
UC Riverside
UC Riverside Previously Published Works

Title
Subscribing to big data at scale.

Permalink
https://escholarship.org/uc/item/7jt8v0nk

Journal
Distributed and Parallel Databases, 40(2-3)

Authors
Wang, Xikui
Carey, Michael
Tsotras, Vassilis

Publication Date
2022

DOI
10.1007/s10619-022-07406-w

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7jt8v0nk
https://escholarship.org
http://www.cdlib.org/

Vol.:(0123456789)

Distributed and Parallel Databases (2022) 40:475–520
https://doi.org/10.1007/s10619-022-07406-w

1 3

Subscribing to big data at scale

Xikui Wang1  · Michael J. Carey1 · Vassilis J. Tsotras2

Accepted: 7 March 2022 / Published online: 7 April 2022
© The Author(s) 2022

Abstract
Today, data is being actively generated by a variety of devices, services, and appli-
cations. Such data is important not only for the information that it contains, but also
for its relationships to other data and to interested users. Most existing Big Data
systems focus on passively answering queries from users, rather than actively col-
lecting data, processing it, and serving it to users. To satisfy both passive and active
requests at scale, application developers need either to heavily customize an exist-
ing passive Big Data system or to glue one together with systems like Streaming
Engines and Pub-sub services. Either choice requires significant effort and incurs
additional overhead. In this paper, we present the BAD (Big Active Data) system as
an end-to-end, out-of-the-box solution for this challenge. It is designed to preserve
the merits of passive Big Data systems and introduces new features for actively serv-
ing Big Data to users at scale. We show the design and implementation of the BAD
system, demonstrate how BAD facilitates providing both passive and active data ser-
vices, investigate the BAD system’s performance at scale, and illustrate the com-
plexities that would result from instead providing BAD-like services with a “glued”
system.

Keywords  Parallel and distributed DBMSs · Data warehouses · Cloud computing ·
Publish-subscribe/event-based architectures

 *	 Xikui Wang
	 xikuiw@ics.uci.edu

	 Michael J. Carey
	 mjcarey@ics.uci.edu

	 Vassilis J. Tsotras
	 tsotras@cs.ucr.edu

1	 Donald Bren School of Information and Computer Sciences, University of California Irvine,
Irvine, CA 92697, USA

2	 Computer Science and Engineering Department, University of California Riverside, Riverside,
CA 92521, USA

http://orcid.org/0000-0002-8540-3436
http://crossmark.crossref.org/dialog/?doi=10.1007/s10619-022-07406-w&domain=pdf

476	 Distributed and Parallel Databases (2022) 40:475–520

1 3

1  Introduction

Big Data, without being analyzed, is merely a sequence of zeros and ones sitting on
storage devices. To effectively utilize Big Data, researchers have developed a pleth-
ora of tools [1–4]. In many applications today, we want not only to understand Big
Data, but also to deliver subsets of interest proactively to interested users. In short,
users should not only be able to analyze data but also to subscribe to data. User
subscription requests should not be limited to the incoming data’s content but should
also be able to consider its relationships to other data. Moreover, data to be sent
should be allowed to include additional relevant and useful information. We refer to
this as the Big Active Data (BAD) challenge. Due to the variety and volume of user
requests, the data, and their relationships, analyzing, customizing, and delivering
actionable data based on different user requests are not trivial tasks.

Traditionally, taking user requests and serving data continuously has been stud-
ied mostly in the context of Continuous Queries (e.g., Tapestry, NiagaraCQ) [5, 6].
Users there register their requests as persistent queries and are subsequently noti-
fied whenever new results become available. Although the continuous query concept
overlaps significantly with the active data problem, Big Data poses new challenges
for classic continuous query approaches due to their complexity and computational
costs. Similarly, triggers from traditional databases offer users the capability to react
to events in a database under certain conditions [7]. Users could try and take advan-
tage of triggers to approach the active data challenge, but they soon become not
applicable when the scale of the data, and thus the system, grows.

With the growth of streaming data and the need for real-time data analytics,
Streaming Engines (e.g., Apache Kafka, Spark Structured Streaming) in recent
years have been widely used in many active-data-related use cases [8–10]. Data
is ingested and optionally processed in streaming engines on-the-fly and is then
pushed to other systems for later analysis. Streaming engines can be used for cre-
ating data processing and data customizing pipelines, but due to the nature of
data streams, only a limited set of processing operations are available. As a result,
streaming engines would need to be coupled with other systems for meeting the
complete BAD challenge at scale. This would introduce additional performance
overhead and integration complexity for developers.

Delivering data of interest to many users also resonates with the publish/sub-
scribe communication paradigm from the distributed systems community [11]. In
the pub/sub paradigm, subscribers register their interests in incoming data items
and will subsequently be notified about data published by publishers. Despite
some similarity to the BAD challenge, pub/sub systems only forward data from
publishers to subscribers without offering the capability to process it. Also, each
data item is treated in isolation, so users’ interests are limited to the data item
itself (its topic, type, or content), but not its relationship to other data. In addi-
tion, pub/sub systems must still be integrated with other Big Data systems (e.g.,
Data warehouses) in order to support historical analytical queries.

One significant goal of the BAD approach advocated here is that users should
not only be able to analyze data—i.e., to issue queries and receive result

477

1 3

Distributed and Parallel Databases (2022) 40:475–520	

subsequently, but also to subscribe to data—i.e., to specify their interests in data
and constantly receive the latest updates. Data of interest is not limited to his-
torical data, but also includes real-time data, or a combination of both. Many
(passive) systems today support data analytics, but very few of them provide the
active features we need. In addition to that, we would like to allow users to sub-
scribe to data without always having to write independent queries. Mastering
query languages could be useful for data analysts with expertise, but it might be a
burden for end-users interested only in receiving data. Although database features
like stored procedures allow for the encapsulation of queries as executable units,
they are still passively invoked by users. We need a system that allows users to
analyze data declaratively and that enables users to subscribe to data actively
with minimum effort.

In order to capture real-time data, we propose data feeds, a data ingestion facil-
ity that allows users to reliably ingest fast incoming data at scale. In addition to that,
users can also write declarative queries to process and enrich the incoming data on-
the-fly, so it can later be used by other applications directly. The BAD system man-
ages the data feeds, including ingestion protocol, data parsing, etc., for users without
having them to write customized programs. In order to deliver the latest updates to
end-users without asking them to construct queries and to “pull” data from the sys-
tem constantly, we propose an abstraction— parameterized data channels—to char-
acterize user subscriptions. Users with expertise (e.g., application developers) can
create data channels using declarative queries. Users with interest in data (e.g., end-
users) can then subscribe to data channels with parameters and thus continuously
receive new data. The BAD system runs data channels, manages their life-cycle, and
offers them as active services.

Systems that handle real-time data today either process the incoming data on-the-
fly (e.g., Streaming Engines) and then send it to other applications, or, persist the
incoming data into storage and then continuously extract information from it (e.g.,
Continuous Queries). The BAD system provides both data feeds, which allow data
processing on-the-fly, and data channels, which deliver information continuously, to
cover the needs on both ends of the spectrum. Moreover, both the data feed and data
channel abstractions effectively provide a declarative user model for activating Big
Data without the need to manually glue multiple systems together and write custom-
ized programs.

Previously, we implemented an initial prototype of a BAD system— BAD-RQ—
by enhancing Apache AsterixDB [12]. In BAD-RQ, we allow developers to create
data channels using a declarative query language (SQL++) and enable users to sub-
scribe to them by specifying their own parameters. Internally, channel queries are
like parameterized prepared queries that are repetitively evaluated with subscription
information and other relevant data. BAD-RQ computes them periodically on behalf
of all users with all of the user-provided parameters and produces customized data
for each subscribed user [13].

As BAD-RQ executes channel queries periodically, users may attempt to leverage
them to approximate continuous query semantics— obtaining updates incrementally
without retrieving the entire history or reporting redundant results [5]. For example,
a continuous query “send me new sensitive tweets” can be loosely interpreted as a

478	 Distributed and Parallel Databases (2022) 40:475–520

1 3

repetitive channel query “every 10 s, send me the sensitive tweets from the past 10
seconds". Although users can approximate continuous query semantics with repeti-
tive channels, BAD-RQ does not guarantee continuous semantics, and data items
could be missed or redundantly reported. To ensure continuous semantics, we want
a systematic way of supporting continuous queries in BAD. We need (i) to make
sure that users can receive incremental updates to data of interest with the guaran-
tee of continuous semantics, (ii) to support different computational operations and
indexes for accelerating evaluation, and (iii) to enhance the data channel model to
provide a straightforward user model regarding continuous queries.

In this paper, we discuss Big Active Data in-depth, present the BAD system, and
introduce BAD-CQ—a new BAD service that provides continuous query semantics.
We show how BAD-CQ is designed and implemented, and we investigate its per-
formance under different workloads at scale. This paper is organized as follows: We
review work related to BAD in Sect. 2. In Sect. 3, we dive into the detailed vision of
Big Active Data, discuss the settings of the BAD problem, and describe the build-
ing blocks of a BAD system. In Sect. 4, we present a repetitive BAD use case to
demonstrate the BAD-RQ service and illustrate the BAD user model. We introduce
continuous BAD in Sect. 5, discussing the limitations of approximating continuous
BAD and presenting the design and implementation of the new BAD-CQ service.
To compare a possible alternative approach with the BAD system, we introduce a
GOOD (Gluing Oodles Of Data platforms) system that consists of gluing together
multiple Big Data systems in Sect. 6. We show how to use the GOOD system to
provide BAD services and illustrate the challenges that developers would face in
configuring, orchestrating, and managing such a glued system. We present a set of
experimental results for the new BAD-CQ service and compare its performance
with the glued system in Sect. 7. Section 8 concludes the paper.

2 � Related work

Continuous queries are queries that are issued once and return results continuously
as they become available. Tapestry [5] first introduced Continuous Queries over
append-only databases, defined continuous semantics, and created rewriting rules
for transforming user-provided queries into incremental queries. Much subsequent
research has focused on queries over streaming data. STREAM is a research pro-
totype for processing continuous queries over data streams and stored data [14]. It
provides a Continuous Query Language (CQL) for constructing continuous queries
against streams and updatable relations [15]. TelegraphCQ offers an adaptive con-
tinuous query engine that adjusts the processing during run-time and applies shared
processing where possible [16]. NiagaraCQ splits continuous queries into smaller
queries and groups queries with the same expression signature together. It stores
signature constants in a table and utilizes joins to evaluate grouped queries together
to improve scalability, and it uses delta files for incremental evaluation on changed
data to improve computational efficiency [6]. Very few continuous query projects
have been scaled out to a distributed environment. This limits their applicability in
Big Data use cases.

479

1 3

Distributed and Parallel Databases (2022) 40:475–520	

Streaming engines allow low latency data processing and provide real-time
analytics. Apache Storm is a distributed stream processing framework. It pro-
vides two primitives, “spouts” and “bolts”, to help users create topologies for
processing data in real-time [17]. Spark Structured Streaming is a stream pro-
cessing engine built on top of Apache Spark. It divides incoming data into
micro-batches of Resilient Distributed Datasets (RDDs) for fault-tolerant stream
processing, and it offers a declarative API for users to specify streaming com-
putations [10, 18]. Apache Kafka started as a distributed messaging system that
allows collecting and delivering a high volume of log data with low latency. It
later introduced a Streams API that enables users to create stream-processing
applications [9, 19]. Apache Flink [20] (which originated from Stratosphere [8])
unifies both streaming and batch processing in one system and provides separate
APIs (DataStream and DataSet) for creating programs running on a streaming
dataflow engine [20]. Due to the nature of streaming data, streaming engines
usually do not store data for the long-term. The incoming data is processed and
then soon pushed to other systems for further processing or persistence.

Publish/subscribe services allow subscribers to register their interests in
events and to be subsequently, asynchronously notified about events from pub-
lishers. There are three types of pub/sub schemes: topic-based, content-based,
and type-based [11]. In topic-based pub/sub, publication messages are associ-
ated with topics, and subscribers register their interests to receive messages
about topics of interest. Many systems in this domain focus on providing scala-
ble and robust pub/sub services, including Scribe [21], SpiderCast [22], Magnet
[23], and Poldercast [24]. Content-based pub/sub improves the expressiveness
of pub/sub services by allowing subscriptions based on publications’ content.
Many research works in this area focus on improving the scalability and effi-
ciency of matching publications to users’ subscriptions, including XFilter [25],
Siena [26], YFilter [27], BoXFilter [28], and BlueDove [29]. Type-based pub/
sub groups publications based on their structure. It aims at integrating pub/sub
services with (object-oriented) programming languages to improve performance
[30]. P2P-DIET utilizes super-peers to serve data via continuous queries at scale
[31]. While all these pub/sub services enable publishing data to a large num-
ber of subscribers, the expressiveness of subscriptions is limited and complex
computation across multiple data sources are often not supported. In addition to
that, users often have to integrate a pub/sub service with other systems for data
processing.

3 � Big active data

To better understand the Big Active Data (BAD) vision and the challenges in
creating BAD services, in this section, we describe the BAD problem in detail,
enumerate the requirements of a BAD system, and describe a set of BAD build-
ing blocks for fulfilling these requirements.

480	 Distributed and Parallel Databases (2022) 40:475–520

1 3

3.1 � A BAD world

In a BAD world, data could come from various systems and services constantly and
rapidly. Many users would like to acquire and share the data and use it for different
purposes. Some users may want to analyze the collected incoming data for retro-
spective analysis. They may ask questions (Analytical Queries) like:

find the top 10 cities in terms of hateful tweets for each of the nearest 6 months
both before and after the Parkland shooting.

Other users may want to continuously receive updates regarding data that is of inter-
est to them. Such requests (Subscriber Queries) may cover different aspects of the
data. For example:

•	 Data content Receive data when its content contains certain values—“send me
tweets that are hateful”;

•	 Data enrichment Receive data enriched with relevant information—“send me
hateful tweets and their nearby schools”;

•	 Relationship with other data Receive data when it relates to other data—“send
me hateful tweets if they are near my location”.

Based on different needs of the users in the BAD world, we characterize three types
of BAD users:

1.	 Data analysts issue queries to analyze collected incoming data and/or other rel-
evant data.

2.	 Information subscribers make subscriptions and receive updates continuously
using BAD applications.

3.	 Application developers create BAD applications and provide BAD services to
subscribers.

A full-fledged BAD system needs to serve all three types of users— analysts, sub-
scribers, and developers— and should be able to scale to support a massive volume
of data and a huge number of users.

3.2 � The BAD building blocks

In order to provide the features described in Sect. 3.1, a BAD system needs to have
the following building blocks:

•	 Persistent storage In order to support retrospective analysis, data enrichment
with relevant information, and customized data subscription, the BAD system
should provide persistent storage to store collected incoming data, relevant data,
and subscription information. It should be possible to add data to the BAD sys-
tem through ingestion facilities, loading utilities, or applications’ CRUD opera-

481

1 3

Distributed and Parallel Databases (2022) 40:475–520	

tions with ACID transaction support. Since data is persisted, developers should
be able to utilize auxiliary data structures (like indexes) for accelerating data
access.

•	 Ingestion facility A large volume of data, of the interest of either subscribers or
analysts, may come into the BAD system rapidly. Some of the data may need
to be filtered, processed, or combined with other data on-the-fly to be used by
other applications. In order to handle such data, the BAD system should provide
an ingestion facility to help continuously ingest data from various external data
sources reliably, efficiently, and to be able to scale out according to the growing
workload. BAD users should be able to easily create an ingestion pipeline in the
BAD system without having to write low-level programs.

•	 Analytical engine Data analytics enables analysts to reveal useful information
from data. To help analysts understand the incoming data and its relationship
with other relevant information, the BAD system should provide an analytical
engine with support for declarative queries.

•	 Data channels In traditional Big Data applications, subscribers, who want to get
data, rely on developers to translate their interest (subscriptions) into queries
and then to retrieve data on behalf of subscribers. In practice, many subscrip-
tions have similar structures like “send me hateful tweets from city X”, “send
me hateful tweets near my location”, etc. To simplify creating BAD applications
using the BAD system, we extract the shared structure among subscriptions and
offer that as a service, namely a data channel, for subscribers to subscribe to with
parameters. Data channels can be created using declarative queries and are man-
aged by the BAD system.

•	 Broker network Subscribers of a data channel expect the latest updates of their
data of interest to be delivered to them continuously. The BAD system needs
to handle millions of subscribers subscribing to a channel and to allow multiple
channels to run concurrently. Due to the volume of data exchanges between the
BAD system and subscribers, the BAD system should include a broker network
with caching and load-balancing strategies.

We depict the BAD system and the BAD users in Fig. 1. Rapidly incoming data
(e.g., live tweets) is captured by the Ingestion Facility to be actively processed and
persisted. Reference data (e.g., sensitive accounts, important facilities) is stored in
the Persistent Storage and used in Data Channels and the Analytical Engine. Data
Channels combine the persisted incoming active data and other reference data to
provide customized information for Information Subscribers at scale via the Broker
Network, following the design of Application Developers (e.g., to send threatening
tweets near schools to police officers nearby); the Analytical Engine combines per-
sisted active data and reference data to support complex analytical queries issued by
Data Analysts (e.g., to list the accounts sending the most threatening tweets in the
past month).

To the best of our knowledge, there is no existing Big Data platform that pro-
vides all the functionality needed from a BAD system. Some platforms can fulfill
certain building blocks in the BAD system, but one would have to hand-wire mul-
tiple systems together to get all desired BAD features. A well-designed, integrated,

482	 Distributed and Parallel Databases (2022) 40:475–520

1 3

and efficient BAD system with support for a declarative language can significantly
reduce the effort required to create BAD services. In the following sections, we will
introduce how we have built such a BAD system and how it fulfills the BAD require-
ments, in particular supporting Subscriber Queries at scale, as outlined in Sect. 3.1.

4 � Repetitive BAD: BAD‑RQ

We created the initial prototype BAD system, namely Repetitive BAD (BAD-RQ),
by approximating continuous semantics using repetitive queries [13]. This was done
by enhancing Apache AsterixDB, an open-source Big Data Management System
that provides distributed data management for large-scale, semi-structured data. In
this section, we present the user model of BAD-RQ and a high-level illustration of
its internal evaluation to provide a context for BAD-CQ. Interested readers can refer
to [13, 32–34] for a more detailed description of the whole BAD project.

4.1 � A BAD repetitive use case

To illustrate BAD-RQ, we use a sample scenario in which we want to provide BAD
services to police officers around tweets.1 Users of these services include investiga-
tive officers as analysts who want to study tweets about certain events, and in-field
officers as subscribers who patrol around the city and want to receive live tweets
meeting certain requirements. Tweets come into BAD-RQ from an external system
continuously, and each contains a hateful flag provided by the datasource indicating

Fig. 1   A BAD system for a BAD world

1  This example is for illustrating the BAD system and how it supports both analytical and active queries
at scale. Similar use cases can be found in many other Big Data applications, such as COVID-19 alerting,
monitoring, and tracking, Internet of things (IoT) device management, etc.

483

1 3

Distributed and Parallel Databases (2022) 40:475–520	

whether this tweet is hateful and may relate to a potential crime. Location updates
of patrolling in-field officers are also sent to BAD-RQ constantly to show their latest
location. We describe the implementation of BAD building blocks in BAD-RQ and
demonstrate how developers can utilize them for creating BAD services.

4.1.1 � Persistent storage

In order to support analytical queries from analysts and subscriptions from subscrib-
ers, both incoming tweets and location updates need to be persisted in the BAD sys-
tem. BAD-RQ offers the same storage functionality as AsterixDB, including all data
types and indexes. AsterixDB organizes data under dataverses (similar to databases
in an RDBMS). Without loss of generality, all data discussed in this section is stored
in the “BAD” dataverse.

To store data in the BAD dataverse, we (as developers) need to create a datatype,
which describes the stored data, and a dataset, which is a collection of records of a
datatype. We define both the Tweet and OfficerLocation data types as “open”, which
makes the stored data extensible. The “hateful_flag” attribute, indicating whether
a tweet is hateful, is not specified in the data type and thus it is an open (optional)
field. When “hateful_flag” is not provided but needed for a BAD application, a
developer could use a enrichment user-defined function (UDF) to enrich tweets dur-
ing data ingestion [35]. We create a dataset Tweets for storing incoming tweets, a
dataset OfficerLocations for storing location updates, and two R-Tree indexes on the
location attribute of each dataset for more efficient data access. The DDL statements
for creating both datasets are shown in Figs. 2 and 3 respectively.

4.1.2 � Ingestion facility

Since tweets and location updates may come at a very rapid rate, the BAD sys-
tem needs to intake such “fast” incoming data efficiently. AsterixDB provides data
feeds for data ingestion from various data sources with different data formats [36].

CREATE TYPE Tweet AS OPEN {
tid: bigint ,
area_code: string ,
location: point

};
CREATE DATASET Tweets(Tweet) PRIMARY KEY tid;
CREATE INDEX t_location ON Tweets(location) TYPE RTREE;

Fig. 2   Datatype and dataset definition for Tweets

CREATE TYPE OfficerLocation AS OPEN {
oid: int ,
location: point

};
CREATE DATASET OfficerLocations(OfficerLocation) PRIMARY KEY oid;
CREATE INDEX o_location ON OfficerLocations(location) TYPE RTREE;

Fig. 3   Datatype and dataset definition for officer location updates

484	 Distributed and Parallel Databases (2022) 40:475–520

1 3

We create a socket data feed to intake JSON formatted tweets using the statements
shown in Fig. 4. Similarly, we create a data feed for intaking location updates sent
by in-field officers in Fig. 5. In this use case, we deliver in-field officers nearby hate-
ful tweets based only on their current location, so we create an UPSERT (i.e., insert
if new, else replace) data feed by setting “insert-feed” to false. In cases where offic-
ers’ entire movement history is needed, one can also create an INSERT data feed
like the one used for tweets.

4.1.3 � Analytical engine

BAD-RQ supports data analytics using the query engine in AsterixDB. It provides
SQL++ [37, 38] (a SQL-inspired query language for semi-structured data) for users
to construct analytical queries. SQL++ supports standard SQL query operations
(SELECT, JOIN, GROUP BY, ORDER BY, etc.), spatial-temporal queries, opera-
tions designed for semi-structured data, etc. One can use the SQL++ query shown
in Fig. 6 to answer the analytical query in Sect. 3.1. For a query executed multiple
times with different constant expressions, analysts can also define it as a SQL++

Fig. 4   A data feed for ingesting
tweets

CREATE FEED TweetFeed WITH {
"type -name" : "Tweet",
"adapter -name": "socket_adapter",
"format" : "JSON",
"sockets ": "127.0.0.1:10001" ,
"address -type": "IP",
"insert -feed" : true

};
CONNECT FEED TweetFeed TO DATASET Tweets;
START FEED TweetFeed;

CREATE FEED LocationFeed WITH {
"type -name" : "OfficerLocation",
"adapter -name": "socket_adapter",
"format" : "JSON",
"sockets ": "127.0.0.1:10002" ,
"address -type": "IP",
"insert -feed" : false

};
CONNECT FEED LocationFeed TO DATASET OfficerLocations;
START FEED LocationFeed;

Fig. 5   A data feed for ingesting location updates

LET stime = datetime ("2017 -07 -14 T10 :10:00") ,
etime = datetime ("2018 -08 -14 T10 :10:00")

FROM Tweets t WHERE t.timestamp > stime AND t.timestamp < etime
GROUP BY print_datetime(t.timestamp , "Y-M")
GROUP AS TweetsByMonth
SELECT print_datetime(t.timestamp , "Y-M") AS Month , (

SELECT VALUE tbm.t.area_code FROM TweetsByMonth tbm
GROUP BY tbm.t.area_code ORDER BY count (1) DESC LIMIT 10

) MostHatefulCities ;

Fig. 6   An SQL++ query looking for the 10 most hateful cities in each month in a given time frame

485

1 3

Distributed and Parallel Databases (2022) 40:475–520	

UDF and invoke it with parameters instead of re-constructing the same query every
time. As an example, the analytical query in Fig. 6 can be encapsulated in the
SQL++ UDF shown in Fig. 7.

4.1.4 � Data channels

Since queries can be encapsulated as a UDF with parameters, and subscriptions with
a similar structure can also be interpreted as a parameterized query, we can use a
SQL++ UDF to group these subscriptions together and “activate” it as a data chan-
nel. Developers can create data channels based on SQL++ UDFs and offer them as
services, and subscribers can subscribe to them with parameters to receive data of
interest subsequently. As an example, if in-field officers want to know the number
of hateful tweets near their current location in the past hour, we can first create the
UDF in Fig. 8, which can be invoked using an officer’s ID and returns the number of
recent hateful tweets nearby. We “activate” this UDF using the statement in Fig. 9 by
creating a data channel using this UDF. This channel has a configurable period “10
mins” indicating that it computes every 10 mins. In-field officers who subscribed to
this channel will receive the number of nearby hateful tweets in the past hour every

CREATE FUNCTION mostHatefulCitiesByMonth (stime ,etime) {
FROM Tweets t WHERE t.timestamp > stime AND t.timestamp < etime
GROUP BY print_datetime(t.timestamp , "Y-M")
GROUP AS TweetsByMonth
SELECT print_datetime(t.timestamp , "Y-M") AS Month , (

SELECT VALUE tbm.t.area_code FROM TweetsByMonth tbm
GROUP BY tbm.t.area_code ORDER BY count (1) DESC LIMIT 10

) MostHatefulCities
};
mostHatefulCitiesByMonth(datetime ("2017 -07 -14 T10 :10:00") ,

datetime ("2018 -08 -14 T10 :10:00"));

Fig. 7   A UDF based on an analytical query

CREATE FUNCTION RecentNearbyHatefulTweetsCount(oid) {
FROM OfficerLocations o, Tweets t
WHERE o.oid = oid AND t.hateful_flag = true

AND spatial_distance(t.location , o.location) < 5
AND t.timestamp > current_datetime () - day_time_duration ("PT1H")

SELECT count (*) AS HatefulTweetsNum , current_datetime () AS CurrentTime
};
RecentNearbyHatefulTweetsCount ("0907");

Fig. 8   An UDF for counting hateful tweets near certain in-field officer given his/her officer ID

CREATE REPETITIVE CHANNEL RecentNearbyHatefulTweetCountChannel
USING RecentNearbyHatefulTweetsCount@1 PERIOD duration ("PT10M ");

Fig. 9   Creating a data channel based on a UDF with a parameter

486	 Distributed and Parallel Databases (2022) 40:475–520

1 3

10 mins.2 We will further discuss how a channel evaluation produces customized
data for each subscriber in Sect. 4.2.

4.1.5 � Brokers and subscriptions

The BAD system includes a broker sub-system for managing the communication
with a large number of subscribers. A broker could be a single server that only for-
wards customized data to subscribers or a broker network that provides load balanc-
ing, subscription migration, and different caching strategies. Interested readers can
refer to [34, 39] for more details. A developer can choose a broker suited for the
use case and register it as an HTTP endpoint in the BAD system as in Fig. 10. A
subscriber can then subscribe to a channel in the BAD system on this broker using
the statement in Fig. 11. A given channel execution can produce customized data for
subscribers subscribed on different brokers, and the customized data is sent to the
corresponding brokers based on which brokers the subscriptions are subscribed on.
A broker receives the customized data from channel executions and then dissemi-
nates it to its subscribers.

4.2 � Data channel evaluation

As the core feature of the BAD system, data channels combine incoming data, rel-
evant information, subscriptions, and broker information to produce customized data
for each subscriber. In this section, we describe how BAD-RQ evaluates data chan-
nels to support a large number of subscriptions at scale.

4.2.1 � Modeling brokers and subscriptions

As we mentioned in Sect. 3.2, subscribers subscribe to a data channel with param-
eters, and there could be millions of subscribers for a data channel. Given the large
volume of subscriptions, separately evaluating a channel query (the underlying UDF
of a channel) for each subscriber would be too computationally expensive. Inspired
by [6], BAD-RQ stores subscriptions as data and evaluates the channel query using
the analytical query engine. Benefiting from the query optimization, indexes, and

CREATE BROKER BROKER_A AT "http :// BROKER_A_HOST:BROKER_A_PORT/API";

Fig. 10   Registering a broker to BAD

SUBSCRIBE TO RecentNearbyHatefulTweetCountChannel ("0907") ON ROKER_A;

Fig. 11   Subscribing to a channel with parameters on a broker

2  While such precise requirement of sending nearby hateful tweets to every police officer is uncommon
in practice, we use this as a synthetic example for illustrating the BAD system and for later demonstrat-
ing how the BAD system can scale regarding such complex use cases.

487

1 3

Distributed and Parallel Databases (2022) 40:475–520	

distributed evaluation in AsterixDB, BAD-RQ can compute a channel query with
a lot of subscriptions efficiently, and the channel evaluation process can also take
advantage of the shared computation among subscriptions in order to serve more
subscribers.

BAD-RQ uses the data types defined in Fig. 12 to store the broker and subscrip-
tion information internally. Broker information is decoupled from subscriptions, so
a broker record can be modified without having to update all related subscriptions.
The subscription data type is defined as open, and the parameters of a subscription
are stored as open attributes and named as param0, param1, etc. This allows a data
channel to support an arbitrary number of parameters with arbitrary data types. The
broker dataset is a permanent part of the BAD-RQ metadata. The subscription data-
set is tied to the life-cycle of a data channel. When a developer creates a data chan-
nel (e.g., RecentNearbyHatefulTweetCountChannel), a corresponding subscription
dataset (RecentNearbyHatefulTweetCountChannelSubscriptions) is also created, and
this will be removed when the channel is dropped. Whenever a subscriber subscribes
to the channel, a new subscription record is inserted into the subscription dataset.

4.2.2 � An example of channel evaluation

In order to illustrate how BAD-RQ periodically computes a channel and produces
customized data for each subscriber using broker and subscription information, we
show a small data sample in Fig. 13 for the channel defined in Sect. 4.1.4, which
returns the number of hateful tweets near a particular in-field officer. For illustra-
tive simplicity, we assume all three tweets are posted within one hour and are hate-
ful, and attributes not used for evaluation are not shown in the figure. The channel

Fig. 12   Data type definitions
for brokers and subscriptions
(internal to BAD)

CREATE TYPE Brokers AS {
dataverse_name: string ,
broker_name: string ,
broker_end_point: string

};
CREATE TYPE Subscription AS {

subscription_id: uuid ,
broker_name: string ,
dataverse_name: string

};

Fig. 13   A data sample for evaluating a data channel

488	 Distributed and Parallel Databases (2022) 40:475–520

1 3

evaluation combines information from four datasets, including OfficerLocations,
Tweets, RecentNearbyHatefulTweetCountChannelSubscriptions, and Brokers, and
it produces the customized data shown in the RecentNearbyHatefulTweetCountCh-
annelResults dataset. Related tuples are colored the same. Taking red tuples as an
example, we find two tweets near officer with oid 20s current location at (15, 15):
tweet 200 at (15, 15) and tweet 300 at (18, 18). Also, there are two subscriptions
(subscription 1 and subscription 4) subscribe to the nearby hateful tweet number of
officer 20 (having param0 equal to 20). Subscription 1 is on broker 1, and subscrip-
tion 4 is on broker 2. Based on the above information, BAD produces two notifica-
tions, one for each subscriber, and sends them to their corresponding broker APIs.

4.2.3 � Channel evaluation internals

Evaluating a channel is equivalent to evaluating a query where we apply the under-
lying UDF to parameters from subscriptions to produce customized data. For exam-
ple, evaluating the channel defined back in Fig. 9 is equivalent to evaluating the
query shown in Fig. 14. In this query, we apply the UDF in Fig. 8 on parameters
from subscriptions and nest the return value of the UDF into a “customized_data"
field. The UDF can be inlined into the query, as shown, and be compiled and opti-
mized together with it. The broker endpoint and subscription ID are also attached to
each customized data record. The broker endpoint is used for the channel to send the
result to a corresponding broker API, and the subscription ID is used by brokers to
identify which subscriber the customized data should be delivered to.

Since the query used for evaluating a channel is computed on the analytical engine of
AsterixDB, it can be optimized by the query optimizer and be accelerated by utilizing

Fig. 14   An illustrative query for computing a channel

489

1 3

Distributed and Parallel Databases (2022) 40:475–520	

efficient algorithms and indexes. Under the hood, the query in Fig. 14 compiles into
a query plan as shown in Fig. 15. BAD can use use an R-Tree index to accelerate the
spatial join between Tweets and OfficerLocations. Also, since the number of brokers is
small compared with subscriptions, it can broadcast the Brokers to avoid unnecessary
shuffling of the Subscriptions dataset. It can use a hybrid hash join to join the two inter-
mediate results in parallel on all nodes in the cluster.

4.2.4 � Customized data delivery

A data channel executes on a specified period (time interval) to generate customized
data. Depending on subscribers’ preferences, the customized data can either be eagerly
or lazily delivered. In the eager (push) mode, the produced data is pushed to brokers
directly so they can immediately disseminate the data to subscribers. As the produced
subscription result data is not persisted in BAD-RQ in this mode, brokers have to be
fault-tolerant to avoid data loss. In the lazy (pull) mode, the customized data is first
persisted in the BAD-RQ storage engine. The channel then sends a notification to the
brokers whose subscribers have customized data that was produced in this channel exe-
cution. A broker that receives such a notification then pulls the customized data from
BAD-RQ and distributes it to the subscribers. To this end, a result dataset (RecentNear-
byHatefulTweetCountChannelResults) is created for persisting produced customized
data when a “lazy” channel is created. The result dataset has an index on the “Chan-
nelExecutionTime” attribute for accelerating result pulling. Since the customized
data is persisted in the storage engine in this mode, brokers then have the flexibility
to choose when to disseminate the notifications to subscribers, and the storage engine
ensures data safety. BAD-RQ uses the pull (broker-initiated) mode as the default mode
for its channels.

Fig. 15   A query plan for channel evaluation

490	 Distributed and Parallel Databases (2022) 40:475–520

1 3

5 � Continuous BAD: BAD‑CQ

BAD-RQ “activates” a UDF (a parameterized query) to create a data channel that
allows subscribers to constantly receive updates of interesting data. Although BAD-
RQ demonstrates how to transform a “passive” Big Data system into a basic “active”
one for creating BAD services, it faces several limitations when users have more
requirements.

In some use cases, subscribers may want the latest information delivered incre-
mentally. Examples include “send me new hateful tweets on campus”, “notify me
when an emergency happens around me”, and “let me know when crimes happen
near my house”. We call such use cases Continuous BAD. In order to support them,
data channels in BAD need to provide continuous semantics, in which they continu-
ously return incremental updates. Developers using BAD-RQ could try to approxi-
mate continuous semantics using repetitive channels, but such approximations
would face challenges due to the lack of native support for true continuous seman-
tics. In this section, we look at an example of continuous BAD and demonstrate how
to use BAD-RQ to approximate it. We discuss the limitations of this approximation
and then introduce a new BAD service—BAD-CQ—designed for supporting con-
tinuous BAD.

5.1 � Approximately continuous queries

To illustrate continuous BAD and its BAD-RQ approximation, we look at a simple
continuous use case where “in-field officers (subscribers) want to know new hateful
tweets near their current location”. We introduce the setup for approximating con-
tinuous semantics in BAD-RQ and show how to construct a repetitive channel query
for this approximation.

5.1.1 � BAD timestamps

As subscribers are interested in new tweets, BAD-RQ needs to determine which
portion of the collected tweets are new (i.e., tweets ingested but not yet reported).
Different from streaming engines where all data in the engine is new, and old data is
aged out, BAD-RQ keeps all data in the storage for supporting other services (e.g.,
data analytics). In order to differentiate new data from old, BAD-RQ needs to utilize
timestamps.

In some cases (like tweets), incoming data comes with a “timestamp” attribute
which indicates when was a data item created (a.k.a., valid time [40] or event time
[20]). This attribute could potentially be used for differentiating new tweets from old
ones. However, this would introduce additional complexity in handling out-of-order

CREATE FUNCTION AddIngestionTime(incoming_record) {
object_merge ({" ingested_timestamp ": current_datetime ()}, incoming_record)

};

Fig. 16   A UDF for adding ingestion time

491

1 3

Distributed and Parallel Databases (2022) 40:475–520	

arrivals. Besides, when such an attribute is not provided in the incoming data, we
still need to find another solution3. BAD-RQ allows developers to attach timestamps
to incoming tuples during data ingestion by attaching a UDF to the ingestion pipe-
line. For this use case, we can create the UDF shown in Fig. 16 and attach it to the
tweet data feed defined in Fig. 4. This UDF adds an “ingested_timestamp” attrib-
ute to each incoming tweet, which marks the current date time when the tweet first
enters the pipeline (a.k.a, ingestion time [20]). We can utilize this timestamp to infer
the arrival order of tweets and differentiate new tweets from old.

5.1.2 � A repetitive approximation

With BAD timestamps, we can then construct a repetitive data channel to serve new
nearby hateful tweets with a designated channel period, as shown in Fig. 17. In this
channel, we look for hateful tweets ingested in the past 10 s from the time when the
channel executes. These tweets are new and thus haven’t been examined yet. We join
them with officers’ current locations and look for nearby new hateful tweets for each
subscribed in-field officer. The channel is defined to execute every 10 s, so subscrib-
ers can continuously receive new nearby hateful tweets. This allows us to approxi-
mate continuous (incremental) semantics with a repetitively executed channel query
that runs every 10 s and looks back 10 s.

5.1.3 � Challenges in approximation

Although developers could use BAD-RQ to approximate continuous semantics just
as shown, such an approximation is not perfect in practice and could fail to have
continuous semantics in some circumstances. Also, due to the lack of native syntax
support for continuous semantics, constructing an approximation query can become
very complex. Challenges include:

•	 Scheduling delay We approximate the continuous semantics by examining data
ingested in the past execution period (e.g., 10 s) from the current channel execu-

CREATE FUNCTION NewNearbyHatefulTweets(oid){
SELECT t
FROM OfficerLocations o, Tweets t
WHERE spatial_distance(t.location , o.location) < 5

AND o.oid = oid AND t.hateful_flag = true
AND t.ingested_timestamp >

current_datetime () - day_time_duration (" PT10S")
};
CREATE REPETITIVE CHANNEL NewNearbyHatefulTweetsChannel

USING NewNearbyHatefulTweets@1
PERIOD duration ("PT10S ");

Fig. 17   A repetitive data channel looking for new nearby hateful tweets

3  Streaming Engines (such as Spark Structured Streaming) that compute with event time offer water-
marking to handle late arrivals. BAD-RQ with BAD timestamps (and BAD_CQ later introduced in
Sect. 5.2) can provide similar functionality with proper channel queries. Here we focus on the general
use cases without assuming the existence of event time.

492	 Distributed and Parallel Databases (2022) 40:475–520

1 3

tion time. To perfectly approximate a continuous query, we rely on BAD-RQ
to schedule the channel execution on time to make sure that all incoming data
is examined. However, this is impractical in practice, especially in a distributed
environment.

	  If a scheduling delay happens, some data can be missed by the channel, as
shown in Fig. 18. This channel executes every 10 s and examines data ingested
from the past 10 s. If the actual channel execution 1 is delayed from T = 20
to 20.5, the data ingested from T = 10 to 10.5 will not be examined and thus
missed.

•	 Early timestamping The approximation of BAD-RQ uses the ingestion times-
tamp for determining whether ingested data should be examined in a channel
execution. However, since the ingested (timestamped) data does not become
visible to channel execution instantaneously due to delays in data transmis-
sion, data enrichment (if any), secondary index(es) updating (if any), pri-
mary index updating, and waiting for the storage transaction to complete,
there is a chance that a running channel execution could miss the data just
ingested, even if the channel execution is scheduled on time. This is illus-
trated in Fig. 19, where channel execution 1 starts at T = 10 and a tuple t100
is ingested at T = 10 − � and later persisted and becomes visible to que-
ries at T = 10 + � due to the delay.4 Channel execution 1 does not examine
t100 because the tuple is not in storage yet, and channel execution 2 will
not examine t100 either, because the tuple has an ingested_timetsamp that is
smaller than 10 (i.e., too old). Thus, tuple t100 is missed.

Fig. 18   Missing data due to scheduling delays

Fig. 19   Missing tuple due to early timestamping

4  In practice, this time gap is very small. We emphasize the delay in Fig. 19 for illustration purposes.

493

1 3

Distributed and Parallel Databases (2022) 40:475–520	

•	 Inappropriate data access We have attached an explicit timestamp
(“ingested_timestamp”) attribute to mark the ingestion time of incoming
tweets.

	  This attribute then exists as part of the user data, and other users of the
BAD system can access it. This raises the potential risk that other users may
accidentally modify this attribute and cause data channels to fail. Addition-
ally, this auxiliary information may cause confusion for non-channel users
such as data analysts.

•	 Complex approximation query In order to approximate continuous seman-
tics, we have chosen the same time period in the temporal predicate and
the channel execution period, as shown in Fig. 17. Such a correspondence
needs to be managed manually and carefully by developers. When channel
queries become more complex and involve multiple incoming data sources,
constructing a proper approximation query can be challenging. One would
have to add proper temporal predicates for each of the data sources, and when
there are joins between these data sources, which portion of the collected
data from one data source should be joined the other one needs to be care-
fully specified with temporal predicates. These temporal predicates would
increase the query complexity and make such queries very difficult to write.

The above challenges of using BAD-RQ to approximate continuous semantics
introduce risks of missing data and cause difficulties for developers in creating
continuous BAD applications. In order to properly support continuous BAD, we
introduce a new BAD service— BAD-CQ—with native support for continuous
query semantics.

5.2 � BAD‑CQ

In this section, we first introduce the new building blocks needed for providing
continuous semantics in BAD-CQ, and then we show how to utilize them to cre-
ate continuous data channels for continuous BAD.

5.2.1 � Active datasets

As we have discussed in Sect. 5.1.1, BAD persists all data to support retrospec-
tive analysis. To help data channels differentiate new data from old, we need to

Fig. 20   Storage format of an
active record

494	 Distributed and Parallel Databases (2022) 40:475–520

1 3

timestamp incoming data and use timestamps for proper continuous channel evalu-
ation. To avoid the previously mentioned drawbacks of adding an ingestion times-
tamp to user data, we introduce a new type of datasets—Active Datasets—in
BAD-CQ. Unlike regular datasets in AsterixDB, a record (active record) stored in
an active dataset contains not only user data but also a “hidden” active attribute:
“_active_timestamp”. This helps BAD-CQ to evaluate continuous channel queries.
This attribute is stored alongside users’ data but separated from the regular record
content. It is “invisible” to users and can only be accessed using active functions (to
be discussed soon). The storage layout of an active record is shown in Fig. 20.

As the BAD system runs in a distributed environment, which clock to use to
assign active timestamps needs careful consideration. One might first consider using
a single clock to assign all active timestamps. This would be convenient because
then all active timestamps would be directly comparable, and we would only need to
figure out one active timestamp range to identify all the new data. However, having
a master clock would require either routing all data to a single node, which would
create a bottleneck in the system, or synchronizing clocks on multiple nodes, which
can be very challenging in a distributed environment. In BAD-CQ, we instead use
the local clock on each node to assign active timestamps to the active records stored
on it for scalability. Active timestamps are assigned in the storage engine, after the
locking phase. This makes sure that incoming records will become visible to run-
ning queries as soon as they are timestamped. Although the new data on each node
may now have a different active timestamp range, we can introduce an active times-
tamp management mechanism with additional query optimization rules to make sure
that channel queries are evaluated correctly. We will further discuss this in Sect. 5.3.

Considering that active timestamps often need to be compared in channel que-
ries, we can optimize these comparisons to improve channel performance. One
might consider creating a secondary index on active timestamps, but this would take
additional disk space and incur additional access overhead when the selectivity is
high [41]. As the active timestamps of an active dataset grow monotonically, we
can instead utilize the filter feature in the AsterixDB storage engine to avoid access-
ing irrelevant data [42]. The BAD storage engine uses Log-Structured Merge (LSM)
Trees as its storage structure [43]; they perform batch updates into components to
avoid the cost of random writes and then read them sequentially for data access. One
can designate a filter attribute when creating a dataset, and every LSM component
of this dataset is then decorated with the maximum and minimum attribute values of
its stored records. When a query containing a filter attribute comparison comes, it

Fig. 21   Access active datasets
with filters

CREATE ACTIVE DATASET Tweets(Tweet) PRIMARY KEY oid;
CREATE ACTIVE DATASET OfficerLocations(OfficerLocation) PRIMARY KEY oid;

Fig. 22   Datatype and dataset definition for officer location updates

495

1 3

Distributed and Parallel Databases (2022) 40:475–520	

can quickly skip irrelevant components by examining their maximum and minimum
filter values. For active datasets, we use the active timestamp as the filter attribute to
accelerate channel queries, as shown in Fig. 21. The active_timestamp(t) function
reveals the active timestamp of the tuple t stored in the active dataset Tweets, as will
further be discussed in Sect. 5.3.

The syntax for creating active datasets is straightforward. An active dataset can be
created with a regular data type, and the active attribute and filter are automatically
configured behind-the-scene. One can create two active datasets Tweets and Officer-
Locations using the statements in Fig. 22. Active datasets can also be accessed in
regular queries just like non-active datasets. There is an extra overhead when read-
ing active datasets due to the additional space for storing active timestamps. We
will see from later experiments that this overhead is relatively small. When not used
in query evaluation, active timestamps are projected out from the active records as
early as possible to avoid potential transmission overhead.

5.2.2 � Active timestamp management

With active datasets, we now need to “teach” channels to utilize the active times-
tamps to recognize new data and to guarantee continuous semantics. The basic idea
is straightforward: keep track of the channel execution times and compare them with
active timestamps to find the new data. As mentioned in Sect. 5.2.1, each node uses
the local time to assign active timestamps, so we also need to use local time for
tracking channel execution times and make sure they are properly compared with
active timestamps. We create a local active timestamp manager on each node to
keep track of the previous channel execution time and the current channel execution
time under the local clock. When a channel executes on a node, these two times-
tamps are used to determine which portion of the stored data should be considered
for this execution.

To demonstrate how multiple local active timestamp managers can work to offer
continuous semantics, we consider the channel defined in Sect. 5.1 that looks for

Fig. 23   An illustration of active timestamp management

496	 Distributed and Parallel Databases (2022) 40:475–520

1 3

new nearby tweets for in-field officers. We show an illustrative channel execution
example in Fig. 23.

In this example, we use the cluster controller (CC) time as the (conceptual) clus-
ter time. Since not all nodes are synchronized on time, current timestamps on differ-
ent nodes can be different. In this case, when CC starts the first channel execution
at time T

0
 , Node A marks the channel start time under its local time as TA

0
 , which is

“logically before” T
0
 , and Node B marks the channel start time under its local time

as TB

0
 , which is “logically after” T

0
 . When the CC invokes the first channel execu-

tion at T
1
 , every node examines the tweets ingested and persisted from the previ-

ous channel execution time to the current channel execution time. From Node A’s
perspective, all tweets ingested from TA

0
 to TA

1
 are examined. From Node B’s per-

spective, tweets ingested from TB

0
 to TB

1
 are examined. Although T

1
 , TA

1
 , and TB

1
 are

different, from the CC’s (and subscribers’) perspective, only nearby hateful tweets
from T

0
 to T

1
 are reported to subscribers. This guarantees the continuous seman-

tics for this channel. The channel’s previous channel execution and current channel
execution time are each progressed with each channel execution. They are updated
instantly when a channel execution job first accesses an active dataset used for the
channel. This makes sure that all incoming tweets that were persisted before the cur-
rent channel execution can all be safely examined in the current channel execution.

The active timestamp manager enables BAD-CQ to provide continuous seman-
tics in a distributed environment without time synchronization. The monotonically
increased active timestamps on each node in fact act like sequence numbers. The
local active time manager marks the range of sequence numbers for each channel
execution (as its previous and current channel execution time) and allows it to find
the new data.

5.3 � BAD‑CQ syntax and optimization

Active datasets and active timestamp management allows BAD-CQ to provide con-
tinuous semantics. In order to enable users to use active timestamps and channel
execution times for constructing channel queries, we introduce several active func-
tions in this section. Each active function takes a parameter that refers to tuples from
active datasets. Applying active functions on normal datasets will cause a query
compilation exception. In order to describe the functionalities of active functions,
we use a tuple t from the active dataset Tweets as an example. The active functions
are as follows:

•	 active_timestamp(t) reveals the active timestamp of the tuple t.
•	 previous_channel_time(t) returns the previous channel execution time on the

node where the tuple t is persisted, as defined in Sect. 5.2.2. Note that every node
has its own (local) channel time for a channel, and dataset Tweets’s tuples could
be persisted on multiple nodes, so this function is evaluated locally on each node
at run time, and tuples from Tweets used in the channel could have different pre-
vious channel times.

497

1 3

Distributed and Parallel Databases (2022) 40:475–520	

•	 current_channel_time(t) returns the current channel execution time of the tuple
t, as defined in Sect. 5.2.2. Similar to previous_channel_time, current_channel_
time is also computed locally at run time, and tuples from Tweets could have dif-
ferent current channel time.

•	 is_new(t) returns a boolean value indicating whether tuple t is new to the current
channel execution. The return value of is_new(t) is equivalent to the following
expression:

	  previous_channel_time(t) < active_timestamp(t) AND active_timestamp(t) <
current_channel_time(t).

With active functions, a developer can conveniently construct continuous channels
with continuous semantics. Here we show an example for the use case described
in Sect. 5.1, where subscribers would like to receive new tweets near in-field offic-
ers. We use a different user model in BAD-CQ. Data channel definition in BAD-CQ
is not based on UDFs, since active functions are not meaningful outside. Execut-
ing previous_channel_time and current_channel_time functions in regular queries
return 0 and current cluster time respectively. Using BAD-CQ’s active functions, a
developer can create a continuous channel for the new nearby hateful tweets using
the statement shown in Fig. 24.

In order to assist channel evaluation with active functions and to improve channel
performance, we introduce two new query optimization rules into BAD-CQ. First,
when compiling a continuous channel query, we push the current_channel_time
function into the leaf node of the query plan—the data scan operator of an active
dataset—as the filter’s maximum value. This is because when an active dataset is
accessed in a channel execution, only data before the current channel execution
time is relevant. We use this to quickly skip data coming after the current execution

CREATE CONTINUOUS CHANNEL CQNewNearbyHatefulTweets(oid)
PERIOD duration ("PT10S ") {
SELECT t
FROM OfficerLocations o, Tweets t
WHERE spatial_distance(t.location , o.location) < 5

AND o.oid = oid AND t.hateful_flag = true AND is_new(t)
};

Fig. 24   A continuous channel for new nearby hateful tweets

Fig. 25   Query plan for new nearby hateful tweet channel

498	 Distributed and Parallel Databases (2022) 40:475–520

1 3

starts. Second, we push the previous_channel_time function down towards the leaf
of the query as much as possible, and we use it as the filter’s minimum value for
active datasets when applicable. Whether this function can be pushed into the data
scan operator depends on the specific channel query. For the channel query defined
in Fig. 24, we can indeed push previous_channel_time(t) into the Tweets scan opera-
tor and use it as the minimum filter, as shown in Fig. 25. 5

When the previous_channel_time function cannot be pushed all the way down
into a data scan operator, we need to attach its node-dependent value (i.e., the previ-
ous channel execution time on a node) to the active records read from this node. In
this case, the comparison between active timestamps and the previous_channel_time
function is rewritten into a comparison between active timestamps and this attached
previous channel execution time value. This makes sure that even if active records
are shuffled around in the cluster, the comparison between their active timestamps
and previous channel time will be evaluated correctly. To explain how the second
rule works in this scenario, we introduce another continuous use case, where “in-
field officers (as subscribers) would like to receive nearby hateful tweets he/she has
not seen before”. In this case, we not only need to consider a new tweet posted near
an in-field officer, but also tweets that were not nearby but that become nearby due
to the movement of in-field officers. We can create a continuous channel for this use
case as shown in Fig. 26.

In this continuous channel query, the active functions is_new(o) and is_new(t)
are expanded to the corresponding query predicates based on active timestamps,
previous channel execution time, and current channel execution time as shown in

CREATE CONTINUOUS CHANNEL UnseenNearbyHatefulTweets (oid)
PERIOD duration ("PT10S ") {
SELECT t
FROM OfficerLocations o, Tweets t
WHERE spatial_distance(t.location , o.location) < 5 AND o.oid = oid

AND t.hateful_flag = true
AND (is_new(o) OR is_new(t))

};

Fig. 26   A continuous channel for unseen nearby hateful tweets

Fig. 27   Expanding a continuous channel query with active functions

5  In this channel, we only need officers’ latest location, so there is no lower bound on active timestamps
of OfficerLocations. We will introduce another example in Sect. 5.4 which requires recent location
updates and utilizes the minimum filter on OfficerLocations.

499

1 3

Distributed and Parallel Databases (2022) 40:475–520	

Fig. 27. Following the first optimization rule, the current time timestamp of both
Tweets and OfficerLocations are pushed into the corresponding data scan opera-
tors. However, the previous channel execution time cannot be pushed thoroughly,
because the disjunctive predicate “active_timestamp(t) > previous_channel_time(t)
OR active_timestamp(o) > previous_channel_time(o)” also needs data from before
the previous channel execution time from both datasets. Following the second opti-
mization rule, this continuous channel query can be compiled into the plan shown in
Fig. 28. The disjunctive predicate is evaluated in the join operation that is computed
across all nodes, and data is shuffled around in this process 6. Notice now that since
the previous channel execution time is attached to active records, we can compare
the active timestamp with the channel execution time under the same local clock,
even if records are shipped to another node.

Different from the implicit query rewriting in Tapestry [5] and the delta files in
NiagaraCQ [6], BAD-CQ allows developers to construct queries using active func-
tions that are best suited for their use cases, and it takes advantage of the storage
engine for accelerating channel queries without having to introduce additional data
structures. Developers can write a query using the is_new function and let the query
compiler rewrite it into an incremental query, or they can use the active_timestamp
function to expose the active timestamps and directly compare them with channel
times or other times. The BAD-CQ user model uses datasets to hold the collected
incoming data and other existing data. This provides developers with a unified query
model and lets them to reuse all dataset processing operations when defining chan-
nels. The principles underlying the BAD-CQ approach are general - i.e., other data-
base systems supporting declarative queries could also be adapted to provide con-
tinuous semantics like BAD-CQ.

5.4 � BAD‑CQ semantics

To better understand the query semantics provided in BAD-CQ, we dive into the
details of several continuous BAD use cases in this section. We focus on the sce-
nario where in-field officers would like to get nearby hateful tweets with different

Fig. 28   Query plan for unseen nearby hateful tweet channel

6  Depending on the workload, the execution plan for the channel query can choose either to broadcast
Tweets or OfficerLocations.

500	 Distributed and Parallel Databases (2022) 40:475–520

1 3

preferences, and we use data samples to show how BAD-CQ produces notifica-
tions for different channels.

5.4.1 � New nearby hateful tweets

We first look at the example from Sect. 5.1, where in-field officers would like to
receive new nearby hateful tweets. The channel is defined in Fig. 24. We use the
is_new function to look for new tweets that have not been sent to subscribers, and
we use the officers’ latest locations to look for nearby tweets.

In Fig. 29, we show a channel execution example with several sample data
records. In order to focus on the channel execution process, irrelevant attributes
of tweets and officer location updates are not shown in the figure. The channel
starts at time 0, and in-field officers u10 and u20 have initial location at time
0 of (0, 0) and (0, 10), respectively. At 9s, the first tweet t100 arrives and its

Fig. 29   Officer u10 subscribing to CQNewNearbyHatefulTweets(u10) and officer u20 subscribing to
CQNewNearbyHatefulTweets(u20)

Fig. 30   Officer u10 subscribing to UnseenNearbyHatefulTweets(u10) and officer u20 subscribing to Uns
eenNearbyHatefulTweets(u20)

501

1 3

Distributed and Parallel Databases (2022) 40:475–520	

location is (0, 3). When the channel first executes at 10s, only tweet t100 is near
in-field officer u10, so the channel produces one notification for u10. After that,
u20 updates his/her location to (0, 7) at 13s. When the channel executes at 20s, as
there is no new tweet after the previous channel execution, no notification is pro-
duced. Later, u10 updates his/her location to (0, 3) at 22s, and a new tweet t200
located at (0, 4) arrives at 28s. When the channel executes at 30s, both u10 and
u20 have t200 nearby, so the channel produces two notifications for each of the
corresponding officers.

5.4.2 � Unseen nearby hateful tweets

In the previous use case, in-field officers receive a hateful tweet only if the tweet is
temporally new. In another use case, officers may also be interested in older nearby
hateful tweets that they have not seen before (which could contain useful informa-
tion). The channel definition for this use case is shown in Fig. 26.

We use the same data sample in Sect. 5.4.1 to explain how this channel works.
As shown in Fig. 30, the channel acts the same way as the previous one and pro-
duces one notification for u10 in the first channel execution. In the second chan-
nel execution, the location update of u20 from (0, 10) to (0, 7) makes t100 become
nearby to u20, so the channel produces one notification for u20 at 20s to notify this
officer about this previously unseen tweet. The third channel execution starts at 30s
and produces two notifications for u10 and u20, respectively, as both in-field officers
have not seen this new tweet.

CREATE CONTINUOUS CHANNEL NewNearbyHatefulTweetsForActiveOfficers(oid)
PERIOD duration ("PT10S ") {

SELECT t
FROM OfficerLocations o, Tweets t
WHERE spatial_distance(t.location , o.location) < 5

AND o.oid = oid AND t.hateful_flag = true AND is_new(t) AND is_new(o)
};

Fig. 31   A continuous channel for new nearby hateful tweets

Fig. 32   Officer u10 subscribing to NewNearbyHatefulTweetsForActiveOfficers(u10) and officer u20 sub-
scribing to NewNearbyHatefulTweetsForActiveOfficers(u20)

502	 Distributed and Parallel Databases (2022) 40:475–520

1 3

5.4.3 � New nearby hateful tweets for active officers

In the previous use cases, even if an officer is not updating his/her location con-
stantly (e.g., in order to reduce power/data plan consumption), the channel can still
be producing notifications for them based on their last known location. When the
officer reconnects, the broker sub-system can pull notifications that were produced
“offline” from the BAD storage engine and send them out. If we want to produce
notifications only to “active” in-field officers (who are their updating the locations to
the system regularly), one can create the continuous channel defined in Fig. 31. Dif-
ferent from the channel defined in Fig. 24, we now only look for new hateful tweets
for officers who have recently updated their locations instead of all officers. Those
who are not updating their locations “actively” will not receive nearby hateful tweets
while they are inactive.

Following our data sample used in previous use cases, the execution process of
this channel is shown in Fig. 32. Similarly, the first channel execution produces one
notification based on u10 about t100. In the second channel execution, no notifica-
tion is generated since there is no new incoming tweet. In the third channel execu-
tion, we produce one notification about the new tweet t200 for u10 who has recently
updated his/her location. Although t200 is also near u20, we do not produce a noti-
fication for him/her since u20 is not “active”. As we can see from these sample use
cases, active functions offer the flexibility and expressiveness of working with both
the new and historical data. Developers can use active functions to conveniently
construct a wide range of suitable queries for their BAD applications.

6 � GOOD: a not BAD approach

In order to fully support BAD applications without the BAD system, one would
have to glue multiple existing Big Data systems together. In this section, we discuss
a Not-BAD approach, which we call GOOD— Gluing Oodles Of Data platforms—
approach to approximate the BAD system. We introduce a GOOD system that con-
sists of several Big Data systems, illustrate how to configure it for creating BAD
services, and compare it with the BAD system.

6.1 � The GOOD architecture

Following our discussion in Sect. 3.1, a GOOD system also needs to serve all three
types of BAD users: Subscribers who want to customize data and receive constant
updates, Developers who create BAD applications to serve subscribers, and Ana-
lysts who analyze data using declarative queries. Such a system should provide the
following features:

•	 Efficient data ingestion for rapid incoming data.
•	 Data customization based on a large volume of subscriptions.
•	 Data analytics with a declarative language.

503

1 3

Distributed and Parallel Databases (2022) 40:475–520	

•	 Persistent storage for incoming data and other relevant information with ACID
guarantees.

•	 Customized data delivery to a large number of subscribers.

An existing Big Data system alone can only fulfill a portion of the BAD require-
ments. For example, Apache Spark Structured Streaming offers on-the-fly data
processing but lacks persistent storage that provides ACID transaction support.
Amazon’s Simple Notification Service (SNS) supports cloud-based pub/sub, but
the expressiveness of subscriptions is limited to the content of publications. A
user wanting to build BAD applications would thus have to glue multiple systems
together. We can break down a proposed GOOD system architecture into different
components and categorize existing Big Data systems with respect to this GOOD
architecture, as shown in the overview Fig. 33. Users need to pick one or more sys-
tems from each component to assemble a bundled GOOD system to meet the BAD
requirements. We describe the functionality of each component as follows:

•	 Ingestion tools collect data from external data sources and help distribute the
data to downstream components. In some cases, users could implement their
own ingestion programs to handle specific ingestion protocols. With the growth
of stream processing, many ingestion tools now also support on-the-fly data
processing (with various limitations). This blurs the boundary between inges-
tion tools and streaming engines. Here we still consider them as different GOOD
components to emphasize their functional differences.

•	 Streaming engines today come in two different flavors. One (e.g., Apache Storm,
Apache Kafka) focuses on efficient and reliable data distribution and allows users
to hang data processing units onto the pipeline. The other (e.g., Apache Flink,
Apache Spark Structured Streaming) focuses on enabling real-time data analyt-
ics as if working with non-streaming data. Users could glue multiple streaming
engines together to benefit from both flavors (such as gluing Kafka with Spark
Structured Streaming). GOOD can use streaming engines to combine incoming
data, subscription information, and other relevant data to produce customized
notifications.

Fig. 33   A GOOD architecture

504	 Distributed and Parallel Databases (2022) 40:475–520

1 3

•	 Data warehouses (and database systems7) provide data persistence and support
for data analytics. We want a data analytics capability as a part of the GOOD
system. Thus, incoming data should be persisted for retrospective analysis. Sub-
scriptions and other relevant data used for producing customized data are also
persisted in the data warehouse and loaded into the streaming engine for pro-
cessing. We choose not to replicate data in both the streaming engine and the
data warehouse to avoid data inconsistencies and a need for constant migration
of updates between them.

•	 Notification services deliver customized data produced by streaming engines to
interested subscribers. Users could choose cloud-based services such as Amazon
SNS or Firebase Cloud Messaging to send notifications to subscribers via SMS
or Email, or they also could build their own notification services based on Web-
Socket.

Every component of the GOOD system must be horizontally scalable to ensure
that it can support a large number of subscribers, just like the BAD system. Even
with this scalable architecture, it would be impractical for the GOOD system to com-
pute/customize an incoming data item for every subscriber independently, especially
when the incoming data arrives rapidly. In order to best approach the BAD system’s
scalability requirement, we also adopt the data channel model in our GOOD system
architecture by grouping similar subscriptions into a data channel and evaluating
them together. Next, we will consider a sample GOOD system to explain how it can
receive, customize, and deliver data.

6.2 � A GOOD system

The GOOD architecture offers a way to approximate the BAD system by gluing
multiple existing Big Data systems together. One could choose various combina-
tions among the options in Fig. 33 for creating a GOOD system. In order to com-
pare the GOOD system with the BAD system toe-to-toe, we have constructed a sam-
ple GOOD system using several component systems that have been widely used in
practice, as shown in Fig. 34. These component systems were chosen based on our
perception of their popularity. Each of them provides good performance for their
targeted use cases. We use them here to illustrate how to build a GOOD system off-
the-shelf. More importantly, as we will see later in the discussion and experiments,

Fig. 34   A concrete GOOD system

7  Here we use the term Data Warehouse loosely, focusing more on its data management part.

505

1 3

Distributed and Parallel Databases (2022) 40:475–520	

there are computing and performance limitations due to bundling different systems
together for the BAD use case in addition to the effort required to glue them together.

We choose Apache Kafka for data ingestion and use Spark Structured Streaming
for data processing, as suggested in the Spark Structured Streaming documentation
[44]. Although Kafka also supports several data processing operations via Kafka
Streams [19], we choose Spark Structured Streaming for its richer query semantics,
which is closer to the BAD system’s offering. We use MongoDB as the data ware-
house for persisting incoming data as well as other reference data used for analytics.
We chose it because it is the most popular database for “modern data” (NoSQL),
which is the kind of data we expect many BAD applications to need. Later (Sect. 7)
we will also consider using Delta Lake [45], the storage layer of Databricks’ new
Lakehouse architecture, in this role because of its relationship to the Spark ecosys-
tem, where Delta lake is gaining usage for providing ACID transactions in Spark
as the data storage. Finally, we choose AmazonSNS for notification delivery. Each
component of the GOOD system can be described and configured as follows:

•	 Apache Kafka is a distributed streaming platform that allows applications to pub-
lish and subscribe to data streams reliably. We connect external data sources to
Kafka using producer APIs. For each data source, we can create a topic in Kafka
to allow downstream consumers (Spark Structured Streaming and MongoDB) to
access the incoming data.

•	 MongoDB is a document-based distributed database. We connect MongoDB to
Kafka as a consumer via the mongodb-kafka connector [46] provided by Mon-
goDB. Incoming data records from a Kafka topic (i.e., an external data source)
are persisted in a corresponding MongoDB collection as JSON-like documents
for retrospective analysis. Besides incoming data, subscriptions specifying sub-
scribers’ interest and other relevant information used for data customization and
data analytics are also stored in MongoDB.

•	 Apache spark structured streaming is a scalable stream processing engine built
on top of the Spark SQL engine. It supports Dataframe/Dataset APIs for users to
express streaming computations the same way one would express a batch com-
putation on static data. We connect Spark Structured Streaming to Kafka as a
consumer through the spark-streaming-kafka connector [47] provided by Spark.
Incoming data from a Kafka topic is mapped into a data stream in Spark Struc-
tured Streaming. One can implement a data channel as a Spark application that
runs continuously for producing customized data. Relevant information and sub-
scriptions stored in MongoDB can be loaded into Structured Streaming as Data-
Frames through a mongodb-spark connector [48] provided by MongoDB.

•	 Amazon SNS is a notification service provided in Amazon Web Services for deliv-
ering messages to subscribed endpoints or clients. It allows users to create Amazon
SNS topics and publish notifications through APIs. Other systems and end-users
can subscribe to these topics and receive published data. Amazon SNS provides fil-
ter policies in subscriptions to allow subscribers to filter notifications by their con-
tent. We can use the filter policy to send notifications to certain channel subscribers
by using their subscription IDs as the filter value. We map a data channel to an
Amazon SNS topic, and whoever subscribes to this data channel also becomes a

506	 Distributed and Parallel Databases (2022) 40:475–520

1 3

subscriber to the Amazon SNS topic with its subscription ID as the filter attrib-
ute. Customized data generated by the Spark channel application is published to the
Amazon SNS topic with subscription IDs attached.

Due to its glued nature, the GOOD system needs “cooperation” between different
components to provide BAD services. Taking the new nearby hateful tweet example
described in Sect. 5 (the equivalent BAD channel defined in Fig. 24), one would have
to complete the following steps for providing the channel service in the GOOD system:

•	 Configure and deploy Apache Kafka to the cluster. Create adaptor programs as
Kafka producers that publish data into Kafka topics for tweets and for officer loca-
tion updates separately.

•	 Configure and deploy MongoDB to the cluster. Create collections for tweets, loca-
tion updates, and subscriptions, and make sure all collections are sharded across the
cluster.

•	 Create and configure an Amazon SNS topic on Amazon Web Services for sending
notifications.

•	 Configure and deploy Apache Spark to the cluster. Create a Spark application as
a data channel and connect it to Kafka, MongoDB, and Amazon SNS separately.
Implement data customization by joining tweets, officer locations, and subscrip-
tions using stream processing operations.

•	 Deploy the channel application onto the Spark cluster and make sure all services
are running and connected.

•	 For each newly subscribed subscriber, we add the subscription information into
MongoDB for data customization, and we also create a corresponding Amazon
SNS subscription with the subscription ID as the filter attribute.

Compared with the BAD system, the GOOD system requires a significant amount of
effort from developers to configure, orchestrate, and manage different components for
providing BAD services. Besides the administration complexity, due to the limitation
of the components in the GOOD system, not all of the query semantics provided by the
BAD system can be conveniently supported by the GOOD system.

6.3 � GOOD vs. BAD

As we have mentioned, streaming engines have to age historical data out to restrain
their resource usage. This limits the query semantics that can be supported by the
GOOD system. Consider the new nearby hateful tweets channel defined in Fig. 24,
where we send new nearby hateful tweets to in-field officers based on their last
known location by utilizing an UPSERT feed. That channel can produce notifica-
tions for a temporarily “offline” officer and later send these “missed” notifications to
him/her when the officer reconnects, as discussed in Sect. 5.4.

In the GOOD system, if an officer has not sent location updates for a some time,
his/her location information would be aged out by the streaming engine. Due to this
limitation, a GOOD user can only look for location updates back to a limited time

507

1 3

Distributed and Parallel Databases (2022) 40:475–520	

for a new incoming tweet. To better approximate the BAD channel, one could con-
sider persisting all historical location updates in MongoDB and pulling the latest
locations into Spark Structured Streaming in each channel execution. However, this
would lose the timeliness of streaming data and introduce additional data access
overhead.

To illustrate the query semantics of the GOOD system and compare that with
BAD, we show an alternative new nearby hateful tweets use case. As Spark Struc-
tured Streaming does not support spatial joins on data streams, we use “area_code”
to represent tweets’ and officers’ locations. We consider a tweet to be nearby to an
officer if it is posted from the same area code as the officer. In this modified use
case, we send a new hateful tweet to the nearby in-field officers who have recently
(within 10 seconds) updated their locations. This use case will also be used in the
later performance comparison between BAD and GOOD. An illustrative example
of the modified channel execution using the data sample in Sect. 5.4 is shown in
Fig. 35.

When t100 arrives at 9s, we examine the location updates in the past 10 s and find
two officers u10 and u20 who recently updated their locations. We check the area
codes of t100, u10, and u20 and produce a notification for u10. When t200 arrives at
28s, we look back in a 10-second window and find the location update from u10 at
22s, so we produce a notification for u10. Note that the location update from u20 at
13s is not “used”. When t200 come at 28s, this location update of u20 is too old for
the the tweet.8

7 � Experimental results

In this section, we present a set of experiments conducted to evaluate the perfor-
mance of the BAD system. We focused on the performance of BAD-CQ and com-
pared that with the GOOD system described in Sect. 6.3. We first examined the
basic ingestion and query performance of active datasets. Then, we investigated
BAD-CQ’s continuous channel performance regarding supportable subscribers in

Fig. 35   A GOOD example of sending hateful tweets to officers

8  For illustrative simplicity, here we only look for location updates for new tweets. One may consider to
look for tweets for new location updates and notify u20 about t100, but t200 for u20 would still be miss-
ing. Increasing the window size would work for this example but couldn’t be applied for general cases.

508	 Distributed and Parallel Databases (2022) 40:475–520

1 3

different use cases. Also, we compared the performance of the GOOD and the BAD
systems using the same use cases. Finally, we investigated the speed-up and scale-
out performance of BAD-CQ when it is given more resources. Our experiments
were conducted on a cluster connected using a Gigabit Ethernet switch (up to 16
nodes). Each node had a Dual-Core AMD Opteron Processor 2212 2.0 GHz, 8 GB
of RAM, and a 900 GB hard disk drive.

7.1 � Active dataset scale‑out performance

Since active datasets store active timestamps with records for continuous channel
evaluation, writing and reading active datasets will have the same additional cost
due to the additional bytes. In order to examine the performance impact of that,
we conducted ingestion and query performance experiments with active datasets.
We used two types of data: the Tweets and OfficerLocations defined in Figs. 2 and
3 respectively. Each tweet was around 140 bytes, and each user location record
was around 60 bytes. An active timestamp was 9 bytes long (1 byte for data type
and 8 bytes for epoch time). For both scale-out experiments, we started with 100
million records on a 2-node cluster and increased that to 400 million records on

30.89 56.58

101.45

29.52
53.19

95.01

44.15

78.49

153.67

41.88
69.60

135.34

0.00
20.00
40.00
60.00
80.00

100.00
120.00
140.00
160.00
180.00

2 4 8

Tr
ho

ug
hp

ut

(t
ho

us
an

ds
 o

f
re

co
rd

s/
se

co
nd

)

Number of Nodes

Feeding Regular Dataset - Tweets
Feeding Active Dataset - Tweets
Feeding Regular Dataset - OfficerLocations
Feeding Active Dataset - OfficerLocations

Fig. 36   Ingestion performance on active datasets

122.67
136.60

151.67
135.62

147.32 156.05151.67 159.61 163.67

204.47
225.42 226.79

0.00

50.00

100.00

150.00

200.00

250.00

2 4 8

A
ve

ra
ge

 Q
ue

ry
 T

im
e

(s
ec

on
ds

)

Number of Nodes

Scanning Regular Dataset - Tweets
Scanning Active Dataset - Tweets
Scanning Regular Dataset - OfficerLocations
Scanning Active Dataset - OfficerLocations

Fig. 37   Query performance on active datasets

509

1 3

Distributed and Parallel Databases (2022) 40:475–520	

a 8-node cluster. For the ingestion performance experiments, we measured the
ingestion throughput. For the query performance experiments, we measured the
average time over 50 query executions for scanning all records in a dataset. The
results are shown in Figs. 36 and 37 respectively.

When ingesting data into active datasets, the additional work comes from
attaching active timestamps to incoming data records and persisting them into
the storage engine. As we can see from Fig. 36, the ingestion throughput on both
the Tweets and OfficerLocations datasets have some regression compared with
the regular datasets. The throughput regression is proportional to the size ratio
between an incoming record and the active timestamp. When an incoming record
is big, the performance impact is relatively small and vice versa. With more nodes
in the cluster, the throughput increases since more resources (CPU and storage
bandwidth) can be used for parsing and storing incoming data.

When scanning active datatasets, as shown in Fig. 37, the query time increases
due to the additional cost of reading the larger records with active timestamps
from disk. Similarly, the query time increase is proportional to the size ratio
between a stored record and the active timestamp. As the cluster size grows, the
query time increases slightly due to the increased query execution cost on a larger
cluster, but overall it remains stable since AsterixDB shards its stored data across
all nodes.

Fig. 38   Datatype and dataset
definition for Schools

CREATE TYPE School AS OPEN {
sid: int ,
area_code: string ,
name: string

};
CREATE DATASET Schools(School) PRIMARY KEY sid;

CREATE CONTINUOUS CHANNEL NewLocalHatefulTweets(area_code)
PERIOD duration ("PT10S ") {

SELECT t FROM Tweets t
WHERE t.area_code = area_code AND is_new(t)

};

Fig. 39   A continuous channel for new local hateful tweets

CREATE CONTINUOUS CHANNEL NewLocalHatefulTweetsWithSchools (area_code)
PERIOD duration ("PT10S ") {
SELECT t,
(SELECT VALUE s FROM Schools s WHERE s.area_code = t.area_code)

AS nearby_schools
FROM Tweets t
WHERE t.area_code = area_code AND is_new(t)

};

Fig. 40   A continuous channel for new local hateful tweets with schools

510	 Distributed and Parallel Databases (2022) 40:475–520

1 3

7.2 � Channel performance

As a channel runs periodically at a user specified period, it requires the channel
evaluation to finish within that given period of time. The channel execution time
depends on the channel query complexity and the size of the data involved (e.g.,
the number of tweets and subscribers). In order to examine the performance of data
channels, we measured the maximum number of subscribers that can be supported
by a channel within a given period. For these use cases, we introduce a new data-
set Schools, defined in Fig. 38, to store schools’ information as relevant auxiliary
information. A list of schools can be attached to hateful tweets to provide additional
information for use by the responding in-field officers. The Schools dataset contains
10,000,000 records, and each record is around 70 bytes. We used the following four
use cases to examine channel performance:

1.	 NewLocalHatefulTweets Send me new hateful tweets from a certain area (defined
in Figure 39).

2.	 NewLocalHatefulTweetsWithSchools Send me new hateful tweets from a certain
area together with information about schools in that area (defined in Figure 40).

3.	 NewNearbyHatefulTweets Send me new hateful tweets nearby (defined in Fig-
ure 24).

4.	 UnseenNearbyHatefulTweets Send me nearby hateful tweets that I’ve not seen
before (defined in Figure 26).

In use cases 1 and 2, subscribers subscribe to a channel with their interested area
codes. In use cases 3 and 4, subscribers subscribe with their officer IDs and their
locations are spatial data mapped to IDs. All channels were configured to execute
every 10 seconds. To approximate incoming data in practice, we set up external pro-
grams to continuously send tweets and officer location updates into the data feeds
we created in Figs. 4 and 5. For tweets, the client program sent them at a configur-
able rate (tweets / second), and 10% of the incoming tweets were hateful. For loca-
tion updates, we created client programs to simulate the movement of subscribers
(in-field officers) on the map and to send location updates on behalf all of them, and
an average of 1/3 of the in-field officers updated their locations every 10 s. Both pro-
grams ran on machines outside of the BAD cluster.

1
4

16
64

256
1024
4096

16384
65536

262144
1048576
4194304

10 20 40 80 160 320 640 1280 2560 5120 10240

Su
pp

or
ta

bl
e

Su
bs

cr
ib

er
s

(L
og

 S
ca

le
)

Incoming tweets per second (Log Scale)

NewLocalHatefulTweets
NewLocalHatefulTweetsWithSchools
NewNearbyHatefulTweets - BCast Nested Loop
NewNearbyHatefulTweets - Index Nested Loop
UnseenNearbyHatefulTweets

Fig. 41   Maximum number of supportable subscribers under different incoming data rates

511

1 3

Distributed and Parallel Databases (2022) 40:475–520	

In all four use cases, we fixed the incoming tweet rate and searched for the maxi-
mum number of supportable subscribers in the given 10-s channel execution period
while both tweets and location updates were coming. We varied the incoming tweet
rate to see how channel performance changed. For the “NewNearbyHatefulTweets”
channel in particular, we chose two algorithms (broadcast nested loop join and index
nested loop join) to evaluate the spatial join between the incoming tweets and offic-
ers’ locations. (We broadcast data from the Tweets dataset and utilized the R-Tree
index on the location attribute of the OfficerLocations dataset.) We deployed BAD-
CQ on a 6-node cluster and the performance results are shown in Fig. 41. (Note the
use of a log scale for the y-axis.)

Depending on the channel query complexity, the maximum number of support-
able subscribers varies. For all four use cases, the maximum number of support-
able subscribers decreases as the incoming tweet rate increases; this is due to the
increased cost of producing and persisting 9 more customized notifications. Com-
paring the results for “NewLocationHatefulTweets” and “NewLocalHatefulTweets-
WithSchools”, we see that the latter one has lower performance, as adding in school
information incurs more computational and persistence cost. Comparing “NewNear-
byHatefulTweets - BCast Nested Loop” and “NewNearbyHatefulTweets - Index
Nested Loop”, we see that the use of the index offers much better performance than
scanning the whole OfficerLocations dataset when the incoming tweet rate is low.
As the incoming tweet rate grows, however, the performance of the index nested
loop join becomes worse than the broadcast join. The reason is that, with more
incoming tweets, the maximum number of supportable subscribers decreases due
to the increased cost of computing customized data. For the join operation between
tweets and officer locations, then, having more tweets and fewer actual subscrib-
ers (in-field officers) increases the query’s selectivity for OfficerLocations. Since the
index nested loop join accesses the primary index through a secondary index, when
the selectivity becomes high, the performance of using that index becomes worse
than just scanning the primary dataset. Interested readers may refer to [41] for a
more detailed analysis of the underlying storage engine’s performance benchmarks.

7.3 � GOOD vs. BAD performance

The BAD system enables developers to create BAD services with declarative
statements. The GOOD system, in contrast, requires developers to manually glue
multiple systems together and orchestrate them programmatically to create BAD
services. In order to show that the BAD system not only alleviates developers’
effort when creating BAD services, but can also provide better performance com-
pared with a GOOD system, we chose several use cases supported by both the
BAD and GOOD systems and measured their performance on both. As the BAD
system aim to provide an out-of-box solution for meeting all the BAD require-
ments outlined in Sect. 3, we compare the end-to-end performance of the BAD
system and the GOOD system.

9  As mentioned in Sect. 4.2.4, BAD persists customized data to disk by default to allow brokers to pull
later.

512	 Distributed and Parallel Databases (2022) 40:475–520

1 3

We used the GOOD system detailed in Sect. 6.2 for these experiments. For
comparison purposes, we also measured the performance of an altered GOOD
system by replacing MongoDB with Delta Lake. As we discussed in Sect. 6.3, the
GOOD system cannot provide all query semantics supported in the BAD system.
Not all use cases in Section 7.2 can be supported directly in the GOOD system.
Spark Structured Streaming does not support spatial joins between streams, so
here we use area code to represent the location of tweets and officers. The use
cases used for comparing the performance of the BAD system and the GOOD
system are as follows:

1.	 NewLocalHatefulTweets Send me new hateful tweets from a certain area (same
as Sect. 7.2).

2.	 NewLocalHatefulTweetsWithSchools: Send me new hateful tweets from a certain
area together with the schools in that area (same as Sect. 7.2).

0

500000

1000000

1500000

2000000

2500000

10 20 40 80 160 320 640 1280 2560 5120

Su
pp

or
ta

bl
e

Su
bs

cr
ib

er
s

Incoming tweets per second (Log Scale)

NewLocalHatefulTweets - BAD
NewLocalHatefulTweets - GOOD-Lake
NewLocalHatefulTweets - GOOD

Fig. 42   BAD-CQ vs. GOOD on NewLocalHatefulTweets 

0

50000

100000

150000

200000

250000

300000

350000

10 20 40 80 160 320 640 1280 2560 5120

Su
pp

or
ta

bl
e

Su
bs

cr
ib

er
s

Incoming tweets per second (Log Scale)

NewLocalHatefulTweetsWithSchools - BAD
NewLocalHatefulTweetsWithSchools - GOOD-Lake
NewLocalHatefulTweetsWithSchools - GOOD

Fig. 43   BAD-CQ vs. GOOD on NewLocalHatefulTweetsWithSchools 

513

1 3

Distributed and Parallel Databases (2022) 40:475–520	

3.	 NewHatefulTweetsForLocalActiveUsers Send me new hateful tweets from
the same area as my current location (similar to NewNearbyHatefulTweets in
Sect. 7.2, but modified to use area_code for this experiment).

In use cases 1 and 2, subscribers subscribe to a channel with the area codes of inter-
est. In use case 3, subscribers subscribe to the channel with the their officer IDs. Due
to the high overhead of integrating Spark Structured Streaming with MongoDB, we
tuned down the size of the Schools dataset by 5x to 2,000,000. To demonstrate the
advantages that the BAD system as of utilizing indexes and different query evalua-
tion algorithms, we picked the “NewHatefulTweetsForLocalActiveUsers” use case,
and we experimented with hash join, broadcast nested loop join, and index nested
loop join. In this experiment, we focused on the processing core of both systems
without including result delivery using brokers. The generated notifications were
persisted in storage, as in the default pull mode. All incoming data was persisted as
well for retrospective analysis. The performance results in terms of the number of
supportable subscribers are shown in Figs. 42, 43, and 44 respectively.

1

10

100

1000

10000

100000

1000000

10000000

10 20 40 80 160 320 640 1280 2560 5120

Su
pp

or
ta

bl
e

Su
bs

cr
ib

er
s

(L
og

 S
ca

le
)

Incoming tweets per second (Log Scale)

NewHatefulTweetsForLocalActiveUsers - BAD Hash
NewHatefulTweetsForLocalActiveUsers - BAD Index Nested Loop
NewHatefulTweetsForLocalActiveUsers - BAD BCast Nested Loop
NewHatefulTweetsForLocalActiveUsers - GOOD-Lake
NewHatefulTweetsForLocalActiveUsers - GOOD

Fig. 44   BAD-CQ vs. GOOD on NewHatefulTweetsForLocalActiveUsers 

75.58

5783.98

784.70 538.82

6761.27

81.21 30.18
345.55 308.32

765.27

0.00

1000.00

2000.00

3000.00

4000.00

5000.00

6000.00

7000.00

8000.00

Tweet Loading Subscription
Loading

Computation Result Writing Channel
Execution Total

T
im

e
(m

ili
se

co
nd

s)

GOOD BAD-CQ

Fig. 45   Cost of “NewLocalHatefulTweets” with 150,000 subscribers and 80 tweets/second on both the
GOOD and BAD system

514	 Distributed and Parallel Databases (2022) 40:475–520

1 3

In all three cases, BAD-CQ outperforms both versions of the GOOD system. The
GOOD system on Delta Lake (GOOD-Lake) is slightly better than that on Mon-
goDB (GOOD), as the cost of shipping data across systems (serailization, deseri-
alization, etc.) is much less, but it’s still not comparable to the BAD system. As the
incoming tweet rate grows, the performance of both systems drop because of the
increased cost of producing and persisting more notifications. Similar to Sect. 7.2,
both systems have better performance for “NewLocalHatefulTweets” (colored in
orange) than for “NewLocalHatefulTweetsWithSchools” (colored in blue) due to the
additional cost of attaching relevant school information. In particular, the “NewLo-
calHatefulTweetsWithSchools” use case for GOOD suffers more from the increased
incoming tweet rate, as the cost of persisting notifications with schools becomes
high when there are many notifications. For “NewHatefulTweetsForLocalActiveUs-
ers”, the GOOD system on Delta Lake (GOOD-Lake) has a limited advantage
compared to that on MongoDB (GOOD) because the computation cost dominated
the maximum number supported subscribers, which leads to many fewer subscrip-
tions being read and fewer notifications being persisted. For the BAD system, we
see a similar performance benefit for utilizing an index and the same performance
regression when the incoming tweet rate becomes high. Hash join offered only a
slight advantage over a broadcast nested loop join in this case, as the total number of
tweets for each channel execution is relatively small.

In order to better understand the cost of the GOOD system, we chose the “New-
LocalHatefulTweets” use case with 150,000 subscribers and 80 tweets/second and
measured the time consumed by each stage of its channel execution on both the
GOOD and BAD system. The result is shown in Fig. 45, which also includes the
overall channel execution time. As can be seen, the GOOD channel execution spent
much of its time loading Subscriptions from MongoDB. This is a consequence of
the overhead of gluing different systems together, as shipping data from one sub-
system to another incurs additional serialization/deserialization and data transforma-
tion and transmission costs. One could consider maintaining copies of the relevant
data and subscriptions in Spark Structured Streaming as well, to accelerate the pro-
cessing, but then developers would have to handle consistency challenges and need

26.20

12.44

7.09
4.92

0.00

5.00

10.00

15.00

20.00

25.00

30.00

2 4 8 16

C
ha

nn
el

 E
xe

cu
tio

n
Ti

m
e

(S
ec

on
ds

)

Number of Nodes

Fig. 46   Speed-up BAD-CQ with fixed incoming tweet rate and number of subscribers

515

1 3

Distributed and Parallel Databases (2022) 40:475–520	

to migrate updates back and forth between Spark Structured Streaming and Mon-
goDB. In contrast, BAD-CQ spent much less time on subscription loading. Since
tweets were being ingested at the same time, there was a bit of read/write contention
on the Tweets dataset that caused the tweet loading time to be higher than the sub-
scription loading time on BAD-CQ.

7.4 � BAD scalability

Finally, we investigated the scalabilty of BAD-CQ from two angles: speed-up -
given a fixed workload, see if the performance improves with more resources, and
scale-out - increase the workload together with available resources to see if the per-
formance remains stable. We chose the “NewNearbyHatefulTweets - Bcast Nested
Loop” channel and increased the channel’s period to 30 seconds for this experiment.
All other settings were the same as Sect. 7.2.

Speed-up experiments The channel workload is determined by the incoming
tweets per second and the number of subscribers (in-field officers). In this experi-
ment, we fixed the incoming tweet rate to 160 tweets per second and had 140,000
subscribers. We increased the cluster size from 2 nodes to 4, 8, and 16 nodes, and

139.616

257.108

508.116

891.112

0

100

200

300

400

500

600

700

800

900

1000

2 4 8 16

Su
pp

or
ta

bl
e

Su
bs

cr
ib

er
s

(T
ho

us
an

ds
)

Number of Nodes

Fig. 47   Scale-out BAD-CQ with fixed incoming tweet rate

257.108 259.397 262.068 270.841

0

50

100

150

200

250

300

2 nodes
80 tps

4 nodes
160 tps

8 nodes
320 tps

16 nodes
640 tps

Su
pp

or
ta

bl
e

Su
bs

cr
ib

er
s

(T
ho

us
an

ds
)

Number of Nodes
Incoming Tweets per Second

Fig. 48   Scale-out BAD-CQ with increasing incoming tweet rate

516	 Distributed and Parallel Databases (2022) 40:475–520

1 3

we measured the channel execution times, as shown in Fig. 46. When the cluster
grows, the channel execution time is almost halved because the subscribers’ loca-
tions are stored on twice as many machines. Since each node now has less data, the
join between incoming tweets and officer’s locations, which computes on all nodes,
can finish sooner. As tweets are broadcast to all nodes in the cluster and the execu-
tion overhead also grows with the cluster size, the speed-up gain gradually decreases
with larger cluster sizes.

Scale-out experiments We used two experiments to evaluate the scale-out per-
formance of BAD-CQ. We first fixed the incoming tweet rate to 160 tweets/second
and increased the cluster size from 2 nodes to 4, 8, and 16 nodes to see how many
subscribers could be supported in each setting. The result is shown in Fig. 47. As
we double the size of the cluster, the maximum number of supportable subscribers
almost doubles. Similar to the speed-up experiment, twice many nodes allow the
join operation to handle more data in the given time period.

In the second experiment, we increased the incoming tweet rate together with the
cluster size. We started with a 2-node cluster with 80 incoming tweets per second,
and we increased the cluster size and the incoming tweet rate by the factor of two,
up to 16 nodes and 640 tweets per second. The result is shown in Fig. 48. The chan-
nel performance maintains relatively stable as we increase the workload and add
more resources at the same time.

8 � Conclusions and future work

In this work, we considered a world where Big Data is no longer just bytes sitting
on storage devices, waiting to be analyzed, but is valuable information surrounded
by active requests asking for continual “news updates”. In such a Big Active Data
(BAD) world, developers often need to create and manage data services to support
analysts in working with declarative queries and subscribers looking for the latest
updates. In order to reduce the effort for developers creating BAD services, we have
built the BAD system, consisting of BAD-RQ, which “activates” a parameterized
query as a data channel for subscribers to receive periodic query results of inter-
est, and BAD-CQ, which introduces continuous (incremental query) semantics into
data channels and optimizes the channel infrastructure for continuous use cases. We
showed the user model, design, and implementation of our system and illustrated
how developers can use it to create BAD services declaratively. To demonstrate the
complexity of creating BAD services without BAD, we also presented a “GOOD”
system created by gluing multiple Big Data systems together. We examined the per-
formance of the BAD system under different workloads and compared that with an
instance of a GOOD system. The results for the use cases examined showed that the
BAD system could support up to four millions subscribers on a six-node cluster, was
able to horizontally scale out with more resources, and offered significantly better
performance as compared with the GOOD system. In all, the BAD system provides
a systematic solution for creating BAD services at scale.

This work leads to a number of interesting opportunities for future
investigation:

517

1 3

Distributed and Parallel Databases (2022) 40:475–520	

•	 Connecting multiple BAD systems In a BAD world, there could be multiple BAD
systems running and managed by different organizations. In some use cases,
developers may need to share information between different organizations and
combine it with local data to create applications. Building a scalable data sharing
service from scratch requires a lot of work. With BAD, we could allow develop-
ers to connect multiple BAD systems via data channels and feeds. Developers of
multi-site applications could then benefit from the BAD approach and could cre-
ate data sharing services with very little implementation and management over-
head.

•	 Exploiting shared computation among data channels In the current BAD sys-
tem, data channel queries are processed, compiled, and optimized independently.
While shared computation arises from evaluating the parameterized requests
within a given channel together, more exploitation of sharing is possible.

	  Similar to [6], we could analyze multiple data channel queries, split them into
smaller parts, discover shared computations, and reuse intermediate results to
improve channel performance by avoiding redundant computation.

•	 Fault-tolerant channel evaluation As the BAD system contains a Persistent Stor-
age subsystem, which provides ACID transaction support, all data stored in the
BAD system are persistently stored and can be recovered when failure happens.
Despite that, when a failure happens during a channel execution, the run-time
data will be lost and the channel execution has to restart from scratch when the
system come back online. Following the shared computation work discussed in
the previous bullet, we could persist some of the intermediate results depending
on the computational complexity and the evaluation footprint, so when a failure
happens, the channel evaluation can resume from a previously persisted state to
reduce the recovery time.

•	 Resource management & scheduling of channel executions Currently, every
channel execution is scheduled based on its period. Each channel execution runs
as an independent job in the analytical engine, and an internal resource man-
ager manages the resource usage of all jobs running in the system. When there
is resource contention, certain channel executions may be delayed and cause a
channel to terminate (as we require channel executions to finish within the given
period to meet the channel’s time requirement). Given different channel periods
and users’ quality of service requirements, it should be possible to develop a
smarter scheduling strategy in which we allow more flexible channel execution
schedules based on the available resources and obtain better resource utilization
at the same time.

•	 Scalable experiments on cloud infrastructure With the popularity of the cloud,
more and more systems are offering out-of-the-box services with databases
built on top of different cloud infrastructures. Such deployments enable users to
quickly set up the environment and scale out or scale down based on their loads
accordingly. We could deploy the BAD system onto a cloud environment, inves-
tigate its performance when given a large number of virtual nodes, and explore
how to offer the system as a service to different users in a cloud environment
with further optimizations.

518	 Distributed and Parallel Databases (2022) 40:475–520

1 3

Acknowledgements  This research was partially supported by NSF Grants IIS-1447826, IIS-1447720,
IIS-1838222, IIS-1838248, CNS-1924694 and CNS-1925610.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

References

	 1.	 Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The Hadoop distributed file system. In: Khatib,
M.G., He, X., Factor, M. (eds.) IEEE 26th Symposium on Mass Storage Systems and Technologies,
MSST 2012, pp. 1–10. Lake Tahoe, Nevada, USA, 3–7 May (2010). https://​doi.​org/​10.​1109/​MSST.​
2010.​54969​72

	 2.	 Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig latin: a not-so-foreign language
for data processing. In: Wang, J.T. (ed.) Proceedings of the ACM SIGMOD International Confer-
ence on Management of Data, SIGMOD 2008, pp. 1099–1110. Vancouver, BC, Canada, 10–12 June
(2008). https://​doi.​org/​10.​1145/​13766​16.​13767​26

	 3.	 Thusoo, A., Sarma, J.S., Jain, N., et al.: Hive: a warehousing solution over a map-reduce framework.
PVLDB 2(2), 1626–1629 (2009). https://​doi.​org/​10.​14778/​16875​53.​16876​09

	 4.	 Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauly, M., Franklin, M.J., Shenker, S.,
Stoica, I.: Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster comput-
ing. In: Gribble, S.D., Katabi, D. (eds.) Proceedings of the 9th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 2012, , pp. 15–28. San Jose, CA, USA, 25–27 Apr
(2012)

	 5.	 Terry, D.B., Goldberg, D., Nichols, D.A., Oki, B.M.: Continuous queries over append-only data-
bases. In: Stonebraker, M. (ed.) Proceedings of the 1992 ACM SIGMOD International Conference
on Management of Data, pp. 321–330. San Diego, California, USA, 2–5 June (1992). https://​doi.​
org/​10.​1145/​130283.​130333

	 6.	 Chen, J., DeWitt, D.J., Tian, F., Wang, Y.: NiagaraCQ: A scalable continuous query system for
internet databases. In: Chen, W., Naughton, J.F., Bernstein, P.A. (eds.) Proceedings of the 2000
ACM SIGMOD International Conference on Management of Data, pp. 379–390. Dallas, TX, USA,
16–18 May (2000). https://​doi.​org/​10.​1145/​342009.​335432

	 7.	 Widom, J., Ceri, S. (eds.): Active Database Systems: Triggers and Rules For Advanced Database
Processing (1996)

	 8.	 Alexandrov, A., Bergmann, R., Ewen, S., Freytag, J., Hueske, F., Heise, A., Kao, O., Leich, M.,
Leser, U., Markl, V., Naumann, F., Peters, M., Rheinländer, A., Sax, M.J., Schelter, S., Höger, M.,
Tzoumas, K., Warneke, D.: The stratosphere platform for big data analytics. VLDB J. 23(6), 939–
964 (2014). https://​doi.​org/​10.​1007/​s00778-​014-​0357-y

	 9.	 Kreps, J., Narkhede, N., Rao, J., et al.: Kafka: a distributed messaging system for log processing. In:
Proceedings of the NetDB, pp. 1–7 (2011)

	10.	 Zaharia, M., Das, T., Li, H., Hunter, T., Shenker, S., Stoica, I.: Discretized streams: fault-tolerant
streaming computation at scale. In: Kaminsky, M., Dahlin, M. (eds.) ACM SIGOPS 24th Sympo-
sium on Operating Systems Principles, SOSP ’13, pp. 423–438. Farmington, PA, USA, 3–6 Nov
(2013). https://​doi.​org/​10.​1145/​25173​49.​25227​37

	11.	 Eugster, P.T., Felber, P., Guerraoui, R., et al.: The many faces of publish/subscribe. ACM Comput.
Surv. 35(2), 114–131 (2003). https://​doi.​org/​10.​1145/​857076.​857078

	12.	 Alsubaiee, S., Altowim, Y., Altwaijry, H., et al.: Asterixdb: a scalable, open source BDMS. PVLDB
7(14), 1905–1916 (2014). https://​doi.​org/​10.​14778/​27330​85.​27330​96

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/MSST.2010.5496972
https://doi.org/10.1109/MSST.2010.5496972
https://doi.org/10.1145/1376616.1376726
https://doi.org/10.14778/1687553.1687609
https://doi.org/10.1145/130283.130333
https://doi.org/10.1145/130283.130333
https://doi.org/10.1145/342009.335432
https://doi.org/10.1007/s00778-014-0357-y
https://doi.org/10.1145/2517349.2522737
https://doi.org/10.1145/857076.857078
https://doi.org/10.14778/2733085.2733096

519

1 3

Distributed and Parallel Databases (2022) 40:475–520	

	13.	 Jacobs, S., Wang, X., Carey, M.J., Tsotras, V.J., Uddin, M.Y.S.: Bad to the bone: big active data at
its core. VLDB J. 29, 1337 (2020)

	14.	 Arasu, A., Babcock, B., Babu, S., Cieslewicz, J., Datar, M., Ito, K., Motwani, R., Srivastava, U.,
Widom, J.: Stream: the stanford data stream management system. Technical Report 2004-2020,
Stanford InfoLab (2004)

	15.	 Arasu, A., Babu, S., Widom, J.: The CQL continuous query language: semantic foundations and
query execution. VLDB J. 15(2), 121–142 (2006). https://​doi.​org/​10.​1007/​s00778-​004-​0147-z

	16.	 Krishnamurthy, S., Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M.J., Hellerstein,
J.M., Hong, W., Madden, S., Reiss, F., Shah, M.A.: TelegraphCQ: an architectural status report.
IEEE Data Eng. Bull. 26(1), 11–18 (2003)

	17.	 Toshniwal, A., Taneja, S., Shukla, A., Ramasamy, K., Patel, J.M., Kulkarni, S., Jackson, J., Gade,
K., Fu, M., Donham, J., Bhagat, N., Mittal, S., Ryaboy, D.V.: Storm@twitter. In: Dyreson, C.E.,
Li, F., Özsu, M.T. (eds.) International Conference on Management of Data, SIGMOD 2014, pp.
147–156. Snowbird, UT, USA, 22–27 June (2014). https://​doi.​org/​10.​1145/​25885​55.​25956​41

	18.	 Armbrust, M., Das, T., Torres, J., Yavuz, B., Zhu, S., Xin, R., Ghodsi, A., Stoica, I., Zaharia, M.:
Structured streaming: a declarative API for real-time applications in apache spark. In: Das, G., Jer-
maine, C.M., Bernstein, P.A. (eds.) Proceedings of the 2018 International Conference on Manage-
ment of Data, SIGMOD Conference 2018, pp. 601–613. Houston, TX, USA, 10–15 June (2018).
https://​doi.​org/​10.​1145/​31837​13.​31906​64

	19.	 Kafka, A.: Kafka streams. https://​kafka.​apache.​org/​docum​entat​ion/​strea​ms/ (2020). Accessed 8 May
2020

	20.	 Carbone, P., Katsifodimos, A., Ewen, S., Markl, V., Haridi, S., Tzoumas, K.: Apache Flink™:
stream and batch processing in a single engine. IEEE Data Eng. Bull. 38(4), 28–38 (2015)

	21.	 Castro, M., Druschel, P., Kermarrec, A., Rowstron, A.I.T.: Scribe: a large-scale and decentralized
application-level multicast infrastructure. IEEE J. Sel. Areas Commun. 20(8), 1489–1499 (2002).
https://​doi.​org/​10.​1109/​JSAC.​2002.​803069

	22.	 Chockler, G.V., Melamed, R., Tock, Y., Vitenberg, R.: Spidercast: a scalable interest-aware overlay
for topic-based pub/sub communication. In: Jacobsen, H., Mühl, G., Jaeger, M.A. (eds.) Proceedings
of the 2007 Inaugural International Conference on Distributed Event-Based Systems, DEBS 2007,
pp. 14–25. Toronto, Ontario, Canada, 20–22 June, 2007. ACM International Conference Proceeding
Series, vol. 233 (2007). https://​doi.​org/​10.​1145/​12668​94.​12668​99

	23.	 Girdzijauskas, S., Chockler, G.V., Vigfusson, Y., Tock, Y., Melamed, R.: Magnet: practical sub-
scription clustering for internet-scale publish/subscribe. In: Bacon, J., Pietzuch, P.R., Sventek, J.,
Çetintemel, U. (eds.) Proceedings of the Fourth ACM International Conference on Distributed
Event-Based Systems, DEBS 2010, pp. 172–183. Cambridge, UK, 12–15 July (2010). https://​doi.​
org/​10.​1145/​18274​18.​18274​56

	24.	 Setty, V., van Steen, M., Vitenberg, R., Voulgaris, S.: Poldercast: Fast, robust, and scalable archi-
tecture for P2P topic-based pub/sub. In: Narasimhan, P., Triantafillou, P. (eds.) Middleware 2012
- ACM/IFIP/USENIX 13th International Middleware Conference, Montreal, QC, Canada, 3–7 Dec
2012. Proceedings. Lecture Notes in Computer Science, vol. 7662, pp. 271–291 (2012). https://​doi.​
org/​10.​1007/​978-3-​642-​35170-9_​14

	25.	 Altinel, M., Franklin, M.J.: Efficient filtering of XML documents for selective dissemination of
information. In: Abbadi, A.E., Brodie, M.L., Chakravarthy, S., Dayal, U., Kamel, N., Schlageter, G.,
Whang, K. (eds.) VLDB 2000, Proceedings of 26th International Conference on Very Large Data
Bases, pp. 53–64, Cairo, Egypt. 10–14 Sept (2000)

	26.	 Carzaniga, A., Rosenblum, D.S., Wolf, A.L.: Design and evaluation of a wide-area event notifi-
cation service. ACM Trans. Comput. Syst. 19(3), 332–383 (2001). https://​doi.​org/​10.​1145/​380749.​
380767

	27.	 Diao, Y., Fischer, P.M., Franklin, M.J., To, R.: Yfilter: Efficient and scalable filtering of XML docu-
ments. In: Agrawal, R., Dittrich, K.R. (eds.) Proceedings of the 18th International Conference on
Data Engineering, pp. 341–342. San Jose, CA, USA, 26 Feb–1 Mar (2002). https://​doi.​org/​10.​1109/​
ICDE.​2002.​994748

	28.	 Moro, M.M., Bakalov, P., Tsotras, V.J.: Early profile pruning on XML-aware publish-subscribe sys-
tems. In: Proceedings of the 33rd international conference on very large data bases (VLDB ’07).
VLDB Endowment, pp. 866–877 (2007).

	29.	 Li, M., Ye, F., Kim, M., Chen, H., Lei, H.: A scalable and elastic publish/subscribe service. In:
25th IEEE International Symposium on Parallel and Distributed Processing, IPDPS 2011, pp.

https://doi.org/10.1007/s00778-004-0147-z
https://doi.org/10.1145/2588555.2595641
https://doi.org/10.1145/3183713.3190664
https://kafka.apache.org/documentation/streams/
https://doi.org/10.1109/JSAC.2002.803069
https://doi.org/10.1145/1266894.1266899
https://doi.org/10.1145/1827418.1827456
https://doi.org/10.1145/1827418.1827456
https://doi.org/10.1007/978-3-642-35170-9_14
https://doi.org/10.1007/978-3-642-35170-9_14
https://doi.org/10.1145/380749.380767
https://doi.org/10.1145/380749.380767
https://doi.org/10.1109/ICDE.2002.994748
https://doi.org/10.1109/ICDE.2002.994748

520	 Distributed and Parallel Databases (2022) 40:475–520

1 3

1254–1265. Anchorage, Alaska, USA, 16–20 May 2011—Conference Proceedings (2011). https://​
doi.​org/​10.​1109/​IPDPS.​2011.​119

	30.	 Eugster, P.: Type-based publish/subscribe: concepts and experiences. ACM Trans. Program. Lang.
Syst. 29(1), 6 (2007). https://​doi.​org/​10.​1145/​11804​75.​11804​81

	31.	 Idreos, S., Koubarakis, M., Tryfonopoulos, C.: P2P-DIET: an extensible P2P service that unifies
ad-hoc and continuous querying in super-peer networks. In: Weikum, G., König, A.C., Deßloch,
S. (eds.) Proceedings of the ACM SIGMOD International Conference on Management of Data, pp.
933–934. Paris, France, 13–18 June (2004). https://​doi.​org/​10.​1145/​10075​68.​10077​04

	32.	 Carey, M.J., Jacobs, S., Tsotras, V.J.: Breaking BAD: a data serving vision for big active data. In:
Gal, A., Weidlich, M., Kalogeraki, V., Venkasubramanian, N. (eds.) Proceedings of the 10th ACM
International Conference on Distributed and Event-based Systems, DEBS ’16, pp. 181–186. Irvine,
CA, USA, 20–24 June (2016). https://​doi.​org/​10.​1145/​29332​67.​29333​13

	33.	 Jacobs, S., Uddin, M.Y.S., Carey, M.J., et al.: A BAD demonstration: towards big active data.
PVLDB 10(12), 1941–1944 (2017). https://​doi.​org/​10.​14778/​31377​65.​31378​14

	34.	 Uddin, M.Y.S., Venkatasubramanian, N.: Edge caching for enriched notifications delivery in big
active data. In: 38th IEEE International Conference on Distributed Computing Systems, ICDCS
2018, pp. 696–705. Vienna, Austria, 2–6 July (2018). https://​doi.​org/​10.​1109/​ICDCS.​2018.​00073

	35.	 Wang, X., Carey, M.J.: An IDEA: an ingestion framework for data enrichment in AsterixDB.
PVLDB 12(11), 1485–1498 (2019). https://​doi.​org/​10.​14778/​33422​63.​33426​28

	36.	 Grover, R., Carey, M.J.: Data ingestion in AsterixDB. In: Alonso, G., Geerts, F., Popa, L., Barceló,
P., Teubner, J., Ugarte, M., den Bussche, J.V., Paredaens, J. (eds.) Proceedings of the 18th Interna-
tional Conference on Extending Database Technology, EDBT 2015, pp. 605–616. Brussels, Bel-
gium, 23–27 Mar (2015). https://​doi.​org/​10.​5441/​002/​edbt.​2015.​61

	37.	 Chamberlin, D.: SQL++ for SQL users: a tutorial. Couchbase, Inc. (2018). (Available at Amazon.com)
	38.	 Ong, K.W., Papakonstantinou, Y., Vernoux, R.: The SQL++ query language: configurable, unifying

and semi-structured (2014). http://​arxiv.​org/​abs/​1405.​3631
	39.	 Nguyen, H., Uddin, M.Y.S., Venkatasubramanian, N.: Multistage adaptive load balancing for big

active data publish subscribe systems. In: Proceedings of the 13th ACM International Conference
on Distributed and Event-based Systems, DEBS 2019, pp. 43–54. Darmstadt, Germany, 24–28 June
(2019). https://​doi.​org/​10.​1145/​33289​05.​33295​08

	40.	 Snodgrass, R.T., Ahn, I.: Temporal databases. IEEE Comput. 19(9), 35–42 (1986). https://​doi.​org/​
10.​1109/​MC.​1986.​16633​27

	41.	 Luo, C., Carey, M.J.: Efficient data ingestion and query processing for LSM-based storage systems.
PVLDB 12(5), 531–543 (2019). https://​doi.​org/​10.​14778/​33037​53.​33037​59

	42.	 Alsubaiee, S., Carey, M.J., Li, C.: LSM-based storage and indexing: An old idea with timely ben-
efits. In: Mouratidis, K., Renz, M., Emrich, T., Züfle, A., Janowicz, K. (eds.) Second International
ACM Workshop on Managing and Mining Enriched Geo-Spatial Data, GeoRich@SIGMOD 2015,
pp. 1–6. Melbourne, VIC, Australia, 31 May (2015). https://​doi.​org/​10.​1145/​27860​06.​27860​07

	43.	 Alsubaiee, S., Behm, A., Borkar, V.R., Heilbron, Z., Kim, Y., Carey, M.J., Dreseler, M., Li, C.:
Storage management in asterixdb. Proc. VLDB Endow. 7(10), 841–852 (2014). https://​doi.​org/​10.​
14778/​27329​51.​27329​58

	44.	 Spark, A.: Structured streaming programming guide. http://​spark.​apache.​org/​docs/​latest/​struc​tured-​
strea​ming-​progr​amming-​guide.​html (2020). Accessed 13 Apr 2020

	45.	 ...Armbrust, M., Das, T., Paranjpye, S., Xin, R., Zhu, S., Ghodsi, A., Yavuz, B., Murthy, M., Tor-
res, J., Sun, L., Boncz, P.A., Mokhtar, M., Hovell, H.V., Ionescu, A., Luszczak, A., Switakowski,
M., Ueshin, T., Li, X., Szafranski, M., Senster, P., Zaharia, M.: Delta lake: high-performance ACID
table storage over cloud object stores. Proc. VLDB Endow. 13(12), 3411–3424 (2020). https://​doi.​
org/​10.​14778/​34154​78.​34155​60

	46.	 MongoDB: MongoDB Kafka Connector. https://​docs.​mongo​db.​com/​kafka-​conne​ctor/​curre​nt/
(2020). Accessed 8 May 2020

	47.	 Spark, A.: Spark Streaming + Kafka Integration Guide. https://​spark.​apache.​org/​docs/​latest/​strea​
ming-​kafka-​integ​ration.​html (2020). Accessed 8 May 2020

	48.	 MongoDB: MongoDB Connector for Spark. https://​docs.​mongo​db.​com/​spark-​conne​ctor/​master/
(2020). Accessed 8 May 2020

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://doi.org/10.1109/IPDPS.2011.119
https://doi.org/10.1109/IPDPS.2011.119
https://doi.org/10.1145/1180475.1180481
https://doi.org/10.1145/1007568.1007704
https://doi.org/10.1145/2933267.2933313
https://doi.org/10.14778/3137765.3137814
https://doi.org/10.1109/ICDCS.2018.00073
https://doi.org/10.14778/3342263.3342628
https://doi.org/10.5441/002/edbt.2015.61
http://arxiv.org/abs/1405.3631
https://doi.org/10.1145/3328905.3329508
https://doi.org/10.1109/MC.1986.1663327
https://doi.org/10.1109/MC.1986.1663327
https://doi.org/10.14778/3303753.3303759
https://doi.org/10.1145/2786006.2786007
https://doi.org/10.14778/2732951.2732958
https://doi.org/10.14778/2732951.2732958
http://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
http://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
https://doi.org/10.14778/3415478.3415560
https://doi.org/10.14778/3415478.3415560
https://docs.mongodb.com/kafka-connector/current/
https://spark.apache.org/docs/latest/streaming-kafka-integration.html
https://spark.apache.org/docs/latest/streaming-kafka-integration.html
https://docs.mongodb.com/spark-connector/master/

	Subscribing to big data at scale
	Abstract
	1 Introduction
	2 Related work
	3 Big active data
	3.1 A BAD world
	3.2 The BAD building blocks

	4 Repetitive BAD: BAD-RQ
	4.1 A BAD repetitive use case
	4.1.1 Persistent storage
	4.1.2 Ingestion facility
	4.1.3 Analytical engine
	4.1.4 Data channels
	4.1.5 Brokers and subscriptions

	4.2 Data channel evaluation
	4.2.1 Modeling brokers and subscriptions
	4.2.2 An example of channel evaluation
	4.2.3 Channel evaluation internals
	4.2.4 Customized data delivery

	5 Continuous BAD: BAD-CQ
	5.1 Approximately continuous queries
	5.1.1 BAD timestamps
	5.1.2 A repetitive approximation
	5.1.3 Challenges in approximation

	5.2 BAD-CQ
	5.2.1 Active datasets
	5.2.2 Active timestamp management

	5.3 BAD-CQ syntax and optimization
	5.4 BAD-CQ semantics
	5.4.1 New nearby hateful tweets
	5.4.2 Unseen nearby hateful tweets
	5.4.3 New nearby hateful tweets for active officers

	6 GOOD: a not BAD approach
	6.1 The GOOD architecture
	6.2 A GOOD system
	6.3 GOOD vs. BAD

	7 Experimental results
	7.1 Active dataset scale-out performance
	7.2 Channel performance
	7.3 GOOD vs. BAD performance
	7.4 BAD scalability

	8 Conclusions and future work
	Acknowledgements
	References

