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Abstract

Constraints on Short Lived Signals at 150 GHz

by

Nicholas Harrington

Doctor of Philosophy in Physics

University of California, Berkeley

Professor William Holzapfel, Chair

Fast radio bursts (FRBs) are bright, millisecond flashes of radio radiation detected at fre-
quencies between 800 MHz and 8 GHz. We present the first rate constraints on millisecond
duration celestial transients like FRBs at 150 GHz. Using a year of data from the South Pole
Telescope we searched for signals with a similar phenomenology at 150 GHz and found no
evidence for a celestial population. The 0.9 upper confidence limit is 1.1 × 105sky−1 day−1

for 1 ms signals with fluence above 10 Jy ms. The search sensitivity is expected to increase
dramatically with future microwave telescopes due to increases in spectral information and
a reduced background rate.

The first four chapters are dedicated to detailing how we convert a measured optical
signal into a measurement of the power spectrum of the CMB. Particular emphasis is placed
on the transition edge sensor bolometer readout, the map making and the power spectrum
estimation from these maps. Chapter five focuses on how we can analyze the data to look
for fast radio bursts.
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Chapter 1

Introduction and Software

SPTpol was a polarized, microwave receiver mounted on the South Pole Telescope. It used
transition edge sensor (TES) bolometers to observe light in two bands centered at 90 GHz
and 150 GHz. SPTpol’s primary science goal was to measure the polarized power spectrum
of the cosmic microwave background (CMB) radiation. It was the first experiment to detect
B mode polarization through cross correlation with cosmic infrared background[30]. The
experiment later went on to measure the E mode and B mode power spectra of the CMB
without relying on cross correlation[14, 47]. While the experimental sensitivity is not high
enough yet, B mode polarization in the future could be used to place constraints on the sum
of the masses of neutrinos[1] and/or provide evidence for inflation[39]. In addition to the
primary science goals, the telescope was used to look for orphan gamma ray burst (GRB)
afterglows[103]. Currently there are papers in preparation that use SPTpol data to locate
galaxy clusters and to place constraints on the rate of Fast Radio Bursts (FRBs) at 150
GHz.

1.1 Telescope

The telescope is an off-axis Gregorian Dragone telescope with a 10 meter primary mirror.
After hitting the primary mirror, light is reflected off of a cooled secondary mirror maintained
at 10 K with a pulse tube cooler (PTC). See figure 1.1. Lenses then focus the light onto a
feedhorn array. For the 90 GHz detectors, the feedhorns couple the radiation to two dipole
antennas. Power from the radiation is transported to the TES bolometers via waveguides
and then dissipated as heat by a lossy section at the end of the waveguide. This lossy
section is tightly thermally coupled to the TES. The TES acts as a sensitive thermistor that
responds to this change in dissipated heat. The 150 GHz pixels are similar except orthomode
transducers are used to couple the light in the feedhorn to the striplines.

The TES thermistors convert the deposited optical power into an electrical current mea-
sured by the readout system. The current is amplified with a DC SQUID and warm electron-
ics chain and then digitized with an analog to digital converter. This digitized signal is fed
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Figure 1.1: The incident rays come from the primary mirror which is not pictured but
physically exists to the upper left of the image. The heat blocking filter is tilted to prevent
reflections of the focal plane from being imaged by the focal plane

Figure 1.2: The interior 7 hexagons are the feedhorns for the 150 GHz detectors. The outside
ring of feedhorns are attached to the 90 GHz detectors. The entire focal plane is mounted
on the wedding cake structure. The brown struts are thermal insulators.
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Figure 1.3: This is a close up image of a 150 GHz pixels. The transition edge sensors are at
the center of the orange squares along the edge. The TESs at the top and right of the image
are connected via a waveguide to the orthomode transducer, the triangle structures at the
center. The TES on the left is not optically coupled. This dark detector is primarily used
for debugging and characterization purposes. The feedhorn for this pixel directly mounts to
the circle at the center of the pixel.

into an FPGA and then processed. The output of this processing is the our digitized signal
proportional to the optical power deposited on the detector. We call this our time ordered
data (TOD). The TOD is sent to a readout computer and passed along to the software
processing.

The transition edge sensors were designed to operate with a base temperature around 250
mK. To cool them to this temperature a Simon Chase Helium sorption fridge is used. The
sorption fridge is cooled to 4K with a PTC. The Chase fridge consists of one He4 and two
He3 coolers. These coolers condense helium and then use the evaporative phase transition
to extract heat from the system. The He4 cooler is used to cool the two He3 coolers below
the He3 condensation point. After condensation, these He3 baths are pumped on to extract
cooling power. This cooling power is used to cool the focal plane. The focal plane is divided
into multiple stages that are thermally isolated from the previous stage. This structure
is colloquially referred to as a “wedding cake”. This wedding cake has two main layers,
the intermediate cold (IC) stage and the ultra cold (UC) stage. The UC stage is strongly
thermally linked to the TES bolometers and antennas, so it is maintained at 250mK. The
UC stage is mechanically connected to the warmer IC stage with a thermal insulator. The
IC stage is then connected to the 4K shell with a thermal insulator. One of the He3 coolers
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is used to cool the UC stage and the other He3 cooler is attached to the IC stage. The
IC stage is used to thermally isolate the UC stage from the 4K shell; any wiring attached
between the 4K shell and the focal plane (UC stage) is thermally connected in the middle
to the IC stage. The IC stage is used to pre-cool this wiring in order to reduce the thermal
load on the UC stage.

The UC stage has a cooling power on the order of microwatts. Because any wiring con-
nected between the 4K shell and the UC stage increases the heat load on the system, efforts
are made to reduce the number of wires needed to operate the detectors. To accomplish this,
we use a frequency based multiplexing scheme to read out the detectors. For SPTpol 12 TES
detectors are operated with one pair of wires; with SPT3G, the next generation receiver, it
is 64. We label the group of detectors operated with one pair of wires a module. Each TES
is attached to an LC filter in series. Each LC filter in a module has a different resonant
frequency ranging from 300kHz to 1.5 MHz for SPTpol. When operating the detectors, a
sinusoidal voltage bias is applied at the resonant frequency of the LC filter for each TES.
To zeroth order the TES acts as a sensitive thermistor, where changes in optical power will
change the resistance of the TES. Changes in the optical power deposited on the TES will
appear as an amplitude modulation of the sinusoidal current. Because we only care about
low frequency (<50Hz) optical signals we only need ≈ 100 Hz of bandwidth to readout an
individual detector. The spacing in resonant frequencies means that we can read the optical
signal from multiple detectors with one pair of wires with minimum crosstalk. The entire
summed signal for a module is digitized at the ADC. Quadrature amplitude demodulation
is performed digitally on the FPGA to separate the timestreams for each detector. This
demodulated signal is our TOD. After demodulation this signal is transmitted to a control
computer that stores it and then all the work shifts to software processing.

1.2 Software

There are several software stacks used to operate the telescope, operate the readout system,
collect the data, and finally analyze the data. During the transition from SPTpol to SPT-
3G various software systems went through overhauls. We will only discuss the newest set of
software.

The telescope is controlled with the software labeled GCP (Generic Control Program).
This handles communicating with the telescope control computer, acquiring telemetry from
the telescope and cryogenic system, displaying the state of the telescope, and running con-
trol programs we label ”schedules”. The schedules dictate what the telescope does when
observing various celestial sources or fields. GCP is implemented primarily in C++ though
there is a smattering of other languages and a unique scheduling language used.

The readout system is controlled with the PyDfMux software stack. PyDfMux handles
communicating with and controlling the readout boards which handle operating the TES
bolometers and DC SQUIDs used in the cryogenic readout system. PyDfMux is written
primarily in Python, though it does use a SQL database.
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Because of the unique needs of displaying the information from the 15,000 detectors used
by SPT-3G, a custom display program is used to display the state of each detector. This
program is written in C++ with some wrapper code written in Python. We call it lyrebird.
Lyrebird gets the information it displays from the data acquisition process via sockets.

The data acquisition is handled by spt3g software. The readout boards send the time
ordered data and some telemetry over a local area network to the data acquisition computer.
spt3g software receives this data and then puts it into a useful format for future processing.
After packing the data it compresses and stores the data. A collection of scripts are then
used to transfer this data stateside. Because there is limited bandwidth from the South Pole
we transmit a downsampled version of the data. The full rate data is stored to an array of
hard drives. During the Austral summer these hard drives are physically shipped north.

Analysis tasks are also handled in spt3g software. This includes making maps from the
time ordered data, looking for FRBs and generating power spectra.

lyrebird

The main purpose of lyrebird is to quickly represent the state of the focal plane to speed up
debugging and identifying issues with the operation of the TESs. Each detector is represented
as a polygon that is rendered to the screen. The information that lyrebird is presenting is
encoded in the color of these polygons. Because of this, it can only display one piece of
information at a time. In practice, the most useful piece of information is operating resistance
of the detector displayed in terms of the fractional resistance. The fractional resistance is
the operating point divided by the normal resistance of the detector. Beyond the basic
functionality, lyrebird can plot the data in a graph, perform real time PSD estimation on
the data and display the information in text form.

Architecturally it is relatively simple. Data collecting functions operate in threads that
write data to a buffer. Each buffer has an associated string ID. An equation parser takes
equations written using those data IDs and applies basic arithmetic operations to them.
These equations produce a number between 0 and 1. A color map converts the output of
the equations into a displayed color. Each detector’s rendered polygon has an associated
equation and color map. When drawing these polygons to the screen this information is
used to set the color.

spt3g software

spt3g software is written in a combination of C++ and Python. The low level processing
routines are written in C++ in order to speed up processing, while the high level analysis
choices all take place in Python code to speed up development time. Analysis software
frameworks are not often discussed in the field of software engineering. They are very niche
pieces of software and in most small scale analysis cases the architecture is unimportant.
As the number of people contributing and the complexity of the analysis task increases, a
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Figure 1.4: A picture of lyrebird displaying SPT-3G bolometer data. The frequency response
of the detector is currently being characterized with a Fourier Transform Spectrometer.

poorly designed analysis framework can dramatically increase the time it takes to perform
scientific analyses and ultimately limit the scientific results.

spt3g software forces a structure for TOD processing with the goal of making all of
the steps taken in the data processing explicit with no unintended side effects. This is
to, hopefully, make it easier to share processing scripts and modify existing pipelines to
do interesting things. There are three main types of objects used in the data processing.
These are frames, modules, and pipelines. A frame is an associative array that maps strings
to data. Frames store all of the data being processed. The data the strings map to in
a frame include vectors, floating point numbers, and maps of the sky. Modules accept a
frame as an input and returns zero, one or many frames. Modules represent discrete units of
processing. A module that applies a high pass filter to the data and a module that calculates
individual detector pointing from boresight pointing are both examples of modules used in
the processing. A pipeline is just a list of modules. The first module generates the initial
data; this can be a module that reads data from disk or a module that accepts data over the
network from the readout boards. Any frames output from the initial module are passed to
the next module. Frames returned by the second module are passed to the third module and
so on. The pipeline forms what is effectively a bucket brigade of data processing. The main
goal of this is so at a glance every step of data processing used in a script can be ascertained.
The forced structure of the processing also enables people doing analysis to share the various
modules they have written and easily incorporate them into existing scripts.

The frames have an enumerated type value that specify what their main content is.
The three main frames used in data processing are scan frames, calibration frames, and
map frames. Calibration frames store slow or unchanging information about the detectors.
This includes information like the polarization angle of light a detector is sensitive to and
the detector’s pointing relative to boresight. Scan frames store all of the fast changing
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information: the actual TOD, the boresight pointing, etc. Map frames store maps of the
sky. During processing a module will often need to cache information in the calibration
frames for future processing of scan frames. Because references to the data get stored for
future use the requirement is placed that modules not modify any data stored in the frames.
The modules can modify frames, but not the underlying data the frame stores. With the
high pass filter module this means that instead of modifying the input TOD it copies the
TOD, high pass filters it, and then stores it in the frame. If a module were to modify data a
previous module was caching it could lead to modules later in the pipeline affecting earlier
modules in the pipeline. While this can increase the memory used during processing, it
has the added benefit that it makes it easy to inspect the changes in the data caused by
individual modules. In the case of the high pass filter, because the input data remains, a
quick comparison of the data before and after high pass filtering can be made.

For units that have a purely multiplicative relationship e.g. Kelvin and Rankines, meters
and feet, a units system exists. When storing values with physical units, they are multiplied
by a value that converts them to the stored units form. As an example, when storing a
number in meters in a frame we multiply it by G3Units.meters:

frame[’TheKey’] = number_in_meters * G3Units.meters

When using the data in some specific units we simply divide the desired units:

number_in_cm = frame[’TheKey’] / G3Units.cm.

The trade off to all of this structure is that starting analysis can be a bit slow. Learning
how to properly interact with the pipeline structure and the units system requires effort. The
advantage is that once the knowledge has been gained the framework facilitates cooperation
on the development of analysis techniques.
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Chapter 2

Frequency Multiplexed Readout

2.1 Overview

SPTpol used a frequency multiplexed readout system to supply power and measure the
impedance of the transition edge sensor (TES) bolometers. For legacy reasons, we call
this the DfMux readout system. A TES is a superconductor held between the normal and
superconducting state by electrical power. Because the resistance of this device changes very
rapidly with changes in temperature, to first order it behaves like a very sensitive thermistor.
With the frequency multiplexed readout system, each TES has an LC filter placed in series
with it. In a given readout grouping, each LC filter is built to have a different resonant
frequency. A voltage bias is applied to each of the TESs in the form of sine waves at the
resonant frequency of the LC filters. We label the sum of these sine waves a comb after how
they appear when plotted in frequency space. Each of the sine waves in a comb produces a
current determined by the resistance of the TES that sine wave is supplying power to. The
current is then amplified with a DC SQUID and op-amp amplifier chain. After amplification
it is digitized and processed on an FPGA. On the FPGA the sine waves are demodulated.
After demodulation the sine waves are low pass filtered and decimated in order to reduce the
volume of data for transmission and analysis. This output signal is our time ordered data.

Transition edge sensors are held between the superconducting and normal state by elec-
trical power. This is stabilized by what is labeled electro-thermal feedback. For any circuit
supplying power to a TES resistor, the output impedance of the circuit needs to be much
smaller than the TES resistance, R. In this limit we can write the electrical power as:
Pe = V 2

R
, which means that dPe

dR
< 0. Any increase in optical power deposited on the TES

will raise the temperature and increase the resistance of the TES. This causes the electrical
power supplied to the TES to drop. This acts as a negative feedback mechanism that keeps
the TES at stable operating point. In the opposite limit, where the circuit supplying current
to the TES has a large impedance, Pe = I2R and dPe

dR
> 0. Any increase in optical power

is met with an increase in electrical power creating a positive feedback loop. The resistance
will either drop entirely until the TES is superconducting or increase until it is in the normal
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Figure 2.1: A simplified schematic of the DfMux readout system. The TESs on the left are
attached to LC filters. The signal for the entire comb is amplified with a DC SQUID and
then digitized. The voltage bias applied to the TES is generated by the carrier DAC. The
nuller DAC generates a signal to help reduce the current through the non-linear SQUID.

state.
In order to measure the current flowing through the TES, we use a DC SQUID amplifier.

The DC SQUID converts an input current into an output voltage that we further amplify
before demodulating. DC SQUIDs intrinsically have a non-linear gain. In order to linearize
the output and increase the dynamic range of the SQUID, we rely on two forms of negative
feedback. We use an analog negative feedback loop called a flux locked loop(FLL). We also
digitally synthesize sine waves that are 180 degrees out of phase with the current flowing
through the TESs and feed this into the SQUID coil. We call the signal applying voltage to
the TESs the carrier signal. We call this out of phase signal the nuller signal. Two schemes of
nulling the carrier signal have been used on SPTpol. One where we set the nuller amplitudes
and phases once after we have set the TES detectors operating point, which we call static
nulling. In the other scheme we continuously update the nuller amplitudes and phases to
cancel out the signal through the SQUID coil, called dynamic active nulling (DAN). DAN
suppresses current through the SQUID coild at frequencies near the frequency of the nuller
signal. The FLL is used to suppress low frequency current through the SQUID.

The goal of the frequency multiplex (FMux) system is to reduce the number of wires
between the 4 Kelvin stage housing the SQUIDs and the millikelvin stage housing the TESs.
This reduces the complexity of the wiring and the thermal load on the millikelvin stage.
There are a number of complications that come from this multiplexing scheme, however.
It needs to manage supplying power to the TESs with low impedance and reading out
the current with low noise. This combination of requirements drives the various negative
feedback mechanisms and added complications of the system. The goal of this section is
to provide an overview of how TESs and DC SQUIDs operate and interact with the FMux
readout system. There is quite extensive literature on the details of TESs and DC SQUIDs
and the treatment in this document of the device physics is very minimalistic. The goal is
to provide the simplest model of the device operation in order to understand how TESs and
DC SQUIDs interact with the FMux readout system.
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2.2 DC SQUIDs

(a) The x axis is the current through the
SQUID coil. The y-axis is voltage out. The
various lines correspond to current through
the Josephson junctions. When the current
through the Josephson junction is low, the
entire current can become superconducting
leading to the humped structure. Once it
is above I0 the voltage vs current at the
SQUID coil becomes more sinusoidal.

(b) A DC SQUID consists of a coil tightly
coupled to a pair of Josephson junctions. A
Josephson junction consists of a thin insu-
lator between two superconductors.

Figure 2.2: DC SQUID

Operating TES bolometers requires a circuit that measures the current with an input
impedance much lower than the resistance of the TES. In order to do this, we use a DC
SQUID[16]. DC SQUIDs consist of a superconducting loop with two insulating Josephson
junctions tightly coupled to a coil that generates a magnetic field. See figure 2.2. The
superconducting current through the Josephson junction pair has the form:

Isuper = I0 cos
qeΦ

h̄
(2.1)

Where Isuper is the superconducting current, I0 depends on physics on more complicated
physics. From an operational standpoint I0 is somewhat dependent on the current through
the Josephson junctions and the temperature of the SQUID. qe is the elementary charge and
Φ is the magnetic flux through the loop containing the two Josephson junctions[24]. For this
section we will use the variables in figure 2.2.

We apply a total bias current to the Josephson junction pair. Only the normal current
produces a voltage difference based on the impedance of the Josephson junction pair.

Ibias = Isuper + Inormal (2.2)

Vout = InormalZJoseph =

(
Ibias − I0 cos

qeΦ

h̄

)
Zjoseph (2.3)
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A magnetic coil is tightly coupled to the Josephson junction loop. Current through the
coil generates a flux in the Josephson junction loop based off of the mutual inductance M of:

Φ = MIFlux (2.4)

The DC SQUID converts current through the input coil into an output voltage. The
input impedance of this circuit is the impedance of the superconducting coil, which is purely
inductive. The SQUIDs we use are actually many SQUIDs connected in series to increase
their amplification[35], but they behave like a single SQUID.

There are of course a couple complications in actual use. The structure of the voltage out
versus magnetic flux in is not sinusoidal due to more complicated device physics. The peak
to peak voltage at the output when varying the input flux is also a function of the current
through the Josephson junction pair. When selecting the operating point of the SQUID we
vary the current through the Josephson junctions to maximize the peak to peak voltage.
We then select a DC flux level that maximizes the dynamic range of the SQUID. During
operation we set these values when the temperature of the SQUID is slightly higher than it
is during normal use. To compensate for that we select a current bias through the Josephson
junctions that is 10% higher than the optimal point at the time of measurement.

The DC SQUIDs serve as a low input impedance, high gain amplifier, but their output
voltage is a highly non-linear function of the input current. Negative feedback is used to
linearize the gain of our SQUIDs.

Feedback Topology

Some SQUIDs are manufactured with one coil. Any feedback is applied as current to that
feedback coil. This is the form used by SPTpol and SPT3g’s SQUIDs. Some manufactured
SQUIDs also use a second coil that is specifically designed to be a coil for applying the
negative feedback. Negative feedback in the single coil topology effectively reduces the input
impedance of the SQUID coil. It does, however, also lead to significant complications with
high frequency operation. Feedback current can flow through the millikelvin circuitry instead
of the SQUID coil which makes to the feedback current through the SQUID have a very
complicated gain and phase structure. With SQUIDs that have recently become available
to the SPT collaboration the input coil inductance has been lowered to 20nH. Future work
should consider the reduced high frequency complexity of using a second feedback coil.

Single Coil Topology

With a single coil, any feedback gets applied as current at the input coil. This topology has
the benefit that the negative feedback lowers the effective impedance of the SQUID coil. It
has the downside that not all of the feedback current flows through the SQUID coil; some
current is diverted through the millikelvin circuitry. This downside can lead to instabilities
with the FLL feedback system and an increased noise with the DAN feedback system.
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(a) Diagram of single coil SQUID scheme
employed by SPTpol. ZmK is the
impedance of the millikelvin circuitry. A
low frequency, the impedance is set by the
LC filters attached to the TESs. At high
frequencies, the impedance is set by the
capacitance of the transmission lines be-
tween the 4K and millikelvin stage, capac-
itive paths to ground, and any resonances
in the system.

(b) Diagram of double coil feedback topol-
ogy.

Figure 2.3: SQUID Operational Schematics

For this section we will discuss the circuit found in figure 2.3. With the single coil topology
some of the current we apply to the system through the nuller wiring, IN , is diverted through
the millikelvin circuitry. We can write the ratio of the current through the SQUID to the
current that is applied on the nuller line as a variable rN :

rN =
IS
IN

=
ZmK

ZmK + jωLSQUID
(2.5)

Where ZmK is the series impedance of the millikelvin circuitry. In the case of the FMux
multiplexing scheme this is many LCR series circuits placed in parallel.

If we write the nuller current as some gain factor A multiplied by the SQUID coil current:

IN = −AIS (2.6)

we can write the effective impedance of the SQUID coil in series with the TES as:

ZSQUID =
jωLSQUID

1 + A
(2.7)
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(a) This plot is what we call the nuller net-
work analysis. It is a measurement of rN .
The low frequency structure comes from
the rising impedance of the SQUID coil in-
ductor. The low frequency spiky structure
of rN is dominated by the power diverting
through the LC combs.

(b) This plot is the admittance of the mil-
likelvin circuitry. Over our operating fre-
quencies the structure of the admittance is
dominated by the LC filters at millikelvin
temperatures.

Figure 2.4: Circuit Network Analyses

In short, we reduce our SQUID coil impedance by the gain of our circuit, but any current
delivered by the feedback system is modified by a factor of rN .

Multiple Coil Topolgy

With a second feedback coil, the behavior of the system depends on the mutual inductance
between the primary coil and the feedback coil. If we assume the impedance of the circuit
generating the feedback current is much larger than the coil self and mutual inductance then
the feedback current and SQUID coil effective impedance has a very simple form:

rN =
IS
IN

= 1 (2.8)

ZSQUID = jωLSQUID + jωMA (2.9)

In the limit of small mutual inductance, the impedance is just the coil impedance.

Dynamic Active Nulling

With dynamic active nulling (DAN), the nuller signal is constantly updated to cancel the
carrier current. The SPTpol implementation of DAN is an integral feedback loop, where the
integral of the demodulated signal is used as the amplitude of a synthesized sine wave with
the same frequency as the demodulation. For a low pass filter operator Lpf[...], arbitrary
gain G, and processing delay tdan, the nuller current has the form:
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IN = − sin(ωt)

∫ t−tdan

−∞
GLpf[sin(ωt′)IS]dt′ − cos(ωt)

∫ t−tdan

−∞
GLpf[cos(ωt′)IS]dt′ (2.10)

The measured SQUID current, IS, is the residual signal that consists of any signal the
nuller is not canceling out. This is the error that the integral feedback loop is correcting. In
these equations, the units of G are 1/t.

The integral form of the equation can easily be solved by picking a modulated basis for
the current at the SQUID. This modulated basis has the form:

IS = AI(w0) sin(ωt) + AQ(w0) cos(ωt) (2.11)

Where AI(w0) and AQ(w0) are the Fourier transforms of the amplitude of the sine waves.

AI(w0) =

∫ ∞
−∞

AI(t)e
2πjtω0dω0 (2.12)

With that form, we can rewrite the synthesized nuller current as:

IN = − G

2jω0

(AI(w0) sin(ωt) + AQ(w0) cos(ωt))ejω0tdan = − G

2jω0

ejω0tdanIS (2.13)

With this feedback loop operating the feedback at the SQUID coil has the form:

IS = ImK
1(

1 + G
2jω0

ejω0tdan

) (2.14)

The loop gain of the feedback circuit is:

Loopgain =
G

2jω0

ejω0tdanrN (2.15)

The DAN feedback loop drops the current through the SQUID coil to zero at the DAN
operating frequency. This current suppression drops off at frequencies away from the DAN
operating frequency. The bandwidth of the system is set by the time delay tdan. The gain
needs to be below unity before ejω0tdan = j in order to prevent the negative feedback from
becoming positive feedback.

Flux Locked Loop

The flux locked loop (FLL) used by SPTpol consists of an op-amp amplifier that amplifies
and filters the output of the DC SQUID. This output signal is then fed back in the single
coil configuration to the input of the SQUID coil through a resistor RFB creating an analog
feedback loop.
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Figure 2.5: The output voltage, VO generates a feedback current IN that cancels the signal
through the SQUID coil. While not explicit in this schematic the feedback is negative
feedback to help linearize the SQUID.

The op-amp is operated with a large enough gain that over the frequencies of interest
it behaves like a one pole filter. In the absence of feedback, RFB → ∞, the circuit has the
gain:

VO =
A

1 + jωτop−amp
ImK (2.16)

For finite RFB the gain of the flux locked loop circuit is:

VO =
RFBA

A+RFB

1

1 + jω τ
1+A/RFB

ImKb (2.17)

In the large gain limit, A >> RFB, this has the simple form of:

VO = RFBImK (2.18)

In practice, the total bandwidth of the FLL system ended up being limited. Two factors
primarily limit the bandwidth of the flux locked loop. First, the amplifier system is located on
the outside of the cryostat and the SQUID is located inside. This is separated by roughly 10
cm of wiring. This gives a time delay of roughly tdelay = 1ns. While this seems small, at high
frequencies this can impart a phase delay in the feedback system that pushes the feedback
loop to being unstable. The other complication comes from the fact that not all of the
feedback current produced is delivered to the SQUID coil. The factor rN estimated above has
a complicated structure that depends on numerous factors with the cold circuitry. Capacitive
paths to ground, stripline resonances from poorly terminated impedances and inductor self
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resonances create a very rich structure in the high frequency sub-kelvin impedance. These
resonances lead to instabilities with the FLL.

The equation for the loopgain of the circuit, now including the time delay, is:

Loopgain = rN
A

1 + jωτop−amp

1

RFB

ejwtdelay (2.19)

The various resonances abstracted away in rN create large phase shifts in the loopgain.
In order to maintain a stable feedback loop the loop gain needs to be below unity by the
time these resonances appear. In SPTpol, one of these resonances appeared at ≈ 9MHz
highly limiting the gain and bandwidth of the FLL.

To operate a FLL with an increased bandwidth, two changes would need to be made.
First, the semiconductor based amplifier would need to be moved closer to the SQUID and
operated at 4K. Second, we would either need to switch to using the second feedback coil so
the complicated impedance of the millikelvin circuitry would not interfere with the stability
of the feedback loop, or we would need to carefully design the millikelvin circuitry to avoid
unwanted resonances.

2.3 TES Properties

Figure 2.6: A TES consists of a transitioning superconductor attached to a thermal bath.
Power is removed from the TES through a weak thermal link, G, to a bath at temperature,
Tb. Tb < Tc. Electrical power is applied to keep the TES at its transition temperature Tc.

Transition edge sensors (TESs) are superconductors held between the superconducting
and normal state with electrical power. The TESs are connected to a thermal bath that is
at a temperature, Tb below their superconducting transition temperature, Tc. In our system
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we use antenna coupled TESs. Optical power is transported to the TES and used to heat
the TES. The TES converts the deposited heat into a current signal we can measure. The
superconducting transition of a TES has a very steep resistance versus power curve. See
figure 2.7. This sharp transition makes a TES a very sensitive thermistor and in our case, a
very sensitive measurement of optical power.

During operation, we raise the temperature of the millikelvin stage, which as at a tem-
perature Tb, to be above the TES transition temperature of Tc. We then supply sufficient
electrical power to keep the TES in its normal state when the millikelvin stage is at its
operating temperature, Tb < Tc. The SPT collaboration uses the term overbiased for TESs
in this state. After the stage temperature is lowered, the bias voltage is dropped until the
electrical power is low enough that the TES enters the superconducting transition. At this
point the small signal impedance of the TES changes from positive and real dV

dI
= Rnormal

to being negative dV
dI

= −R[37]. This transition from the normal to superconducting regime
appears as the turn around point in the IV curve. See figure 2.7. This turn around is driven
by the electro-thermal feedback of the TES.

Figure 2.7: Transition Edge Sensor I-V Curve and R-Pe Curve. At high bias power, the
TES is in the normal regime and behaves like a resistor. At lower bias power, the TES is
in between the superconducting and normal state. At small enough bias power, the TES
becomes purely superconducting. Once it is entirely superconducting, electrical power cannot
be applied to the TES, Pe = I2× (R = 0) = 0. It is stuck in the superconducting state. The
SPT collaboration uses the slang “latched” to describe a TES in this state.
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TES Thermal Link

The thermal link and heat capacity of the TES affect the operation. For our responsivity
characterization in section 2.3 we use the small signal conductance and capacity:

G =
dP

dTc
(2.20)

C =
dE

dT
(2.21)

For the thermal link we can model the thermal conductance of an infinitesimal section
as a power law k(T ) = k0T

n. We can the write the total thermal power conducted as:

PT =

∫ Tc

Tb

A

l
k(T ) =

A

l

k0

n+ 1

(
T n+1
c − T n+1

b

)
= G0

(
T n+1
c − T n+1

b

)
(2.22)

The exponent, n depends on the carrier of the thermal energy and the defects in the
conducting medium. n is typically in the range of 1-3[48]. With this form the small signal
thermal conductance has the form:

G = G0

(
(n+ 1)T nc − T n+1

b

)
(2.23)

TES Responsivity

For TES bolometers operated with a DC voltage bias, [37], is the standard resource for
understanding the responsivity of the system and the stability requirements. With the
frequency multiplexed readout system, the electrical circuit generating the voltage bias is
significantly more complicated. Unfortunately, the behavior of a TES depends heavily on
the circuit supplying power to the TES. Its stability and responsivity are both a function
of this circuit. For the purposes of the responsivity derivation, we are going to make some
simplifying assumptions about this electrical circuit. Mainly, we are going to neglect any
phase changes with the current delivering power to the TES. In order to encode the effects
of the bias circuit, we define the logarithmic derivative of the electrical power deposited on
the TES with respect to the resistance as λ.

λ =
R

Pe

dPe
dR

(2.24)

For a bias circuit with zero output impedance (voltage biased) λ = −1. For a bias circuit
with infinite output impedance (current biased) λ = 1. This parametrization allows us to
abstract away the details of the electrical circuit as long we can neglect any phase changes
in the electrical circuit supplying power. This parametrization is not used in the literature
about TESs because they focus on the much simpler DC biased system.

In the case of the frequency multiplexed system, frequency space is ambiguous. In the
following derivation, frequency space refers to the frequency bolometer response, not the
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frequency used to supply power and read out the TES. This analysis will hold true for
bolometers biased at frequencies of hundreds of kilohertz to hundreds of megahertz. The
biasing circuit is assumed to be a circuit that delivers a power that is some function of
the TES resistance. Fortunately, when analyzing the bias circuit we can use traditional
impedance analysis methods. By that I mean we do not need to worry about any ringing in
the biasing LC circuit caused by the TES changing impedances. Any transient behavior in
the LC resonant circuit dies off with a time constant of 2L/RTES where L is our inductor
and RTES is the TES resistance. For our system, L ≈ 20µH and R ≈ 1Ω giving a time
constant of ≈ 5×10−6 which is a couple orders of magnitude smaller than any time constant
associated with the TESs used. In short, any ringing in the LC circuit dies off quickly enough
that we will just ignore it.

To be as explicit as possible, here is what we are assuming:

• The signals we are measuring are sufficiently small that linear analysis is adequate

• The TES resistance is only a function of its temperature

• The time constant associated with the LC resonator L
R

is sufficiently small that we can
neglect it

• The TES is stable.

• Any phase change in the circuit delivering power is negligible.

To begin, let us define a few terms we will be using for the rest of the derivation. Pop
is the optical power. Pe is the electrical power. PT is the thermal power. R is the TES
resistance. T is the TES temperature. G is the small signal thermal conductance, dPT

dTc
. C is

the small signal heat capacity. Irms is the RMS current through the TES. α is the logarithmic
derivative of the TES resistance at the operating resistance, R.

α =
T

R

dR

dT
(2.25)

It is convenient to include a couple derived quantities, such as the electrothermal loopgain,
L, and the intrinsic bolometer time constant, τ0.

L = −αλPe
GT

(2.26)

τ0 =
C

G
(2.27)

Note that this definition of the bolometer loopgain includes a factor of λ as compared to
the traditional definition of loopgain. A circuit diverging from the pure voltage bias regime
will have λ > −1 which results in an effective decrease in the loopgain of the system.
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We will be solving everything in the linear small signal perturbation limit. Note Pe =
I2
rmsR. Here are two useful identities:

dIrms
dR

=
Irms
2R

(λ− 1) (2.28)

δT =
dT

dIrms
δIrms =

dT

dR

dR

dIrms
δIrms = IrmsR

T

αPe

2

λ− 1
δIrms (2.29)

Alright, now that we’ve gotten all of those definitions and identities out of the way, we
start with conservation of energy:

PT = Pop + Pe (2.30)

We can divide this equation into a steady state equation and a small signal frequency
dependent perturbation. For some sinusoidal optical power perturbation, we can write the
conservation of energy in terms of the change in temperature of the TES.

δPope
jωt = (G+ jωC)δTejωt − dPe

dR

dR

dT
δTejωt = (G+ jωC − Peαλ

T
)δTejωt (2.31)

Using the two identities above, we rewrite this as:

δPop = (G+ jωC − Peαλ

T
)IrmsR

T

αPe

2

λ− 1
δIrms = (1 + jωτ0 + L)

IrmsR

L

2

1− 1
λ

δIrms (2.32)

Rearranging the terms gives the power to current responsivity:

si =
δIrms
δPop

= − 1

IrmsR

1− 1
λ

2

L

L+ 1

1

1 + jω τ0
1+L

(2.33)

In our system we apply a voltage bias, Vrms and the dominant source of loss behaves like
a resistance that is not in thermal contact with the TES. We label this Rs. In this case:

λ = −R−Rs

R +Rs

(2.34)

si =
δIrms
δP

= − 1

Vrms

R +Rs

R−Rs

L

L+ 1

1

1 + jω τ0
1+L

(2.35)

In the low loopgain limit we get no response. In the high loopgain limit L
L+1
≈ 1. Increas-

ing loopgain speeds up the detector which means it can respond to higher frequency signals.
Off island resistance introduces a resistance dependent term in the responsivity. Because the
operating resistance of the TES is a function of the optical loading, this introduces a loading
dependent responsivity. This off island resistance also slows down the detector by reducing
its loopgain.
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Demodulation

In our system we have n many sine waves being amplitude modulated by the n many TESs
on the comb. We would like to extract their amplitudes. We do this all digitally. The
signal coming from the SQUID is amplified and filtered and sent to the ADC. This ADC is
referred to as the demodulator (demod) ADC. To extract the amplitudes of each sine wave
we multiply the signal by a sine wave at the carrier frequency and then low pass filter it.
For a carrier at frequency ω we read out a modulated amplitude of A(t) sin(ωt+ δ):

I(t) = A(t) sin(ωt+ δ)× sin(ωt) = A(t)
cos(δ)− cos(2ωt+ δ)

2

lowpass→ A(t)
cos(δ)

2
(2.36)

Q(t) = A(t) sin(ωt+ δ)× cos(ωt) = A(t)
sin(δ) + sin(2ωt+ δ)

2

lowpass→ A(t)
sin(δ)

2
(2.37)

We would like the phase of the demodulator to line up with the phase of the bolometer
response. In that situation δ = 0 so I(t) = A(t)/2 and Q(t) = 0. When the signal is
adequately modeled as just a modulation of a sine wave, the demodulator phase δ can be
set by maximizing the signal in the I phase. In practice, the phase of the response can be
slightly different from the phase that maximizes the signal in I. As a toy example, let’s say
the bias circuit has some residual imaginary impedance, jZ at the operating frequency of
the TES. The current through the circuit has the phase:

I = V/(R + jZ) (2.38)

While any changes in resistance has a response phase:

dI

dR
= − V

(R + jZ)2
(2.39)

leading to a difference in phase between the response of the circuit and the maximum
amplitude signal of −1/(R + jZ).

This full I-Q basis describes all the information in the signal around the carrier frequency.
If for some reason we would like to determine if a signal is amplitude modulated or if it is some
signal being injected on either side of the carrier, one can take an DFT of I(t) + jQ(t) =
ejωtA(t). The lower sideband and upper sideband are distinguished in the negative and
positive frequency bins of the discrete fourier transformed data.

Anti-Aliasing Filter

The anti-aliasing filter consists of cascaded integrator-comb (CIC) filter and finite impulse
response (FIR) filters. After low pass filtering the data, the data is decimated. The deci-
mation process means that the data is not shift invariant. The decimation also means that
there are multiple impulse responses, depending on where the impulse is in the input data
stream relative to the output data stream.
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Figure 2.8: A Subset of the Decimation Filter Impulse Responses

2.4 Noise

Our time ordered data output is the demodulated and low pass filtered waveform. The
respective sources of noise in system have different transfer functions to this demodulated
waveform depending of if they are noise in the power applied to the TES or electronic
noise. The coupling of the noise also depends on the location of the electronic noise. For
convenience of calculation, we will refer to the noise in terms of the current at the input
coil of the SQUID. This is normalized to be the signal that appears in the I phase of the
demodulation.

Current Noise Demodulation

When demodulating the data we have freedom to choose the amplitude of the demodulation
signal. Our goal is to have the demodulated spectrum be normalized to have the same
amplitude as the input spectrum.

For some white noise spectrum of sine waves, we can write our time ordered data as:

Tn =
N−1∑
k=0

ak cos(
2πkn

N
) + bk sin(

2πkn

N
) (2.40)

Where ak and bk are normally distributed with identical variance.
We demodulate with a signal χ sin(2πkbiasn

N
) where we are solving for χ. Demodulation

and low pass filtering causes a single Fourier term to appear as:
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χ sin(
2πkbiasn

N
)ak cos(

2πkn

N
) =

χ

2
sin(

2πkbiasn

N
− 2πkn

N
) (2.41)

χ sin(
2πkbiasn

N
)bk sin(

2πkn

N
) =

χ

2
cos(

2πkbiasn

N
− 2πkn

N
) (2.42)

We can now write the demodulated timestream in its fourier basis where 2πk′n
N

= 2πkbiasn
N
−

2πkn
N

:

Dn =
χ

2

N−1∑
k′=0

(bk′ + bk′) cos(
2πk′n

N
) + (ak′ − a−k′) sin(

2πk′n

N
) (2.43)

With the goal of having the spectrum have the same variance, we find χ =
√

2, noting
that (< ak′ − a−k′)

2 >=
√

2 < a2
k >. To have a one to one mapping of white noise level

between the input spectrum and the demodulated I spectrum, we demodulate with a signal√
2 sin(ωt).

Power Noise Demodulation

The current, Irms, in the TES calculation of the responsivity 2.33, si = δIrms

δP
, is the RMS

current of the sine wave, meaning we need to scale that by
√

2 to get the amplitude. For
some power signal p(t), the response current has the form:

i(t) =
√

2sip(t) sin(ωt) (2.44)

Using the normalization derived in 2.4, this demodulates to:

√
2 sin(ωt)i(t) = 2 sin(ωt)sip(t) sin(ωt)

lowpass→ sip(t) (2.45)

Noise from Sources After DC SQUID Amplification

Because it is convenient to refer to the noise in terms of the current at the input coil to
the DC SQUID, noise that is generated in the amplifier chain after the DC SQUID gets
divided by the amplification of the DC SQUID until it is the equivalent of current noise at
the SQUID coil. When operating with static nulling this representation of the noise is valid.
With DAN feedback this situation is somewhat more complicated. To first order, the current
generated by the DAN feedback loop is set to cancel the measured current at the ADC. For
noise generated before the DC SQUID in the amplifier chain this results in DAN noise being
identical to the FLL operated noise. For noise that is generated after DC SQUID, the DAN
feedback loop also creates current that cancels out that noise. This current, however, needs
to go through the entire amplification chain to cancel it out. Because some of the current
is diverted through the millikelvin wiring rather than flowing entirely in the SQUID, the
current needed to cancel the post SQUID noise is larger by a factor of r−1

N .
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Sources of Noise

Power Noise

Noise in the power deposited on the TES comes from the quantization of power carriers.
These power carriers are the optical photons, the phonons and electrons carrying thermal
energy, and the electrons carrying electrical energy. In practice, the shot noise from electrons
carrying electric power is minimal so we will neglect that.

The shot noise from the random arrival of photons produces a noise equivalent power
(NEP) of:

NEP 2 = 2hνPop + 2
P 2
op

∆ν
(2.46)

This equation comes from [109] with a conversion from occupation number to power.
The thermal carriers between the TES and the bath are electrons and phonons. These

thermal carriers are also quantized. The expression for their noise can be found in [62].

NEP 2 = 4kBT
2
cGγ (2.47)

The γ factor is an order unity factor that accounts for the thermal link being colder closer
to the bath. kB is Boltzmann’s constant.

These NEPs manifest as demodulated noise with our coupling factor of si assuming the√
2 sin(ωt) demodulation.

Current Noise

Every resistor in the system generates Johnson-Nyquist noise with a voltage variance per Hz
of:

< v2 >= 4kBTR (2.48)

The various amplifiers, SQUIDs, DACs and ADCs also create white noise. These manifest
as a total readout noise of ≈ 12pA/

√
Hz at the input of the SQUID coil for SPTpol when

properly accounting for amplifier noise.

2.5 Response To An External Voltage

With the frequeny multiplexed system we can measure the responsivity of a dark TES
through purely electrical means. We do this by sending in a small voltage signal at a
frequency other than the carrier frequency. This dissipates power on the TES which the
TES then responds to.
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Figure 2.9: The frequency response of a TES measured with direct electrical stimulation.
The frequency response has the one pole structure predicted by our model.

For a tickle signal, vt(t) = vt sin((ω + δω)t) and a carrier signal, vc(t) = vc sin(ωt) the
power dissipated on the bolometer is:

P =

(
vc sin(ωt) + vt sin((ω + δω)t)

R +Rs

)2

R = (vcR sin(ωt))2

(R+Rs)2
+ (vtR sin((ω+δω)t))2

(R+Rs)2
(2.49)

+2vcvtR sin(ωt) sin((ω+δω)t)
(R+Rs)2

(2.50)

Removing the DC components and the terms second order in vt we find:

P =
2vcvtR sin(ωt) sin((ω + δω)t)

(R +Rs)2
=

vcvtR

(R +Rs)2
(cos(δωt)−cos(2ωt+δωt))

lowpass→ vcvtR cos(δωt)

(R +Rs)2

(2.51)
Our response current is:

I(t) =
2vtR cos(δωt)

(R +Rs)2
× sin(ωt)×−R +Rs

R−Rs

L

L+ 1

1

1 + jω τ0
1+L

(2.52)

The factor of 2 appears in this equation because in our calculation of the responsivity of
the TES, the current and voltage terms were all written in terms of the RMS values, while
for this derivation we use the amplitude of the sine waves. One factor of

√
2 appears from

the Vrms in the denominator of the equation and one factor of
√

2 appears from the fact that
our responsivity is defined in terms of the change to RMS current, δIrms.

Simplifying things a bit gives:
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I(t) = −2vt cos(δωt) sin(ωt)
R

R2 −R2
s

L

L+ 1

1

1 + jωτ
(2.53)

I(t) = −vt
R

R2 −R2
s

L

L+ 1

1

1 + jωτ
(sin(δωt+ ωt) + sin(ωt− δωt)) (2.54)

In the Rs << R and L >> 1 limit the signal we sent in is perfectly canceled by the
response of the TES and a signal with identical magnitude appears reflected across the
carrier frequency.

2.6 Response To An Internal Voltage Source

The TES response to a voltage source in good thermal contact with the TES is slightly
different than the response to an external voltage source. For an external voltage source,
power is deposited on the TES in the form of ohmic heating. For an internal voltage source,
we also need to account for the work done on that voltage source by the bias current. The
only internal voltage source we will concern ourselves with is the Johnson-Nyquist noise. The
bias current does work on the voltage fluctuations caused by electron thermal fluctuations.
The analysis of the TES Johnson noise in the DC bias case can be found in [37]. For the AC
biased case, we will make the simplifying assumption that the circuit consists entirely of the
TES, R, a voltage source vc(t), and some off-island resistance, Rs. The Johnson noise acts
as a voltage source in good thermal contact with the TES, vN(t).

Pe = IVbolo =

(
vc + vN
R +Rs

)[
vc −

(
vc + vN
R +Rs

)
Rs

]
(2.55)

Dropping terms that are second order in vN we find:

Pe = v2
c

R

(R +Rs)2
+ vNvc

R−Rs

(R +Rs)2
(2.56)

The left term is the steady state power supplied to the TES by the bias current. The
right term is our applied power. We harmonically expand our Johnson noise:

vN(ω0) =

∫ ∞
−∞

vN(t)ejω0tdω0 (2.57)

And then solve for the measured current for an individual mode ω0 = ω + ∆ω for our
carrier frequency, ω.

vN(t) = N sin((ω + ∆ω)t) (2.58)

vC(t) = C sin(ωt) (2.59)



CHAPTER 2. FREQUENCY MULTIPLEXED READOUT 27

P1 = vNvc
R−Rs

(R +Rs)2
= NC sin((ω+ ∆ω)t) sin(ωt)

R−Rs

(R +Rs)2

lowpass→ NC

2

R−Rs

(R +Rs)2
cos(∆ωt)

(2.60)
The power dissipated on an internal voltage source, in the low Rs limit, differs by a

factors of 1/2 from the external voltage source. The two currents of interest are the response
current of the TES to the Johnson noise:

Ir(t) = − N

R +Rs

L

L+ 1

1

1 + j∆ω τ0
1+L

[
1

2
sin(ωt+ ∆ωt) + sin(ωt−∆ωt)

]
(2.61)

And the regular current generated by the Johnson noise:

IN(t) =
vN

R +Rs

=
N sin(ωt+ ∆ωt)

R +Rs

(2.62)

In the high loopgain L >> 1, low frequency ∆ω << 1+L
τ0

limit the sum of these currents
is:

It =
1

2

N

R +Rs

[sin(ωt+ ∆ωt)− sin(ωt−∆ωt)] (2.63)

When we demodulate these currents with a sine wave at our carrier frequency we find
the pleasant result:

1

2

N

R +Rs

[sin(ωt+ ∆ωt)− sin(ωt−∆ωt)] sin(ωt)
lowpass→ 1

4

N

R +Rs

[cos(∆ωt)− cos(−∆ωt)] = 0

(2.64)
In effect, the Johnson noise from the TES in the I phase of our demodulation is canceled

out. It is important to note that the Johnson noise from the TES is not canceled in the Q
phase demodulation. This result mirrors the canceling of Johnson noise in DC biased case.

2.7 Bolometer Biasing

Stable operation of a TES bolometer requires that λ < 0. For purely real impedances, this
means that any resistance not in thermal contact with the TES be smaller than the resistance
of the TES. For purely imaginary stray impedances, this constraint is loosened to be that
the magnitude of the stray impedance is less the three times the TES resistance.

In practice, these strays are a combination of real and reactive impedances. With the
FMux system, the circuit supplying power is relatively complicated. We can write down a
relatively simple form for the thevenin equivalent impedance of the circuit supplying power:

Zeff = jωL+
1

jωC
+

ZpZs
Zp + Zs

(2.65)
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Figure 2.10: The circuit providing power to the TES, or what the readout looks like from
the TES’s perspective.

To first order λ is a function of Zeff . For the FMux system Zs is dominated by the
inductance of the SQUID coil and the inductance of the transmission lines between the 4K
SQUIDs and the millikelvin stage. We model Zs = jωLpar. Zp consists of all of the other
LCR filters in parallel, capacitance of the transmission lines and any termination resistors
placed at the end of the transmission lines.

In the limit of Zp →∞, the impedance of the circuit supplying power has the form:

Zeff = jω(L+ Lpar) +
1

jωC
(2.66)

Which notably has a point where the circuit supplying power has zero impedance. The
effective impedance of the bias circuit depends strongly on what the ratio of the impedance
parallel to the stray series impedance. Even with an extremely large parasitic inductance it
is possible to operate TES bolometers with the frequency multiplexed readout in the limit
of Zp → ∞. Many discussions of supplying a voltage bias with the FMux system just
discuss the magnitude of the parasitic inductance and claim that it must be smaller than
the TES resistance. This is at best intentionally misleading, and at worst shows woeful
misunderstanding of how circuits and electromagnetism works on a very basic level. Various
admittance calculations for possible strays are plotted in figure 2.11.

Frequency Selection

The LC resonator frequencies can shift as a function of temperature. Several factors con-
tribute to this. The capacitor dielectric constants are a function of temperature. The
geometry of the system is affect by thermal contraction. The kinetic inductance of the su-
perconducting inductors is also a function of temperature[4]. Because we cannot know the
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Figure 2.11: The admittance of the circuit providing the bias voltage. This was estimated
with Zs = 400nH, with 99 LCR filters separated by 100kHz, a TES resistance of 1Ω, a
capacitance of 1nF included in Zp, and 40uH LC inductors. Each plot includes the over-
plotted admittance for 10 different detectors. For stable operation, we require admittances
in excess of 1 mho. At the frequency range of interest, the parasitic inductance has an
impedance in excess of 10Ω. Each plot has slight variations on the circuit parameters.
Including a termination resistor, a resistor is added in parallel to Zp, significantly degrade
our ability to deliver a voltage bias to the detectors. This resistor lowers the value Zp which
increases the amount of parasitic inductance that can be removed by the capacitor in the
LC filter of the circuit. In short, using a small termination resistor degrades our ability to
bias the detectors because it effectively increased the impedance of the bias circuit.

(a) Baseline circuit (b) LC filter inductance lowered to 20nH.

(c) 20Ω termination resistor included. (d) Parasitic inductance reduced to 100nH.

impedance of the millikelvin circuitry prior to cooling the LC resonators, we measure the
impedance of the circuit cold. A circuit model is fit to the admittance measurement and
frequencies are selected from the fit. In order to reduce the effects of harmonic and intermod-
ulation distortion, the selected frequencies are all multiples of 117 Hz. The only meaning
of the 117 Hz is that this frequency is larger than the science bandwidth. Any harmon-
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ics or intermodulation products will show up at the bias frequencies or shifted by 117 Hz.
When selecting the frequencies it is also important that they are not representable as simple
fractions of the clock frequency of the digital synthesizer. Simple fractions means fractions
where the denominator is a small integer. Sine waves constructed at those frequencies are
sampled very coarsely and end up having a lot of harmonic distortion.
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Chapter 3

Map Making

3.1 The Map Making Problem

Making maps entails converting time ordered detector signals into a measurement of the
intensity and polarization on a specific patch of sky. This subject has been discussed quite
extensively in the literature [45, 46, 21, 77, 10, 93, 78, 105, 91, 19, 31].

SPT uses a biased map maker that is based on the MASTER method [31] mapmaker
that has been extended to work for polarized data. Our map maker produces maps that are
convolved with the beams. Whenever we produce scientific data products we need to correct
for this bias and our beams. To motivate this choice of mapmaker, we first need to work
through the math of a maximum likelihood mapmaker. This derivation is almost a direct
replication of the math in the polarized MADAM mapmaker paper [46] though it has been
simplified somewhat. For all of this we assume that the noise for each detectors sample is
drawn from a Gaussian distribution. This derivation works if the noise for different detectors
and samples is correlated. This assumption of Gaussianity is not true, but for now let us
pretend it is and we will justify it later.

Pixel Response Parametrization

For a polarized CMB map, at each pixel there are three values of interest, I, Q and U . These
correspond to their respective stokes parameters. Since our telescope is primarily imaging the
CMB we usually write I as T . That is to say we label the intensity with T since the intensity
corresponds to the temperature of the CMB at that patch of sky. Because this is the way it
is written in the code implementing this, we will use the T convention. We have neglected
the V stokes parameter because our detectors are not sensitive to circularly polarized light
and the polarized radiation from the CMB has no (or at least very little) V component[75].
On the celestial sphere, Q = 1 when the linearly polarized light is oriented towards the pole
of our coordinate system. Unfortunately, two different conventions for the the definition of
U differing by a sign exist. The convention used in most CMB experiments for U is flipped
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in sign from the IAU prescribed format. In spt3g software and sptpol software, we have used
the IAU definition of U. See figure 3.1.

Figure 3.1: The polarization convention used defines Q and U relative to the α̂ direction.
This image was taken from [36].

For a noiseless detector looking at a patch of sky with stokes parameters (Tt, Qt, Ut) we
measure a signal yt of:

yt = Tt +
γ

2− γ
(Qt cos(2ψt) + Ut sin(ψt)) (3.1)

Where we have parametrized the detectors polarization response with the polarization
angle ψ and the polarization efficiency γ. In antenna literature this polarization efficiency is
labelled the cross-polarization. It characterizes the detectors response to a polarized signal
orthogonal to its polarization angle. For a detector with no cross-polarization, γ = 1. For a
detector with no polarized response, γ = 0. In this definition of detector response we have
normalized it so the signal yt = Tt when viewing an unpolarized source.

Map Making

The general map making procedure is to write down an equation for our data in terms of
the map, convert that into a likelihood of our data in terms of our map, P (y|m), and then
solve for the map that maximizes this likelihood. All of this math is just a replication of
the MADAM paper[46]. To make the math easier, we use vectors to represent maps and
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timestreams. We combine all of the time ordered data into one vector y. We combine all
of the pixels of the T,Q and U maps into one vector m. This allows us to write where our
detectors are pointing as a matrix, P , and the noise covariance as a matrix, Cn. In the
actual processing, the data is separated by timestream and by scan. We also store the maps
as separate maps of T, Q and U rather than one vector.

We start with a simple form of our time ordered data y:

y = Pm+ n (3.2)

y is a vector containing every detectors data. It has length Ndetsamps. m is our map of the
sky, a vector of 3Npixel length. P is the pointing matrix that maps between detector TOD
space and map space. It has dimension (Ndetsamps, 3Npixels). This matrix encodes where each
detector is looking on the sky and its polarized response. n is a vector of the added noise
for each sample.

With our assumption of Guassian noise, we can write down the likelihood of our data:

P (y|m) = (2πCn)−1/2 exp

(
−1

2
nTC−1

n n

)
(3.3)

Cn =
〈
nnT

〉
. To maximize the likelihood we can minimize its inverse logarithm. Ne-

glecting an added constant we write:

χ2 = −2 lnP (y|m) = nTC−1
n n = (y − Pm)TC−1

n (y − Pm) (3.4)

We then minimize this with respect to m and find:

m = (P TC−1
n P )−1P TC−1

n y (3.5)

In the code we’ve labelled (P TC−1
n P ) the weight matrix. We use the moniker weighted

map for P TC−1
n y.

Now that we have gotten that relatively simple equation out of the way, it is time to
mention that in practice, even with our assumptions, this form will never work. For a year
of SPTpol data Ndetsamps ≈ 1012. This means that a covariance matrix that encompasses
every samples correlation to every other sample would be one million exabytes of data. For
context, if one were to purchase $20 sticks of 8 gigabytes of RAM, it would cost a quadrillion
dollars to purchase that much RAM. Inverting that would be nigh impossible.

There are two issues that must be addressed by every CMB map maker. How does it
handle non-Gaussian noise? How does it make the noise covariance inversion tractable?
SPT employs the solution presented in the MASTER paper[31]. We filter the data until
the noise is white and the covariance matrix is diagonal. In all of the above equations we
replace y with our now filtered yfiltered and then solve for the map assuming a diagonal
covariance matrix. Because our data has been filtered the map produced is by construction
not an accurate representation of that patch of sky. For any science result we produce we
need to account for this bias. In the case of our N-point estimators, we usually do this via
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Monte-Carlo simulations. We produce a large number of simulations of our data, apply the
filters to said simulations and then repeat the map making procedure. This gives us a set of
simulated maps to estimate the effects of our filtering.

There are a number of improvements we can make. We can incorporate some restricted
set of correlations into the map making procedure. If we assume the noise covariance terms
are only non-zero for some small time scale, we can make the noise covariance matrix block
diagonal. This would make the inversion process tractable. There are a number of improve-
ments we can also make to the noise modelling. Instead of assuming Gaussianity we can
incorporate a low frequency component like MADAM[46] or we could try to incorporate
some atmospheric model. A lot of work was done to make the map making code modifiable
so that improvements like this are as easy as possible to incorporate.

Each part of the map making equation and the assumptions embedded in this equation
needs to be discussed.

3.2 One Pixel Map

Before we get to the discussion of all the individual pieces of the map making equation, let’s
work through a highly simplified version of the map making problem. Let’s make a map
with one pixel where we have data from one sample for N detectors. Let’s assume that every
detector has the same noise so Cn = νI where I is the identity matrix. This pixel encodes
the T, Q and U information. With these assumptions we can write down our inputs into the
map making equation.

y =

y1
...
yN

 P =

1 γ1
2−γ1 cos(2ψ1) γ1

2−γ1 sin(2ψ1)
...

1 γN
2−γN

cos(2ψN) γN
2−γN

sin(2ψN)

 (3.6)

With that input our weighted map has the form:

P TC−1
n y =

1

ν


∑
yi∑

yi
γi

2−γi cos(2ψi)∑
yi

γi
2−γi sin(2ψi)

 =
1

ν


∑

(T + γi
2−γi (Q cos(2ψi) + U sin(2ψi)) + ni)∑

(T + γi
2−γi (Q cos(2ψi) + U sin(2ψi)) + ni)

γi
2−γi cos(2ψi)∑

(T + γi
2−γi (Q cos(2ψi) + U sin(2ψi)) + ni)

γi
2−γi sin(2ψi)


(3.7)

This equation becomes a lot cleaner if we make a few assumptions. Let’s imagine we have
a bunch of detectors with random polarization angles and which are 100% polarized, γ = 1.
So 〈sin(2ψ)〉 = 〈cos(2ψ)〉 = 〈sin(2ψ) cos(2ψ)〉 = 0 and

〈
sin2(2ψ)

〉
= 〈cos2(2ψ)〉 = 1/2. In

that case our weighted map is:

P TC−1
n y =

1

ν

 ∑T∑
1
2
Q∑

1
2
U

 (3.8)
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Applying the same math for our weight matrix we find:

(P TC−1
n P ) =

1

ν

 1
∑ γi

2−γi cos(2ψi)
∑ γi

2−γi sin(2ψi)∑ γi
2−γi cos(2ψi)

∑
( γi

2−γi )
2 cos2(2ψi)

∑
( γi

2−γi )
2 cos(2ψi) sin(2ψi)∑ γi

2−γi sin(2ψi)
∑

( γi
2−γi )

2 sin(2ψi) cos(2ψi)
∑

( γi
2−γi )

2 sin2(2ψi)


(3.9)

Using the same assumptions we made above we can write this weight matrix in a really
simple form:

(P TC−1
n P ) =

1

ν

1 0 0
0 1

2
0

0 0 1
2

 (3.10)

With a quick inversion and multiplication we can see that we are able to replicate our
(T, Q, U) map. Let’s now consider the weight matrix in a different limit. Let’s say we only
have one detector with polarization angle ψ = 0.

(P TC−1
n P ) =

1

ν

1 1 0
1 1 0
0 0 0

 (3.11)

This matrix is not invertible. This is just a statement that if we only measure the sky
with a detector with only one polarization angle we cannot accurately measure the T, Q
and U maps since we have absolutely no information about any polarization information
orthogonal to the direction of our detector. This is just a restatement of the fact that if we
are trying to measure three numbers we need at least three independent measurements of
them.

In practice, some pixels on the edge of our maps are only observed by a very small subset
of the detectors. This results in a weight matrix with very poor conditioning. These pixels
in the output map often have extremely large values because of numerical accuracy issues
with the matrix inversion. Any pixels with a poorly conditioned weight matrix should not
be included in any analysis.

3.3 Pointing Matrix

Each row of the pointing matrix encodes how much response each detector is getting from
each map pixel. This row of information is a combination of where the detector is pointing
and its sensitivity to polarization.

Beams

Our detectors response to a point on the sky has a finite extent. If an unpolarized detector is
looking at a point on the sky p with our unpolarized beam BT (x) we can write its response
as:
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Figure 3.2: This is an individual detector’s response to a point source as a funciton of the
detector pointing.

yt =

∫ ∫
BT (x)T (p− x)d2x (3.12)

If we blindly mapped this to our pointing matrix, each row in the pointing matrix would
contain a mapping of the detectors response to each pixel on the map. This would result in
many non-zero entries in our pointing matrix. We can reduce this number, however, if we
make the assumption that every detector has the same beam. We can redefine our map to
be the beam convolved map. That is to say:

m(p) =

∫ ∫
B(x)T (p− x)d2x (3.13)

In our map making equation we are now solving for this beam convolved map and our
pointing matrix maps where each detector is pointing to a unique pixel in the map.

Extending this to polarization requires a few extra assumptions. Writing down the re-
sponse again and assuming our polarized beam is the same as the intensity beam:

yt =

∫ ∫
BT (x)T (p− x) +

γ

2− γ
cos(2ψ)BQ(x)Q(p− x) +

γ

2− γ
sin(2ψ)BU(x)U(p− x)dx

=

∫ ∫
B(x)

(
T (p− x) +

γ

2− γ
cos(2ψ)Q(p− x) +

γ

2− γ
sin(2ψ)U(p− x)

)
dx

A couple sins were embedded these assumptions/equations.

• The polarized beams are the same as the intensity beams.



CHAPTER 3. MAP MAKING 37

• The cross polarization is independent of location in the beam.

For SPTpol analyses we have mostly assumed these to be true. Some limitted constraints
were placed on the leakage. Characterizing these beam effects is still an open problem and
should be done for SPT-3G. I cannot emphasize enough how important properly character-
izing our detectors response to a point source is. Every drop of science we produce depends
on doing this accurately.

Once we have committed to these assumptions, we can just assume our Q and U maps are
the beam convolved maps allowing us to reduce the number of non-zero entries in each row
of the pointing matrix to three (T,Q,U). In the map making software, we store this pointing
matrix as the pixel each detector is pointing at at each sample. We store the polarization
angle and polarization efficiency for each detector.

The upside to committing to making beam convolved maps is that every pixel in the map
making equation is independent. Any knowledge we glean from studying the one-pixel map
can be extended to a full map.

Calculating the Pointing Matrix

We can divide estimation of the pointing matrix into several steps:

• Constructing boresight pointing model.

• Estimating detector pointing offsets from boresight.

• Measuring detector polarization angle and efficiency.

• Applying all these numbers to create the pointing matrix.

Boresight Pointing Model Construction

To zeroth order, we use various sensors/encoders on the telescope to create a best guess of
where the telescope is pointing. This model is tested by observing point sources with known
celestial coordinates. The lion’s share of the work was done by Jason Henning. This is just
a brief summary of his work.

For SPTpol this model includes a variety of effects. The corrections to the azimuth and
elevations, δaz and δel, have the form:

δaz = −(a2 cos[az] + a3 sin[az]) tan[el] + (a4 − det) tan[el]− a5/ cos[el]− az0 (3.14)

δel = a0 sin[el] + a1 cos[el] + (a2 sin[az]− a3 cos[az])− del − a6 − θrefr (3.15)

Where the various variables in this model are:

a0a0a0, a1a1a1 Boom flexure. This is how much the boom arm flexes during operation. The correction
is obtained from point source fits.
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a2a2a2, a3a3a3 Azimuth axis tilt. The bearing the telescope is on slowly tilts. Encoder measurements
are used to correct for this.

a4a4a4 Elevation axis tilt.

az0az0az0 Azimuth encoder offsets. The encoders on the telescope used to measure the azimuth
and elevation slowly drift. Direct measurements of this drift are done to correct this.

dETdETdET , dELdELdEL Metrology and thermometry corrections. Weather and temperature can influence
the geometry of the telescope. This is modelled as a simple offset of the pointing.

θrefrθrefrθrefr Refraction. Light refracts as it travels through the atmosphere. A simple atmospheric
model is used to correct this.

a5a5a5, a6a6a6 Elevation collimation. This is the difference in the optical axis from the physical
elevation axis. This is measured with observations of HII regions.

For SPTpol, we ended up with errors on the order of 10 arcseconds. See figure 3.3.

Figure 3.3: The error in the boresight pointing. This plot was generated by Jason Henning.

Detector Pointing Offset

The detector pointing offsets from boresight pointing are estimated by observing a celestial
source and then fitting for the offsets. We use RCW 38 for this measurement. RCW 38 is
used because its flux is stable in time and its intensity is in a Goldilocks zone. It is bright
enough that we can observe it quickly with good signal to noise. It also is not so bright as
to create worrying non-linear response effects in our transition edge sensors.
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With our telescopes resolution, RCW 38 is an extended source. See figure 3.4. In order
to measure the detector pointing offsets, we first generate a template of RCW 38 and then
fit this template to maps made from individual detector data. For SPTpol this template was
generated from multiple observations of RCW 38. For SPT-3G, this template is constructed
from the observation we are fitting to. This process is done iteratively. Our best guess of
pointing offsets is used to construct the initial map. We then fit individual detector maps to
this sum map and extract pointing offsets. These pointing offsets are then used to make a
better estimate of the sum map and we repeat the procedure. We iterate until the detector
offsets converge. These detector offsets are stored in telescope local Azimuth and Elevation
coordinates.

Figure 3.4: RCW 38 at 150GHz. This plot was generated by Stephen Hoover.

Polarization Angle and Efficiency

For SPTpol, a calibration source was used to measure the polarization angle and efficiency.
JT Sayre, Tyler Natoli and Ryan Keisler did most of the work on this. The general idea
was to place a modulated polarized calibration source 3 km away from the telescope, look
at it and measure the detector response as a function of the polarization angle. From these
measurements we can then fit for the polarization angle and efficiency. This is a terribly
brief description of a lot of work done to get this measurement.

For SPT-3G, there are no plans to repeat this polarization angle measurement. There
are a couple driving factors for this choice. First, making the measurement for SPTpol
required a herculean effort. Extending this measurement for the increased detector count is
not entirely feasible. The other reason relates to the new antenna design. For the sinuous
antenna technology employed by SPT-3G, the polarization angle axis varies as a function of
frequency[94]. This means the polarization angle and polarization efficiency we use in our
map making is a function of the spectrum of the source we are measuring.

Some initial work has been done trying to estimate polarization angles for individual
detectors from celestial sources. The general idea is to make a template of a celestial source,
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either the CMB or Centaurus A, and then fit individual detector maps to this sum map.
The fit varies the polarization efficiency and angle of the detector. This potentially will
work up to a global rotation angle error and a global polarization efficiency error. For the
polarization efficiency, we will need to use another CMB telescope to measure it. For the
polarization angle error we can exploit the statistical properties of the CMB. The EB power
spectrum of the CMB is consistent with zero[75]. This power spectrum is sensitive to this
global rotation error. This allows us to fit from our own data this mean error.

We already employ the assumption of the EB power spectrum being consistent with zero
to constrain a global rotation error with SPTpol’s analysis. Some work has been done fitting
polarization angles from our individual detector maps. This analysis so far has not created
usable data products. A quick test of this method was done using Centaurus A’s radio lobes
as a polarized calibration source.

Figure 3.5: Centaurus A Template

(a) T (b) Q (c) U

Actually making this technique work is crucial for making SPT-3G work, and still needs
to be done. The backup plan if self calibration doesn’t work is to fit individual detector
angles to Planck maps.

Converting Estimated Parameters to Map Pixel

Calculating Detector Pointing

The full calculation converting azimuth and elevation to a celestial coordinate system like
equatorial coordinates is actually rather involved and inefficient. It is not computationally
feasible to make this calculation for every detector at every sample. The reason this calcu-
lation, when done properly, is inefficient is because the appropriate transform also accounts
for effects beyond the coordinate rotation. These effects include the relativistic aberration
of light and the gravitational deflection of the light by bodies in our solar system.

Since we can not make this full calculation many times, we just make the calculation
once. We store this as the FK5 (Ra, Dec) pointing of boresight and also as a rotation. The
rotation we store is a rotation that maps the coordinate (1,0,0) on the unit sphere in local
coordinates to the boresight pointing of the telescope in our desired coordinate system.
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Figure 3.6: The x axis is the polarization angle fit from observations of the polarization
calibrator. The y axis is the polarization angle fit from observations of the polarization
structure of Centaurus A’s radio lobes. The correlation between the polarization angle
constructed from the two sources indicates that fitting polarization angle from the radio
lobes of Centaurus A is a potential way of constraining the detector polarization angle.

Using the offsets we estimated from RCW 38, we compute the location every detector
is looking on the celestial sphere if the boresight were pointing at (1,0,0) and then apply
our stored rotation to get the approximate pointing of each detector in our desired celestial
coordinate system. This way of calculating the detector pointing neglects any variation in
aberration or refraction over the extent of the focal plane. In practice these errors are on
the order of 1 arcsecond, which is well below our pointing jitter error.

An Aside About Map Projections

The mapping of right ascension and declination to a specific pixel in the map is a map
projection. Map projections have quite a long and storied history[85]. For our use, this is
just a function that maps (Ra, Dec) coordinates to a pixel on the map.

For most of our analyses, we require that the map projection we use be equal area. That is
to say, each pixel stores an equal area on the sky. In practice there are three map projections
used in analysis. We use equal area cylindrical projections, the Lambert azimuthal equal-area
projection, and healpix. The first two project the sky coordinates onto a flat euclidean plane.
Equal area cylindrical projections are nice because given our unique location on the Earth,
the x and y axes of the map correspond to Ra and Dec. The Lambert azimuthal equal-area
projection is employed, because for small maps of the celestial sphere, this projection limits
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the distortion of the map. Healpix [27] is a pixelization of a sphere that is equal area. It
also has a couple other nice properties for speeding up spherical harmonic transforms.

Whenever flat sky projections are used, one needs to be careful with the definition of the
polarization angle. The map maker produces maps where the Q/U values fit with the IAU
definition of polarization angle. That is to say, the polarization angle is defined as based
off of the direction of the celestial pole. For some analyses, like a flat sky power spectrum
estimation, having polarization angle defined relative to the vertical direction in the map is
important. In the software, the routine that applies this correction is called flatten pol.

Errors

There are several numbers estimated from data used in construction of the pointing matrix.
Let’s figure out how errors in those measurements will affect our maps.

Errors in Pointing

Errors with the boresight pointing and the detector offsets manifest as an error for where
each detector is looking. With our scan strategy we observe the same patch of sky many,
many times. We can divide the pointing errors into two categories. Errors that are the same
every time we observe a patch of sky and errors that are different every time we observe the
same patch of sky. The former manifests as a distortion of the map. How this distortion
affects any analysis is a function of this distortion and the analysis. This is a terrifying
source of error.

The random errors are more innocuous. With our scan strategy any individual detector
will image the same patch of sky multiple times. Let’s write down the average signal it sees.
For a unpolarized detector looking at p with an error e:

y =
1

N

∑
T (p− e)

≈
∫
p(e)T (p− e)

Where in the many measurement limit, we have changed our average sum into an expec-
tation value where p(e) is the probability of having an error e. This form looks exactly like
our equation for the beam convolved map, except in this case, the beam is our probability
density. On our final summed map, any random error in pointing manifests as a convolution
of the error in our pointing with the map. The jargon used for this error is the “pointing
jitter”. Any scientific result needs to include our pointing jitter in the definition of the beam.

Errors in Detector Polarization Sensitivity

Any errors in our estimate of a detectors polarization sensitivity will manifest as errors with
our weighted map.
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Since errors with the polarization efficiency is easiest to evaluate, lets once again solve for
the weighted map in the large detector limit. For some error δi in our polarization efficiency
γi:

P TC−1
n y =

1

ν

 T

Q
∑ γi+δi

2−γi−δi
γi

2−γi cos2(2ψi)

U
∑ γi+δi

2−γi−δi
γi

2−γi sin2(2ψi)

 ≈ 1

ν

 T
Q
∑

( γi
2−γi + δi

(2−γi)2 ) γi
2−γi cos2(2ψi)

U
∑

( γi
2−γi + δi

(2−γi)2 ) γi
2−γi sin2(2ψi)


(3.16)

The last section is in the small δi limit. Errors with the constraint 〈δi〉 = 0 will result in
extra noise. While errors where 〈δi〉 6= 0 manifest as a global error in the amplitude of Q
and U.

Errors with the polarization angle require a bit more writing. For the sake of brevity,
let’s set the polarization efficiency to one. Let’s assign δi/2 to our error and take the large
detector limit. Let’s make the assumption that δi is uncorrelated with our polarization angle.

P TC−1
n y =

1

ν

 ∑
(T + (Q cos(2ψi + δi) + Ut sin(2ψi + δi)))∑

(T + (Q cos(2ψi + δi) + U sin(2ψi + δi)) + ni) cos(2ψi)∑
(T + (Q cos(2ψi + δi) + U sin(2ψi + δi)) + ni) sin(2ψi)


=

1

ν

 T∑
(Q[cos(2ψi) cos(δi)− sin(2ψi) sin(δi)] + U [sin(2ψi) cos(δi) + cos(2ψi) sin(δi)]) cos(2ψi)∑
(Q[cos(2ψi) cos(δi)− sin(2ψi) sin(δi)] + U [sin(2ψi) cos(δi) + cos(2ψi) sin(δi)]) sin(2ψi)


=

1

ν

 T∑
(Q cos(2ψi) cos(δi) + U cos(2ψi) sin(δi)) cos(2ψi)∑
(−Q sin(2ψi) sin(δi) + U sin(2ψi) cos(δi)) sin(2ψi)


≈ 1

ν

 T∑
(Q cos(2ψi) + U cos(2ψi)δi) cos(2ψi)∑
(−Q sin(2ψi)δi + U sin(2ψi)) sin(2ψi)


≈ 1

ν

 T
1
2
Q+

∑
U cos2(2ψi)δi

1
2
U +

∑
−Q sin2(2ψi)δi



In short, polarization angle errors will mix Q and U together.

3.4 Noise Estimates

In our map making algorithms we call the elements of the diagonal inverse covariance matrix
the weights in analogy to weighted averages. Were our post filtering noise truly white the
optimal estimate of the weight would be the inverse variance of the noise of the timestream.
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Unfortunately, even post filtering, our detector noise is often not white. This turns estimation
of the weight into more of an art than a science. The general method that’s been employed
for SPT’s science results is to assign the weight to be the inverse of the power spectral
density averaged over some frequency range. Since we know the scan speed of the telescope
we can convert angular scales on the sky into time ordered data frequency. We pick the set
of frequencies that correspond to angular scale of the science we are trying to produce. This
weight assignment is only valid in the low signal to noise limit.

Figure 3.7: The time ordered data for a detector becoming unstable.

We also have the issue that sometimes detector time streams vary so far from a Gaussian
noise distribution that the inclusion of them will corrupt the output maps. An example of
this would be a transition edge sensor becoming unstable and then latching. We remove
this data when making maps. This step is labelled as timestream flagging. We generally
flag detectors that are not responsive or have extremely large, non-gaussian noise. For an
example of this see figure 3.7.

3.5 Detector Calibration

In order to make maps of the sky in meaningful units, in our case KCMB, we must convert
our time ordered data into these units. The KCMB units are normalized to be the change in
power from a change in temperature in Kelvin of the CMB. Maps constructed with TOD in
these units produce a direct map of the primary anisotropy temperature fluctuations. When
observing sources with a non-CMB spectrum corrections need to be made to convert the
maps into physically meaningful units.

The transition edge sensor current response to optical power has the form:

si =
δI

δP
= − 1

V0

R +Rs

R−Rs

L
L+ 1

1

1 + jωτ
(3.17)

[37]
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In this equation, V0 is our voltage bias. R is the operating resistance of the TES. Rs is
any off island series impedance. L is the loopgain. τ is the time constant of the detector.
This response is frequency dependent and since R, τ and L are dependent on sky loading, a
function of the DC optical power on the detector.

If τ is sufficiently small, we can neglect the frequency dependent response. In the case
of SPTpol this was true. For SPTsz, the opposite of the detector response, 1 + jωτ , was
applied to the TOD using a DFT based filter. In the case of SPT-3G, our detector response
is also affected by the dynamic active nulling’s transfer function. An appropriate transfer
function needs to be constructed.

Our time ordered data starts its life in arbitrary counts units. To convert it to physical
units we use our calibrator and a celestial source, RCW 38. The calibrator is a chopped
thermal source that illuminates the focal plane. At least once every fridge cycle, we measure
the integral response of each detector to RCW 38. Because our detector response is a function
of sky loading we measure our detectors response to the calibrator as a function of elevation.
For a given telescope elevation we scale the response to RCW 38 by the ratio of the calibrator
response at our elevation to the calibrator response at RCW 38’s elevation. Because the sky
opacity can also change, throughout the course of observations we repeatedly measure the
average response to RCW 38. We scale the response of the TES by this average change.

Conversion from RCW 38 response to our preferred unit, Kelvin, is a function of the
exact structure of a detectors band. This is because the spectrum of RCW 38 differs from the
CMB’s spectrum by more than a multiplicative constant. The conversion between RCW38
flux and Kcmb is derived by cross correlating our maps or power spectra with whatever
satellite experiment is most popular at the time. For SPTpol this is Planck. The important
thing to remember is that this scaling factor must be different for detectors with different
bands.

The last thing that necessitates mentioning is that our readout system has cross talk. The
measured signal for a detector is a function of what neighbouring detectors are measuring.
This can result in a map with many shadows of compact objects we are observing. See figure
3.8. We estimate this crosstalk from point source observations and then remove it before
doing any science processing.

3.6 Pixel Effects

Our polarized map making procedure necessitates grouping together multiple observations
of some finite patch of sky. In our case, this is an individual pixel of the map. There are a
couple effects one should be aware of relating to pixelization.

Pixel Window Function

Our recorded T,Q,U values for a pixel are the average of the values over the extent of the
pixel. We can write this as:
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Figure 3.8: Observation of a compact object with crosstalk. This plot was generated by
Stephen Hoover.

Ti(p) =

∫
T (p− x)wp(x)dx (3.18)

Where wp(p) is 1 inside the pixel and 0 everywhere else. In effect, we convolve our map
with something the shape of our pixel and then sample this convolved surface. This acts as
a modification to our beam. For most of our N-point analyses this effect is handled through
Monte Carlo simulations by using a pixel size in the input map simulation that is much
smaller than the output maps. The simulations will naturally measure this pixel window
function for us.

Gradients

The intensity and polarization naturally vary over the pixel. Because the intensity signal is
so much larger than the polarized signal let’s write down how that intensity gradient appears
in our maps. Returning yet again to the single pixel model let’s write down what the effect of
an intensity gradient is. Without loss of generality, let’s just solve this for a gradient in the
declination or y direction. Once again returning to our single pixel weighted map equation
and taking the large number of detectors limit:

P TC−1
n y =

1

ν

 ∑
yi∑

yi cos(2ψi)∑
yi sin(2ψi)

 =
1

ν

 ∑
(T + (Q cos(2ψi) + U sin(2ψi) + ∆yi∇T ) + ni)∑

(T + (Q cos(2ψi) + U sin(2ψi) + ∆yi∇T ) + ni) cos(2ψi)∑
(T + (Q cos(2ψi) + U sin(2ψi) + ∆yi∇T ) + ni) sin(2ψi)


=

1

ν

 ∑
T + ∆yi∇T∑

Q cos2(2ψi) + ∆yi∇T cos(2ψi)∑
U sin2(2ψi) + ∆yi∇T sin(2ψi)


This gradient term will manifest as temperature to polarization leakage if there are any

correlations between the locations on a pixel imaged by the detectors of a given polarization
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angle and the gradient. As a toy example, imagine that we have an unpolarized sky with a
gradient. We scan across the pixel with two detectors. One with ψ = 0 and one with ψ = π/4.
Let’s say their pointing is offset from each other by half a pixel. Because these detectors
would see signals with different intensity, the solved map maker equation would find that
this pixel has a non-zero polarization because two detectors with different polarization angles
measured a different signal when observing the same pixel. In practice, this effect can be
pretty large. Jason Gallicchio discovered this effect when generating maps with interpolated
sims. Interpolated sims are where values not at pixel centers are set as the interpolated value
of neighbouring pixels rather than the closest pixel value.

Figure 3.9: This is a map of the Q stokes parameters of the sky. The horizontal striping
are because of uneven coverage coupling intensity gradients into polarization. This map was
generated from a small subset of observations. The stripes are horizontal because of our
constant elevation scan strategy. This plot was generated by Jason Gallicchio.

We can simulate the size of this effect as long as we use interpolated sims. For power
spectra this extra leakage shows up as an increased variance in our maps. We can limit the
size of this effect by only including data when both pixels in a pair are live. That means for
detectors with roughly the same pointing we will be generating the map with a detector at
ψ and ψ + π/2 which can help cancel out this effect.

3.7 Filtering

Our map maker necessitates filtering the data. The largest signal we need to filter out is
the detector’s response to the atmosphere. Fortunately, on the time scales of our scans,
the atmosphere is slowly varying, so we can use a high pass filter the data to remove it.
The impact of filtering on analysis is usually understood through Monte Carlo simulations.
Because of this, it is crucially important that every filter be linear. Otherwise, Monte Carlo
simulations would need a completely accurate noise model to properly replicate the effects
of the filtering.
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For SPTpol we used two types of filters on the data. Linear least squares based filters
and discrete fourier transform based filters. We used DFT based filters to low pass filter
the data. This step is to prevent high frequency noise from aliasing into our map. We also
used a DFT based filter to remove bright lines in the data. The most prominent line usually
corresponds to the frequency the pulse tube cooler is operated at. The linear least squares
filters were used as high pass filters. The fit functions consisted of Legendre polynomials,
sines and cosines.

High pass filters can create something colloquially called “filtering wings” near point
sources. Fitting a slowly varying function to a delta function results in fit being inaccurate
near the delta function. In practice, this shows up as dark patches along the scan direction
near point sources. See figure 3.10. In order to remove these filtering wings, we exclude the
region in the data where a timestream is observing a bright point source when we fit our
polynomials and trig functions.

While all of these filters are linear, they are all non-local. Each sample in the filtered
timestream is a function of all the samples in the filtered timestream. When filtering we
are acting on the detector signal that is a combination of its response to the T, Q and
U components of the radiation. This means our filtering can mix T, Q and U together.
Studying this effect ends up being rather complicated, so it is usually left to Monte Carlo
simulations.

Figure 3.10: Filtering wings.

(a) Polynomial filtered map with no filter
masking.

(b) Polynomial filtered map with filter
masking.

3.8 Room for Improvement

Our map maker assumes uncorrelated noise. Even after filtering, our noise is correlated.
The most direct improvement to the map maker would be to modify it to include these
correlations in the map making process. The other avenue of approaching this problem is to
develop better filters such that the filtered data is actually uncorrelated.
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Beyond that, there are a lot of open questions for SPT-3G.

• How well can we characterize the polarization angle and efficiency of the detectors?

• Does the cross polarization of the detector vary across the beam?

• With our new understanding of polarized gradients, how can we actually study the
polarization of compact objects since we know any asymetries in our coverage will
create a fake polarization signal?

• Relative to our noise, how large of an effect is our filtering T to P leakage?

Pixel-differenced Map Making

Pixel-differenced map making is something a lot of CMB experiments do that SPT does
not. The general idea is that for two time streams for detectors with the same band on the
same pixel, ta and tb, we replace their timestreams with ta + tb and ta − tb. Almost all of
the intensity information lives in ta + tb, and almost all of the polarization information lives
in ta − tb. The basic idea is that any noise that is correlated in the two detector signals
will be suppressed in the subtracted timestreams. The downside to this technique is that it
implicitly assumes the location each detector is looking in a pixel is identical.

If by some small miracle, we actually have uncorrelated noise between detectors in a pixel,
pixel-differenced map making is equivalent to our original map maker. Let’s work through
the math. First, let’s assume that both detectors in a pixel are looking at the same pixel
for every sample and that our samples are sorted such that samples from timestreams on a
pixel are always next to each other. We can modify our map making equation by including
a pixel difference operator, which we will define in matrix form.

D =
1√
2



1 1 0 0 · · · 0 0
1 −1 0 0 · · · 0 0
0 0 1 1 · · · 0 0
0 0 1 −1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 1
0 0 0 0 · · · 1 −1


(3.19)

This difference operator has a couple nice properties, mainly, D = DT and DD = 1. In
our map making equation, we need to replace y′ = Dy and P ′ = DP . If we go into the map
maker assuming uncorrelated noise, that is to say Cn is diagonal and the noise is mean 0 we
can write C′

n = DCnD. And since D is its own inverse, C′−1
n = (DCnD)−1 = DC−1

n D.

m = (P ′TC′−1
n P

′)−1P ′TC′−1
n y

′ = (P TDTC′−1
n DP )−1P TDTC′−1

n Dy

m = (P TC−1
n P )−1P TC−1

n y
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Under our assumptions of uncorrelated noise, the map making equation results in the
same map using pixel differencing. In the case of correlated noise, however, the reprojected
data could result in a noise covariance matrix that is more diagonal. The differential detector
pointing information is lost in the pixel differencing as well. This effect will need to be
corrected in any maps made with a pixel differenced map. We can reap some of the benefits
of the pixel differenced map maker by placing some requirements in our data selection and
our inverse noise covariance assignment. If we only use timestreams in map making that also
have usable data from their pixel partner and if we make the weights of each timestream in
a pixel equal, we can roughly approximate the pixel differenced map maker without losing
the differential pointing information. The setting the weight of each timestream in a pixel
to the same value is equivalent to the assumption that the noise covariance matrix in in the
differenced/summed projection is diagonal.

Point Sources

During most of SPTpol, we did not know about the large effect temperature gradients
could have on our produced polarized maps. This has hamstrung our understanding of
the polarization of compact objects. Any study of the polarization of point sources will be
affected by our map maker’s coupling of intensity gradients into polarized signals. Around
bright point sources this gradient is large. The gradient is large because for a point source
and SPT’s compact beams a large change in intensity happens over a very small patch of
sky.

For any study of compact objects this coupling will need to either be carefully modelled
in our map maker or new methods of understanding the polarization of compact objects
will need to be developed. The above discussion of the equivalence of pixel differencing was
included to highlight the fact that the coupling of intensity gradients into polarization will
be unaffected by a pixel differenced map maker.

3.9 Notes About Scan Strategy

When observing a CMB field we use a constant elevation, constant velocity scan. Given our
unique geographic position, this maps to roughly constant declination scans. We are just
varying the right ascension of our telescope. For other locations on the Earth, the celestial
sphere is rotating relative to the local coordinates.

This creates a few unique problems for SPT. Our time ordered data filtering is non-local.
With the lack of sky rotation, each scan at the same elevation maps to to the same patch of
sky. Because of this, any filtering T,Q,U leakage adds coherently between scans. This lack
of sky rotation also affects the coverage of every map pixel. This enhances our sensitivity to
intensity gradients across the pixel.

Our scans are at a fixed angular velocity. For the filtering this allows us to map our time
ordered data frequencies to angular scales on the sky. These angular scales are mapped to
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the angular scales of the spherical harmonics in terms of l.
For science observations we repeatedly measure the same patch of sky. In order to smooth

the telescope’s coverage of various parts of the sky we vary the elevations we perform scans
at. These elevation variations are colloquially called “dither steps”.
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Chapter 4

Power Spectra Estimation

4.1 Overview

The cosmic microwave background (CMB) radiation was first measured in 1964[67]. Thirty
years later small temperature anisotropies were measured in the CMB. These temperature
variations are on the order of 10−5 times smaller than the average temperature[84]. The
temperature fluctuations of the photons from the CMB provide a snapshot of the universe
when these photons by and large stopped interacting with matter. This slice in time forms
a spherical shell around us we label the surface of last scattering. The small scale of the
temperature fluctuations means that linear perturbation theory can be used to solve the
kinetic equations for particles in the early universe. The physics is simple enough that if we
are given a starting distribution of fluctuations and a small set of cosmological parameters,
we can to high accuracy[81] predict what these fluctuations will look like at the surface of
last scattering. While analytic solutions do not exist for the full set of equations, many
software packages exist for numerically simulating the early universe[108, 11, 53]. Let’s take
a moment to appreciate how stunning this fact is. We live in a world where we cannot
adequately predict the behavior of a double pendulum moments after releasing it, and yet
we are able to model the entire universe for hundreds of thousands of years.

We as experimentalists can also invert the process. Instead of taking cosmological pa-
rameters and predicting the properties of the surface of last scattering, we can measure the
surface of last scattering and estimate the likelihood of various cosmological parameters. The
first step in this process is characterizing the distribution of the temperatures of the photons
we measure. Up to experimental errors, the primary anisotropies in the CMB are Gaussian
distributed[74]. If we use a spherical harmonic basis to describe the anisotropies of the CMB,
this Gaussianity property means that the multipole moments are fully characterized by their
power spectrum, CT,l. For a band limited temperature field we expand in terms of spherical
harmonics:

T (n) =
∑
lm

aT,lmYlm(n) (4.1)
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We will be discussing multiple type of alm values. These can be T, E or B alm values.
When what we are discussing applies to any of these sets we will use the notation aX,lm to
denote this where X ∈ [T,E,B].

The power spectrum CT,l is defined as the the variance of the aT,lm values:

〈aT,lmaT,l′m′〉 = δll′δmm′CT,l (4.2)

This power spectrum has an incredibly rich structure [18, 106, 55]. Experimental mea-
surements of it provide constraints on many parameters of cosmological interest[92, 25, 73].
For a good introduction of the structure of the CMB power spectrum please read [33]. The
numerical simulations of the early universe primarily focus on predicting this power spec-
trum.

We, however, will not be focusing on the theoretical predictions for the CMB power spec-
trum. This chapter will focus entirely on the experimental measurement of the CMB power
spectrum. We will be touching on some spherical harmonic math, the flat sky approxima-
tion, and then how various analysis choices affect the power spectrum estimation. This is
meant to be a primer on how SPT estimates power spectra.

With that said, it is important to understand what the power spectrum feeds into. The
power spectrum estimation code generates band powers, band power covariances, and band
power window functions. Band powers are CX,l values averaged over an l range. Band
power window functions describe the response of our binned measurement to a change in the
underlying theory power spectrum:

CX,b =
∑
l

wX,b,lCX,l (4.3)

The simulation software converts a set of cosmological parameters, Θ, into a theory power
spectrum. The likelihood of the data is then estimated from this theory spectrum and our
measured band powers, p(CX,l|Θ). Bayes theorem is the used to generate a posterior on the
cosmological parameters of interest:

p(Θ|CX,l) =
p(CX,l|Θ)p(Θ)

p(CX,l)
(4.4)

p(Θ) is the prior which is set from other measurements of the cosmological parameters.
Because no meaningful way to estimate p(CX,l) from the data exists, it is treated as an
overall normalization constant. Markov chain Monte Carlo (MCMC) methods are used to
integrate p(CX,l|Θ)p(Θ) to measure the normalization p(CX,l). For SPT, the CosmoMC
software library is used to do this[54].

While the power spectrum fully characterizes the primordial anisotropies, many mecha-
nisms exist after initial CMB emission that introduce higher order correlations between the
aX,lm values. Gravitational lensing, the KSZ and TSZ effect, point sources, and many other
physical phenomena make the power spectrum an incomplete characterization of the mi-
crowave sky. Many of these phenomena impart a measurable signal in the power spectrum.
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Characterizing the power spectrum can also provide some understanding of these secondary
anisotropies.

4.2 Power Spectrum Definitions

As mentioned before, we characterize the intensity fluctuations in terms of the variance of
the spherical harmonics:

〈aT,lmaT,l′m′〉 = δll′δmm′CT,l (4.5)

For a fully measured sky we can invert this relationship:

CT,l =
1

2l + 1

∑
m

|aT,lm|2 (4.6)

The factor of 2l + 1 comes from the number of available m values for a given l.
For polarized fluctuations the situation is a bit more complicated. When measuring the

polarized sky we can parameterize each point of the sky in terms of the Stokes parameters,
I, Q, U and V. Because when we measure the intensity we are actually measuring the
temperature of the field, we often use T for I. On the celestial sphere the angle used to define
the Q and U values is the direction to the pole of the coordinate system θ̂. Theoretical
predictions and experimental measurements suggest circular polarization of the CMB as
being consistent with 0, so we will neglect it. So in practice at every point on the sky we
have three values characterizing the intensity and polarization, T, Q, and U.

In analogy to the intensity field, we may consider estimating the polarized power spectrum
in terms of the spherical harmonic coefficients of the Q and U fields. This has some theoretical
issues, however. At each point of the sphere the Q and U values are not uniquely defined.
Since Q and U are defined relative to θ̂, if at a point on the sphere we were to rotate our θ̂
and φ̂ vectors by an angle ψ we would need to transform our Q and U values like:[

Q′

U ′

]
=

[
cos(2ψ) sin(2ψ)
− sin(2ψ) cos(2ψ)

] [
Q
U

]
(4.7)

This is in stark contrast to the intensity signal that is rotationally invariant.
Zaldarriaga and Seljak identified thatQ±iU behaved like spin±2 quantities on the sphere

and that spin 2 weighted spherical harmonics should be used to expand these quantities[107].

(Q+ iU)(n) =
∑
lm

a2,lm 2Ylm(n) (4.8)

(Q− iU)(n) =
∑
lm

a−2,lm −2Ylm(n) (4.9)
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The paper had more insight, but first we should discuss spin weighted spherical harmon-
ics. Spin weighted spherical harmonics are not particularly common in physics and, to be
frank, somewhat confusing objects. The clearest derivations of the properties I have found
are in [20, 65]. We will be following the work of these two papers.

First, we need a representation of linear polarization on the sphere that encompasses our
transformation rules. First we construct an orthonormal basis (ê1, ê2) at each point on the
sphere. In practice (ê1, ê2) often corresponds to (θ̂, φ̂), but this choice is arbitrary. Much
of the following math is to create a way of describing polarized fields on the sphere in a way
that is independent of our constructed orthogonal basis. Under a local rotation of the angle
ψ these vectors transform as:

ê′1 = cos(ψ)ê1 − sin(ψ)ê2 (4.10)

ê′2 = sin(ψ)ê1 + cos(ψ)ê2 (4.11)

We say a function sf(n̂) has spin weight s if under this type of rotation the function
transforms as sf(n̂)→ e−isψ sf(n̂). We are following the sign convention of [65]. We define
the vectors m and m in this basis:

m =
1√
2

[ê1 + iê2] =
e−iγ√

2

[
θ̂ + iφ̂

]
(4.12)

m =
1√
2

[ê1 − iê2] =
eiγ√

2

[
θ̂ − iφ̂

]
(4.13)

Where we have represented the arbitrary nature of our basis through the γ variable. The
choice of γ we will call the spin gauge. Local rotations of our coordinate basis correspond to
a transformation of the form:

m→ e−iΛm (4.14)

Given this transformation for some vector vα the quantities vαm
α and vαm

α transform
as spin 1 and spin -1 quantities. At a point on the sphere this quantity, vαm

α, is defined
in term of the basis vectors at that point on the sphere. The local rotations we have been
discussing are a rotation of the local coordinate basis. It is just a rotation of the basis vectors
at that one point on the sphere; it does not correspond to a global change in variables or
a global rotation of the coordinate system. This type of transform corresponds to a spin
gauge change from equation 4.13 or the rotation of Q and U in equation 4.7. In the following
discussion of spin weighted functions when we say “transforms as” we explicitly mean this
type of local basis change.

This extends to a rank-s tensor. For a tensor Tii...is the quantity Tii...ism
i1 ...mis transforms

as a spin-s object since every m constributes a factor of e−isψ. We can extend this definition
somewhat. A quantity with t contractions with m and u contractions with m,
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Tii...it+um
i1 ...mitmi1 ...miu (4.15)

transforms like a spin t− u quantity.
These vectors have the property:

m ·m = m ·m = 0 (4.16)

m ·m = 1 (4.17)

We can represent linear polarization on the sphere as a trace free symmetric tensor and
then express it in terms of m and m:

Pij =

[
Q iU
iU −Q

]
= (Q+ iU)mimj + (Q− iU)mimj (4.18)

This means that we have a representation of the polarization on the sphere that trans-
forms like we want. This representation generalizes to higher rank tensors. m and m can
provide a complete basis for the totally symmetric trace-free portion of a rank s tensor.

Ti1...is = sf(n̂)mis ...mi1 + −sf(n̂)mi1 ...mis (4.19)

The chief insight [107] had was that if we have a transform that changes a spin±2 quantity
into a spin 0 quantity we can make theoretical predictions about that spin 0 quantity without
worrying about the spin gauge freedom we have when picking out polarization angles. This
motivates us to define a raising and lowering operators, /∂ and /̄∂, that have the property that
under a gauge transform, a spin s function transforms like: /∂ sf(n̂) → /∂e−i(s+1)Λ

sf(n̂).
That is to say the raising and lowering operators change the spin by plus or minus one. For
our spin s function we represent as:

sf(n̂) = mi1 ...misTi1...is (4.20)

We can define a raising and lowering operators as:

/∂ sf(n̂) = −
√

2mjmi1 ...mis∇jTi1...is (4.21)

/̄∂ sf(n̂) = −
√

2mjmi1 ...mis∇jTi1...is (4.22)

Where we have used the normalization from [65]. Since ∇jTi1...is is a tensor and we
have added the appropriate contraction with mj or mj this construction has the appropriate
transform under a spin gauge change. This construction is a bit awkward, though, since the
covariant derivative has already commuted through the m vectors. We would like to convert
the operator to something that we apply to the function sf(n̂). Defining the vector Kj as
mjmiKj = −mj∇jm

i we have the relationship:
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mjmi1 ...mis∇jTi1...is = mj(∇j + sKj)m
i1 ...misTi1...is (4.23)

Where we have summed s copies of Kj since each mi contributes one copy of Kj when
commuting the covariant derivative. This gives:

/∂ = −
√

2mj(∇j + sKj) (4.24)

We can use a similar construction for the lowering operator. Since ∇θmθ = ∇θmφ = 0
the quantity mj∇jm

i = −mj∇jm
i because only the φ index contributes and mφ = −mφ.

/̄∂ = −
√

2mj(∇j − sKj) (4.25)

Evaluating these operators in (θ, φ) coordinates gives[20]:

/∂ sf(θ, φ) = −e−iγ
[
∂θ +

i

sin(θ)
∂φ + s(− cot(θ)− iγ,θ +

1

sin θ
γ,φ)

]
(4.26)

/̄∂ sf(θ, φ) = −eiγ
[
∂θ +

i

sin(θ)
∂φ − s(− cot(θ)− iγ,θ +

1

sin θ
γ,φ)

]
(4.27)

(4.28)

Fixing the spin gauge at γ = 0 we can simplify this to:

/∂ sf(θ, φ) = −
[
∂θ +

i

sin(θ)
∂φ − s cot(θ)

]
(4.29)

/̄∂ sf(θ, φ) = −
[
∂θ +

i

sin(θ)
∂φ + s cot(θ)

]
(4.30)

(4.31)

Since we now have a representation of the raising and lowering operators we can apply
these to the spherical harmonics to generate what are called the spin weighted spherical
harmonics. In the case of a spin-s weighted spherical harmonic we have the form:

sYlm =

[
(l − s)!
(l + s)!

]1/2

/∂
s
Ylm, (0 ≤ s ≤ l) (4.32)

sYlm =

[
(l + s)!

(l − s)!

]1/2

(−1)s /̄∂
s
Ylm, (−l ≤ s ≤ 0) (4.33)

sYlm = 0, (l < |s| ≤ l) (4.34)

With equations 4.29 and 4.34 the spin weighted spherical harmonics are presented as
scalar functions. At least for the author, this lead to some confusion since scalar functions
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have no meaningful notion of a change in spin. It is important to remember, however, that
the spin weighted spherical harmonics are effectively short hand for applying the operator in
equation 4.24 to the spherical harmonics. When we apply a spin gauge transform to the spin
weighted spherical harmonics the /∂ and /̄∂ operators will change, not the Ylm values since
that is a scalar field.

The spin weighted spherical harmonics satisfy the same orthogonality and completeness
relationships the standard spherical harmonics satisfy[107]. When integrating over a sphere
Ω: ∫

Ω

dn sYlm sYl′m′ = δll′δmm′ (4.35)

∑
lm

sYlm(θ, φ) sYlm(θ′, φ′) = δ(θ − θ′)δ(φ− φ′) (4.36)

Which makes them a useful basis for band limited spin-s quantities on the sphere. In our
case, the quantities Q ± iU can be represented as a tensor contraction which we can then
describe with spin ±2 spherical harmonics since these are also tensor contractions with our
m vectors.

Q+ iU = mimjPij =
∑
lm

a2,lm 2Ylm ∝
∑
lm

a2,lm/∂
2
Ylm (4.37)

Q− iU = mimjPij =
∑
lm

a−2,lm −2Ylm ∝
∑
lm

a−2,lm /̄∂
2
Ylm (4.38)

Inverting this relationship we can write:

a±2,lm =

∫
dn(Q± iU) ±2Ylm (4.39)

The spin ±2 basis is useful because our function expanded in terms of spin 2 spherical

harmonics can easily be converted to a spin 0 quantity. The quantities /̄∂
2
(Q + iU) and

/∂
2
(Q − iU) are both spin gauge invariant which means any theoretical predictions for the

statistical properties of these quantities can ignore the complications brought about from
the spin gauge freedom.

Rather than use just the spin 2 basis for spin 2 functions, in CMB physics we use a basis
that’s a linear combination of the spin ±2 harmonics. This is called the E/B basis and is
defined by:

aE,lm = − (a2,lm + a−2,lm) /2 (4.40)

aB,lm = − (a2,lm − a−2,lm) /(2i) (4.41)
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The modes on the sky composed entirely of E modes are unchanged under a parity
transformation. The B modes flip sign. This comes from the fact that:

sYlm(π − θ, φ+ φ) = (−1)l −sYlm (4.42)

This basis is used because scalar perturbations only contribute to the E modes on the
sky while tensor modes contribute to both E and B modes[107].

The power spectrum that we are trying to estimate for the polarized sky is defined in a
similar way to the intensity power spectrum:

CT,l =
1

2l + 1

∑
m

|aT,lm|2 (4.43)

CE,l =
1

2l + 1

∑
m

|aE,lm|2 (4.44)

CB,l =
1

2l + 1

∑
m

|aB,lm|2 (4.45)

CTE,l =
1

2l + 1

∑
m

< aT,lmaE,lm > (4.46)

4.3 The Flat Sky Approximation

Our observable power spectrum is defined in terms of spin 0 and spin ±2 spherical harmonics.
This would suggest that when we are estimating the power spectrum we would need to do
spin spherical harmonic transforms on the quantities T , Q + iU and Q − iU . For full sky
CMB surveys this is what is done. The HEALPIX pixelization of the sphere is used [26]
and the power spectrum is estimated with spherical harmonics. When analyzing data we
are more often limited by our understanding of systematics and how the data processing
affects the results. Our ability to understand the processing is inversely proportional to the
complexity of the processing. We can make our data processing simpler by using the flat
sky approximation. The flat sky approximation is built on the idea that for large enough l
values over a small patch of sky, the spherical harmonics look like sine waves on the surface
of the sphere. So to estimate the power spectrum of the CMB using a small patch of sky
we do not need to use spherical harmonic transforms and can instead use discrete Fourier
transforms (DFT).

Terrestrial CMB experiments often create maps of relatively small patches of sky ex-
plaining the widespread use of the flat sky approximation. The observation of a small patch
of sky is driven by a number of factors. The observing time per sky area increases when
only imaging a small patch of sky lowering the noise of the maps made. Optical loading on
the bolometers from the atmosphere changes as a function of telescope elevation. Because
the optical loading can change the responsivity of the TES bolometers there is a driver for
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limiting the changes in elevation when observing a patch of sky. Since they are focused on
extra-galactic sources of radiation terrestrial CMB experiments tend to observe patches of
sky at high galactic latitude limiting the available observation points for terrestrial experi-
ments, especially those at the South Pole.

Spin-0, Intensity

For the temperature power spectrum our goal is to relate spherical harmonics to plane waves
over a small patch of sky. We will be following the derivation in [34].

Starting with a band limited scalar field described on the sphere by:

X(n̂) =
∑
lm

almYlm(n̂) (4.47)

We define a quantity X(l) as being the plane wave expansion of the alm coefficients:

X(l) =

√
4π

2l + 1

∑
m

i−malme
imφl (4.48)

This expansion has the inverse relationship:

alm =

√
2l + 1

4π
im
∫
dφl
2π

e−imφlX(l) (4.49)

Our goal is to show that the Fourier transform of our plane wave expansion is a good
approximation to the map. To be explicit, we would like to show:

X(n̂) ≈
∫

d2l

(2π)2
X(lll)eilll·n̂̂n̂n (4.50)

This is done by first relating the associated Legendre polynomials to Bessel functions
in the large l limit. The Bessel functions are then converted into plane waves using the
Jacobi-Anger expansion.

To relate the Bessel functions to the associated Legendre polynomials we use a relation-
ship in [2]:

lim
ν→∞

[
νµP−µν

(
cos

x

ν

)]
= Jµ(x) (4.51)

The Ps are associated Legendre polynomials. The J are Bessel functions. With a quick
change of variables µ→ m, x→ lθ, and ν → l:

P−ml (cos θ) ≈ 1

lm
Jm(lθ) (4.52)
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We can now plug in our approximation for the associated Legendre polynomials into the
definition of the spherical harmonics:

Y m
l (θ, φ) =

√
(2l + 1)

4π

(l −m)!

(l +m)!
Pm
l (cos θ)eimφ ≈

√
(l)

2π

(l −m)!

(l +m)!

1

l−m
Jm(lθ)eimφ (4.53)

Noting that:

lim
l→∞

√
(l −m)!

(l +m)!
l2m = 1 (4.54)

We can now write the spherical harmonics at large l in terms of Bessel functions:

Y m
l ≈ Jm(lθ)

√
l

2π
eimφ (4.55)

We use Jacobi-Anger expansion and the above relationship we can write:

eilll·n̂̂n̂n =
∞∑
m

imJm(lθ)eim(φ−φl) (4.56)

≈
√

2π

l

∑
m

imY m
l (n̂)eimφl (4.57)

Now with all those identities out of the way, we can simply plug in our definition of alm
and use our approximations for Ylm to show the desired relationship:

X(n̂) =
∑
l,m

almYlm(n̂) (4.58)

≈
∑
l

l

2π

∫
dφl
π
X(lll)

∑
m

Jm(lθ)imeim(φ−φl) (4.59)

≈
∫

d2l

(2π)2
X(lll)eilll·n̂̂n̂n (4.60)

Using the definition of X(lll) if we integrate that around a loop we find that:∫ 2π

0

dφX∗(lll)X(lll) = 8π2 1

2l + 1

∑
m

|alm|2 (4.61)

So up to a constant the integral of X(lll) around a loop of constant l should be roughly
equal to the angular averaged power at that l value.

All this math means that it is acceptable for us to treat a small patch of sky when
dealing with large l values as a flat surface and use the Fourier transform of the map in order
to estimate the power spectrum. Since the data is quantized, we use the DFT to do this
transform.
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Spin-2 Polarization

For the γ = 0 spin gauge in the flat sky limit, sin(θ)→ 1, we can write the spin raising and
lowering operators in a very simple form:

/∂ ≈ −(∂x + i∂y) (4.62)

/̄∂ ≈ −(∂x − i∂y) (4.63)

For the small scale, flat sky limit we apply the raising and lowering operators to our flat
sky derived Ylm[106].

2Ylm =

[
(l − 2)!

(l + 2!)

]1/2

/∂
2
Ylm → (2π)−2 1

l2
/∂

2
eilll·n̂̂n̂n (4.64)

−2Ylm =

[
(l − 2)!

(l + 2!)

]1/2

/̄∂
2
Ylm → (2π)−2 1

l2
/̄∂

2
eilll·n̂̂n̂n (4.65)

1

l2
/∂eilll·n̂̂n̂n = −e2iφleilll·n̂̂n̂n (4.66)

1

l2
/̄∂eilll·n̂̂n̂n = −e−2iφleilll·n̂̂n̂n (4.67)

This form of the equation differs from the literature[106, 34] by a factor of e±2iφ. This
term rotates the curved sky Q/U angle, defined relative to the direction of the pole, to the
flat sky angle, defined relative to the y-axis.

Combining these approximations with equation 4.8, we find:

Q =
1

(2π)2

∫
d2lll [E(lll) cos(2φl)−B(lll) sin(2φl)] e

illl·n̂̂n̂n (4.68)

U =
1

(2π)2

∫
d2lll [E(lll) sin(2φl) +B(lll) cos(2φl)] e

illl·n̂̂n̂n (4.69)

4.4 Power Spectrum Estimators

Our goal is to take a map of the sky and convert it into an estimate of the power spectrum
of the full sky. To be explicit we would like to convert a data vector of polarized pixels
x into an estimate of CX,l values that we parameterize as a set of values qi. While many
power spectrum estimators exist, three classes of estimators are the most common. These
estimators are the maximum likelihood, quadratic minimum variance and pseudo Cl. When
discussing the estimators we will use C for the pixel covariance and assume that the data is
mean zero, 〈xi〉 = 0. The number of elements in x we will label N .
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Maximum likelihood estimators rely on finding the power spectrum that maximizes the
likelihood of the data. For normally distributed noise we can write this as[101]:

p(x|q) ∝ exp(−1

2
xTC−1x) (4.70)

Solving the maximization problem requires O(N3) operations. SPTpol maps are on the
order of 106−108 pixels making this sort of maximum likelihood calculation computationally
infeasible for full resolution data. For a map with a greatly increased pixel size (reducing
the total number of pixels) with a known pixel covariance matrix we could feasibly perform
this operation. These operations are nonlinear which can make estimating the statistical
properties of the inferred power spectrum difficult.

Another class of estimator is the quadratic minimum variance estimator discussed in [96,
97]. The general idea behind these estimators is that we assume our estimate of the power
spectrum has a quadratic form:

qi = xTQix− bi (4.71)

And then we solve for the Qi that minimizes the variance of our estimate of the CX,l
parameters. While this quadratic ansatz is better justified in the original paper, let’s discuss
why it has this form. The power spectrum of some map of the sky is a quadratic function
of the sky data. We can see that this is the case since the Cl ∝ |alm|2 and the alm values are
just a linear transform of the map. It’s not unreasonable to assume that since the thing we
are measuring is proportional to the square of the data that our best estimate could also be
constructed from the square of the data.

The solution that minimizes the variance of the estimate has the form:

Qi =
1

2

∑
j

(B)ijC
−1PjC

−1 (4.72)

Where B is an arbitrary invertible matrix, Ni are a normalization constants and Pj is
defined by:

Pi =
∂C

∂pi
(4.73)

Where pi represents one power spectrum l mode for one type of spectrum. When mea-
suring lmax modes and the 7 spectra (the signal T, E, B, TE, TB, EB modes and the noise)
there are 7lmax components. Tegmark argues that this approach has more easily understood
statistical properties since the estimate is quadratic in the data and that the computational
complexity scales as N2[97]. For a reasonable estimate of the pixel covariance, this method
of estimating the power spectrum does not destroy any cosmological power spectrum infor-
mation.

The third class of estimators are the pseudo-Cl estimators. The general idea behind these
estimators is that we estimate a set of pseudo ãX,lms from our noisy, biased data by just
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applying the appropriate spherical harmonic transforms. We then relate these pseudo ãX,lm
values or the summed pseudo C̃X,l, to an estimate of the full sky CX,l values via analytic
expressions or Monte Carlo simultion[32]. The pseudo-Cl estimators tend to under perform
the quadratic minimum variance estimators at low l values[22]. They do have the advantage
that they are computationally cheap, can handle non-Gaussian noise, and can easily work
with biased map makers.

In practice, SPT has used pseudo-Cl techniques for all of our power spectrum estimation.
We have generally focused on large enough l values that the benefit of the quadratic estimator
is outweighed by the extra computation and person time it would cost to implement a
quadratic estimator. An exploration of the quadratic estimator could potentially reduce the
variance of our low l power spectrum. Because it is what we have used, we will be discussing
the issues with Pseudo-Cl estimation of the power spectrum.

Intensity Pseudo Cls

Survey limits and foregrounds restrict any map constructed of the CMB to only have partial
coverage of the sky. The direct calculation of Cl values via a spherical harmonic transform is
complicated by this incomplete sky coverage. Rather than estimating the actual alm values,
we estimate the windowed, pseudo ãlm values:

ãlm =

∫
dnnnT ′(nnn)W (nnn)Ylm (4.74)

Where W (nnn) is our smoothed coverage map of the sky and T ′(nnn) is our constructed map
of the sky. We say constructed because our map maker produces a biased map of the sky.
With the pseudo-Cl estimators the coverage map is apodized on the edges. We label this
the apodization mask.

Throughout our discussion of these pseudo ãlm values we will be using the curved sky
notation. All of these derivations apply equally well in the flat sky limit.

During the map making procedure, we filter the data with the intent of making the
detector time ordered data have a diagonal covariance matrix. Because of this linear filtering,
the T ′(nnn) is a biased map of the sky. With the restriction we have placed that the filters
used are linear we can write down a mapping of the true alm values to our pseudo ãlm in
terms of a simple mapping which we arbitrarly label as Jlml′m′ :

ãlm =
∑
l′m′

almJlml′m′ (4.75)

While analytic forms for this mapping exist for an unbiased map of the sky, no such
luxury exists with the biased map maker. Given the complicated nature of the interactions
of the filtering with the pointing of the telescope we must rely on Monte Carlo simulations to
construct this mapping. Unfortunately, the number of unique elements in this construction
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scales like l4 making its construction computationally infeasible for an experiment like SPT
that makes meaningful measurements to angular scales of l > 104.

We rely on the ansatz constructed in [32], typically called the MASTER method, to reduce
the computational requirements of this estimation. Rather than rely on the construction for
individual alm values we construct this mapping for the ensemble average. With the inclusion

of a map noise term
〈
Ñl

〉
, we can write our average pseudo

〈
Ñl

〉
with the coupling term

Kll′ . 〈
C̃l

〉
=

′∑
l

Kll′ 〈Cl〉+
〈
Ñl

〉
(4.76)

We have included the noise because every real map of the sky is noisy. We further divide
Kll′ into several terms that contribute to it:

Kll′ = Mll′Fl′B
2
l′ (4.77)

Mll′ is the mode coupling kernel resulting from the incomplete sky coverage of the map.
The term mode mixing is often used for the mode coupling kernel. Fl′ is the transfer function
that models the effects of filtering the data when producing the map. B2

l′ is a smoothing
function that combines the pixel window function and detector’s response to a point source.
Bl′ is estimated in terms of its effect on alm values which is why it is squared in this equation.
This simplification of the coupling neglects the fact that the filtering transfer function is not
truly diagonal in l space. For some time domain filters, like a polynomial filter, various
l modes can be mixed together. For these constructions we have assumed that the filters
applied to the data are linear. Nonlinear filtering causes the mapping of alm to ãlm to be
sensitive to the realization of the noise in the time ordered data.

The mode coupling kernel described the l mode mixing from performing spherical har-
monic transforms, or DFTs in the flat sky limit, on a finite patch of sky. To first order it is
the 2D equivalent of an DFT window function. The mode coupling kernel can be analyti-
cally calculated or estimated with Monte Carlo simulations. The beam function is composed
of our detectors response to a point source and the pixel window function. The detectors
response to a point source is estimated from observations of celestial sources. The pixel
window function, which encodes the fact that a pixel is not sample of an infinitesimal point
on the sky but an average of the sky over the size of pixel, is either estimated using Monte
Carlo simulations or an approximate ansatz.

The estimation of the transfer function, Fl′ , is done with Monte Carlo simulations. A set
of fake microwave skies with a power spectrum matching some fiducial cosmology is gener-
ated. We then mock observe these skies in software to generate detector time ordered data.
The map making and power spectrum estimation code is then repeated on this simulated
data. Because we know the input power spectrum we can easily compute the ratio of the
estimated power spectrum to the input power spectrum. This Monte Carlo simulation frame-
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work also provides a way for understanding how various systematics affect our measurement
of the power spectrum.

When estimating the transfer function we remove the effects of mode leakage and the
beam so for some estimated pseudo spectra, C̃l′ with an input spectra B2

l Cl:

Fl =

∑′
lM

−1
ll′ C̃l′

B2
l Cl

(4.78)

Because the patch of sky is relatively small, neighboring l values of the Cl are indistin-
guishable. To get around this when estimating the power spectra, we combine multiple Cl
measurements to create our bin averaged power spectrum, Ĉb, by averaging over an l range.
We describe the binning with the operation Pbl and the reciprocal interpolation operation
with Qlb. Using these we can write a binned version of Kll′ :

Kbb′ = PblMll′Fl′B
2
l′Ql′b′ (4.79)

With this binned version we are now able to write our band power window function
defined in equation 4.3:

wbl = K−1
bb′ Pb′l′Ml′l(FlB

2
l ) (4.80)

Bundles

SPTpol made on the order of 104 observations of the same patch of sky. These 104 obser-
vations are grouped together and added to form 102 bundles. When estimating the power
spectrum of the sky we estimate the cross spectrum between bundles in order to remove the
noise bias from our estimate.

To see why this works, let’s assume the bundles have the same noise. We can write our
full map as a sum of all of the bundles:

M =
1

Nbundles

Nbundles∑
i=1

S +Ni =
1

Nbundles

∑
i

(aSlm + aNi
lm)Ylm (4.81)

Where S is the sky signal and Ni is the noise in that bundle. If we were to sum all the
bundles together and estimate the pseudo spectra we would have:

1

N2
bundles

∫ ∑
m

(
∑
i

(aSlm + aNi
lm)Ylm) ∗ (

∑
j

(aSlm + a
Nj

lm)Ylm) =< |aslm|2 > +
∑
i

< |aNi
lm|

2 >

(4.82)
With this form the estimated variance of the alms has a noise bias. We can remove

this, however. We expect the noise between different bundles to be uncorrelated so when
estimating the pseudo spectra we never estimate the spectra of a bundle with itself. That is
to say we only estimate the spectra using separate bundles, we can remove this noise bias.
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1

Nbundles∗∗2

∫ ∑
m

(
∑
i

(aSlm + aNi
lm)Ylm) ∗ (

∑
j 6=i

(aSlm + a
Nj

lm)Ylm) =< |aslm|2 > (4.83)

We have also assumed that the noise is uncorrelated with the signal.
The bundled maps are also useful for jackknife systematics checks. Jackknives are tests

performed with the data that check for various systematics. They are done by dividing
the data into halves that would be sensitive to systematics and then comparing the power
spectrum estimated form the two groups. As an example, we could compare the estimated
power spectrum from data taken when the sun is above the horizon and when the sun is
below the horizon. If these two spectra are not statistically consistent then there is evidence
for sun contamination.

Bundles are also useful for estimating the band power covariances. We can divide the full
covariance into the sum signal and noise covariance, C = S +N . We can use simulations
to estimate the signal covariance. To do this we generate many fake realizations of the
microwave sky, mock observe them, and then estimate the band powers. The covariance can
be directly estimated from these measurements. Estimating the noise covariance requires
multiple realizations of the noise. To generate these we randomly divide the maps into two
halves. One half is multiplied by -1 and these are added. This map should have the signal
subtracted leaving only the noise with roughly the statistical properties of the full map
noise. We can repeat this process with other random split halves to generate more noise
realizations.

Polarization Pseudo Cls

With the inclusion of polarized data we now have three sets of aX,lm values to keep track of,
where X ∈ (T,E,B). Our projection operator now has the form:

ãX,lm =
∑
l′m′X′

aX,lmJlml′m′XX′ (4.84)

When mapped to the ansatz of [32] we need to promote the mode coupling kernel and
transfer function to include the mixing from T, E and B. Mll′ →Mll′XX′ . Fl′ → Fl′X′ . At a
given l′, Fl′X′ is a dense 3x3 matrix. For some fixed l and l′, Mll′XX′ has the form:

Mll′XX′ =

Mll′TT ′ 0 0
0 Mll′EE′ Mll′EB′

0 Mll′BE′ Mll′BB′

 (4.85)

While filtering can potentially mix temperature and polarization signals together, the
effect of a finite patch of sky only mixes E and B together. It can not leak intensity signals
into polarized signals. Because the T and E modes of the sky are so much larger than the
B modes of the sky we will need to worry about the leakage from T and E into B. If these
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Figure 4.1: Much of the discussion of BB power spectrum estimation focuses on limitting
the leakage terms. This is primarily because the power in the BB spectra is so much smaller
than the other terms. Acceptable levels of E to B leakage are those below 10−3. Acceptable
levels of T to B leakage are much more scale dependent but on the order of 10−7 − 10−6.

leakage terms are subtracted off in CX,l space, CTrue
X,l = CEst

X,l −CLeak
X,l , they contribute to the

variance since the variance of two normally distributed variables subtracted is the sum of
their respective variances.

Estimating this leakage can be easily done via Monte Carlo simulations. We can mock
observe fake skies with only T and E content and directly measure the B modes our power
spectrum estimator produces. If the variance of the leakage terms is large relative to our
estimated spectrum, however, this leakage will degrade our measurement. This has motivated
some work on constructing pseudo-Cl BB estimators that limit this leakage.

4.5 E/B Mixing from a Finite Patch of Sky

The orthogonality relationship of the spin-s spherical harmonics,
∫

Ω sYlm sYl′m′dn = δll′δmm′ ,
is only valid when integrated over the entire sphere. This lack of orthogonality when ob-
serving a finite patch of sky leads to a mixture of E modes and B modes with the naive
pseudo-Cl estimator.

From equations 4.40 and 4.8, we can write down Q and U values for a sky consisting
entirely of E modes. For our B = 0 sky, we define blm = 2alm = −2alm:
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Q =
∑
lm

blm
2Ylm + −2Ylm

−2
(4.86)

U =
∑
lm

blm
2Ylm − −2Ylm
−2i

(4.87)

We then solve for the aB,lm coefficients in the presence of some window of the sky W (s).

aB,lm =
−1

2i

∫
Ω

dnW (s) [(Q+ iU) 2Ylm − (Q− iU) −2Ylm] (4.88)

=
−1

2i

∫
Ω

ds
∑
l′m′

bl′m′

[
W (s) 2Y

m′

l′ 2Ylm −W (s) −2Y
m′

l′ −2Ylm

]
(4.89)

For a window W (s) = 1 over the sphere we can use our orthogonality relationship,∫
Ω
dn sYlm sYl′m′ = δll′δmm′ to find that aB,lm = 0∀l,m. If we set W (s) 6= 1 for some portions

of the sky this orthogonality relationship can no longer be used and we find that aB,lm 6= 0.
A sky composed entirely of E modes when only measured over a finite portion appears to
have B modes. B modes will also leak into E modes from measuring a finite patch of sky, but
that term is usually negligible because the magnitude of E modes is significantly larger than
the B modes[14, 47]. For a measured E mode spectrum we can estimate the leaked B mode
contribution to Cl,BB and then subtract it off. This subtraction contributes extra variance
to our estimate of Cl,BB, however. Because of this, various pseudo-Cl estimators for the BB
spectrum that do not leak E to B have been developed. We will touch on a couple of them.

χB Estimator

The χB relies on converting the Q and U maps into maps that are proportional to E and
B and then estimating the power spectrum from those maps. The constructed χB is only a
function of the B modes of the sky. The χE is only a function of the E modes of the sky.
Because the windowing happens in this χB data space, it does not mix E into B modes. This
method was developed in [83].

The general idea is that with these raising and lowering identities:

/∂ sYlm = [(l − s)(l + s+ 1)]1/2 s+1Ylm (4.90)

/̄∂ sYlm = − [(l + s)(l − s+ 1)]1/2 s−1Ylm (4.91)

(4.92)

We can apply the raising and lowering operators to Q and U maps to generate a map
entirely composed of E or B modes:
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χE =
1

2

[
/̄∂ /̄∂(Q+ iU) + /∂ /∂(Q− iU)

]
(4.93)

= −
∑
lm

[(l + 2)!/(l − 2)!]1/2 aE,lmYlm (4.94)

χB =
i

2

[
/∂ /∂(Q+ iU)− /̄∂ /̄∂(Q− iU)

]
(4.95)

= −
∑
lm

[(l + 2)!/(l − 2)!]1/2 aB,lmYlm (4.96)

Once we have these χ maps we can then use our intensity power spectrum estimation
code to get the E and B modes on the sky.

The produced maps cleverly sidestep the mixing issue because the windowing done in
the χX map space. The windowing only mixes B → B and E → E. This method does
come with its share of drawbacks, however. The χx construction relies on taking numerical
derivatives of a pixelized map which can make the operation imperfect. Also, the power
spectrum of the χX maps is proportional to l4 which is a very blue spectrum. This blue
spectrum complicates the construction of the apodization mask. See figure 4.3. Any mode
mixing from the apodization mask will be multiplied by an l−4 factor creating a very red
estimated spectrum.

Pure Estimators

Instead of thinking of the our window operation as something scaling our Q and U maps, one
can think of it as a modification of our E and B conversion operators. Instead of integrating
our Q and U maps with respect to sYlm we integrate with respect to W (s) sYlm. The pure

estimator modifies this operation so that the produced pseudo ãpureX,lms are only proportional
to the full sky aX,lm values and does not mix the values. This method was developed in [82].

The pure estimator takes our naive pseudo-Cl estimator, which we write as:

ãB,lm =
−1

2i

∫
dn(Q+ iU)W (s)Nlm

[
/∂ /∂Ylm

]
− (Q− iU)W (s)Nlm

[
/̄∂ /̄∂Ylm

]
(4.97)

And moves the window, W (s), inside the raising and lowering operators.

ãpureB,lm =
−1

2i

∫
dn(Q+ iU)Nlm

[
/∂ /∂(W (s)Ylm)

]
− (Q− iU)Nlm

[
/̄∂ /̄∂(W (s)Ylm)

]
(4.98)

To see why this has the desired effect, first note that since the spherical harmonics form
a complete basis we can represent W (s)Ylm =

∑
l′m′ αl′m′Yl′m′ . If we plug that into our pure

equations we find:
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ãpureB,lm =
−1

2i

∫
dn(Q+ iU)Nlm

[
/∂ /∂(
∑
l′m′

αl′m′Yl′m′)

]
− (Q− iU)Nlm

[
/̄∂ /̄∂(
∑
l′m′

αl′m′Yl′m′)

]
(4.99)

=
−1

2i

∑
l′m′

Nlm

Nl′m′
αl′m′

∫
dn(Q+ iU) 2Yl′m′ − (Q− iU) −2Yl′m′ (4.100)

=
∑
l′m′

Nlm

Nl′m′
αl′m′ × aB,lm (4.101)

The estimated ãpureB,lm are only a function of the full sky aB,lm coefficients. For the above

equations, Nlm =
[

(l−2)!
(l+2)!

]1/2

. We have assumed that the raising and lowering operators are

well behaved when applied to W (s)Ylm. This requires that W (s)Ylm is continuous and has
a continuous first and second derivative. This method relies on taking numerical derivatives
of the window function W (s) applied to the sky. Using integration by parts, it can be shown
that the χB estimator and pure estimator are mathematically equivalent[83].

4.6 Apodization Mask Construction and Inpainting

When imaging the sky, SPT also measures various compact objects. These foregrounds
effectively act as extra sources of noise in our constructed power spectra. For the sources
bright enough to be individually resolved, we can limit their contribution to power spectra
by excluding them from the data when estimating the power spectrum.

This can be done by modifying our apodization mask to exclude those regions or by
inpainting. Inpainting involves replacing the portions of the map corrupted by a bright
point source with what is effectively a guess of the data in that region. The problem of
inpainting maps to solving a set of under-determined equations. This can be done by setting
some form of regularization condition to make the problem tractable[90] or assuming the
solution follows some simple form[29]. For our power spectrum estimation we require that
the inpainting operation be linear. Much to my chagrin, the inpainting operation used in
[47] was a nonlinear operation. For sources with unpolarized fluxes in excess of 50mJy at
150GHz, we replaced all the pixels within 6’ of the source with the median value of the pixels
in the annulus of distance r from the source where 6′ < r < 10′. This operation is non-linear
because the median of a set is a non-linear operation on the set. The inpainting operation
for compact foregrounds used in [72] is, however, linear. We will focus on that method.

For the pixels in the region we wish to inpaint we first set the pixels to 0. We then replace
each pixel with the average of its four neighboring pixels. This process is repeated until the
values converge. This operation is equivalent to solving Laplace’s equation in the inpainted
region with Dirichlet boundary conditions.
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Inpainting can provide some benefits over masking the sources, namely it reduces the off
diagonal elements of the mode coupling kernel. In the flat sky limit the apodization mask
is just a 2 dimensional DFT window function. The mode coupling kernel is the angular
average of the DFT of the apodization mask. Adding narrow holes in map space results in
the spectrum spreading in frequency space. Inpainting allows us to avoid this issue somewhat.
See figure 4.2.

Figure 4.2: An input sky consisting entirely of E modes around l = 200 is generated.
This is then either windowed with a holey apodization mask or windowed with the smooth
apodization mask and inpainted over the point sources. The BB and EE spectra is estimated
with the naive pseudo Cl estimator, the χ estimator, and the pure estimator. A comparison
is made between the estimated power spectra for the various estimators with inpainting or
apodizing point sources. The inpainting estimators perform the best at l values close to 200,
particularly when inpainting the χB estimate.

(a) Apodization mask used with the in-
painted BB power spectrum estimate.

(b) Apodization mask used when not in-
painting.

(c) (d)
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Figure 4.3: A fake microwave sky is realized with the best fit Planck cosmological parameters.
The BB power spectrum is then estimated with various apodization masks using the χB
estimator. The l4 of the χb estimator creates the sharp upturn at low-l values since that l4

dependence needs to be divided out. Any spreading of the BB spectra to low l or residual
EE leakage manifests a low frequency upturn in our estimated power spectrum because it is
multiplied by this l−4 factor. Using a smoother apodization mask reduces these two leakage
terms and pushes this upturn lower in l.

(a) (b)

(c) (d)

4.7 FRANK BB

Overview

Our biased map maker filters the time ordered data before binning it to make a map. This
filtering operation can leak E modes into B modes. The FRANK (First Remove Any Nearly
Known) BB estimator is designed to remove this filtering leakage. The general idea is that
we first make a map that is a best estimate of the T and E modes on the sky with no B
mode content. We then mock observe that TE sky and repeat the map making operation.
Any B mode content in that second map is an artifact from filtering and power spectrum
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estimation.
While this method seems fairly circular, to get a better estimate of the B modes we

remove the B modes and then subtract that map, there are a couple properties of the fields
we can exploit. The B modes on the sky are much smaller than the E modes on the sky. This
means that the fractional error in our estimate of the E mode map from filtering leakage
will be much smaller than the error from filtering leakage with the B mode map. The other
property we can use is the semi-locality of the E-B basis. As seen in equation 4.93 the E
and B maps can be found in terms of second derivatives of the Q and U maps. Knowing Q
and U at a single point on the sky cannot meaningfully provide information about the E/B
content. Knowing the values at a point and at a locus of points around it can, however,
provide information about the E/B content of that patch. Given that we observe a patch
of sky this means that our estimate of the E mode only polarization map will have a small
error near the center of our patch of sky and a larger error near the edge. For a picture
of this see figure 4.4. Because we know there is a region of sky where our estimate of the
E mode map is corrupt we can just exclude this outside ring of data when estimating the
power spectrum.

Figure 4.4: B Mode Removal Error

(a) (b)

The map making, mock observation, and removal of B modes are all linear operations
that can be written as matrices. We write our map maker as M. The filtering operator as
Fα. The mock observation operator is O. The mock observation is just the pointing matrix
from the map making equation P . The B mode removal operator we will write as D. This
means we can replace our map making operation with our leakage removed map making
operation:

m =MFαx→m =MFαx−MFαODMFβx (4.102)

m =MFα(I −ODMFβ)x (4.103)
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The map produced has the E mode signal removed and the B modes created by the
filtering of the E mode data removed. It consists of the uncorrupted B modes. The two
nuances of this equation are how the B mode removal operator, D, is constructed and how
the filtering options, Fα and Fβ, interact.

Filtering Concerns

Two primary types of time domain filters are used by SPT. A discrete fourier transform
based filter is used to low pass filter the data. This filter removes high frequency noise that
can appear as excess map noise. Atmospheric noise is removed using high pass filters. These
high pass filters use linear least squares fitting to fit a small set of basis functions to the
time ordered data. The most commonly used set of these functions in SPT’s analysis are the
first few Legendre polynomials. These remove large scale atmospheric changes and any slow
thermal drifts in the detector focal plane temperature. These filters operate on an individual
constant elevation scan.

When constructing our estimate of the B mode free sky we can neglect the low pass
filter, but we still need to high pass filter the data in some way. The time drift in focal plane
temperature would dramatically increase the noise in the map if this filtering were not done.
This filtering biases our constructed B mode free map because we lose information on the
map fourier modes that we filter. This means with FRANK we will not estimate the leakage
from the E modes we filter when generating our best estimate of the E mode only sky. This
results in our final map having some modes with an unknown E to B leakage contribution. If
we design the second filtering step, Fα, to remove the modes with unknown E to B leakage,
then we can guarantee that the output map has properly removed the filtering leakage.

To be a bit more explicit, first note that the linear least squares filtering operators act as
projection matrices, FβFβx = Fβx. We place the requirement that the final filtering, Fα,
has the form:

Fα = FφFβ (4.104)

Where Fβ is the filtering we use to estimate our B mode free map and Fφ is the extra filtering
we do on top of that when producing our final map.

We then can rewrite the map making equation as:

m =MFα(I −ODMFβ)x =MFφFβ(I −ODM− [ODM,Fβ])x (4.105)

=MFφFβ(I −ODM)x−MFφFβ[ODM,Fβ])x (4.106)

≈MFα(I −ODM)x (4.107)

The last line in the equation is the ideal form of this type of filtering. We have a
perfectly constructed B mode free map in the form ODMx that we apply our filtering to
to estimate the E to B leakage. This assumes that we can safely ignore MFα[ODM,Fβ]x.
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The commutator describes our error in the construction of the B mode free timestreams from
polynomial filtering before constructing the data. Fortunately we can construct our filter Fα
to remove this error in estimate. For data filtered with a low order polynomial we expect this
error signal to be approximately described by a low order polynomial. By applying a higher
order polynomial filter as our second pass filter the corrupted modes will be removed from
our estimated B free sky during the second map making process. To summarize, it doesn’t
matter if we do a bad job estimating part of the B free sky if we filter that part away.

One last thing worth mentioning about filtering is purely a bookkeeping concern. When
estimating our B free map of the sky, part of our estimate is corrupted near the edge of the
map. When constructing our linear least squares filter, Fα, it must only operate on the data
that we have a reasonable B free estimate of. When polynomial filtering the data, the data
on the edge of the map that we do not have a B free estimate for will need to be excluded.
This is to ensure that the filtering operation is identical between the data constructed from
the B free map and the actual data is identical.

D, De-B Operator Construction

Our method for B mode removal is fairly naive. We multiply our Q and U maps by some
apodization mask that smooths the transition to zero. We use then convert our apodized
Q/U maps into E/B in Fourier space using equation 4.68. We zero all of the B modes below
some l cut-off and apply the inverse transform back to Q and U space. We then divide
out the apodization mask. This does a fairly reasonable job of estimating the B mode free
sky except around the edges of the map. See figure 4.4. Some other options, like using a
pure estimator for the E map have been explored, but they tend to perform worse than this
estimate.

The main complication with the construction of the B mode free map comes from our
desire to not have a noise bias in our estimate of the BB spectrum. As mentioned in section
4.4 we use bundle cross spectra to remove this noise bias. If we were to only produce one
estimate of the B free sky we would be biased by the noise. This bias would come from B
mode leakage of the noise signal of the E mode map.

Performance

This method of map making has the downside that some data on the edge of the map gets
thrown away. In practice this ends up being ≈ 10%. Due to uneven coverage of the map this
data is often the noisiest so the loss in sensitivity is less than expected from geometry. It
provides a factor of 10 reduction in filtering leakage at low l. See figure 4.5. This technique
also acts to suppress E to B leakage from the apodization mask. The efficacy of FRANK
depends on if the variance in the estimate of the BB power is improved by reducing filtering
leakage by sacrificing some map area.
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Figure 4.5: A microwave fake sky is generated with best fit Planck cosmological parameters.
We then compare the BB power spectrum estimate with a fourth order polynomial filter
applied to the data with the FRANK estimated power spectrum where Fα is a fourth order
polynomial filter and Fβ is a first order polynomial filter. When estimating the FRANK
power spectrum, because the mode mixing has been removed, one can use a leakage free
Pseudo-Cl estimator or just the naive Pseudo-Cl estimator.

4.8 Flat Sky Map Projections

The flat sky approximation requires mapping points on the sky to a Euclidean, two dimen-
sional coordinate system. The projection of the sphere onto a 2D plane necessarily distorts
the map. Many subclasses of map projections that preserve various qualities of the underly-
ing structure such as area, shape, or distance exist[86]. For the purposes of power spectrum
estimation, we restrict the set of projections used to be equal area projections in order to
minimize the effects of the inhomogeneous pixel size creating an uneven weighting over the
map. These equal area map projections, unfortunately, distort the shape of the underlying
structures. With our power spectrum estimation we correct for the effects of the detector
beam in l space. The l space correction assumes that the produced map is the true map of
the sky convolved with the detector beam. This assumption breaks down if the shape of the
beam changes over the map. For an illustration of these distortions see figure 4.6.

In order limit the distortions in our map it is beneficial to use an oblique projection.
Oblique projections redefine the equatorial axis or the center point of a projection to limit
the map distortions near a point on the celestial sphere. This rotation of the equatorial axis
complicates the mapping of the x and y directions in the projection to θ and φ values of the
celestial sphere. While a necessary evil for limiting distortion of our beam it can complicate
our understanding of various non-idealities in the system.
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(a) Lambert cylindrical equal-
area projection

(b) Lambert azimuthal equal-
area projection

(c) Sinusoidal projections

Figure 4.6: The Tissot’s indicatrices for three equal area map projections constructed by
[49]. Each ellipse shows the local distortion of the map projection. The projections tend to
limit distortions around some local point in the map.

Table 4.1: DFT Library Normalizations

Lib Forward Inverse

IDL 1
N

∑N−1
x=0 f(x) exp[−i2πxk/N ]

∑N−1
k=0 F (k) exp[i2πxk/N ]

Numpy
∑N−1

x=0 f(x) exp[−i2πxk/N ] 1
N

∑N−1
k=0 F (k) exp[i2πxk/N ]

Scipy
∑N−1

x=0 f(x) exp[−i2πxk/N ] 1
N

∑N−1
k=0 F (k) exp[i2πxk/N ]

GSL
∑N−1

x=0 f(x) exp[−i2πxk/N ] 1
N

∑N−1
k=0 F (k) exp[i2πxk/N ]

FFTW
∑N−1

x=0 f(x) exp[−i2πxk/N ]
∑N−1

k=0 F (k) exp[i2πxk/N ]

Our scan strategy consists of constant declination scans with a varying right ascension,
see figure 4.7. Time varying sources of noise will couple along that axis. Any effects of
filtering on the map will also be aligned with our scan axis. With a map projection that
maps the x and y axis simply to the θ/φ directions these distortions are aligned with the
axes of the map. The scan aligned distortions will then be localized in the 2D DFT of the
map allowing for the construction of a simple filter. An oblique map projection does not
have this property, unfortunately.
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Figure 4.7: SPTpol data was taken with constant elevation scans. Only the azimuth was
varied. For our unique geographic location these azimuthal scans are (almost) equivalent to
constant declination scans in the equatorial coordinate system.
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Figure 4.8: A full sky consisting entirely of E modes in the range 70 < l < 90 is generated
with the healpix pixelization scheme. This full sky is projected into various flat sky map
projections. The BB power spectra is then estimated with the flat sky χB estimator. Using
the flat sky power spectrum estimators mixes power between different l bins and between
E and B. Because E >> B we are most sensitive to that form of the leakage. For the
stereographic and oblique Lambert azimuthal equal area projection the leakage of E to B
is small enough to not meaningfully contribute to the variance of our estimate of the BB
spectra for all l > 50.
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Chapter 5

Fast Transient Search

5.1 Introduction

Fast radio bursts (FRBs) are millisecond-long bright (≈ 2 Jy ms) bursts of radio emission.
[58, 44, 98]. FRBs are characterized by a dispersion measure larger than can be reasonably
sourced in our galaxy, ≈ 300− 1800cm−3pc[70, 41].

They were initially reported in 2007 after having been discovered in legacy pulsar survey
data at the Parkes telescope. [58] Further bursts were found in the Parkes High Time
Resolution Universe survey [98]. Shortly after, a fast radio burst was found in Arecibo
data[89] helping to alleviate worries that the Parkes FRBs were being sourced by terrestrial
interference. They have been detected at 800 MHz[61, 9] 1.4 GHz [98, 89], 3 GHz[13], 4
GHz, and 8 GHz[63].

FRB 121102 was originally detected in Arecibo data. Follow up observations of FRB
121102 found additional bursts at the same patch of sky. [88, 80] The repeating nature
of the burst allowed for localization of the FRB to its host galaxy [13] and to a persistent
radio source[60]. The repeating source has been found to be linearly polarized with an
extremely large rotation measure[60], 105 rad m−2. The repeating pulses of FRB 121102 at
low frequencies appear to be over a longer time scale (2-9ms) than the pulses measured by
Parkes[80, 12]. The repeating pulses measured at 4 and 8 GHz have much shorter time scales,
< 1ms[63]. This difference in pulse width is roughly consistent with multi-path broadening
from the propagation through plasma.[52]

FRB 121102 has a highly variable spectral structure over the measured frequency range
of 1.4-8 GHz[88, 80, 51]. This spectra is poorly matched by a power law and can best be
described as an envelope with a width of roughly 500 MHz[51]. This envelope starts at zero,
peaks, and returns to zero flux. The spectral structure of other FRBs has been complicated
by the frequency dependence of diffraction limited beams leading to a large variation in
constraints placed on the spectral index[70].

Higher frequency (8 GHz) measurements at Arecibo and the Green Bank Telescope have
provided rotation measure measurements of 105 rad m−2[63]. These bursts were found to
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be highly linearly polarized, with polarization fractions statistically consistent with 100%.
Previous measurements that found smaller [61] or no measurable linear polarization [68]
polarization could have been caused by the bandwidth used to measure the signal if other
FRBs have as large of rotation measure as the repeater[63].

Follow up observations of other FRBs have yielded no measurements of repeated bursts
[69, 61]. It is possible that the non-detections are a result of the lowered fluence of the
repeated bursts or that the FRB progenitor was not active during follow-up observations[88].
It is also possible that there are multiple progenitors of fast radio bursts. Many cataclysmic
models involving magnetic field shedding predict a relatively flat spectrum of fast radio
bursts, though this is complicated by the theoretical difficulty of modelling cataclysmic
events[23]. Previous to this paper, no search has been done to see if the phenomenology
extends out to frequencies of hundreds of GHz.

Many source models for fast radio bursts have been proposed. Prior to the detection
of the repeated fast radio burst many models involving cataclysmic events such as core
collapses or compact object mergers were proposed[57, 7, 104, 64, 40, 99, 23]. If FRB
121102 is characteristic of the population, these models are no longer adequate to explain the
phenomenology of FRBs. Non-cataclysmic models centered around young neutron stars, [43,
41, 102, 43, 59] black holes[42] and active galactic nuclei[100] are consistent with observations
so far. Many more exotic models for FRBs have also been proposed[38, 79][56].

5.2 Relevant SPTpol Information

SPTpol observed the sky in two frequency bands centered at 90 GHz and 150 GHz using
transition edge sensor (TES) bolometers. The 150 GHz antennas consist of a feed horn
coupled orthomode transducer. The two orthogonal linear polarization modes are separated
in an orthomode transducer and coupled to the individual TES bolometers via low-loss
striplines. The 150 GHz frequency band is set by the waveguide cut off of the feed horn and
a metal mesh filter[3]. The bandwidth of the system is 45 GHz centered at 150 GHz. See
figure 5.1. The beams for the two polarizations overlap on the sky. We label this group a
pixel. The full width at half maximum of the 150 GHz beams is 1.3 arcminutes. Neighboring
pixels have a pointing separation of 3.4 arcminutes.

The TES bolometers are operated with a frequency multiplexed readout system[17] in
which 16 detectors are connected in parallel. Each TES is connected in series with a LC filter
that defines a resonant frequency. A sum of sine waves at the resonant frequencies is used
to supply a constant amplitude voltage biases to each of the 16 detectors in the comb. The
total power on the TES is roughly fixed, so changes in optical power result is the opposite
change in the electrical power applied to the TES. Increasing optical power decreases the
current through the TES. The summed current through the comb is amplified with a DC
SQUID and op amp amplifier chain. The amplified signal is digitized and sent to an FPGA.
The FPGA demodulates the sine waves and then decimates the demodulated signal. The
output time ordered data (TOD) has a sample rate of 190.7 Hz.
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Figure 5.1: SPTpol band response measured with a Fourier-transform spectrometer.

We analysed a year of data from the 2015 and 2016 austral winter. During that time,
SPTpol observed a patch of sky centered at right ascension 0 and declination −57.5◦ with
an extent of 4 hours in RA and 15◦ in declination. While observing this patch the telescope
scanned across the sky with an angular speed of 2◦s−1.

5.3 Search Overview

This work presents a search for fast transient events (<10 ms) using the 150 GHz detectors.
For most cosmic microwave background analyses, transients with this phenomenology are
expected from cosmic rays interacting with the detectors and are actively removed to avoid
contaminating the data[50, 47, 21, 76, 71, 8].

The search strategy consists of looking for impulses of flux, filtering known sources of
contamination, estimating the background rate, and using simulations to map our residual
count rates to a constraints on the rate, flux, and spectra of sources. When estimating
the background rate, we rely on the fact that the 150 GHz detectors were monolithically
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Figure 5.2: An image of SPTpol’s 150 GHz wafers. A pixel is comprised of two TESs that
measure the optical power from two orthogonal polarization modes split by and OMT. When
doing the background rate estimation, we use the rate of off-pixel pair events to estimate
the rate of on-pixel pair events. Because the FWHM of the beam is much smaller than
the pointing separation of different pixels, TESs that do not share a pixel have negligible
overlapping optical response.

fabricated on wafers allowing us to use other TESs on the wafer to estimate the background
rate. We use pairs of neighboring detectors that do not share optical response to the same
area of sky to estimate the background rate for detectors with overlapping optical response.
The 90 GHz detectors were individually manufactured making this method of background
rate estimation impossible for them. Each detector beam is measured independently by
two different TES bolometers which are measuring the incident power in the two orthogonal
polarization modes. In order to reduce our background rate to a manageable level, we require
that any impulse be coincidentally detected in both detectors in a pixel.

With the 1.3 arcminute FWHM of the beams and the 3.4 arcminute pointing separation
between neighboring pixels, we expect any short transient to only be measurable by the
detectors in one pixel. For our 5 ms sample time, and 2◦s−1 scan speed, we scan across
0.6 arcminutes per sample. With our beam size, for sources longer than 5 ms, this has
an appreciable affect on the power deposited on the antenna that is taken account in the
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simulations. For sources shorter than that, we are effectively just sampling the detector
beam at a point.

5.4 Details on the Expected Event Structure

Power on the Transition Edge Sensor From A Celestial Source

Figure 5.3: SPTpol Beam/Point Spread Function for 150GHz Detector

For any fast event, we only observing it in some random section of our detector’s beam.
This means that for any population of celestial transient signals we will be randomly sampling
our beam. Our beam estimated from Venus is seen in figure 5.3.

Typical event durations of FRBs are ≈ 4 ms. The mean duration of known FRBs is
6.1 ms, median duration is 4.3 ms[70]. This means we sweep ≈ 0.6 arcminutes of our beam
across a transient source in 5 ms. This angular scale is smaller than the pointing separation
of different pixels. Having multiple pixels respond to an event would require a very large
flux or a very long duration event. In the event that there is a sizeable number of these
multi-pixel detections we would also see a much larger number of individual pixel events.
Because of this we can focus solely on events where two detectors see a noticeable impulse.

The 2 degree/second scan speed of the telescope means that even for a brief event we
are scanning across a fairly large portion of the beam. Monte Carlo simulations were used
to understand how different the output time ordered data is when one includes the effects
of scanning across the beam as compared to just sampling the beam. See figure 5.4.
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Figure 5.4: Input Gaussian signals with random time offsets were fed through the decimation
filter. The maximum of the output was histogrammed. For the blue points, the input data
stream was scaled by a constant multiplicative factor that is the value of the beam at one
point. This is the equivalent to the telescope not moving or scanning very slowly. For the
green data points, the effects of the telescope scanning over the source are included. After
low-pass filtering the data, the effect of scanning is to push some of the extremes of the
response to be closer to the median response. On the low end of the response, we are more
likely to have a portion of the signal be when the telescope is looking at the source. For
the high end of the response, we will never just be looking at the maximum of the telescope
response.

(a) (b)

(c) (d)

TOD Unit Calibration

Our detector timestream data is normalized to have units of Kcmb. For simulations of on sky
events we’d like a map of each detector’s response to a 1 Jy source in units of K/Sr. We
first scale the amplitude of the beam map such that the integral is 1 Jy. For a pixel size s
and pixel in Jy/sr units pi:
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∑
i∈pixels

s× pi = 1Jy (5.1)

We then apply a conversion factor of Jansky/steradian to Kelvin, J , as estimated from
our bands measured with the Fourier transform spectrometer. The number used is J =
1/(396.3 × 106)K/(Jr/sr). This conversion assumes a flat source spectrum. All of the
science results are presented in terms of Jy ms for this flat source spectrum.

Jpi = ki (5.2)

Now we have a map of a 1 Jy source in units of Kelvin for the 150 GHz detectors with
our beam. When simulating the events, we imitate the scanning of the telescope over this 1
Jy source and then scale our model of the input events.

Filter Response to a Transient

For simulation and constructing the event searching code we need to understand the impulse
response of the bolometer and readout system. The frequency response of the TES and the
digital anti-aliasing filter could potentially both contribute.

Detector Response

To first order, the transition edge sensor current response to power (si) looks like a one pole
filter[37]:

si ∝
1

1 + jωτ
(5.3)

The detector response has typical time constants on the millisecond to sub millisecond
scale, τ < 1ms 5.5. For a 1 ms time constant the response frequency knee is at ≈ 160 Hz.

Digital Readout Filters

After the digitization of the detector response signal, we demodulate the data, low-pass
filter the data, and finally decimate the data. This digital low-pass filter primarily acts as
an anti-aliasing filter. For our output sample rate of 190.7 Hz, this filter’s cut off frequency
is by construction below the Nyquist frequency of 95 Hz. Because the digital anti-aliasing
filter is a multi-pole filter at a frequency roughly an octave below any other filter, this filters
response will dominate how power on the TES will be converted into time ordered data.

Anti-aliasing Filter and Decimation

The decimation filter consists of a low-pass anti-aliasing filter and a decimator. The low-pass
filter is a CIC filter followed by an FIR filter. The low-pass filter is linear, acausal, and shift
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Figure 5.5: TES Frequency Dependent Response

invariant. Once we decimate the output of the anti-aliasing filter, we cause the filter to not
be shift invariant. The decimator just takes every Nth sample of the output data. If we were
to shift the input data by one sample, it would change the form of the output signal. For a
cartoon of this see figure 5.6. Because the data is not shift invariant, we cannot construct
a matched filter for identifying transient signals. One could hope that it would be possible
construct an approximate matched filter by averaging the multitude of impulse responses we
have. This ends up being somewhat problematic, due to the acausal nature of the digital
anti-aliasing filter. For the acausal filter there is significant ringing in the impulse response.
This ringing varies wildly depending on the phase of the input impulse relative to the output
sample. See figure 5.7. Any average impulse response one could construct bears little to no
resemblance to each individual impulse response.

Figure 5.6: Shifting an impulse by one input sample causes the form of the output signal to
change. In effect, the decimation filter has multiple impulse responses depending on where
the input impulse is relative to the output signal.

The sample rate of the output data is 190.7 Hz which gives a sample time of ≈ 5ms.
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Figure 5.7: Decimation Filter Response

(a) A subset of the impulse responses of the
decimation filter. The acausal low-pass fil-
ter output rings. The exact shape of the
impulse depends on the relative phase of
the input impulse to the output sample.

(b) The maximums of the various decima-
tion filter outputs for a 1 ms FWHM Gaus-
sian input signal. Only the relative phase
of the input signal to the output sample is
varied.

For any celestial signal shorter than 5ms our sensitivity is degraded, but not removed. The
anti-aliasing filter and detector response act as integrators. The output signal is very ap-
poximately the integral of the signal over a 5 ms sample. One unfortunate aspect of looking
through legacy data is we can’t increase that sample rate. Because of our sample rate, we
cannot resolve the peak flux of an FRB in our data. We are only sensitive to the integral of
the flux, fluence, of an event. This does have some benefit in simplifying the analysis. For
signals shorter than 5 ms we need not concern ourselves with the actual source profile. The
output response is only a function of the source fluence. See figure 5.8.

The decimation filter directs many of the choices in this analysis. It means we cannot use
a matched filter. It also means when simulating events, we care a lot about the fluence and
the relative phase of the source in the input data stream, but not the actual source profile.

5.5 Event Finding

Short impulses in the detector TOD are located, and every detector with an above threshold
significance in a three sample (15 ms) window is grouped into an event. To locate these
impulses, we fit a null and alternative model to every sample of the detector TOD and
assign a significance defined by the difference of log likelihoods. The null model consists
of a linear polynomial and a Heaviside step function. The alternative model includes a
delta function along with the linear polynomial and Heaviside step function. The Heaviside
function is included to account for rapid changes in the operating resistance of our TES
bolometers that can be caused by a number of environmental effects. When estimating the
likelihood the noise is assumed to be normally distributed with a variance estimated from
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Figure 5.8: The maxima of the decimation filter output TOD as a function of source profile.
For each input, the total fluence is held constant. For short signals, the detector response is
only a function of the fluence.

the data. An initial search threshold of a significance of 6 is used when locating events.
The impulse response of the TES bolometers and the readout system is dominated by the

digital anti-aliasing (AA) and decimation filter used to reduce the data volume. The AA and
decimation filter is not shift invariant, making the construction of a matched filter for use
in the event finding impossible. The impulse response of the AA decimation filter depends
on the location of the impulse in the input data stream relative to the sample boundaries in
the output data stream. Input impulses close to a sample edge of the output data stream
have a filter response with the signal spread over two output samples. When multiple TESs
observe an identical input impulse noise in the TOD can cause the apparent peak maximum
to shift and spread in time. When one includes a noise bias, an identical input impulse in
two different detectors with different noise can appear as a maximum signal in neighboring,
but different output samples. To find these events we collect above significance threshold
events over a three sample window, rather than an individual sample.

There is an edge case where many consecutive samples have a detector with an above
threshold significance. As an example, sample 3, 4, 5, 6, 7, ..., 20 all have above threshold
significances. This leads to an ambiguity as to how we would group the event, so we just
group all of those samples into an event. This event is removed later when filtering in the
events. A structure like that probably indicates an issue with the telescope.
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Figure 5.9: A simulation of events and the assigned significance.

(a) Simulated timestream (b) Timestream Significance

5.6 Event Filtering

We first remove any events without exactly two detectors with an above threshold signifi-
cance. Filtering to two detectors reduces the number of events by a factor of 25, primarily
removing single detector events. It is also a useful veto of radio frequency interference that
manifests as more than two detectors with an above threshold significance.

Along with filtering to two detectors in an event, we filter sources of known backgrounds.
We filter events if:

• The Heaviside amplitude fit when doing the significance assignment is too large indi-
cating a persistent change in detector resistance.

• The detectors are pointing at a bright point source in the field.

• The assigned significance of these other detectors sharing a DC SQUID and amplifier
chain at the event sample are above a threshold indicating an amplifier glitch.

• The weighted sum of the TOD for all the detectors in the same wafer as the event
detectors sees a significant event. Cosmic rays interacting with the wafer can heat it
leading to a low significance spike for every detector in the wafer.

For the filters with some cut-off value, the threshold was selected by repeating the filtering
procedure on simulated transient events while varying the cut-off parameter. The threshold
values were set to remove ≈ 2% of simulated events.

While assigning significance we assumed normally distributed noise. This assumption is
invalid for some of the time ordered data, however. Various physical mechanisms operate
to create these non-Gaussianities. During operation TESs can occasionally become unstable
and oscillate. These oscillations manifest as a series of events in the data. This non-Gaussian
noise results in a large population of spurious background events. In order to remove these



CHAPTER 5. FAST TRANSIENT SEARCH 92

Filter Sim Evs Cut Background Evs Cut
Heaviside Amp. 1.5% 1.4%
Point Source 0.2% 0.7%
Amplifier Glitch 4.0% 2.4%
Wafer Heating 2.0% 0.5%
Non-Normal Noise 40.0% 87.9 %

Table 5.1: Simulated events filtered and real background events filtered by the different
filters. The non-normal noise filter is the only filter that cuts a large percentage of the data.

events, we record the number of samples over minute and hour-long time scales above a
significance threshold for each detector. If the number of super-threshold samples for the
detectors in an event is above some cut-off parameter, we remove the event. The cut-off
scale was set by maximizing our signal to noise. The signal to noise ratio was estimated as
the number of simulated transient events surviving filtering divided by the square root of
background events surviving filtering. This resulted in a large number of simulated events
being cut by the filter.

Satellite Filtering

Figure 5.10: For the events that were very closely spaced in time, the celestial location of
the event was moving at an approximately constant angular velocity.

(a) (b)

From the population of remaining events, a statistically significant population of celestial
on-sky signals were detected. The details of the on-sky and background rate estimation are
found in section 5.7. These on-sky events were found to be highly clustered in time. Three or
four detections occured over the timespan of seconds. The location of the progenitor of these
events were moving across the sky with a constant angular velocity. This angular velocity was



CHAPTER 5. FAST TRANSIENT SEARCH 93

consistent with a satellite in low Earth orbit. Through the use of the Joint Space Operations
Center (JSpOC) catalog of satellite ephemerides[87], these events could be unambiguously
associated (chance coincidence < 10−5) with the GRACE and Swarm satellites being in the
telescope’s field of view.[95, 66] Harmonic distortion of a K-band transmitter on the GRACE
satellites appears to create a measurable signal at 150 GHz. [15] The emission mechanism
from the Swarm satellites is unknown at this time, though flux estimates indicate that the
emission is non-thermal.

For our detectors bandwidth and sample rate, thermal emission from large objects in
low Earth orbit can appear as low significance events in this search. In order to filter this
background, we remove any events with an object in a patch of sky centered on the detector’s
field of view. The ephemerides of satellites are not perfectly accurate. In order to correct
for that error we scaled the patch of sky used to exclude satellite events until we recovered
every Swarm and GRACE detection. The area was then increased by 50% to approximately
2 square degrees. This assumes that the error in the trajectory of the GRACE and Swarm
satellites is characteristic of all of the tracked satellites. That coupled with the fact that the
JSpOC catalogue excludes classified satellites means that there are possibly an excess of low
significance events in the output data. We do not see this low significance excess indicating
the satellite filtering is working. When estimating the background rate, we apply a count
correction factor for the chance coincidence of events with satellites being in the field of view.
We expect to lose roughly 9% of events to being falsely attributed to a satellite signal.

5.7 Background Rate Estimation

After filtering we divide the remaining events into four groups: positive amplitude events with
overlapping optical response, positive events without overlapping optical response, negative
amplitude events with overlapping optical response and negative amplitude events without
overlapping optical response. Only detectors sharing a pixel have overlapping optical re-
sponse, which we label as on-pixel. For all other TES pairs we use the moniker off-pixel.
Cosmic rays interacting with the TES bolometers appear as an impulse in the time ordered
data mimicking the signals we are searching for. This creates an excess of positive events as
compared to negative events motivating us to use the off-pixel positive events to estimate the
background rate of the on-pixel events. This procedure is repeated on the negative amplitude
events as a cross check.

In a cosmic ray shower, the density of particles is a function of the lateral distance from
the center of the shower[28]. Because of this, we parameterize our background rate estimate
in terms of the lateral separation of our TESs, d. We assume that the rate of events between
two detectors, i and j is Poisson distributed with mean liljLdf(dij), where Ldf(dij) is the
rate for two detectors separated by distance dij. li and lj are order unity liveness correction
factors for each detector. We can extend this individual detector rate into a total rate for
every detector in the camera at separation d, R(d), by the inclusion of a geometric correction
factor, X(d).
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R(d) =
∑
i

li
∑
j

ljLdf(d)δ(d− dij)b = Ldf(d)X(d) (5.4)

We label Ldf(d) our lateral distribution function in analogy to cosmic ray physics. The
geometric correction factor X(d) is estimated from the physical layout of the TES bolometers
and their yield. To first order, it is the average number of detectors at the physical separation
d from a TES in the array.

Figure 5.11: The geometric correction factor. This is the average number of live detectors at
a distance away from an individual detector. It grows roughly linearly from the flat geometry
and then tapers off from arriving at the edge of the wafer.

We use the off-pixel events to estimate r(d) and then use that as a predictor of the
on-pixel background rate. With the monolithic array fabrication of the 150 GHz detectors,
the intra-pixel TES separation is constant for all pixels. The inter-pixel TES separations
cover distances that are smaller and larger than the intra-pixel separation. This allows us
to constrain r(d) on both sides of the intra-pixel separation from off-pixel information.

With the frequency-multiplexed readout system, there are other possible ways of grouping
detectors. These include the readout frequency, the physical location of the inductor used in
the LC filter attached to the TES, and whether the two detectors share an amplifier chain.
Physically close inductors and close frequencies would manifest as an increased sensitivity
to radio frequency interference. The physical closeness of the inductors is highly correlated
with sharing a readout amplifier chain. We compared the background rate estimate using
only detectors sharing an amplifier chain to the background rate estimate from the entire
data set and found it to be statistically consistent.
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Figure 5.12: This is a simulated lateral distribution function structure. This plot is included
to give an idea of what the expected structure of a lateral distribution function is. The plotted
negative events were generated from uncorrelated noise. The positive events included a an
additional rate component that is correlated with separation.

5.8 Event Simulation

When estimating on-sky counts and the background rate, we divide the events into groups
based off of their significance. To convert the significance thresholds into physically mean-
ingful parameters, we rely on Monte Carlo simulations. Sources with a known fluence are
added to the time ordered data and the search process is repeated on the simulated events.
This simulation process gives us the percent of events found as a function of significance
range and fluence.

To simulate events we pick an input source profile, scale the flux over time by the detector
beam scanning over the source, apply the decimation filter, and then add it to the time
ordered data. When adding the simulated signal to the time ordered data, we assume an
unpolarized source signal, and add the same simulated signal to both polarization sensitive
detector’s time ordered data.

For sources shorter than our sample rate, the input source profile has little effect on the
output signal. It is only a function of the signal fluence. Because the exact structure of the
input signal does not matter we just use a Gaussian input source profile. For the flux of
the input events we assumed a flat source spectrum. All results are quoted assuming a flat
spectrum.

We modelled the on-sky event rate as the power law of the form:
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Figure 5.13: Lateral distribution function normalized to units of expected on pixel count rate.
The negative on-pixel events are statistically consistent with the estimated background rate
from off pixel events, while the positive on-pixel rate shows a significant excess. This excess is
caused by satellites being in view of the detectors. The satellite signals appear as transients
in the data due to the scanning of the telescope. The telescope scan speed is 2◦s−1 while
low Earth orbit satellites move with an apparent angular velocity less than 1◦s−1.

Figure 5.14: This is exactly the same plot as above, but now with the satellites filtered from
the data. With our satellite filtering procedure we expect to remove only 9% of events if this
is a chance coincidence.
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Figure 5.15: The background rate prediction and on pixel rate are consistent after satellite
filtering for both positive and negative amplitude events. There are slightly more positive
events than negative events.

Rsky = R0

(
F

F0

)α
(5.5)

Using the detector live time and our simulations we are able to convert and on-sky rate
into our expected event rate with the equation:

Rcounts = φΩT

∫ ∞
0

Psig(F )R0
F (α−1)

Fα
0

dF (5.6)

Where Ω is the instantaneous sky area observed. T is the time of observation. φ is
the correction factor for the chance coincidence of an event with a satellite. Psig(F ) is the
percent of events found after filtering in the significance range.
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Figure 5.16: Percent found as a function of significance cutoff and source fluence. The
contour plots where 33% of events are recovered compared to the 32 Jy ms, significance
cutoff 7 value. The kink in the contour is just noise from the Monte Carlo based estimation
of the percent found.

5.9 On-Sky Constraints

We generate Feldman Cousins confidence intervals with Monte Carlo simulations using the
method of confidence belts. For the background rate estimate, we use profile likelihoods to
set the background rate. The equation has the form:

argmax
Bsig

L(x,Ldf|Ssig, Bsig) =P(x, Ssig +Bsig)+

P(Ldf, XBsig)
(5.7)

P(x, µ) is the Poisson likelihood of x counts with mean µ. Ssig is the on-sky rate for our
significance band. Bsig is the estimated background rate in our significance band. When
constructing the confidence belt for a Ssig, we use the Bsig that maximizes the likelihood
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of the on-sky rate and the likelihood of the lateral distribution function. This reduces the
dimensionality of the parameters needed for confidence interval construction. For estimating
the likelihood of the lateral distribution function for a given background rate, we model the
LDF rate in the region of the detector spacing as a low order polynomial that intersects our
background rate. This is implicitly assuming the background rate is smoothly varying with
separation. This allows us to estimate the likelihood of the lateral distribution function for
a given background rate.

For the rate constraint Monte Carlo we divide the data into three significance regions:
the events with both detector significances above 7, 9 and 13, above 9 but not above 13,
and the events above significance of 7. Most of the constraining power comes from the
low-background, high-significance region since the background rate drops exponentially with
significance, while the expected on-sky signal drops at a polynomial rate with significance.
Changing the lowest significance cut-off to 8 changes the on-sky constraints by less than
3% indicating that lowering the significance threshold further would have little effect on the
analysis.

We found no statistically significant excess of on-sky events over our background rate
once the satellite signals had been removed. The 90% upper confidence limit is 1.1 × 105

sky−1 day−1 for 1 ms signals with fluence above 10 Jy ms. With our analysis techniques, the
constraints degrade for signals longer than our sample size. Our sensitivity roughly tracks
the fluence integrated over one 5 ms sample.

5.10 Discussion

Our 150 GHz on-sky rate constraint is significantly worse than the 1.4 GHz rate constraint
of roughly 1.7+1.5

−0.9 × 103 FRBs sky−1 day−1 above 2 Jy ms[6]. If we model the event rate as
a function of frequency along with fluence in the form:

R = R0

(
F

F0

)α
νγ (5.8)

we place a 0.95 confidence limit on the spectral index of FRBs of γ < 1.6 when using
the 1.4 GHz rate stated above. The sensitivity of the survey to these transients is primarily
limited by the large background event rate in the SPTpol instrument.

Some future CMB telescopes, like SPT3G and POLARBEAR 2[94, 5], have a multi-
chroic pixel design. In contrast to the pixels in SPTpol, where only one frequency band is
measured, these telescopes will have two or three frequency bands measured per pixel. This
increases the number of detectors with overlapping beams from two to four or six. Requiring
that 4 detectors detectors coincidentally see an event dramatically reduces the background
rate of this type of search. When factoring in the increased pixel number, SPT3g will be
50 to 100 times more sensitive than SPTpol. This estimate was constructed by measuring
the 4 detector event rate in SPTpol and extrapolating that event rate to SPT3g. Predicting
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Figure 5.17: This is the on-sky rate Feldman-Cousins confidence intervals estimated with
Monte-Carlo simulations using the method of confidence belts for a fluence distribution
following a power law. α is the power law index.

the sensitivity of other telescopes to these sorts of transients is extremely difficult because
it relies on a characterization of non-normal noise in the system which is rarely published.

For all of our rate constraints we assumed a flat spectrum for the transient source. For
the only detected repeating burst, FRB 121102, the spectrum is best described by a peak
with a width of 500 MHz[51]. The bandwidth does not appear to increase for FRBs detected
at higher frequencies[63]. If the sources we are searching for have a similar narrow bandwidth
at 150 GHz rather than flat spectrum, the constraints on spectral index will be degraded.
This degredation is roughly equivalent to the source bandwidth divided by the bolometric
bandwidth. For SPT-3G this is a ratio of 1/100. Improvements to the source constraints for
SPT3g rely on measuring a larger bandwidth with multiple TES bolometers and would not
be fully realized for narrow band signals.
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Figure 5.18: For α = −1.5 this is the on-sky rate confidence intervals as a function of signal
width for sources with a fixed fluence. With our search strategy we are sensitive to the
integral of the fluence over our 5 ms sample window. This degrades our sensitivity to longer
sources because the flux is spread over multiple samples.
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