

configuration; (ii) site conditions such as pavement smoothness; (iii) environmental factors such 

as temperature and precipitation (Nichols, A., and D. M. Bullock, 2004, Papagiannakis et al., 

2004).   Prozzi and Hong (2007) modeled systematic and random load errors, where random 

error is the result of statistical fluctuations in estimation which can be over- or under- estimations 

of the true value.  Systematic errors are persistent inaccuracies in which the true value is either 
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consistently over- or under-estimated.  From the previous studies, systematic error are known to 

be minimized through proper calibration procedures but random disturbances in the data may 

persist after calibration (Papagiannakis et al., 2004, ASTM, 2009).  

2.2 Inductive Loop Detector (ILD) 

 ILDs are the predominant detection system in the U.S., and one of the most common data 

sources in various applications including traffic performance measures, traffic operations such as 

ramp metering and signal control, and crash analysis (Golob et al., 2004; Oh et al, 2005; Zheng 

et al, 2010).   Data from ILDs are typically aggregated in 30 second – or longer – intervals and 

produce measures of volume, occupancy and sometimes average speed.  In California, these 

measures are publically available through the Performance Measurement System (PeMS, 2016) 

where over 25,000 ILDs provide traffic information on highway mainlines, highway ramps and, 

local arterials as shown in Figure 2.3. 
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Figure 2.3 ILD systems in California 
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 A conventional presence loop detector detects the presence of a vehicle in a bivalent 

mode.  However, an advanced inductive loop technology that generates inductive signature 

waveforms of individual vehicles as shown in Figure 2.4.  To convert a conventional ILD to an 

advanced ILD, the roadside hardware can be swapped out with no alterations to the in-pavement 

sensors.  This allows the conversion to be relatively straightforward and cost effective since lane 

closures are not required.   

 The metallic composition of a vehicle affects the loop’s inductance as it traverses the 

sensor.  Advanced inductive signature technology produces a waveform signature for each 

vehicle at up to 1200 samples per second.  With high sampling rates, the resulting inductive 

signature can be used to detect vehicle types or body bonfigurations while the conventional 

binary output can only measure vehicle presence.   

 

 

Figure 2.4 Inductive signature technology 
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 Several examples of signatures by different truck body configurations are shown in 

Figure 2.5.  

 

Figure 2.5 Signature from different truck body configuration 
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 However, there are measurement abnormalities and variations in inductive signatures 

caused from several factors such as vehicle entrance angle, sensitivity of detector, and geometry 

of detection site.  Figure 2.6 shows examples of abnormal signatures generated from such 

reasons.  In all cases, two signatures, generated from the same vehicles and collected at two 

different detection sites (upstream and downstream) are compared.  In case 1, the first part of 

signature shapes at two locations are significantly different because the vehicle changed the lane 

while passing the loop sensor at the upstream location.  As a result, the upstream signature shows 

abnormal peaks around 0.25 second.  Case 2 illustrates the signature variations from vehicle’s 

lateral position on the loop.  Considering that the loop was 6ft-long in its length, small changes 

in position of vehicle on top of the loop could significantly affect the shape of waveform.  In this 

case, vehicle’s different positions on the loop at two locations generate varying magnitude peak 

for the trailer part of the signature (circled area).  Case 3 shows the results of sensor sensitivity 

on signature shapes.  The truck type of case 3 was 20ft container with three rear axles.  Due to 

the three rear axles, the latter part of signature has multiple peaks at upstream location.  However, 

sensitivity and calibration issues of the downstream loop smooth the signature peak of the latter 

part and cannot capture the three axles accurately.  



25 
 

 

Figure 2.6 Measurement variations in signatures 

 

2.3 Vehicle characteristics from WIM and inductive signatures 

Even though signatures are capable of distinguishing vehicles by waveform shapes, if 

trucks have the same axle configurations and body types, similar signature shapes may be 

produced.  Therefore it would be challenging to identify vehicles solely using the signatures.  

Figure 2.7 illustrates examples of the signatures from the same body configuration.  First, three 

signatures from the most common body type, enclosed van, are compared and showed particular 
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common patterns.  The second examples from the tank trailers are much more similar to each 

other since the tank trailer has the most uniform trailer type.  As representative body 

configurations of dropped deck types, signatures from lowboy and automobile transport trucks 

are presented.  Since the distance between dropped deck and loop sensor is close, the middle 

parts of the signature show high magnitudes in these two truck types.   

 

Figure 2.7 Comparisons of signatures in the same body configuration 
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Therefore, other physical attributes such as axle loads and spacing from the WIM can 

help distinguish trucks.  To compare physical attributes among different truck types and also 

within the same truck category, five different trailer types from the five axle semi tractor-trailers 

(3S2 or FHWA Class 9 category) were analyzed.  The 3S2s contain the largest variety of truck 

body configurations.  To represent this diversity, this study used five trailer groups including 

vans, platforms, tanks, 40ft box containers, and ‘other’ type of trucks.  Each group shares similar 

physical attributes and commodity types.  An exploratory analysis was performed to show 

differences of a set of axle configuration variables among body configurations.  A total of five 

attributes are used for this comparison as shown in Figure 2.8.  Three attributes, spacing between 

the 3rd and 4th axle, overall vehicle length, and a derived measure called overhang, represent as 

length attributes.  Spacing between the 3rd and 4th axles is the measured length in feet between 

the last tractor axle and the first trailer axle.  Length refers to the distance in feet from the nose of 

the tractor to the tail of the trailer.  Overhang represents the front and rear portions of the vehicle 

outside the axles and is obtained as the arithmetic difference between the overall length and the 

sum of all axle spacing measurements.  Axle weight from the fourth left axle and gross vehicle 

weight (GVW) are also used as weight loading attributes.  GVW is obtained by summing of all 

of the axle loadings.  Since the axle loading is measured by axle and by side, 3S2s have a total of 

10 axle loading measures from the first to fifth axles on left and right sides.   
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Figure 2.8 Axle configuration variables 

 

Figure 2.9 shows boxplots depicting the descriptive statistics of these variables by body 

configuration.  Van trailers have the longest length and overhang, and are distinctive from other 

body configurations.  Generally, platforms have the second longest length.  Tank type trailers 

have distinctive, shorter overhang.  40ft box containers have relatively longer overhang 

compared to their short length.  A Kolmogorov-Smirnov (KS) hypothesis test (Washington et al., 

2010) confirmed that the five body groups are indeed differentiable by length, axle spacing, and 

overhang.   

Compared to the length-based measures, weight measures show more wide ranges in 

their distributions within the same body configuration.  Therefore, it is shown that the length and 

weight measures together would better distinguish vehicles especially weights help identify ones 

that share similar length measurements.  

 

Length

Axle 3-4 Spacing

Front Overhang Rear Overhang

4th axle weight

Gross vehicle weight (GVW)
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Figure 2.9 Descriptive statistics of WIM variables  

 

2.4 Reviews on general traffic tracking study 

In previous studies, vehicle tracking is also referred to as vehicle re-identification.  The 

previous re-identification algorithms primarily sought to obtain accurate section-based travel 
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times, which aim to characterize link performance.  For these reasons, general traffic, which 

comprises mostly passenger vehicles, has been the main focus.  These studies have utilized 

various attributes for vehicle tracking such as inductive signature waveforms (Sun et al., 1999; 

Abdulhai and Tabib, 2003; Oh and Ritchie, 2003; Jeng et al., 2010), vehicle length from loop 

detectors (Coifman and Krishnamurthy, 2007), vehicle signature and color from multi detector 

fusion (Sun et al., 2004), video images (Sumalee et al., 2012), and magnetic sensors (Cheung et 

al, 2004; Kwong et al 2009; Tien et al, 2014).   This section reviews the general traffic tracking 

studies categorized by utilized data sources. 

 

2.4.1 Vehicle tracking utilizing inductive signature technologies 

Bohnke and Pfannerstil (1986) first introduced the use of inductive waveforms to re-

identify vehicle sequences.  Kuhne (1991) followed by developing a freeway vehicle re-

identification technique using dynamic traffic flow models.  Extensive research using inductive 

vehicle signature has been performed since the late 1990’s.   Methodology, dataset, and accuracy 

ranges of the key literatures on general traffic tracking using ILD technology are summarized in 

Table 2.2.  
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Table 2.2 Summary of performance for key literatures on general traffic tracking  

Author (year) 
Dataset 

(Equipment) 

Tracking 

distance 
Accuracy ranges 

Sun et al (1999) Signature from ILDs 
1.2 mile 

(freeway) 

75% for passenger vehicles and 78% 

non-passenger vehicles 

Abdulhai and Tabib 

(2003) 
Signature from ILDs 

1.2 mile 

(freeway) 

56.3% on average (25% for passenger 

cars and 100% for heavy vehicles) 

Oh et al (2003)  
Synthetic signature 

from ILDs 

Signalized 

intersection 

73.6% for uncongested and 44.3% for 

congested condition 

Jeng et al (2010) Signature from ILDs 
0.33 to 1.3 mile 

(freeway) 

52.2% to 56.2% depends on the loop 

configuration 

Cofiman and 

Krishnamurthy 

(2007) 

Vehicle length from 

dual loop 

0.91~0.97 mi 

(freeway) 
36% ~ 41% for long vehicles 

Sun et al (2004) 
Signature from ILDs 

and video image 

425 feet 

(arterial) 

91.36% when using the best fusion 

weight 

 

Sun et al (1999) proposed multi-objective optimization approach to formulate vehicle re-

identification problem using inductive loop signatures.  Arrival time, duration, and speed were 

collected from individual vehicles based on the signature attributes.  Sun (1999) solved the re-

identification problem by applying lexicographic method which was composed of a sequence of 

objective functions.  Specifically, a total of five levels of objective functions were considered to 

match vehicles between detector stations, and hierarchical ordering of each objective function 

narrowed search space.  Since matched vehicles in the upper level determined the search space 

for next level objective, computational burden was effectively reduced through this approach.  In 

specific, from the first to third level objectives were goal programming that finds candidate 

vehicles at downstream detection location based on the time, percent signature magnitude, and 

length difference from the target vehicle.  The fourth level objective identified the best matched 

vehicle using the signature magnitude, lane, and speed as matching features.  Multiple distance 

measures such as Euclidean, correlation, similarity, Lebesque, and neural network modeling 
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were applied to estimate feature differences.  At the last level optimization, the best distance 

measure was determined using posterior probability from the Bayesian approach.  As a result, a 

correct matching rate (CMR) was 75% for passenger vehicles and 78% for non-passenger 

vehicles.  

Oh (2003) developed an anonymous vehicle tracking algorithm focusing on passenger 

vehicles at signalized intersections.  A probabilistic pattern recognizer based on the adaptive 

probabilistic neural network (APNN) was applied to match feature vectors from the inductive 

waveform.  Feature vectors consisting of interpolated points at equally spaced increments along 

the waveform, and a spatial and temporal search space reduction based on the signal phase were 

implemented.  Smoothing parameters from genetic algorithms (GAs) and self-organizing maps 

(SOMs) were proposed with the APNN.  Based on the re-identification algorithm, Oh (2003) 

developed a tracking evaluation framework with a simulation program.  Further implications 

including origin-destination estimation and real-time level of service analysis were investigated 

along multiple intersections.  Algorithm performance was tested during congested and 

uncongested traffic conditions.  The overall correct matching rate was 73.6% during uncongested 

conditions and 44.3% during congested conditions for the test data.  

Tawfik et al (2004) adapted the lexicographic methods developed by Sun (1999) with a 

heuristic decision tree algorithm.  In other words, the re-identification problem was solved as a 

classification problem via decision tree.  The experimental evaluation was performed at a 1.2 

mile freeway segment in Irvine, California.  The first tree which was constructed with two 

features, lane change and length difference, showed 75% correct classification rate (CCR) on the 

test dataset.  The second tree used travel time distribution to limit the search window.  Time and 

speed difference were selected as feature vectors, and the tree showed 89% of correct matches 
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and 78% of correct mismatches.  To eliminate false matches, an additional feature vector from 

the inductive loop signature was added.  Multiple distance measures such as Euclidean, 

Lebesque, and first derivative estimated feature distances.  In addition, signatures were 

transformed by the spatiotemporal approach so that spatial or temporal inconsistency on the loop 

detector can be reduced.  Distance measures, speed difference, length difference and lane 

difference were used to develop more accurate decision tree and the results were compared to 

that of Sun (1999).  The decision tree achieved 89% CCR, compared to 75% from the 

lexicographic optimization and 61% of the signature matching.  The author additionally noted 

that the travel behavior such as persistence of lane and speed were the useful factors to match 

vehicles.  

Jeng (2010) developed a real-time vehicle re-identification algorithm, called RTREID-2.  

To extract feature vectors, a cubic spline interpolation and piecewise slope rate (PSR) was 

introduced.  Smooth curves through the data points were obtained by cubic spline interpolation, 

which also reduced all signatures to the same number of data points.  A PSR technique 

transformed and compressed raw signatures to expedite processing time by reducing the size of 

input data in the algorithm.  Once PSRs were estimated for each signature, differences in PSRs 

between the target vehicle at downstream and candidate vehicles at upstream were compared to 

find the pairs with the minimum difference.  Different loops configurations were tested with the 

PSR approach and showed the matching accuracies ranging from 50.7 to 54.2 percent by the 

loop configurations.   

Abdulhai (2003) identified a new distance measure to improve accuracy of re-

identification algorithm.  Conventional statistical measures (i.e., Euclidean, Correlation, 

Lebesgue, First derivative, MSE, and FFT), neural network (i.e., back propagation neural 
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network, time delay neural network and probabilistic neural network) and warping insensitive 

measures were introduced to match patterns in the vehicle inductance signature.  The warping-

insensitive matching measure transformed the waveform signature and supported the signature 

shape not to be affected by external spatio-temporal environment.  A signature transformation 

horizontally shifted the signature by the function of time was employed.  Through this process, 

the error from the matched vehicles’ signatures was significantly reduced.  The algorithm was 

applied to moderate and congested conditions with different candidate vehicle window sizes of 

10, 20, and 30 vehicles using multiple distance measures.  The result showed that the waveform 

transformation positively affected the performance with around 12% better performance for the 

congested condition and about 10% better performance for the moderate condition.  

Additionally, a neural network was selected as the best distance measure with the 48% accuracy 

for the before-transformed dataset and Euclidean distance measure was chosen for the after-

transformed set with 56% accuracy.  However, the experiment showed that the window size did 

not play an important role in re-identification performance. 

Coifman (2007) focused on the development of vehicle re-identification algorithm for 

travel time measurement.  Re-identification is conducted based on vehicle length obtained from 

conventional double and single loop detection systems.  Individual occupancy measures were 

applied as the vehicle feature.  Based on loop occupancy, long vehicles were identified as 

distinct vehicles and tracked by arrival sequence.  Since the algorithm only stored the distinct 

vehicles detected at downstream location as target vehicles, vehicles were easily matched to the 

target vehicles by their longer lengths and lower frequency.  As a result, possible matches were 

stored, and a travel time matrix (TTM) was built with candidate matching pairs.  From the TTM, 

a maximum density matrix (MDM) was created to rule out false matches.  About 40% of long 
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vehicles were re-identified, and travel time obtained by the proposed algorithm showed better 

capturing traffic flow rather than the point observation, especially during unstable traffic 

conditions.  

2.4.2 Vehicle tracking utilizing other detector systems 

 A few studies have been conducted using other detector systems than ILD such as 

Bluetooth, video detector, and magnetic sensor.  Sun et al (2004) presented a multi-detection 

fusion algorithm.  In addition to the information from point detectors, color images from the 

video detectors were utilized for vehicle re-identification.  To integrate data from multiple 

sources, a data fusion technique was investigated.  The motivation was that the vehicle of the 

same model may yield high mismatching probability because the loop detector is only able to 

capture the metal composition of vehicle.  Thus, when color information is added to signature 

features, vehicles would be better distinguished.  To develop the algorithm, vehicle signature, 

speed, platoon traversal time, maximum inductive amplitude, and color were used as feature 

vectors.  Each upstream platoon within the time window was compared to the downstream 

platoon with nearest neighbor classifier.  A sensitivity analysis showed that the optimum platoon 

size for the re-identification accuracy maximized with three vehicles in one platoon.  Weights for 

linear fusion of feature factors were determined through searching the best performance cases 

with the train dataset.  The highest vehicle re-identification accuracy was shown at 92% when all 

the information was integrated.  In comparison, the correct matching rate was 87% and 76% 

when the signature and color was solely used as feature vectors, respectively.  
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 Sumalee et al (2012) proposed the probabilistic fusion algorithm for vehicle re-

identification using video image data.  Feature vectors including vehicle color, type and length 

constructed a probabilistic model based on Bayesian approach and Gaussian mixture model. 

Posterior probability density function was estimated by the feature vector’s distance and prior 

probability density function was derived by the travel time.   A data fusion rule for three feature 

vectors was performed with a logarithmic opinion pool approach.  Furthermore, a bipartite 

matching method was introduced to remove ‘overlapped matched’ cases which are defined as the 

multiple vehicles matched to the same downstream vehicle.  Testing was conducted along a 5km 

expressway in Bangkok, and 55% accuracy was shown for the total of 574 detected vehicles at 

the upstream location.  The performance for color was superior to vehicle type and length, and 

the result indicated that the probabilistic fusion method outperformed than individual use of three 

variables.   

 Young et al (2012) applied Bluetooth technology for vehicle re-identification problem. 

Due to requirements for longer scanning periods, poor antenna performance, and small detection 

zones, utilizing Bluetooth technology for vehicle re-identification has been shown to be less 

feasible than using other detection technologies. 

 Another emerging technology for vehicle tracking is intrusive magnetic sensors.  This 

technology is similar to the ILD in terms of capturing vehicle signatures using a device however 

it is known to be less susceptible than ILD for traffic conditions.  Cheung et al (2004) reported 

that the magnetic sensor better captures the distinctive features than ILD since it records the 

changes in the fields caused by different parts of the vehicle while the loop records “the 

integration of the inductive signature over the traversal distance”.  Kwong et al (2009) developed 
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a statistical travel time estimation model using vehicle signatures from wireless magnetic sensors.  

Tian et al (2014) identified vehicles with a single node and multi nodes sensor deployments and 

showed 74.4 percent and 81.4 percent accuracies in truck tracking for single node and multi 

nodes, respectively.  

2.5 Limitations on truck tracking studies 

 Researchers have only recently begun to investigate the problem of tracking commercial 

vehicles over longer distances using existing detector infrastructure.  Cetin (2011) developed a 

vehicle re-identification algorithm using a Bayesian approach for five axle semi tractor-trailer 

trucks that correspond to FHWA class 9 trucks over a 100 mile corridor.  Truck axle data and 

length from WIM stations were selected as feature vectors, and travel time obtained by the 

vehicle transponder was used for time window.  In this study, a two-step algorithm was proposed.  

The first step consisted of developing the Bayesian re-identification algorithm to find a matched 

vehicle pair.  The second step was to screen out false match using the posterior probability from 

the Bayesian model.  Even though the vehicle pair with highest posterior probability was 

selected as a match at the first step, the second step decided if the selected match was indeed 

correct.  The basic assumption was that if matching was incorrect, the posterior probability 

difference between matched and mismatched pair would be similar; otherwise truly matched pair 

has much larger posterior probability.  Performance results were presented with various 

scenarios where the scenarios showed trade-off of the total matched vehicles and matching rate.  

Specifically, if 80 percent of common vehicles are correctly matched, 92 percent of total matches 

declared by algorithm were correct matches, however, if 88 percent of common vehicles are 

correctly matched, only 89 percent of total matches are shown to be correct. However, it should 
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be noted that a large proportion of the trucks (71 percent) of vehicles traverse both up- and 

downstream WIM stations in the study corridor, which would inherently lead to higher matching 

accuracy.  

 Jeng and Chu (2015) utilized inductive loop signatures and WIM to track trucks.  The 

inductive loop signatures were the main data source to match vehicles and the WIM data were 

subsequently used to filter out mismatching vehicles after identifying potential matching vehicles.  

The algorithm was developed and tested for commercial trucks on 19 mile freeway in Orange 

County, California where 21 interchanges exist and traffic volume is heavy.  Vehicles were 

matched based on proximity measures such that a vehicle pair with the minimum distance 

between signatures obtained at upstream and downstream stations was selected as the matching 

pair.  WIM data filtering was applied with pre-determined threshold such as 0.1 for the axle 

parameter (e.g., axle 1 weight / gross vehicle weight), where a vehicle pair with less than the 

threshold was selected as a true match.  However, since proximity measures were used to find 

potential matching pairs and a fixed threshold was applied in the filtering process, inaccurate 

calibration or different sensitivity in scales at different WIM sites may significantly affect 

matching results.   In this regard, this fixed threshold approach with the separate analysis of 

WIM and signature features might eliminate many potentially correct matches, which makes it 

unsuitable for path flow estimation applications.  Hence, the applications of this study mainly 

focused on measuring link performance and WIM calibration with a proportion of matched 

vehicle pairs.   

  



39 
 

3. Modelling Approach 

A modeling approach to facilitate development of detailed truck flow data is described in 

this chapter.  Based on Bayesian inference, a Selective Weighted Bayesian Model (SWBM) was 

developed to track individual vehicles between detector locations using physical attributes and 

inductive waveform signatures of individual trucks.  Key feature variables were weighted in the 

SWBM to improve vehicle matching performance in a long distance tracking.  Various statistical 

and machine learning algorithms were introduced for feature selection and weighting techniques.    

While Weight-in-motion (WIM) and inductive loop point detectors (ILDs) were utilized 

for the corridor level tracking, the network-wide tracking used ILD and supplementary data 

sources such as historical GPS trajectories and body configuration model estimates to handle 

much more candidate vehicles detected at multiple upstream locations.  Bayesian updating 

method and a linear data fusion were considered to integrate multiple sources in the network-

wide tracking.   

3.1 Modeling Background 

3.1.1 Bayesian Inference 

The SWBM is an extended form of a naïve Bayes classifier.  As a family of probabilistic 

classifier in machine learning techniques, a naïve Bayes classifier is largely applied to various 

types of classification such as text categorization, medical diagnosis, and vehicle classification in 

transportation area.   

Naïve Bayes is a type of a supervise learning that requires labeled training data.  In other 

words, a pair of example should consist of input attributes (i.e., feature vectors) and output value 
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(i.e., class).   In our cases, vehicle pairs (i.e., examples) of match and mismatch (i.e., classes) can 

be distinguished by vehicle attributes (i.e., feature vectors).  Collected data were split into train 

and test dataset. The tracking model is developed by training dataset and validated with testing 

dataset.  In general, the supervised learning algorithm analyzes the training data and produces a 

mapping function.  In our cases, Bayesian classifier is the mapping function that matches classes 

and feature vectors.  The mapping function determines classes of the unseen data in test dataset.  

Bayes theorem can be expressed as follows: 

𝑝(𝑥 ∩  𝜇) = 𝑝(𝑥) ∙ 𝑝(𝜇|𝑥) = 𝑝(𝜇) ∙ 𝑝(𝑥|𝜇) 

𝑝(𝜇|𝑥) = 𝑝(𝜇) ∙
𝑝(𝑥|𝜇)

𝑝(𝑥)
 

If, 𝜇 = (𝜇1, 𝜇2, … . , 𝜇𝑗),  𝑝(𝜇𝑗|𝑥 )  =
𝑝(𝑥|𝜇𝑗)𝑝(𝜇𝑗)

𝑝(𝑥)
 

since 𝑝(𝑥) does not depend on 𝜇, 

𝑝(𝜇𝑗|𝑥) ∝ 𝑝(𝑥|𝜇𝑗) ∙ 𝑝(𝜇𝑗) 

where p(𝑥) =  ∑ 𝑝(𝑥|𝜇𝑗)𝑝(𝜇𝑗)𝐽
𝑗=1 ,  𝑝(𝑥|𝜇𝑗) represents likelihood and 𝑝(𝜇𝑗) represents evidence 

(prior) where the class 𝜇 have 𝑗 possible outcomes, 𝑥 represents feature vectors. 

 

If x = (x1, x2, x3, … . xn), 𝑝(𝑥|𝜇𝑗)𝑝(𝜇𝑗)  is equivalent to the joint probability model, 

𝑝( 𝜇𝑗 , 𝑥1, . . 𝑥𝑛). From the chain rule,    

𝑝( 𝜇𝑗  , 𝑥1, . . 𝑥𝑛) =  𝑝( 𝑥1, . . , 𝑥𝑛, 𝜇𝑗) 
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=  𝑝( 𝑥1 |𝑥2, . . . , 𝑥𝑛, 𝜇𝑗)  ∙  𝑝( 𝑥2 |𝑥3, . . . , 𝑥𝑛, 𝜇𝑗)  ∙  𝑝( 𝑥3 |𝑥4, . . . , 𝑥𝑛, 𝜇𝑗) … 

∙   𝑝( 𝑥𝑛,−1|𝑥𝑛, 𝜇𝑗)  ∙  𝑝( 𝑥𝑛| 𝜇𝑗)   

Conditional independence assumptions of the naïve Bayes (i.e., each feature is conditionally 

independent to other features given a category 𝜇) gives us: 

𝑝( 𝑥𝑖 |𝑥𝑖+1, . . . , 𝑥𝑛, 𝜇𝑗) =  𝑝( 𝑥𝑖 | 𝜇𝑗  ) 

Therefore,  

𝑝(𝜇𝑗|𝑥1, 𝑥2, … 𝑥𝑛)  ∝ 𝑝(𝜇𝑗 , 𝑥1, 𝑥2, … 𝑥𝑛)  

 ∝  𝑝(𝜇𝑗) ∙   𝑝( 𝑥1 | 𝜇𝑗)  ∙   𝑝( 𝑥2 | 𝜇𝑗) ∙   𝑝( 𝑥3 | 𝜇𝑗) … ∙   𝑝( 𝑥𝑛 | 𝜇𝑗) 

∝  𝑝(𝜇𝑗) ∙   ∏ 𝑝( 𝑥𝑖 | 𝜇𝑗) 

𝑛

𝑖=1

 

3.1.2 Bayes classifier decision rule 

In a naïve Bayes classifier, if we have two possible outcomes: 𝑗 = 0 𝑜𝑟 1, the final outcome can 

be decided by posterior probabilities. 

Decide  {
  𝜇1 𝑖𝑓 𝑝(𝜇1|𝑥) >  𝑝(𝜇2|𝑥) =

𝑝(𝑥|𝜇1)

𝑝(𝑥|𝜇2)
>

𝑝(𝜇2)

𝑝(𝜇1)
 

𝜇2 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

If our action is 𝑎𝑖, our loss equals to 𝜆 (𝛼𝑖|𝜇𝑗). Then, the expected loss (𝑟) with taking action of 

𝛼𝑖 can be obtained by the conditional risk as follows.  
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𝑟(𝛼𝑖|𝑥) =  ∑ 𝜆 (𝛼𝑖|𝜇𝑗) 𝑝(𝜇𝑗|𝑥)

𝑗

 

Bayes decision rule minimizes this error by selecting the action of 𝛼𝑖  so that the total error, 

𝑅 (𝛼𝑖|𝑥), can be minimized.  

For example, if 𝛼1 = 𝑑𝑒𝑐𝑖𝑑𝑖𝑛𝑔 𝜇1, 𝑎𝑛𝑑 𝛼2 = 𝑑𝑒𝑐𝑖𝑑𝑖𝑛𝑔 𝜇2, then loss = 𝜆𝑖𝑗 =  𝜆 (𝛼𝑖|𝜇𝑗)  

𝑅(𝛼1|𝑥 ) =  𝜆11 ∙ 𝑝 (𝜇1|𝑥 ) +  𝜆12 ∙ 𝑝 (𝜇2|𝑥 ) 

𝑅(𝛼2|𝑥 ) =  𝜆21 ∙ 𝑝 (𝜇1|𝑥 ) +  𝜆22 ∙ 𝑝 (𝜇2|𝑥 ) 

Minimum risk decision rule should be: 

𝜇1   𝑖𝑓 (𝜆21 −  𝜆11) 𝑝 (𝜇1|𝑥 ) >   (𝜆12 −  𝜆22) 𝑝 (𝜇2|𝑥 ) 

𝜇2  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

Decide 𝑤1 𝑖𝑓 

(𝜆21 −  𝜆11)  ∙
𝑝(𝑥|𝜇1)𝑝(𝜇1)

𝑝(𝑥)
>  (𝜆12 −  𝜆22)  ∙

𝑝(𝑥|𝜇2)𝑝(𝜇2)

𝑝(𝑥)
 

Thus, 

𝑝(𝑥|𝜇1)

𝑝(𝑥|𝜇2)
>

(𝜆12 −  𝜆22 )

(𝜆21 − 𝜆11 )
 ∙

𝑝(𝜇2)

𝑝(𝜇1)
 

Since 𝜆11  𝑎𝑛𝑑 𝜆22  equal to zero,  

𝑝(𝑥|𝜇1)

𝑝(𝑥|𝜇2)
>

(𝜆12)

(𝜆21)
 ∙

𝑝(𝜇2)

𝑝(𝜇1)
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In the Bayes decision rule, there will be two types of errors as shown in Table 3.1.  If the true 

class is μ1 but μ2 is assigned as a decision, we call this error as false negative or misdetection.  

On the other hand, assigned μ1 is not matched to the true decision, μ2, we call this error as false 

positive or false alarm.  

Table 3.1 Type of errors in Bayes decision rule 

 
Assigned 

𝜇
1
 𝜇

2
 

True 
𝜇

1
 True False negative (Type 1 error or mis-detection) 

𝜇
2
 False positive (Type 2 error or false alarm) True 

 

3.1.3 Bayes classifier feature selection 

A key assumption of the naïve Bayes model is the independence of attributes. This 

independence assumption is violated in the use of all attributes obtained from WIM.  This is 

because the axle spacing and total length measurements of a vehicle are highly correlated with 

each other.  Hence, a selective Bayesian model that uses subsets of attributes was applied to 

preserve the independence assumption and to improve matching performance.   

For the feature selection method, this dissertation applies an information gain (IG).  The 

IG feature selection is commonly used approach in a supervised learning algorithm, particularly 

for the decision tree model.  IG uses entropy as a measure of purity in an arbitrary collection of 

examples.   Let S be a set consisting of s  data samples, and Ck  be a class label of m case, 

(k = 1, … m).   An expected information (H)  for classifying a given sample is expressed as 

follows.  
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H(s1, … sm) =  − ∑ 𝑝𝑘 log2(𝑝𝑘)

𝑚

𝑘=1

 

where 𝑝𝑘represents the probability that an arbitrary sample belongs to class Ck.   

Information Gain (IG) entropy-based filter measures the amount of information about the 

class prediction in using subsets of attributes (Roobaert et al., 2006; Ratanamahatana and 

Gunopulos, 2002).  Since the entropy measures the impurity or randomness, lower entropy 

indicates a feature with higher deterministic characteristics.   

A set of S is partitioned into v subset { s1, … , sv}. An attribute set of A for these subsets 

can be expressed as  (a1, … av) . Therefore,  sj contains samples that have values of aj in A.  If 

class of subset is considered, Skj represents a subset with an attribute value j that has k as a class.  

The entropy or expected information based on the partitioned subset is as follow.  

E(A) =  ∑
(𝑠1𝑗 + ⋯ + 𝑠𝑚𝑗  )

𝑠

𝑣

𝑗=1

 𝐻(𝑠1𝑗, … , 𝑠𝑚𝑗)  

Therefore, information gain (IG) can be as follows. 

IG = H(s1, s2, … , sm) − 𝐸(𝐴) 

 An example in Figure 3.1 provides conceptual illustrations of Entropy.  Two decision 

trees with different split variables compares entropy and corresponding IG.   
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Figure 3.1 Entropy and Information Gain 

IG is obtained as follows: 

IG = 𝑝𝑟𝑜𝑏(𝑛𝑜𝑑𝑒 1) ∗ 𝐻(𝑛𝑜𝑑𝑒 0 − 𝑛𝑜𝑑𝑒 1) +  𝑝𝑟𝑜𝑏(𝑛𝑜𝑑𝑒 2) ∗ 𝐻(𝑛𝑜𝑑𝑒 0 − 𝑛𝑜𝑑𝑒 2) 

= H(node0) − [ 𝑝𝑟𝑜𝑏(𝑛𝑜𝑑𝑒1) ∗ 𝐻(𝑛𝑜𝑑𝑒1) + (1 − 𝑝𝑟𝑜𝑏(𝑛𝑜𝑑𝑒1)) ∗ 𝐻(𝑛𝑜𝑑𝑒2)]  

Since the goal is to have less entropy after the node split, 𝐻(𝑛𝑜𝑑𝑒1) 𝑎𝑛𝑑 𝐻(𝑛𝑜𝑑𝑒2) 

should be minimized. Consequently, larger IG will be obtained from less Hs.  IGs for the case 1 

and case 2 are 0.434 and 0.074, respectively, therefore the variable from case 1 (𝑥1) is selected as 

the first split variable.   

1 2

1 2 1 2

H=0.99 bits

H=0.77 bits H=0 bits

1 2

1 2 1 2

H=0.99 bits

H=0.97 bits H=0 bits
P=13/18 P=5/18 P=17/18 P=1/18

(a) Case 1 (b) Case 2

Node 1 Node 2 Node 1 Node 2

Node 0Node 0
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In this dissertation, weights of attributes – entropy-based filters – were identified based 

on their correlations with class attributes of match and mismatch.  Therefore, the subset with a 

higher IG was selected to improve the distinction between matched and mismatched pairs.   

It should be noted that Entropy-based filters were not considered for features obtained 

from inductive signatures as they were assumed to be independent.  

Hence, Bayes classifier considering feature selection from IG can be expressed as follows.   

 p(μ𝑖𝑗 | x)  ∝   
 IGm   ∙ Πm=1

M p(xm|μ𝑖𝑗)  

∑  IGm   ∙ Πm=1
M p(xm|μ𝑖𝑗)  𝐼

𝑖=1

 

 

3.1.4 Bayes prior 

A central concept of Bayesian analysis is to update a prior to posterior distribution for 

parameter vectors based on a received dataset which are summarized through a likelihood 

function for the parameters (West, 1993).   

𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 ∝ 𝑝𝑟𝑖𝑜𝑟 × 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑜𝑑 
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𝜋(𝜇𝑗) = 𝑝𝑟𝑖𝑜𝑟 

𝜋𝑡(𝜇𝑗) =  𝑝(𝜇𝑗|𝑥𝑡) =  𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑡𝑎𝑡𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 

∝  𝜋(𝜇𝑗) × 𝐿 (𝑥𝑡|𝜇𝑗) 

=
𝑝(𝑥𝑡|𝜇𝑗)𝑝(𝜇𝑗)

∑ 𝑝(𝑥𝑡|𝜇𝑗)𝑝(𝜇𝑗)𝑗

 

where j represents match (𝜇𝑗=1) or mismatch (𝜇𝑗=0) in our case. 

While posterior can be easily estimated based on a given dataset, prior represents one’s 

belief about the probability before some evidence is taken into account.  In Bayesian 

classification, one of the most important problems is to define a prior distribution since the prior 

significantly affects posterior probability.  Figure 3.2 shows the final inferences from the prior 

distribution.  

 

Figure 3.2 Influences from prior  

 

prior

Posterior

Likelihood
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A number of methods create prior distributions, largely categorized into two types: 

uninformative and informative priors.  When a parameter θ is available for prior information, 

prior density can be estimated based on the parameter.  However, if we have no prior information, 

uninformative prior is often used to minimally affect the final inferences.  A representative 

uninformative prior is a uniform distribution.  Informative priors give us numerical information 

on parameter distributions where the distribution can be estimated from direct observations using 

histogram and kernel density estimates or from chosen probabilistic models.     

In our tracking models, two types of priors are assumed.  In a corridor tracking model, a 

prior matching probability is assumed to be equal for all pairs.  Since the tracking is 

implemented along the same corridor, without additional information, it would be reasonable to 

expect equal matching chances from all candidate vehicles.  However, in a network-wide 

tracking, since candidate vehicles are collected from multiple upstream sites, prior information 

can provide extra matching probabilities if supplementary sources have information on detection 

locations or independent data on vehicle matching.  For example, historic path flows from GPS 

trajectories can be used as a prior on potential upstream sites since GPS trajectories provide 

general travel flow between sites.  In addition, direct comparisons of body configurations 

between target and candidate can give us an insight on matching probabilities for vehicle pairs.  

From these supplementary sources, discrete prior probabilities are estimated and updated for 

every matched pairs in vehicle matching and filtering processes.  More details on data sources 

and prior probability will be discussed in Chapter 5.5.  
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3.1.5 Linear Data Fusion and the final SWBM 

A linear combination method is known as an effective data fusion approach in integrating 

multiple data sources. In a general form, the linear fusion can be expressed as follows (Wu et al., 

2011): 

M(d)  =  ∑ 𝑤𝑡𝑖 ∗ 𝑑𝑖

𝑛

𝑖=1

 

where di represents the normalized score of data sources, wtiis the weight assigned, and M(𝑑)is 

the calculated score of d. 

In a vehicle tracking problem, Sun et al (2004) applied the linear data fusion approach 

with vehicle signature, velocity, color and platoon traversal time as follows.  

M = wts ∑ 𝑑(𝑠𝑢
𝑗
, 𝑠𝑑

𝑗
) + wtc ∑ 𝑑(𝑐𝑢

𝑗
, 𝑐𝑑

𝑗
) +  wtv ∑ 𝑑(𝑣𝑢

𝑗
, 𝑣𝑑

𝑗
) + 

𝑗

wtp ∑ 𝑑(𝑝𝑢, 𝑝𝑑)

𝑗

 

𝑗

 

𝑗

 

where wts is the fusion weight for vehicle signature, wtc is the fusion weight for vehicle color, 

wt𝑣 is the fusion weight for vehicle velocity, and wtp is the fusion weight for platoon traversal 

time. In addition, d(xu, xd) represents the feature distance between upstream and downstream 

site for feature vector j, in general.  

In our study, the linear data fusion approach is applied to WIM and signature data with a 

range of [0, 5] for the fusion weight in the corridor level tracking.  For the network-wide tracking, 

multiple data sources are linearly integrated with different ranges ([0, 5]) of fusion weights.   

Final SWBM for corridor level and network-wide tracking model including prior, feature 

selection, and linear data fusion weights are summarized as follows.  
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Corridor model: 

 p(μij |Wij
1, Wij

2, . . , Wij
m, Vij

1, Vij
2 … Vij

l )  =  
p( Wij

1, Wij
2, . . , Wij

m, Vij
1, Vij

2 … Vij
l |μij)

∑ p( Wij
1, Wij

2, . . , Wij
m, Vij

1, Vij
2 … Vij

l |μij)
I
i=1  

 

=  
   wtW ∙ Πm=1

𝑀  [ α
𝑚

∙  IGm   ∙   p (Wij
m|μ

𝑖𝑗
)]   ∙  wtV ∙  Πl=1

L  [α
l

∙  p (Vij
l |μ

𝑖𝑗
)]

∑   wtW ∙ Πm=1
𝑀  [ α

𝑚
∙  IGm   ∙   p (Wij

m|μ
𝑖𝑗

)]   ∙  wtV ∙  Πl=1
L  [α

l
∙  p (Vij

l |μ
𝑖𝑗

)]𝐼
𝑖=1

  

where  wm  and wl  represent linear fusion weights for WIM and signature,  IG𝑚  indicates 

information gain for WIM attributes and 𝑊𝑖𝑗 , 𝑉𝑖𝑗 denotes WIM and signature feature vectors of 

target vehicle j and candidate vehicle i, respectively 

 Feature label (αm,αl) will be explained in the next chapter of feature selection and weighting 

method (Chapter 3.4).  

Network-wide model: 

 p(μij |Vij
1, Vij

2 … Vij
l )  =  

 πk (μij) p(Vij
1, Vij

2 … Vij
l |μij)

∑ πk (μij) p( Vij
1, Vij

2 … Vij
l |μij)

I
i=1  

 

=  
wt𝐾 ∙ { Π

k=1
𝐾   πk (μij) }  ∙  wt𝐿 ∙  { Π

l=1
L   α𝑙   ∙ p(Vij

l |μ
𝑖𝑗

) }

∑  wt𝐾 ∙ { Π
k=1
𝐾   πk (μij) }  ∙  wt𝐿 ∙  { Π

l=1
L   α𝑙   ∙ p(Vij

l |μ
𝑖𝑗

) }𝐼
𝑖=1

  

where πk represents prior for data source k and its linear fusion weights is w𝑘   
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3.2 Feature Processing 

3.2.1 Feature preparation 

The truck tracking algorithm extracts vehicle attributes from WIM data and inductive 

loop signatures when the tracking is implemented between WIM stations and from inductive 

loop signatures only when the tracking is implemented between ILD sites.  By comparing 

vehicle attributes, the target vehicle that detected at downstream site, is matched to candidate 

vehicles, which were detected at the upstream location at some time earlier than the target 

vehicle.  

The WIM attributes include gross vehicle weight (GVW), total vehicle length, time 

duration a vehicle occupies a loop, axle spacing, and axle weight (see Figure 3.3(a)).  Trucks 

have different numbers of axle spacing and weight attributes that vary by axle configuration, 

therefore up to 17 WIM attributes can be obtained from a truck.  For trucks with six or more 

axles, only the first to fifth axle spacing and weight values were used as attributes.  Using these 

attributes, WIM feature vectors are calculated with the difference between WIM attributes 𝑚 of a 

target vehicle 𝑗 and those for a corresponding candidate vehicle 𝑖.  Simply, feature vectors are 

attribute differences between vehicle pairs.   

Signature feature vectors represent the differences between the signature attributes of the 

target and candidate vehicles, where the attributes include 50 normalized magnitude 

measurements obtained at evenly distributed points along the temporal axis of the inductive 

signature as shown in Figure 3.3(b). Therefore, there are a total of 67 possible features from 

WIM and signature data.  
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Figure 3.3 Feature vectors: (a) WIM feature vectors (b) Signature feature vectors  

 

3.2.2 Feature Noise Elimination  

Due to the sensor calibration and vehicle’s lateral position, WIM and signature sensors 

can possess systematic or random noises.  In order to minimize the impacts from these noises, 
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outlier features were initially identified and removed before estimating feature distribution.  

Figure 3.4 illustrates axle length and load differences between upstream and downstream 

detector measurements observed from the same vehicles.  

 

(a) Axle length measurements 

 

(b) Axle load measurements 

Figure 3.4 Measurement errors in (a) axle length and (b) load attributes 

 

Axsp_12* Axsp_23 Axsp_34Length

Axsp_12* indicates axle spacing between 1st and 2nd axle

Axle spacing

GVW 1L*

Axle weight

1R

1L* indicates axle  load on 1st left axle

2L 2R 3L 3R 4L 4R 5L 5R
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From the visual inspection, outliers in the measurements are detected in both length and 

load attributes. This study used modified Z-scores method for outlier elimination (Iglewicz and 

Hoaglin, 2016).  First, the Z-score of an observation is defined as: 

Zi =  
𝑌𝑖− 𝑌̅

𝑠
   

where 𝑌̅ represents a sample mean and s represents a sample standard deviation, respectively.  

The modified Z-score is defined as  

𝑀i =  
0.6745 (𝑥𝑖 −  𝑥̂)

𝑀𝐴𝐷
 

where MAD denotes the median absolute deviation (= median ( Yi − 𝑌̂ ) ) and 𝑥̂ represents the 

median.  

It is recommended that modified Z-scores with an absolute value of greater than 3.5 

should be labeled as outliers.  Therefore, in our study, the modified Z-scores of all 67 features 

were individually examined, and the attributes with greater than 3.5 modified Z-scores were 

identified as outliers and removed from the training feature sets.  

 Along with the outlier elimination, systematic measurement errors are corrected by WIM 

auto-calibration process.  The constant differences in WIM data between upstream and 

downstream sites can be identified by matched vehicles.  This constant difference is assumed as 

http://www.itl.nist.gov/div898/handbook/eda/section4/eda43.htm#Iglewicz
http://www.itl.nist.gov/div898/handbook/eda/section4/eda43.htm#Iglewicz
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a systematic error in the WIM measurement.  Therefore, all the measures from one WIM site can 

be adjusted based on those from another WIM site from the same vehicles.  Details will be 

discussed in Chapter 3.5.  

3.3 Feature Distribution  

After correcting systematic and random errors from the detection system, matched and 

mismatched feature distributions were estimated for Bayesian modelling.  This study considered 

two possible approaches for feature distribution estimation.  

First, non-parametric feature distribution is considered.  Non-parametric probabilistic 

density function assumes that a suitably smooth density exists but the density does not represent 

a particular form of underlying distribution.  The simplest example is a histogram.  The 

histogram counts the number of observations falling into each bin so that the area of each bar of 

the histogram could be proportional to the number of observations falling into the corresponding 

interval.  Although the histogram approach is very simple to implement, it has significant 

limitation from its dependence on the size of bin.  In other words, if the bin size is excessively 

big or small, the histogram would be too smoothened or too fluctuated, and this could cause 

sensitivity issues on density estimations.  

 Another commonly used method in the non-parametric approximation of probability 

density function is Kernel density estimation.  The Kernel density estimator is expressed as 

follows.  
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fh(𝑥) =
1

𝑛
∑ 𝐾ℎ(𝑥 − 𝑥𝑖) =

1

𝑛ℎ
∑ 𝐾 (

𝑥 − 𝑥𝑖

ℎ

𝑛

𝑖=1
 ) 

𝑛

𝑖=1
 

K(x) ≥ 0, ∫ 𝐾(𝑥)𝑑𝑥 = 1, 𝐾(𝑥) = 𝐾(−𝑥)
∞

−∞

 

where K(∙) is the kernel, h is a smoothing parameter called the bandwidth, xi is samples, x is data 

center (average), and n is the number of samples  

Similar to the histogram, the estimator highly depends on the bandwidth.  For example, 

small bandwidth produces a more wiggly function and large bandwidth provides a more 

smoothed function.   Kernels with different bandwidth are compared in Figure 3.5. 

 

Figure 3.5 Kernel density estimation with different bandwidth
2
 

Second method is a fitted distribution estimation approach.  Features are assumed to be 

fitted to a particular distribution.  Given the training data, parameters (θ)  that determine 

distributions are chosen to maximize the likelihood function.  In our study, features are shown 

                                                           
2
 Source: Computational statistics 



57 
 

normally distributed thus a probability density function for a continuous feature (x) was fitted to 

a Gaussian distribution with mean μ and standard deviation σ.  

Again, the posterior probability (π(θ|Dn)) of Bayes classifier can be expressed as follows. 

π (θ|Dn) =
L(D|θ) 𝜋(θ)

∫ L(D|θ) 𝜋(θ)𝑑θ
  where 𝜋(θ) is prior 

Let D = {x1, 𝑥2, 𝑥3, … 𝑥𝑛} be the independent training samples and the likelihood function of 

L(D|θ) is expressed as follows.  

L(D|θ) =  ∏ 𝑝 (𝑥𝑘|

𝑛

𝑘=1

θ ) 

Since the distribution is assumed as Gaussian, θ =  μ, the likelihood function is expressed as 

follows.  

L(D|θ) = ∏ exp
{ −

(𝑥𝑖 −  𝜇 )2

2σ2  }

√2𝜋𝜎
 

𝑛

𝑖=1

 

∝ exp
{ − ∑

(𝑥 −  𝜇 )2

2σ2𝑖=1 }

σn
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∝ exp
{ −

( 𝑛𝜇2 − 2𝑛𝑥̅𝜇 + ∑ 𝑥𝑖
2

𝑖=1  )
2σ2 }

σn
    

∝ exp
{−

[𝑛 (𝜇 −  𝑥̅ )2 + 𝑠2]
2σ2  }

σn
 

where 𝑥 ̅represents empirical mean and s2 =  ∑ (𝑥𝑖 −  𝑥̅)2𝑛
𝑖=1  

This study first identified matched pairs for all target vehicles in the training dataset.  

WIM and signature features’ Euclidean distances between target and candidate vehicles were 

calculated for determining initial matched and mismatched pairs, and the vehicle pairs with 

minimum total feature distances were identified as matched pairs.  The matched pairs were 

determined as either a true match or a mismatch using groundtruth data generated from visual 

matching of vehicles from collected side-fire images.  Gaussian distributions were estimated for 

all 67 feature vectors from the pairs of true matches and mismatches.  Figure 3.6 shows the 

estimated matches and mismatches Gaussian distributions overlaid with density histograms.  

Even though there are particular features that are more distinct between the match and mismatch 

distributions, in general, the matched pair distributions tend to have small variances centered at 

zero while the mismatched pair distributions typically show large variances.   
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 Figure 3.6 Gaussian distributions for matched and mismatched cases 
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3.4 Feature Selection and Weighting Method 

Based on the Gaussian distributions of each feature, influence of the feature in 

distinguishing matched and mismatched pairs was further investigated using a statistical test and 

a clustering method.  Features were categorized into four groups based on their variance and 

statistical differences in matched and mismatched distributions.  For example, if the matched and 

mismatched distributions of a specific feature were not statistically different, the feature would 

not be expected to perform a significant role in determining vehicle matches.  Conversely, if 

distributions were statistically different and the matched distribution had smaller variance than 

the mismatched distribution, the feature could play a significant role in distinguishing matches 

from mismatches.  

3.4.1 Kolmogorov-Smirnov test 

A Kolmogorov-Smirnov (KS) hypothesis test (Kim and Jennrich, 1973) was used to 

examine the statistical difference of the distributions.  Two sample distributions are compared 

using the empirical distribution functions or cumulative fraction functions with a null hypothesis 

as follows.  

Ho :  Two data samples come from the same distribution 

H1 : Two data samples do not come from the same distribution 

Since the KS test examines data only using the relative distance of distributions, it does 

not require any assumption on the distributions.  
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In Figure 3.7, KS statistics (Dmn) is 𝑆𝑚(𝑥) − 𝑆𝑛(𝑥) where 𝑆𝑚 and 𝑆𝑛 are the empirical 

distribution of two samples.  In our study, KS test is used to examine if the matched and 

mismatched distributions are statistically different at the 5% significance level.  

 

Figure 3.7 Kolmogorov-Smirnov (KS) hypothesis test 

3.4.2 K-means Clustering 

K-means clustering (Hartigan and Wong, 1979) was applied to categorize features based 

on their distribution characteristics.  As an unsupervised classification algorithm, K-means 

solves clustering problems with k centroids where one centroid represents a cluster.  The 

objective function is expressed as follows. 

J =  ∑ ∑ ||  𝑥𝑖
𝑗

− 𝑐𝑗 ||
2

𝑛

𝑖=1

𝑘

𝑗=1

 

Source : Non-parametric 
statistical tests 
(http://ivrl.epfl.ch)
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where ||  𝑥𝑖
𝑗

− 𝑐𝑗  ||
2

is a given distance measure between a data point 𝑥𝑖
𝑗
 and the cluster 

center 𝑐𝑗, n represents total data point and k represents a given number of cluster.  Figure 3.8 

shows the illustration of five (K=5) clustering results.  

 

Figure 3.8 K-means clustering  

In our study, k is defined as two, corresponding to matched and mismatched pairs.   

3.4.3 Feature Labeling 

Consequently, WIM and signature features were assigned one of four labels – critical, 

significant, insignificant, and inverse – in descending order of their ability to distinguish matches 

from mismatches.  Figure 3.9 shows examples of feature distributions with four different labels.  

Different weights were assigned to these categories in the Bayesian tracking algorithm where 

critical feature distributions possessed the highest weight and inverse feature distributions had 

the lowest weight.  These feature labels were separately analyzed for two different truck types 

corresponding to single-unit and multi-unit trucks. 

Source : K-means clustering 
(http://danbri.org/words/2011/06/19/711)
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1) Critical:  

 matched and non-matched distributions are statistically different and 

 matched distribution has small but non-matched distribution has large variance  

2) Significant:  

 matched and non-matched distributions are statistically different and  

 matched and non-matched distributions have large variance 

3) Insignificant:  

 matched and non-matched distributions are not statistically different 

4) Inverse:  

 matched and non-matched distributions are statistically different and  

 matched distribution has a larger variance than non-matched distribution 
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Figure 3.9 Comparisons of feature influence for multi-unit trucks 

 

(a) Critical feature distributions (b) Significant feature distributions

(c) Insignificant feature distributions (d) Inverse feature distributions
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3.5 Implementation of Truck Tracking Algorithm  

 The tracking framework consists of two models.  For every detected target truck detected 

at downstream, the first model determines the matched vehicle at upstream.  However, since the 

tracking algorithm is implemented over a long-distance corridor or a large network that may 

contain multiple entries and exits, only a small fraction of trucks might be expected to traverse 

both stations.  Therefore, after the first model assigns the match prediction for target trucks, there 

is a need in the second model to determine if the matched pair obtained is indeed a true match or 

a mismatch.   

As shown in Figure 3.10, there are possible six cases in declaring match and mismatch to 

the target vehicle.  The first four examples present the case where the target vehicle is observed 

at both upstream and downstream locations.  In these cases, only if the matching model finds the 

correct match and the filtering model does not filter the vehicle, the matching can be successful 

(case A).  Even though the matching model finds the correct match, this pair can be declared as a 

missing from the filtering model (case A-2).  Or, if the first model finds the pair as a mismatch, 

incorrect outcomes will be obtained regardless of the filtering model outcomes (case B-1 and B-

2).  Case C-1 and C-2 shows the matching results when the target vehicle is observed at only 

downstream location.  In this case, a declared matched pair from the first model should be 

filtered as a missing for the successful match (case C-1).  
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Figure 3.10 Cases of tracking results 

 

In the field implementation of this tracking model, multiple sub-steps are performed prior 

to and within the matching and filtering models.  A step-by-step implementation is described in 

this section.   
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Step 1. Candidate Vehicle Set Preparation  

The first step searches candidate vehicle sets at upstream location based on their travel 

time and physical attributes, called search space reduction.  

Step 1.1 Search space reductions 

The search space reduction algorithm first designates a temporal window based on the 

travel time limits between upstream and downstream detection sites as follows: 

{𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 (𝑡𝑡𝑓𝑓) ≤ 𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑤𝑖𝑛𝑑𝑜𝑤 < 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 (𝑒. 𝑔. , 𝛼𝑡𝑠 ∗ 𝑡𝑡𝑓𝑓 )} 

where 𝛼𝑡𝑠 can be any value greater than 1 

Trucks that pass the upstream location within the temporal window are selected as 

candidate matches for the target truck.  Previous research studies in vehicle tracking have applied 

a relatively narrow travel time boundary to reduce computation costs (Abdulhai and Tabib, 2003; 

Oh and Ritchie, 2003; Dion and Rakha, 2006).  However, in this case, the use of a narrow 

temporal window would introduce a significant negative impact on successful population 

matching because a narrow window eliminates many true matches.  In this study, travel time at 

the speed limit between two locations was defined as the minimum travel time.  The maximum 

travel time was determined as three times the minimum travel time for this study.  The model is 

not particularly sensitive to the travel time boundary and this relaxed travel time window was 

designed to accommodate significant changes in traffic conditions between distant detector 

locations. To accommodate longer travel times of long-haul trucks with rest breaks at 

intermediate locations, an even more relaxed travel window may be considered.  However, a 
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greatly increased search space could result in a high level of mismatches and not be practically 

feasible.   

In a corridor level tracking, physical attributes of vehicles such as axle loading and 

spacing can be directly compared between target and candidate vehicles to further reduce the 

candidate vehicle set. Therefore, after the temporal window was applied to find candidate 

vehicles, WIM attributes of the candidate vehicles were compared with that of the target vehicle.  

Flexible upper and lower thresholds were applied to the WIM attribute window in consideration 

of systematic errors of the WIM measures (Prozzi and Hong, 2007).  Through these steps, each 

target vehicle, 𝑗, was associated with its final candidate vehicles set, 𝑖 (𝑖 ∈ 1, … , 𝐼). 

{𝑊𝑗
𝑚 −  𝛼𝑗

𝑙𝑏  ≤ 𝑊𝑗
𝑚  < 𝑊𝑗

𝑚 +  𝛼𝑗
𝑢𝑏} 

where 𝑊𝑗
𝑚 indicates WIM attribute m for target vehicle j , and 𝛼𝑗

𝑙𝑏  and 𝛼𝑗
𝑢𝑏 are the lower and 

upper bounds of the window for 𝑊𝑗
𝑚, respectively.  

Step 1.2 Signature transformation 

Loop sensitivity and a vehicle’s lateral position over the sensor may affect the quality of 

the inductive signature waveform obtained from each vehicle.  The purpose of signature 

transformation is to reduce these effects prior to extracting the vehicle signature tracking features.  

First, signature normalization and imputation were applied to individual signatures as shown in 

Figure 3.11.  Normalization and imputation steps allow the signature features to be extracted 

over a common scale from zero to one.   
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Figure 3.11 Signature normalization and imputation steps 

Second, the candidate vehicle’s signature, 𝑆𝑖 , is horizontally and vertically transformed to 

fit the target vehicle’s signature.  The candidate signature is iteratively shifted and stretched until 

the minimum difference between the signature pairs is obtained.  Consequently, this step 

minimizes differences of correctly matched pairs of signatures and further distinguishes matched 

pairs from mismatched pairs.  Figure 3.12 a d Figure 3.13 illustrates procedures of the signature 

transformation.  Figure 3.14 and Figure 3.15 show two comparison examples of correctly 

matched and mismatched signatures, respectively.  Although the transformation step reduces the 

signature differences for both cases, the differences (i.e., distances) between the mismatched 

pairs are much higher compared with the matched pair after the transformation processes.  
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Figure 3.12 Horizontal and vertical signature transformation steps 

 

Horizontal shift step: Si
h.shift (t) = Si (t + βhorizontal

shift )   [ e. g. , −0.20 ≤ βhorizontal
shift  ≤  0.20]     

Horizontal stretch step: Si
stretch(t) =   Si

h.shift(βstretch  ∙ t )       [e. g. , 0.8 ≤ βstretch  ≤  1.2]   

Vertical shift step: 𝑆𝑖
𝑣.𝑠ℎ𝑖𝑓𝑡

 (𝑡) = 𝑆𝑖
𝑠𝑡𝑟𝑒𝑡𝑐ℎ +  𝛽𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙

𝑠ℎ𝑖𝑓𝑡
    [ e. g. , −0.20 ≤ 𝛽𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙

𝑠ℎ𝑖𝑓𝑡
 ≤  0.20]     

where βhorizontal
shift  , βvertical

shift  , and βstretch represent the horizontal shifting, vertical shifting, and 

horizontal stretching coefficient, respectively, t represents the time 
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1st step
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(d) Vertically shifted

3rd step

shifted

shifted



71 
 

 

 

𝜃𝑜
∗ represents the pre-determined threshold  

 

Figure 3.13 Procedures for signature transformation 
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Figure 3.14 Signature transformation results for correctly matched pairs 

 

Before implementing signature transformation After implementing signature transformation

(a) Correctly Matched - Case 1

(b) Correctly Matched - Case 2
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Figure 3.15 Signature transformation results for mismatched pairs 

Step 1.3 WIM data auto-calibration 

WIM data from the same vehicle may differ across sites due to systematic or random 

errors in WIM measures (Papagiannakis et al., 2008).  These WIM errors, particularly systematic 

errors, may significantly affect the vehicle tracking process because the WIM data collected at 

up- and down-stream stations from the same vehicle can be very different. Therefore, a WIM 

data auto-calibration process was proposed to adjust for systematic errors and to minimize 

impacts from random noise.   

Before implementing signature transformation After implementing signature transformation

(a) Mismatched - Case 1

(b) Mismatched - Case 2
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Ideally, the average difference of each WIM attribute from the matched vehicles can be 

used to adjust calibration variances in WIM attributes.  In field implementations where variances 

of WIM measures between sites are unknown, potential matched pairs can be defined by the 

signature distances.  Only the signature pairs with smaller distances can be assigned as the 

potential match and used for the calibration.    

Step 2. Vehicle Matching 

Step 2.1 Best match search using Selective Weighted Bayesian Model (SWBM)  

The best matched vehicle was identified among candidate vehicles obtained via search 

space reduction (step 1.1).  Typically, a vehicle pair with the least feature distance can be chosen 

as a match.  However, due to the similar physical attributes and signature shapes from the trucks 

with the same body configuration, the extended Bayes rule with selected weighted features was 

applied to distinguish matched pairs.  This addresses the issue where a few erroneous 

measurements from noisy features may result in incorrect matches if the matches are determined 

using minimum feature distance alone as the criterion.  However, these features would have less 

impact on matching decisions in the proposed method since the joint probabilities are considered 

using the Bayesian approach with multiple independent feature distributions. 

For the corridor tracking where both signature and WIM data were used, vehicle features 

from these two detection systems were separately incorporated into the Bayesian model to find a 

match μij.  Assuming that the prior probability for every pair is held constant, a conditional 
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probability of a match was expanded to the joint probabilities of the WIM and signature 

attributes with the best linear data fusion weights  

 For the network-wide tracking, signature data are used as vehicle features.  Prior 

probability is estimated based on supplementary data sources such as GPS trajectory and body 

configuration estimates.  Linear data fusion approach is also applied to all data sources to better 

integrate multiple sources.    

For both models, each candidate vehicle’s matching probabilities were estimated based 

on matched feature distributions and prior probability, and the candidate vehicle with the highest 

matching probability was selected as the match.  

 

Step 2.2 Matched pair filtering 

Step 2.1 identified a match for every target vehicle.  However, in an open system not 

every target vehicle would have arrived from the upstream detection site.  Hence, some matched 

pairs need to be filtered as mismatches.  In this step, two posterior probabilities, corresponding to 

true match, 𝑝(θij = 1), and mismatch, 𝑝(θij = 0), were estimated to the matched pairs and the 

result with the higher posterior probability was chosen as the final decision.   

Probability of true match: 

   𝑝(θij = 1 |Xij)  =  
𝑝(θij = 1) ∙  𝛾

m
 ∙ Π

m=1

M p(𝑋ij
m|θij = 1)  

(θij = 1) ∙  𝛾
m

 ∙ Π
m=1

M p(𝑋ij
m|θij = 1)   +  (θij = 0) ∙  𝛾

m
 ∙ Π

m=1

M p(𝑋ij
m|θij = 0)   
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Probability of mismatch: 

   𝑝(θij = 0 |Xij)  =  
𝑝(θij = 0) ∙  𝛾

m
 ∙ Π

m=1

M p(𝑋ij
m|θij = 1)  

(θij = 1) ∙  𝛾
m

 ∙ Π
m=1

M p(𝑋ij
m|θij = 1)   +  (θij = 0) ∙  𝛾

m
 ∙ Π

m=1

M p(𝑋ij
m|θij = 0)   

 

Where 𝛾m represents feature selection and weighting coefficient for attribute m, X represents matching features 

 

A vehicle pair was confirmed as a match if its probability of a true match was greater 

than that of a mismatch.  Conversely, a vehicle pair was confirmed as a non-match if its 

probability of a mismatch was greater than that of a true match.  

 

Step 2.3 Eliminating duplicate matching pairs 

 From the Step 2.2, every target vehicle either declares its matching pair or identified as a 

missing.  However, since the algorithm finds the matched pair based on the probability, the same 

candidate vehicles could be matched multiple times to different target vehicles.  Therefore, as the 

last step, the multiply matched vehicles are eliminated.  For example, if duplicates are found 

from two matched pairs, matching probability between pairs are compared and the pair with 

higher matching probability is declared as the final match.   Then, the target vehicle from another 

pair goes back to the step 2.1 to select the second highest candidate as a match and proceeds to 

the filtering step.  This duplicate removal step is implemented iteratively until no duplicates are 

found from matched pairs or all the best matching vehicles are exhausted in the candidate sets.   
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4. Corridor Tracking Model 

This chapter introduces a corridor tracking model through a full integration of the two 

advanced detection technologies – advanced inductive loop detectors and WIM sensors – along 

the truck corridor.  Since these two sensor technologies collect complementary vehicle attributes 

such as trucks’ physical attributes from WIM sensors, and inductive signatures from inductive 

loop sensors, vehicles are able to be more accurately and effectively identified.  Further 

advantages of the proposed tracking algorithm in its utilization of existing detection 

infrastructure are: (i) additional in-pavement retrofits are not required in vehicle tracking; (ii) 

private identifiable information is not collected when vehicles are tracked across sites; (iii) and 

the system provides collateral benefits to a recently developed advanced truck classification 

model using the fusion of the same detector technologies (Hernandez et al., 2016).  The 

combination of these two systems has the potential to yield detailed tracking of commercial 

vehicles by their body configuration and industrial affiliation to yield a comprehensive data 

source of detailed truck activity. 

 

4.1 Model overview 

The truck tracking algorithm matches the vehicles between two detection stations using 

axle configuration and inductive loop signature attributes. After a truck is detected at a 

downstream location, the tracking algorithm subsequently searches for candidate trucks that have 

passed the upstream location at some earlier time.  When a truck is detected at a downstream 

location, its axle configuration is determined by the WIM controller and categorized into either a 
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single-unit or multi-unit truck. Thus the algorithm only searches for candidate trucks within the 

same category.  Figure 4.1 outlines the detailed steps of the vehicle tracking algorithm. Details in 

the tracking algorithm were discussed in Chapter 3.  

 

Figure 4.1 Steps of the corridor tracking implementation 
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4.2 Data 

Truck axle and inductive signature data together with side-fire still images for each 

passing vehicle were collected at two WIM sites for model development (see Figure 4.2).  WIM 

data, inductive signatures, and still images were stored in a database and manually integrated 

during an initial groundtruth data processing phase.  Two WIM sites along the Interstate 5 

freeway at San Onofre (upstream) and Leucadia (downstream) in California were selected for 

model development and validation (see Figure 4.3).  The distance between these two locations is 

26 miles, spanning two major freeway intersections and 17 entrance and exit ramps.  WIM and 

signature data from the two outermost southbound (slow) lanes were collected.  As shown in 

Table 4.1,  a total of 471 trucks at the upstream station and 1,038 trucks at the downstream 

station were collected on January 9
th

 and 10
th

, 2013.  Most of the population comprised of multi-

unit five-axle trucks.  Only 14 percent of total trucks passed both upstream and downstream 

stations.  These are referred to as common trucks as shown in Table 4.2.  

 

Figure 4.2 Data collection site images 

 

Detector location

San Onofre (Upstream) Luecadia (Downstream)
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Figure 4.3 Data collection sites for corridor level tracking 

 

Table 4.1 Data collection site description 

Site Location Distance Collection Dates 

San Onofre (SB I-5) to 
 Leucadia (SB I-5)  26 miles 

Jan. 09, 2013 (Testing)
 
 

Jan. 10, 2013(Training) 

 

San Onofre

Leucadia

Legend

Model development  sites

Major intersections  and ramps
ML 2

ML 4

ML 3

ML 1

SouthboundSan Onofre

ML 2

ML 4

ML 3

ML 1

SouthboundLucadia
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Table 4.2 Corridor tracking testing and training data 

Dataset 

# of Trucks 

Collected at 

Downstream 

% of Tractor-

Trailer at 

Downstream 

# of Trucks 

Collected at 

Upstream 

% of Tractor-

Trailer at 

Upstream  

# Common 

Vehicles 

% of Common Vehicle 

from the Total Vehicle 

Detected at Upstream 

Testing 471 60% 50 86% 50 11% 

Training 1038 65% 159 84% 159 15% 

Total 1509 63% 209 84% 209 14% 

 

4.3 Performance Measures 

Five evaluation measures were used to analyze the performance of this model: Closed 

System Matching Rate – CSMR, two measurements of Open System Matching Rates – OSMR1 

and OSMR2, and two measurements of False Matching Rates – FMR1 and FMR2.  Open system 

refers to the tracking corridor that include multiple intersections and ramps, thus vehicles can 

enter or exit the tracking corridor during a tracking process. Therefore, every target vehicle 

would not be observed at upstream WIM site in open system.  However, in close system, no exit 

and entry exists is assumed in the corridor, therefore all target vehicles are observed at upstream 

WIM site.  The algorithm finds matches through two sequential processes – best match search 

and filtering.  The filtering step is only needed in an open system deployment where there is a 

likelihood that a true match does not exist.  Therefore, the performance measurements were 

designed to evaluate the model under both closed and open systems.  To measure the model 

performance in a closed system, matching results from the best match step were compared only 

against vehicles that traversed both the upstream and downstream sites.  Hence, CSMR is 

defined as the number of correctly matched pairs obtained from the best match search step 

divided by the total number of common vehicles, expressed as a percentage.   
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The OSMRs measure matching accuracy in an open system after the additional filtering 

step is implemented to predict if the best matches obtained are indeed true matches.  OSMR1 

represents the percent of correctly matched common vehicles that have passed both WIM sites in 

an open system, and OSMR2 is defined as the percent of correctly matched vehicles out of the 

total matches that are declared by the model.  The FMRs indicate the matching inaccuracy of the 

model.  Therefore, high CMRs and low FMRs are generally desirable.  The FMR1 represents the 

percentage of error matches among the common vehicles, while FMR2 is defined as the number 

of error matches divided by the total number of vehicles observed at the downstream location.  

Care should be taken when evaluating different performance measures since the matching results 

are highly related to the geometric and traffic characteristics of the study corridor.  

CSMR =
Initial Correct matches ∗ 

Common vehicles
 

OSMR1 =
Correct matches∗∗

Common vehicles
 

OSMR2 =
Correct matches

Total matches∗∗∗ 
 

FMR1 =
Error matches

Common vehicles
=

Total matches − Correct matches

Common vehicles
 

FMR2 =
Error matches

Total vehicles
=

Total matches − Correct matches

Total  vehicles∗∗∗∗
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* Initial correct matches represent the number of vehicles that the algorithm matched correctly at 

the best match search step  

**Correct matches represent the number of vehicles that the algorithm matched correctly 

***Total matches represent the total number of vehicle matches declared by the algorithm 

****Total vehicles represent the total number of vehicles detected at the downstream location 

4.4 Results 

Table 4.3 shows the matching results from the training and testing dataset with data 

fusion weights.  Various combinations of weights were investigated to identify the best fusion 

weights from WIM and signatures.  The matching rates where solely WIM or signatures were 

used are provided for comparison purposes. 

The OSMRs were quite low when only WIM or signature features were used for tracking.  

However, the CSMR ranged from 71 percent to 100 percent for all cases regardless of the data 

fusion combination.  This result indicates that the models using standalone WIM or signature 

data may be adequate in a closed corridor where the entire truck population is expected to 

traverse both the upstream and downstream detector sites, but are deficient in open system 

applications.   

In the test data set, the OSMR1 obtained for multi-unit trucks was 77 percent. The 

OSMR2, which represents the matching accuracy of the multi-unit trucks that were declared as 

matches by the model, was 85 percent. These high values of OSMR1 and OSMR2 together show 
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that the model developed in this study was able to maintain a high accuracy of matches without 

sacrificing the proportion of vehicles tracked.  The false matches of these vehicles were 14 

percent out of the common vehicles (FMR1) and 4 percent in the total vehicles (FMR2).   

Single-unit trucks in the test dataset showed OSMR1 and OSMR2 accuracies of 71 

percent and 63 percent, respectively with FMR1 and FMR2 measurements of 43 percent and 3 

percent, respectively.  A likely reason for higher observed FMR1 from the single-unit trucks is 

that these vehicles possess fewer distinct physical attributes since they tend to be shorter in 

length and possess fewer axles.  The single-unit trucks also tend to travel shorter distance, which 

may lower the matching accuracies.  In addition, data for one of the lanes at the San Onofre site 

was incompletely captured, which may have contributed to a lower accuracy. 

 



 

 
 

8
5
 

Table 4.3 Matching results of corridor level tracking 

 

*SIG represents the inductive loop signature 

WIM SIG* Total
Com-

mon

Total 

Match

Correct 

Match
CSMR OSMR1 OSMR2 FMR1 FMR2

Best combination 3 1 47 38 88% 76% 81% 18% 4%

WIM only 1 0 42 10 76% 20% 24% 64% 13%

SIG only 0 1 56 32 90% 64% 57% 48% 10%

Best combination 3 1 39 33 88% 77% 85% 14% 4%

WIM only 1 0 18 5 72% 12% 28% 30% 9%

SIG only 0 1 47 28 91% 65% 60% 44% 13%

Best combination 3 1 8 5 86% 71% 63% 43% 3%

WIM only 1 0 24 5 100% 71% 21% 271% 20%

SIG only 0 1 9 4 86% 57% 44% 71% 5%

Best combination 3 1 164 114 87% 72% 70% 31% 6%

WIM only 1 0 140 23 72% 14% 16% 74% 15%

SIG only 0 1 193 81 83% 51% 42% 70% 14%

Best combination 3 1 124 93 87% 69% 75% 23% 6%

WIM only 1 0 60 12 71% 9% 20% 36% 9%

SIG only 0 1 136 62 82% 46% 46% 55% 14%

Best combination 3 1 40 21 88% 84% 53% 76% 7%

WIM only 1 0 80 11 77% 44% 14% 276% 26%

SIG only 0 1 57 19 88% 76% 33% 152% 14%

Train 

Data Set

Al l  Trucks 795 159

Multi -Unit 

Trucks
526 134

Single-Unit 

Trucks
269 25

Test 

Data Set

Al l  Trucks 243 50

Multi -Unit 

Trucks
148 43

Single-Unit 

Trucks
95 7

Dataset
Data Fusion 

Description

Fusion 

Weight
Number of trucks Matching Rate
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4.5 Sensitivity analysis 

During the tracking process, trucks could experience loading and unloading activity 

especially near port, intermodal rail facility, and warehouse area.  Since the tracking model uses 

axle loading as a feature, this loading and unloading activity might significantly affect tracking 

performances.  This section performs a sensitivity analysis on weight features to compare how 

the model performs when the axle loadings are included and not included in the feature set.    

Figure 4.4 shows that 73 percent of mismatched pairs have the same body configurations 

from the corridor tracking.  This high proportion of mismatch from the same body configuration 

indicates that similar waveform signatures would be generated from the same truck types, which 

results in lower performance in matching process.  

 

Figure 4.4 Identity of truck types from mismatched pairs 

However, Figure 4.5 shows that these mismatched pairs showed quite different GVW 

compared to their vehicle length.  The mismatched pairs from the test dataset of tractor-trailer 

units even showed 45 percent of weight differences between matched vehicles. On the contrary, 

27%

73%

Different

Same



 

87 
 

length differences between matched pairs are less than 10 percent.  These results show that the 

GVW can play a significant role in distinguishing similar body types, which may be difficult to 

be differentiated by length or axle spacing measures.  

 

Figure 4.5 GVW and length differences from the mismatched pairs 

Hence, the corridor tracking compared the tracking accuracy with and without the weight 

data in the feature sets.  As shown in Figure 4.6, both OSMR1 and OSMR2 showed generally 

better performance when the GVW and axle loadings were used as features.   The matching 

accuracies of OSMR2 rather than OSMR1 are improved when the weight measures were used in 

the tracking.   These results indicate that the weight features effectively to filter missing pairs 

than other features.   
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(a) OSMR 1 

(b) OSMR 2 

Figure 4.6 Performance comparisons for weight features 

4.6 Discussion  

In this section, previous tracking approaches are compared to the proposed algorithm. 

The study by Jeng and Chu (2015) presented the most recent development in truck tracking using 

WIM and inductive signature data, with a focus on WIM calibration and travel time estimation 
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applications.  The signature data were mainly utilized in a tracking process with proximity 

measures.  WIM data were subsequently used in filtering matching vehicles as the last step of the 

tracking process.  In addition, proximity measures were used to match vehicles so that a vehicle 

pair with the minimum distance between features was selected as a matching pair.  

It should be noted that the performance of a tracking algorithm depends significantly on 

multiple factors such as vehicle type, tracking distance, freeway geometry (i.e., number of 

intersections or ramps), and total traffic flow.  For example, if a tracking corridor contains fewer 

intersections, trucks will be more likely to traverse both upstream and downstream detection sites 

even though the tracking is performed over a very long distance, resulting in better tracking 

performance.  In this regard, when performances of different tracking algorithms are compared, 

care should be taken especially if the tracking is implemented at different locations.  

Hence, this section applied the tracking approaches from the previous studies to the same 

dataset that the proposed algorithm was used and compared matching performances.  A total of 

three approaches were introduced: two approaches used proximity measures and one approach 

applied a Bayesian approach with equally weighted features as shown in Table 2.  Since the 

proximity measures require a fixed parameter to declare matching pairs, two different fixed 

parameters were applied to each approach.  The approaches of 1(a) and 1(b) only used signature 

features to find matching vehicles with different fixed parameters.  The approaches of 2(a) and 

2(b) were adopted from the study by Jeng and Chu (2015) therefore signature features were used 

to match vehicles and the WIM features were used as filtering purpose after determining 

potential matching pairs.  For example, all the vehicles passing at downstream found their 

matching pairs using signature distances, and then the axle spacing and weight parameter were 
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used to filter mismatching pairs.   Approach 2(a) specifically implemented the same fixed 

threshold method adopted from the study by Jeng and Chu (2015) for comparison purposes.  

After testing multiple values, thresholds from 2(b) were obtained as optimal threshold values for 

our dataset.   

Table 4.4 Different tracking approaches 

Approach Features Measures 

Fixed 

parameter 

used?  

Fixed parameter in matching 

1(a) Signature  Proximity measures Yes 
Sum of signature distances of 

matching pair < 2.0 

1(b) Signature  Proximity measures Yes 
Sum of signature distances of 

matching pair < 4.0 

2(a) 
Signature 

and WIM 
Proximity measures Yes 

Axle spacing parameter* < 0.02 and 

Axle weight parameter** < 0.1 

2(b) 
Signature 

and WIM 
Proximity measures Yes 

Axle spacing parameter* < 2.1 and 

Axle weight parameter** < 0.3 

3 
Signature 

and WIM 

Bayesian approach with 

equally weighted 

features 

No - 

* Axle spacing parameter differs by FHWA vehicle class. For example, axle spacing parameter 

for FHWA class 9 vehicles is defined as axle spacing between fourth and fifth axle divided by 

axle spacing between first and second axle.  Details refer to Jeng and Chu (2015). 

** Axle weight parameter is defined as first axle weight divided by GVW  

Figure 4.7 illustrated correct matching rates of the five approaches and the proposed 

algorithm.  Overall, the approaches with proximity measures showed lower correct matching 

rates than Bayesian approaches, and the performance significantly depends on the fixed 

thresholds.  Although the approach 1(b) and 2(b) showed higher matching rate for OSMR1, 

OSMR 2 was lower than 20 percent.  This is because too many vehicle pairs were declared as 

matching pairs, thus the proportion of correctly matching pairs among the total matching pairs 
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was very low.  In contrast to the main applications of the previous studies, such as obtaining 

travel time estimation or detection site calibration, the most important aspect of a tracking 

process for path flow estimation is that total vehicles including not only true-matching pairs but 

also non-matching pairs should be accurately identified.  In other words, for estimating path flow 

with tracked vehicles, every individual vehicle detected at a downstream station should be 

tracked and confirmed whether it passed at an upstream station or not.  The proposed algorithm 

showed that the total vehicles were successfully tracked compared to the proximity measures.   

Lower performance of proximity measures could be also caused by inaccurate calibration 

or different sensitivity in signature and WIM measures.  The same vehicle could show varying 

vehicle length or signature shapes by detection locations if sensors have different sensitivity and 

calibration.  However, when using the proximity measures, a few erroneous features could 

critically increase the total feature distance, which would result in lower matching accuracies.  

However, the proposed algorithm applied probabilistic approaches with selected features to 

ensure that the matching algorithm will be minimally affected by these exogenous factors.  

Further, signature transformation and WIM auto-calibration were added in the algorithm to 

reduce possible calibration errors or noise from the detection systems.  
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Figure 4.7 Comparison results 

The proposed matching algorithm not only effectively captured the total vehicles tracked, 

but also achieved high matching rates (76% OSMR1 and 81% OSMR2).  This is because the 

proposed algorithm simultaneously utilized both WIM and signature data through a Bayesian 

framework.  The advantage of concurrently utilizing both detection systems is that the two 

systems can play complementary roles in distinguishing matching pairs.  Therefore, trucks with 

the same trailer body configuration, which may have similar signature shapes, can be 

distinguished by their WIM data such as axle loads and gross vehicle weight.  On the other hand, 

trucks with similar length and weight can be distinguished by their metallic composition 

obtained from the inductive signatures.  Our results also showed that tracking methods solely 

using WIM or signature data only showed 24 percent and 57 percent matching accuracy 

(OSMR2) as opposed to 81 percent when WIM and signature data were both utilized (see Table 

4.3).  In addition, compared to results from the approach 3, the feature selection and weighting 

approaches applied to both the WIM and signature data enabled the Bayesian algorithm to 
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provide higher matching accuracy, which would be of great benefit for tracking in a corridor 

with heavy truck traffic.   

4.7 Application 

In this section, three applications of the corridor tracking results are presented, which 

includes truck monitoring along with the detailed truck body classification information, travel 

time estimation, and WIM calibration.  With an integration of body configuration classification 

model, dynamic truck activity can be monitored with its detailed truck type and axle 

configurations.  In travel time estimation and WIM calibration, more accurate travel time can be 

estimated between detection stations if a proportion of tracked vehicles that show higher 

matching probability is used.  

4.7.1 Truck monitoring with detailed body classification 

The tracking algorithm was implemented at a different location over a longer distance as 

a case study implementation (Figure 4.8).  For the case study sites, a freeway corridor spanning 

two WIM sites separated by 65 miles and containing 6 major intersections in the California San 

Joaquin Valley was chosen.  Truck axle and signature data were collected at two WIM sites at 

the Galt (downstream) and Keyes (upstream) stations and used for the case study implementation.  

The data used in this analysis was obtained from June 17 to June 19, 2015 for 24 hours 

through the University of California, Irvine – Institute of Transportation Studies (UCI-ITS) 

Truck Activity Monitoring System (TAMS).  The TAMS is an interactive web-based user 

interface that provides the spatial distribution of trucks by truck axle and body configurations. In 
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total, 7,003 multi-unit and 3,745 single-unit trucks were recorded at the downstream location 

(site Galt in Figure 4.8).   

 

Figure 4.8 Case study site map for corridor level tracking 

 

Table 4.5 Case study site description 

 

Galt

Keyes

ML 2

ML 1

NorthboundGalt

ML 3

ML 2

Northbound

ML 1

Keyes

Site Location Distance Site Description Collection Dates
# of Trucks Collected 

at downstream 
WIM site

% of Tractor-Trailer 
at downstream 

WIM site

Keyes (NB SR-99) to
Galt (NB SR-99) 

65 miles
Case Study 

Implementation
June 17 -19, 2015 10,748 65%
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Figure 4.9 shows the average detected volume and average matched rate by Time of Day 

(TOD).  The TOD patterns for detected volume and matching rate show hourly variations in 

truck travel behavior.  These TOD matching rates were estimated using the proposed tracking 

model, and the associated implications presented in this section are based on the model outcomes, 

assuming that the model provides accurate tracking results.  The percentage match indicates the 

proportion of vehicles that traverse the entire corridor.  To compare truck travel patterns by truck 

types, the truck classification model (Hernandez et al., 2016) was applied to estimate trailer body 

configurations.  Two different trailer types, van and platform, for multi-unit 5 axle trucks 

(corresponding to FHWA class 9), were compared in hourly detected volume and matched 

proportions.  For both trailer types, detected volumes were higher during the day-time than night-

time.  However, while the hourly matching rates of van types were constant for the whole day, 

platform type trucks showed higher matching rates during the night-time.  Considering that the 

tracking rate does not depend on truck body configurations, these temporal variations in tracking 

rate between trucks with different trailer types can be inferred as attributable to dissimilar travel 

patterns, which can link to the industries and facilities they serve.  Specifically, 10 to 20 percent 

of vans passed both WIM sites regardless of the time of day, which indicates 80 to 90 percent of 

van type trucks traveling over this freeway section presumably served local industries or used 

different routes.  In addition, the platform-type truck higher matching rates during the night may 

imply that the platform trailers traveling during the night-time related highly to inter-regional 

rather than localized service compared to those traveling during the day. This application of the 

proposed algorithm demonstrates that it can provide valuable insights into truck travel patterns 

and industrial affiliations to yield a comprehensive truck activity data source.  



 

96 
 

 

Figure 4.9 Comparison of detected and matched volume by truck type. 

4.7.2 Travel time estimation 

Using the matched vehicles from the tracking, travel time can be measured between two 

detection locations.  However, different performances can be drawn by the applied samples since 

the timestamp between detection locations from the matched vehicles are used to estimate travel 

time.  In other words, if the selected matched pairs which have higher probabilities in tracking 

model are used for travel time estimation, higher accuracy is expected than when using all the 

matched pairs.   For travel time estimation, it is not important to maintain high proportion of 
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tracked population because a portion of samples with higher matching probability can provide 

more accurate travel time estimates.   

To test travel time estimation performances, two different sets of samples are used, one 

with the full tracked population, and another with a portion of tracked vehicles with higher 

matching probabilities.  Euclidean distance was used to select samples with higher matching 

probabilities where matched pairs with less than 2 of the total distance are considered as samples.  

Tracking results between San Onofre and Leucadia detection stations were used.  Figure 4.10 

and Figure 4.11 compare travel time estimations and MAPE (Mean Absolute Percent Error) from 

these two datasets.  In the figures, average travel time for 5 minutes was illustrated as one time 

interval.  MAPE represents average performance by comparing actual and estimated travel time 

in every time interval.  

 

MAPE = 

∑
|𝑇𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 (𝑎𝑐𝑡)𝑛−𝑇𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 (𝑒𝑠𝑡)𝑛|

𝑇𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 (𝑎𝑐𝑡)𝑛
𝑛 ∗100 

𝑁
 

where n represents time interval, act  presents actual travel time from observations and 

est represents estimated travel time from tracking algorithm 

  

The actual travel time ranges from 28 minutes to 34 minutes while estimated travel time 

was ranged from 25 minutes to 45 minutes when all the tracked vehicles were used.   When the 

sampled tracked pairs were used, the range of estimated travel time was 24 minutes to 38 

minutes.  While the minimum and maximum MAPEs were 0% and 47.8 % with the median of 
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9.4% when all tracked pairs were used, the MAPEs were dropped to maximum of 32.9% and 

median of 6.9% when sampled tracked pairs were used (Table 4.6).   This result confirmed that 

more accurate travel time can be estimated by sampled tracked pairs especially the maximum 

MAPE was significantly reduced.   

 

Figure 4.10 Actual and estimated travel time and MAPE with all tracked pairs 
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Figure 4.11 Actual and estimated travel time and MAPE with sampled tracked pairs 

 

Table 4.6 Comparisons of MAPE  

 All tracked pairs Sampled tracked pairs 

Min 0% 0% 

1st Quantile 2.2% 2.5% 

Median 6.2% 4.9% 

Mean 9.4% 6.9% 

3rd Quantile 13.3% 9.9% 

Max 47.8% 32.9% 
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4.7.3 WIM calibration 

WIM calibration is another direct application from tracked vehicles.  Differences of the 

WIM attributes between the WIM sites can be estimated from the matched vehicles.  However, it 

is difficult to know which site has inaccurate measures since only relative differences can be 

obtained by the track vehicles. However, if the tracking is performed at multiple WIM sites, and 

the WIM data are compared at multiple sites, problematic sites could be identified.  However, 

with a two WIM sites comparison, a degree of calibration issue can be only estimated by the 

relative differences in WIM estimates.  The attribute differences in this chapter are estimated as 

follows.   

ValueAttribute = 𝑈𝑝𝑠𝑡𝑟𝑒𝑎𝑚𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 − 𝐷𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒   

 

Tracked vehicle between San Onofre and Leucadia WIM site are used for this application 

and the WIM data are separately examined by vehicle types.  Figure 4.12 shows the actual and 

estimated differences in WIM measures.  Overall, axle spacing and weight loads obtained at the 

downstream location were larger than those at the upstream location.  Moreover, weight loads 

showed higher calibration errors than spacing measurements.  However, it was shown that our 

matched vehicles would successfully correct the calibration errors since the pattern of off-

calibrated values are pretty accurately tracked from the matched vehicles.   
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* axsp12 indicates axle spacing between 1
st
 and 2

nd
 axle 

** ax1rwt indicates axle loading of 1st right axle 

 

Figure 4.12 Differences in WIM measures 

 

4.8 Conclusion  

A Bayesian approach with selective weighted features was implemented to successfully 

distinguish matched truck pairs from mismatched ones in an open network for corridor level 

tracking.  The results showed that a higher proportion of the truck population was successfully 

tracked with high matching accuracies at two WIM locations along a major freeway corridor 

spanning 26 miles and several interchanges.  Matching accuracy for the trucks traversing both 
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WIM sites was 81 percent, where only 14 percent of trucks traversed both detection locations.  

The tracking algorithm, integrated with body classification modeling, was also implemented over 

a longer distance freeway section and showed temporally varying truck travel patterns by trailer 

types. This integrated tracking scheme shows significant potential in providing a new, 

comprehensive data activity source on truck movements and industry affiliations.  Direct 

applications from the matched vehicles including travel time estimation and WIM calibration 

also provides valuable insights on the use-cases of tracking modeling.   
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5. Network-wide Tracking Model  

The previous chapter investigated to estimate path flow by tracking individual vehicles 

along the same corridor.  However, this tracking approach might be limited to capture dynamic 

truck activity in a complex road network since the tracking was focused on matching vehicles 

between two detector stations.  Hence, in this chapter, the link-based tracking approach is 

extended to a network-wide tracking so that vehicles collected at multiple detector stations in 

different routes can be used in a tracking process.   

5.1. Model overview 

A network-wide tracking model adopts a general framework from the corridor level 

tracking.  However, to handle significant amounts of matching candidate sets collected from 

multiple upstream locations, several steps were added to the original tracking model as shown in 

Figure 5.1.   First, a vehicle classification step was considered.  Since inductive loop signature 

has no capability in classifying vehicles, a truck detection algorithm was separately developed to 

categorize trucks into two groups (i.e., single-units and multi units) and to exclude passenger 

vehicles from the tracking process.  In addition, a signature clustering step is introduced to more 

effectively utilize signature features to match vehicles as the ILD is the main data source in the 

network-wide tracking.  To recognize varying distances and different traffic states between 

tracking sites, additional data sources were considered as supplementary information in the 

tracking model using Bayesian updating approach.  Historical GPS, travel time, and truck body 

estimations are used as additional data sources.  Consequently, tracking performances with four 

scenarios that consist of different combination of data sources are compared as follows.   
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Scenario 1: Only inductive signature data is available for vehicle tracking 

Scenario 2: Signature and GPS data are available 

Scenario 3: Signature and truck body classification estimates are available  

Scenario 4: All of the above data sources are available  

5.2 Truck detection algorithm  

A binary truck detection algorithm was developed to distinguish passenger vehicles, 

single-unit trucks, and multi-unit trucks using vehicle duration from ILD data.  The definition of 

multi-unit in this study refers to FHWA axle based class 8 to 13.  Single-unit trucks represent 

FHWA class 4 through 7 (FHWA, 2013).   

5.2.1 GM model for truck detection 

Several previous studies have investigated the classification of vehicles based on ILD 

data from single loop sensors. Initial attempts provided percentage of long vehicles using 

aggregated flow and occupancy measures (Kwon et al, 2003; Wang and Nihan, 2003).  Recently, 

Coifman et al (2009) developed an individual length-based classification scheme.  Individual 

vehicle speed and length estimated by ILD data were utilized for vehicle classification.  However, 

this approach requires several pre-determined traffic values to estimate individual vehicle length 

and speed such as defining speeds higher than 45 mph as free flow.  These assumptions may 

result in inaccurate individual speed estimates under different traffic conditions, which 

eventually yield misclassification outcomes. Their results also showed that their model 

performance was not reliable during congested periods. 
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Figure 5.1 Flow chart of network-wide tracking 
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The proposed algorithm focuses on the difference in duration by vehicle type to identify 

trucks.  Duration data of three different vehicle types which correspond to FHWA class 2-3, 

FHWA class 4-7, and FHWA class 8-13 were collected and analyzed as illustrated in Figure 5.2.  

Overall, duration ranges were distinct vehicle types; especially the duration of FHWA class 8-13 

vehicles is noticeably longer than the others.   

 

Figure 5.2 Duration distributions by vehicle type  

 

However, the range of duration measures associated with vehicle types vary across traffic 

conditions.  For example, the ranges are typically longer in congested traffic compared with 

uncongested traffic.  Therefore, in order to use the duration range as an identifier of vehicle type, 

the range should be updated at short time intervals to effectively capture the changes in traffic 

state.  This study developed an approach using the Gaussian Mixture (GM) model to determine 

and update the duration ranges by vehicle type over short time periods, deemed as 15 minutes to 
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obtain sufficient volumes to construct GM model.  It should be noted that shorter or longer time 

period is easily adapted in the proposed GM model. 

A GM model is a linear composition of Gaussian distributions, 𝒩(μm, Σm) with a mixing 

proportion of  pm (Hastie et al., 2009).  Since this study estimated three duration distributions –

passenger vehicles, single-unit trucks and multi-unit trucks – tri-modal GM distributions were 

estimated by applying a mixing proportion of the three distributions.  

f(x) =  ∑  pm ∙ 𝒩(x; μm,Σm)

M

m=1

 

where m is number of mixture components, 𝒩(μm, Σm) is a Gaussian distribution with mean μ 

and covariance matrix Σ, and pm is the mixing proportion. 

The proposed algorithm has several practical advantages.  Implementation of the 

algorithm is not restricted by temporal or spatial conditions since the algorithm can reflect the 

change of traffic state in real-time.   Additionally, any labor extensive data collection and process 

are not required to implement the algorithm at different ILD sites since the proposed algorithm 

does not need a training step or any assumptions for model development. 

5.2.2 Validation of the truck detection algorithm  

In our tracking dataset (see Table 5.2 and 5.3 for data description), the GM model shows 

99 percent, 75 percent, and 95 percent of CCRs for passenger vehicle, single-unit truck, and 

multi-unit truck, respectively, as shown in Table 5.1.  While passenger vehicles and multi-unit 

trucks showed high classification rates, approximately 19 percent of single-unit trucks were 
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classified as passenger vehicles. The body types of these misclassified trucks were mostly utility 

and service trucks which have relatively shorter durations.   

 

Table 5.1 Truck detection algorithm results for tracking dataset 

 
Passenger 

Vehicle 
Single-Unit Multi-Unit Total CCR 

Passenger Vehicle 206 1 2 209 99% 

Single-Unit 96 382 32 510 75% 

Multi-Unit 0 28 592 620 95% 

Total 302 411 626 1339 88% 

 

The proposed truck detecting GM algorithm was separately tested with 28,328 multi and 

single unit trucks collected at four ILD sites in California from the previous study (Hernandez et 

al., 2016).  Since the passenger cars were not collected in this study, only single-unit and multi-

units were used in GM model with a mixing proportion of two.  Along with the individual 

vehicle duration and timestamp, side-fire images for each passing vehicle were stored together in 

a database to identify vehicle types.  In the algorithm, every individual vehicle was classified 

into two types, multi-unit or single-unit trucks, based on its duration.  In every 15 minutes, 

duration ranges for multi-unit trucks and single-unit trucks were updated in the GM model.  

Figure 5.3 shows results of two sample duration densities from an off-peak (a) and peak period 

(b), respectively.  In these examples, the lower bound of duration for multi-unit trucks in an off-

peak period was 0.42 seconds while a peak period showed a lower bound of 0.53 seconds, which 

was 0.11 seconds longer than that of the off-peak time period. 
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Figure 5.3 Duration distribution in off-peak (a) and peak (b) period 

 

To validate the proposed GM model, the estimated vehicle types were compared to the 

actual vehicle types.  A total of 323 15-minute periods were collected from the dataset.  Since 

each time period provided classification results (i.e. probability of correct classification), 

summary statistics of mean, 25 percentiles, and 75 percentiles for correct classification cases are 

illustrated using a box-plot approach as shown in Figure 5.4.  The average correct classification 

rates were 95% for single-unit trucks and 97% for multi-unit trucks.  In other words, only 5% of 
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single-unit trucks were identified as multi-unit trucks, and 3% of multi-unit trucks were 

classified as single-unit trucks.   

 

 

Figure 5.4 Truck detection algorithm results 

 

 

The proposed algorithm was applied to a set of sample data obtained from 8 different 

ILD sites in California observed for 48 hours from March 29
th

 (Tuesday) to March 30
th 

(Wednesday), 2016.  As shown in Figure 5.5, the proportion of multi-unit trucks varied 

temporally and spatially for the 48-hour period.  Although repetitive time of day patterns were 

observed at some locations, the times with higher multi-unit truck traffic varied by site.  For 

example, site 1 and 3 showed high proportions of heavy truck traffic during the night time while 

Heavy truckLight truck
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high proportions of heavy truck traffic were observed during the daytime in site 2 and 4.  These 

findings also confirmed that the proposed algorithm is capable of working as an independent 

truck detection platform.   

 

 

Figure 5.5 Proportion of heavy trucks in different segments of freeway in California 

5.3 Search Space Identification 

A network-wide tracking should match vehicles between one downstream location and 

multiple upstream locations.  As a network becomes large, the number of possible upstream 

locations that reach to the downstream location can excessively increase. Therefore, it is 

important to identify feasible upstream locations in the network-wide tracking problem.  An 

initial step is to find direct upstream sites that connect to the downstream site without passing 
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another site.  Figure 5.6 illustrates a simple network with one downstream and four upstream 

locations.  

 

Figure 5.6 Sample network for search space identification 

 

In this case, four upstream locations [Oa, 𝑂𝑏, 𝑂𝑐, 𝑂𝑑]  can be directly reached to the 

downstream location [D].  To find feasible upstream and downstream location sets, only the 

shortest paths between the upstream and downstream locations are assumed to be selected by 

trucks.  For example, if origin and destination is Ob and D, there are two possible paths: (i) 

Ob  →  D and (ii) Ob  →  Oa  →  D.  Since the shortest travel time between these two locations 

can be obtained by the first path, only the first path is assumed to be used and considered in a 

tracking process. However, even though a direct path exists between two locations, for example 

Od and D, if the travel time of the indirect path that passes through another location, such as 

O𝑑  →  O𝑐  →  D, is shorter than that of the direct path, O𝑑  →  D, the indirect path would be 

chosen as the feasible tracking path.  Therefore, location Od  is not chosen as the feasible 

upstream set of D.   Consequently, the feasible sites of upstream set of this network are 

[Oa, 𝑂𝑏, 𝑂𝑐]. 

OD path  

[ , ]

[ , ]

[ , ]

[ , ]



 

113 
 

5.4 Signature Clustering Approach  

One challenge in vehicle tracking using ILD is to search a target vehicle among 

candidates that have the same truck or trailer body configurations because trucks with the same 

body configuration generate similar waveform signatures.  The corridor tracking results (Chapter 

4.5) confirmed that the most of the incorrectly matched target and candidate vehicle pairs had the 

same body trailer or truck types.  In specific, 73 percent of the incorrectly matched pairs have the 

same truck types.  This problem would make the network-wide tracking even more challenging 

because signatures are the main sources to distinguish vehicles.   

Figure 5.7 depicts randomly chosen fifty signatures from the same trailer categories of 

livestock and tank.  Even though the overall patterns of the same trailer type are very similar, we 

could visually found that there are discernible features that are more capable of identifying 

salient differences among vehicles.  For example, all the signatures of the livestock trailers have 

high magnitudes from 0.5 to 1 second; however, the front part (up to 0.4 second) of the 

signatures showed more variations by trucks.  Similarly, the middle parts of the tank signatures 

(between 0.3 to 0.8 second) are highly varied by vehicles.  Therefore, these parts of signatures 

are seen to better distinguish vehicles.  However, it would be difficult to find these features if all 

signatures with various waveform patterns are compared altogether since the distinct parts vary 

by overall signature pattern.  However, if signatures that have similar patterns are grouped 

together, the distinguishable signatures features could be more salient.   
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Figure 5.7 Comparison of signatures with different types of trailers 

 

This study develops a signature clustering model to group trucks with similar signature 

shapes.  Then, in each cluster, signature features that have larger variations are selected and 

weighted as more powerful features to distinguish vehicles.  Parametric density functions are 

also separately estimated by signature clusters.  

5.4.1 Self Organizing Map (SOM) for vehicle clustering  

This study applies a SOM model for signature clustering.  The SOM is an unsupervised 

clustering method using neural network algorithm.  Since this method is unsupervised approach 

where data are not labeled for classification, vehicle signatures are clustered by their overall 

patterns, not classified by their body type labels.  This feature allows this method to categorize 

high dimensional data solely depending on their inherent features.   

It should be noted that signatures in the same trailer type may vary as observed in Figure 

5.7.  If there are common parts that have huge variations in several body configurations, the 

supervised classification algorithm may not work properly until the variations are removed and 
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the unique feature sets clearly indicate their corresponding vehicle type labels.  However, it is 

impossible to entirely remove those overlaps; therefore, the SOM clustering would be more 

adequate approach in signature grouping since the waveform shapes determines clusters, not 

their body types.   

 

Source : Eren Golge (https://www.quora.com/What-are-self-organizing-maps-How-do-they-work) 

Figure 5.8 SOM model 

 

SOM consists of two phase: algorithm training and mapping.  The training step builds a 

map using given input data set.  Then, a new input vector can be clustered using the map, which 

called mapping.  The map consists of several nodes as shown in Figure 5.8.  Every node is 

connected to the input, and no nodes are connected to each other.  Each node has topological 

position and contains a vector of weights with the same number of input vectors.  Initially, each 

node is assigned random weights between [0, 1].  A random input vector is chosen for training, 

and every node is examined to find the most similar node to the input vector, which refers to the 

best matching unit (BMU).  The selection is implemented using Euclidean distance as a measure 

of similarity between the input vector and nodes.  In other words, the distance between each 

High dimensional input
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node’s weight vector and input vector is calculated, and the node that has the closest weight 

vector to the input vector is tagged as the BMU.  After identifying the BMU, a radius of 

neighborhood around the BMU is calculated to estimate the impact area (nodes) of the BMU.  

The radius decreases with an exponential decay function on each iteration. 

The weights (w) of BMU and neighboring nodes are iteratively updated so that their 

weights can be more similar to the weight of the input vector.  

w(t + 1) =  𝑤(𝑡) +  Θ(𝑡)𝐿(𝑡)(𝑉(𝑡) − 𝑤(𝑡)) 

L(t) = 𝐿𝑜exp ( −
𝑡

𝜆
) 

Θ(t) = exp ( −
𝑑𝑖𝑠𝑡2

2𝛿2(𝑡)
 ) 

Where 𝑡  is time step,  𝐿(∙)  is learning rate that decreases with time, 𝐿𝑜  shows the 

previous learning rate of 𝐿,   Θ(∙) is influence rate (neighborhood function) which shows amount 

of influence a node’s distance from the BMU thus 𝛿 is an width of the lattice at the time 𝑡, V 

indicates input vectors, and w  denotes the corresponding weight vector for each node, 

𝜆 𝑎𝑛𝑑 𝑑𝑖𝑠𝑡 are constant. 

While learning rate is monotonically decreasing over time, influence rate depends on the 

lattice distance. However, in general, initial stages where the neighborhood is broad have higher 

influence rates to affect more neighbors.  At the last stage, however, weights are converged and 

highly affects to closer neighbors.   
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In SOM, nodes are placed onto a grid and each node has neighbors.  In every step, nodes 

change their position on the grid.  Therefore, the BMU adapts itself to the input vector, which 

further causes a change for its neighbors.  Therefore, the neighbor vector is positioned closer to 

the BMU and increase difference with surrounding vectors.   

 

5.4.2 Clustering results  

This study trained a SOM with a large dataset that contains varieties of signature patterns 

from over 40 truck types.  The data set includes 28,328 single and multi-unit trucks collected at 

four ILD sites in California, which is also used for validation of the truck detection algorithm in 

Chapter 5.2.  This set was split into training and testing and the training data is used for cluster 

development.  A total of 25 nodes are used in the map.  After the training step, K-means 

clustering was used to find the optimal number of clusters.  Figure 5.9 (a) and Figure 5.9 (b) 

show the optimal five clusters for multi-unit and single-unit, respectively, with a representative 

signature pattern in each node.  Color in the figure represents clusters, for example, 11 green 

nodes in Figure 5.9 represent the ‘cluster 1’.  Similarly, one node in red and purple color 

represents ‘cluster 3’ and ‘cluster 4’, respectively.  It is visually confirmed that the nodes with 

the same cluster show similar signature shapes.  For example, two nodes in ‘cluster 5’ both show 

signatures that have higher magnitude on the trailer part.   
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(a) Tractor-trailer unit Clusters 

 

(b) Single unit Clusters 

Figure 5.9 Clusters and signature patterns 
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The nodes in the same cluster contain similar signature patterns.  Therefore, if each 

signature’s body configuration is known, we could investigate associations between signature 

patterns and body configurations.  In this study, trailer types of multi-unit were examined by 

clusters as shown in Figure 5.10.  Most of vehicles in cluster 1 are enclosed van type while those 

in cluster 2 include the most variety of body configurations among five clusters.  Cluster 3 

however only includes one type of body type, logging trailers; and cluster 4 represents the units 

pulling multiple trailers.  Cluster 5 represents lower deck trailers such as low boy platform, drop 

frame, and livestock.   

 Since each cluster has different waveform patterns, clusters would have different 

significant parts that have more abilities to differentiate vehicles.  Therefore, parametric density 

functions along with feature selection and weighting are investigated by cluster. Figure 5.11 

shows examples of feature distributions by cluster.  Two features are selected as examples.  

Feature A (e.g., 13
th

 signature feature) shows that the cluster 1 has larger variances for both 

match and mismatch while the cluster 2 shows smaller variances for both match and mismatch.   

However, the cluster 3 has small variance in match but larger variance in mismatch.  These 

differences indicate that features have varying ability in distinguishing match and mismatch, and 

further, the ability differs by clusters.  Similarly, the feature B (e.g., 41
st
 signature feature) shows 

different variances of match and mismatch density distributions by clusters.  As discussed in 

Chapter 3.5, feature weights are estimated and categorized into four labels, corresponding to 

critical, signature, insignificant, and inverse features based on their statistical differences and 

variances in distribution of match and mismatch pairs.  
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Figure 5.10 Body configurations by SOM cluster 
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*Feature A represents the 13
th
 signature feature and Feature B represents the 41

st
 signature feature.  

 

Figure 5.11 Comparisons of parametric density functions by cluster 
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5.5 Data 

To implement the network-wide tracking, we selected two upstream locations and one 

downstream location.  The distance from each upstream to downstream location is 5.2 and 5.5 

miles, spanning five major freeway intersections and entrance and exit ramps as shown in Figure 

5.12 and Table 5.2.  On July 7
th

, 2016, signature data from the two outermost northbound lanes 

were collected from the upstream #1 (U1) and the downstream sites (D), and two westbound 

lanes from the upstream #2 site (U2) were collected.  A total of 424 vehicles were collected at 

the downstream locations where 58 percent of trucks are multi-unit trucks (Table 5.3).  At U1, 

222 trucks were collected and 74 percent of them were multi-unit units.  At U2, 62 trucks were 

collected where 60 percent of the total population is multi-unit.   There are 284 common trucks 

in this network, which is 67 percent of the total vehicle captured at downstream location.  

 

Figure 5.12 Data collection site map for network-wide tracking 
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Table 5.2 Data collection site description for network-wide tracking 

Site Location Distance Site Description Collection Dates 

Camp Pendleton (I5) to Carlsbad (I5) 5.2 miles 
D-U1  

(Upstream Site #1) July 7
th
 2016  

11:20AM – 12:40PM 
Camp Pendleton (I5) to Tri-City (SR 78) 5.5 miles 

D-U2 

(Upstream Site #2) 

 

Table 5.3 Data collected for network-wide tracking 

Dataset 

# of Trucks 

Collected at 

Downstream 

% of Multi-

unit at 

Downstream 

# of Trucks 

Collected at 

Upstream 

% of Multi-

unit at 

Upstream  

# 

Common 

Vehicles 

% of Common Vehicle 

from the Total Vehicle 

Detected at Upstream 

D-U1 

424 58% 

421 54% 222 

67% D-U2 118 49% 62 

Total 539 53% 284 

 

Inductive signature data and side-fire images for trucks were collected at three loop sites 

for validating network-wide tracking model (Figure 5.13).  Similar to the corridor tracking 

process, inductive signatures and still images were stored in a database and manually linked 

through a groundtruth data processing.  

 

Figure 5.13 Site Images for network-wide tracking 
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5.6 Additional Sources 

5.6.1 GPS 

GPS data were used to estimate spatial relationships between downstream and each 

upstream location based on route flows extracted by GPS trajectories.  The underlying concept is 

that if vehicle flows from a particular upstream (U1) and downstream set is higher than the other 

upstream (U2) and downstream set, it can be assumed that vehicles from the upstream location 

(U1) have higher chance to be matched to the target vehicles on July 7
th

, 2016 downstream.  This 

study utilized the GPS data collected from the American Transportation Research Institute 

(ATRI) for four weeks in each quarter in 2010.  GPS vehicle trajectories were extracted, and path 

flows were estimated by each downstream and upstream pair.  First, screen-lines for each 

detector stations (Downstream and two upstream sites) were created in Q-GIS as shown in 

Figure 5.14.  Second, the GPS trajectories that pass each downstream-upstream set were queried 

at PostgreSQL database.  Among a total of 2,307 trajectories that pass at the downstream 

location, 1,769 and 538 route flows were passed at U1 and U2, respectively.  Therefore, prior 

matching probability for D-U1 and D-U2 pairs are 77% and 23%, respectively.  
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Figure 5.14 GPS trajectories among network-wide tracking sites 

 

 

5.6.2 Truck body classification estimates 

A detailed truck body classification model developed by Hernandez et al (2016) used 

inductive signatures to distinguish over 40 single-unit and multi-unit truck configurations from 

ILD sites as shown in Table 5.4.  
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Table 5.4 Truck classification scheme based on Inductive Signature Data  

Units Type Body Class Units Type Body Class 

Single-Units 

without Trailer 

Conventional Van/Platform 

Multi-Units 

Tractor Trailers 

Enc. Van 

Cab Over Van/Platform 53ft Container 

30ft Bus 40ft Container 

20ft Bus 40ft Container Reefer 

Multi Stop Van/RV 20ft Container 

Utility/Service Platform 

Concrete Tank 

Dumpster Transport Open Top Van 

Garbage Auto 

Bobtail Low Boy Platform 

Dump Triple Rear Drop Frame Van 

Street Sweeper Dump 

Dump/Tank Logging 

Single-Units with 

Trailer 

SU small trailer Livestock 

Dump-Dump Agriculture 

RV with Towed Vehicle Beverage 

Concrete w/Lift Axle Enclosed Van Reefer 

Tank-Tank Platform/Tank 

Platform-Platform Dump 

Tow Truck with vehicle Multiple Semi 

Tractor Trailers 

Pneumatic Tank 

Dump with Lift Axle Hopper 

 

The body classification model estimates individual body types for vehicles detected at 

every data collection sites.  For the tracking process, two body type estimations were used, one is 

an individual estimation and another is an hourly estimation. An individual estimation compares 

body types estimated at downstream and upstream locations.  If the same body types for target 

and candidate are estimated, the matching probability would be higher than the different body 

types are estimated.  The matching probability is obtained from known correct classification rate 

(CCR) of body types from Hernandez et al (2015).  An example of CCR for multi-unit is 

presented in Table 5.5.  For example, if the downstream body type estimation is ‘enclosed van’ 

and the upstream body type is estimated as ‘enclosed van’, the matching probability is 83% 

based on the CCR of the ‘enclosed van’. Since the body configuration model includes the 
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classification error, even if the body types between target and candidate trucks are the same, the 

matching probability may not be 100 percent.  If the body estimates are different at downstream 

and upstream locations, we take conservative approach to obtain a CCR.  For example, if one 

location estimates 40ft container and another location estimates platform for one pair, we 

assumed that either body type could be a true value.  Thus, we used maximum CCR between the 

case where 40ft container is misclassified as a platform and the case where platform is 

misclassified as a 40ft container.  If the first case has 10% and the latter case has 20% of CCR, 

this study takes the bigger CCR as their matching probability.  

Table 5.5 Body CCR Table for tractor-trailer units 

Downstream Body type Upstream Body type CCR 

40ft Container 40ft Container 64% 

40ft Container Platform 7% 

40ft Container Enclosed Van   7% 

53ft Container 53ft Container  42% 

53ft Container  Enclosed Van   53% 

Enclosed Van   Enclosed Van   83% 

Enclosed Van   Platform 3% 

Enclosed Van   Enclosed Van Reefer   11% 

Dump Dump 57% 

Dump Tank 19% 

 

While an individual estimation determines the matching probability between a target and 

a candidate vehicle, hourly estimation considers a potential upstream location based on the 

estimated body types.  First, body type estimations from individual vehicles at each upstream are 

aggregated in an hour.  Second, a target vehicle’s body type is identified from the body 

classification model.  Third, hourly aggregated volumes for the target’s body type are compared 

to multiple upstream locations, and the probability of each upstream location is calculated based 

on volume proportions of the corresponding body type.  An example of hourly estimation 
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matching probability used in this study is presented in Table 5.6.  For example, if the body type 

of target vehicle is estimated as ‘20ft container’, the probabilities of two upstream locations are 

21 percent (U1) and 79 percent (U2), respectively.   

Table 5.6 Probabilities of upstream locations by truck body configuration 

Body configuration Probability for D-U1 Probability for D-U2 

20ft Container 0.21 0.79 

40ft Container  0.17 0.83 

53ft Container  0.77 0.23 

Platform 0.46 0.54 

Drop Frame Van 0.35 0.65 

Enclosed Van Reefer  0.42 0.58 

Enclosed Van  0.63 0.37 

Dump 0.62 0.38 

Low Boy Platform 0.58 0.42 

Open Top Van 0.58 0.42 

Tank 0.72 0.28 

 

5.6.3 Travel time  

Travel time is an important indicator in search space reduction.  However, since the 

network-wide tracking considers multiple upstream locations, travel time is utilized to find 

matched vehicles beyond the search space reduction.  Similar to the signature feature vectors, 

travel time is also considered as a feature vector in the Bayesian model.  Therefore, travel time 

distribution was estimated based on the potential match and mismatch pairs for each upstream.  

Figure 5.15 shows travel time distributions from U1 by truck types.  
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Figure 5.15 Travel time distributions for matched and mismatched pairs 

5.7 Results 

Prior to implementing the Bayesian model, a fixed parameter approach was applied.  The 

fixed threshold was applied to the total distances of signature features.  In other words, if the sum 

of signature features from a potential matching pair is less than the pre-determined threshold, the 

pair is declared as a match.  The set of performance metrics developed for the corridor level 

tracking was also used for the network-wide tracking.  As shown in Figure 5.16, the most 

balanced solution between OSMR 1 and OSMR 2 was found when three was used as the fixed 

threshold where 81 percent of OSMR 1 and 69 percent of OSMR 2 were obtained.   
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Figure 5.16 Fixed threshold approach results 
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between tracking points are about 5 miles, only 68 percent of vehicles pass both downstream and 

upstream stations.  However, the tracking algorithm was able to maintain total population with 

high matching accuracy based on balanced high OSMR1 and OSMR2 results.  For multi-units, 

only two percent drop was observed after the filtering step was implemented, which indicates 

that the filtering step well performed to filter missing pairs for the multi-unit units.   

However, overall performance for single-units was lower than multi-unit units. At the 

best fusion weights, 67 percent and 54 percent of OSMR 1 and OSMR 2 were obtained. Since 

less variety of truck types and axle configuration were observed for the single-units, signatures 

alone cannot capture the salient differences in vehicle features.   

 



 

 
 

1
3
2
 

Table 5.7 Bayesian model results for network-wide tracking 

SIG
Travel 

time

Body 

type 

Ind. 

est.

Body 

type 

Hourly 

est.

GPS Total Common
Total 

Match

Correct 

Match
CSMR OSMR1 OSMR2 FMR1 FMR2

Best Combination:

SIG + GPS
3 0 0 0 1 303 238 88% 84% 79% 23% 15%

All (equal weight) 1 1 1 1 1 265 205 77% 72% 77% 21% 14%

SIG only 1 0 0 0 0 292 233 85% 82% 80% 21% 14%

SIG + all Body est. 1 0 1 1 0 255 202 84% 71% 79% 19% 13%

SIG + Body Ind est. 1 0 1 0 0 226 183 85% 64% 81% 15% 10%

SIG + Body Hourly est. 1 0 0 1 0 281 218 85% 77% 78% 22% 15%

SIG+Travel time 1 1 0 0 0 294 228 85% 80% 78% 23% 16%

SIG + GPS (equal weight) 1 0 0 0 1 289 228 83% 80% 79% 21% 14%

Best Combination:

SIG + GPS
3 2 0 0 2 201 182 93% 91% 91% 9% 8%

All (equal weight) 1 1 1 1 1 178 160 84% 80% 90% 9% 7%

SIG only 1 0 0 0 0 194 178 91% 89% 92% 8% 7%

SIG + all Body est. 1 0 1 1 0 171 156 91% 78% 91% 7% 6%

SIG + Body Ind est. 1 0 1 0 0 155 142 92% 71% 92% 6% 5%

SIG + Body Hourly est. 1 0 0 1 0 186 168 90% 84% 90% 9% 7%

SIG+Travel time 1 1 0 0 0 196 175 90% 87% 89% 10% 9%

SIG + GPS (equal weight) 1 0 0 0 1 197 180 89% 90% 91% 8% 7%

Best Combination:

SIG + GPS
3 2 0 0 2 104 56 76% 67% 54% 58% 27%

All (equal weight) 1 1 1 1 1 87 45 63% 54% 52% 51% 23%

SIG only 1 0 0 0 0 98 55 70% 66% 56% 52% 24%

SIG + all Body est. 1 0 1 1 0 84 46 66% 55% 55% 46% 21%

SIG + Body Ind est. 1 0 1 0 0 71 41 69% 49% 58% 36% 17%

SIG + Body Hourly est. 1 0 0 1 0 95 50 71% 60% 53% 54% 25%

SIG+Travel time 1 1 0 0 0 98 53 71% 64% 54% 54% 25%

SIG + GPS (equal weight) 1 0 0 0 1 92 48 70% 58% 52% 53% 25%

Matching Rate

Multi 

Unit 

Trucks

245 201

Single 

Unit 

Trucks

179 83

All 

Trucks
424 284

Truck 

set
Data description

Fusion weight for available information Number of trucks
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5.8 Discussion 

This study used ATRI GPS trajectories as a supplementary dataset to provide additional 

information on truck movements.  However, several limitations are found in GPS path flow.  For 

one, GPS data collected from a sample of trucks that equipped with GPS devices represent the 

path flow of truck population.  In addition, truck samples collected during shorter temporal span 

could represent the overall travel pattern.  To address this problem, this study implemented a 

sensitivity analysis on GPS data and alternative data sources are investigated.   

5.8.1 Sensitivity analysis on GPS data  

GPS dataset used in this study consists of nine days from each of four months –February, 

May, August, and November – where each month represents different season.  The data include 

five business (weekdays) and two sets of weekends.  Among the path flows that passed at 

downstream site (D), flow proportion from upstream #1 site (U1) and upstream #2 site (U2) were 

presented by months, days and hours in Figure 5.17.  For example, 72 percent and 78 percent of 

total flows were observed from U1-D set on May and August, respectively.  It was shown that 

the path flows vary by season, day of week (DOW), and time of day (TOD), ranging from 64 

percent to 81 percent on the basis of U1-D flows.  Table 5.8 summarizes the path flow ranges.   

  



 

134 
 

Table 5.8 GPS sensitivity analysis cases 

Data description* Probability from U1 Probability from U2 Case description 

Hypothetical lowest** 50% 50% GPS-case1 

Min 64% 36% GPS-case2 

25 percentile 74% 26% GPS-case3 

Median 77% 23% GPS-case4***  

75 percentile 78% 22% GPS-case5 

Max 81% 19% GPS-case6 

Hypothetical highest** 99% 1% GPS-case7 

* Data descriptions are on the basis of U1-D flow 

**The lowest and the highest values are hypothesized for a comparison purpose even though these values do not 

exist in our GPS samples 

*** GPS case-4 is the path flow proportion used for the proposed network-wide tracking model development and 

implementation 

 

The sensitivity analysis was performed with seven path flow ranges.  Five different 

ranges of path flow proportions were extracted from the GPS trajectories.  For a comparison 

purpose, two cases that assume extremely biased path flow to one site are tested (i.e., GPS-case 1 

and 7).  Figure 5.18 illustrates the results of matching accuracies (OSMR1) by vehicle types.  

First, the tracking performances in two stations were varied by vehicle types.  Multi-unit showed 

higher matching accuracy with a higher proportion of D-U1 flow as opposed to the single-units 

which has better performances with higher D-U2 flows.  Since the GPS information does not 

provide path flow by vehicle type, aggregated flows from all trucks were applied to the model.  

However, higher accuracy of single-units when more weights were applied to D-U2 flows 

indicates that higher volumes of single-units may pass at U2 than U1 to reach downstream 

location.  In other words, higher D-U2 flow proportion obtained from the historical GPS 

trajectories would make the tracking algorithm keep more single-units in the network, and which 

results in better performance of tracking for the single-unit.  On the other hand, more multi-units 
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were remained as matches in the network when higher weight was applied to U1-D, and this 

improves multi-units’ matching accuracy.   

 

Figure 5.17 Proportion of GPS tracks by paths 
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However, variances in the GPS path flow rarely affected tracking performances.  Only 

the extremely low or high path flow cases change matching accuracies up to approximately 10 

percent. 

 

Figure 5.18 Results of GPS sensitivity analysis 
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5.8.2 Alternative data sources for truck flow information 

Nonetheless, GPS data may possess more significant limitations due to the following 

reasons.  First, sampled population may not represent the total population since the GPS 

trajectories are long-haul truck oriented.  This problem raised another concern on single-units 

samples since the most of single-unit trucks serve local area.  Second, temporal bias might be 

higher depending on the data aggregation interval.  Even though the sensitivity analysis carried 

out in this chapter showed that the tracking performances were little influenced by GPS path 

flow variations, concerns still remain as the data quality would be significantly varying by 

location.  For example, agricultural areas that observe high variances in flow by season, spatial 

and temporal variations in GPS data might be much higher than the proposed locations.   

Hence, this study considers the use of alternative data source to obtain path flow.  

Considering that the aggregated volumes were extracted from GPS trajectories for each path, and 

further, the variations in this flow proportion little affect the matching accuracy, this study 

recommends a total detected volume from each upstream location as a proxy path flow.  Even 

though the point volume does not represent the path flow, most of detected volume at upstream 

would pass downstream location in a short distance tracking, which makes this recommendation 

reasonable.  In a long distance tracking, point volumes at multiple ILDs can be used to spatially 

interpolate and estimate path flow proxy between distant detection sites.  In our study area, the 

proportions of the total detected volume at U1 and U2 are actually matched to the case 4 in the 

GPS sensitivity case, which is used for the model development and implementation.  Since the 

path flow proxy from point volumes replaces the GPS flow estimates, the model proves its 

capability as a stand-alone tracking framework only using existing detection systems for path 

flow estimation in our study.  
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5.8.3 Model comparisons 

 One of the significant improvements in modeling between the network-wide tracking and 

the corridor level tracking is that the signature clustering is performed before the vehicle 

matching process.  As a consequence, the tracking accuracies from the network-wide tracking 

are expected to be improved than the corridor level tracking.  However, this better performance 

may not be the reason of clustering since the applied data set and tracking location is different 

for corridor and network-wide tracking.  Hence, this section uses the same network-wide data set 

to compare tracking performances for two models, one with signature clustering and another 

without signature clustering, for parametric density estimation and feature selection and 

weighting steps.   

Figure 5.19 presents the matching results of OSMR1 and OSMR2 by vehicle types.  

Overall, the tracking model with the signature clustering outperforms for all vehicle types in both 

measures.  The performance improvements are more significant for single-units than multi-units 

as 13 percent and 9 percent higher matching accuracies were observed for single-units’ OSMR1 

and OSMR2, respectively.  Due to their shorter length and simple metallic compositions, 

signatures are less distinguishable among single units.  However, important signature features 

could be more distinguishable after the clustering is performed.  We also found that the tracking 

performances were varied by dataset and detection locations.  Multi-unit tracking accuracies 

were much higher even without the clustering in the network-wide tracking, compared to the 

corridor level tracking.  This could be because the distance of the network-wide tracking is 

shorter than that of corridor level, which results in less variation in travel time especially for 

multi-unit trucks.  Therefore, fewer matching candidates were dropped out in the search space 
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reduction step, which keeps more matched vehicles for the vehicle matching model in the 

network-wide tracking framework.     

 

Figure 5.19 Signature clustering model comparison results 

5.9 Application 

In this section, two applications of the network-wide tracking are introduced.  First travel 

time is estimated from tracked trucks.  Second, truck monitoring results implemented in a larger 

network with an integration of truck body classification model are introduced.   

5.9.1 Travel time estimation 

Figure 5.20 shows the actual and estimated travel time from the tracking results where 

each time interval represents 1 minute in the figures.  Overall pattern of travel time is depicted by 

tracked vehicles and MAPE shows error rate at each time interval.  The minimum, median, and 

maximum APE is 0.01, 11.61, and 31.44 percent, respectively.  It should be noted that the travel 

time estimation results can be differently reported with different aggregation time interval or data 
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filtering process.  In this study, a portion of tracked vehicles with higher matching probability are 

used to estimate travel time, as discussed in Chapter 4.7.2.   

 

Figure 5.20 Actual and estimated travel time from network-wide tracking 

5.9.2 Truck monitoring with detailed body classification 

Since the SWBM tracks vehicles among multiple detection locations, trucks can be 

monitored with their route choice over a large network.  This case study chose six ILD locations 

located on I-210, I-10 and SR-60 in Southern California as shown in Figure 5.21.  These 

corridors are major routes connecting San Bernardino county and Los Angeles county.  Since 

these three highways run parallel and serve as alternative routes for each other, truck tracking 
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can give us valuable insights on truck route choice by their industry/service types if truck 

vocation information can be integrated to the tracking model.  Signature data and body 

configuration model estimates are collected on August 3
rd

, 2016 for 24 hours from UCI-TAMS.  

This application only considers heavy trucks in tracking process.  The tracking model was 

implemented with total of 10,723 multi-unit trucks at the six detector sites.  Table 5.9 

demonstrates the total volume including single-units and passenger cars detected at monitoring 

sites.  

 

Figure 5.21 Site map for network-wide truck monitoring 
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Table 5.9 Traffic monitoring site description 

Site Location Site Description 
Vehicle 

collected 

Multi-unit 

proportion 
Collection Date 

Azusa (I-210) U1 (Upstream Site #1) 46,747 19% 

Aug 3rd, 2016 

00:00AM – 

23:59PM 

West Covina (I-10) U2 (Upstream Site #2) 33,086 12% 

La Puente (SR-60) U3 (Upstream Site #3) 48,714 23% 

Claremont (I-210) D1 (Downstream Site #1) 29,696 14% 

Montclair (I-10) D2 (Downstream Site #2) 54,342 17% 

Chino (SR-60) D3 (Downstream Site #3) 53,970 16% 

Figure 5.22 shows the body configurations of multi-unit trucks at each detection location.  

There are seven representative body configurations including enclosed van, port containers (40ft 

container), domestic container (53ft container), dump, and platform types.  The nearly located 

Los Angeles and Long Beach port complex is the busiest in the U.S., moving $180 billion in 

cargo between U.S. and Asian countries (White, 2012). Consequently, there are a substantial 

volume of trucks transporting imported and exported goods in intermodal containers from the 

Ports to adjacent cities where freight transfer facilities and distributions centers are located (Tok 

et al., 2016).  In particular, 40ft intermodal containers, referred to as ‘port trucks’, are seen in 

heavy numbers along the corridors that serve the ports and inland cities.  Commodities carried 

from the port in 40ft intermodal containers are commonly re-packaged into to 53ft containers at 

inland distribution centers or at near-dock rail yards before being shipped domestically to their 

final destination (Composition of the Global Fleet of Containers, 2008).  Enclosed van is the 

most common body type for all stations, composed approximately 45 percent to 60 percent of 

total multi-unit trucks.  The second common vehicles are either port container or enclosed van 

with a refrigeration unit.  Site U2, U3, and D3 show the port container as the second common 
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type whereas site U1, D1 and D2 show the refrigerated enclosed van as the second common type.  

Notably, U3 and D3 show more domestic containers than other sites.   

 

Figure 5.22 Body type at point detection point 

Figure 5.23 compares the detected and matched volume for each monitoring site.  Higher 

volume of trucks are observed at particular sites (U1, U3, D2, and D3), which can be explained 

by their close proximity to truck-related facilities such as warehouses, and intermodal rail 

facilities.  Among the upstream sites, U3 shows the most volumes (11,183) while U2 has the 

least volumes (3,886).  Among the downstream locations, D2 shows the most volumes of 9,394 

and the least volume of 4,097 at D1.  Interestingly, although U2 and D2 are located on the same 

corridor, D2 has almost 3 times of truck volumes than U2.  Similarly, U1 shows 8,667 trucks; 

however, truck volume at D1 dropped to 4,097 even though the U1 and D1 are located along the 
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same corridor.  Matched volumes are also illustrated in Figure 5.14.  For example, matched 

volume for U1 and U2 is 1,086 and 632, respectively.  The matched vehicle proportions at U1, 

U2, and U3 are 13%, 16%, and 13% of their total volumes, respectively. At downstream sites of 

D1, D2, and D3, matched vehicle proportions are 15%, 15%, and 13% of their total volumes.  

All the stations show comparable results for the matched volume proportions.  

 

Figure 5.23 Detected and matched volume at monitoring sites 

Figure 5.24 presents route flows by upstream location.  For example, Figure 5.15 (a) 

shows the truck flow from U1 to downstream locations of D1, D2, and D3.  Trucks passed at U1 

more chose D3 than D2 or D1.  Although U1 and D1 are located on the same highway, the least 

proportion of trucks was passed through both locations.  Figure 5.15 (b) demonstrates truck 

flows between U2 and downstream locations.  Notably, vehicle flow from U2 to D1 is 

significantly smaller than other downstream locations.   Figure 5.15 (c) shows the truck route 
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choice for trucks detected at U3.  Among 1,419 trucks that passed at U3, half of the trucks 

passed at D2.  Overall, the route that is mostly used for trucks from U1 (I-210) is D3 (CA-60), 

from U3 (CA-60) and U2 (I-10) is D2 (I-10).   

 

Figure 5.24 Truck flow between upstream and downstream sites 

Figure 5.25 compares body configurations by routes. A total of 9 combinations of 

upstream-downstream sites are presented with six body configurations.  As shown in Figure 5.24, 

the most common body type is enclosed van followed by either 40ft container or refrigerated 

enclosed van.   Specifically, a large amount of container trucks were travelled to D3 (SR-60).  

This could be because D3 is closely located to two transcontinental rail lines and two 

international airports.  These special geographic and land use zoning properties attract a great 

number port containers and domestic container movements.   
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Figure 5.25 Truck body configurations by route 

5.10 Conclusion 

By extending a corridor level tracking model, a network wide tracking model, was 

developed in this chapter. Since the network-wide tracking approach considers multiple detector 

locations across a region, it facilitates to understand spatial and temporal truck flow pattern over 

a large network.  The Bayesian approach (SWBM) considers multiple data sources in the 

tracking process.  The SWBM updates matching prior probability utilizing multiple data sources 
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to improve matching accuracy.  For example, GPS trajectories from ATRI were considered since 

it captures spatial relationships among detection locations.  In addition, individual trucks’ body 

classification estimates are used as additional supplementary data sources since direct 

comparisons in body types between matched vehicles are expected to affectively filter out 

potential mismatched and missing vehicles.  Since truck route choice can be closely related to 

their service or affiliations types, hourly volume estimations on body configuration at upstream 

locations were estimated and used to choose potential upstream locations.  

The developed model was tested along approximately 5.5 mile segments on I5 and CA-

78 in San Diego, CA.  Two upstream and one downstream location were selected where a total 

of 424 trucks were collected at downstream location.  Sixty seven percent of the total trucks were 

common trucks.  To find the best fusion weight, matching accuracies with different combinations 

of data and fusion weight for signature, body type estimation, travel time, and GPS were 

compared.  As a result, 90 and 67 percent of correct matching rates are shown for multi-unit and 

single-unit trucks at the best data fusion weight combination.  Due to less distinct signature 

features from less variety of signature shapes, lower performance was observed from the single-

units.  However, multi-unit units show 91 and 90 percent of correct matching rates for the 

common and total trucks, respectively.  This study further performed sensitivity analysis for GPS 

data considering various limitations in GPS data including sampling bias and temporal variation.  

In addition, alternative path flow measures are considered to replace the GPS path flow and total 

detected volume was recommended as a path flow proxy in our study.   

Two different applications of travel time estimation and truck monitoring with detailed 

body configuration information were implemented.  Travel time estimation was performed with 

direct comparison of time-stamp collected at upstream and downstream locations from the 
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matched vehicles.  Truck monitoring was implemented over a more complex network with six 

detector locations at port adjacent cities in southern California.   Although six sites are closely 

located, distinct travel pattern was monitored by truck types, which shows the ability of tracking 

model to analyze temporal and seasonal variations of truck activities by affiliated industry with 

an integration of body classification modeling.  
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6. Sensor Location Problem 

Truck activity data are of importance for transportation planning and investment analysis, 

traffic management, environmental and safety analyses, and operation and maintenance of 

infrastructure.  As introduced in the earlier chapters, the developed truck tracking algorithms 

based on inductive signatures can be one of the most effective and economic method to obtain 

truck flow data.  To maximize benefits from the tracking model, this chapter proposes a strategic 

plan to identify optimal sensor locations.  

There have been considerable efforts devoted to determining optimal sensor locations to 

measure or estimate accurate traffic flow using sensors.  Along with increased implementation of 

Intelligent Transportation Systems (ITS) technologies, State and regional agencies have utilized 

various types of sensors to obtain truck flows (Srour, 2006).  Recently, vehicle-identification 

sensors have received attention since vehicle routes and ODs can be easily reconstructed with 

these sensors.  Vehicle-identification sensors include automatic vehicle identification (AVI) 

systems, electronic tolling technology, and license plate scanning.  The vehicle-identification 

sensors identify vehicle id and track vehicles between sensor locations. In the AVI system, for 

example, vehicles equipped with transponders communicate with AVI reader stations located in 

transportation networks.   

However, the proposed tracking approach estimates path flow leveraging existing point 

detector sensors without additional vehicle identification detection systems.  Therefore, this 

sensor location strategy can be applied to both sensor systems including point sensors with 

tracking model capability and vehicle identification sensors for truck path flow measurement.   
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In previous studies, identifiability of ODs and routes was the main focus in the sensor 

location problem, which is referred to as the observability problem. Gentili and Mirchandani 

(2005) identified the minimum number of sensors that provide all route observability (i.e., full 

observability) in the network. With a limited budget, their solutions tried to find the locations 

that observed the most ODs or routes. Castillo et al (2010) addressed problems for full route 

observability with the minimum number of sensors considering multiple uses of scanning 

devices. Cerrone (2015) focused on the full observability of routes and showed improved 

solutions with lower computational effort by examining the temporal order of license plate scans 

in the mathematical formulation.   

The main focus of previous sensor location research was general traffic (i.e., passenger 

vehicles). However, the mathematical formulations for general traffic measurement can be easily 

adopted to observe truck flows. This is because the optimal sensor location problem entirely 

depends on the given vehicle flow in the model.  In other words, if truck ODs and route 

information are used instead of general traffic information in a model, optimal sensor locations 

for full truck OD and route observability can be obtained. However, for practical reasons in large 

networks it is usually challenging to implement the full observability of truck ODs. Viti (2014) 

showed that generally 60 to 70 percent of the total links in the network should have sensor 

locations in order to fully observe OD pairs. Considering that trucks tend to travel long distances 

compared to passenger vehicles (Research and Innovative Technology Administration, 2011), a 

much larger transportation network would typically apply in a truck sensor location problem, 

which would require substantial investment in installing sensors in a real network application.  

Therefore, this chapter focusses on development of a decision model to optimally locate 

sensors that capture truck flows.  Truck travel tends to rely on the industry and commodity types 
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they serve (Roorda, 2011). Therefore, truck trip ends would be concentrated in particular 

locations or industrial and commercial areas such as warehouses, depots, and ports. In addition, 

due to their heavy weight and large physical dimensions, trucks prefer, or are only allowed to use, 

specific paths (Castillo et al., 2010, Roorda, 2011). In other words, trucks tend to travel between 

particular ODs using specific routes associated with their vehicle and service types. Hence, 

optimal locations of sensors for measuring truck movement can be strategically determined by 

considering their travel patterns. This study therefore focused on optimizing sensor locations that 

can obtain the maximum flow of truck movements. While observability in the sensor location 

problem identifies the locations that observe more ODs and routes, the maximum flow capturing 

problem prioritizes locations that are more utilized by trucks.  The proposed approach would be 

advantageous under a limited budget because some sensor locations that seek observability may 

not capture a meaningful proportion of truck movements, especially in a large network.   

However, relatively little attention has been given to flow capturing approaches even 

though it would be more desirable in a large network application. Hodgson (1990) initially 

investigated a flow capturing objective for a sensor location problem and focused on installed 

sensors capturing the least redundant information on the same OD while ensuring maximum OD 

flow was observed. Teodorovic et al., (2002) applied a bi-objective solution that maximized the 

total number of AVI readings and maximized the total number of ODs. Based on the work of 

Teodorovic et al (2002), Chen et al (2010a, 2010b) applied a multi-objective approach that 

considered maximizing OD observability and the number of AVI readings while minimizing 

installation cost. Mirchandani et al (2009) investigated optimal AVI sensor locations that 

maximized total vehicle miles monitored and minimized the variance of predicted travel times. 
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Minguez et al (2010) presented optimal traffic plate scanning locations that captured maximum 

relative route flow proportion for each OD pair under budget constraints.   

While the previous studies focused on either OD or route flow capturing, this study 

investigated both OD and route flow as simultaneous goals in determining optimal sensor 

locations. In a practical implementation, a primal interest between OD and route flows can be 

adjusted depending on the specific goals to be achieved. In other words, in regional level 

planning, truck flows between particular origins and destinations would be the primal interest. 

However, truck route flow is more essential if a regional project focuses on infrastructure 

operation and pavement maintenance. While some may argue that both OD and route flows are 

important for traffic management and environmental impact studies, locating a sufficient amount 

of sensors that can observe all truck OD and route flows would be infeasible with limited 

resources and budget. Therefore, our approach introduces a multi-objective sensor location 

model that provides alternative solutions for both OD and route flow. A goal programming 

approach was applied to show the trade-offs between ODs and route flows by prioritizing goals, 

which can provide strategic plans for balancing OD and route flow-based solutions.  

This study applied a proposed framework for truck corridors with actual truck flow data 

obtained from truck GPS trajectories, unlike previous studies that demonstrated applications of 

developed models to estimated OD and route flow data obtained from a traffic assignment model. 

This approach is able to present a more realistic truck travel pattern in a network. Again, it 

should be noted that the formulation developed in this study can be applied to any type of vehicle 

id sensors including AVI, license plate recognition, and point sensors of ILDs, for integration 

with vehicle tracking models.  
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6.1 Formulation 

In this section, two single objective problems that identify sensor locations for maximum 

OD flow capturing and route flow capturing are initially solved. Based on the solutions from the 

single objective problems, a multi-objective problem was formulated to capture both OD and 

route flow using a goal programming approach. 

6.1.1 Key link identification 

Prior to solving the single objective problems, subsamples of links that predict exact 

traffic flow in the network, referred to as key links, were initially identified. To illustrate the 

concept of key links, a simple network composed with four ODs and four routes with seven links 

was considered as shown in Figure 6.1. 

 

 

Figure 6.1 An elementary example network for key link identification. 
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In this network, if volume of link 1 (l1) and link 3 (l3) are known, the volume of link 2 

(l2) can be estimated by their linear relationship. In this regard, volumes of all the links in a 

network are not required to achieve full OD and route observability since volumes of some links 

can be identified using linear relationships with other links. The previous study by Castillo et al 

(2008) introduced a binary programming problem that solved the optimal subset of links for 

distinguishing all routes in the network as follows.  

 

minimize       Lroute = ∑ 𝑥𝑗𝑗                                       (1) 

subject to    xj ∙ 𝑤𝑟𝑗 
𝑟𝑜𝑢𝑡𝑒 ≥ 1                  (2)  

   xj ∙ 𝜉𝑟𝑗
𝑟𝑜𝑢𝑡𝑒 ≥ 1                   (3) 

where 𝑤𝑟𝑗 
𝑟𝑜𝑢𝑡𝑒 = 1 if link j is contained in route r but not in r′ (r ≠  r′, r and r′ ∈ R , R indicates 

all routes considered in the network),  𝜉𝑟𝑗
𝑟𝑜𝑢𝑡𝑒 indicates a route/link incidence matrix, 𝜉𝑟𝑗 = 1 if 

route r contains link j 

 

The model identifies a minimum subset of links that provide full observability of routes. 

Constraint 2 guarantees that selected links are able to distinguish route r from all other routes r′ 

considered in the network.  Constraint 3 ensures that all routes contain at least one selected link.    
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Similar to this formulation, key links for full OD observability can be identified as follows. 

minimize       LOD = ∑ 𝑥𝑗𝑗                                               (4) 

subject to    xj ∙ 𝑤𝑣𝑗 
𝑂𝐷 ≥ 1                  (5)  

   xj ∙ 𝜉𝑣𝑗
𝑂𝐷 ≥ 1                   (6) 

where 𝑤𝑣𝑗 
𝑂𝐷 = 1  if link j  is contained in OD 𝑣  but not in OD v′  ( v ≠  v′, r and v′ ∈ V , 𝑉 

indicates all OD pairs considered in the network),  𝜉𝑣𝑗 represents an OD/link incidence matrix, 

𝜉𝑣𝑗 = 1 if OD 𝑣 contains link j 

 

6.1.2 Single objective problem 

Two single objectives problems, which correspond to maximum flow capturing for ODs 

and routes, are formulated in this section.  With budgetary limitations, sensors cannot be located 

at all the key links identified from the model (1) – (6) in a large network.  Therefore, in the first 

model, sensor locations that capture ODs with large flows were prioritized to be chosen. An OD 

pair is captured only if sensors are located at the most upstream and the most downstream links 

of the corresponding OD. OD flows are assumed to be known from an existing OD matrix.  
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Model 1. OD flow capturing: 

maximize    ∑ 𝑡𝑣 ∙ 𝑦𝑣𝑣                              (7) 

subject to      yv ≥ ∑ 𝛿𝑣𝑗𝑗 ∙ 𝑥𝑗 − 1      ∀v, j ∈ LOD            (8) 

yv −  𝛿𝑣𝑗 ∙ 𝑥𝑗 ≤ 0      ∀v,   j ∈ LOD            (9) 

∑ 𝑥𝑗 ≤ 𝑁𝑗        j ∈ LOD             (10) 

𝑥𝑗 , yv 𝑏𝑖𝑛𝑎𝑟𝑦 (0 𝑜𝑟 1)               (11) 

where 𝑦𝑣 is a binary variable representing an OD capturing such that 𝑦𝑣 = 1 if OD v is captured 

by located sensors,  𝑡𝑣 represents the OD flow for OD pair v, 𝛿𝑣𝑗 indicates the link/OD incidence 

matrix where 𝛿𝑣𝑗 = 1 if OD v contains the most upstream or the most downstream link j, 𝑁 

indicates the maximum number of sensors considering a budget constraint, and LOD represents 

the key link for full OD observability 

 

The objective of this problem is to capture the maximum total volume of OD flows with 

located sensors. Constraint 8 guarantees that if at least two links are selected for sensor locations, 

a unique OD 𝑣 should be captured by forcing  yv to be 1.  If only one link is selected from 

constraint 8 to capture an OD, constraint 9 rejects to choose the link as the optimal sensor 

location.  Therefore, both constraint 8 and 9 ensure that the model utilizes sensors most 

effectively by locating two sensors at the most upstream and downstream links to capture a 

unique OD.  Constraint 10 indicates budget limitations.  Constraint 11 requires binary variables 
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for OD and link selection.  All of the selected links should be the key links identified from the 

previous model (j ∈ LOD).  

For comparison purposes, an observability model that seeks maximum OD observability 

is also presented. The maximum observability can be obtained with the objective function of 

 maximizing  ∑ 𝑦𝑣𝑣   with the constraint set (8) – (11), referred to as Model 2 (OD observability 

model).  

 

Model 2. OD observability model: 

maximize    ∑ 𝑦𝑣𝑣                                         (12) 

subject to      yv ≥ ∑ 𝛿𝑣𝑗𝑗 ∙ 𝑥𝑗 − 1      ∀v, j ∈ LOD            (13) 

yv −  𝛿𝑣𝑗 ∙ 𝑥𝑗 ≤ 0      ∀v,   j ∈ LOD            (14) 

∑ 𝑥𝑗 ≤ 𝑁𝑗        j ∈ LOD             (15) 

𝑥𝑗 , yv 𝑏𝑖𝑛𝑎𝑟𝑦 (0 𝑜𝑟 1)               (16) 

 

Another single objective model for maximum route flow capturing was also investigated. 

Similar to the OD flow capturing model, sensor locations that capture routes utilized by higher 

volumes of trucks are prioritized to be selected in this model. 
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Model 3. Route flow capturing: 

maximize    ∑ 𝑝𝑟 ∙ 𝑧𝑟𝑟                             (17) 

subject to      zr ≥ ∑ 𝜉𝑟𝑗𝑗 ∙ 𝑥𝑗 − (nr − 1)      ∀r ,  j ∈ Lroute        (18) 

zr −  𝜉𝑟𝑗 ∙ 𝑥𝑗 ≤ 0      ∀r, j ∈  Lroute          (19) 

∑ 𝑥𝑗 ≤ 𝑁𝑗           j ∈ Lroute           (20) 

𝑥𝑗 , ya 𝑏𝑖𝑛𝑎𝑟𝑦 (0 𝑜𝑟 1)             (21) 

where 𝑧𝑟 is a binary variable representing a route flow such that 𝑧𝑟 = 1 if route r is captured 

from located sensors,  𝑝𝑟  is out-of-date route flow,  𝜉𝑟𝑗 indicates route/link incidence matrix 

where 𝜉𝑟𝑗 = 1  if route r contains link 𝑗, nr is a number of key links in route r, Lroute represents 

the key link for full route observability 

 

An objective function 17 identifies sensor locations that observe higher route flow. 

Constraint 18 and 19 together ensure that routes are distinguished with the minimum number of 

links.  If links cannot identify any unique route, they are not chosen as the optimal locations. In 

other words, if a link j cannot capture unique route r, zr is forced to be a zero in constraint 19.  

On the contrary, if all key links in route r are selected, zr forced to be one in constraint 18.   
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For comparison purposes, the route observability problem is presented with the objective 

function of maximizing ∑ 𝑧𝑟𝑟  with the constraint set (18) – (21), referred to as Model 4 (Route 

observability model). 

 

Model 4. Route observability model: 

maximize    maximizing ∑ 𝑧𝑟𝑟                            (22) 

subject to      zr ≥ ∑ 𝜉𝑟𝑗𝑗 ∙ 𝑥𝑗 − (nr − 1)      ∀r ,  j ∈ Lroute        (23) 

zr −  𝜉𝑟𝑗 ∙ 𝑥𝑗 ≤ 0      ∀r, j ∈  Lroute          (24) 

∑ 𝑥𝑗 ≤ 𝑁𝑗           j ∈ Lroute           (25) 

𝑥𝑗 , ya 𝑏𝑖𝑛𝑎𝑟𝑦 (0 𝑜𝑟 1)     

6.1.3 Goal programming approach 

Through sections 6.1.1 and 6.1.2, key links and optimal sensor locations that capture 

maximum OD and route flow, were formulated by single objective models. In this section, both 

OD and route flows are considered together as multi-objectives to be captured by located sensors.   

Instead of producing an optimal solution as shown in the single objective problem, multi-

objective problems introduce Pareto-optimality that shows non-dominant solutions (Hwang and 

Masud, 2012).  In Pareto-optimality, solutions cannot be improved without worsening other 

solutions. Therefore in a multi-objective problem, there can be a solution that reaches optimality 

for one objective, however the solution may not be the optimal in another objective.  
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Consequently, Pareto-optimality finds optimality in the most efficient manner where no other 

alternatives produce better solutions (Hwang and Masud, 2012). A goal programming approach 

is one of the widely used techniques to solve multi-objective problems (Charnes and Cooper 

1977; Tamiz et al., 1998). Goals are implemented to be met as closely as possible.  This goal 

programming model introduces a deviation term in the objective function and the deviation 

should be minimized to reach the goals. Often weights are considered in the objective function so 

that more important goals can be met more closely (Charnes and Cooper 1977). The 

mathematical formulations of the goal programming (Model 5) for maximizing OD and route 

flow capturing are introduced as follows.  

 

Model 5: multi-objective model for maximum OD and route flow capturing 

minimize  𝑤1 ∙ 𝑑1
+ +  𝑤2 ∙ 𝑑2

+              (26) 

subject to  ∑ 𝑡𝑣𝑦𝑣 +  𝑑1
+ −  𝑑1

− = 𝑔1𝑣           (27) 

                 ∑ 𝑝𝑟 ∙ 𝑧𝑟 +  𝑑2
+ −  𝑑2

− = 𝑔2𝑟          (28) 

y𝑣 ≥ ∑ 𝛿𝑣𝑗𝑗 ∙ 𝑥𝑗 − 1      ∀v, j ∈ LOD         (29) 

yv −  𝛿𝑣𝑗 ∙ 𝑥𝑗 ≤ 0      ∀v,   j ∈ LOD        (30) 

 zr ≥ ∑ 𝜉𝑟𝑗𝑗 ∙ 𝑥𝑗 − (nj
r − 1)      ∀r ,  j ∈ Lroute        (31) 

zr −  𝜉𝑟𝑗 ∙ 𝑥𝑗 ≤ 0      ∀ j ∈ Lroute           (32) 

∑ 𝑥𝑗 ≤ 𝑁𝑗           j ∈ [LOD ∪ Lroute]        (33) 
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𝑑1
+, 𝑑1

−, 𝑑2
+, 𝑑2

−, 𝑤1, 𝑤2 ≥ 0          (34) 

𝑥𝑗 ,  yv 𝑏𝑖𝑛𝑎𝑟𝑦 (0 𝑜𝑟 1)            (35) 

where 𝑑1
+, 𝑑1

−, 𝑑2
+, 𝑑2

− are the deviations from the goals, 𝑤1 and 𝑤2 are the weights for goal 1 

(OD flow capturing) and goal 2 (route flow capturing), respectively  

 

The objective function of equation 26 solves the minimum deviation from the goals. 

Constraints 27 and 28 demonstrate the goal for two objectives which correspond to OD and route 

flow capturing.  The goals g1and g2 can be obtained from the optimal solution of the single 

objective model 1 and model 3, respectively. Since the objective is to find the maximum OD 

flow, 𝑑1
− in constraint 27 should be determined as zero. Similarly, 𝑑2

− becomes zero in constraint 

29.  Therefore only 𝑑1
+  and 𝑑2

+  remain as deviation terms to be minimized in the objective 

function 26. Constraints 29 to 33 and 35 follow the same formulations of the previous single 

objective problems, and constraint 34 indicates the non-negativity to the deviation and weight 

terms.  

6.2 Sample network example – Nyuyen-Dupuis network 

The proposed single and multi-objective models were implemented with a sample 

network example. A widely used network example, Nguyen-Dupuis network, was utilized in this 

study.  The network is composed of a total of 13 nodes and 38 links as shown in Figure 6.2. 

Corresponding OD and route information were obtained from the study by Castillo (17) as 

presented in Table 6.1.  
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Figure 6.2 Nguyen-Dupuis network 

 

Table 6.1 OD Pairs and Routes in the Nguyen-Dupuis Example  

OD & Route Links OD flow Route flow 

OD pair 1 ( 1-2 )    

route 1 1-11-14-18-20 

210 

0.1203 

route 2 2-35-14-18-20 0.0579 

route 3 2-36-20 0.8218 

OD pair 2 (1-3) 

route 4 

route 5 

route 6 

route 7 

route 8 

route 9 

 

1-11-14-19-31 

1-11-15-29-31 

1-12-25-29-31 

1-12-26-37 

2-35-14-19-31 

2-35-15-29-31 

 

430 

 

 

0.1574 

0.1894 

0.0618 

0.4311 

0.0758 

0.0891 

OD pair 3 (1-8) 

route 10 

route 11 

route 12 

 

1-11-14-18 

2-35-14-18 

2-36 

320 

 

0.1203 

0.0579 

0.8218 

OD pair 4 (2-1) 

route 13 

 

3-21-17-13-9 

 

210 

 

0.1268 

14

3

8

29

33
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6 7 

5 10 11 2 

4 9 13 3 

22
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26
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27 19 32
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route 14 

route 15 

3-21-17-16-34 

3-22-34 

 0.0655 

0.8077 

OD pair 5 (2-4) 

route 16 

route 17 

route 18 

 

3-21-17-13-10 

3-21-19-33-28-23 

4-33-28-23 

320 

 

0.1171 

0.0376 

0.8453 

OD pair 6 (2-12) 

route 19 

route 20 

 

3-21-17-16 

3-22 

50 

 

0.076 

0.925 

OD pair 7 (3-1) 

route 21 

route 22 

route 23 

route 24 

route 25 

route 26 

 

5-32-17-13-9 

5-32-17-16-34 

5-33-27-13-9 

5-33-27-16-34 

5-33-28-24-9 

6-38-24-9 

 

430 

 

 

0.1497 

0.0773 

0.172 

0.0888 

0.0781 

0.434 

OD pair 8 (3-4) 

route 27 

route 28 

 

5-33-28-23 

6-28-23 

110 

 

0.1526 

0.8474 

OD pair 9 (3-12) 

route 29 

route 30 

 

5-32-17-16 

5-33-27-16 

40 

 

0.4653 

0.5374 

OD pair 10 (4-2) 

route 31 

route 32 

route 33 

 

7-11-14-18-20 

8-25-29-30 

8-25-29-32-18-20 

320 

 

0.1225 

0.8416 

0.0359 

OD pair 11 (4-3) 

route 34 

route 35 

 

8-25-29-31 

8-26-37 

110 

 

0.1253 

0.8747 

OD pair 12 (4-8) 

route 36 

route 37 

 

7-11-14-18 

8-25-29-32-18 

210 

 

0.7735 

0.2265 

OD pair 13 (8-1) 

route 38 

route 39 

route 40 

 

21-17-13-9 

21-17-16-34 

22-34 

320 

 

0.1268 

0.0655 

0.8077 

OD pair 14 (8-4) 

route 41 

route 42 

 

22-17-13-10 

21-19-33-28-23 

210 

 

0.7567 

0.2433 

OD pair 15 (8-12) 

route 43 

route 44 

 

21-17-16 

22 

60 

 

0.075 

0.925 

OD pair 16 (12-2) 

route 45 

route 46 

 

35-14-18-20 

36-20 

50 

 

0.0659 

0.9341 

OD pair 17 (12-3) 

route 47 

route 48 

 

35-14-19-31 

35-15-29-31 

40 

 

0.4598 

0.5402 
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OD pair 18 (12-8) 

route 49 

route 50 

 

35-14-18 

36 

60 

 

0.0659 

0.9341 

 

This study used the solver from the optimization software Gurobi (2012) using a Python 

API to solve the proposed models for the network examples.  As shown in Table 6.2, a total of 

18 and 10  key links were identified for the full route and OD observability models (1) - (3) and 

(4) - (6), respectively.  Therefore, only 47 percent (=18/38) and 26 percent (=10/38) of links 

should be monitored with sensors for full route and OD observability in the Nguyen-Dupuis 

network.  The attributes of these key links are illustrated in bold in Figure 6.2. 

 

Table 6.2 Key links in the Nguyen-Dupuis Example 

Model Key link 

Full route observability model Link 1, 2, 3, 5, 8, 9, 11, 13, 18, 20, 21, 22, 28, 29, 31, 33, 34, 36 

Full OD observability model Link 1, 3, 5, 8, 16, 18, 20, 21, 23, 31 

 

The single objective solutions from Model 1 to Model 4 are compared in Figure 6.3. 

Figure 6.3(a) compares solutions for OD flow capturing and number of observed ODs from 

Model 1 (OD flow capturing model) and Model 2 (OD observability model) by increasing 

number of sensors from 1 to 18. Figure 6.3(b) compares solutions for route flow capturing and 

number of observed routes from Model 4 and Model 5. As shown in Figure 6.3(a), the 

observability model and the flow capturing model observed the same number of ODs when the 

same number of sensors was located.  However, significantly higher OD flow was captured when 
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the flow capturing model was applied.  This result indicates that the flow-capturing model 

outperformed the observability model on obtaining the OD information. Similarly, the flow 

capturing model observed generally higher route flows than the observability model.  However, 

the number of captured routes was higher with the route observability objective.  

 

Figure 6.3 Results from the single objective problems for (a) OD and (b) route flow with 

Nguyen-Dupuis network. 
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Table 6.3 shows results of the goal programming approach by different weight 

combinations for the OD and route flow-capturing objectives. The optimal OD and route flows 

from the single objective problem were used as goals in the goal programming model.  Results 

showed that the optimal locations differed according to the weights applied to the two objectives. 

When the weight of OD and route was equally applied (weight [OD:Route]=1:1), captured OD 

and route flow was 62% and 20%, respectively, with seven located sensors. However, if the OD 

flow capturing objective was prioritized over the route flow capturing objective (weight 

[OD:Route]=2:1), captured OD flow was increased to 71% while captured route flow was 

reduced to 9%. On the contrary, when the objective of route flow capturing was prioritized over 

the OD flow capturing objective (weight [OD:Route]=1:2), captured route flow was increased to 

32% while captured OD flow was decreased to 50%. From these results, it can be concluded that 

similar proportions of ODs and route flow can be captured when more weight is applied to the 

route flow objectives because much higher OD flows than route flow can be measured with a 

small number of located sensors.  
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Table 6.3 Goal Programming Model Results with Different Weight Factors. 

Weight factor[OD : Route] = 1:1 

# sensors Selected links # OD (%) OD flow (%) # Route (%) Route flow (%) 

3 1, 5, 31 3 (17%) 900 (26%) 3 (6%) 222 (6%) 

7 1, 5, 8, 18, 20, 29, 31 10 (56%) 2180 (62%) 12 (24%) 716 (20%) 

10 1, 3, 5, 8, 18, 20, 21, 23, 29, 31 15 (83%) 3350 (96%) 14 (28%) 724 (21%) 

14 
1, 2, 3, 5, 8, 11, 13, 18, 20, 21, 23, 

29, 31, 36 
15 (83%) 3350 (96%) 30 (60%) 1975 (56%) 

16 
1, 2, 3, 5, 8, 11, 13, 18, 20, 21, 22, 

23, 29, 31, 34, 36 
15 (83%) 3350 (96%) 37 (74%) 2573 (74%) 

Weight factor [OD : Route]  = 2:1 

# sensors Selected links # OD (%) OD flow (%) # Route (%) Route flow (%) 

3 5, 21, 23 3 (17%) 1070 (31%) 3 (6%) 23 (1%) 

7 1, 5, 8, 18, 20, 21, 31 10 (56%) 2500 (71%) 12 (24%) 330 (9%) 

10 1, 3, 5, 8, 18, 20, 21, 23, 29, 31 15 (83%) 3350 (96%) 14 (28%) 724 (21%) 

14 
1, 2, 3, 5, 8, 11, 16, 18, 20, 21, 23, 29, 31, 

36 
15 (83%) 3500 (100%) 30 (60%) 1779 (51%) 

16 
1, 2, 3, 5, 8, 11, 16, 18, 20, 21, 22, 23, 29, 

31, 34, 36 
15 (83%) 3500 (100%) 37 (74%) 2377 (68%) 

Weight factor [OD : Route] = 1:2 

# sensors Selected links # OD (%) OD flow (%) # Route (%) Route flow (%) 

3 1, 5, 31 3 (17%) 900 (26%) 3 (6%) 222 (6%) 

7 1, 8, 11, 18, 20, 29, 31 9 (50%) 1750 (50%) 17 (34%) 1112 (32%) 

10 1, 2, 5, 8, 11, 18, 20, 29, 31, 36 10 (56%) 2180 (62%) 26 (52%) 1771 (51%) 

14 
1, 2, 3, 5, 8, 11, 18, 20, 22, 23, 29, 31, 34, 

36 
13 (72%) 2820 (81%) 31 (62%) 2334 (67%) 

16 
1, 2, 3, 5, 8, 11, 13, 18, 20, 21, 22, 23, 29, 

31, 34, 36 
15 (83%) 3350 (96%) 37 (74%) 2573 (74%) 

 

A sensitivity analysis on weight factors was performed is illustrated in Figure 6.4. When 

equal or more weight was given to the OD flow capturing than route flow capturing objectives, 

over 90% of OD flows were captured with only nine sensors while only 50% of route flows were 

measured. A higher weight on OD flow, such as [OD:route] of [1:1], [2:1], and [3:1], did not 

demonstrate noticeable differences in OD flow capturing outcomes. However route flow 
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capturing showed more sensitive results to the applied weights. These findings provide insight on 

the optimal weights for multiple goals under a limited budget. For example, if the goal is 

observing at least 50% of ODs and route flows under a budget of maximum of 10 sensors, the 

weight on the route flow capturing objective should be twice that of the OD flow capturing 

objective. However, if the objective is to observe at least 70% of ODs and route flows with a 

budget of maximum of 15 sensors, much higher weight on route flow capturing would be 

recommended (e.g., [OD:route] =[1:3]).  

    

Figure 6.4 Weight factor sensitivity analysis for (a) OD flow capturing and (b) route flow 

capturing 
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6.3 Real network example – Los Angeles network 

The proposed models were implemented in a real network example in Los Angeles, 

California. While previous studies typically used OD and route flows obtained from a traffic 

assignment model, this study applied actual truck flows sampled from GPS tracks. The GPS data 

were obtained from the American Transportation Research Institute (ATRI) and collected from 

four weeks in each quarter in 2010. Among a total of 144 OD pairs, OD pairs that contained at 

least two sensors between OD locations and had at least two routes were extracted for this study, 

which included 15,323 GPS trajectories as illustrated in Figure 6.5. 

 

 

Figure 6.5 GPS trajectory in Los Angeles area. 
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The study area included 144 links consisting of 65 OD pairs and 144 routes. From the 

previous formulations (1)-(6), key links were initially determined. A total of 74 and 49 key links, 

corresponding to 51% and 34% of network links, were identified as the key links for full route 

and OD observability, respectively. Results from the single objective models are compared in 

Figure 6.6. Both OD and route flow capturing were significantly higher with the flow-capturing 

model than with the observability model, while the captured number of ODs and routes was 

higher in the observability models.  For example, if 20 sensors were located, only 40 percent of 

route flow could be captured in the observability model (model 4) while 75 percent of flow could 

be captured in the flow capturing model (model 3).  However, differences in the number of 

observed routes between the observability and flow capturing models were at most 10 percent for 

both OD and route observability.  

Figure 6.7 presents flow capturing results from the goal programming approach for 

different weight factors.  Overall, more balanced solutions for OD and route flow capturing were 

achieved when the same weights were applied to the two objectives when more than 30 sensors 

were located in the network. However, if fewer than 30 sensors were present, flow capturing 

results significantly depended on the weights applied to the different objectives. This is because, 

as shown in the Figure 6.6, both OD and route flows captured by additional sensors were 

significantly increased by including up to 30 sensors. Therefore, flow capturing results were 

highly sensitive to the changes in applied weights with less than 30 located sensors.  
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Figure 6.6 Results from the single objective problems for (a) OD and (b) route flow with 

Los Angeles network.  

 

Interestingly, compared to the Nguyen-Dupuis network, the Los Angeles example 

showed different sensitivity for the weight factors on flow capturing results. While the Nguyen-

Dupuis network showed that more weights on the route flow objective yielded balanced OD and 

route flow capturing results, the Los Angeles example produced similar OD and route flow 

capturing when the same weights were applied to two objectives. Considering that the Nguyen-
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Dupuis network captured general traffic patterns from the traffic assignment models, and the Los 

Angeles network is based on truck travel trajectories, this result may be caused by different 

travel patterns of passenger vehicles and trucks. In other words, distinct truck travel patterns such 

as route-specific trips for particular ODs may yield such results since more weight on ODs 

produced excessively biased results in OD flow-capturing, and higher weights on routes 

provided inferior results than when equal weights were applied in the Los Angeles network.  

 

Figure 6.7 Flow capturing results from the goal programming approach.  

 

6.4 Conclusion 

This chapter investigated optimal sensor locations for monitoring truck movements.  In 

this paper, practical implications were given highest consideration on identifying optimal sensor 

locations.  First, this study focused on maximum flow capturing as an optimization problem 

while previous studies focused on identifying observability of ODs and routes.  Since trucks 
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large-sized truck network.  However, considering trucks’ distinct travel patterns that include 

frequent trips to specific ODs with particular routes, sensor locations that observe more flow 

would provide a better understanding of truck flows under budgetary limitations than the sensor 

locations that observe more ODs and routes.  Second, the proposed model suggested a multi-

objective approach to achieve both OD and flow capturing in a sensor location model. Our 

approach considers maximum OD and path flow capturing as goals to be achieved; however, 

these goals were differently prioritized in the model depending on a prior objective.  Several 

alternative solutions with different weight factors that prioritize those objectives were compared, 

and trade-off relationships between OD and route flow capturing were identified under a limited 

budget.  Application of the proposed model to a sample Nguyen-Dupuis network showed that 

significantly larger OD and route flows were captured by the proposed flow-capturing model 

than the conventional maximum observability approach.  The results from the Los Angeles 

network with actual truck flow data showed that more balanced solutions for OD and route flow 

can be obtained by equally weighting objectives of OD and route flow capturing when sufficient 

numbers of sensors are located in the network. However, the weight factor should be adjusted by 

considering budget and the objective OD and route flow-capturing.  

These findings indicated that a sensor location model should be determined by analyzing 

the various objectives. The proposed goal programming approach allows decision makers to 

investigate alternative sensor locations by considering trade-offs between OD and path flow 

capturing and to determine the appropriate priority of goals by considering systematic truck flow 

coverage and the budget. Therefore, the empirical results of this study provide insights to 

practitioners on sensor location problems as a decision support tool for strategic planning.  
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7. Concluding Remarks 

In California, the recently published sustainable freight action plan specified multiple 

goals to improve freight efficiency and competitiveness throughout the state.  Two pilot projects 

in the action plan seek specifically solutions to reduce freight congestions and encourage zero 

emissions in critical truck corridors using advanced technologies.  This dissertation proposes a 

framework for tracking and monitoring truck flow in a highway network utilizing existing point 

detection systems.  Compared to the current data sources, the proposed approach is more 

advantageous to assist aforementioned pilot projects since spatially and temporally varying truck 

flows from total truck population can be continuously tracked and monitored in a large network 

by leveraging existing detection systems.  In addition, the proposed modeling contributes to 

provide not only truck path information but also detailed truck attributes such as axle 

configuration and type with an integration of previously developed truck body and axle 

configuration models.  These are of critical importance in freight modeling, emissions estimation, 

pavement maintenance, and vehicle surveillance.   

7.1 Summary of contribution  

 In this dissertation, truck tracking was implemented at two spatial scopes of corridor and 

network-wide levels.  While the corridor level tracking utilizes the complementary two detection 

systems, ILD and WIM, the network-wide model uses ILD systems with supplementary data 

sources.  For a modelling, Bayesian approach was applied with extensive feature selection and 

weighting techniques.   
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The proposed tracking model composes with two sub-models.  In the first model, every 

truck detected at downstream location (i.e., target) finds their matched vehicle (i.e., candidate) at 

upstream location.  Specifically, matching probabilities of every target and its corresponding 

candidate vehicles were estimated based on their features represented by physical attributes and 

waveform signatures.  The vehicle pair with the highest matching probability is declared as a 

match at the first model.  Since the tracking is implemented over a long distant corridor that 

contains multiple highway interchanges and ramps, not every vehicle detected downstream site 

would not pass the upstream sites.  Therefore, the second filtering model handles those vehicles 

(i.e., missing) that enter or leave the tracking corridor during the tracking process.   

The tracking model includes novel feature selection and weighting methods.  The 

features that had greater discerning ability to identify vehicles were prioritized over the weaker 

ones, resulting in higher matching accuracy for truck population tracking across longer distances.  

Considering that trucks have similar physical attributes or signature shapes by their axle 

configurations and trailer types, this feature selection and weighting techniques help identifying 

vehicles and improving matching accuracy even in a complex road network.  For the network-

wide tracking, signature clustering was performed to group signatures by waveform shapes prior 

to the feature selection.  This approach enhances vehicle matching and filtering through separate 

feature density estimation and weighting by signature clusters since discernible features that are 

more capable of identifying salient differences among vehicles were better captured in clusters.  

In addition, the proposed tracking algorithm features a relaxed temporal search space to 

increase the likelihood of including the true matched vehicle even over long distances.  Several 

data pre-processing methods including signature transformation and WIM auto-calibration steps 
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were performed to minimize the impacts of measurement variations from the detection systems 

employed in the tracking process.  

In the network-wide tracking adopts Bayesian updating approach on the framework of the 

corridor model.  The network-wide tracking is implemented with multiple detection locations, 

therefore different travel time and traffic state between tracking locations could challenge 

tracking performance.  Moreover, substantial amount of vehicles from multiple upstream 

locations should be handled in a matching process.  Hence, additional data sources such as GPS 

vehicle trajectory, travel time, and body classification model estimates were used as 

supplementary data of ILD signatures.  Four scenarios composed with different combinations of 

data sources were compared tracking performances and the best combination and fusion weight 

of data sources was identified. 

 In addition, a separate modeling for vehicle classification was investigated using vehicle 

duration from ILD data for the network-wide tracking.  The tracking model would provide better 

matching accuracies when targets find their matched vehicles in the same vehicle category such 

as single units and multi units.  However, since ILD has no capabilities in distinguishing vehicle 

types, a truck detection model was developed to classify trucks into single-units and multi-units 

and exclude passenger vehicles in the tracking process.  

Both corridor level and network-wide tracking models were able to successfully match 

total population of trucks while maintaining high matching accuracy.  Specifically, the corridor 

level tracking showed 81 percent of correct matching rate even though only 14 percent of trucks 

passed upstream and downstream locations.  A network wide tracking showed 91 percent and 67 
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percent of correct matching rates for multi-unit trucks and single-units trucks, respectively.  The 

best fusion weights differ by tracking level and data sources.  In the corridor tracking, more 

weights on WIM than signature features result in better performance while more weights on 

signature than additional data sources showed higher matching rate in the network-wide tracking.   

Tracked trucks from a corridor and network were used for various applications such as 

travel time estimation, WIM calibration, and truck monitoring with integration of truck body 

configuration model.  These applications show potential use-cases of vehicle tracking outcomes.  

Travel time estimation and WIM calibration results showed overall good performance when 

sampled populations with higher matching probabilities were used rather than applying the 

whole matched population for the applications.  Truck monitoring results provide valuable 

insights on truck route choice in a complex network.  Since truck body configurations are closely 

related to service type and affiliated industry, temporal and spatial distribution of trucks obtained 

by the proposed vehicle tracking and monitoring frameworks give us detailed truck movement 

than what is observable at existing point detections.   

7.2 Future study 

While this dissertation proposes a new and comprehensive framework for truck path flow 

estimation leveraging existing detection systems, there are several improvements to be 

considered in a future work.  In a network-wide tracking, due to sparse WIM deployment, 

signatures would be the main data sources to be utilized.  Therefore, the quality of signatures 

from ILD system along with feature selection and treatment methods would highly affect 

tracking performance.  Therefore, future work could investigate sensitivity in loop configuration 
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and geometry for robust tracking framework on varying ILD systems.  In addition, the proposed 

feature selection from fifty magnitude attributes in one signature could be expanded with 

additional features such as magnitude differences especially for single-unit trucks.  Second, the 

tracking model will be implemented at different locations for spatial transferability test.  The 

tracking algorithm might be affected by complexity of network system and truck travel patterns 

of particular locations as trucks travels are highly related to service industry.  Hence, a more 

complex network system that contains multiple downstream and upstream detection sites can be 

considered with manual data groudtruthing for further model validation.   Third, parametric 

density estimations for travel time could consider varying traffic states between detection 

stations.  Due to the data availability, this work considers stable traffic state.  However, in field 

implementation, unexpected congestion or crash could significantly increase travel time in 

tracking corridors, thus dynamic density estimation could be considered.  For example, as shown 

in truck detection GM model, travel time estimation could be updated in shorter time interval.   

Besides the methodological improvement works, several practical consideration are 

presented as a future study.  The outcomes of proposed individual vehicles tracking are expected 

to assist many government and state agencies through various applications.  For one, primary 

truck routes with detailed truck types could be identified and managed.  In addition, performance 

measures such as truck travel time and average delays along the truck corridor could provide 

valuable inputs for highway monitoring and operations.  Moreover, this dissertation can generate 

high value impacts for Greenhouse Gas (GHG) estimations and in guiding policies towards the 

reduction of GHGs.  Specifically, emissions estimations could be improved through the 

availability of a finer spatial resolution of heavy-heavy duty trucks (HHDT) spatial distribution 

and their route choice.   Further, the dissertation work helps improve and support current freight 
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modeling efforts for regional and statewide agencies.  Statistics relating to truck movement in 

various types of trucks such as freight and non-freight, special purpose trucks (i.e., logging, 

agricultural, and livestock), can be provided as inputs to support freight modeling efforts.   

Therefore, through the tracking framework, agencies in California such as Caltrans, 

CARB, and CEC can gain further insights in understanding truck movements to guide freight 

planning, sustainable goods movement, and infrastructure investment while mitigating its 

negative impacts such as greenhouse gas, traffic congestion, safety concerns, and infrastructure 

wear.  Potential immediate and future benefits are categorized into seven topics and further 

discussed with related previous studies as follows.  

1) Truck activity monitoring: The proposed network truck tracking study is expected to 

provide a better understanding of truck travel characteristics and travel behavior through truck 

route choice information by body configuration.  Temporal and spatial variations on truck travel 

patterns and weight distribution will be investigated by truck routes and by body configuration, 

which would be a great benefit on a decision making for sustainable goods movement.  An 

investigation will also involve the enhancement of truck weight distribution model as one of the 

main applications of the tracking model.  The spatial relationships between WIM and ILD can be 

updated by tracking results.  Weight distributions from WIM can be spatially interpolated to ILD 

sites by the estimate spatial relationships, which provide much finer resolutions of weight 

distributions over a large network.  The weight distributions will be further disaggregated by 

body types or axle configurations to identify key corridors for weight enforcement.   
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2) Freight model validation:  If vehicles can be tracked along the consecutive points with 

high matching accuracy, point-to-point OD between the tracking stations can be measured, 

instead of estimated.  The OD information will be further detailed in truck class or weight 

category based on the truck detection algorithm or WIM records.  In addition, truck weight 

distribution such as loaded and unloaded weight distribution by body configuration helps 

validating the recently developed California Statewide Freight Forecasting Model (CSFFM).  For 

example, state-level truck characteristics such as average payload and loaded weights can be 

updated with the representative samples of weight estimations by proposed study.  In addition, 

flow of short/long haul trucks and empty/fully loaded trucks will be able to assist validation of 

freight forecasting models.  

3) Truck travel performance measure: Oh (2003) suggested new criteria for real-time 

level of service (LOS) using average delay of the tracked vehicles.  Kwon (2010) also utilized 

WIM data to estimate truck travel times using matching results.  As shown in this dissertation, 

truck travel time can be directly obtained by matched vehicles across multiple detector stations.  

Estimated travel time can be further analyzed across temporal scales such as time-of-day, day-of-

week, and seasons, which can assist highway operation, capacity, and level of service.   

4) Sensor calibration: The proposed algorithm directly assists to the WIM examination 

and calibration.  Kwon (2010) showed that weight can be used as automatic mis-calibration 

identifier by comparing vehicle weights between two stations from the same vehicle.  Weight 

comparison gives us a clue of weight bias at one station, and subtracting (or adding) biased 

weight to that station automatically shift weight, which correct for the bias at ‘bad’ station.   

However, tracking should be implemented across multiple WIM sites to use a tracked truck as an 
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investigator for WIM accuracy to find ‘bad’ stations.  The future study expands the tracking 

framework to multiple WIM sites to develop a WIM calibration model that capture and adjust 

errors in WIM measurements.  

5) Optimal sensor location identification: Truck path flow data can assist determining 

sensor location such as advanced inductive loop and WIM.  Considering varying travel patterns 

by truck type and service type, sensor location should be decided with a consideration of prior 

interest of flows to capture.  In this regards, this dissertation showed that different sensor 

location should be selected for route identifiability and flow capturing.  The future study will 

further investigate vehicle tracking in a more complex and longer highway stretches and 

compare various sensor location strategies.  Since the proposed modeling requires an advanced 

inductive signature card replaced by a conventional card to obtain waveform signatures, utilizing 

both conventional bivalent and advanced waveform ILD systems could provide more economical 

strategy for path flow estimation.  Hence, sensor optimal location model utilizing both 

conventional and advanced ILD can be investigated considering a prior path flow measurement. 

6) Emissions estimations: Liu (2011) developed a system to estimate and monitor on-road 

emissions in real time using tracking algorithm.  Liu (2011) aggregated vehicle types for 

emissions modeling and applied multi-layer perceptron neural network for vehicle re-

identification on the aggregated vehicle types.  Since vehicle mix and vehicle activity directly 

affect emission rates, average truck speed and truck class from tracking algorithm will obtain 

more accurate emission rates.  Typically, vehicle registration databases and truck surveys are 

used to supply input data for the emissions models therefore estimated weight distribution at 
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finer spatial resolution along with VMT from the tracking model would facilitate improvements 

in emissions modeling.  

7) Safety: Despite the large impact of trucks on road crashes, studies on truck safety 

impacts have not been well investigated due to the lack of available data.  Oh (2003) proposed 

real-time safety index (RSI) based on the safety distance in car-following situation by vehicle 

tracking results.  This dissertation could further investigate individual truck travel patterns using 

from tracking model combined with weight and body configuration information to facilitate the 

development of more comprehensive and reliable measures of truck exposure and crash factors. 
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