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Abstract
Today, data is being actively generated by a variety of devices, services, and appli-
cations. Such data is important not only for the information that it contains, but also 
for its relationships to other data and to interested users. Most existing Big Data 
systems focus on passively answering queries from users, rather than actively col-
lecting data, processing it, and serving it to users. To satisfy both passive and active 
requests at scale, application developers need either to heavily customize an exist-
ing passive Big Data system or to glue one together with systems like Streaming 
Engines and Pub-sub services. Either choice requires significant effort and incurs 
additional overhead. In this paper, we present the BAD (Big Active Data) system as 
an end-to-end, out-of-the-box solution for this challenge. It is designed to preserve 
the merits of passive Big Data systems and introduces new features for actively serv-
ing Big Data to users at scale. We show the design and implementation of the BAD 
system, demonstrate how BAD facilitates providing both passive and active data ser-
vices, investigate the BAD system’s performance at scale, and illustrate the com-
plexities that would result from instead providing BAD-like services with a “glued” 
system.
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1  Introduction

Big Data, without being analyzed, is merely a sequence of zeros and ones sitting on 
storage devices. To effectively utilize Big Data, researchers have developed a pleth-
ora of tools [1–4]. In many applications today, we want not only to understand Big 
Data, but also to deliver subsets of interest proactively to interested users. In short, 
users should not only be able to analyze data but also to subscribe to data. User 
subscription requests should not be limited to the incoming data’s content but should 
also be able to consider its relationships to other data. Moreover, data to be sent 
should be allowed to include additional relevant and useful information. We refer to 
this as the Big Active Data (BAD) challenge. Due to the variety and volume of user 
requests, the data, and their relationships, analyzing, customizing, and delivering 
actionable data based on different user requests are not trivial tasks.

Traditionally, taking user requests and serving data continuously has been stud-
ied mostly in the context of Continuous Queries (e.g., Tapestry, NiagaraCQ) [5, 6]. 
Users there register their requests as persistent queries and are subsequently noti-
fied whenever new results become available. Although the continuous query concept 
overlaps significantly with the active data problem, Big Data poses new challenges 
for classic continuous query approaches due to their complexity and computational 
costs. Similarly, triggers from traditional databases offer users the capability to react 
to events in a database under certain conditions [7]. Users could try and take advan-
tage of triggers to approach the active data challenge, but they soon become not 
applicable when the scale of the data, and thus the system, grows.

With the growth of streaming data and the need for real-time data analytics, 
Streaming Engines (e.g., Apache Kafka, Spark Structured Streaming) in recent 
years have been widely used in many active-data-related use cases [8–10]. Data 
is ingested and optionally processed in streaming engines on-the-fly and is then 
pushed to other systems for later analysis. Streaming engines can be used for cre-
ating data processing and data customizing pipelines, but due to the nature of 
data streams, only a limited set of processing operations are available. As a result, 
streaming engines would need to be coupled with other systems for meeting the 
complete BAD challenge at scale. This would introduce additional performance 
overhead and integration complexity for developers.

Delivering data of interest to many users also resonates with the publish/sub-
scribe communication paradigm from the distributed systems community [11]. In 
the pub/sub paradigm, subscribers register their interests in incoming data items 
and will subsequently be notified about data published by publishers. Despite 
some similarity to the BAD challenge, pub/sub systems only forward data from 
publishers to subscribers without offering the capability to process it. Also, each 
data item is treated in isolation, so users’ interests are limited to the data item 
itself (its topic, type, or content), but not its relationship to other data. In addi-
tion, pub/sub systems must still be integrated with other Big Data systems (e.g., 
Data warehouses) in order to support historical analytical queries.

One significant goal of the BAD approach advocated here is that users should 
not only be able to analyze data—i.e., to issue queries and receive result 
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subsequently, but also to subscribe to data—i.e., to specify their interests in data 
and constantly receive the latest updates. Data of interest is not limited to his-
torical data, but also includes real-time data, or a combination of both. Many 
(passive) systems today support data analytics, but very few of them provide the 
active features we need. In addition to that, we would like to allow users to sub-
scribe to data without always having to write independent queries. Mastering 
query languages could be useful for data analysts with expertise, but it might be a 
burden for end-users interested only in receiving data. Although database features 
like stored procedures allow for the encapsulation of queries as executable units, 
they are still passively invoked by users. We need a system that allows users to 
analyze data declaratively and that enables users to subscribe to data actively 
with minimum effort.

In order to capture real-time data, we propose data feeds, a data ingestion facil-
ity that allows users to reliably ingest fast incoming data at scale. In addition to that, 
users can also write declarative queries to process and enrich the incoming data on-
the-fly, so it can later be used by other applications directly. The BAD system man-
ages the data feeds, including ingestion protocol, data parsing, etc., for users without 
having them to write customized programs. In order to deliver the latest updates to 
end-users without asking them to construct queries and to “pull” data from the sys-
tem constantly, we propose an abstraction— parameterized data channels—to char-
acterize user subscriptions. Users with expertise (e.g., application developers) can 
create data channels using declarative queries. Users with interest in data (e.g., end-
users) can then subscribe to data channels with parameters and thus continuously 
receive new data. The BAD system runs data channels, manages their life-cycle, and 
offers them as active services.

Systems that handle real-time data today either process the incoming data on-the-
fly (e.g., Streaming Engines) and then send it to other applications, or, persist the 
incoming data into storage and then continuously extract information from it (e.g., 
Continuous Queries). The BAD system provides both data feeds, which allow data 
processing on-the-fly, and data channels, which deliver information continuously, to 
cover the needs on both ends of the spectrum. Moreover, both the data feed and data 
channel abstractions effectively provide a declarative user model for activating Big 
Data without the need to manually glue multiple systems together and write custom-
ized programs.

Previously, we implemented an initial prototype of a BAD system— BAD-RQ—
by enhancing Apache AsterixDB [12]. In BAD-RQ, we allow developers to create 
data channels using a declarative query language (SQL++) and enable users to sub-
scribe to them by specifying their own parameters. Internally, channel queries are 
like parameterized prepared queries that are repetitively evaluated with subscription 
information and other relevant data. BAD-RQ computes them periodically on behalf 
of all users with all of the user-provided parameters and produces customized data 
for each subscribed user [13].

As BAD-RQ executes channel queries periodically, users may attempt to leverage 
them to approximate continuous query semantics— obtaining updates incrementally 
without retrieving the entire history or reporting redundant results [5]. For example, 
a continuous query “send me new sensitive tweets” can be loosely interpreted as a 
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repetitive channel query “every 10 s, send me the sensitive tweets from the past 10 
seconds". Although users can approximate continuous query semantics with repeti-
tive channels, BAD-RQ does not guarantee continuous semantics, and data items 
could be missed or redundantly reported. To ensure continuous semantics, we want 
a systematic way of supporting continuous queries in BAD. We need (i) to make 
sure that users can receive incremental updates to data of interest with the guaran-
tee of continuous semantics, (ii) to support different computational operations and 
indexes for accelerating evaluation, and (iii) to enhance the data channel model to 
provide a straightforward user model regarding continuous queries.

In this paper, we discuss Big Active Data in-depth, present the BAD system, and 
introduce BAD-CQ—a new BAD service that provides continuous query semantics. 
We show how BAD-CQ is designed and implemented, and we investigate its per-
formance under different workloads at scale. This paper is organized as follows: We 
review work related to BAD in Sect. 2. In Sect. 3, we dive into the detailed vision of 
Big Active Data, discuss the settings of the BAD problem, and describe the build-
ing blocks of a BAD system. In Sect. 4, we present a repetitive BAD use case to 
demonstrate the BAD-RQ service and illustrate the BAD user model. We introduce 
continuous BAD in Sect. 5, discussing the limitations of approximating continuous 
BAD and presenting the design and implementation of the new BAD-CQ service. 
To compare a possible alternative approach with the BAD system, we introduce a 
GOOD (Gluing Oodles Of Data platforms) system that consists of gluing together 
multiple Big Data systems in Sect.  6. We show how to use the GOOD system to 
provide BAD services and illustrate the challenges that developers would face in 
configuring, orchestrating, and managing such a glued system. We present a set of 
experimental results for the new BAD-CQ service and compare its performance 
with the glued system in Sect. 7. Section 8 concludes the paper.

2 � Related work

Continuous queries are queries that are issued once and return results continuously 
as they become available. Tapestry [5] first introduced Continuous Queries over 
append-only databases, defined continuous semantics, and created rewriting rules 
for transforming user-provided queries into incremental queries. Much subsequent 
research has focused on queries over streaming data. STREAM is a research pro-
totype for processing continuous queries over data streams and stored data [14]. It 
provides a Continuous Query Language (CQL) for constructing continuous queries 
against streams and updatable relations [15]. TelegraphCQ offers an adaptive con-
tinuous query engine that adjusts the processing during run-time and applies shared 
processing where possible [16]. NiagaraCQ splits continuous queries into smaller 
queries and groups queries with the same expression signature together. It stores 
signature constants in a table and utilizes joins to evaluate grouped queries together 
to improve scalability, and it uses delta files for incremental evaluation on changed 
data to improve computational efficiency [6]. Very few continuous query projects 
have been scaled out to a distributed environment. This limits their applicability in 
Big Data use cases.
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Streaming engines allow low latency data processing and provide real-time 
analytics. Apache Storm is a distributed stream processing framework. It pro-
vides two primitives, “spouts” and “bolts”, to help users create topologies for 
processing data in real-time [17]. Spark Structured Streaming is a stream pro-
cessing engine built on top of Apache Spark. It divides incoming data into 
micro-batches of Resilient Distributed Datasets (RDDs) for fault-tolerant stream 
processing, and it offers a declarative API for users to specify streaming com-
putations [10, 18]. Apache Kafka started as a distributed messaging system that 
allows collecting and delivering a high volume of log data with low latency. It 
later introduced a Streams API that enables users to create stream-processing 
applications [9, 19]. Apache Flink [20] (which originated from Stratosphere [8]) 
unifies both streaming and batch processing in one system and provides separate 
APIs (DataStream and DataSet) for creating programs running on a streaming 
dataflow engine [20]. Due to the nature of streaming data, streaming engines 
usually do not store data for the long-term. The incoming data is processed and 
then soon pushed to other systems for further processing or persistence.

Publish/subscribe services allow subscribers to register their interests in 
events and to be subsequently, asynchronously notified about events from pub-
lishers. There are three types of pub/sub schemes: topic-based, content-based, 
and type-based [11]. In topic-based pub/sub, publication messages are associ-
ated with topics, and subscribers register their interests to receive messages 
about topics of interest. Many systems in this domain focus on providing scala-
ble and robust pub/sub services, including Scribe [21], SpiderCast [22], Magnet 
[23], and Poldercast [24]. Content-based pub/sub improves the expressiveness 
of pub/sub services by allowing subscriptions based on publications’ content. 
Many research works in this area focus on improving the scalability and effi-
ciency of matching publications to users’ subscriptions, including XFilter [25], 
Siena [26], YFilter [27], BoXFilter [28],  and BlueDove [29]. Type-based pub/
sub groups publications based on their structure. It aims at integrating pub/sub 
services with (object-oriented) programming languages to improve performance 
[30]. P2P-DIET utilizes super-peers to serve data via continuous queries at scale 
[31]. While all these pub/sub services enable publishing data to a large num-
ber of subscribers, the expressiveness of subscriptions is limited and complex 
computation across multiple data sources are often not supported. In addition to 
that, users often have to integrate a pub/sub service with other systems for data 
processing.

3 � Big active data

To better understand the Big Active Data (BAD) vision and the challenges in 
creating BAD services, in this section, we describe the BAD problem in detail, 
enumerate the requirements of a BAD system, and describe a set of BAD build-
ing blocks for fulfilling these requirements.



480	 Distributed and Parallel Databases (2022) 40:475–520

1 3

3.1 � A BAD world

In a BAD world, data could come from various systems and services constantly and 
rapidly. Many users would like to acquire and share the data and use it for different 
purposes. Some users may want to analyze the collected incoming data for retro-
spective analysis. They may ask questions (Analytical Queries) like:

find the top 10 cities in terms of hateful tweets for each of the nearest 6 months 
both before and after the Parkland shooting.

Other users may want to continuously receive updates regarding data that is of inter-
est to them. Such requests (Subscriber Queries) may cover different aspects of the 
data. For example:

•	 Data content Receive data when its content contains certain values—“send me 
tweets that are hateful”;

•	 Data enrichment Receive data enriched with relevant information—“send me 
hateful tweets and their nearby schools”;

•	 Relationship with other data Receive data when it relates to other data—“send 
me hateful tweets if they are near my location”.

Based on different needs of the users in the BAD world, we characterize three types 
of BAD users: 

1.	 Data analysts issue queries to analyze collected incoming data and/or other rel-
evant data.

2.	 Information subscribers make subscriptions and receive updates continuously 
using BAD applications.

3.	 Application developers create BAD applications and provide BAD services to 
subscribers.

A full-fledged BAD system needs to serve all three types of users— analysts, sub-
scribers, and developers— and should be able to scale to support a massive volume 
of data and a huge number of users.

3.2 � The BAD building blocks

In order to provide the features described in Sect. 3.1, a BAD system needs to have 
the following building blocks:

•	 Persistent storage In order to support retrospective analysis, data enrichment 
with relevant information, and customized data subscription, the BAD system 
should provide persistent storage to store collected incoming data, relevant data, 
and subscription information. It should be possible to add data to the BAD sys-
tem through ingestion facilities, loading utilities, or applications’ CRUD opera-



481

1 3

Distributed and Parallel Databases (2022) 40:475–520	

tions with ACID transaction support. Since data is persisted, developers should 
be able to utilize auxiliary data structures (like indexes) for accelerating data 
access.

•	 Ingestion facility A large volume of data, of the interest of either subscribers or 
analysts, may come into the BAD system rapidly. Some of the data may need 
to be filtered, processed, or combined with other data on-the-fly to be used by 
other applications. In order to handle such data, the BAD system should provide 
an ingestion facility to help continuously ingest data from various external data 
sources reliably, efficiently, and to be able to scale out according to the growing 
workload. BAD users should be able to easily create an ingestion pipeline in the 
BAD system without having to write low-level programs.

•	 Analytical engine Data analytics enables analysts to reveal useful information 
from data. To help analysts understand the incoming data and its relationship 
with other relevant information, the BAD system should provide an analytical 
engine with support for declarative queries.

•	 Data channels In traditional Big Data applications, subscribers, who want to get 
data, rely on developers to translate their interest (subscriptions) into queries 
and then to retrieve data on behalf of subscribers. In practice, many subscrip-
tions have similar structures like “send me hateful tweets from city X”, “send 
me hateful tweets near my location”, etc. To simplify creating BAD applications 
using the BAD system, we extract the shared structure among subscriptions and 
offer that as a service, namely a data channel, for subscribers to subscribe to with 
parameters. Data channels can be created using declarative queries and are man-
aged by the BAD system.

•	 Broker network Subscribers of a data channel expect the latest updates of their 
data of interest to be delivered to them continuously. The BAD system needs 
to handle millions of subscribers subscribing to a channel and to allow multiple 
channels to run concurrently. Due to the volume of data exchanges between the 
BAD system and subscribers, the BAD system should include a broker network 
with caching and load-balancing strategies.

We depict the BAD system and the BAD users in Fig. 1. Rapidly incoming data 
(e.g., live tweets) is captured by the Ingestion Facility to be actively processed and 
persisted. Reference data (e.g., sensitive accounts, important facilities) is stored in 
the Persistent Storage and used in Data Channels and the Analytical Engine. Data 
Channels combine the persisted incoming active data and other reference data to 
provide customized information for Information Subscribers at scale via the Broker 
Network, following the design of Application Developers (e.g., to send threatening 
tweets near schools to police officers nearby); the Analytical Engine combines per-
sisted active data and reference data to support complex analytical queries issued by 
Data Analysts (e.g., to list the accounts sending the most threatening tweets in the 
past month).

To the best of our knowledge, there is no existing Big Data platform that pro-
vides all the functionality needed from a BAD system. Some platforms can fulfill 
certain building blocks in the BAD system, but one would have to hand-wire mul-
tiple systems together to get all desired BAD features. A well-designed, integrated, 
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and efficient BAD system with support for a declarative language can significantly 
reduce the effort required to create BAD services. In the following sections, we will 
introduce how we have built such a BAD system and how it fulfills the BAD require-
ments, in particular supporting Subscriber Queries at scale, as outlined in Sect. 3.1.

4 � Repetitive BAD: BAD‑RQ

We created the initial prototype BAD system, namely Repetitive BAD (BAD-RQ), 
by approximating continuous semantics using repetitive queries [13]. This was done 
by enhancing Apache AsterixDB, an open-source Big Data Management System 
that provides distributed data management for large-scale, semi-structured data. In 
this section, we present the user model of BAD-RQ and a high-level illustration of 
its internal evaluation to provide a context for BAD-CQ. Interested readers can refer 
to [13, 32–34] for a more detailed description of the whole BAD project.

4.1 � A BAD repetitive use case

To illustrate BAD-RQ, we use a sample scenario in which we want to provide BAD 
services to police officers around tweets.1 Users of these services include investiga-
tive officers as analysts who want to study tweets about certain events, and in-field 
officers as subscribers who patrol around the city and want to receive live tweets 
meeting certain requirements. Tweets come into BAD-RQ from an external system 
continuously, and each contains a hateful flag provided by the datasource indicating 

Fig. 1   A BAD system for a BAD world

1  This example is for illustrating the BAD system and how it supports both analytical and active queries 
at scale. Similar use cases can be found in many other Big Data applications, such as COVID-19 alerting, 
monitoring, and tracking, Internet of things (IoT) device management, etc.
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whether this tweet is hateful and may relate to a potential crime. Location updates 
of patrolling in-field officers are also sent to BAD-RQ constantly to show their latest 
location. We describe the implementation of BAD building blocks in BAD-RQ and 
demonstrate how developers can utilize them for creating BAD services.

4.1.1 � Persistent storage

In order to support analytical queries from analysts and subscriptions from subscrib-
ers, both incoming tweets and location updates need to be persisted in the BAD sys-
tem. BAD-RQ offers the same storage functionality as AsterixDB, including all data 
types and indexes. AsterixDB organizes data under dataverses (similar to databases 
in an RDBMS). Without loss of generality, all data discussed in this section is stored 
in the “BAD” dataverse.

To store data in the BAD dataverse, we (as developers) need to create a datatype, 
which describes the stored data, and a dataset, which is a collection of records of a 
datatype. We define both the Tweet and OfficerLocation data types as “open”, which 
makes the stored data extensible. The “hateful_flag” attribute, indicating whether 
a tweet is hateful, is not specified in the data type and thus it is an open (optional) 
field. When “hateful_flag” is not provided but needed for a BAD application, a 
developer could use a enrichment user-defined function (UDF) to enrich tweets dur-
ing data ingestion [35]. We create a dataset Tweets for storing incoming tweets, a 
dataset OfficerLocations for storing location updates, and two R-Tree indexes on the 
location attribute of each dataset for more efficient data access. The DDL statements 
for creating both datasets are shown in Figs. 2 and 3 respectively.

4.1.2 � Ingestion facility

Since tweets and location updates may come at a very rapid rate, the BAD sys-
tem needs to intake such “fast” incoming data efficiently. AsterixDB provides data 
feeds for data ingestion from various data sources with different data formats [36]. 

CREATE TYPE Tweet AS OPEN {
tid: bigint ,
area_code: string ,
location: point

};
CREATE DATASET Tweets(Tweet) PRIMARY KEY tid;
CREATE INDEX t_location ON Tweets(location) TYPE RTREE;

Fig. 2   Datatype and dataset definition for Tweets

CREATE TYPE OfficerLocation AS OPEN {
oid: int ,
location: point

};
CREATE DATASET OfficerLocations(OfficerLocation) PRIMARY KEY oid;
CREATE INDEX o_location ON OfficerLocations(location) TYPE RTREE;

Fig. 3   Datatype and dataset definition for officer location updates
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We create a socket data feed to intake JSON formatted tweets using the statements 
shown in Fig. 4. Similarly, we create a data feed for intaking location updates sent 
by in-field officers in Fig. 5. In this use case, we deliver in-field officers nearby hate-
ful tweets based only on their current location, so we create an UPSERT (i.e., insert 
if new, else replace) data feed by setting “insert-feed” to false. In cases where offic-
ers’ entire movement history is needed, one can also create an INSERT data feed 
like the one used for tweets.

4.1.3 � Analytical engine

BAD-RQ supports data analytics using the query engine in AsterixDB. It provides 
SQL++ [37, 38] (a SQL-inspired query language for semi-structured data) for users 
to construct analytical queries. SQL++ supports standard SQL query operations 
(SELECT, JOIN, GROUP BY, ORDER BY, etc.), spatial-temporal queries, opera-
tions designed for semi-structured data, etc. One can use the SQL++ query shown 
in Fig. 6 to answer the analytical query in Sect. 3.1. For a query executed multiple 
times with different constant expressions, analysts can also define it as a SQL++ 

Fig. 4   A data feed for ingesting 
tweets

CREATE FEED TweetFeed WITH {
"type -name" : "Tweet",
"adapter -name": "socket_adapter",
"format" : "JSON",
"sockets ": "127.0.0.1:10001" ,
"address -type": "IP",
"insert -feed" : true

};
CONNECT FEED TweetFeed TO DATASET Tweets;
START FEED TweetFeed;

CREATE FEED LocationFeed WITH {
"type -name" : "OfficerLocation",
"adapter -name": "socket_adapter",
"format" : "JSON",
"sockets ": "127.0.0.1:10002" ,
"address -type": "IP",
"insert -feed" : false

};
CONNECT FEED LocationFeed TO DATASET OfficerLocations;
START FEED LocationFeed;

Fig. 5   A data feed for ingesting location updates

LET stime = datetime ("2017 -07 -14 T10 :10:00") ,
etime = datetime ("2018 -08 -14 T10 :10:00")

FROM Tweets t WHERE t.timestamp > stime AND t.timestamp < etime
GROUP BY print_datetime(t.timestamp , "Y-M")
GROUP AS TweetsByMonth
SELECT print_datetime(t.timestamp , "Y-M") AS Month , (

SELECT VALUE tbm.t.area_code FROM TweetsByMonth tbm
GROUP BY tbm.t.area_code ORDER BY count (1) DESC LIMIT 10

) MostHatefulCities ;

Fig. 6   An SQL++ query looking for the 10 most hateful cities in each month in a given time frame
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UDF and invoke it with parameters instead of re-constructing the same query every 
time. As an example, the analytical query in Fig.  6 can be encapsulated in the 
SQL++ UDF shown in Fig. 7.

4.1.4 � Data channels

Since queries can be encapsulated as a UDF with parameters, and subscriptions with 
a similar structure can also be interpreted as a parameterized query, we can use a 
SQL++ UDF to group these subscriptions together and “activate” it as a data chan-
nel. Developers can create data channels based on SQL++ UDFs and offer them as 
services, and subscribers can subscribe to them with parameters to receive data of 
interest subsequently. As an example, if in-field officers want to know the number 
of hateful tweets near their current location in the past hour, we can first create the 
UDF in Fig. 8, which can be invoked using an officer’s ID and returns the number of 
recent hateful tweets nearby. We “activate” this UDF using the statement in Fig. 9 by 
creating a data channel using this UDF. This channel has a configurable period “10 
mins” indicating that it computes every 10 mins. In-field officers who subscribed to 
this channel will receive the number of nearby hateful tweets in the past hour every 

CREATE FUNCTION mostHatefulCitiesByMonth (stime ,etime) {
FROM Tweets t WHERE t.timestamp > stime AND t.timestamp < etime
GROUP BY print_datetime(t.timestamp , "Y-M")
GROUP AS TweetsByMonth
SELECT print_datetime(t.timestamp , "Y-M") AS Month , (

SELECT VALUE tbm.t.area_code FROM TweetsByMonth tbm
GROUP BY tbm.t.area_code ORDER BY count (1) DESC LIMIT 10

) MostHatefulCities
};
mostHatefulCitiesByMonth(datetime ("2017 -07 -14 T10 :10:00") ,

datetime ("2018 -08 -14 T10 :10:00"));

Fig. 7   A UDF based on an analytical query

CREATE FUNCTION RecentNearbyHatefulTweetsCount(oid) {
FROM OfficerLocations o, Tweets t
WHERE o.oid = oid AND t.hateful_flag = true

AND spatial_distance(t.location , o.location) < 5
AND t.timestamp > current_datetime () - day_time_duration ("PT1H")

SELECT count (*) AS HatefulTweetsNum , current_datetime () AS CurrentTime
};
RecentNearbyHatefulTweetsCount ("0907");

Fig. 8   An UDF for counting hateful tweets near certain in-field officer given his/her officer ID

CREATE REPETITIVE CHANNEL RecentNearbyHatefulTweetCountChannel
USING RecentNearbyHatefulTweetsCount@1 PERIOD duration ("PT10M ");

Fig. 9   Creating a data channel based on a UDF with a parameter
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10 mins.2 We will further discuss how a channel evaluation produces customized 
data for each subscriber in Sect. 4.2.

4.1.5 � Brokers and subscriptions

The BAD system includes a broker sub-system for managing the communication 
with a large number of subscribers. A broker could be a single server that only for-
wards customized data to subscribers or a broker network that provides load balanc-
ing, subscription migration, and different caching strategies. Interested readers can 
refer to [34, 39] for more details. A developer can choose a broker suited for the 
use case and register it as an HTTP endpoint in the BAD system as in Fig. 10. A 
subscriber can then subscribe to a channel in the BAD system on this broker using 
the statement in Fig. 11. A given channel execution can produce customized data for 
subscribers subscribed on different brokers, and the customized data is sent to the 
corresponding brokers based on which brokers the subscriptions are subscribed on. 
A broker receives the customized data from channel executions and then dissemi-
nates it to its subscribers.

4.2 � Data channel evaluation

As the core feature of the BAD system, data channels combine incoming data, rel-
evant information, subscriptions, and broker information to produce customized data 
for each subscriber. In this section, we describe how BAD-RQ evaluates data chan-
nels to support a large number of subscriptions at scale.

4.2.1 � Modeling brokers and subscriptions

As we mentioned in Sect. 3.2, subscribers subscribe to a data channel with param-
eters, and there could be millions of subscribers for a data channel. Given the large 
volume of subscriptions, separately evaluating a channel query (the underlying UDF 
of a channel) for each subscriber would be too computationally expensive. Inspired 
by [6], BAD-RQ stores subscriptions as data and evaluates the channel query using 
the analytical query engine. Benefiting from the query optimization, indexes, and 

CREATE BROKER BROKER_A AT "http :// BROKER_A_HOST:BROKER_A_PORT/API";

Fig. 10   Registering a broker to BAD

SUBSCRIBE TO RecentNearbyHatefulTweetCountChannel ("0907") ON ROKER_A;

Fig. 11   Subscribing to a channel with parameters on a broker

2  While such precise requirement of sending nearby hateful tweets to every police officer is uncommon 
in practice, we use this as a synthetic example for illustrating the BAD system and for later demonstrat-
ing how the BAD system can scale regarding such complex use cases.
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distributed evaluation in AsterixDB, BAD-RQ can compute a channel query with 
a lot of subscriptions efficiently, and the channel evaluation process can also take 
advantage of the shared computation among subscriptions in order to serve more 
subscribers.

BAD-RQ uses the data types defined in Fig. 12 to store the broker and subscrip-
tion information internally. Broker information is decoupled from subscriptions, so 
a broker record can be modified without having to update all related subscriptions. 
The subscription data type is defined as open, and the parameters of a subscription 
are stored as open attributes and named as param0, param1, etc. This allows a data 
channel to support an arbitrary number of parameters with arbitrary data types. The 
broker dataset is a permanent part of the BAD-RQ metadata. The subscription data-
set is tied to the life-cycle of a data channel. When a developer creates a data chan-
nel (e.g., RecentNearbyHatefulTweetCountChannel), a corresponding subscription 
dataset (RecentNearbyHatefulTweetCountChannelSubscriptions) is also created, and 
this will be removed when the channel is dropped. Whenever a subscriber subscribes 
to the channel, a new subscription record is inserted into the subscription dataset.

4.2.2 � An example of channel evaluation

In order to illustrate how BAD-RQ periodically computes a channel and produces 
customized data for each subscriber using broker and subscription information, we 
show a small data sample in Fig. 13 for the channel defined in Sect. 4.1.4, which 
returns the number of hateful tweets near a particular in-field officer. For illustra-
tive simplicity, we assume all three tweets are posted within one hour and are hate-
ful, and attributes not used for evaluation are not shown in the figure. The channel 

Fig. 12   Data type definitions 
for brokers and subscriptions 
(internal to BAD)

CREATE TYPE Brokers AS {
dataverse_name: string ,
broker_name: string ,
broker_end_point: string

};
CREATE TYPE Subscription AS {

subscription_id: uuid ,
broker_name: string ,
dataverse_name: string

};

Fig. 13   A data sample for evaluating a data channel
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evaluation combines information from four datasets, including OfficerLocations, 
Tweets, RecentNearbyHatefulTweetCountChannelSubscriptions, and Brokers, and 
it produces the customized data shown in the RecentNearbyHatefulTweetCountCh-
annelResults dataset. Related tuples are colored the same. Taking red tuples as an 
example, we find two tweets near officer with oid 20s current location at (15, 15): 
tweet 200 at (15, 15) and tweet 300 at (18, 18). Also, there are two subscriptions 
(subscription 1 and subscription 4) subscribe to the nearby hateful tweet number of 
officer 20 (having param0 equal to 20). Subscription 1 is on broker 1, and subscrip-
tion 4 is on broker 2. Based on the above information, BAD produces two notifica-
tions, one for each subscriber, and sends them to their corresponding broker APIs.

4.2.3 � Channel evaluation internals

Evaluating a channel is equivalent to evaluating a query where we apply the under-
lying UDF to parameters from subscriptions to produce customized data. For exam-
ple, evaluating the channel defined back in Fig.  9 is equivalent to evaluating the 
query shown in Fig. 14. In this query, we apply the UDF in Fig. 8 on parameters 
from subscriptions and nest the return value of the UDF into a “customized_data" 
field. The UDF can be inlined into the query, as shown, and be compiled and opti-
mized together with it. The broker endpoint and subscription ID are also attached to 
each customized data record. The broker endpoint is used for the channel to send the 
result to a corresponding broker API, and the subscription ID is used by brokers to 
identify which subscriber the customized data should be delivered to.

Since the query used for evaluating a channel is computed on the analytical engine of 
AsterixDB, it can be optimized by the query optimizer and be accelerated by utilizing 

Fig. 14   An illustrative query for computing a channel
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efficient algorithms and indexes. Under the hood, the query in Fig. 14 compiles into 
a query plan as shown in Fig. 15. BAD can use use an R-Tree index to accelerate the 
spatial join between Tweets and OfficerLocations. Also, since the number of brokers is 
small compared with subscriptions, it can broadcast the Brokers to avoid unnecessary 
shuffling of the Subscriptions dataset. It can use a hybrid hash join to join the two inter-
mediate results in parallel on all nodes in the cluster.

4.2.4 � Customized data delivery

A data channel executes on a specified period (time interval) to generate customized 
data. Depending on subscribers’ preferences, the customized data can either be eagerly 
or lazily delivered. In the eager (push) mode, the produced data is pushed to brokers 
directly so they can immediately disseminate the data to subscribers. As the produced 
subscription result data is not persisted in BAD-RQ in this mode, brokers have to be 
fault-tolerant to avoid data loss. In the lazy (pull) mode, the customized data is first 
persisted in the BAD-RQ storage engine. The channel then sends a notification to the 
brokers whose subscribers have customized data that was produced in this channel exe-
cution. A broker that receives such a notification then pulls the customized data from 
BAD-RQ and distributes it to the subscribers. To this end, a result dataset (RecentNear-
byHatefulTweetCountChannelResults) is created for persisting produced customized 
data when a “lazy” channel is created. The result dataset has an index on the “Chan-
nelExecutionTime” attribute for accelerating result pulling. Since the customized 
data is persisted in the storage engine in this mode, brokers then have the flexibility 
to choose when to disseminate the notifications to subscribers, and the storage engine 
ensures data safety. BAD-RQ uses the pull (broker-initiated) mode as the default mode 
for its channels.

Fig. 15   A query plan for channel evaluation
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5 � Continuous BAD: BAD‑CQ

BAD-RQ “activates” a UDF (a parameterized query) to create a data channel that 
allows subscribers to constantly receive updates of interesting data. Although BAD-
RQ demonstrates how to transform a “passive” Big Data system into a basic “active” 
one for creating BAD services, it faces several limitations when users have more 
requirements.

In some use cases, subscribers may want the latest information delivered incre-
mentally. Examples include “send me new hateful tweets on campus”, “notify me 
when an emergency happens around me”, and “let me know when crimes happen 
near my house”. We call such use cases Continuous BAD. In order to support them, 
data channels in BAD need to provide continuous semantics, in which they continu-
ously return incremental updates. Developers using BAD-RQ could try to approxi-
mate continuous semantics using repetitive channels, but such approximations 
would face challenges due to the lack of native support for true continuous seman-
tics. In this section, we look at an example of continuous BAD and demonstrate how 
to use BAD-RQ to approximate it. We discuss the limitations of this approximation 
and then introduce a new BAD service—BAD-CQ—designed for supporting con-
tinuous BAD.

5.1 � Approximately continuous queries

To illustrate continuous BAD and its BAD-RQ approximation, we look at a simple 
continuous use case where “in-field officers (subscribers) want to know new hateful 
tweets near their current location”. We introduce the setup for approximating con-
tinuous semantics in BAD-RQ and show how to construct a repetitive channel query 
for this approximation.

5.1.1 � BAD timestamps

As subscribers are interested in new tweets, BAD-RQ needs to determine which 
portion of the collected tweets are new (i.e., tweets ingested but not yet reported). 
Different from streaming engines where all data in the engine is new, and old data is 
aged out, BAD-RQ keeps all data in the storage for supporting other services (e.g., 
data analytics). In order to differentiate new data from old, BAD-RQ needs to utilize 
timestamps.

In some cases (like tweets), incoming data comes with a “timestamp” attribute 
which indicates when was a data item created (a.k.a., valid time [40] or event time 
[20]). This attribute could potentially be used for differentiating new tweets from old 
ones. However, this would introduce additional complexity in handling out-of-order 

CREATE FUNCTION AddIngestionTime(incoming_record) {
object_merge ({" ingested_timestamp ": current_datetime ()}, incoming_record)

};

Fig. 16   A UDF for adding ingestion time
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arrivals. Besides, when such an attribute is not provided in the incoming data, we 
still need to find another solution3. BAD-RQ allows developers to attach timestamps 
to incoming tuples during data ingestion by attaching a UDF to the ingestion pipe-
line. For this use case, we can create the UDF shown in Fig. 16 and attach it to the 
tweet data feed defined in Fig. 4. This UDF adds an “ingested_timestamp” attrib-
ute to each incoming tweet, which marks the current date time when the tweet first 
enters the pipeline (a.k.a, ingestion time [20]). We can utilize this timestamp to infer 
the arrival order of tweets and differentiate new tweets from old.

5.1.2 � A repetitive approximation

With BAD timestamps, we can then construct a repetitive data channel to serve new 
nearby hateful tweets with a designated channel period, as shown in Fig. 17. In this 
channel, we look for hateful tweets ingested in the past 10 s from the time when the 
channel executes. These tweets are new and thus haven’t been examined yet. We join 
them with officers’ current locations and look for nearby new hateful tweets for each 
subscribed in-field officer. The channel is defined to execute every 10 s, so subscrib-
ers can continuously receive new nearby hateful tweets. This allows us to approxi-
mate continuous (incremental) semantics with a repetitively executed channel query 
that runs every 10 s and looks back 10 s.

5.1.3 � Challenges in approximation

Although developers could use BAD-RQ to approximate continuous semantics just 
as shown, such an approximation is not perfect in practice and could fail to have 
continuous semantics in some circumstances. Also, due to the lack of native syntax 
support for continuous semantics, constructing an approximation query can become 
very complex. Challenges include:

•	 Scheduling delay We approximate the continuous semantics by examining data 
ingested in the past execution period (e.g., 10 s) from the current channel execu-

CREATE FUNCTION NewNearbyHatefulTweets(oid){
SELECT t
FROM OfficerLocations o, Tweets t
WHERE spatial_distance(t.location , o.location) < 5

AND o.oid = oid AND t.hateful_flag = true
AND t.ingested_timestamp >

current_datetime () - day_time_duration (" PT10S")
};
CREATE REPETITIVE CHANNEL NewNearbyHatefulTweetsChannel

USING NewNearbyHatefulTweets@1
PERIOD duration ("PT10S ");

Fig. 17   A repetitive data channel looking for new nearby hateful tweets

3  Streaming Engines (such as Spark Structured Streaming) that compute with event time offer water-
marking to handle late arrivals. BAD-RQ with BAD timestamps (and BAD_CQ later introduced in 
Sect. 5.2) can provide similar functionality with proper channel queries. Here we focus on the general 
use cases without assuming the existence of event time.
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tion time. To perfectly approximate a continuous query, we rely on BAD-RQ 
to schedule the channel execution on time to make sure that all incoming data 
is examined. However, this is impractical in practice, especially in a distributed 
environment.

	   If a scheduling delay happens, some data can be missed by the channel, as 
shown in Fig. 18. This channel executes every 10 s and examines data ingested 
from the past 10 s. If the actual channel execution 1 is delayed from T = 20 
to 20.5, the data ingested from T = 10 to 10.5 will not be examined and thus 
missed.

•	 Early timestamping The approximation of BAD-RQ uses the ingestion times-
tamp for determining whether ingested data should be examined in a channel 
execution. However, since the ingested (timestamped) data does not become 
visible to channel execution instantaneously due to delays in data transmis-
sion, data enrichment (if any), secondary index(es) updating (if any), pri-
mary index updating, and waiting for the storage transaction to complete, 
there is a chance that a running channel execution could miss the data just 
ingested, even if the channel execution is scheduled on time. This is illus-
trated in Fig. 19, where channel execution 1 starts at T = 10 and a tuple t100 
is ingested at T = 10 − � and later persisted and becomes visible to que-
ries at T = 10 + � due to the delay.4 Channel execution 1 does not examine 
t100 because the tuple is not in storage yet, and channel execution 2 will 
not examine t100 either, because the tuple has an ingested_timetsamp that is 
smaller than 10 (i.e., too old). Thus, tuple t100 is missed.

Fig. 18   Missing data due to scheduling delays

Fig. 19   Missing tuple due to early timestamping

4  In practice, this time gap is very small. We emphasize the delay in Fig. 19 for illustration purposes.
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•	 Inappropriate data access We have attached an explicit timestamp 
(“ingested_timestamp”) attribute to mark the ingestion time of incoming 
tweets.

	   This attribute then exists as part of the user data, and other users of the 
BAD system can access it. This raises the potential risk that other users may 
accidentally modify this attribute and cause data channels to fail. Addition-
ally, this auxiliary information may cause confusion for non-channel users 
such as data analysts.

•	 Complex approximation query In order to approximate continuous seman-
tics, we have chosen the same time period in the temporal predicate and 
the channel execution period, as shown in Fig.  17. Such a correspondence 
needs to be managed manually and carefully by developers. When channel 
queries become more complex and involve multiple incoming data sources, 
constructing a proper approximation query can be challenging. One would 
have to add proper temporal predicates for each of the data sources, and when 
there are joins between these data sources, which portion of the collected 
data from one data source should be joined the other one needs to be care-
fully specified with temporal predicates. These temporal predicates would 
increase the query complexity and make such queries very difficult to write.

The above challenges of using BAD-RQ to approximate continuous semantics 
introduce risks of missing data and cause difficulties for developers in creating 
continuous BAD applications. In order to properly support continuous BAD, we 
introduce a new BAD service— BAD-CQ—with native support for continuous 
query semantics.

5.2 � BAD‑CQ

In this section, we first introduce the new building blocks needed for providing 
continuous semantics in BAD-CQ, and then we show how to utilize them to cre-
ate continuous data channels for continuous BAD.

5.2.1 � Active datasets

As we have discussed in Sect.  5.1.1, BAD persists all data to support retrospec-
tive analysis. To help data channels differentiate new data from old, we need to 

Fig. 20   Storage format of an 
active record
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timestamp incoming data and use timestamps for proper continuous channel evalu-
ation. To avoid the previously mentioned drawbacks of adding an ingestion times-
tamp to user data, we introduce a new type of datasets—Active Datasets—in 
BAD-CQ. Unlike regular datasets in AsterixDB, a record (active record) stored in 
an active dataset contains not only user data but also a “hidden” active attribute: 
“_active_timestamp”. This helps BAD-CQ to evaluate continuous channel queries. 
This attribute is stored alongside users’ data but separated from the regular record 
content. It is “invisible” to users and can only be accessed using active functions (to 
be discussed soon). The storage layout of an active record is shown in Fig. 20.

As the BAD system runs in a distributed environment, which clock to use to 
assign active timestamps needs careful consideration. One might first consider using 
a single clock to assign all active timestamps. This would be convenient because 
then all active timestamps would be directly comparable, and we would only need to 
figure out one active timestamp range to identify all the new data. However, having 
a master clock would require either routing all data to a single node, which would 
create a bottleneck in the system, or synchronizing clocks on multiple nodes, which 
can be very challenging in a distributed environment. In BAD-CQ, we instead use 
the local clock on each node to assign active timestamps to the active records stored 
on it for scalability. Active timestamps are assigned in the storage engine, after the 
locking phase. This makes sure that incoming records will become visible to run-
ning queries as soon as they are timestamped. Although the new data on each node 
may now have a different active timestamp range, we can introduce an active times-
tamp management mechanism with additional query optimization rules to make sure 
that channel queries are evaluated correctly. We will further discuss this in Sect. 5.3.

Considering that active timestamps often need to be compared in channel que-
ries, we can optimize these comparisons to improve channel performance. One 
might consider creating a secondary index on active timestamps, but this would take 
additional disk space and incur additional access overhead when the selectivity is 
high [41]. As the active timestamps of an active dataset grow monotonically, we 
can instead utilize the filter feature in the AsterixDB storage engine to avoid access-
ing irrelevant data [42]. The BAD storage engine uses Log-Structured Merge (LSM) 
Trees as its storage structure [43]; they perform batch updates into components to 
avoid the cost of random writes and then read them sequentially for data access. One 
can designate a filter attribute when creating a dataset, and every LSM component 
of this dataset is then decorated with the maximum and minimum attribute values of 
its stored records. When a query containing a filter attribute comparison comes, it 

Fig. 21   Access active datasets 
with filters

CREATE ACTIVE DATASET Tweets(Tweet) PRIMARY KEY oid;
CREATE ACTIVE DATASET OfficerLocations(OfficerLocation) PRIMARY KEY oid;

Fig. 22   Datatype and dataset definition for officer location updates
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can quickly skip irrelevant components by examining their maximum and minimum 
filter values. For active datasets, we use the active timestamp as the filter attribute to 
accelerate channel queries, as shown in Fig. 21. The active_timestamp(t) function 
reveals the active timestamp of the tuple t stored in the active dataset Tweets, as will 
further be discussed in Sect. 5.3.

The syntax for creating active datasets is straightforward. An active dataset can be 
created with a regular data type, and the active attribute and filter are automatically 
configured behind-the-scene. One can create two active datasets Tweets and Officer-
Locations using the statements in Fig. 22. Active datasets can also be accessed in 
regular queries just like non-active datasets. There is an extra overhead when read-
ing active datasets due to the additional space for storing active timestamps. We 
will see from later experiments that this overhead is relatively small. When not used 
in query evaluation, active timestamps are projected out from the active records as 
early as possible to avoid potential transmission overhead.

5.2.2 � Active timestamp management

With active datasets, we now need to “teach” channels to utilize the active times-
tamps to recognize new data and to guarantee continuous semantics. The basic idea 
is straightforward: keep track of the channel execution times and compare them with 
active timestamps to find the new data. As mentioned in Sect. 5.2.1, each node uses 
the local time to assign active timestamps, so we also need to use local time for 
tracking channel execution times and make sure they are properly compared with 
active timestamps. We create a local active timestamp manager on each node to 
keep track of the previous channel execution time and the current channel execution 
time under the local clock. When a channel executes on a node, these two times-
tamps are used to determine which portion of the stored data should be considered 
for this execution.

To demonstrate how multiple local active timestamp managers can work to offer 
continuous semantics, we consider the channel defined in Sect.  5.1 that looks for 

Fig. 23   An illustration of active timestamp management
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new nearby tweets for in-field officers. We show an illustrative channel execution 
example in Fig. 23.

In this example, we use the cluster controller (CC) time as the (conceptual) clus-
ter time. Since not all nodes are synchronized on time, current timestamps on differ-
ent nodes can be different. In this case, when CC starts the first channel execution 
at time T

0
 , Node A marks the channel start time under its local time as TA

0
 , which is 

“logically before” T
0
 , and Node B marks the channel start time under its local time 

as TB

0
 , which is “logically after” T

0
 . When the CC invokes the first channel execu-

tion at T
1
 , every node examines the tweets ingested and persisted from the previ-

ous channel execution time to the current channel execution time. From Node A’s 
perspective, all tweets ingested from TA

0
 to TA

1
 are examined. From Node B’s per-

spective, tweets ingested from TB

0
 to TB

1
 are examined. Although T

1
 , TA

1
 , and TB

1
 are 

different, from the CC’s (and subscribers’) perspective, only nearby hateful tweets 
from T

0
 to T

1
 are reported to subscribers. This guarantees the continuous seman-

tics for this channel. The channel’s previous channel execution and current channel 
execution time are each progressed with each channel execution. They are updated 
instantly when a channel execution job first accesses an active dataset used for the 
channel. This makes sure that all incoming tweets that were persisted before the cur-
rent channel execution can all be safely examined in the current channel execution.

The active timestamp manager enables BAD-CQ to provide continuous seman-
tics in a distributed environment without time synchronization. The monotonically 
increased active timestamps on each node in fact act like sequence numbers. The 
local active time manager marks the range of sequence numbers for each channel 
execution (as its previous and current channel execution time) and allows it to find 
the new data.

5.3 � BAD‑CQ syntax and optimization

Active datasets and active timestamp management allows BAD-CQ to provide con-
tinuous semantics. In order to enable users to use active timestamps and channel 
execution times for constructing channel queries, we introduce several active func-
tions in this section. Each active function takes a parameter that refers to tuples from 
active datasets. Applying active functions on normal datasets will cause a query 
compilation exception. In order to describe the functionalities of active functions, 
we use a tuple t from the active dataset Tweets as an example. The active functions 
are as follows:

•	 active_timestamp(t) reveals the active timestamp of the tuple t.
•	 previous_channel_time(t) returns the previous channel execution time on the 

node where the tuple t is persisted, as defined in Sect. 5.2.2. Note that every node 
has its own (local) channel time for a channel, and dataset Tweets’s tuples could 
be persisted on multiple nodes, so this function is evaluated locally on each node 
at run time, and tuples from Tweets used in the channel could have different pre-
vious channel times.
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•	 current_channel_time(t) returns the current channel execution time of the tuple 
t, as defined in Sect. 5.2.2. Similar to previous_channel_time, current_channel_
time is also computed locally at run time, and tuples from Tweets could have dif-
ferent current channel time.

•	 is_new(t) returns a boolean value indicating whether tuple t is new to the current 
channel execution. The return value of is_new(t) is equivalent to the following 
expression:

	   previous_channel_time(t) < active_timestamp(t) AND active_timestamp(t) < 
current_channel_time(t).

With active functions, a developer can conveniently construct continuous channels 
with continuous semantics. Here we show an example for the use case described 
in Sect. 5.1, where subscribers would like to receive new tweets near in-field offic-
ers. We use a different user model in BAD-CQ. Data channel definition in BAD-CQ 
is not based on UDFs, since active functions are not meaningful outside. Execut-
ing previous_channel_time and current_channel_time functions in regular queries 
return 0 and current cluster time respectively. Using BAD-CQ’s active functions, a 
developer can create a continuous channel for the new nearby hateful tweets using 
the statement shown in Fig. 24.

In order to assist channel evaluation with active functions and to improve channel 
performance, we introduce two new query optimization rules into BAD-CQ. First, 
when compiling a continuous channel query, we push the current_channel_time 
function into the leaf node of the query plan—the data scan operator of an active 
dataset—as the filter’s maximum value. This is because when an active dataset is 
accessed in a channel execution, only data before the current channel execution 
time is relevant. We use this to quickly skip data coming after the current execution 

CREATE CONTINUOUS CHANNEL CQNewNearbyHatefulTweets(oid)
PERIOD duration ("PT10S ") {
SELECT t
FROM OfficerLocations o, Tweets t
WHERE spatial_distance(t.location , o.location) < 5

AND o.oid = oid AND t.hateful_flag = true AND is_new(t)
};

Fig. 24   A continuous channel for new nearby hateful tweets

Fig. 25   Query plan for new nearby hateful tweet channel
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starts. Second, we push the previous_channel_time function down towards the leaf 
of the query as much as possible, and we use it as the filter’s minimum value for 
active datasets when applicable. Whether this function can be pushed into the data 
scan operator depends on the specific channel query. For the channel query defined 
in Fig. 24, we can indeed push previous_channel_time(t) into the Tweets scan opera-
tor and use it as the minimum filter, as shown in Fig. 25. 5

When the previous_channel_time function cannot be pushed all the way down 
into a data scan operator, we need to attach its node-dependent value (i.e., the previ-
ous channel execution time on a node) to the active records read from this node. In 
this case, the comparison between active timestamps and the previous_channel_time 
function is rewritten into a comparison between active timestamps and this attached 
previous channel execution time value. This makes sure that even if active records 
are shuffled around in the cluster, the comparison between their active timestamps 
and previous channel time will be evaluated correctly. To explain how the second 
rule works in this scenario, we introduce another continuous use case, where “in-
field officers (as subscribers) would like to receive nearby hateful tweets he/she has 
not seen before”. In this case, we not only need to consider a new tweet posted near 
an in-field officer, but also tweets that were not nearby but that become nearby due 
to the movement of in-field officers. We can create a continuous channel for this use 
case as shown in Fig. 26.

In this continuous channel query, the active functions is_new(o) and is_new(t) 
are expanded to the corresponding query predicates based on active timestamps, 
previous channel execution time, and current channel execution time as shown in 

CREATE CONTINUOUS CHANNEL UnseenNearbyHatefulTweets (oid)
PERIOD duration ("PT10S ") {
SELECT t
FROM OfficerLocations o, Tweets t
WHERE spatial_distance(t.location , o.location) < 5 AND o.oid = oid

AND t.hateful_flag = true
AND (is_new(o) OR is_new(t))

};

Fig. 26   A continuous channel for unseen nearby hateful tweets

Fig. 27   Expanding a continuous channel query with active functions

5  In this channel, we only need officers’ latest location, so there is no lower bound on active timestamps 
of OfficerLocations. We will introduce another example in Sect.  5.4 which requires recent location 
updates and utilizes the minimum filter on OfficerLocations.
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Fig.  27. Following the first optimization rule, the current time timestamp of both 
Tweets and OfficerLocations are pushed into the corresponding data scan opera-
tors. However, the previous channel execution time cannot be pushed thoroughly, 
because the disjunctive predicate “active_timestamp(t) > previous_channel_time(t) 
OR active_timestamp(o) > previous_channel_time(o)” also needs data from before 
the previous channel execution time from both datasets. Following the second opti-
mization rule, this continuous channel query can be compiled into the plan shown in 
Fig. 28. The disjunctive predicate is evaluated in the join operation that is computed 
across all nodes, and data is shuffled around in this process 6. Notice now that since 
the previous channel execution time is attached to active records, we can compare 
the active timestamp with the channel execution time under the same local clock, 
even if records are shipped to another node.

Different from the implicit query rewriting in Tapestry [5] and the delta files in 
NiagaraCQ [6], BAD-CQ allows developers to construct queries using active func-
tions that are best suited for their use cases, and it takes advantage of the storage 
engine for accelerating channel queries without having to introduce additional data 
structures. Developers can write a query using the is_new function and let the query 
compiler rewrite it into an incremental query, or they can use the active_timestamp 
function to expose the active timestamps and directly compare them with channel 
times or other times. The BAD-CQ user model uses datasets to hold the collected 
incoming data and other existing data. This provides developers with a unified query 
model and lets them to reuse all dataset processing operations when defining chan-
nels. The principles underlying the BAD-CQ approach are general - i.e., other data-
base systems supporting declarative queries could also be adapted to provide con-
tinuous semantics like BAD-CQ.

5.4 � BAD‑CQ semantics

To better understand the query semantics provided in BAD-CQ, we dive into the 
details of several continuous BAD use cases in this section. We focus on the sce-
nario where in-field officers would like to get nearby hateful tweets with different 

Fig. 28   Query plan for unseen nearby hateful tweet channel

6  Depending on the workload, the execution plan for the channel query can choose either to broadcast 
Tweets or OfficerLocations.
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preferences, and we use data samples to show how BAD-CQ produces notifica-
tions for different channels.

5.4.1 � New nearby hateful tweets

We first look at the example from Sect. 5.1, where in-field officers would like to 
receive new nearby hateful tweets. The channel is defined in Fig. 24. We use the 
is_new function to look for new tweets that have not been sent to subscribers, and 
we use the officers’ latest locations to look for nearby tweets.

In Fig.  29, we show a channel execution example with several sample data 
records. In order to focus on the channel execution process, irrelevant attributes 
of tweets and officer location updates are not shown in the figure. The channel 
starts at time 0, and in-field officers u10 and u20 have initial location at time 
0 of (0, 0) and (0, 10), respectively. At 9s, the first tweet t100 arrives and its 

Fig. 29   Officer u10 subscribing to CQNewNearbyHatefulTweets(u10) and officer u20 subscribing to 
CQNewNearbyHatefulTweets(u20)

Fig. 30   Officer u10 subscribing to UnseenNearbyHatefulTweets(u10) and officer u20 subscribing to Uns
eenNearbyHatefulTweets(u20)
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location is (0, 3). When the channel first executes at 10s, only tweet t100 is near 
in-field officer u10, so the channel produces one notification for u10. After that, 
u20 updates his/her location to (0, 7) at 13s. When the channel executes at 20s, as 
there is no new tweet after the previous channel execution, no notification is pro-
duced. Later, u10 updates his/her location to (0, 3) at 22s, and a new tweet t200 
located at (0, 4) arrives at 28s. When the channel executes at 30s, both u10 and 
u20 have t200 nearby, so the channel produces two notifications for each of the 
corresponding officers.

5.4.2 � Unseen nearby hateful tweets

In the previous use case, in-field officers receive a hateful tweet only if the tweet is 
temporally new. In another use case, officers may also be interested in older nearby 
hateful tweets that they have not seen before (which could contain useful informa-
tion). The channel definition for this use case is shown in Fig. 26.

We use the same data sample in Sect. 5.4.1 to explain how this channel works. 
As shown in Fig. 30, the channel acts the same way as the previous one and pro-
duces one notification for u10 in the first channel execution. In the second chan-
nel execution, the location update of u20 from (0, 10) to (0, 7) makes t100 become 
nearby to u20, so the channel produces one notification for u20 at 20s to notify this 
officer about this previously unseen tweet. The third channel execution starts at 30s 
and produces two notifications for u10 and u20, respectively, as both in-field officers 
have not seen this new tweet.

CREATE CONTINUOUS CHANNEL NewNearbyHatefulTweetsForActiveOfficers(oid)
PERIOD duration ("PT10S ") {

SELECT t
FROM OfficerLocations o, Tweets t
WHERE spatial_distance(t.location , o.location) < 5

AND o.oid = oid AND t.hateful_flag = true AND is_new(t) AND is_new(o)
};

Fig. 31   A continuous channel for new nearby hateful tweets

Fig. 32   Officer u10 subscribing to NewNearbyHatefulTweetsForActiveOfficers(u10) and officer u20 sub-
scribing to NewNearbyHatefulTweetsForActiveOfficers(u20)
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5.4.3 � New nearby hateful tweets for active officers

In the previous use cases, even if an officer is not updating his/her location con-
stantly (e.g., in order to reduce power/data plan consumption), the channel can still 
be producing notifications for them based on their last known location. When the 
officer reconnects, the broker sub-system can pull notifications that were produced 
“offline” from the BAD storage engine and send them out. If we want to produce 
notifications only to “active” in-field officers (who are their updating the locations to 
the system regularly), one can create the continuous channel defined in Fig. 31. Dif-
ferent from the channel defined in Fig. 24, we now only look for new hateful tweets 
for officers who have recently updated their locations instead of all officers. Those 
who are not updating their locations “actively” will not receive nearby hateful tweets 
while they are inactive.

Following our data sample used in previous use cases, the execution process of 
this channel is shown in Fig. 32. Similarly, the first channel execution produces one 
notification based on u10 about t100. In the second channel execution, no notifica-
tion is generated since there is no new incoming tweet. In the third channel execu-
tion, we produce one notification about the new tweet t200 for u10 who has recently 
updated his/her location. Although t200 is also near u20, we do not produce a noti-
fication for him/her since u20 is not “active”. As we can see from these sample use 
cases, active functions offer the flexibility and expressiveness of working with both 
the new and historical data. Developers can use active functions to conveniently 
construct a wide range of suitable queries for their BAD applications.

6 � GOOD: a not BAD approach

In order to fully support BAD applications without the BAD system, one would 
have to glue multiple existing Big Data systems together. In this section, we discuss 
a Not-BAD approach, which we call GOOD— Gluing Oodles Of Data platforms—
approach to approximate the BAD system. We introduce a GOOD system that con-
sists of several Big Data systems, illustrate how to configure it for creating BAD 
services, and compare it with the BAD system.

6.1 � The GOOD architecture

Following our discussion in Sect. 3.1, a GOOD system also needs to serve all three 
types of BAD users: Subscribers who want to customize data and receive constant 
updates, Developers who create BAD applications to serve subscribers, and Ana-
lysts who analyze data using declarative queries. Such a system should provide the 
following features:

•	 Efficient data ingestion for rapid incoming data.
•	 Data customization based on a large volume of subscriptions.
•	 Data analytics with a declarative language.
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•	 Persistent storage for incoming data and other relevant information with ACID 
guarantees.

•	 Customized data delivery to a large number of subscribers.

An existing Big Data system alone can only fulfill a portion of the BAD require-
ments. For example, Apache Spark Structured Streaming offers on-the-fly data 
processing but lacks persistent storage that provides ACID transaction support. 
Amazon’s Simple Notification Service (SNS) supports cloud-based pub/sub, but 
the expressiveness of subscriptions is limited to the content of publications. A 
user wanting to build BAD applications would thus have to glue multiple systems 
together. We can break down a proposed GOOD system architecture into different 
components and categorize existing Big Data systems with respect to this GOOD 
architecture, as shown in the overview Fig. 33. Users need to pick one or more sys-
tems from each component to assemble a bundled GOOD system to meet the BAD 
requirements. We describe the functionality of each component as follows:

•	 Ingestion tools collect data from external data sources and help distribute the 
data to downstream components. In some cases, users could implement their 
own ingestion programs to handle specific ingestion protocols. With the growth 
of stream processing, many ingestion tools now also support on-the-fly data 
processing (with various limitations). This blurs the boundary between inges-
tion tools and streaming engines. Here we still consider them as different GOOD 
components to emphasize their functional differences.

•	 Streaming engines today come in two different flavors. One (e.g., Apache Storm, 
Apache Kafka) focuses on efficient and reliable data distribution and allows users 
to hang data processing units onto the pipeline. The other (e.g., Apache Flink, 
Apache Spark Structured Streaming) focuses on enabling real-time data analyt-
ics as if working with non-streaming data. Users could glue multiple streaming 
engines together to benefit from both flavors (such as gluing Kafka with Spark 
Structured Streaming). GOOD can use streaming engines to combine incoming 
data, subscription information, and other relevant data to produce customized 
notifications.

Fig. 33   A GOOD architecture
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•	 Data warehouses (and database systems7) provide data persistence and support 
for data analytics. We want a data analytics capability as a part of the GOOD 
system. Thus, incoming data should be persisted for retrospective analysis. Sub-
scriptions and other relevant data used for producing customized data are also 
persisted in the data warehouse and loaded into the streaming engine for pro-
cessing. We choose not to replicate data in both the streaming engine and the 
data warehouse to avoid data inconsistencies and a need for constant migration 
of updates between them.

•	 Notification services deliver customized data produced by streaming engines to 
interested subscribers. Users could choose cloud-based services such as Amazon 
SNS or Firebase Cloud Messaging to send notifications to subscribers via SMS 
or Email, or they also could build their own notification services based on Web-
Socket.

Every component of the GOOD system must be horizontally scalable to ensure 
that it can support a large number of subscribers, just like the BAD system. Even 
with this scalable architecture, it would be impractical for the GOOD system to com-
pute/customize an incoming data item for every subscriber independently, especially 
when the incoming data arrives rapidly. In order to best approach the BAD system’s 
scalability requirement, we also adopt the data channel model in our GOOD system 
architecture by grouping similar subscriptions into a data channel and evaluating 
them together. Next, we will consider a sample GOOD system to explain how it can 
receive, customize, and deliver data.

6.2 � A GOOD system

The GOOD architecture offers a way to approximate the BAD system by gluing 
multiple existing Big Data systems together. One could choose various combina-
tions among the options in Fig. 33 for creating a GOOD system. In order to com-
pare the GOOD system with the BAD system toe-to-toe, we have constructed a sam-
ple GOOD system using several component systems that have been widely used in 
practice, as shown in Fig. 34. These component systems were chosen based on our 
perception of their popularity. Each of them provides good performance for their 
targeted use cases. We use them here to illustrate how to build a GOOD system off-
the-shelf. More importantly, as we will see later in the discussion and experiments, 

Fig. 34   A concrete GOOD system

7  Here we use the term Data Warehouse loosely, focusing more on its data management part.
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there are computing and performance limitations due to bundling different systems 
together for the BAD use case in addition to the effort required to glue them together.

We choose Apache Kafka for data ingestion and use Spark Structured Streaming 
for data processing, as suggested in the Spark Structured Streaming documentation 
[44]. Although Kafka also supports several data processing operations via Kafka 
Streams [19], we choose Spark Structured Streaming for its richer query semantics, 
which is closer to the BAD system’s offering. We use MongoDB as the data ware-
house for persisting incoming data as well as other reference data used for analytics. 
We chose it because it is the most popular database for “modern data” (NoSQL), 
which is the kind of data we expect many BAD applications to need. Later (Sect. 7) 
we will also consider using Delta Lake [45], the storage layer of Databricks’ new 
Lakehouse architecture, in this role because of its relationship to the Spark ecosys-
tem, where Delta lake is gaining usage for providing ACID transactions in Spark 
as the data storage. Finally, we choose AmazonSNS for notification delivery. Each 
component of the GOOD system can be described and configured as follows:

•	 Apache Kafka is a distributed streaming platform that allows applications to pub-
lish and subscribe to data streams reliably. We connect external data sources to 
Kafka using producer APIs. For each data source, we can create a topic in Kafka 
to allow downstream consumers (Spark Structured Streaming and MongoDB) to 
access the incoming data.

•	 MongoDB is a document-based distributed database. We connect MongoDB to 
Kafka as a consumer via the mongodb-kafka connector [46] provided by Mon-
goDB. Incoming data records from a Kafka topic (i.e., an external data source) 
are persisted in a corresponding MongoDB collection as JSON-like documents 
for retrospective analysis. Besides incoming data, subscriptions specifying sub-
scribers’ interest and other relevant information used for data customization and 
data analytics are also stored in MongoDB.

•	 Apache spark structured streaming is a scalable stream processing engine built 
on top of the Spark SQL engine. It supports Dataframe/Dataset APIs for users to 
express streaming computations the same way one would express a batch com-
putation on static data. We connect Spark Structured Streaming to Kafka as a 
consumer through the spark-streaming-kafka connector [47] provided by Spark. 
Incoming data from a Kafka topic is mapped into a data stream in Spark Struc-
tured Streaming. One can implement a data channel as a Spark application that 
runs continuously for producing customized data. Relevant information and sub-
scriptions stored in MongoDB can be loaded into Structured Streaming as Data-
Frames through a mongodb-spark connector [48] provided by MongoDB.

•	 Amazon SNS is a notification service provided in Amazon Web Services for deliv-
ering messages to subscribed endpoints or clients. It allows users to create Amazon 
SNS topics and publish notifications through APIs. Other systems and end-users 
can subscribe to these topics and receive published data. Amazon SNS provides fil-
ter policies in subscriptions to allow subscribers to filter notifications by their con-
tent. We can use the filter policy to send notifications to certain channel subscribers 
by using their subscription IDs as the filter value. We map a data channel to an 
Amazon SNS topic, and whoever subscribes to this data channel also becomes a 
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subscriber to the Amazon SNS topic with its subscription ID as the filter attrib-
ute. Customized data generated by the Spark channel application is published to the 
Amazon SNS topic with subscription IDs attached.

Due to its glued nature, the GOOD system needs “cooperation” between different 
components to provide BAD services. Taking the new nearby hateful tweet example 
described in Sect. 5 (the equivalent BAD channel defined in Fig. 24), one would have 
to complete the following steps for providing the channel service in the GOOD system:

•	 Configure and deploy Apache Kafka to the cluster. Create adaptor programs as 
Kafka producers that publish data into Kafka topics for tweets and for officer loca-
tion updates separately.

•	 Configure and deploy MongoDB to the cluster. Create collections for tweets, loca-
tion updates, and subscriptions, and make sure all collections are sharded across the 
cluster.

•	 Create and configure an Amazon SNS topic on Amazon Web Services for sending 
notifications.

•	 Configure and deploy Apache Spark to the cluster. Create a Spark application as 
a data channel and connect it to Kafka, MongoDB, and Amazon SNS separately. 
Implement data customization by joining tweets, officer locations, and subscrip-
tions using stream processing operations.

•	 Deploy the channel application onto the Spark cluster and make sure all services 
are running and connected.

•	 For each newly subscribed subscriber, we add the subscription information into 
MongoDB for data customization, and we also create a corresponding Amazon 
SNS subscription with the subscription ID as the filter attribute.

Compared with the BAD system, the GOOD system requires a significant amount of 
effort from developers to configure, orchestrate, and manage different components for 
providing BAD services. Besides the administration complexity, due to the limitation 
of the components in the GOOD system, not all of the query semantics provided by the 
BAD system can be conveniently supported by the GOOD system.

6.3 � GOOD vs. BAD

As we have mentioned, streaming engines have to age historical data out to restrain 
their resource usage. This limits the query semantics that can be supported by the 
GOOD system. Consider the new nearby hateful tweets channel defined in Fig. 24, 
where we send new nearby hateful tweets to in-field officers based on their last 
known location by utilizing an UPSERT feed. That channel can produce notifica-
tions for a temporarily “offline” officer and later send these “missed” notifications to 
him/her when the officer reconnects, as discussed in Sect. 5.4.

In the GOOD system, if an officer has not sent location updates for a some time, 
his/her location information would be aged out by the streaming engine. Due to this 
limitation, a GOOD user can only look for location updates back to a limited time 
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for a new incoming tweet. To better approximate the BAD channel, one could con-
sider persisting all historical location updates in MongoDB and pulling the latest 
locations into Spark Structured Streaming in each channel execution. However, this 
would lose the timeliness of streaming data and introduce additional data access 
overhead.

To illustrate the query semantics of the GOOD system and compare that with 
BAD, we show an alternative new nearby hateful tweets use case. As Spark Struc-
tured Streaming does not support spatial joins on data streams, we use “area_code” 
to represent tweets’ and officers’ locations. We consider a tweet to be nearby to an 
officer if it is posted from the same area code as the officer. In this modified use 
case, we send a new hateful tweet to the nearby in-field officers who have recently 
(within 10 seconds) updated their locations. This use case will also be used in the 
later performance comparison between BAD and GOOD. An illustrative example 
of the modified channel execution using the data sample in Sect.  5.4 is shown in 
Fig. 35.

When t100 arrives at 9s, we examine the location updates in the past 10 s and find 
two officers u10 and u20 who recently updated their locations. We check the area 
codes of t100, u10, and u20 and produce a notification for u10. When t200 arrives at 
28s, we look back in a 10-second window and find the location update from u10 at 
22s, so we produce a notification for u10. Note that the location update from u20 at 
13s is not “used”. When t200 come at 28s, this location update of u20 is too old for 
the the tweet.8

7 � Experimental results

In this section, we present a set of experiments conducted to evaluate the perfor-
mance of the BAD system. We focused on the performance of BAD-CQ and com-
pared that with the GOOD system described in Sect.  6.3. We first examined the 
basic ingestion and query performance of active datasets. Then, we investigated 
BAD-CQ’s continuous channel performance regarding supportable subscribers in 

Fig. 35   A GOOD example of sending hateful tweets to officers

8  For illustrative simplicity, here we only look for location updates for new tweets. One may consider to 
look for tweets for new location updates and notify u20 about t100, but t200 for u20 would still be miss-
ing. Increasing the window size would work for this example but couldn’t be applied for general cases.
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different use cases. Also, we compared the performance of the GOOD and the BAD 
systems using the same use cases. Finally, we investigated the speed-up and scale-
out performance of BAD-CQ when it is given more resources. Our experiments 
were conducted on a cluster connected using a Gigabit Ethernet switch (up to 16 
nodes). Each node had a Dual-Core AMD Opteron Processor 2212 2.0 GHz, 8 GB 
of RAM, and a 900 GB hard disk drive.

7.1 � Active dataset scale‑out performance

Since active datasets store active timestamps with records for continuous channel 
evaluation, writing and reading active datasets will have the same additional cost 
due to the additional bytes. In order to examine the performance impact of that, 
we conducted ingestion and query performance experiments with active datasets. 
We used two types of data: the Tweets and OfficerLocations defined in Figs. 2 and 
3 respectively. Each tweet was around 140 bytes, and each user location record 
was around 60 bytes. An active timestamp was 9 bytes long (1 byte for data type 
and 8 bytes for epoch time). For both scale-out experiments, we started with 100 
million records on a 2-node cluster and increased that to 400 million records on 
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a 8-node cluster. For the ingestion performance experiments, we measured the 
ingestion throughput. For the query performance experiments, we measured the 
average time over 50 query executions for scanning all records in a dataset. The 
results are shown in Figs. 36 and 37 respectively.

When ingesting data into active datasets, the additional work comes from 
attaching active timestamps to incoming data records and persisting them into 
the storage engine. As we can see from Fig. 36, the ingestion throughput on both 
the Tweets and OfficerLocations datasets have some regression compared with 
the regular datasets. The throughput regression is proportional to the size ratio 
between an incoming record and the active timestamp. When an incoming record 
is big, the performance impact is relatively small and vice versa. With more nodes 
in the cluster, the throughput increases since more resources (CPU and storage 
bandwidth) can be used for parsing and storing incoming data.

When scanning active datatasets, as shown in Fig. 37, the query time increases 
due to the additional cost of reading the larger records with active timestamps 
from disk. Similarly, the query time increase is proportional to the size ratio 
between a stored record and the active timestamp. As the cluster size grows, the 
query time increases slightly due to the increased query execution cost on a larger 
cluster, but overall it remains stable since AsterixDB shards its stored data across 
all nodes.

Fig. 38   Datatype and dataset 
definition for Schools

CREATE TYPE School AS OPEN {
sid: int ,
area_code: string ,
name: string

};
CREATE DATASET Schools(School) PRIMARY KEY sid;

CREATE CONTINUOUS CHANNEL NewLocalHatefulTweets(area_code)
PERIOD duration ("PT10S ") {

SELECT t FROM Tweets t
WHERE t.area_code = area_code AND is_new(t)

};

Fig. 39   A continuous channel for new local hateful tweets

CREATE CONTINUOUS CHANNEL NewLocalHatefulTweetsWithSchools (area_code)
PERIOD duration ("PT10S ") {
SELECT t,
(SELECT VALUE s FROM Schools s WHERE s.area_code = t.area_code)

AS nearby_schools
FROM Tweets t
WHERE t.area_code = area_code AND is_new(t)

};

Fig. 40   A continuous channel for new local hateful tweets with schools
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7.2 � Channel performance

As a channel runs periodically at a user specified period, it requires the channel 
evaluation to finish within that given period of time. The channel execution time 
depends on the channel query complexity and the size of the data involved (e.g., 
the number of tweets and subscribers). In order to examine the performance of data 
channels, we measured the maximum number of subscribers that can be supported 
by a channel within a given period. For these use cases, we introduce a new data-
set Schools, defined in Fig. 38, to store schools’ information as relevant auxiliary 
information. A list of schools can be attached to hateful tweets to provide additional 
information for use by the responding in-field officers. The Schools dataset contains 
10,000,000 records, and each record is around 70 bytes. We used the following four 
use cases to examine channel performance: 

1.	 NewLocalHatefulTweets Send me new hateful tweets from a certain area (defined 
in Figure 39).

2.	 NewLocalHatefulTweetsWithSchools Send me new hateful tweets from a certain 
area together with information about schools in that area (defined in Figure 40).

3.	 NewNearbyHatefulTweets Send me new hateful tweets nearby (defined in Fig-
ure 24).

4.	 UnseenNearbyHatefulTweets Send me nearby hateful tweets that I’ve not seen 
before (defined in Figure 26).

In use cases 1 and 2, subscribers subscribe to a channel with their interested area 
codes. In use cases 3 and 4, subscribers subscribe with their officer IDs and their 
locations are spatial data mapped to IDs. All channels were configured to execute 
every 10 seconds. To approximate incoming data in practice, we set up external pro-
grams to continuously send tweets and officer location updates into the data feeds 
we created in Figs. 4 and 5. For tweets, the client program sent them at a configur-
able rate (tweets / second), and 10% of the incoming tweets were hateful. For loca-
tion updates, we created client programs to simulate the movement of subscribers 
(in-field officers) on the map and to send location updates on behalf all of them, and 
an average of 1/3 of the in-field officers updated their locations every 10 s. Both pro-
grams ran on machines outside of the BAD cluster.
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In all four use cases, we fixed the incoming tweet rate and searched for the maxi-
mum number of supportable subscribers in the given 10-s channel execution period 
while both tweets and location updates were coming. We varied the incoming tweet 
rate to see how channel performance changed. For the “NewNearbyHatefulTweets” 
channel in particular, we chose two algorithms (broadcast nested loop join and index 
nested loop join) to evaluate the spatial join between the incoming tweets and offic-
ers’ locations. (We broadcast data from the Tweets dataset and utilized the R-Tree 
index on the location attribute of the OfficerLocations dataset.) We deployed BAD-
CQ on a 6-node cluster and the performance results are shown in Fig. 41. (Note the 
use of a log scale for the y-axis.)

Depending on the channel query complexity, the maximum number of support-
able subscribers varies. For all four use cases, the maximum number of support-
able subscribers decreases as the incoming tweet rate increases; this is due to the 
increased cost of producing and persisting  9 more customized notifications. Com-
paring the results for “NewLocationHatefulTweets” and “NewLocalHatefulTweets-
WithSchools”, we see that the latter one has lower performance, as adding in school 
information incurs more computational and persistence cost. Comparing “NewNear-
byHatefulTweets - BCast Nested Loop” and “NewNearbyHatefulTweets - Index 
Nested Loop”, we see that the use of the index offers much better performance than 
scanning the whole OfficerLocations dataset when the incoming tweet rate is low. 
As the incoming tweet rate grows, however, the performance of the index nested 
loop join becomes worse than the broadcast join. The reason is that, with more 
incoming tweets, the maximum number of supportable subscribers decreases due 
to the increased cost of computing customized data. For the join operation between 
tweets and officer locations, then, having more tweets and fewer actual subscrib-
ers (in-field officers) increases the query’s selectivity for OfficerLocations. Since the 
index nested loop join accesses the primary index through a secondary index, when 
the selectivity becomes high, the performance of using that index becomes worse 
than just scanning the primary dataset. Interested readers may refer to [41] for a 
more detailed analysis of the underlying storage engine’s performance benchmarks.

7.3 � GOOD vs. BAD performance

The BAD system enables developers to create BAD services with declarative 
statements. The GOOD system, in contrast, requires developers to manually glue 
multiple systems together and orchestrate them programmatically to create BAD 
services. In order to show that the BAD system not only alleviates developers’ 
effort when creating BAD services, but can also provide better performance com-
pared with a GOOD system, we chose several use cases supported by both the 
BAD and GOOD systems and measured their performance on both. As the BAD 
system aim to provide an out-of-box solution for meeting all the BAD require-
ments outlined in Sect. 3, we compare the end-to-end performance of the BAD 
system and the GOOD system.

9  As mentioned in Sect. 4.2.4, BAD persists customized data to disk by default to allow brokers to pull 
later.
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We used the GOOD system detailed in Sect.  6.2 for these experiments. For 
comparison purposes, we also measured the performance of an altered GOOD 
system by replacing MongoDB with Delta Lake. As we discussed in Sect. 6.3, the 
GOOD system cannot provide all query semantics supported in the BAD system. 
Not all use cases in Section 7.2 can be supported directly in the GOOD system. 
Spark Structured Streaming does not support spatial joins between streams, so 
here we use area code to represent the location of tweets and officers. The use 
cases used for comparing the performance of the BAD system and the GOOD 
system are as follows: 

1.	 NewLocalHatefulTweets Send me new hateful tweets from a certain area (same 
as Sect. 7.2).

2.	 NewLocalHatefulTweetsWithSchools: Send me new hateful tweets from a certain 
area together with the schools in that area (same as Sect. 7.2).
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3.	 NewHatefulTweetsForLocalActiveUsers Send me new hateful tweets from 
the same area as my current location (similar to NewNearbyHatefulTweets in 
Sect. 7.2, but modified to use area_code for this experiment).

In use cases 1 and 2, subscribers subscribe to a channel with the area codes of inter-
est. In use case 3, subscribers subscribe to the channel with the their officer IDs. Due 
to the high overhead of integrating Spark Structured Streaming with MongoDB, we 
tuned down the size of the Schools dataset by 5x to 2,000,000. To demonstrate the 
advantages that the BAD system as of utilizing indexes and different query evalua-
tion algorithms, we picked the “NewHatefulTweetsForLocalActiveUsers” use case, 
and we experimented with hash join, broadcast nested loop join, and index nested 
loop join. In this experiment, we focused on the processing core of both systems 
without including result delivery using brokers. The generated notifications were 
persisted in storage, as in the default pull mode. All incoming data was persisted as 
well for retrospective analysis. The performance results in terms of the number of 
supportable subscribers are shown in Figs. 42,  43, and  44 respectively.
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In all three cases, BAD-CQ outperforms both versions of the GOOD system. The 
GOOD system on Delta Lake (GOOD-Lake) is slightly better than that on Mon-
goDB (GOOD), as the cost of shipping data across systems (serailization, deseri-
alization, etc.) is much less, but it’s still not comparable to the BAD system. As the 
incoming tweet rate grows, the performance of both systems drop because of the 
increased cost of producing and persisting more notifications. Similar to Sect. 7.2, 
both systems have better performance for “NewLocalHatefulTweets” (colored in 
orange) than for “NewLocalHatefulTweetsWithSchools” (colored in blue) due to the 
additional cost of attaching relevant school information. In particular, the “NewLo-
calHatefulTweetsWithSchools” use case for GOOD suffers more from the increased 
incoming tweet rate, as the cost of persisting notifications with schools becomes 
high when there are many notifications. For “NewHatefulTweetsForLocalActiveUs-
ers”, the GOOD system on Delta Lake (GOOD-Lake) has a limited advantage 
compared to that on MongoDB (GOOD) because the computation cost dominated 
the maximum number supported subscribers, which leads to many fewer subscrip-
tions being read and fewer notifications being persisted. For the BAD system, we 
see a similar performance benefit for utilizing an index and the same performance 
regression when the incoming tweet rate becomes high. Hash join offered only a 
slight advantage over a broadcast nested loop join in this case, as the total number of 
tweets for each channel execution is relatively small.

In order to better understand the cost of the GOOD system, we chose the “New-
LocalHatefulTweets” use case with 150,000 subscribers and 80 tweets/second and 
measured the time consumed by each stage of its channel execution on both the 
GOOD and BAD system. The result is shown in Fig. 45, which also includes the 
overall channel execution time. As can be seen, the GOOD channel execution spent 
much of its time loading Subscriptions from MongoDB. This is a consequence of 
the overhead of gluing different systems together, as shipping data from one sub-
system to another incurs additional serialization/deserialization and data transforma-
tion and transmission costs. One could consider maintaining copies of the relevant 
data and subscriptions in Spark Structured Streaming as well, to accelerate the pro-
cessing, but then developers would have to handle consistency challenges and need 
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to migrate updates back and forth between Spark Structured Streaming and Mon-
goDB. In contrast, BAD-CQ spent much less time on subscription loading. Since 
tweets were being ingested at the same time, there was a bit of read/write contention 
on the Tweets dataset that caused the tweet loading time to be higher than the sub-
scription loading time on BAD-CQ.

7.4 � BAD scalability

Finally, we investigated the scalabilty of BAD-CQ from two angles: speed-up - 
given a fixed workload, see if the performance improves with more resources, and 
scale-out - increase the workload together with available resources to see if the per-
formance remains stable. We chose the “NewNearbyHatefulTweets - Bcast Nested 
Loop” channel and increased the channel’s period to 30 seconds for this experiment. 
All other settings were the same as Sect. 7.2.

Speed-up experiments The channel workload is determined by the incoming 
tweets per second and the number of subscribers (in-field officers). In this experi-
ment, we fixed the incoming tweet rate to 160 tweets per second and had 140,000 
subscribers. We increased the cluster size from 2 nodes to 4, 8, and 16 nodes, and 
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we measured the channel execution times, as shown in Fig.  46. When the cluster 
grows, the channel execution time is almost halved because the subscribers’ loca-
tions are stored on twice as many machines. Since each node now has less data, the 
join between incoming tweets and officer’s locations, which computes on all nodes, 
can finish sooner. As tweets are broadcast to all nodes in the cluster and the execu-
tion overhead also grows with the cluster size, the speed-up gain gradually decreases 
with larger cluster sizes.

Scale-out experiments We used two experiments to evaluate the scale-out per-
formance of BAD-CQ. We first fixed the incoming tweet rate to 160 tweets/second 
and increased the cluster size from 2 nodes to 4, 8, and 16 nodes to see how many 
subscribers could be supported in each setting. The result is shown in Fig. 47. As 
we double the size of the cluster, the maximum number of supportable subscribers 
almost doubles. Similar to the speed-up experiment, twice many nodes allow the 
join operation to handle more data in the given time period.

In the second experiment, we increased the incoming tweet rate together with the 
cluster size. We started with a 2-node cluster with 80 incoming tweets per second, 
and we increased the cluster size and the incoming tweet rate by the factor of two, 
up to 16 nodes and 640 tweets per second. The result is shown in Fig. 48. The chan-
nel performance maintains relatively stable as we increase the workload and add 
more resources at the same time.

8 � Conclusions and future work

In this work, we considered a world where Big Data is no longer just bytes sitting 
on storage devices, waiting to be analyzed, but is valuable information surrounded 
by active requests asking for continual “news updates”. In such a Big Active Data 
(BAD) world, developers often need to create and manage data services to support 
analysts in working with declarative queries and subscribers looking for the latest 
updates. In order to reduce the effort for developers creating BAD services, we have 
built the BAD system, consisting of BAD-RQ, which “activates” a parameterized 
query as a data channel for subscribers to receive periodic query results of inter-
est, and BAD-CQ, which introduces continuous (incremental query) semantics into 
data channels and optimizes the channel infrastructure for continuous use cases. We 
showed the user model, design, and implementation of our system and illustrated 
how developers can use it to create BAD services declaratively. To demonstrate the 
complexity of creating BAD services without BAD, we also presented a “GOOD” 
system created by gluing multiple Big Data systems together. We examined the per-
formance of the BAD system under different workloads and compared that with an 
instance of a GOOD system. The results for the use cases examined showed that the 
BAD system could support up to four millions subscribers on a six-node cluster, was 
able to horizontally scale out with more resources, and offered significantly better 
performance as compared with the GOOD system. In all, the BAD system provides 
a systematic solution for creating BAD services at scale.

This work leads to a number of interesting opportunities for future 
investigation:
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•	 Connecting multiple BAD systems In a BAD world, there could be multiple BAD 
systems running and managed by different organizations. In some use cases, 
developers may need to share information between different organizations and 
combine it with local data to create applications. Building a scalable data sharing 
service from scratch requires a lot of work. With BAD, we could allow develop-
ers to connect multiple BAD systems via data channels and feeds. Developers of 
multi-site applications could then benefit from the BAD approach and could cre-
ate data sharing services with very little implementation and management over-
head.

•	 Exploiting shared computation among data channels In the current BAD sys-
tem, data channel queries are processed, compiled, and optimized independently. 
While shared computation arises from evaluating the parameterized requests 
within a given channel together, more exploitation of sharing is possible.

	   Similar to [6], we could analyze multiple data channel queries, split them into 
smaller parts, discover shared computations, and reuse intermediate results to 
improve channel performance by avoiding redundant computation.

•	 Fault-tolerant channel evaluation As the BAD system contains a Persistent Stor-
age subsystem, which provides ACID transaction support, all data stored in the 
BAD system are persistently stored and can be recovered when failure happens. 
Despite that, when a failure happens during a channel execution, the run-time 
data will be lost and the channel execution has to restart from scratch when the 
system come back online. Following the shared computation work discussed in 
the previous bullet, we could persist some of the intermediate results depending 
on the computational complexity and the evaluation footprint, so when a failure 
happens, the channel evaluation can resume from a previously persisted state to 
reduce the recovery time.

•	 Resource management & scheduling of channel executions Currently, every 
channel execution is scheduled based on its period. Each channel execution runs 
as an independent job in the analytical engine, and an internal resource man-
ager manages the resource usage of all jobs running in the system. When there 
is resource contention, certain channel executions may be delayed and cause a 
channel to terminate (as we require channel executions to finish within the given 
period to meet the channel’s time requirement). Given different channel periods 
and users’ quality of service requirements, it should be possible to develop a 
smarter scheduling strategy in which we allow more flexible channel execution 
schedules based on the available resources and obtain better resource utilization 
at the same time.

•	 Scalable experiments on cloud infrastructure With the popularity of the cloud, 
more and more systems are offering out-of-the-box services with databases 
built on top of different cloud infrastructures. Such deployments enable users to 
quickly set up the environment and scale out or scale down based on their loads 
accordingly. We could deploy the BAD system onto a cloud environment, inves-
tigate its performance when given a large number of virtual nodes, and explore 
how to offer the system as a service to different users in a cloud environment 
with further optimizations.
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