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Review Article
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Sleep plays an important role in maintaining neuronal circuitry, signalling and helps maintain overall health and wellbeing.
Sleep deprivation (SD) disturbs the circadian physiology and exerts a negative impact on brain and behavioural functions.
SD impairs the cellular clearance of misfolded neurotoxin proteins like α-synuclein, amyloid-β, and tau which are involved
in major neurodegenerative diseases like Alzheimer’s disease and Parkinson’s disease. In addition, SD is also shown to
affect the glymphatic system, a glial-dependent metabolic waste clearance pathway, causing accumulation of misfolded
faulty proteins in synaptic compartments resulting in cognitive decline. Also, SD affects the immunological and redox
system resulting in neuroinflammation and oxidative stress. Hence, it is important to understand the molecular and
biochemical alterations that are the causative factors leading to these pathophysiological effects on the neuronal system.
This review is an attempt in this direction. It provides up-to-date information on the alterations in the key processes,
pathways, and proteins that are negatively affected by SD and become reasons for neurological disorders over a prolonged
period of time, if left unattended.
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1. Introduction

Sleep is a ubiquitous phenomenon occurring in life forms
of the animal kingdom and has been shown to be present
from Drosophila melanogaster (fruit fly) to human beings.
Sleep is a vital component for healthy brain function, and
sleep deprivation (SD) is the reduction in sleep time below
an individual’s baseline requirement while sleep restriction
(SR) refers to partial loss of sleep. SD and SR have been
reported to affect overall wellness and health, including,
but not limited to lowering in the immune system,
decrease in cognitive function and memory, learning, and
disruption in emotional wellbeing [1]. National Sleep
Foundation, USA, suggests that 7–8h of sleep is essential
for maintenance and restoration of metabolic homeostasis
[2]. There are two stages of sleep: (i) nonrapid eye movement
(NREM) and (ii) rapid eye movement (REM). NREM is sub-
divided into four different stages based on the depth and
wave patterns, movement of the eye, and muscle strength
during sleep. REM sleep is characterized by uneven brain
wave activity, muscle atonia, and increased eyeball move-
ments [3]. Sleep is regulated by two processes that work inde-
pendently and influences sleep and sleep-related variables in
conjunction “Rheostat” [4]: (1) Circadian rhythm—a process
maintained by the biological clock in the suprachiasmatic
nucleus (SCN) in the hypothalamus, which regulates sleep–
wake cycles in response to the input from retina [5]; (2)
homeostatic process—loss of sleep is compensated by
extending subsequent sleep which is a function of waking
duration and intermittent naps during the wake period. Dur-
ing wakeful hours, the tendency to sleep gradually increases
with time and attains a critical threshold; this urge to sleep
is referred to as homeostatic.

Sleep helps to maintain metabolic homeostasis through
neural, hormonal, and immune supports [6]. NREM sleep
is characterized by a low metabolic rate and an increase in
brain temperature which helps to overcome the damages that
are introduced during the wake cycle [7]. A study conducted
on shift workers revealed SD alters glucose and lipid metab-
olism [8], which suggests the role of sleep in metabolic
dysfunction. Krause et al. reported that SD affects attention
and working memory, positive and negative emotions, and
hippocampal learning [9].

The increasing number of people across the globe are
being affected with the epidemic of SD [10]. SD impairs
sympathetic functions which in turn causes metabolic dys-
regulation [11, 12]. Furthermore, SD modulates immune
functions and increases the release of proinflammatory
cytokines such as Interleukin 6 (IL-6), Tumour necrosis
factor (TNF-α), and C-reactive protein (CRP) [13]. Sleep
restriction increases prolactin and oxytocin and decreases
body weight in pregnant rats. Offsprings from these rats
show decreased hippocampal brain-derived neurotrophic
factor (BDNF) expression, suggesting the detrimental role
of SR on neuronal growth factors during the developmental
stage [14]. Sleep loss during developmental stages reduces
brain size and alters behaviour and neural homeostasis
[15]. Electroencephalogram studies have revealed that SD
promotes interictal epileptiform discharges and neuronal

excitability causing activation of seizure episodes [16]. SD
has also been associated with the impairment of cognitive
function in humans. A recent study showed that one-
night SD increased amyloid-β burden in the hippocampal
region [17]. Thus, mounting evidences reveal that SD is
linked with many neurodegenerative diseases and neurolog-
ical disorders. In this review, we attempt to provide infor-
mation on the links between sleep deprivation/restriction
on the changes in gene expression and pathophysiological
mechanism associated with neurological disorders.

2. Sleep and Brain Anatomical Structures

Sleep and its mechanism are controlled by defined regions in
the brain. Microanatomically, cell bodies of neurons that
produce neurotransmitters playing a role in sleep mecha-
nisms are usually located in one region while the terminal
ends of the neuronal axons project elsewhere [18]. In the
mammalian brain, the cell bodies of the neurons involved
in sleep are located in the brainstem while the axons end in
centres located in the cerebral hemisphere. Sleep entails a
patterned interaction between the cerebral cortex, thalamus,
and subcortical areas like the brainstem. According to [19],
“The ebb and flow of neurotransmitters switches our brains
between sleep and wakefulness in carefully regulated cycles
in several brain regions.”

The hypothalamus is located deep in the brain, proximal
to the pituitary gland. It contains thousands of nerve cell
bodies called the suprachiasmatic nuclei (SCN), which
receive information about light exposure to control the sleep
and arousal cycle [20]. The pineal gland lies in the depression
between the superior colliculi. Through its numerous con-
nections, the production of the sleep-promoting neurohor-
mone melatonin is regulated; hence, it plays a key function
in regulating the circadian rhythm. The amygdala, a structure
known in the processing of emotions, has been suggested to
be very active during rapid eye movement (REM) sleep,
which explains the co-occurrence of mood disorders with
sleep abnormalities [21].

Neurons of the reticular activating system are central to
the regulation of wakefulness. The brain stem components
(midbrain, pons, and medulla oblongata) have connections
with the hypothalamus to control the wake and sleep cycle.
The midbrain is associated with vision, hearing, motor
control, sleep and wake cycles, alertness, and temperature
regulation. The pons and medulla oblongata in particular
have connections with descending neural pathways that
maintain muscle activity and body posture and limb move-
ments at the relaxed state. Brainstem nuclei that are involved
in sleep processing include the cholinergic nuclei at the
pons–midbrain junction, the raphe nuclei, tuberomammil-
lary nuclei, and locus coeruleus [18]. The thalamus acts as a
relay centre for information from the main sense organs to
the cortex. It is very active during REM sleep as the ascending
brainstem reticular activating system (ARAS) relays at multi-
ple intermediary sites (including the thalamus), to activate
the forebrain during waking and REM sleep [22]. Damage
to the thalamus may affect proper brain function during both
wakefulness and sleep in humans [23]. Cholinergic neurons
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in the basal forebrain region have been reported to promote
sleep via the release of the cellular energy by-product, aden-
osine. Caffeine and some medications are known to counter-
act sleepiness by blocking the actions of adenosine [24].

3. Sleep and Neural Circuits

The involvement of neural circuits in sleep-wake cycles was
first studied by Magoun and Moruzzi in the year 1949 [25].
They showed that stimulation of cholinergic neurons near
pons and midbrain causes wakefulness and arousal. In addi-
tion, stimulation of the thalamic region with a low-frequency
pulse produces a slow-wave sleep. This study provided an
insight on the interaction between the thalamus and cortex
during sleep (Figure 1).

3.1. Neural Circuits Involved in NREM Sleep

3.1.1. Preoptic Area (POA). POA is the rostral part of the
hypothalamus and is mainly involved in the thermoregula-
tion of the body. In 1968, McGinty and Sterman’s research
on cats and rats revealed that POA contains neurons that
promote sleep [26]. They also showed that certain neurons
in the POA and Basal Forebrain (BF) are active during
REM and NREM sleep [27]. The analysis of the Fos expres-
sion revealed that the ventrolateral preoptic area (VLPO)
and median preoptic nucleus (MnPO) consist of neurons
essential for NREM sleep [28]. Lesions in the VLPO and
MnPO produced a long-lasting decrease in sleep [29]. Fur-
thermore, these neurons are GABAergic. Interestingly,
VLPO neurons release a neuropeptide called “galanin,”
which inhibits cholinergic neurons of the locus coeruleus,
Basal Forebrain, TMN, orexin neurons, and causes sleep
arousal [30].

3.1.2. Basal Forebrain (BF). BF is innervated by cholinergic
neurons which govern cortical activation during wakefulness.
The inhibition of cortical activation is governed by the
GABAergic neurons and promotes slow-wave sleep.
GABAergic neurons initiate firing at NREM onset and have
their maximal output throughout the NREM cycle [31]. BF
neurons produce somatostatin and are active during NREM
sleep, and optogenetic stimulation of these neurons is shown
to increase NREM sleep [32]. Somatostatin promotes NREM
sleep by inhibiting wake active neurons in mice [32, 33]. On
the other hand, prolonged wakefulness increases GABAA
receptors in BF cholinergic neurons, and the GABA-
mediated inhibition of cholinergic neurons decreases the
cortical activity [34].

3.1.3. Parafacial Zone (PZ). Caudal brainstem neurons
promote NREM sleep [35]. Most of the neurons in the
parafacial zone are GABAergic and glycinergic. They
express Fos during sleep, and lesions of these neurons
are shown to increase wakefulness. PZ neurons release
GABA onto parabrachial neurons which in turn release
glutamate onto cortically projecting neurons of the BF
thereby potentiating slow-wave sleep and regulate cortical
EEG [36]. Chemogenetic inhibition of PZ neurons

markedly declines NREM sleep even after SD, indicating
that PZ neurons play key roles in NREM sleep [37].

3.1.4. Cortical Neuronal Nitric Oxide Synthase (nNOS).Nitric
oxide synthase neurons regulate sleep homeostasis and corti-
cal rhythm through the release of GABA and nitric oxide
(NO). Interestingly, the nNOS knockout mice showed a
decrease in NREM sleep [38], which indicates the major role
of nNOS in NREM. Majority of the neurons present in the
cortical regions are wake-promoting and are GABAergic
neurons, wherein the slow-wave activity during the NREM
sleep directly correlates with the expression of nNOS [39].

3.2. Neural Circuits Involved in REM Sleep. Evidence from
recent studies suggests that GABAergic/glycinergic neurons
in the medullary reticular formation release melatonin, and
GABAergic neurons present in the hypothalamus regulate
REM sleep. Pedunculopontine and Laterodorsal Tegmental
Nuclei—cholinergic LDT/PPT neurons and glutaminergic
neurons of the pons play a crucial role in regulating REM
sleep. These reports suggest the existence of a strong neural
circuit in the regulation of REM sleep

3.2.1. Pedunculopontine and Laterodorsal Tegmental Nuclei
(PPT/LDT). The administration of carbachol, a cholinergic
agonist, by intracerebroventricular injection into the latero-
dorsal region of the pons produces a high degree of REM
sleep in cats and rodents, indicating that acetylcholine levels
are high during sleep [40]. These neurons initiate firing
during the beginning of REM sleep, suggesting that they help
in switching between REM and NREM sleep [41].

3.2.2. GABAergic Neurons in the Hypothalamus. An
increased number of c-Fos immunopositive cells were
recorded in various regions of the hypothalamus including
zona increta, perifornical area, and lateral hypothalamic area
following REM sleep [42]. GABAergic neurons present in
this region are immunoreactive to melanin-concentrating
hormone (MCH) and nesfatin both of which regulate REM
sleep [42, 43]. The optogenetic activation of MCH neurons
facilitates the switching between NREM and REM sleep and
also increases the duration of REM sleep [43, 44]. The inhibi-
tion of lateral hypothalamic (LH) neurons with muscimol, a
GABAA receptor agonist, is shown to completely inhibit
REM sleep and increase the NREM sleep episodes. The bilat-
eral administration of muscimol increases the expression of
cFOS+/GABA+ and GABA+ in vlPAG and dorsal deep mesen-
cephalic reticular nucleus (dDpMe) regions [45]. These results
indicate that MCH+/GABA+ and MCH-/GABA+ neurons in
the LH promote REM sleep by the inactivation of
vlPAG/dDpMe neurons.

3.2.3. Sublaterodorsal Nucleus (SLD) Region. Chemical
lesions and optogenetic stimulation studies have shown that
SLD contains neurons responsible for the initiation and
maintenance of REM sleep [46]. In addition to cFO expres-
sion following REM sleep, the neurons in SLD also show
the existence of glutamatergic markers, which reveal that
REM sleep-promoting neurons in SLD are glutaminergic in
nature [47]. SLD sends direct efferent projections to
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Figure 1: (a) Brain structures involved in REM sleep. PPT/LDT initiates firing during REM sleep and helps in switching between NREM and
REM sleep. GABAergic neurons in the hypothalamus promote REM sleep by inactivating vlPAG/dDpMe REM-offGABAergic neurons. SLD
consists of projections to glycinergic neuron Raphe magnus, ventral and alpha gigantocellular nuclei, lateral paragigantocellular nucleus, and
also spinal, facial, trigeminal neurons and thereby produce muscle atonia during REM sleep. (b) Brain structures involved in NREM sleep.
Ventrolateral preoptic area and median preoptic nucleus contain GABAergic neurons that release galanin which inhibit cholinergic
neurons in regions like locus coeruleus, Basal Forebrain, TMN, and orexin neurons, thereby inhibiting arousal. The basal forebrain
consists of GABAergic neurons that inhibit cortical activation and somatostatin inhibits wake active neurons in the basal forebrain.
Parafacial zone releases GABA onto parabrachial neurons which in turn release glutamate onto cortically projecting neurons of the BF,
hence promoting SWS. Cortical nitric oxide synthase neurons release GABA and promote SWS.
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glycinergic neurons in the Raphe magnus, ventral and alpha
gigantocellular nuclei, lateral paragigantocellular nucleus,
and also spinal, facial, trigeminal neurons [48, 49]. On the
other hand, the ventromedial medulla-glycinergic/GABAer-
gic is populated near rostral to inferior olive in the ventral
gigantocellular reticular (GiV) and the alpha gigantocellular
reticular (GiA) nuclei [45]. These neurons fire very fast in
REM, slower in NREM, and moderately in the wake cycle,
indicating their role in muscle atonia [50], and lesions to
these neurons are shown to disrupt atonia of REM sleep
[51]. Another study proposes that neurons in SLD directly
trigger spinal interneurons through glycinergic/GABAergic
components, which further supports their role in muscle
atonia [52].

3.2.4. Medullary Reticular Formation. GABAergic and gly-
cinergic neurons regulate REM sleep. They receive input
signals from SLD and innervate the motor neurons of
the brainstem and spinal motor neurons. Upon stimula-
tion, they produce glycinergic Inhibitory Postsynaptic
Potential (IPSP) in motor neurons [49]. Neurons of the
dorsal paragigantocellular reticular (DPGi) and lateral
paragigantocellular (LPGi) promote REM sleep by inhibit-
ing REM sleep suppressing neurons of the pons like LC,
DRN, and vlPAG/LPT [53]. Photostimulation of neurons
in LPGi and vlPAG promotes REM sleep, and inhibition
of these neurons produces opposite effects [54]. These
findings suggest that medullary neurons not only promote
atonia but are also involved in REM sleep regulation.
Further studies are required to understand whether REM
sleep is driven by the medulla or pons or both the regions
of the brain.

4. Genomics and Sleep Deprivation

Hippocampus is the key brain structure involved in spatial,
contextual, and declarative memory. The formation of mem-
ory depends upon the expression of various genes/proteins
[55, 56]. Hippocampal dependent memory consolidation is
critically affected in SD [57, 58]. SD is shown to affect the
signalling mechanisms that regulate transcription and trans-
lation processes involved in memory [59]. A genome-wide
microarray analysis by Vecsey et al. [60] showed the group
of genes that are differentially regulated in SD animals in
comparison to animals that have normal sleep patterns.
Tsc22d3, Prkab2, Adamts2, Htr1a, Kcnv1, and Sirt7 are the
genes that show upregulation. Tsc22d3 negatively regulates
memory consolidation and neural plasticity, and its expres-
sion is reported to be upregulated after SD. Prkab2, a subunit
of AMPK, undergoes hyperphosphorylation following SD
and alters homeostatic response. In addition, the expression
of certain genes in the cortex such as Arc/Arg3.1, Fos,
Hnrpdl, Rbm3, and the chaperones Hspa5/Bip and Hspa8 is
also altered by SD [60].

SD impairs protein synthesis; it downregulates the genes
like Eif4e2 and Eif5, which are involved in the initiation of
transcription and those genes like Rprd2, Rbm3, Hnrpdl,
Cirbp, RbmX, and Denr involved in the process of translation
[60]. Please refer to the supplementary materials (available

here) for the table and graphical presentation of genes up-
and downregulated following SD.

5. Sleep and Neurological Disorders

5.1. Alzheimer’s Disease. Alzheimer’s disease (AD) is a pro-
gressive neurodegenerative disease pathologically character-
ized by the deposition of extracellular amyloid β- (Aβ-)
plaques, intracellular tangles, and neuronal loss [61]. Studies
have shown a direct correlation between SD and neuropath-
ological events associated with AD [62]. Sleep plays a crucial
role in clearing the toxic metabolites produced in the brain.
Two investigations using photon microscopy have shown
that amyloid β in the brain is cleared by astroglial-mediated
interstitial fluid (ISF) bulk flow called “Glymphatic Pathway”
and also by γ-oscillations during REM sleep [63]. Aβ clear-
ance is increased by 25-30% during sleep in comparison to
wake state [64]. Sleep enhances interstitial fluid (ISF) to cere-
brospinal fluid (CSF) bulk flow, thereby increasing the Aβ
clearance [65]. On the other hand, SD increases the Aβ bur-
den and its clearance leads to AD [65, 66]. Clinical reports
indicate that the levels of Aβ in CSF are high before sleep
and low after sleep [67]. Positron emission tomography
(PET) analyses show that SD increases Aβ in the hippocam-
pus, precuneus, thalamus, and cortex of human subjects [17].
This deposition of Aβ brings structural and functional
changes in AD brains. The aggregation of Aβ in the hippo-
campal region leads to the formation of amyloid plaques,
which inhibit neurogenesis and lead to cognitive dysfunction
[17]. SD upregulates the expression of BACE1 and APP pro-
cessing, which also play critical roles in AD [68]. SD increases
cortisol level, a stress maker which was shown to impair
cognition in AD patients [69]. Stress directly affects the brain
in 3 different ways: (a) it enhances tau aggregation through
hyperphosphorylation and causes genetic alterations in the
DNA [71]; (b) it declines synaptic density and number of
neurons and increase the deposition of Aβ; and (c) it also
impairs cardiovascular, metabolic, and GI functions and
weakens the immune system [70]. Chronic stress causes
hypothalamic–pituitary–adrenal (HPA) axis imbalance,
which leads to the accumulation of Aβ and tau proteins, cog-
nitive impairment, and neuronal death, resulting in AD [71].

Aquaporin 4 (AQP4) is the most abundant water channel
in the brain which regulates water homeostasis. AQP4 is
highly expressed in astrocytes, lining of the ventricles, and
in perivascular astrocytes end feet enclosed by blood vessels
from the CNS [73, 74]. It also plays a crucial role in removing
toxic metabolites including Aβ and tau and prevents their
aggregation. SD impairs the glymphatic system which results
in the aggregation of Aβ [17, 75]. A paravascular pathway
facilitates CSF flow through the brain parenchyma and the
clearance of interstitial solutes, including amyloid β. Studies
report that glymphatic function declines over mid to termi-
nal stages of AD due to impaired polarity of AQP4 at the
astrocyte end feet [75, 76]. A recent report indicates a genetic
mutation in AQP4 in patients with less sleep or SD [77].

Phosphorylated Tau proteins bind to the microtubule
and provide structural stability to the neurons. Hyperpho-
sphorylation of Tau is a hallmark of AD, which causes
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aggregation and formation of filamentous structures called
Neurofibrillary tangles (NFT). Preclinical evidences reveal
that an impaired sleep-wake cycle can increase the hyperpho-
sphorylation of Tau proteins [78]. Apolipoprotein E (APOE)
is one of the major constituent of chylomicrons and
intermediate-density lipoproteins (IDLs) and is involved in
regulating catabolism of lipoproteins [79]. APOE genes con-
sist of three variants of genes -ε2, ε3, and ε4 [80]. APOE/ε4
variant gene is a risk factor of AD; ε4 allele also increases
the deposition of Aβ and cognitive impairment [81]. Leoni
et al. have shown that ApoE/ε4 is associated with sleep disor-
ders and increases the levels of LDL and triglycerides. Brain
removes excess cholesterol by converting it into polar 24-
hydroxycholesterol (24-OHC) that is cleared through APOE.
CSF samples from AD patients have shown an increase in the
concentration of ApoE, tau, NFTs, and 24-OHC. Increased
levels of these components lead to increased NFT loading
cells [82]. It is suggested that ApoE/ε4 is less efficient in clear-
ing cholesterol from the neurons and promotes NFT load in
neurons. Lim et al. have also shown that adequate sleep
inhibits the effects of APOE in the formation of NFT and
delays the progression of AD [81].

Cholinergic neurons are essential in regulating sleep-
wake states, memory, and learning [83]. Cholinergic neurons
are active during REM sleep and wakefulness, and they are
less active during NREM sleep [84]. SD increases adenosine
levels in the basal forebrain, thereby inhibits the cholinergic
system and disrupts the switch between sleep and wakeful-
ness [85]. The stimulation of the muscarinic receptors
enhances long-term potentiation and synaptic plasticity in
the CA1 region of the hippocampus [86]. Experiments on
animal models have also shown cognitive impairment fol-
lowing treatment with muscarinic antagonist [87]. BDNF
expression is also regulated by the muscarinic receptors.
These results suggest that equilibrium in cholinergic activity
is essential for memory encoding and recall. Cognitive
dysfunction, inability to learn new things, and difficulty in
performing the known tasks all are the primary symptoms
of AD. According to WHO, 30 million people across the
globe are suffering from Alzheimer’s dementia [88]. It is
known that sleep is essential for cognition, and SD leads to
memory deficits, impaired attention decision making, and
retrieval [89]. REM sleep is essential for the LTP, whereas
NREM sleep deprivation does not affect LTP [90]. SD
increases the adenosine and cholinergic functions in various
regions of the brain including the hippocampus and basal
forebrain [91]. These results suggest the negative impact of
SD on cholinergic neurons and cognitive functions.

Excitatory neurotransmission in the mammalian CNS is
primarily regulated by the ionotropic glutamate receptors
(iGLURs). These receptors play a crucial role in LTP, learn-
ing, and neuronal survival [92]. Abnormal signalling of
these receptors is involved in various neurological disorders
like Alzheimer’s disease, Parkinson’s disease, Huntington
disease, and multiple sclerosis [93]. NMDA receptors, a
division of iGLURs, due to its unique properties like
voltage-dependent activation, enhanced Ca2+ influx and
slow ligand-gated kinetics make them the key players in
LTP [94, 95]. NMDA receptors are also crucial for neuronal

survival. These receptors activate survival pathways like
ERK, PI3K/AKT, and CaMK and also inhibit proapoptotic
kinases like GSK3β [96]. Many studies suggest that overex-
citation of glutaminergic neurons or excitotoxicity leads to
neurodegeneration. This is due to an increased influx of
Ca2+through the NMDA receptors [97–99]. Increased levels
of Ca2+ influx lead to impaired synaptic function and
eventually to neuronal cell death. This is closely associated
with cognitive decline and pathological neural anatomy
similar to AD patients.

SD has a negative impact on LTP and synaptic plasticity
and hippocampal glutaminergic NMDA receptors. SD
reduces the expression of the GluN1 subunit of the NMDA
receptors, thereby lowering the excitatory postsynaptic cur-
rent in the CA1 region [100]. Studies also report that 12 h
of SD leads to a drastic decrease in the phosphorylation of
hippocampal AMPA receptors at the GluR1-S845 site and
decreases the levels of AKAP150 scaffolding proteins [101].
All these data suggest that SD leads to impaired spatial and
working memory by decreasing AMPA receptor phosphory-
lation through the decreasing levels of AKAP150 scaffolding
proteins. Thus, SD is closely connected to the pathological
markers and that it plays a crucial role in the pathogenesis
of AD (Figure 2).

5.2. Parkinson’s Disease. Parkinson’s disease (PD) is a dis-
tinctive motor disease that involves neuromuscular rigidity,
bradykinesia, and tremor. The accumulation of α-synuclein,
Aβ, TDP-43, and tau is the major hallmarks of PD [102–
105]. Sleep improved the cognitive and mental ability in PD
patients [106]. Conversely, the destruction of nigrostriatal
dopaminergic neurons or dorsal striatum has been reported
to disrupt the sleep–wake cycle [107].

Paravascular clearance pathway-“Glymphatic system”
is responsible for the clearance of the toxic metabolites
from the brain [75, 104]. As noted in AD, the clearance
of Aβ proteins through the glymphatic pathway and the
clearance of α-synuclein are not reported as of today and
need to be investigated. Hence, we propose that interven-
tions promoting glymphatic clearance might be beneficial
in PD. This could be a potential target at least in the early
stages of the disease as it can prevent the accumulation of
α-synuclein beyond mesencephalic and limbic regions.

Postmortem analysis of PD brains has shown to contain
higher levels of oxidized proteins and lipids. SirT3 is a
NAD-dependent deacetylase sirtuin-3 protein present in
the inner mitochondrial membrane and is involved in ATP
production and redox processes [108]. Metabolic homeosta-
sis requires SirT3. Chronic SD impairs SirT3 activity that
eventually leads to locus coeruleus neurons (LCns) superox-
ide production, mitochondrial protein acetylation, and neu-
ronal death leading to PD [109]. PET imaging revealed that
SD in healthy volunteers reduced the binding of raclopride
(a radiotracer that binds to D2 and D3 receptors), which
may be due to the downregulation of D2/D3 receptors in
the ventral striatum or decreased receptor affinity [110].
The downregulation of D2/D3 receptors due to SD causes
decreased wakefulness and other altered behavioural effects,
which are mediated through the dopaminergic system. Thus,
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the downregulation of D2/D3 receptors may lead to PD-like
symptoms [111]. On the contrary, Targa et al. (2018)
reported that REM SD increases dopamine turnover in a
rodent model of PD and potentiates dopaminergic activity
[112]. SD in mouse models disrupts metabolic homeostasis
in LCns, and chronic sleep deprivation (8 h) for three days
disrupts the antioxidant defence system [109]. This leads to
oxidative stress in LCns, in turn, causing a burst of reactive
oxygen species (ROS) and superoxide (O2-) resulting in cho-
linergic damage in the basal forebrain and Pedunculopontine
tegmental nucleus (PPT) in early PD state [113, 114]. These
molecular, neurochemical, and imaging data demonstrate a
close link between SD and PD.

5.3. Multiple Sclerosis.Multiple sclerosis (MS) is an immune-
mediated neurodegenerative disease influenced by both
genetic and environmental factors [115]. Fatigue is a com-
mon complaint in MS affecting 90% of the patients with
low quality of life. Recent studies have shown that SD con-
tributes to fatigue in MS [116]. Individuals working in shifts
for at least three years before the age of 20 years have been
found to be more susceptible to MS as compared to individ-
uals working in day shifts [117]. A possible mechanism
behind this increased risk is disruption in circadian rhythm;
the release of cellular and molecular inflammatory mediators
causes neuroimmune dysregulation [118]. SD affects the
expression of genes involved in the synthesis and mainte-
nance of the myelin proteins [119]. SD also downregulates

the expression of genes involved in oligodendrocyte precur-
sor cell (OPCs) differentiation, and these cells are necessary
for the formation of new myelin components in both normal
as well as injured brain [119]. SD is reported to upregulate
the expression of apoptotic and cellular stress response genes
which impedes nerve regeneration in MS. More studies are
needed to clearly understand the link between SD and MS.

5.4. Huntington’s Disease. Huntington’s disease (HD) is a
neurodegenerative disease caused by an extended polygluta-
mine tract in the huntingtin protein. It is characterized by
an abnormal increase in CAG sequence in the gene that codes
for huntingtin protein on chromosome 4 [120]. HD not only
causes motor impairment, cognitive deterioration, and
behavioural problems but it also disturbs sleep patterns.
Pathological changes in hypothalamic suprachiasmatic
nucleus molecular oscillation have been found to be involved
with disturbances in the sleep-wake cycle in HD [121]. Dis-
ruptions in sleep lead to neuronal dysfunction and shrinkage
in brain volume and immune dysregulation [122]. 95% of the
striatal neurons are projection neurons like medium spiny
neurons (MSN), which are GABAergic and inhibitory in
nature [123]. MSNs play a crucial role in the striatal micro-
circuit, which is impaired in HD. MSN indirect pathway is
adversely affected, and its projections like enkephalins are
lost in HD [124]. Balanced discharge and firing of basal gan-
glia require appropriate REM sleep and wakefulness [125].
Also, SD adversely affects the cerebellar and basal ganglia

Sleep deprivation

- Increased neuronal firing

- Increased A𝛽 secretion

- Up regulates BACE1 protein

- Decreased A𝛽 clearance

Neuroinflammation and
oxidative stress

- Accumulation of A𝛽 and
tau proteins in CSF,
hypothalamus and cortex 

- Inhibits neurogenesis and
cognitive dysfunction

- Endothelial damage &
impaired glial pathway 

- Decreased A𝛽 clearance 

- Accumulation of A𝛽 and tau 

Alzheimer’s disease

- Inhibits cholinergic neurons 
- Decreased phosphorylation of 
AMPA receptors

- Cognitive dysfunction
- Impaired spatial and working
memory

Figure 2: Sleep deprivation-induced alteration in various pathways leading to AD pathology. SD increases neuronal firing, upregulates BACE
1 proteins, and aggravates neuroinflammation and oxidative stress. Alterations in these pathways impair clearance of the toxic metabolites
and leading to the accumulation of Aβ and tau proteins. SD has a negative impact on the cholinergic neurons, and this attributes to
cognitive dysfunction and impaired memory in AD patients.
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loops [126], which may in turn lead to HD pathogenesis. SD
impairs the network between the cerebellum and postcentral
gyrus, which is located at the parietal lobe and primary
somatosensory cortex and plays a key role on motor control
[127, 128]. This reveals that SD worsens the motor functions
in HD. Polysomnography of the patients with HD showed an
increase in initiation time of sleep, fragmentation of sleep,
frequent awakening, and reduced quality of sleep [128,
129]. SD not only impairs cognition but also causes
depression in HD patients.

5.5. Sleep Deprivation and Stroke. Ischemic stroke models in
rodents showed an increase in slow-wave sleep and inhibi-
tion of REM sleep [130, 131]. Chronic sleep restriction has
been found to inhibit adult neurogenesis in the hippocampal
region and aggravate neurodegeneration [132]. SD worsens
cerebral injury following cardiac arrest in mice which results
in the formation of glial scars [133]. Following ischemic
stroke, there is a decrease in blood flow, excitotoxicity, reac-
tive oxygen species (ROS) generation, and activation of
inflammatory pathways [134, 135]. Also, SD increases brain
temperature and glucose consumption which is confirmed
by elevated 2-deoxyglucose uptake and decline in brain gly-
cogen levels [136]. Local field potentials and EEG signals
from the cortical region reveal an increase in glutamate levels
following SD [137]. Increased glutamate levels aggravate the
excitotoxicity induced by ischemia. SD decreases the antiox-
idant markers like SOD and GSH which alleviate the ROS
burst in cerebral ischemia [138, 139].

A study in young men and women subjected to 40h of
total SD reported a significant increase in the plasma levels
of inflammatory markers IL-1beta, IL-1ra, E-selectin, and
ICAM-1 [140]. Since cerebral ischemia activates inflamma-
tory pathways, SD during this period aggravates the
inflammatory reactions. SD following cerebral ischemia
increases the levels of growth-inhibiting gene Neurocan,
a chondroitin sulfate proteoglycan released by astrocytes.
Surrounding the infarct area densely packed astrocytes
along with Neurocan forms a barrier and inhibits neuronal
reconnection [131]. Normal sleep increases the levels of
gamma-hydroxybutyrate (GABA) which has an inhibitory
effect on ischemia-induced Neurocan [141]. This indicates
that Neurocan levels are crucial in sleep-modulated post-
stroke brain plasticity. The exact mechanism of how sleep
modulates brain plasticity following stroke warrants further
studies. These investigations indicate that SD aggravates
stroke pathophysiology by increasing the expression of
growth-inhibiting genes, neuroinflammation, and oxidative
stress.

5.6. Sleep Deprivation in Learning and Memory. SD has a
negative impact on cognitive functions like attention,
learning, memory formation, acquisition, and retrieval
[57]. Following SD-impaired performance was observed
in various cognitive tasks like Morris water maze, radial
arm maze, and novel object recognition test [101, 142,
143]. The major effect of SD is that it impairs the ability
of the brain to retain new information and impairs mem-
ory consolidation [57]. SD activates certain ion channels

and causes synaptic alterations resulting in decreased
membrane excitability in hippocampal CA1 neurons and
inhibition of LTP production in CA1 neurons and dentate
granules [144]. Thus, the membrane and synaptic regions
play an important role in spatial memory deficits of SD
rodents. SD also increases the spike frequency in the
CA1 region, which in turn inhibits the encoding of spatial
information in the hippocampus [145, 146].

Adverse effects of SD on LTP, synaptic plasticity, consol-
idation, retrieval, alterations in the intracellular signalling
molecule, and receptors like NMDA are discussed in the
above sections; apart from this, SD also has a negative impact
on cognition related signalling molecules as discussed below.

5.6.1. Calcium Calmodulin-Dependent Protein Kinase II
(CaMKII). CaMKII is important for LTP in the hippocampus
[147]. SD adversely affects intracellular signalling and down-
regulates basal and phosphorylated CaMKII in CA1 and den-
tate gyrus [148]. The level of calcineurin is shown to increase
following SD. This leads to the dephosphorylation of CaM-
KII, thereby, reducing the levels of pCaMKII during E-LTP
[148]. Phosphorylation of CaMKII at Thr286 is essential for
NMDA receptor-dependent LTP in the hippocampal CA1
region [149]. SD for 24h shows a drastic decrease in the ratio
of CaMKII to pCaMKII. These data suggest that SD impairs
the phosphorylation of CaMKII [143, 148].

5.6.2. Calcineurin. Calcineurin is also known as Protein
Phosphatase 2B and is involved in the regulation of Ca2+

and calmodulin. Ca2+-calmodulin complex activates calcine-
urin which triggers the release of Protein Phosphates 1 (PP1),
which inactivates CaMKII [150, 151]. Higher concentrations
of Ca2+- CaMKII complex is required to induce and maintain
LTP [152]. Increased calcineurin levels impair LTP in the
hippocampal CA1 region [153]. 72 h of SD has been found
to increase calcineurin levels in the hippocampal region
[154]. The inhibition of calcineurin promotes LTP in the
hippocampus [155]. In contrast, some studies have also
shown that calcineurin levels are not altered by SD [156].

5.6.3. cAMP Response Element Binding Protein (CREB). SD
impairs translation and causes a negative impact on genes
which are essential for memory formation, consolidation,
and retrieval [113, 157, 158]. Transgenic animal model has
revealed that proteins like cAMP response element-binding
protein (CREB) are essential for memory consolidation and
long-term synaptic plasticity. CREB is a downstream messen-
ger in the cAMP-PKA pathway [159]. cAMP signalling is
maximum during the REM sleep [160], and SD inhibits cAMP
signalling [144]. Molecular studies have also revealed that SD
potentiates the activity of cAMP degrading phosphodiester-
ases (PDEs) and impairs cAMP signalling and produces a
negative effect on memory and long-term potentiation [144].
SD not only impairs spatial and working memory but also
affects long-term memory and decision-making. SD disrupts
the memory consolidation period and impairs memory [161].

5.6.4. Brain-Derived Neurotrophic Factor (BDNF). BDNF is
crucial for the growth and survival of neuronal cells, neuro-
transmission, LTP, learning, and memory. Binding of BDNF
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to tyrosine kinase receptors activates signalling cascades
leading to the production of CREB and CBP, which are very
important transcription factors and important for normal
functioning and development of the brain [162]. BDNF gene
expression was seen to increase following learning and LTP
induction [163, 164]. BDNF activates the release of Ca2+

through tropomyosin kinase-B (TrkB) receptor which in
turn activates CaMKII and CREB [165–167]. SD reduces
BDNF levels in the hippocampal CA1 and DG regions
[167]. SD also leads to the suppression of BDNF upregula-
tion, thereby decreasing extracellular BDNF availability
[143, 148, 168].

5.7. Epilepsy. Interrelation between epilepsy and sleep is
established for long. 20% of seizures and increased epilep-
tiform in epilepsy patients occurs during sleep [169]. Epi-
leptiform discharges occur during NREM sleep in a
synchronized pattern, while desynchronized discharges
occur in REM sleep [170]. Pittsburgh Sleep Quality Ques-
tionnaire (PSQI) study, 16.9%–28% of the epileptic patients
suffer from daytime sleepiness, and 24.6%–34% of patients
suffer from insomnia. Different forms of epilepsy cause vari-
ous types of sleep-related problems, for example, temporal
lobe epilepsy causes sleep disturbances [171, 172], while
frontal lobe epilepsy causes sleep fragmentation and daytime
sleepiness [173]. Also, patients with partial seizures have
more sleep-related problems than patients that have general-
ized seizures [174]. A series of studies conducted during
1960-1970 reported that SD initiates epileptic seizures and
facilitate epileptiform discharges [171]. Studies have also
shown that patients with generalized seizures who have
undergone SD are prone to epileptic seizures [175]. Reports
indicate that army officers and pilots who are sleep deprived
and people who are chronic alcohol consumers show gener-
alized tonic-clonic seizures [176]. Electroencephalogram
recordings have shown that SD increases interictal epilepti-
form discharges (IEDs) [177, 178]. However, the pathophys-
iological mechanisms involving this are still not clear. Also,
SD affects behavioural and membrane excitability. Rats sub-
jected to 72 h SD show poor performance in behavioural
tasks involving the hippocampus and amygdala and show
reduced membrane excitability [179]. It was also found that
CA1 neurons had a lower membrane output resistance and
low action potential with respect to depolarizing current,
which leads to the initiation of seizures. EEG studies of
sleep-deprived patients and studies involving drug-induced
sleep have conflicting results. Some studies reported that
drug-induced sleep shows a greater epileptiform discharge
[180], while others report greater epileptiform discharge in
sleep-deprived patients [180, 181]. SD also has an impact
on the onset as well as the clinical signs of the seizures. The
risk of seizure onset is reported after 48 h of SD [182, 183].
A study reported that of 100 awakening epileptic patients,
65 % of the seizures were due to sleep deprivation [184].

Antiepileptic drugs potentially influence sleep. Phenytoin
decreases the onset of sleep, Phenobarbital reduces onset and
arousal from sleep, and gabapentin also has similar effects.
An increased NREM sleep was seen with pregabalin and car-
bamazepine [185]. In contrast, levetiracetam decreased

NREM sleep. Ethosuximide and gabapentin increased REM
sleep. Day time sleeping was reported to be induced because
of intake of topiramate, lamotrigine, and zonisamide [185].
The effect of antiepileptic drugs on sleep varies between indi-
viduals. Hence, there is a need for a careful patient monitor-
ing system. Further studies are also needed in this context to
improve night sleep in epileptic patients and to understand
how SD influences seizures.

5.8. Autism Spectrum Disorders. Autism spectrum disorder
(ASD) comprises of autism and Asperger’s syndrome and
involves severe neurodevelopmental disorder. It affects all
phases of child development and involves symptoms such as
inability to communicate, lack of socialization, and behav-
ioural problems [186]. According to World Health Organiza-
tion (WHO), one in 160 children suffers from ASD.
Symptoms are usually observed during early age, combined
with amnesia, sleep disorders, and learning disabilities [187].
National Sleep Foundation has recommended sleep research
involving ASD children as a high priority [188]. This is
because the pathophysiology and neurochemistry of ASD puts
the children in severe stress and sleep disturbances [189].
Polysomnography studies show that ASD children have
shorter sleep duration, low sleep quality, and low REM sleep
[187]. Limoges et al. (2005) have reported fewer spindles of
stage 2 sleep in ASD patients when compared to normal
patients [190]. Sleep disturbances are associated with an
increase in the severity of autism scores [191] and involve
impaired social interaction [192].

The main cause of sleep-related problems in ASD is
impaired melatonin secretion, impaired circadian clock,
and genetic mutations [190, 193]. Onset of sleep problems,
involving early waking, and poor quality of sleep may be
due to late peaking in melatonin concentration. In a random-
ized controlled trial, ASD children supplemented with mela-
tonin were found to have reduced onset of sleep time,
reduced number of night waking, and improved in the qual-
ity and duration of sleep [194]. Mutation in circadian clock
gene Per1 and Npas2 is found in 110 ASD patients [195].
This evidence suggests that sleep deprivation or sleep-
related problems affect the daily functioning of ASD patients.

5.9. Glioma. Glioma is the most common primary brain
tumour and involves astrocytes, ependymal, and oligoden-
dritic cells [196–198]. 30-50% of glioma patients suffer from
symptoms of insomnia [199]. WHO has characterized
glioma into four categories:

(i) Grade 1: tumours that can be detected early

(ii) Grade 2: tumour with hypercellularity

(iii) Grade 3: astrocytoma and

(iv) Grade 4: glioblastoma

Sleep has been reported to play a vital role in immunity
and homeostasis [200, 201]. Sleep disturbances have a severe
adverse impact on quality of life. The genetic basis of sleep
regulation is well understood, and data suggests that sleep
disturbances may lead to mutations in genes [202].
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Proinflammatory Cytokines IL1β, IL2, and NFκB2 are
critically involved in sleep-wake disturbances in cancer
patients [203]. Sleep disturbances in brain tumour patients
may be due to the tumour or effect of medication. Somno-
lence syndrome is seen in glioma patients following cranial
radiation therapy, and the symptoms include fatigue,
drowsiness, and in coordination. Reports also reveal Hypo-
thalamic–pituitary–adrenal axis dysregulation and
impaired melatonin and hypocretin secretion. Melatonin
possesses potent anti-inflammatory activity as it alleviates
various cytokines like IL1β, IL2, IL6, and TNFα [204].
Melatonin also inhibits prostaglandin [205] and COX2
enzymes [206]. It has also been reported that MT3 recep-
tors express QR2, which is a phase 2 detoxification
enzyme. Melatonin acts as a cosubstrate and enhances
the production of QR2, thus suppressing tumour initiation
and progression [207]. Melatonin also shows affinity
towards orphan receptors RZR/ROR and modifies tran-
scription of genes involved in cellular proliferation and
translation of proteins like 5-lipoxygenase and bone sialo-
protein. It also enhances the expression of P53, a tumour
suppressor gene [208]. Furthermore, melatonin inhibits
VEGF which is a heparin-binding glycoprotein and stimu-
lates angiogenesis. Thus, the sleep-promoting hormone
melatonin also helps in stopping tumour progression

[209]. These data suggest a possible link between sleep/SD
and cancer.

Orexin, a neuropeptide, has an important role in sleep-
wakefulness and appetite [210]. Orexin receptors OX1 and
OX2 are found in C6 glioma cells. Orexin A shows a strong
affinity towards OX1 receptors in comparison to orexin B.
However, both show a similar affinity towards OX2. Orexin
A decreases the survival of C6 glioma cell lines. The possible
mechanism through which orexin decreases survival is (a)
orexin stimulates Caspase 3 activity leading to apoptosis
and (b) inhibition of cell survival [210]. Thus, orexin plays
a vital role in controlling and eliminating glioma. SD or
alterations in sleep-wake cycle have been shown to change
orexin levels and indirectly impact glioma to some extent.

5.10. Neuropathic Pain. Neuropathic pain is caused due to
nerve injury while central neuropathic pain arises due to
stroke [211], MS [212], and spinal cord injury [213]. 25%
of diabetic and 35% of HIV patients suffer from neuropathy
pain [214]. In a healthy population, SD increases pain sensi-
tivity and intensity [215]. It was seen that rats subjected to
72 h of SD showed an increase in pain response against nox-
ious mechanical and electrical stimuli [216]. SD increases
glutamate concentration [217] and also affects the opioid sys-
tem [218] stimulating the nociceptive system. In humans and
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Figure 3: Sleep is a vital phenomenon and an indicator of overall health. Normal sleep is very essential for memory and brain health since
various neural circuits in the brain are involved in sleep. Sleep deprivation has evolved as a major threat in modern society. SD impairs
LTP and molecules associated with memory and leads to cognitive dysfunction. SD also impairs the clearance of toxic metabolites
produced in the brain and contributes to the pathophysiology of neurological disorders like AD, PD, and cerebral stroke. SD also causes
an imbalance in the immune system and aggravates the pathophysiology of MS and glioma. It can be concluded that SD adversely affects
various proteins, genes, and molecular cascades in neurodegenerative disorders.
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rodents, SD causes increased WBC counts and enhances the
level of C-reactive protein, IL1β, IL6, and TNFα [219–221].
SD stimulates astrocytic phagocytosis which leads to micro-
glial activation in the cortical region of mice [221]. Total
sleep deprivation following chronic constriction injury
(CCI) increases microglial activation in the cuneate nucleus
(CN) and exasperates neuropathic pain induced by nerve
injury. Melatonin administration reduces the level of proin-
flammatory cytokines, thereby reducing neuropathic pain
in CCI rats [222]. Melatonin blocks Ca2+ channels directly
by binding to the receptors (MT1 and MT2) or indirectly
by binding to G protein-coupled receptors [223, 224].
Recently, we reviewed the role of body fluids on sleep [225].
Blocking of Ca2+ channels leads to a decrease in glutamate
concentration and results in the suppression of NMDA
receptors and pain.

6. Conclusion

Based on the data from the American Sleep Apnea Associa-
tion, “It is estimated that sleep-related problems affect 50 to
70 million Americans of all ages and socioeconomic classes.”
Since one-third of an average person’s life is spent in sleep-
ing; sleep is an important aspect that influences human func-
tion and performance during the remaining two-thirds.
Thus, it is important to understand the effect of sleep loss
and sleep disorders on human health. Since the brain governs
various sleep patterns, SD is one of the reasons for the etio-
pathogenesis of various neurological disorders. Sleep depri-
vation impairs LTP and brain-derived neurotrophic factors
and is linked to dementia and cognitive decline. SD also
causes accumulation or misfolding of proteins and its role
in neurodegenerative diseases like AD, PD, and cerebral
stroke is well documented. SD is associated with an imbal-
ance in the immune axis leading to increased release of cyto-
kines, autoimmune diseases (multiple sclerosis), and glioma
(Figure 3). In summary, it is apparent that SD plays a role
in adversely modulating several key proteins and cascades
cellular/molecular levels in various neurological disorders.
Based on the data gathered from literature and clinical stud-
ies on SD, it is apparent that the impact of SD is enormous
and profound and needs urgent attention. Furthermore, it
might not be an overstatement to say that—if left unattended
and overlooked, SD will impose severe healthcare and
medical economic burden in the society.
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Supplementary Materials

Supplementary Table 1: genes detected as differentially regu-
lated in sleep deprivation microarray (multiple testing cor-
rected P value < 0.05) tested by qPCR. All comparisons
between sleep-deprived (SD) and nonsleep-deprived (NSD)
samples measured by qPCR are significant at P < 0:05 using
1-tailed t-tests, except Nr4a1. For each gene, qPCR expres-
sion is represented as the fold change (FC) in SD mice rela-
tive to NSD mice, normalized to the average expression of
the housekeeping genesActg, Hprt, and Tuba4a (used with
permission). Supplementary Figure 1: quantitative RT-PCR
validation of genes upregulated or downregulated by sleep
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deprivation in the hippocampus. Quantitative RT-PCR
(dark gray) was used to validate the expression level of
genes identified by microarray analysis (light gray) as being
changed in the hippocampus by sleep deprivation. For each
gene, the expression is represented as the fold change in SD
mice relative to NSD mice, normalized to the average
expression of housekeeping genes Actg, Hprt, andTuba4a.
The fold change values from the microarray for SD/NSD
are shown for each gene for comparison. All SD/NSD
qPCR comparisons are significant at P < 0:05, except
Nr4a1 induction (see Table 1). Bars indicate ±SE (used with
permission). (Supplementary materials)
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