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A B S T R A C T

The manuscript considers multivariate functional data analysis with a known graphical model
among the functional variables representing their conditional relationships (e.g., brain region-
level fMRI data with a prespecified connectivity graph among brain regions). Functional
Gaussian graphical models (GGM) used for analyzing multivariate functional data customarily
estimate an unknown graphical model, and cannot preserve knowledge of a given graph. We
propose a method for multivariate functional analysis that exactly conforms to a given inter-
variable graph. We first show the equivalence between partially separable functional GGM
and graphical Gaussian processes (GP), proposed recently for constructing optimal multivariate
covariance functions that retain a given graphical model. The theoretical connection helps
to design a new algorithm that leverages Dempster’s covariance selection for obtaining the
maximum likelihood estimate of the covariance function for multivariate functional data under
graphical constraints. We also show that the finite term truncation of functional GGM basis
expansion used in practice is equivalent to a low-rank graphical GP, which is known to
oversmooth marginal distributions. To remedy this, we extend our algorithm to better preserve
marginal distributions while respecting the graph and retaining computational scalability.
The benefits of the proposed algorithms are illustrated using empirical experiments and a
neuroimaging application.

. Introduction

Gaussian graphical models (GGM) are extensively used to represent sparsity structures emerging from conditional independence
elations among a collection of Gaussian random variables. The graph specifies the zeroes in the precision matrix for multivariate
bservations. Conducting multivariate analysis under a known graph constraint, i.e., when the variables conform to a given
raph, is of key interest. Covariance selection [11] offers a seminal result to answer this specific question. When the graph
s unknown, classical approaches such as the graphical Lasso estimate the graph (from the sparse precision matrix) using L-
 regularization [17,26]. Bayesian alternatives employ Markov chain Monte Carlo (MCMC) algorithms exploiting a conjugate
yper-inverse Wishart prior for estimating the graph and the precision matrix [7,13,32].

Graphical Gaussian models are customarily applied to multivariate data sets, where the variables represented by the nodes of the
raph are scalar- or vector-valued. Here we consider a collection of functions that conceptually exist in a continuum over a domain
e.g., over space or time) and are associated among themselves via a posited conditional independence graph. We consider analysis
f partial realizations of these multiple functions or processes, which is always the case in practice. Examples of such multivariate
unctional data include physical activity or heart rate continuously measured from actigraph monitors (wearables), EEG/fMRI signals

∗ Corresponding author.
E-mail address: abhidatta@jhu.edu (A. Datta).
vailable online 24 February 2025
047-259X/© 2025 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

ttps://doi.org/10.1016/j.jmva.2025.105428
eceived 19 September 2023; Received in revised form 14 February 2025; Accepted 17 February 2025

https://www.elsevier.com/locate/jmva
https://www.elsevier.com/locate/jmva
mailto:abhidatta@jhu.edu
https://doi.org/10.1016/j.jmva.2025.105428
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmva.2025.105428&domain=pdf
https://doi.org/10.1016/j.jmva.2025.105428


Journal of Multivariate Analysis 207 (2025) 105428D. Dey et al.

t
u
d

c
m
i
i
b

s
t
o
g
p
k

f
p

a
m
p
f
t
c
p

M

p

o

from different brain regions (neuroimaging), multiple-gene expressions from cells distributed over a tissue (spatial transcriptomics),
population counts of multiple biological species over a region (ecology) and multiple pollutants measured from environmental
monitoring stations (environmental sciences).

Multivariate functional data are often modeled using a latent multivariate stochastic process, such as a multivariate Gaussian
process (GP) [3,8,31,36]. Hence, it is natural to seek extensions of graphical models to settings where each node represents an
entire function or stochastic process. Two recent approaches have extended the GGM to represent conditional dependencies among
multivariate stochastic processes on continuous domains: (i) functional GGM (FGGM); and (ii) graphical Gaussian Process (GGP).
The former relies on a multivariate Kosambi-Karhounen-Loève basis expansion and estimates the sparsity (graphical model) of
he precision matrices of the Gaussian coefficient vectors via penalized estimation [41,42]. Functional GGMs have been primarily
sed for functional data analysis, where basis function representations are customarily used but have also been applied to spatial
ata [21]. These methods estimate the unknown graph through the aforementioned regularization techniques.

Graphical GP (GGP) [12], originally proposed for multivariate spatial analysis, offers a multivariate covariance function that
exactly conforms to a specified graph among the variables. Given this undirected graph and a multivariate covariance function, a
GGP is the derived optimal covariance function that satisfies the prespecified graphical constraint. This means that the processes
omprising a GGP exactly satisfy process-level conditional independence specified by the graph. At the same time, GGP retains
arginal process distributions from the original multivariate covariance function it is derived from, thereby facilitating the

nterpretation of the attributes of each individual process via inference on the respective parameters, which is often the primary
nferential objective in spatial analysis. GGP is implemented via an algorithm called stitching that scales effectively for likelihood-
ased analysis of highly multivariate spatial data involving a large number of outcome variables by leveraging the sparsity of the

graph.
We focus on multivariate functional data analysis when the inter-variable graph is known (e.g., existing brain-region networks,

phylogenetic trees etc.), and needs to be preserved in the statistical model. This problem is an extension of Dempster’s covariance
election from finite-dimensional covariance matrices to infinite-dimensional covariance operators. In other words, the goal is to find
he best estimate of the multivariate covariance function under a graphical constraint on the variables. While having the knowledge
f a graph may appear simpler than requiring the estimation of an unknown graph, current FGGM approaches that estimate the
raph simultaneously with other parameters cannot preserve a given graphical constraint. Thus, akin to the typical challenges of
arameter estimation under a known but complicated constraint, existing FGGM algorithms are not typically conformable to a
nown graphical constraint. This motivates our current developments.

Our contributions are summarized as follows. We first draw theoretical connections between functional GGM and graphical
GP. These are apparently complementary methods for introducing graphical models in multivariate GP. The former relies on basis
unction expansions and is typically used for analyzing functional data. Graphical GP focuses on spatial data and directly uses
arametric covariance functions. We bridge these two seemingly disconnected paradigms. We formally establish in Theorem 1 that

the class of partially separable functional GGM with the graphical model for each of the coefficient covariance matrices is equivalent
to a graphical GP. Furthermore, using Nyström’s method, we relate the stitching algorithm for constructing a graphical GP to a
finite-term truncation of basis functions used in functional GGM. Specifically, we show that truncation corresponds to use of a
low-rank GP in stitching that is known to oversmooth.

The theoretical connections we offer in this manuscript carry important implications for practice in multivariate functional
nalysis. We first leverage the equivalence between functional GGM and graphical GP to design an algorithm for analyzing
ultivariate functional data that exactly preserves the given functional conditional independence relationships. In particular, we
rovide a solution to Dempster’s covariance selection for multivariate functional data by deriving the maximum likelihood estimates
or a multivariate covariance function under the graphical constraint (Theorem 2). We subsequently show that the finite-term
runcation of the basis function leads to over-smoothing as it corresponds to stitching using a low-rank GP. We use ideas from
onstructing full-rank graphical GP via stitching to offer an improved algorithm that mitigates the effects of over-smoothing by better
reserving marginal distributions while retaining the graphical constraint. We show the utility of our method through numerous

experiments on synthetic data. We demonstrate the application of the method for the analysis of brain region-level functional
agnetic Resonance Imaging (fMRI) data using a connectivity graph among brain regions. The data is from a study of effects of

thermal pain on the brain. This application is particularly well-suited for the proposed method as it is known apriori that there are
a number of brain regions that are consistently involved with pain processing whose connections together are predictive of physical
ain [25,27].

2. The two paradigms of graphical functional modeling

We offer a brief review of functional Gaussian graphical models and graphical Gaussian Processes and how they differ in terms
f the model forms and their applications.

2.1. Functional Gaussian graphical models

We first review the definition of conditional independence for Gaussian processes (GP) on continuous domains. For a set
 = {1,… , 𝑞}, let 𝑤(⋅) = (𝑤1(⋅),… , 𝑤𝑞(⋅))⊤ be a 𝑞× 1 GP over a continuous domain  with node 𝑗 representing the univariate process
𝑤𝑗 (⋅). Two univariate GPs 𝑤𝑖(⋅) and 𝑤𝑗 (⋅) are conditionally independent, given the remaining processes {𝑤𝑘(⋅) ∣ 𝑘 ∈ 𝑉 ⧵ {𝑖, 𝑗}} if
Cov(𝜖 (𝑠), 𝜖 (𝑠′)) = 0 for all 𝑠, 𝑠′ ∈  and 𝐵 =  ⧵ {𝑖, 𝑗}, where 𝜖 (𝑠) = 𝑤 (𝑠) −E[𝑤 (𝑠) ∣ 𝜎({𝑤 (𝑠′) ∶ 𝑗 ∈ 𝐵 , 𝑠′ ∈ })] [12] and 𝜎(⋅) is
2

𝑖𝐵 𝑗 𝐵 𝑘𝐵 𝑘 𝑘 𝑗
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the 𝜎-algebra generated by its argument. Functional GGM (FGGM) introduces this process-level conditional independence through
the precision matrices of coefficient vectors in its basis expansion. Letting 𝜙𝑗𝓁 be the orthonormal basis functions in the domain

, the process is represented as 𝑤𝑗 (𝑠) =
∑∞

𝓁=1 𝜃𝑗𝓁𝜙𝑗𝓁(𝑠). [42] show that modeling the coefficients 𝜃𝑗𝓁 to be Gaussian and assuming
a sparsity structure between the discrete multivariate GP 𝜃(𝑗) = {𝜃𝑗𝓁 ∶ 𝓁 ∈ {1, 2,…}} imposes the corresponding process-level
conditional independence among the component processes of 𝑤(⋅). In practice, they truncate the expansion of 𝑤(𝑗)(⋅) to 𝑚𝑗 terms
nd fit a GGM on the 𝑀 =

∑𝑞
𝑗=1 𝑚𝑗 dimensional vector of coefficients. The approach involves inverting an 𝑀 ×𝑀 matrix, thereby

requiring 𝑂(𝑀3) floating point operations (FLOPs) or 𝑂(𝑞3𝑚3) FLOPs when 𝑚𝑗 = 𝑚 for all 𝑗. The computational expense being cubic
in the number of basis functions 𝑚 prohibits large values for 𝑚, which, in turn, restricts the richness of the function class.

The functional GGM in [21,41] introduces two further assumptions: (a) a common orthonormal basis function, i.e., 𝜙𝑗𝓁 = 𝜙𝓁 for
ll 𝑗 ∈ {1,… , 𝑞}; and (b) the coefficients corresponding to different basis functions are independent, i.e, 𝜃𝑗 and 𝜃𝑘 are independent,
here 𝜃𝑗 = (𝜃1𝑗 ,… , 𝜃𝑞 𝑗 )⊤. Due to the separability in the joint covariance structure of basis coefficients, they are formally termed as
artial separable processes. The basis function expansion is truncated to 𝑚 terms in practical implementation. This partial separable
odel only needs 𝑚 inversions of 𝑞 × 𝑞 matrices (Cov(𝜃𝑗 ), 𝑗 ∈ {1,… , 𝑚}) and considerably reduces computational complexity to
(𝑚𝑞3), thereby allowing 𝑚 to be larger. The algorithm maximizes a penalized likelihood with a graphical Lasso penalty on the
stimated covariance of the coefficient vectors to induce sparsity. This results in the estimation of an unknown graphical model
orresponding to the common sparsity among the precision matrices for each of the coefficients. Recently, [23,24] proposed a class

of non-parametric graphical models for functional data that performs better than FGGMs when the relation between variables is
non-linear or heteroskedastic in nature.

2.2. Graphical Gaussian processes

Spatial data is often modeled using GPs with parametric covariance functions. The Matérn family of covariances [34] are popular
in spatial analysis because their parameters are interpreted as the variance, spatial smoothness, and range of the process. For
multiple dependent outcomes 𝑤(⋅) = (𝑤1(⋅),… , 𝑤𝑞(⋅))

⊤ , a common GP specification is 𝑤(⋅) ∼ 𝐺 𝑃 (0, 𝐶(⋅, ⋅)) where 𝐶 = (𝐶𝑖𝑗 ) is the
𝑞 × 𝑞 multivariate covariance function. The multivariate Matérn is a popular choice for 𝐶, ensuring that the derived covariance and
cross-covariance functions are also Matérn [1,18], allowing us to interpret each component process. However, the model struggles
to scale up to highly multivariate (large 𝑞) settings.

In [12], the graphical Gaussian process (GGP) was introduced for analyzing highly multivariate spatial data. These are specified
through multivariate covariance functions that exactly encode an inter-variable graphical model. Theorem 1 in [12] asserts that
given any non-graphical stationary multivariate GP and any inter-variable graph, there is a unique and optimal GP approximating
he original GP (in terms of integrated spectral Kullback–Leibler divergence) while respecting process-level conditional independence
elationships as specified by the graph. This optimal graphical GP was shown to retain the univariate marginal distributions from the
riginal GP exactly. For any pair of variables (𝑖, 𝑗) included in the edge set of the graph, the cross-covariance is also retained from

the original GP. We denote this optimal graphical GP derived from the original covariance function 𝐶 and a graph  as 𝐺 𝐺 𝑃 (𝐶 ,).

Definition 2.1 (Graphical GP). 𝑤(⋅) ∼ 𝐺 𝐺 𝑃 (𝐶 ,) is a 𝑞 × 1 graphical GP on  given a valid 𝑞 × 𝑞 cross-covariance function 𝐶 = (𝐶𝑖𝑗 )
on  ⊆ R𝑑 and a graph  = ( , 𝐸), such that

(i) Retains univariate marginal distributions: 𝑤𝑗 (⋅) ∼ 𝐺 𝑃 (0, 𝐶𝑗 𝑗 ) for all 1 ≤ 𝑗 ≤ 𝑞,
(ii) Retains edge-specific cross-covariances: Cov(𝑤𝑖(𝑠), 𝑤𝑗 (𝑡)) = 𝐶𝑖𝑗 (𝑠, 𝑡), (𝑖, 𝑗) ∈ 𝐸 and 𝑠, 𝑡 ∈ ,

(iii) Encodes process-level graphical model as in Definition 2.1: 𝑤𝑖(⋅) ⟂ 𝑤𝑗 (⋅) ∣ 𝑤−𝑖𝑗 (⋅), (𝑖, 𝑗) ∉ 𝐸.

Construction of the graphical GP used an algorithm called ‘‘stitching’’. The stitching algorithm in [12] combines two algorithms,
which we refer to as ‘‘stitching’’ and ‘‘stretching’’ in the current manuscript. The step of stitching is applying Dempster’s covariance
selection using  on the covariance matrix arising from 𝐶 when considering a finite set of locations  = {𝑠1,… , 𝑠𝑝}. This defines a
graphical GP on the finite set  that adheres to the conditional independences specified via the graphical model . The stretching
tep extends the finite-dimensional process to the continuous infinite domain by adding a residual error process, while preserving

the graphical model.

2.2.1. Stitching
To perform the stitching, we need to define covariance selection for positive definite (p.d.) matrices.

Definition 2.2 (Covariance Selection, [11,33]). Given a graph  = ( , 𝐸) and a positive definite matrix 𝐴 with row and column
blocks indexed by  , 𝐶 𝑜𝑣𝑆 𝑒𝑙(𝐴,) is the unique p.d. matrix 𝐵 from Dempster’s covariance selection on 𝐴 using , i.e., 𝐵𝑖𝑗 = 𝐴𝑖𝑗 for
𝑖 = 𝑗 or (𝑖, 𝑗) ∈ 𝐸, and (𝐵−1)𝑖𝑗 = 𝑂 for (𝑖, 𝑗) ∉ 𝐸.

Given 𝐶, , and , stitching first defines a graphical Gaussian model (GGM) on  ⊂ .

𝑤𝑠𝑡𝑖𝑡𝑐 ℎ() ∼ 𝑁(0, �̃�(,)) where �̃�(,) = 𝐶 𝑜𝑣𝑆 𝑒𝑙(𝐶(,),). (1)

Here, 𝐶(,) denotes the covariance matrix obtained from evaluating the covariance function 𝐶 on the reference set .
3
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2.2.2. Stretching
As part of the stretching, the covariance matrix on a finite set is then extended to a covariance function on the infinite domain.

n other words, the finite-dimensional GGM (1) is extended in [12] to an infinite-dimensional GGP on  as

𝑤𝑠𝑡𝑟𝑒𝑡𝑐 ℎ,𝑗 (𝑠) = 𝑤𝑝𝑝
𝑠𝑡𝑖𝑡𝑐 ℎ,𝑗 (𝑠) + 𝑧𝑗 (𝑠), where 𝑤𝑝𝑝

𝑠𝑡𝑖𝑡𝑐 ℎ,𝑗 (𝑠) = 𝐶𝑗 𝑗 (𝑠,)𝐶𝑗 𝑗 (,)−1𝑤𝑠𝑡𝑖𝑡𝑐 ℎ,𝑗 (). (2)

Here, 𝐶𝑗 𝑗 (𝑠,) = (𝐶𝑗 𝑗 (𝑠, 𝑠1),… , 𝐶𝑗 𝑗 (𝑠, 𝑠𝑝)) and 𝑤𝑝𝑝
𝑠𝑡𝑖𝑡𝑐 ℎ is the (fixed-) or low-rank predictive process based on the finite-dimensional

distribution 𝑤𝑠𝑡𝑖𝑡𝑐 ℎ() defined on the set of knots  [4]. The processes 𝑧𝑗 (⋅)
ind𝑗∼ 𝐺 𝑃 (0, 𝐶𝑗 𝑗 ,𝑟𝑒𝑠) are the residual GP with 𝐶𝑗 𝑗 ,𝑟𝑒𝑠(𝑠, 𝑡) =

𝑗 𝑗 (𝑠, 𝑡) − 𝐶𝑗 𝑗 (𝑠,)𝐶𝑗 𝑗 (,)−1𝐶𝑗 𝑗 (, 𝑡). Decomposing a univariate GP into a predictive process and an orthogonal residual process is
ell known [4]. The stitching and stretching process introduced two innovations to this decomposition. First, the process on  is

endowed with the covariance �̃�(,) instead of 𝐶(,). This ensures that the graph  is encoded while preserving marginals on
. Orthogonality of 𝑧𝑗 (⋅) and 𝑤𝑝𝑝

𝑠𝑡𝑖𝑡𝑐 ℎ,𝑗 (⋅) then implies that the marginals are preserved over entire  if the residual processes, 𝑧𝑗 (⋅)’s,
re added to the low-rank Gaussian process 𝑤𝑝𝑝

𝑠𝑡𝑖𝑡𝑐 ℎ,𝑗 (𝑠), i.e., 𝑤𝑠𝑡𝑟𝑒𝑡𝑐 ℎ,𝑗 (⋅) ∼ 𝐺 𝑃 (0, 𝐶𝑗 𝑗 ) for all 𝑗 on the entire domain . Second, the
𝑗 (⋅)’s are chosen to be independent component-wise (across 𝑗’s), ensuring that the GGM encoded over  is extended to process-level

conditional independence relations over  yielding the GGP, i.e., for all (𝑖, 𝑗) ∉ 𝐸, we have 𝑤𝑠𝑡𝑟𝑒𝑡𝑐 ℎ,𝑖(⋅) ⟂ 𝑤𝑠𝑡𝑟𝑒𝑡𝑐 ℎ,𝑗 (⋅) ∣ 𝑤𝑠𝑡𝑟𝑒𝑡𝑐 ℎ,−𝑖𝑗 (⋅).
or a decomposable sparse graph, a GGP likelihood from this process involves considerably less parameters and FLOPs than a full
P with covariance 𝐶.

3. Theoretical connections between functional GGM and graphical GP

The GGP in [12] is constructed from a parametric multivariate covariance function 𝐶 such as the multivariate Matérn. In
nalyzing functional data, covariance functions are often represented more generally using basis functions. Here, we demonstrate
ow a graphical GP can be derived from any multivariate GP that admits a partially separable basis function expansion. The
esulting GGP is an FGGM that will exactly conform to a given graph, and we show, in Section 4, how this is leveraged to conduct

graph-constrained analysis of multivariate functional data.

3.1. Covariance selection on partially separable Gaussian processes

Consider a 𝑞 × 1 partially-separable multivariate GP on a continuous domain ,

𝑤0(𝑠) =
∞
∑

𝓁=1
𝜃𝓁𝜙𝓁(𝑠), where 𝜃𝓁 = (𝜃1𝓁 ,… , 𝜃𝑞𝓁) ∼ 𝑁𝑞(0, 𝛴𝓁). (3)

Theorem 1 proves that the graphical GP derived from 𝑤0(⋅) is a partially separable functional GGM that exactly preserves a given
graphical model.

Theorem 1. Let 𝐶 be the cross-covariance function of a stationary partially separable process 𝑤0(⋅) in (3). Consider a new partially
separable process 𝑤(𝑠) = ∑∞

𝓁=1 𝜃
∗
𝓁𝜙𝓁(𝑠) where 𝜃∗𝓁 = (𝜃∗1𝓁 ,… , 𝜃∗𝑞𝓁) ∼ 𝑁𝑞(0, 𝛴∗

𝓁). Then for any fixed graph  = ( , 𝐸), 𝑤(⋅) ∼ 𝐺 𝐺 𝑃 (𝐶 ,) as
in Definition 2.1 if and only if 𝛴∗

𝓁 = CovSel(𝛴𝓁 ,) for all 𝓁.
The result shows that starting with a partially separable GP, the optimal graphical GP can be obtained by applying Dempster’s

covariance selection on each covariance matrix 𝛴𝓁 of the basis coefficients, and this graphical GP is a partially separable functional
GGM. All proofs are provided in Appendix.

3.2. Stitching and truncation

In practice, we cannot work with infinite basis expansions and construct a process using only a finite set of orthogonal functions
extracted from the graphical GP 𝑤(⋅) in Theorem 1. The following result is an immediate consequence of Theorem 1. The proof is
outlined in Appendix A.

Corollary 1. Let 𝑤𝑚
0 (𝑠) be constructed using 𝑚 basis functions of a graphical GP as

𝑤𝑚
0 (𝑠) =

𝑚
∑

𝓁=1
𝜃𝓁𝜙𝓁(𝑠), 𝜃𝓁 = (𝜃1𝓁 ,… , 𝜃𝑞𝓁)⊤ ∼ 𝑁𝑞(0, 𝛴𝓁) (4)

and 𝐶𝑚 is the covariance function of 𝑤𝑚
0 (𝑠). Then 𝑤𝑚(⋅) ∼ 𝐺 𝐺 𝑃 (𝐶𝑚,) is given by 𝑤𝑚(𝑠) = ∑𝑚

𝓁=1 𝜃
∗
𝓁𝜙𝓁(𝑠) where Cov(𝜃∗𝓁) = 𝐶 𝑜𝑣𝑆 𝑒𝑙(𝛴𝓁 ,)

for 𝓁 ∈ {1,… , 𝑚}.
We discuss in Section 4 how this connection facilitates a practical estimation strategy for finite-term functional GGM that exactly

conforms to a given graph. However, a finite-term truncation can come at the expense of reduced accuracy in estimating the
covariance function. To explicitly demonstrate the impact of truncation, we now relate this truncated functional GGM 𝑤𝑚(⋅) of
Corollary 1 to a low-rank stitched graphical GP (recall Section 2.2) through an approximate result using Nÿstrom approximation
for kernel matrices [14]. Let 𝑤0(⋅) be the partially separable GP in (3) with cross-covariance function 𝐶 = (𝐶𝑖𝑗 ), 𝑤(⋅) be the partially
eparable 𝐺 𝐺 𝑃 (𝐶 ,) derived from 𝑤0(⋅) using Theorem 1 and 𝑤𝑚(⋅) be the finite-term truncation of 𝑤(⋅) in Corollary 1. We show

in Appendix A that 𝑤𝑚(⋅) is approximately equal to 𝑤𝑝𝑝 (⋅), where 𝑤𝑝𝑝 = (𝑤𝑝𝑝 (⋅),… , 𝑤𝑝𝑝 (⋅)) is the low-rank predictive
4

𝑠𝑡𝑖𝑡𝑐 ℎ 𝑠𝑡𝑖𝑡𝑐 ℎ 𝑠𝑡𝑖𝑡𝑐 ℎ,1 𝑠𝑡𝑖𝑡𝑐 ℎ,𝑞
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process defined in (2) created as part of the stitching and stretching constructions.
Theorem 1 proves the equivalence between the theoretical constructions of functional GGM and the graphical GP. Similarly,

the above approximate result establishes an analogy between the practical procedures of truncation and stitching for the two
approaches. This result also highlights that truncation ignores the equivalence of the stretching step employed earlier in graphical GP
(Section 2.2.2). The stitched and stretched graphical GP 𝑤𝑠𝑡𝑟𝑒𝑡𝑐 ℎ(𝑠), as specified in (2), is the sum of the stitched low-rank predictive
rocess 𝑤𝑝𝑝

𝑠𝑡𝑖𝑡𝑐 ℎ(𝑠) and the independent residual processes 𝑧(⋅), i.e., 𝑤𝑠𝑡𝑟𝑒𝑡𝑐 ℎ(𝑠) = 𝑤𝑝𝑝
𝑠𝑡𝑖𝑡𝑐 ℎ(𝑠) + 𝑧(𝑠), where 𝑧(𝑠) = (𝑧1(𝑠),… , 𝑧𝑞(𝑠)). The

runcated functional GGM 𝑤𝑚(𝑠) is only equivalent to the first component 𝑤𝑝𝑝
𝑠𝑡𝑖𝑡𝑐 ℎ(𝑠) and ignores the residual component 𝑧(𝑠). This

ifference has important practical implications. The marginal distributions of the process 𝑤𝑝𝑝
𝑠𝑡𝑖𝑡𝑐 ℎ(⋅) has the same distribution as

𝑗 𝑗 (⋅,)𝐶𝑗 𝑗 (,)−1𝑤0,𝑗 () — the univariate predictive processes of [4] derived from the original process 𝑤0(𝑠). These low-rank
redictive processes have been shown, theoretically and empirically, to underestimate the marginal variances of the original process

𝑤0(⋅), resulting in oversmoothing and inferior performance [9,35]. As 𝑤𝑚(⋅) is equivalent to 𝑤𝑝𝑝
𝑠𝑡𝑖𝑡𝑐 ℎ(⋅), the truncated process 𝑤𝑚(⋅) also

ill not preserve the marginals of the original distribution 𝑤0(⋅). Rather 𝑤𝑚(⋅) has the same marginal distributions as the predictive
process, and will be expected to oversmooth the marginal spatial patterns. In contrast, the process 𝑤𝑠𝑡𝑟𝑒𝑡𝑐 ℎ(⋅), on account of adding
he residual processes 𝑧(⋅), preserves the marginals of the original process 𝑤0(⋅) and would not oversmooth. Thus, we see a potential
rawback of the truncation. We demonstrate the oversmoothing in our empirical results and in Section 4 we offer a solution to the

issue.

4. Estimation

In scientific applications, we either know the graph apriori or have to estimate it. Functional GGM is widely deployed in the
atter setting [21,41]. However, if the graph is known (e.g., a known phylogenetic tree as a graph to model multiple species
istributions over a region, a known auto-regressive time-dependence structure to model spatiotemporal pollutant data, connectivity
raph between brain regions estimated from a secondary dataset), current functional GGM approaches cannot explicitly encode this
nformation and preserve the graphical model in the analysis.

In this Section, we leverage the theoretical connections developed in Section 3 to present algorithms for graph-constrained
analysis of multivariate functional data.

4.1. Graph-constrained MLE for multivariate functional data

Theorem 1 and Corollary 1 establish that the optimal approximation of a partially separable process under a graphical constraint
s also a partially separable process with Dempster’s covariance selection applied to covariance matrices for each of the basis function
oefficients. We now provide the data-driven analog of the result that is practically applicable when analyzing multivariate functional

data occurring as partial realizations of these multivariate processes. In particular, the following theorem provides the maximum
likelihood estimate (MLE) for a partially separable multivariate covariance function under a graphical constraint. The result is viewed
as an extension of Dempster’s covariance selection, i.e., graph-constrained MLE of covariances, from the setting of vector-valued
data with covariance matrices to functional data with covariance operators.

Theorem 2. Let 𝑋1,… , 𝑋𝑁 denote iid realizations of 𝑞-variate functional data on 𝑝 locations {𝑠1,… , 𝑠𝑝}, generated from a mean-zero
truncated partial separable GP(0, 𝐶𝑚) as in Corollary 1 with known orthonormal basis functions 𝜙𝓁 . Then, for a given functional graphical
model , the graph-constrained MLE of the covariance function 𝐶𝑚 is given by

𝐶𝑚 =
𝑚
∑

𝓁=1
CovSel

(

(𝐼𝑞 ⊗ 𝝓⊤
𝓁 )𝑆(𝐼𝑞 ⊗ 𝝓𝓁),

)

⊗ 𝝓𝓁𝝓⊤
𝓁 (5)

where 𝑆 = (1∕𝑁)
∑𝑁

𝑖=1 𝑋𝑖𝑋⊤
𝑖 is the sample covariance matrix, 𝝓⊤

𝓁 = (𝜙𝓁(𝑠1),… , 𝜙𝓁(𝑠𝑝)) is the basis function evaluated at 𝑝 locations, and
ovSel is covariance selection (see Definition 2.2).

Lemma 1. Under the setting of Theorem 2, the graph-constrained MLE 𝐶𝑚 in (5) is an asymptotically consistent estimator of the covariance
perator 𝐶𝑚.

Theorem 2 provides a direct approach to obtaining the MLE of a multivariate covariance function under a given graphical
constraint and Lemma 1 shows the consistency of the estimator. All the proofs are shown in Appendix. In practice, the basis
unctions are often chosen in a data-driven manner instead of being fixed apriori. These estimates �̂�𝓁 can be obtained from a
unctional principal components analysis. Plugging these (or any other estimate of 𝜙𝓁), we can use Theorem 2 to calculate the

profile maximum likelihood estimate (PMLE) of 𝛴𝓁 as �̂�𝓁 = (𝐼𝑞 ⊗ �̂�⊤
𝓁 )𝑆(𝐼𝑞 ⊗ �̂�𝓁). Subsequently the graph-constrained PMLE for 𝐶𝑚

an be obtained as

𝐶𝑚 =
𝑚
∑

𝓁=1
CovSel(�̂�𝓁 ,)⊗ �̂�𝓁�̂�

⊤
𝓁 . (6)

The number of basis functions 𝑚 is usually chosen so that the first 𝑚 eigenfunctions �̂�𝓁 ’s explain a given percentage 𝑣 of the
total variance. We formally lay out the above steps in Algorithm 1 (see [38,39]) below and term our approach as FGGM-CovSel.
5



Journal of Multivariate Analysis 207 (2025) 105428D. Dey et al.

m
o
i

s

r

a

n

𝛴

Algorithm 1: FGGM-CovSel: Graph-constrained multivariate functional data analysis
Step 1. Fix a proportion of variance explained threshold, 𝑣, say, 𝑣 = 0.95 ;
Step 2. Perform pooled functional principal component analysis ([38,39]) to get 𝑚 common eigenfunction estimates
�̂�𝓁 ,𝓁 ∈ {1,… , 𝑚} that explain 𝑣 proportion of total variance. ;

Step 3. Use the eigenfunctions �̂�𝓁 to get first 𝑚 functional principal component scores �̂�𝑖𝓁 = (𝐼𝑞 ⊗ �̂�⊤
𝓁 )𝑋𝑖 and calculate the

corresponding covariance matrix �̂�𝓁 = Cov𝑁 (�̂�𝑖𝓁) = (𝐼𝑞 ⊗ �̂�⊤
𝓁 )𝑆(𝐼𝑞 ⊗ �̂�𝓁) for 𝓁 ∈ {1,… , 𝑚} where 𝑆 = 1

𝑁𝑋𝑖𝑋⊤
𝑖 .;

Step 4. Using Iterative Proportional Scaling (IPS) algorithm [33] for covariance selection to obtain CovSel(�̂�𝓁 ,) for
𝓁 ∈ {1,… , 𝑚}.;

Step 5. Produce the estimate of the covariance operator 𝐶𝑚 from (6).

4.2. Improved estimation of marginal distributions using stretching

In Algorithm 1, using a larger 𝑣 improves the retention of marginal covariance functions but requires a larger number of basis
functions 𝑚. This is prohibitive computationally, as the iterative proportional scaling (IPS) algorithm [33] for covariance selection
on the 𝑆𝓁 ’s has a total computational complexity of 𝑂(𝑚𝑞3) floating point operations or FLOPs for the 𝑚 terms. For large 𝑞, this

andates choosing a smaller 𝑚 to reduce computations. This tradeoff leads to a worse approximation of the marginal covariances and
versmoothing as the finite-term truncated process is equivalent to a low-rank GP approximation at 𝑚 locations (see the discussion
n Section 3.2).

We now offer an extension of Algorithm 1 using the principles of stretching that remains computationally feasible while offering
ignificantly better retention of the marginal distributions and, thereby, less oversmoothing. In Section 3.2, we have established

that 𝑤𝑠𝑡𝑟𝑒𝑡𝑐 ℎ(⋅) ≈ 𝑤𝑚(⋅) + 𝑧(⋅). The graphical GP 𝑤𝑠𝑡𝑟𝑒𝑡𝑐 ℎ(⋅) exactly preserves the marginals of the original process 𝑤0(⋅), while the
truncated process 𝑤𝑚(⋅) is equivalent to a low-rank predictive process and can oversmooth. For a univariate predictive process, the
oversmoothing is mitigated by adding the residual process [16]. Stretching proceeds similarly in a multivariate graphical model
by introducing the residual process 𝑧(⋅) (defined in (2)) to exactly preserve the marginals while still conforming to the graphical
constraint.

We leverage this connection between truncation and stitching to remedy the oversmoothing by the process 𝑤𝑚(⋅) truncated at
some computationally feasible value of 𝑚. We modify Algorithm 1 to emulate the full rank stitching and stretching procedure of [12]
by adding component-specific residual processes. This essentially adds a block-diagonal function to the estimate of the covariance
function that mitigates the bias in the marginal distributions due to truncation. To achieve this, we first run FGGM-CovSel for a small
or moderate 𝑚 as afforded by the computing resources. Then, we calculate the residuals and perform functional principal component
analysis of the component-specific residuals, and add the diagonal matrix of the estimated residual variances to our covariance
estimate 𝐶𝑚 from Algorithm 1. This yields significant improvements in retaining the univariate distributions. The Algorithm is
eferred to as FGGM-Stretch and is formally laid out in Algorithm 2 below.
Algorithm 2: FGGM-Stretch

Step 1. Fix a smaller proportion of variance explained threshold, 𝑣, say, 𝑣 = 0.75.;
Step 2. Run Algorithm 1 to get estimates �̂�𝑖𝓁 , �̂�𝓁 ,𝓁 ∈ {1,… , 𝑚} and �̂�.;
Step 3. Calculate residuals: 𝑍𝑖 = 𝑋𝑖 −

∑𝑚
𝓁=1 �̂�𝑖𝓁�̂�𝓁 for 𝑖 ∈ {1,…𝑁};

Step 4. Perform functional principal component analysis of the residuals of 𝑍(𝑗) = (𝑍1𝑗 ,… , 𝑍𝑁 𝑗 ) for 𝑗 ∈ {1,… , 𝑞}
independently for a larger proportion of variance explained, 𝑣′, say, 𝑣′ = 0.95;

Step 5. Obtain the eigenvalues as �̂�𝓁𝑗 ,𝓁 ∈ {1,… , 𝑚′}, 𝑗 ∈ {1,… , 𝑞};
Step 6. Find the new stitched covariance operator 𝐶𝑚(2)

= 𝐶𝑚 +
∑𝑚′

𝓁=1 diag(�̂�𝓁1,… , �̂�𝓁𝑞).

5. Empirical results

We perform a series of simulation experiments to gauge the performance accuracy of three algorithms for graph-constrained
nalysis of multivariate functional data — functional Gaussian graphical model (FGGM) of [41], and our two proposed algorithms

FGGM-CovSel and FGGM-Stretch. The first one cannot use the knowledge of the graph and estimate the graph, treating it as unknown
while simultaneously estimating the covariance function. The latter two exactly preserve the graph in the analysis.

For the data generation, we consider 𝑞 = 10-variate GPs adhering to the conditional independence structure from the graph in
Fig. 1. We consider two choices of covariance functions generating the data – (a) correctly specified case: partial-separable (PS)
covariance, and (b) misspecified case: graphical Mateŕn (GM) covariance of [12] that is not partially separable. We fix the total
umber of basis functions at 𝐿 = 101 for data generation. We take them to be the Fourier basis functions and evaluate them

at 200 equally spaced points between (0, 1). Now to generate the basis-specific coefficients, we generate the covariance matrices as
𝓁 = 𝑎𝓁𝛺−1

𝓁 for 𝓁 ∈ {1,… , 101}, where the precision matrices 𝛺𝓁 are generated using the algorithm of [30] to have the exact sparsity
as specified by the graph  (Fig. 1). The decaying constants 𝑎 = 3𝑙−1.8 ensure that t r (𝛴 ) is monotonically decreasing in 𝓁. The
6
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Fig. 1. The 10-variable graph used to generate 𝑞 = 10-variate GPs adhering to the conditional independence structure from the graph.

Fig. 2. Marginal covariance surfaces for variable 1: True, FGGM, FGGM-CovSel, FGGM-Stretch (from left to right). The KL-divergence from the true covariance
matrix is noted at the top of the respective panels for that method. We see that FGGM-Stretch has a significantly improved estimate of the marginal covariance
compared to both FGGM and FGGM-CovSel.

covariance function for the misspecified case was obtained by stitching using multivariate Matérn model [1] and the graph  (Fig. 1).
For every (𝑖, 𝑗) pair of variables, the isotropic multivariate Matérn cross-covariance function on a 𝑑-dimensional domain is defined
as 𝐶𝑖𝑗 (𝑠, 𝑠′) = 𝜎𝑖𝑗𝐻𝑖𝑗 (‖𝑠−𝑠′‖), where 𝐻𝑖𝑗 (⋅) = 𝐻(⋅ ∣ 𝜈𝑖𝑗 , 𝜙𝑖𝑗 ), 𝐻 being the Matérn correlation function [1]. 𝜎𝑖𝑗 , 𝜙𝑖𝑗 , 𝜈𝑖𝑗 are interpreted as
the cross-covariance, cross-scale, and cross-smoothness parameters. To ensure positive-definiteness of cross-covariance matrix, we
parametrize as 𝜎𝑖𝑗 = 𝑏𝑖𝑗 (𝛤 ( 12 (𝜈𝑖𝑖 + 𝜈𝑗 𝑗 + 𝑑))𝛤 (𝜈𝑖𝑗 ))∕(𝜙

2𝛥𝐴+𝜈𝑖𝑖+𝜈𝑗 𝑗
𝑖𝑗 𝛤 (𝜈𝑖𝑗 +

𝑑
2 )), where 𝑏𝑖𝑗 = (𝜎𝑖𝑖𝜎𝑗 𝑗 )0.5𝜙𝜈𝑖𝑖

𝑖𝑖 𝜙
𝜈𝑗 𝑗
𝑗 𝑗 𝑟𝑖𝑗∕𝛤 (𝜈𝑖𝑗 ), and 𝑅 = (𝑟𝑖𝑗 ) > 0,

is correlation matrix. For this simulation, we take 𝜈𝑖𝑗 = 𝜈𝑖𝑖 = 𝜈𝑗 𝑗 = 0.5, and 𝛥𝐴 = 0 and 𝜙2
𝑖𝑗 = (𝜙2

𝑖𝑖 + 𝜙2
𝑗 𝑗 )∕2. The marginal range

parameters 𝜙𝑖𝑖 and variance parameters 𝜎𝑖𝑖 were permutations of equispaced numbers in (1, 5), while the 𝑅 = 𝑟𝑖𝑗 ’s were chosen as a
random correlation matrix. For data generation locations, we take 250 points on the real line equispaced between (0, 1).

We compare the estimated marginal and edge-specific cross-covariance surfaces qualitatively using some heat-maps and
quantitatively using the distance between true and estimated covariance sub-matrices in terms of Kullback–Leibler (KL) divergence.
The KL divergence between two matrices 𝐴 and 𝐵 is defined as – KL(𝐵 ∣∣ 𝐴) = 0.5(tr(𝐴−1𝐵) − ln( ∣𝐵∣∣𝐴∣ )). In case (a), which is the truly
specified case, we present the results comparing FGGM-CovSel and FGGM-Stretch with the FGGM algorithm of [41] (implemented
using the R package FGM [28]). We report the graph estimated through FGGM and how it compares with the true graph in Fig. 7
in Appendix. The figure shows that FGGM estimates the graph better in a correctly specified setting (set (a)) than in a misspecified
setting (set (b)). We first compare the true and estimated marginal covariance functions under the correctly specified setting. In
Fig. 2, we plot the true marginal covariance for variable 1 and the estimated covariance from each of the three methods. We see
that FGGM-Stretch has a significantly improved estimate of the marginal covariance compared to both FGGM and FGGM-CovSel.
The FGGM and FGGM-CovSel rely on a low-rank truncation, which evidently leads to oversmoothing, while FGGM-Stretch mitigates
this issue to a great extent. This aligns with our theoretical insights from Section 3.2. The result holds for the marginal covariance
of all the variables as demonstrated in Fig. 6 in Appendix.

We then look at the estimates of the cross-covariance surfaces in Fig. 3. These will be the same for the proposed algorithms
FGGM-CovSel and FGGM-Stretch, which differ only on the marginal covariances. We see that, for the correctly specified case, this
estimate from our proposed algorithms performs better than the FGGM estimate (Fig. 3(a)) and estimates the true cross-covariance
surface with high accuracy. This behavior is expected since the model is correctly specified for our algorithms, and the FGGM
algorithms do not utilize knowledge of the graph but estimate it. Fig. 3(b) presents the cross-covariances for the mis-specified
scenario. We see that FGGM-CovSel estimates the true covariance function less accurately than in the correctly specified case but
does capture the broad features like the banding (decay of the Mateŕn cross-covariance away from the diagonal). This decrease
in estimation accuracy is expected since we are trying to fit a misspecified partial separable cross-covariance to a non-partially
separable GP. However, even in the misspecified case, FGGM-CovSel still significantly outperforms FGGM.
7
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Fig. 3. Comparison of (1, 2) variable pair cross-covariance surface heatmaps under set (a) (correctly specified) and set (b) (misspecified) scenario. The KL-
divergence for each method is noted at the top of the respective panel.

Overall, across all edges and in both the correctly specified and misspecified scenarios (across 25 different seeds), FGGM-
CovSel reports uniformly lower KL divergence between true and estimated covariance matrices than FGGM (Table 1). Each row in
Table 1 corresponds to the KL divergence mean (sd) across 25 replicates between edge-specific true and estimated covariance sub-
matrices. We observe that FGGM-CovSel performs according to our expectations in the correctly specified example, thus validating
the theoretical basis of our approach. Moreover, in the correctly specified setting, we perform additional simulation experiments
with increasing sample size (𝑁 varies from 50 to 5000) to demonstrate the asymptotical consistency of FGGM-CovSel estimator. In
Fig. 8 in Appendix, we see decrease in the Frobenius norm between true and estimated covariance with both increasing number
of basis functions and number of samples (N). The better performance of FGGM-CovSel in the misspecified example (set (b)) gives
us confidence in our approach even when the partial separability assumption does not hold. This is in addition to the benefit
demonstrated in Fig. 2 of using FGGM-Stretch to better capture the marginal distributions.

6. Analysis of functional neuroimaging data

We illustrate the utility of the approach on multivariate functional Magnetic Resonance Imaging (fMRI) data from a study of
thermal pain. The data is at the brain-region level (each variable corresponds to a region), and a graph between the variables
represents the connectivity between different brain regions. In this study, the left forearm of 33 healthy right-handed participants
was exposed to various levels (temperatures) of noxious heat stimuli. Participants gave their informed consent, and the Columbia
University Institutional Review Board approved the study. Each participant completed seven runs within a session, consisting of
58–75 trials. During each trial, thermal stimuli were applied to the inner surface of the left forearm. Each stimulus lasted 12.5 s,
including a three-second ramp-up, two-second ramp-down, and 7.5 s at the target temperature.

We collected a total of 1845 functional images (TR= 2000 ms) from each participant using a 3T Philips Achieva TX scanner
at Columbia University. Structural images were obtained using high-resolution T1 spoiled gradient recall (SPGR) imaging, while
functional echo planar images (EPIs) were acquired with specific parameters; see [37] for details. The structural images were aligned
with the mean functional image using an iterative mutual information-based algorithm in SPM8 and then normalized to Montreal
8
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Table 1
The table presents the KL divergence, reported as mean (sd) across 25 replicates, which quantifies
the difference between the true and estimated cross-covariance matrices for all edges in the graph.
The results compare the performance of the FGGM and FGGM-CovSel methods under simulation
scenarios: (a) and (b).

Edges Set (a) Set (b)

FGGM FGGM-CovSel FGGM FGGM-CovSel

(1, 2) 787.67 (23.03) 778.05 (22.35) 1863.79 (36.12) 1846.51 (35.38)
(1, 3) 766.83 (12.59) 756.66 (11.19) 1832.1 (30.07) 1806.42 (32.86)
(2, 3) 796.32 (18.35) 784.23 (22.14) 1799.54 (31.76) 1785.05 (34.07)
(2, 4) 730.71 (31.39) 722.14 (30.57) 1840.36 (41.73) 1833.68 (40.06)
(3, 4) 730.91 (31.67) 722.5 (30.02) 1764.23 (35.58) 1736.83 (38.57)
(4, 5) 719.63 (22.99) 704.54 (20.41) 1974.63 (34.74) 1949.14 (32.47)
(4, 6) 738.21 (31.77) 721.55 (33.27) 1789.22 (36.9) 1776.31 (36.65)
(5, 6) 752.9 (32.11) 742.87 (28.27) 1793.26 (29.31) 1781.21 (29.65)
(6, 7) 781.46 (14.92) 759.19 (20.57) 1293.24 (32.4) 1283.55 (31.91)
(6, 8) 778.68 (19.86) 747.99 (23.62) 1409.48 (31.34) 1394.82 (30.09)
(7, 8) 786.81 (21.97) 751.28 (22.99) 1910.51 (28.87) 1880.7 (30.58)
(8, 9) 771.1 (26.52) 751.06 (32.81) 2004.36 (24.73) 1982.75 (29.94)
(9, 10) 771.71 (23.98) 749.55 (24.65) 1548.35 (36.78) 1541.75 (36.25)

Neurological Institute (MNI) space using SPM8’s generative segment-and-normalize algorithm. Before preprocessing the functional
mages, the first four volumes were discarded to ensure image intensity stabilization. Outliers were identified using the Mahalanobis
istance, and slice-timing differences were corrected. Motion correction was performed using SPM8, and images were transformed
o SPM’s normative atlas using warping parameters estimated from the aligned structural images. Finally, the functional images
ere smoothed with an 8 mm full width at half maximum (FWHM) Gaussian kernel and subjected to a high-pass filter with a cutoff
f 180 s. For a more comprehensive description of the data acquisition and preprocessing methods, please refer to the work by [37].

We used a variant of the Yeo atlas [40] to first subdivide the brain into 286 separate non-overlapping brain regions, and thereafter
rganized these regions into 18 functional networks (17 cortical and one subcortical). These were further arranged into Visual
VIS), Motor (MOT), Dorsal Attention (DAN), Ventral Attention (VAN), Frontoparietal (FP), Limbic (LIM), Default Mode (DMN), and
ubcortical (SC) networks. Our framework models this dataset as a 286-dimensional functional data (corresponding to the 𝑞 = 286
rain regions) for 𝑛 = 33 subjects. For computational efficiency, we reduce the number of time points from 1845 to 184 by binning
bservation within a 10 time unit interval.

Our goal is to use this dataset for a proof-of-concept analysis to judge the covariance estimation performance of our method
FGGM-CovSel, which uses the knowledge of a preestimated connectivity graph among the 286 regions, compared to the FGGM
method, which will re-estimate the graph while estimating the covariance function. In previous fMRI studies, partial separability
has been both assumed and confirmed [41]. In a real-world application, one can assess this assumption by verifying whether the
correlations among basis coefficients at different levels for different processes are close to zero. Given that our analysis serves only
as a proof-of-concept, that there is past evidence supporting partial separability in fMRI data, and that our simulations demonstrated
obustness of our approach to violation of the partial separability assumption, we opt not to scrutinize this assumption in this paper

to maintain brevity in the discussion. We use a random subset of the data to estimate the connectivity graph. We randomly split
the group of subjects into two sets of roughly equal size - (i) train (17 subjects) and (ii) test (16 subjects). On the training set,

e use FGGM of [41] to learn the graph between brain regions and estimate the covariance function. Then on the test set, we
use both FGGM and FGGM-CovSel to estimate covariance. The FGGM reestimates a (possibly) different graph on the test set, while
FGGM-CovSel conducts graph-constrained analysis using the graph estimated from the training set. We then compare the covariance
estimate of FGGM and FGGM-CovSel in the test set with the FGGM estimate obtained in the train set. We perform this random split
10 times to obtain cross-validated results.

Fig. 4 visualizes the network between brain regions from the most probable graph across 10 splits. We average the adjacency
atrix across the different data splits and keep the edges in the final graph, as the pairs which have an average edge probability

igger than 0.5. Pain is known to engage multiple brain networks. In our estimated brain network, we found connections among
egions within VIS, DAN, VAN, FP, LIM, and DMN. For example, the DAN may become engaged when individuals are asked to
irect attention to pain-related stimuli or when they are actively engaged in pain processing tasks, and the FP network processes
ubjective and emotional aspects of pain and pain perception [29], the DMN modulates pain perception [2], and the limbic network

mediates self-regulation of pain [37]. In addition, subcortical regions regulate pain perception and processing through autonomic
esponses [6] and the somatomotor network is involved in the perception and processing of pain-related sensory input [22]. In

addition, connections were found between DMN, FP, LIM, DAN, and VAN, with some engagement with MOT. Particularly, we see
onnections between the DMN, DAN, and the FP network. In the context of pain tasks, both these relationships depend on factors such

as task demands, attentional focus, and individual differences in pain processing and coping strategies. In general, these networks
nd connections are consistently activated by experimental pain, illustrating the method’s efficacy.

We then assess how our graph-constrained analysis (FGGM-CovSel) using this graph compares with FGGM in terms of estimating
he covariance function. Let 𝐶train denote the estimated covariance matrix on the training dataset, and 𝐶train(𝑖, 𝑗) denote the sub-
atrix corresponding to the nodes 𝑖 and 𝑗. Similarly, we denote by 𝐶 the estimated covariance matrix on the test set by method
9
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Fig. 4. The final adjacency matrix, consisting of the pairs with an average edge probability larger than 0.5. The brain is subdivided into 286 regions using a
variant of the Yeo atlas [40]. These regions are organized into 18 networks. These can be further arranged into Visual (VIS), Motor (MOT), Dorsal Attention
(DAN), Ventral Attention (VAN), Frontoparietal (FP), Limbic (LIM), Default Mode (DMN), and Subcortical (SC) networks. The legend to the right illustrates the
colors associated with each subnetwork.

Fig. 5. The difference in KL-distances between edge-specific covariances for FGGM-CovSel (test) & FGGM (train) and FGGM (test) & FGGM (test). The difference
is aggregated across 10 replicates whenever that specific edge-pair is detected. Gray cells indicate pairs that did not appear in any edge in 10 replicates.

𝑚, 𝑚 ∈ {FGGM,FGGM-CovSel} and define 𝐶(𝑖, 𝑗)test,𝑚 accordingly. We then consider the KL distance 𝑑𝐾 𝐿(𝐶(𝑖, 𝑗)train, 𝐶(𝑖, 𝑗)test,𝑚) for all
edges (𝑖, 𝑗) in the graph. A lower KL distance implies a better estimation of the covariance. Fig. 5 plots a heatmap of the difference

𝑑𝐾 𝐿(�̂�(𝑖, 𝑗)train, �̂�(𝑖, 𝑗)test,FGGM-CovSel) − 𝑑𝐾 𝐿(�̂�(𝑖, 𝑗)train, �̂�(𝑖, 𝑗)test,FGGM).

The result is aggregated across the replicates in which a specific pair has been detected as an edge by FGGM (train). We observe in
Fig. 5 that all the values of this difference are negative, implying that the covariance estimate from FGGM-CovSel (test) has a lower
KL distance with FGGM (train) than FGGM (test) has with FGGM (train). This is true across all edge-pairs that were included in
the connectivity graph. Across 10 different seeds, the KL distance between FGGM-CovSel (test set) and FGGM (train) is 36.8(35, 39.9)
units lower than the distance between FGGM (test) and FGGM (train) when averaged across all edge pairs. These findings show us
that estimating the covariance function benefits from the knowledge of the graph and demonstrates the utility of a graph-constrained
multivariate functional analysis.

7. Discussion

The current manuscript has developed graph-constrained modeling and analysis for multivariate functional data. We build upon
recent developments in graphical Gaussian processes (GGP) in the context of highly multivariate spatial data analysis and draw some
insightful connections of such frameworks with functional Gaussian graphical models. Our key result is an optimal partially separable
functional Gaussian graphical model that is derived using the graphical Gaussian process and preserves the conditional dependencies,
or lack thereof, posited by a given undirected graph. Our methodological developments are accompanied by novel theoretical insights
connecting the two seemingly disparate paradigms of functional Gaussian graphical models and Graphical Gaussian processes. These
theoretical developments enable us to construct a new algorithm to evaluate the maximum likelihood estimate for a partially
10
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separable graphical Gaussian model while preserving the conditional dependence constraints imposed by the given graph. This
lgorithm constitutes the generalization of Dempster’s covariance selection from vector-valued data to functional data. Beyond the

population level theoretical connections used to derive the methodology, we also prove the consistency of the covariance operator
estimator obtained from the resulting algorithm. We acknowledge that this consistency result is only established in a simplistic
setting with the curves (functional data) observed at a fixed set of points and the basis functions defined on this discrete domain.
Future work needs to refine the theoretical results by filling the remaining gaps between the current theory and the practice. These
would need to consider basis functions on a continuous domain and the curves being sampled at a finite set of points in this domain
in an increasingly dense manner, i.e., in-fill asymptotics. The use of data-driven basis functions from a functional PCA must also
be accommodated. Besides consistency, asymptotic normality results would also be needed to conduct inference on the estimated
covariance functions.

We note that while the manuscript focuses on the estimation of the multivariate covariance function under graphical constraints,
ssuming the mean of the functional processes to be zero, a non-zero mean can be easily accommodated in the framework. This

will be suitable in applications where other covariates are observed in addition to the functional responses, and a mean, specified
as a linear or non-linear function of these covariates, can be easily estimated as part of the algorithm. Also, our paper focuses on
the analysis of multivariate functional data when the within-variable graph is known with certainty. In examples, where the graph
is known with some degree of uncertainty, a Bayesian approach would be more suitable, incorporating information about graph
uncertainty as a prior for the graphical model. We would then need to adapt our approach to Bayesian reversible jump MCMC
algorithms [5,19] similar to what has been done in Section 4.3 of [12]. This will be an important future direction.

Our data analysis was conducted under the assumption of partial separability, which necessitates a discussion regarding the
ractical validity of this assumption. This assumption was motivated by the analysis of similar fMRI data in [41]. However, due

to our limited sample size, we cannot explicitly test this assumption in our dataset, as [41] performed in their paper. Hence,
we have undertaken an empirical assessment to evaluate the robustness of our methodology under potential violations of the
partial separability assumption (Simulation set (b)). This assessment is of utmost importance as it clearly explains our approach’s
performance in adverse scenarios. While performance indeed declines in scenarios where the assumption is not met, our approach
still outperforms the FGGM methods, which also rely on partial separability. It is important to note that when the partial separability
assumption is severely violated, FGGM methods such as those proposed by [42] may be employed. However, these methods require
joint estimation of the entire precision matrix of all regression coefficients, which can lead to significant computational challenges.

Given the continued interest in high-dimensional statistical inference for multivariate functional data, this work is expected to
spur further research in scaling up the proposed models here to massive numbers of functional inputs. Specific examples include
settings where spatial data are measured on a very large number of dependent outcomes over massive numbers of locations. In this
regard, it will be possible to embed Gaussian processes, e.g., for hierarchical Nearest Neighbor Gaussian process models, [9,10,15]
within the nodes of the graph to scale up to the massive numbers of locations.

While the conceptual idea of building scalable multivariate models with stochastic processes as nodes of a graph follows
from graphical Gaussian processes [12] or from approaches for versatile classes of multivariate Markov random fields [20],
substantial developments on precise model specifications and, perhaps even more importantly, algorithmic developments are still
warranted. In this regard, we expect our current developments to generate future research pursuits that will culminate in a
versatile, computationally efficient framework for graph-constrained analysis of high-dimensional dependent functional or spatial
ata. Applications of such a framework will span biomedical and health sciences, broader environmental sciences, social sciences,

and economics.
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Appendix A. Proofs

Proof of Theorem 1. Denote 𝛴𝓁 = (𝜎𝓁𝑖𝑗 ), 𝛴∗
𝓁 = (𝜎∗𝓁𝑖𝑗 ), and 𝛴∗−1

𝓁 = 𝛺𝓁 = (𝜔∗
𝓁𝑖𝑗 ). The cross-covariance function of 𝑤(⋅) is denoted by

𝐶∗ = (𝐶∗
𝑖𝑗 ) and the conditional cross-covariance function is 𝐾∗ = (𝐾∗

𝑖𝑗 ). By Theorem 3 of [41],

𝐾∗
𝑖𝑗 (𝑠, 𝑡) =

∞
∑

𝓁=1

−𝜔∗
𝓁𝑖𝑗

𝜔∗
𝓁𝑖𝑖𝜔

∗
𝓁𝑗 𝑗 − 𝜔∗2

𝓁𝑖𝑗

𝜙𝓁(𝑠)𝜙𝓁(𝑡). (A.1)

(If part:) Suppose 𝛴∗
𝓁 = CovSel(𝛴𝓁 ,) for all 𝓁. To prove 𝑤(⋅) ∼ 𝐺 𝐺 𝑃 (𝐶 ,) we first show it is a graphical GP. For any (𝑖, 𝑗) ∉ 𝐸, by

he property of covariance selection on each 𝛴𝓁 , we have 𝜔∗
𝓁𝑖𝑗 = 0 for all 𝓁. Hence, from (A.1)𝐾∗

𝑖𝑗 (𝑠, 𝑡) = 0 for all 𝑠, 𝑡 ∈ , (𝑖, 𝑗) ∉ 𝐸
nd 𝑤(⋅) is a graphical GP with respect to the graph . Next we show 𝑤(⋅) retains the marginals and edge-specific cross-covariances
rom 𝐶. This is immediate as once again for all (𝑖, 𝑗) ∋ 𝑖 = 𝑗 or (𝑖, 𝑗) ∈ 𝐸, we have by the property of covariance selection 𝜎∗𝓁𝑖𝑗 = 𝜎𝓁𝑖𝑗

and consequently 𝐶∗
𝑖𝑗 (𝑠, 𝑡) =

∑∞
𝓁=1 𝜎

∗
𝓁𝑖𝑗𝜙𝓁(𝑠)𝜙𝓁(𝑡) =

∑∞
𝓁=1 𝜎𝓁𝑖𝑗𝜙𝓁(𝑠)𝜙𝓁(𝑡) = 𝐶𝑖𝑗 (𝑠, 𝑡).

(Only if part:) Let 𝑤(𝑠) = ∑∞
𝓁=1 𝜃

∗
𝓁𝜙𝓁(𝑠) ∼ 𝐺 𝐺 𝑃 (𝐶 ,). Since it is a graphical GP, then 𝐾∗

𝑖𝑗 (𝑠, 𝑡) = 0 for all 𝑠, 𝑡 ∈  and (𝑖, 𝑗) ∉ 𝐸. By
rthogonality of 𝜙𝓁 ’s,

0 = ∫ 𝐾∗
𝑖𝑗 (𝑠, 𝑡)𝜙𝓁(𝑠)𝑑 𝑠 =

−𝜔∗
𝓁𝑖𝑗

𝜔∗
𝓁𝑖𝑖𝜔

∗
𝓁𝑗 𝑗 − 𝜔∗2

𝓁𝑖𝑗

𝜙𝓁(𝑡).

This holds for all 𝑡 ∈  implying 𝜔∗
𝓁𝑖𝑗 = 0 for all 𝓁. By Definition 2.1, 𝑤(⋅) retains the marginal and edge-specific cross-covariances.

ence, for 𝑖 = 𝑗 or (𝑖, 𝑗) ∈ 𝐸, 𝐶∗
𝑖𝑗 = 𝐶𝑖𝑗 implying

𝜎𝓁𝑖𝑗𝜙𝓁(𝑡) = ∫ 𝐶𝑖𝑗 (𝑠, 𝑡)𝜙𝓁(𝑠)𝑑 𝑠 = ∫ 𝐶∗
𝑖𝑗 (𝑠, 𝑡)𝜙𝓁(𝑠)𝑑 𝑠 = 𝜎∗𝓁𝑖𝑗𝜙𝓁(𝑡).

This holds for all 𝑡 implying 𝜎𝓁𝑖𝑗 = 𝜎∗𝓁𝑖𝑗 for all 𝓁, 𝑖 = 𝑗 or (𝑖, 𝑗) ∈ 𝐸. Hence, 𝛴∗
𝓁 satisfies all the conditions of covariance selection

(Definition 2.2) and is the unique matrix CovSel(𝛴𝓁 ,). □

Proof of Corollary 1. We apply Theorem 3 of [41] to the process 𝑤𝑚(𝑠) and write the conditional cross-covariance function in
erms of the elements of 𝛴∗−1

𝓁 = 𝛺𝓁 = (𝜔∗
𝓁𝑖𝑗 ) and the basis functions as

𝐾𝑚
𝑖𝑗 (𝑠, 𝑡) = Cov(𝑤𝑚

𝑖 (𝑠), 𝑤𝑚
𝑗 (𝑡) ∣ 𝑤𝑚

−(𝑖,𝑗)) = Cov
( 𝑚
∑

𝓁=1
𝜃∗𝓁𝑖𝜙𝓁(𝑠),

𝑚
∑

𝓁′=1
𝜃∗𝓁′𝑗𝜙𝓁′ (𝑡)

|

|

|

|

|

|

𝑤𝑚
−(𝑖,𝑗)

)

=
𝑚
∑

𝓁,𝓁′=1
Cov

(

𝜃∗𝓁𝑖, 𝜃∗𝓁′𝑗 ∣ 𝑤𝑚
−(𝑖,𝑗)

)

𝜙𝓁(𝑠)𝜙𝓁′ (𝑡) =
𝑚
∑

𝓁=1
Cov

(

𝜃∗𝓁𝑖, 𝜃∗𝓁𝑗 ∣ 𝜃∗𝓁,−(𝑖,𝑗)
)

𝜙𝓁(𝑠)𝜙𝓁(𝑡) =
𝑚
∑

𝓁=1

−𝜔∗
𝓁𝑖𝑗

𝜔∗
𝓁𝑖𝑖𝜔

∗
𝓁𝑗 𝑗 − 𝜔∗2

𝓁𝑖𝑗

𝜙𝓁(𝑠)𝜙𝓁(𝑡),

where 𝑤𝑚
−(𝑖,𝑗) is the full (uncountable) realization of all the component processes in 𝑤(𝑚)(𝑠) except 𝑖 and 𝑗. The third equality

follows from the fact that the coefficients 𝜃𝓁 and the process 𝑤(𝑚)(𝑠) uniquely identify each other given the 𝑚 basis functions. The
roof now follows that of Theorem 1. □

Here we show the approximate equivalence of stitching and low-rank truncation. We observe that 𝑤𝑝𝑝
𝑠𝑡𝑖𝑡𝑐 ℎ(𝑠) = 𝐷(𝑠)𝑤𝑠𝑡𝑖𝑡𝑐 ℎ()

here 𝐷(𝑠) = diag(𝐶11(𝑠,)𝐶11(,)−1,… , 𝐶𝑞 𝑞(𝑠,)𝐶𝑞 𝑞(,)−1) and 𝑤𝑠𝑡𝑖𝑡𝑐 ℎ() is a random variable whose distribution is specified in
1). Next, as 𝑤(⋅) ∼ 𝐺 𝐺 𝑃 (𝐶 ,), the component processes 𝑤𝑗 (⋅) ∼ 𝐺 𝑃 (0, 𝐶𝑗 𝑗 ) retain the marginals. When the reference set  is chosen

to have 𝑚 locations, the truncated process 𝑤𝑚
𝑗 (⋅) is related to the untruncated process 𝑤𝑗 (⋅) via the following approximation (see,

p. 389–390 in [3, for a derivation]

𝑤𝑚
𝑗 (𝑠) ≈ 𝐶𝑗 𝑗 (𝑠,)𝐶𝑗 𝑗 (,)−1𝑤𝑗 () for all 𝑠 ∈ , 𝑗 ∈  . (A.2)

The approximate equivalence in (A.2) is related to the Nÿstrom approximation for kernel matrices [14]. Rewriting (A.2) as
𝑤𝑚(𝑠) ≈ 𝐷(𝑠)𝑤() and since 𝑤𝑝𝑝

𝑠𝑡𝑖𝑡𝑐 ℎ(𝑠) = 𝐷(𝑠)𝑤𝑠𝑡𝑖𝑡𝑐 ℎ(), to show 𝑤𝑚(⋅) ≈ 𝑤𝑝𝑝
𝑠𝑡𝑖𝑡𝑐 ℎ(⋅), we now only need 𝑤() and 𝑤𝑠𝑡𝑖𝑡𝑐 ℎ() to

pproximately have the same distribution. As 𝑤(⋅) ∼ 𝐺 𝐺 𝑃 (𝐶 ,), for 𝑖 = 𝑗 or (𝑖, 𝑗) ∈ 𝐸, we have Cov(𝑤𝑖(), 𝑤𝑗 ()) = 𝐶𝑖𝑗 (,) =
ov(𝑤𝑠𝑡𝑖𝑡𝑐 ℎ,𝑖(), 𝑤𝑠𝑡𝑖𝑡𝑐 ℎ,𝑗 ()) by definition of covariance selection. Finally, we show that for (𝑖, 𝑗) ∉ 𝐸, Cov(𝑤𝑖(), 𝑤𝑗 () ∣ 𝑤−(𝑖𝑗)()) ≈

𝑂 = Cov(𝑤𝑠𝑡𝑖𝑡𝑐 ℎ,𝑖(), 𝑤𝑠𝑡𝑖𝑡𝑐 ℎ,𝑗 () ∣ 𝑤𝑠𝑡𝑖𝑡𝑐 ℎ,−𝑖𝑗 ()) as follows:

Cov(𝑤𝑖(), 𝑤𝑗 () ∣ 𝑤−(𝑖𝑗)())

= Cov
(

𝐶𝑖𝑖(,)𝐶𝑖𝑖(,)−1𝑤𝑖(), 𝐶𝑗 𝑗 (,)𝐶𝑗 𝑗 (,)−1𝑤𝑗 () ∣ 𝐶𝑘𝑘(,)𝐶𝑘𝑘(,)−1𝑤𝑘(), 𝑘 ∈  ⧵ {𝑖, 𝑗})

≈ Cov(𝑤𝑚
𝑖 (), 𝑤𝑚

𝑗 () ∣ 𝑤−𝑖𝑗 ()) by (A.2)

= Cov(𝑤𝑚
𝑖 (), 𝑤𝑚

𝑗 () ∣ 𝐶𝑘𝑘(𝑠,)𝐶𝑘𝑘(,)−1𝑤𝑘(), 𝑠 ∈ , 𝑘 ≠ 𝑖, 𝑗)
≈ Cov(𝑤𝑚

𝑖 (), 𝑤𝑚
𝑗 () ∣ 𝑤𝑚

−𝑖𝑗 (⋅)) again by (A.2)

= 𝑂 for (𝑖, 𝑗) ∉ 𝐸 .
The middle equality follows from the fact that for any 𝑠 ∈  and any 𝑘, we have 𝐶𝑘𝑘(𝑠,)𝐶𝑘𝑘(,)−1𝑤𝑘() = 𝑤𝑘(𝑠). Hence, the
𝜎-algebras 𝜎(𝑤−𝑖𝑗 ()) and 𝜎(𝐶𝑘𝑘(𝑠,)𝐶𝑘𝑘(,)−1𝑤𝑘(), 𝑠 ∈ , 𝑘 ≠ 𝑖, 𝑗) becomes the same since the latter is generated by the former
and contains the former. Corollary 1 ensures the last equality since 𝑤𝑚(⋅) is a graphical GP conforming to . We have now shown that
12
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the covariances of 𝑤() and 𝑤𝑠𝑡𝑖𝑡𝑐 ℎ() agree exactly on the entries corresponding to 𝑖 = 𝑗 or (𝑖, 𝑗) ∈ 𝐸, and the inverse-covariances
agree approximately on the entries corresponding to (𝑖, 𝑗) ∉ 𝐸. By uniqueness of Dempster’s covariance selection for positive definite
matrices, 𝑤() and 𝑤𝑠𝑡𝑖𝑡𝑐 ℎ() have approximately the same distribution. This establishes the equivalence of the 𝑚-truncated partially
separable FGGM 𝑤𝑚(𝑠) = 𝐷(𝑠)𝑤() with a stitched predictive process 𝑤𝑝𝑝

𝑠𝑡𝑖𝑡𝑐 ℎ(𝑠) = 𝐷(𝑠)𝑤𝑠𝑡𝑖𝑡𝑐 ℎ() on 𝑚 reference locations.

Proof of Theorem 2. We have 𝑋𝑖
iid∼ 𝑁𝑝𝑞(0, 𝐶𝑚) for 𝑖 ∈ {1,… , 𝑁}, where 𝐶𝑚 =

∑𝑚
𝓁=1 𝛴𝓁 ⊗𝝓𝓁𝝓⊤

𝓁 is the true multivariate covariance
function of the partially separable process. We use 𝑋𝑖𝑗 to denote the 𝑝-variate vector observed for 𝑖th replicate and 𝑗th variable.

Then, the sample covariance matrix 𝑆(𝑝𝑞×𝑝𝑞) can be calculated as 𝑆 = 1
𝑁

∑𝑁
𝑖=1

(

𝑋⊤
𝑖1,… , 𝑋⊤

𝑖𝑞

)⊤ (

𝑋⊤
𝑖1,… , 𝑋⊤

𝑖𝑞

)

= 1
𝑁

∑𝑁
𝑖=1 𝑋𝑖𝑋⊤

𝑖 . Under

the constraint of a given graphical model , we want to find the maximum likelihood estimate (MLE) of the parameters 𝛴𝓁 ’s of the
partially separable process.

First we will derive the MLE of a multivariate partially separable covariance function without the graphical constraint. Under
partial separability, we can write 𝑋𝑖 =

∑𝑚
𝓁=1 𝜃𝑖𝓁 ⊗ 𝝓𝓁 , where 𝜃𝑖𝓁 ∼ 𝑁(0, 𝛴𝓁). Using orthonormality of the basis functions, we can

transform the data as follows (𝐼𝑞 ⊗𝝓⊤
𝓁 )𝑋𝑖 = 𝜃𝑖𝓁 . Here, the 𝑋𝑖’s (jointly over 𝑖) and the 𝜃𝑖𝓁 ’s (jointly over 𝑖,𝓁) are a 1-1 and invertible

linear transformation of each other.
It is easy to check that 𝜃𝑖𝓁 ’s are iid across 𝑖’s and independent across 𝓁’s. For 𝑖 ≠ 𝑗, Cov(𝜃𝑖𝓁 , 𝜃𝑗𝓁) = 𝐸[(𝐼𝑞⊗𝝓⊤

𝓁 )𝑋𝑖𝑋⊤
𝑗 (𝐼𝑞⊗𝝓𝓁)] = 0,

ince 𝐸[𝑋𝑖𝑋⊤
𝑗 ] = 0. Now, for 𝓁 ≠ 𝑘, Cov(𝜃𝑖𝓁 , 𝜃𝑖𝑘) = 𝐸[(𝐼𝑞 ⊗ 𝝓⊤

𝓁 )𝑋𝑖𝑋⊤
𝑖 (𝐼𝑞 ⊗ 𝝓𝑘)] = (𝐼𝑞 ⊗ 𝝓⊤

𝓁 )𝐶
𝑚(𝐼𝑞 ⊗ 𝝓𝑘) = (𝐼𝑞 ⊗ 𝝓⊤

𝓁 )(𝛴𝑘 ⊗ 𝝓𝑘) = 0.
imilarly, for 𝑖 ≠ 𝑗 ,𝓁 ≠ 𝑘, Cov(𝜃𝑖𝓁 , 𝜃𝑗 𝑘) = 0.

The derivation above can help us rewrite the likelihood in following way

𝑓 (𝑋1,… , 𝑋𝑁 |𝛴𝓁 ;𝓁 ∈ {1,… , 𝑚}) ∝ 𝑓 (𝜃𝑖𝓁 ; 𝑖 ∈ {1 … , 𝑁},𝓁 ∈ {1,… , 𝑚}|𝛴𝓁 ;𝓁 ∈ {1,… , 𝑚}) ∝ 𝛱𝑚
𝓁=1𝛱

𝑁
𝑖=1𝑓 (𝜃𝑖𝓁|𝛴𝓁). (A.3)

This result (A.3) is due to the fact that the Jacobian transformation in the likelihood going from the 𝑋𝑖’s to the 𝜃𝑖𝓁 ’s will only depend
on known 𝝓𝓁 ’s. So, finding the maximum likelihood estimate (MLE) of 𝛴𝓁 boils down to maximizing the transformed data-likelihood
of iid multivariate normal variables 𝜃𝑖𝓁 , 𝑖 ∈ {1,… , 𝑁}. Hence, we get the MLE of the parameters as �̃�𝓁 = 𝑆𝓁 = 1

𝑛
∑𝑁

𝑖=1 𝜃𝑖𝓁𝜃
′
𝑖𝓁 .

Rewriting 𝜃𝑖𝓁 in terms of 𝑋𝑖, we have the MLE as �̃�𝓁 = (𝐼𝑞 ⊗ 𝝓⊤
𝓁 )

1
𝑁

∑𝑁
𝑖=1(𝑋𝑖𝑋⊤

𝑖 )(𝐼𝑞 ⊗ 𝝓𝓁) = (𝐼𝑞 ⊗ 𝝓⊤
𝓁 )𝑆(𝐼𝑞 ⊗ 𝝓𝓁). Thus the MLE of a

ulti-variate partially separable covariance function without any graphical constraint is given by

𝐶𝑚
𝑢𝑛𝑐 𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑 =

𝑚
∑

𝓁=1
(𝐼𝑞 ⊗ 𝝓⊤

𝓁 )𝑆(𝐼𝑞 ⊗ 𝝓𝓁)⊗ 𝝓𝓁𝝓⊤
𝓁 (A.4)

We now derive the MLE under the graphical constraint. Based on the results of Theorem 1 and Corollary 1, a natural guess
would be that the MLE under the graphical constraint can be obtained by applying covariance selection on each of the estimates
�̃�𝓁 = 𝑆𝓁 = (𝐼𝑞 ⊗ 𝝓⊤

𝓁 )𝑆(𝐼𝑞 ⊗ 𝝓𝓁) in (A.4). We prove this formally below.
If we assume the variables are conforming to a graph  = (𝑉 , 𝐸), i.e., 𝛴𝓁 ∈ 𝑀+() = {𝑆 ∈ R𝑞×𝑞 ∶ 𝑆𝑖𝑗 = 0 ∀ (𝑖, 𝑗) ∉ 𝐸}

for all 𝓁 ∈ {1,… , 𝑚}, then by [11], we get graph-constrained MLE by maximizing the likelihood in (A.3) under the constraint
{𝛴1,… , 𝛴𝑚 ∶ 𝛴𝓁 ≻ 0, 𝛴𝓁 ∈ 𝑀+()∀𝓁 ∈ {1,… , 𝑚}}. Due to the product-form (across 𝓁’s) in (A.3), this becomes equivalent to finding
the MLE for each of 𝛴𝓁 ’s separately under the graphical constraint. In other words, the MLE is given by

argmax𝛴𝓁≻0,𝛴𝓁∈𝑀+()𝛱
𝑁
𝑖=1𝑓 (𝜃𝑖𝓁|𝛴𝓁) = argmin𝛴𝓁≻0,𝛴𝓁∈𝑀+()[tr(𝛴−1

𝓁 𝑆𝓁) + ln(|𝛴𝓁|)].

Thus the problem has exactly reduced to Dempster’s covariance selection problem, i.e., given iid multivariate realizations 𝜃𝑖𝓁 finding
the MLE for the covariance matrices 𝛴𝓁 under the graphical constraint. The solution is given by �̂�𝓁 = CovSel(𝑆𝓁 ,) which yields
he MLE for 𝐶𝑚 as given in (5). □

Proof of Lemma 1. Let us denote, for 𝑁 samples, the sample covariance matrix as 𝑆𝑁 and the basis-level covariance matrix estimate
or 𝛴𝓁 as �̃�𝓁𝑁 = 𝑆𝓁𝑁 = (𝐼𝑞 ⊗ 𝝓⊤

𝓁 )𝑆𝑁 (𝐼𝑞 ⊗ 𝝓𝓁) and the corresponding covariance selection estimator as �̂�𝓁𝑁 = CovSel(�̃�𝓁𝑁 ,). Let
s define I-divergence between two matrices 𝐴 and 𝐵 as (𝐵 ∥ 𝐴) = 0.5(𝑡𝑟(𝐴−1𝐵 − 𝐼) − ln(𝐴−1𝐵)) = 𝐾 𝐿(𝐵 ∥ 𝐴) − 𝑞

2 , where 𝐴 and 𝐵
re 𝑞 × 𝑞 positive-definite matrices.

Since, the 𝑋𝑖’s are iid, the sample covariance 𝑆𝑁 is an asymptotically consistent estimator for population covariance 𝐶𝑚,.
hen �̃�𝓁𝑁 = (𝐼𝑞 ⊗ 𝝓⊤

𝓁 )𝑆𝑁 (𝐼𝑞 ⊗ 𝝓𝓁) converges to (𝐼𝑞 ⊗ 𝝓⊤
𝓁 )𝐶

𝑚(𝐼𝑞 ⊗ 𝝓𝓁) = 𝛴𝓁 in probability as 𝑁 → ∞. Now we will show that,
�̂�𝓁𝑁 = CovSel(�̃�𝓁𝑁 ,) converges to 𝛴𝓁 in probability as well.

By Lemma 1 of [33], �̂�𝓁𝑁 = 𝑎𝑟𝑔 𝑚𝑖𝑛𝐴∶𝐴≻0,𝐴∈𝑀+()(𝐴 ∥ �̃�𝓁𝑁 ). Since, 𝛴𝓁 ≻ 0, 𝛴𝓁 ∈ 𝑀+(), we have (�̂�𝓁𝑁 ∥ �̃�𝓁𝑁 ) ≤ (𝛴𝓁 ∥ �̃�𝓁𝑁 ).
Using the fact that, �̃�𝓁𝑁 converges to 𝛴𝓁 in probability, we get �̃�−1

𝓁𝑁𝛴𝓁 → 𝐼𝑞 in probability and 𝐼(𝛴𝓁 ∥ �̃�𝓁𝑁 ) → 0. Hence,
(�̂�𝓁𝑁 ∥ �̃�𝓁𝑁 ) → 0. Using Lemma 1, part (iii) of [33], we get, �̂�𝓁𝑁 − �̃�𝓁𝑁 → 0 in probability. Using Slutsky’s theorem, we get

�̂�𝓁𝑁 = CovSel(�̃�𝓁𝑁 ,) = CovSel(𝑆𝓁𝑁 ,) converges to 𝛴𝓁 in probability.
Using Slutsky’s theorem again, we get 𝐶𝑚 =

∑𝑚
𝓁=1 �̂�𝓁𝑁 ⊗ 𝝓𝓁𝝓⊤

𝓁 converges to ∑𝑚
𝓁=1 𝛴𝓁 ⊗ 𝝓𝓁𝝓⊤

𝓁 = 𝐶𝑚 in probability. □

Appendix B. Supplementary figures

See Figs. 6–8.
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Fig. 6. Marginal covariance surfaces for variables 2 − 10 in Set (a): True, FGGM, FGGM-CovSel, FGGM-Stretch (from left to right). We see that FGGM-Stretch
has a significantly improved estimate of the marginal covariance compared to both FGGM and FGGM-CovSel for variables 2 − 10.

Fig. 7. Most probable graphs estimated through FGGM in set (a) (correctly specified) and set (b) (misspecified). Edge widths and opacity are proportional to
edge selection probability (averaged over seeds). Edges in the true graph are colored red, otherwise the edges are colored blue. The figure shows that FGGM
estimates the graph better in a correctly specified setting (set (a)) than in a misspecified setting (set (b)). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 8. The difference (in Frobenius norm) between true and FGGM-CovSel estimated covariance matrix (2000 ∗ 2000) with increasing sample size and number
of basis functions. We see a decrease in the Frobenius norm between true and estimated covariance with both increasing number of basis functions and number
14

of samples (N).
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