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Abstract 

Previous work on visual short-term memory (VSTM) 
capacity has typically used patches of color or simple features 
which are drawn from a uniform distribution, and estimated 
the capacity of VSTM to be 3-4 items (Luck & Vogel, 1997). 
Here, we introduce covariance information between colors, 
and ask if VSTM can take advantage of this redundancy to 
form a more efficient representation of the displays.  We find 
that observers can successfully remember 5 colors on these 
displays, significantly higher than the 3 colors remembered 
when the displays were changed to be uniformly distributed 
in the final block of the experiment. We suggest that 
quantifying capacity in terms of number of objects 
remembered fails to capture factors such as object complexity 
or statistical redundancy, and that information theoretic 
measures are better suited to characterizing the capacity of 
VSTM. We use Huffman coding to model our data, and 
demonstrate that the data are consistent with a fixed VSTM 
capacity in bits rather than in terms of number of objects. 

Keywords: Visual short-term memory; Working memory; 
Information theory; Memory capacity 

Introduction  
 It is widely accepted that observers are highly sensitive to 
statistical regularities in the world.  This capacity has been 
used to explain effects from speech segmentation to the 
emergence of visual objects (Saffran, Aslin & Newport, 
1996; Turk-Browne, Isola, Scholl, & Treat, in press). Such 
regularities also provide an opportunity for memory systems 
to form more efficient representations by eliminating 
redundancies. This may be especially important for visual 
short-term memory, which is known to have a severely 
limited capacity.   
 Previous work on VSTM capacity suggests that observers 
can remember about four objects, independent of the 
number of features remembered per object (Luck & Vogel, 
1997; Vogel, Woodman, & Luck, 2001). In one experiment, 
observers were shown lines of different colors and 
orientations. When required to remember either color or 
orientation alone, they could remember 4 items. 
Surprisingly, when required to remember both color and 
orientation, observers could still remember 4 items. In fact, 
performance was the same when observers had to remember 
up to four features per object. These data suggested that the 
amount of information remembered per object is not a 
limiting factor in memory, and that memory capacity 

instead depends only on the number of objects to be 
remembered – consistent with the idea of ‘chunks’ proposed 
by Miller (1956) and Cowan (2001).  
 However, it has become clear recently that there is a 
serious cost in memory performance for increasing the 
information content of an object (e.g., objects with multiple 
colors that need to be stored; Wheeler & Treisman, 2002). 
This suggests that visual short-term memory (VSTM) 
cannot hold an unlimited amount of information just 
because it has been bound to a single object.  Alvarez and 
Cavanagh (2004) proposed an alternate framework that 
specifically takes into account the amount of information 
needed to represent each object. They demonstrated that 
while observers can remember up to four simple objects, 
they can remember only 1 or 2 complex objects -- 
presumably because a greater amount of information is 
required for the complex objects to be remembered well 
enough to succeed at test. However, because of the nature of 
the real world objects used in their task, Alvarez and 
Cavanagh (2004) could not measure the true (information 
theoretic) information content of their stimuli. 
 In the present study, we had observers remember color 
patches because it is possible to exactly quantify the 
information content of these stimuli in bits (Shannon, 1948).  
We varied the amount of information per stimulus not by 
changing the physical appearance of the patches, but by 
changing the probability of their co-occurrence.  Introducing 
statistical redundancy reduces the amount of information 
needed to encode the items in the display. This manipulation 
enabled us to directly compare VSTM models which 
propose a capacity limit in terms of a fixed number objects 
versus a fixed amount of information (in bits). 
 First, we conduct two behavioral experiments, in which 
we draw stimuli from a uniform distribution (Experiment 1) 
or from a distribution containing covariance information 
between presented colors (Experiment 2). Next, using a 
hierarchical Bayesian model of the learning process and a 
Huffman encoding scheme, we show that a computational 
model can predict VSTM performance.  

Experiment 1: Uniform Displays 
We first assessed the capacity of VSTM for colors drawn 
from a uniform distribution. This allowed us to get an 
estimate of the number of bits of color information people 
can remember under circumstances where no compression is 
possible. 
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Figure 1: A sample trial. Eight colors are presented and then 
disappear, and observers have to indicate what color was at 
a given location. 

Method 
Eight naïve observers were recruited from the MIT 
participant pool (age range 18-35) and received 10 dollars 
for their participation. All gave informed consent. 

We presented observers with displays consisting of eight 
colored circles, arranged in pairs around the fixation point 
(see sample display in Figure 1).  Observers were informed 
that their task was to remember the locations of each of the 
eight colors. At the start of a trial, the colors appeared and 
remained visible for 1000ms. Then the colors disappeared, 
with placeholder circles present for the next 1000ms (long 
enough to prevent observers from relying on iconic 
memory; Sperling, 1960), and then one of the placeholder 
circles was darkened.  

Observers’ task was to indicate which of the eight colors 
had been presented at the indicated location, by pressing one 
of eight color-coded keys. Observers completed 600 trials, 
presented in 10 blocks of 60 trials each. Afterward, they 
completed a questionnaire about the strategies they 
employed and whether they noticed the presence of patterns 
in the displays. 

The stimuli were presented using MATLAB with the 
Psychophysics toolbox extensions (Brainard, 1997; Pelli, 
1997). The eight colors used were red, green, blue, magenta, 
cyan, yellow, black and white. The locations of the colors in 
each trial were chosen randomly, with only the constraint 
that no color could appear more than once in a given trial. 

Results 
We estimated the number of objects observers could 
successfully hold in memory using the following formula 
for capacity given an eight-alternative forced choice: 
 

K = (PC - 1/8) * (1 + 1/8) * 8 
 

The reasoning behind this formula is that by correcting 
for chance (1/8) we can examine exactly how many objects 
from each display observers would have had to remember in 
order to achieve a given percent correct (PC).  Observers in 
the experiment remembered 3.4 colors on average 
throughout the experiment (see Figure 2), entirely consistent 
with previous results on the capacity of VSTM for colors 
(Luck & Vogel, 1997; Alvarez & Cavanagh, 2004).  

Performance on this task can also be quantified in terms 
of the amount of information remembered. Because there 
are 8 colors to choose from, each color requires 3 bits of 
information to encode (23 = 8). This suggests that the 
capacity of VSTM for colors drawn from a uniform 
distribution is approximately 10.1 bits. 

These data demonstrate that we can quantify performance 
both in terms of the number of objects and in terms of the 
number of bits. In Experiment 2 we introduce covariance 
information and measure its impact on VSTM. We then 
model the capacity of VSTM in both uniform displays and 
in displays with covariance information, to examine whether 
memory has a fixed information limit in bits. 
 
 

 
Figure 2: Results of Experiment 1. Error bars correspond to 
within-subject s.e.m. (Loftus & Masson, 1994). 

Experiment 2: Patterned Displays 
We next assessed the capacity of VSTM under conditions 
where statistical redundancy was present in the displays. 
Specifically, we introduced covariance information between 
colors. For example, red most often appeared next to green, 
blue most often appeared next to yellow, etc. If observers 
are able to learn these pairs, then over time they should be 
able to remember more items from the display. However, if 
memory is limited by the number of objects, then 
performance should be stable over time.  

Method 
Eight new observers were recruited. Methods were the same 
as Experiment 1, except that stimuli for each trial were not 
chosen randomly. First, for each subject a joint probability 
matrix was constructed to indicate how likely each color 
was to appear to the left or right of each other color. This 
matrix was made by choosing four high probability pairs at 
random (probability = 0.2151), and then assigning the rest 
of the probability mass uniformly (probability = 0.0027). As 
in Experiment 1, all eight colors were present in each 
display. In order to achieve this, the diagonal was set to zero 
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in order to prevent the same color from appearing twice in 
the same display.  

The pairs were constrained so that each color was 
assigned to exactly one high probability pair. For example, 
if (Blue, Red) was a high probability pair in this joint 
probability matrix, the observer would often see blue and 
red appear together, with blue on the left and red on the 
right. High probability pairs accounted for approximately 
80% of the mass of the probability distribution, and 
consequently about 80% of the pairs displayed during the 
experiment. 

In the final block of the experiment, the distribution the 
displays were drawn from was changed to a uniform 
distribution. This eliminated the regularities in the display, 
and allowed us to assess whether observers had used the 
regularities present in the displays to improve their 
performance. 

 

Results 
We found that observers in the patterned condition could 

successfully remember K = 5.1 colors after learning the 
regularities in the displays (block 9), significantly higher 
than the K = 3.1 colors they were able to remember when 
the displays were changed to be uniformly distributed in 
block 10 (See Figure 3; t(7) = 8.30, p = 0.00007).  

This suggests that, if we consider working memory 
capacity in terms of the number of items remembered, 
observers were able to use the regularities in the displays to 
increase their capacity past what has been assumed to be a 
fixed limit of approximately four simple objects. However, 
one concern is that observers might simply have 
remembered one color from each pair and then inferred 
what the other colors were after the display was gone. This 
would suggest that observers were actually only 
remembering four objects. 

In order to eliminate the possibility that this explicit 
inference was the only reason for our effect, we separated 
out trials where the tested item was from a high probability 
pair from those where the tested item was from a low 
probability pair. In other words, if blue often appeared with 
red, we considered only the trials where blue appeared with 
another color. On these trials, an explicit inference process 
would cause observers to report the wrong color. When we 
examine only these trials, we still find that capacity in block 
9 is significantly higher than in block 10 (4.9 colors in block 
9 and 3.1 colors in block 10; t(7)=3.63, p =0.008).  

We suggest that observers learned to encode the high 
probability pairs as a single unit using a more efficient 
representation. This allows them to both hold more high 
probability items and more low probability items in memory 
than when the displays were uniformly distributed.  

While this is consistent with ideas about chunking 
(Miller, 1956) as an alternative, we suggest that an 
information metric might be more useful than the number of 
items retained. We therefore performed an information 
theoretic analysis of the data to examine whether observers 

might have a fixed capacity in terms of bits, rather than 
number of items. Using the data from both Experiment 1 
and 2 allowed us to asses whether, across all blocks of both 
experiments, observers are remembering the same amount 
of information, even though they are successfully encoding 
more colors at some points than others. 
 

 
Figure 3: Results of Experiment 2. Block 10 is where the 
distribution was changed to be uniform. Error bars 
correspond to within-subject s.e.m.  

Modeling 
The purpose of the modeling is to test the hypothesis that 
there is a fixed bit limit on short-term memory.  First, we 
model the learning of the color regularities based on the 
number of times they saw each pair of colors. Second, we 
assess how these learned statistics translate into 
representations in bits, using Huffman coding (Huffman, 
1952).  

To model the learning of the color pairs, we assumed that 
observers treated the stimuli as though they were generated 
from rolls of a 64 sided die, with one side for each possible 
color pair (Red-Blue, White-Black, Black-White, etc.) We 
then modeled how they would learn what weight was 
associated with each side of the die. We did this by counting 
the frequency with which each pair appeared, plus a prior 
probability on the die being uniform, using a hierarchical 
Bayesian model.  

Once we had modeled how observers would learn the 
probability distribution, we next assessed how this 
probability distribution would help them encode the stimuli 
more efficiently. We used a compression algorithm, 
Huffman coding, to see how effectively observers should 
have been able to represent stimuli that were either drawn 
from the probability distribution they had learned (blocks 1-
9) or drawn from a different distribution (block 10).  

Learning the color pairs 
We used a Dirichlet-multinomial model to infer the 

probability distribution that the stimuli were being drawn 
from, given the color pairs that had been observed. We let d 
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equal the observations of color pairs. Thus, if the trial 
represented in Figure 1 is the first trial of the experiment, 
after this trial d = {Yellow-Green, Black-White, Blue-Red, 
Magenta-Cyan}.  We assume that d is sampled from a 
multinomial distribution with parameter ө. In other words, 
we assume that at any point in the experiment, the set of 
stimuli we have seen so far is a result of repeated rolls of a 
weighted 64 sided die (one for each cell in the joint 
probability matrix; i.e., one for each color pair), where the 
chance of landing on the ith side of the 64 sided die is given 
by өi. Note that this is a simplification, since the experiment 
included the additional constraint that no color could appear 
multiple times in the same display. However, this constraint 
does not have a major effect on the expected distribution of 
stimuli once a large number of samples has been obtained, 
and was thus ignored in our formalization. 

We set our a priori expectations about ө using a Dirichlet 
distribution with parameter α. The larger α is, the more 
strongly the model starts off assuming that the true 
distribution of the stimuli is a uniform distribution (e.g., that 
the multinomial distribution is using a ‘die’ that is weighted 
to land on each possible cell equally).  Using statistical 
notation, the model can be written as: 

 
 ө ~ Dirichlet(α) 
 d ~ Multinomial(ө) 
 
To fit the model to data we set a fixed α and assume that 

the counts of the pairs that were shown, d, are observed for 
some time period of the experiment. Our goal is then to 
compute the posterior distribution p(ө | d, α). The maximum 
of this posterior distribution is then our best guess at the true 
probability distribution that the stimuli are being drawn 
from, and the variance in the posterior indicates how certain 
we are about our estimate. The posterior of this model 
reduces to a Dirichlet posterior where the weight for each 
color pair is equal to the frequency with which that color 
pair appears in d, plus the prior on that pair, αi..  

This probability model allowed us to infer what observers 
might believe about the probability of each color pair from 
the data they had observed. The benefits of a Bayesian 
model over just counting the frequency with which each 
pair had appeared are mostly evident early on in the 
experiment, where observer’s prior beliefs come into play 
most strongly.  

Huffman coding 
Any finite set of options can be uniquely encoded into a 
string of bits. For example, if we wished to encode strings 
consisting of the four letters A, B, C, and D into strings of 
bits, we could do so by assigning a unique two bit code to 
each letter and then concatenating the codes. Imagine we 
had assigned the following codes to the letters: A = 00, B = 
01, C = 10, D = 11. The string ACAABAA could then be 
written as 00100000010000 (14 bits), and uniquely decoded 
to retrieve the original string.   

Importantly, however, this naïve method of generating a 
code performs quite badly in the case where some letters are 
much more likely to appear than others. So, for example, if 
P(A) = 0.5, and P(B) = 0.2, P(C) = 0.2, and P(D) = 0.1, then 
we can achieve a great deal of compression by representing 
strings from this language using a different code: A = 0, B = 
10, C = 110, D = 111. Using this code, the string from 
above, ACAABAA, would be represented as 0110001000 
(10 bits), a significant savings even for such a short string 
(29%). Note that it can still be uniquely decoded, because 
no code is a prefix of any other code. 

Huffman coding (Huffman, 1952) is a way of going from 
the probabilities of a set of symbols to a binary code for 
representing those symbols in a compressed format (the 
example codes for A, B, C, D were generated using a 
Huffman coding algorithm). Here, we used Huffman coding 
to estimate how much savings observers should show as a 
result of the fact that the color pairs in our experiment were 
drawn from a non-uniform distribution.  

We used the probabilities of each color pair, as assessed 
by the hierarchical Bayesian model described above, to 
generate a unique bit string encoding all of the stimuli from 
a given block of the experiment. We supposed that if 
observers were using some form of compression to take 
advantage of the redundancies in the display, the length of 
the code that our compression algorithm generates should be 
inversely proportional to how many objects observers were 
able to successfully encode. In other words, if there were 
many low frequency color pairs presented (as in block 10), 
these items should have longer codes, and observers should 
be able to successfully remember fewer of them. 
Alternatively, if there are many high frequency color pairs 
presented, the better observers’ estimate of the true 
probability distribution, the better they should be able to 
compress the input. 

Results 
With these learning and coding models, we can compute a 
prediction about the memory performance for each subject 
for each block.  In order to assess the fit between the model 
and the behavioral data, we used the following procedure.  
For each display in a block, we calculate the number of bits 
required to encode that display based on the probabilities 
from the learning model.  Next, we correlated the average 
number of bits per display from the model with the memory 
performance of the observers.  We expect that the fewer 
bits/display needed, the better the memory performance, 
thus we expect a negative correlation.   

This prediction holds quite well, with the maximum fit 
between this Huffman code model and the human data at α 
= 100, where r, the correlation coefficient between the 
human and model data, is -0.94 (p = 0.0003).  This large 
negative correlation means that when the model says there 
should be long bit strings necessary to encode the stimuli, 
human VSTM capacity is low, exactly what you would 
expect if VSTM had a fixed size in bits and took advantage 
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of a compression scheme to eliminate redundant 
information.  

Importantly, this model allows us to examine if there is a 
fixed-bit limit on memory capacity.  The Huffman codes 
gives a measure of average bits per object, and the memory 
performance gives a measure in number of objects 
remembered.  Thus, if we multiply the average size of the 
Huffman code times the number of items remembered, we 
get an estimate of the number of bits of information a given 
set of observers recalled in a given block (Figure 4). Notice 
first that both groups of observers in Experiment 1 and 
Experiment 2 show the same total bits, despite the overall 
difference in the number of items remembered between the 
groups.  Second, the total bit estimate remains remarkably 
constant between block 9 and block 10 in the Experiment 2 
group, even though the memory performance measured in 
number of items showed a significant cost when the 
statistical regularities were removed. The fact that this 
estimate is constant across the entire experiment, whereas 
the estimate in terms of number of objects varies a great 
deal, suggests that bits are the appropriate way to quantify 
human VSTM capacity. 

 

 
Figure 4: The size of memory estimated in bits, rather than 
number of objects (using the Huffman coding model). Error 
bars represent 1 s.e.m. 

 
Importantly, the fit between the human and the model is 

reasonably good across a broad range of values for the prior, 
averaging an r value of -0.81 (std: 0.08) in the range α = 1 to 
200. The fit is poor where the prior is very low, since with 
no prior there is no learning curve – the model immediately 
decides that whatever stimuli it has seen are completely 
representative of the distribution (e.g., like a non-Bayesian 
model would do). The fit is also poor where the prior is very 
high, because it never learns anything about the distribution 
of the stimuli, instead generating codes the entire time as 
though the distribution was uniform. However, across much 
of the middle range, the model provides a reasonable 
approximation to human performance. 

Discussion 
The current study explored whether the capacity of visual 
short-term memory is better characterized in terms of the 
number of objects or the amount of information that can be 
remembered. We investigated this issue by using 
information theoretic ideas about compression. Specifically, 
we introduced covariance information between colors, and 
asked if VSTM could take advantage of this redundancy to 
form more efficient representations of the displays.  We 
found that observers could successfully remember 5 colors 
on the patterned displays, significantly higher than the 3 
colors remembered when the displays were drawn from a 
uniform distribution 

These data suggest several conclusions. First, they 
suggest that VSTM is capable of representing more than 
four simple objects. In cases where there is statistical 
redundancy, it is not necessary to encode as much 
information to represent the objects, and VSTM can 
represent at least five, and probably more, objects. Together 
with experiments showing that increasing the amount of 
information stored per object decreases the total number of 
objects that can be remembered (Alvarez & Cavanagh, 
2004), this suggests that it is the information content, not the 
number of objects, which is important for understanding 
VSTM capacity. Measures based on the number of objects 
fail to capture object complexity, statistical redundancy, and 
the difficulty of the test comparison, all of which affect the 
information load for storing objects. 

Second, our results suggest that VSTM capacity can be 
simply modeled by positing a fixed capacity in bits. Across 
both Experiment 1 and Experiment 2, changes in the 
estimated capacity of observers are explained by 
corresponding increases or decreases in the length of the 
code necessary to represent pairs, resulting in a nearly 
constant estimate of the total size of memory in bits (about 
10, see Figure 4). Thus, under conditions where the 
compression algorithm suggests people should be able to 
compress the color pairs into fewer bits, they were able to 
remember more objects; under conditions where the model 
achieved little or no compression, they were able to 
remember fewer objects. Both the Huffman coding 
algorithm and humans achieved similar levels of 
compression, with the Huffman code length being 36% 
shorter in block 9 than 10, and human VSTM capacity being 
35% greater in block 9 than 10. This suggests that VSTM is 
quite good at eliminating the redundant information present 
in the input.  

The fact that an information limit is applicable in VSTM 
is in line with previous work on the capacity of visual 
attention. For example, Verghese and Pelli (1992) suggested 
that attention could be accurately modeled at limited by the 
information content of stimuli in bits. This combines well 
with the present results to reinforce the tight coupling 
between the capacity of attention and the capacity of 
memory (e.g., Cowan, 2001). 

More broadly, our results suggest that people are able to 
successfully use statistical regularities present in the world 
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to store more objects in VSTM. This is of particular interest 
given the limited capacity of VSTM. Since the objects and 
events we use VSTM for in the real world are unlikely to be 
statistically independent, the number of items we can 
remember information about may be much larger than is 
usually assumed. Importantly, however, our results differ 
drastically from typical results of ‘chunking’ (Miller, 1956) 
– chunking is usually taken to allow you to store more 
information in memory ‘for free’, and in fact Miller 
originally proposed chunking as an alternative to 
information theoretic models. We instead propose that a 
more efficient representation of some groups of items may 
be obtained at the expense of less efficient representation of 
other, less frequent, items. This suggests that the capacity of 
memory in bits is constant, and it is how we allocate those 
bits that changes as a result of learning regularities. 

These results also suggest a reason why we might be 
incredibly sensitive to statistical regularities in the visual 
world. In particular, a great deal of recent work has focused 
on statistical learning mechanisms, which are capable of 
extracting many different regularities with only minutes of 
exposure and appear to be relatively ubiquitous, occurring 
in the auditory, tactile and visual domains, and in infants, 
adults, and monkeys (Brady & Oliva, in press; Conway & 
Christiansen, 2005; Kirkham, Slemmer & Johnson, 2002; 
Hauser, Newport & Aslin, 2001; Saffran, et al. 1996; Turk-
Browne, Junge & Scholl, 2005). The present results 
suggests that one of the primary reasons for being sensitive 
to such regularities might be that it allows us to remember 
more in working memory by eliminating redundancy in our 
representations. 
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