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Abstract 1 

Plug-in hybrid electric vehicles (PHEVs) show great promise in reducing transportation-related 2 
fossil fuel consumption and greenhouse gas (GHG) emissions. Designing an efficient energy 3 
management system (EMS) for PHEVs to achieve better fuel economy has been an active 4 
research topic for decades. Most of the advanced systems rely on either a priori knowledge of 5 

future driving conditions to achieve the optimal but not real-time solution (e.g. using a dynamic 6 

programming strategy), or only the current driving situation to achieve a real-time but non-7 
optimal solution (e.g. rule-based strategy). Towards this end, this paper proposes a reinforcement 8 
learning (RL) based real-time EMS for PHEVs to address the trade-off between real-time 9 
performance and optimal energy savings. The proposed model can optimize the power-split 10 

control in real time while learning the optimal decisions from historical driving cycles. A case 11 
study on a real world commute trip shows that about 12% fuel saving can be achieved without 12 
considering charging opportunities; further, a 8% fuel saving can be achieved when considering 13 
the charging opportunities, compared to the standard binary mode control strategy. 14 

 15 

 16 

 17 

Key words: 18 

Plug-in Hybrid Electric Vehicle (PHEV), Energy Management System (EMS), Approximate 19 

Dynamic Programming, Reinforcement Learning (RL).  20 
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1. INTRODUCTION 1 

Reducing transportation-related energy consumption and greenhouse gas (GHG) emissions have 2 
been a common goal of public agencies and research institutes for years. In 2013, the total 3 
energy consumed by the transportation sector in the United States was as high as 24.90 4 
Quadrillion BTU (1). U.S. Environmental Protection Agency (EPA) reported that nearly 27 % 5 
GHG emissions resulted from fossil fuel combustion for transportation activities in 2013 (2). 6 

From a vehicle perspective, innovative powertrain technologies, such as hybrid electric vehicles 7 
(HEVs), are very promising in improving fossil fuel efficiency and reducing exhaust emissions. 8 
Plug-in hybrid electric vehicles (PHEVs) attracted most of the attention due to their ability to 9 
also use energy off of the electricity grid, through charging their batteries, thereby achieving 10 

even higher overall energy efficiency (3).  11 
 12 
The energy management system (EMS) is at the heart of PHEV fuel economy, whose 13 
functionality is to control the power streams from both the internal combustion engine (ICE) and 14 

the battery pack, based on vehicle and engine operating conditions. In the past decade, a large 15 

variety of EMS implementations have been developed for PHEVs, whose control strategies may 16 
be well categorized into two major classes as shown in Figure 1: a) rule-based strategies which 17 
rely on a set of simple rules without a priori knowledge of driving conditions (4 – 7). Such 18 

strategies make control decisions based on instant conditions only and are easily implemented, 19 
but their solutions are often far from being optimal due to the lack of consideration of variations 20 
in trip characteristics and prevailing traffic conditions; and b) optimization-based strategies 21 

which are aimed at optimizing some predefined cost function according to the driving conditions 22 

and vehicle’s dynamics (3, 8 – 18).  The selected cost function is usually related to the fuel 23 
consumption or tailpipe emissions. Based on how the optimization is implemented, such 24 
strategies can be further divided into two groups: 1) off-line optimization which requires a full 25 

knowledge of the entire trip to achieve the global optimal solution; and 2) short-term prediction-26 
based optimization which takes into account the predicted driving conditions in the near future 27 

and achieves local optimal solutions segment by segment within an entire trip. However, major 28 
drawbacks of these strategies include: 1) heavy dependence on the a priori knowledge of future 29 

driving conditions; and 2) high computational costs that are difficult to implement in real-time. 30 

 31 

 32 
Fig. 1. Taxonomy of current EMS. 33 

 34 
As discussed above, there is a trade-off between the real-time performance and optimality in the 35 

energy management for PHEVs. More specifically, rule-based methods can be easily 36 
implemented in real time but are far from being optimal while optimization-based methods are 37 
able to achieve optimal solutions but are difficult to implement in real time. To achieve a good 38 
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balance in between, reinforcement learning (RL) has recently attracted researchers’ attention. Liu 1 
et al. (20) proposed the first and only existing RL-based EMS for PHEVs which outperforms the 2 
rule-based controller with respect to the defined reward function but is worse in terms of fuel 3 

consumption without considering charging opportunity in the model. 4 
 5 
In this study, a novel model-free RL-based real-time EMS of PHEVs is proposed and evaluated, 6 
which is capable of simultaneously controlling and learning the optimal power split operations in 7 
real-time. The proposed model is theoretically derived from dynamic programming (DP) 8 

formulations and compared to DP in the computational complexity perspective. There are three 9 
major features which distinguish it from existing methods: 1) the proposed model can be 10 
implemented in real-time without any prediction efforts, since the control decisions are made 11 

only upon the current system state. The control decisions also considered for the entire trip 12 
information by learning the optimal or near-optimal control decisions from historical driving 13 
behavior. Therefore, it achieves a good balance between real-time performance and energy 14 
saving optimality; 2) the proposed model is a data-driven model which does not need any PHEV 15 

model information once it is well trained since all the decision variables can be observed and are 16 
not calculated using any vehicle powertrain models (these details are described in the following 17 

sections); and 3) compared to existing RL-based EMS implementations (20), the proposed 18 
strategy considers charging opportunities along the way (a key distinguishing feature of PHEVs 19 

as compared with HEVs). This proposed method represents a new class of models that could be a 20 
good supplement to the current methodology taxonomy as shown in Figure 1.   21 
 22 

 23 

2. BACKGROUND  24 

2.1 PHEV Powertrain and Optimal Energy Management Formulation 25 
 26 
There are three types of PHEV powertrain architectures: a) series, b) parallel, and c) power-split 27 

(series-parallel) (1). We focus on the power-split architecture in this study. The decision making 28 
on the power-split ratio between internal combustion engine (ICE) and battery pack is called 29 
power-split control problem (21). Mathematically, the optimal energy management (i.e., power-30 

split control) for PHEVs can be defined as a nonlinear constrained optimization problem (21). In 31 
this study, we discretize ICE power supply into different levels and the optimal PHEV power-32 

split control problem therefore can be formulated as follows: 33 

𝑚𝑖𝑛∑ ∑ 𝑥(𝑡, 𝑖) 𝑃𝑖
𝑒𝑛𝑔

𝜂𝑖
𝑒𝑛𝑔

⁄𝑁
𝑖=1

𝑀
𝑡=1      (1) 34 

subject to: 35 

∑ 𝑓(𝑃𝑡 − ∑ 𝑥(𝑡, 𝑖)𝑃𝑖
𝑒𝑛𝑔𝑁

𝑖=1 )
𝑗
𝑡=1 ≤ 𝐶     ∀𝑗 = 1,… , 𝑇   (2) 36 

∑ 𝑥(𝑡, 𝑖)𝑁
𝑖=1 = 1           ∀𝑡              (3) 37 

          𝑥(𝑡, 𝑖) = {0, 1}             ∀𝑡, 𝑖          (4) 38 

where 𝑀 is the time span of the entire trip; 𝑁 is the number of discretized power level for the 39 

engine; t is the time step index; i is the ICE power level index; 𝐶 is the gap of the battery pack’s 40 

state of charge (SOC) between the initial and the minimum; 𝑃𝑖
𝑒𝑛𝑔

 is the i-th discretized level for 41 

the engine power and 𝜂𝑖
𝑒𝑛𝑔

 is the associated engine efficiency; and 𝑃𝑡  is the driving demand 42 

power at time step  𝑡. The objective of the energy management problem is to find the optimal 43 

action (i.e. selection of the optimal ICE power level) for each time step to achieve the best fuel 44 
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efficiency along the entire trip. 1 

 2 
2.2 Dynamic Programming  3 

 4 
The above optimization problem can be solved by dynamic programming (DP), since it satisfies 5 
the Bellman's Principle of Optimality (22). Let s ϵ S be the state vector of the system, and a ϵ A 6 

the decision variable. The optimization problem represented by Eq. (1) – (4) can be converted 7 

into the following single equation given the initial state 𝑠0 and the decisions 𝑎𝑡 for each time step 8 
t.  9 

min
𝑎𝑡𝜖𝐴

𝐸 {∑𝛽𝑡𝑔(𝑠𝑡, 𝑠𝑡+1)|𝑠0 = 𝑠

𝑇−1

𝑡=0

}                                                           (5) 10 

where β is a discount factor and β ϵ (0,1). And it can be solved by recursively calculating: 11 

 12 

𝐽(𝑠𝑡) = min
𝑎𝑡𝜖𝐴

𝐸 {∑𝑔(𝑠𝑡, 𝑠𝑡+1) + 𝛽𝐽(𝑠𝑡+1)|𝑠𝑡 = 𝑠

𝑇−1

𝑡=0

} , 𝑓𝑜𝑟 𝑡 = 𝑇 − 1, 𝑇 − 2,… ,0.     (6) 13 

Where T is the time duration; g(.) is a one-step cost function; J(s) is the true value function 14 
associated with state s .  Eq. (6) is also often noted as the Bellman’s equation. In the case of 15 

PHEV energy management, 𝑠𝑡 can be defined as a combination of vehicle states, such as the 16 

current SOC level and the remaining time to the destination, which is discussed in the following 17 

sections. 𝑎𝑡 can be defined as the ICE power supply at each time step.  18 
 19 

It is well known that the high computational cost of Eq. (6) is always the barrier that impedes its 20 
real-world application, although it is a very simple and descriptive definition. It could be 21 

computationally intractable even for a small-scale problem (in terms of state space and time 22 
span). The major reason is that the algorithm has to loop over the entire state space to evaluate 23 
the optimal decision for every single step. Another obvious drawback in the real-world 24 

application of DP is that it requires the availability of the full information of the optimization 25 
problem. In our case, it means the power demand along the entire trip should be known prior to 26 

the trip, which is always impossible in practice. 27 
 28 

2.3 Approximate Dynamic Programming and Reinforcement Learning 29 

 30 
To address the above issues, approximate dynamic programming (ADP) has been proposed (23). 31 
The major contribution of ADP is that it significantly reduces the state space by introducing an 32 

approximate value function 𝐽(𝑠𝑡, 𝑝𝑡)  where 𝑝𝑡  is a parameter vector. By replacing this 33 
approximate value function, Eq. (6) can be reformulated as: 34 

𝐽(𝑠𝑡) = min
𝑎𝑡𝜖𝐴

𝐸 {∑𝑔(𝑠𝑡, 𝑠𝑡+1) + 𝛽𝐽(𝑠𝑡+1, 𝑝𝑡 )

𝑇−1

𝑡=0

} , 𝑓𝑜𝑟 𝑡 = 0,1, … , 𝑇 − 1     (7) 35 

Now the optimal decision can be calculated at each time step t by  36 

𝑎𝑡 = 𝑎𝑟𝑔min
𝑎𝑡𝜖𝐴

𝐸 {∑𝑔(𝑠𝑡, 𝑠𝑡+1) + 𝛽𝐽(𝑠𝑡+1, 𝑝𝑡 )

𝑇−1

𝑡=0

},                                              (8) 37 

The calculation of Eq. (8) now only relies on the current system state 𝑠𝑡, which substantially 38 
reduces the computational requirement of Eq. (6) to polynomial time in terms of the number of 39 
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the state variables, rather than being exponential to the size of state space (24). In addition, the 1 
value iteration that solves the DP problem becomes forward into time, rather than being 2 
backward in Eq. (6). In the case of PHEV energy management, this is actually a bonus since the 3 

predicted state (e.g. power demand) at the end of the time horizon is much less reliable compared 4 
to that at the beginning of the time horizon.  5 
 6 
In principle, the value approximate function can be learned by tuning and updating the parameter 7 

vector 𝑝𝑡  upon the addition of each observation on state transitions (24). The Reinforcement 8 
Learning (RL) is an effective tool for this purpose. The specific learning technique employed in 9 
this study is temporal-difference learning (TD-Learning), which is originally proposed by Sutton 10 

(25) to approximate the long-term future cost as a function of current states. The details about the 11 

implementation of the algorithm are presented in the following sections. 12 
 13 

3. REINFORCEMENT LEARNING BASED EMS 14 
 15 

In this study, a TD-learning strategy is adopted for the reinforcement learning problem. An 16 
action-value function: Q(s, a) is defined as the expected total reward for the future receipt 17 

starting from that state. This function is to estimate “how good” it is to perform a given action in 18 

a given state in terms of the expected return. More specifically, we define 𝑄𝜋(𝑠, 𝑎)  as the value 19 
of taking action a in state s under a control policy π (i.e. a map that maps the optimal action to a 20 
system state), which is also the expected return starting from s, taking the action a, and thereafter 21 

following policy π: 22 

𝑄𝜋(𝑠, 𝑎)=𝐸𝜋{∑ 𝛾𝑘 ∗ 𝑟(𝑠𝑡+𝑘, 𝑎𝑡+𝑘)
∞
𝑘=1 |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎}                                      (9) 23 

where 𝑠𝑡  is the state at time step t; γ is a discount factor in (0, 1) to guarantee the 24 

convergence(26);  𝑟(𝑠𝑡+𝑘, 𝑎𝑡+𝑘) is the immediate reward based on the state s and action a at a 25 

given time step (t+k). The ultimate goal of reinforcement learning is to identify the optimal 26 

control policy that maximizes the above action-value function for all the state-action pairs. 27 

Comparing to the formulations defined by eq (6) and (7), the policy π is the ultimate decision for 28 

each time step along the entire time horizon. The reward function r(st+k, at+k)  here is g(.) in eq 29 
(6). The action-value function (i.e., Q(s,a)) is actually an instantiation of  the approximate value 30 

function 𝐽(𝑠𝑡). So, it is not difficult to understand that the DP formulas are the basis for a 31 
reinforcement learning problem.  32 
 33 
Conceptually, a RL system consists of two basic components: a learning agent and an 34 
environment. The learning agent interacts continuously with the environment in the following 35 
manner: at each time step, the learning agent receives an observation on the environment state. 36 

The learning agent then chooses an action which is subsequently input to the environment. The 37 
environment then moves to a new state due to the action, and the reward associated with the 38 
transition is calculated and fed back to the learning agent. Along with each state transition, the 39 

agent receives an immediate reward and these rewards are used to form a control policy that 40 
maps the current state to the best control action upon that state. At each time step, the agent 41 

makes the decision based on its control policy. Ultimately, the optimal policy can guide the 42 
learning agent to take the best series of actions in order to maximize the cumulated reward over 43 

time that can be learned after sufficient training. A graphical illustration of the learning system is 44 
given in Figure 2. The definition of the environmental states, actions and reward are provided as 45 
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following: 1 

 2 

Figure 2. Graphical illustration of reinforcement learning system. 3 

 4 
3.1 Action & Environmental States 5 

In this study, we define the discretized ICE power supply level (i.e. 𝑃𝑖
𝑒𝑛𝑔

 in Eq. (1)) as the only 6 

action the learning agent can take. The environment states include any other system parameters 7 

that could influence the decision of engine power supply. Herein we define a 5-dimensional state 8 

space for the environment, including the vehicle velocity (𝑣𝑣𝑒ℎ), road grade (𝑔𝑟𝑜𝑎𝑑), percentage 9 

of remaining time to destination (𝑡𝑡𝑜𝑔𝑜), the battery pack’s state-of-charge (𝑏𝑠𝑜𝑐), the available 10 

charging gain (𝑐𝑔) of the selected charging station: 11 

S={s = [𝑣𝑣𝑒ℎ, groad, 𝑡𝑡𝑜𝑔𝑜 , bsoc , 𝑐𝑔 ]
T
|𝑣𝑣𝑒ℎϵ𝑉𝑣𝑒ℎ, groadϵGroad, 𝑡𝑡𝑜𝑔𝑜ϵ𝑇𝑡𝑜𝑔𝑜 , bsocϵ Bsoc, 𝑐𝑐ϵ𝐶𝑔 } 12 

where 𝑉𝑣𝑒ℎ is the set of discretized vehicle speed level; 𝐺𝑟𝑜𝑎𝑑 is the set of discretized road grade 13 

levels; 𝑃𝑏𝑟𝑘  is the discretized level of power collected from regenerative braking (note: this 14 
power is negative compared to power demand). The minimum and maximum value of vehicle 15 

velocity, road grade, and regenerative braking power can be estimated from the historical data of 16 

commuting trips which will be elaborated in the following section. 𝐵𝑠𝑜𝑐 is the set of battery state-17 

of-charge (SOC) levels between the lower bound (e.g., 20%) and upper bound (e.g., 80%); 𝑇𝑡𝑜𝑔𝑜 18 

is the percentage (10% ~ 90%) of remaining time out of the entire trip duration, which is 19 

calculated based on the remaining distance to destination. 𝐶𝑔 is the set of discretized charging 20 

gain (e.g., 30%, 60%) of the selected charger. This charging gain represents the availability of 21 
the charger which may be a function of the charging time and charging rate and is assumed to be 22 
known beforehand. It is noteworthy that all the states can be measured and updated in real-time 23 
as the vehicle is running. Figure 3 shows all the real-time environmental states. 24 



Qi, Wu, Boriboonsomsin, Barth, Gonder 

 1 

Figure 3. Illustration of environment states along a trip. 2 

3.2 Reward Initialization (with optimal results from simulation) 3 

The definition of reward is dependent upon the control objective which is to minimize the fuel 4 

cost while satisfying the power demand requirement. Hence, we define the reciprocal of the 5 
resultant ICE power consumption at each time step as the immediate reward. A penalty term is 6 

also included to penalize the situation where the SOC is beyond the predefined SOC boundaries. 7 
Immediate reward is calculated by the following equations: 8 

𝑟𝑠𝑠,
𝑎 =

{
  
 

  
 

1

𝑃𝐼𝐶𝐸
                    𝑖𝑓 𝑃𝐼𝐶𝐸 ≠ 0 𝑎𝑛𝑑 0.2 ≤ 𝑆𝑂𝐶 ≤ 0.8

1

𝑃𝐼𝐶𝐸+𝑃
      𝑖𝑓 𝑃𝐼𝐶𝐸 ≠ 0 𝑎𝑛𝑑(𝑆𝑂𝐶 ≤ 0.2 𝑜𝑟 𝑆𝑂𝐶 ≥ 0.8)

2

𝑀𝑖𝑛𝑃𝐼𝐶𝐸
                 𝑖𝑓 𝑃𝐼𝐶𝐸 = 0 𝑎𝑛𝑑 0.2 ≤ 𝑆𝑂𝐶 ≤ 0.8

1

2∗𝑃
                                   𝑖𝑓 𝑃𝐼𝐶𝐸 = 0 𝑎𝑛𝑑(𝑆𝑂𝐶 ≤ 0.2 𝑜𝑟 𝑆𝑂𝐶 ≥ 0.8)

       (10) 9 

where 𝑟𝑠𝑠,
𝑎  is the immediate reward when state changes from s to 𝑠 , by taking action a;  𝑃𝐼𝐶𝐸 is the 10 

ICE power supply; 𝑃 is the penalty value and is set as the maximum power supply from ICE in 11 

this study; 𝑀𝑖𝑛_𝑃𝐼𝐶𝐸  is the minimum nonzero value of ICE power supply. This definition 12 
guarantees that the minimum ICE power supply (action) which satisfies the power demand as 13 
well as SOC constraints can have the largest numerical reward. A good initialization of reward is 14 

also critical for the quick convergence of the proposed algorithm. In this case, the optimal or near 15 
optimal results of typical trips obtained from simulation are used as the initial seeds. These 16 

optimal or near optimal results are deemed as the control decisions made by “good drivers” from 17 

historical driving. In order to obtain a large number of such good results for algorithm training, 18 
an evolutionary algorithm (EA) is adopted for the off-line full-trip optimization since EA can 19 
provide multiple solutions for one single run. These solutions are of different quality which may 20 
well represent different level of driving proficiency in the real world situation.  21 

3.3 Q-value Update and Action Selection 22 

In the algorithm, a Q value, denoted by Q(s, a), is associated with each possible state-action pair 23 
(s, a). Hence there is a Q table which is kept updating during the learning process and can be 24 
interpreted as the optimal control policy that the learning agent is trying to learn. At each time 25 

step, the action is selected upon this table after it is updated. The details of the algorithmic 26 

process are given in the following pseudo code: 27 

  28 
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 1 

Algorithm   RL based PHEV EMS algorithm  

Inputs: Initialization 6-D Q(s, a) table; Discount factor γ=0.5; 

Learning rate α=0.5; Exploration probability ε ϵ(0,1); Vehicle 

power demand profile 𝑃𝑑 (N time steps) 

Outputs: Q(s, a) array; Control decisions 𝑃𝑑 (T time steps) 

1: Initialize Q(s, a) arbitrarily  

2: for each time step t=1:T 

3:      Observe current 𝑠𝑡 (𝑣𝑣𝑒ℎ, 𝑔𝑟𝑜𝑎𝑑 , 𝑡𝑡𝑜𝑔𝑜, 𝑏𝑠𝑜𝑐  , 𝐶𝑔) 

4:      Choose action 𝑎𝑡 for the current state 𝑠𝑡: 
5:                temp=random(0,1); 

6:                 if  temp <= ε 

7:                      𝑎𝑡= arg max
𝑎𝜖𝐴

{ 𝑄(𝑠𝑡, 𝑎)} 

8:                 else 

9:                       𝑎𝑡= randomly choose an action; 

10:               end  

11:     Take action 𝑎𝑡, observe next state 𝑠𝑡+1 (𝑃𝑡+1, 𝑆𝑂𝐶𝑡+1) 

12:     if 𝑆𝑂𝐶𝑡+1<0.2 

13:            Switch into Charging-Sustaining  mode; 

14:            Give big penalty to  𝑟𝑡 according to Eq. (10) 

15:      else 

16:            Calculate reward 𝑟𝑡 according to Eq. (10) 

17:      end 

18:      Update Q(𝑠𝑡, 𝑎𝑡) with  following value: 

19:      Q(𝑠𝑡, 𝑎𝑡)+α{𝑟𝑡 + γ ∗ max
𝑎𝑡+1

{ 𝑄(𝑠𝑡+1, 𝑎𝑡+1)} − 𝑄(𝑠𝑡, 𝑎𝑡)}            

20: end  

 2 

4. CASE STUDY 3 

The proposed model is then evaluated with real-world data in two different scenarios: one 4 

without charging opportunities and the other with charging opportunities. 5 

4.1 Data Description 6 

To obtain a series of real trip data (second-by-second velocity trajectories), we apply the 7 
trajectory synthesis technique proposed in our previous work (21) to the inductive loops detector 8 
(ILD) data archived in the California Freeway Performance Measurement System (PeMS) (26). 9 
The trajectory synthesis is a two-step process: 1) estimating average velocity by applying 2-10 
dimensional interpolation method to real world traffic data (e.g., volumes and occupancy) 11 

collected from ILDs; and 2) generating random velocity disturbance based on representative 12 
driving cycles from the MOVES (MOtor Vehicle Emission Simulator) database. Real traffic data 13 
were collected at the I-210 freeway segment between I-605 and Day Creek Blvd in Southern 14 
California, starting at 8:00 a.m. in the morning (westbound) and returning at 4:00 p.m. in the 15 
afternoon every weekday during the period between January 9th, 2012 and January 17th, 2012. 16 

Twelve trips (including eastbound and westbound) are generated in total. The road grade 17 
information is also synchronized with the trip data to estimate the second-by-second power 18 

demands. For more detailed information on the trajectory synthesis and power demand profile 19 
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generation, please refer to (21). 1 

4.2 Model without charging opportunity (trip level) 2 

To validate the proposed strategy, the model without considering charging opportunity is first 3 

trained and tested with trips where there is no charging opportunity within the trip. Data for 4 
multiple westbound trips described in (21) are used for training. Although it has been proven that 5 
Q-learning is guaranteed to converge mathematically (20), an experimental analysis of 6 

convergence is conducted in this study. In the experiment, the trip data for the first six days are 7 
concatenated one by one to form a single training cycle. The proposed model is trained with 8 

repeated training cycles. At the end of each training cycle, the trained model is tested with the 9 
7th day trip and the fuel consumption is recorded in the following Figure 4. In addition, the 10 

training with or without good initialization using simulated optimal or near optimal solution are 11 

also compared.  As we can see in the figure, there is a clear convergence in fuel consumption for 12 
both cases. However, the initialization with simulated optimal or near optimal solutions help 13 
achieve a faster convergence. 14 

 15 
        Fig.4. Convergence Analysis (ε =0.7; γ=0.5; α=0.5)  16 

 17 
As previous described, the selected state space is 5-dimensional and the action space has 1 18 
dimension. Therefore the Q(s, a) table is 6-dimensional. Figure 5 shows the 4-D slice diagram of 19 
the learned Q(s, a) table in which different color grids represent different numerical reward 20 

values (e.g., blue color means lower values) and 3 slices on the (ICE power supply, power 21 

demand) space are given at three different SOC levels: 1, 6 and 12 (i.e., 20%, 50%, and 80%). 22 
Please note that the road grade and vehicle speed are implicitly aggregated into power demand. 23 
The dimension of remaining time is not indicated in the figure. As can be observed in each slice, 24 

when the power demand is not so high (e.g., below level 5), action level 1 or 2 is usually the 25 
most appropriate because the least ICE power is consumed. When the power demand becomes 26 
higher, the range of the feasible action levels gets wider also. In such cases, lower levels of ICE 27 
power supply may not be enough to satisfy the power demand and the resultant SOC level could 28 
be lower than 0.2, resulting in a penalty defined in Eq. (10). It is also noted that when SOC level 29 

is high, it is less likely the higher ICE power supply level would be chosen to satisfy the same 30 
power demand. This is because when the vehicle battery SOC is high, the ICE power is not 31 

likely to be used aggressively.   32 

0.32

0.33

0.34

0.35

0.36

0.37

0.38

0.39

0.4

0.41

0.42

0.43

1 5 9 13 21 29 37 45 53 61 69 77 85 93 100

Fu
el

 c
o

n
su

m
p

ti
o

n
(g

al
)

Training cycle
Without good  initialization With good initialization



Qi, Wu, Boriboonsomsin, Barth, Gonder 

 1 

Fig.5. 4-D slice diagram of the learned Q table 2 

As discussed in the previous sections, an exploration-exploitation strategy is adopted for the 3 

action selection process to avoid premature convergence. The action with the biggest Q value has 4 
a probability of 1-ε to be selected. Hence the value of ε may significantly affect the performance 5 

of the proposed method. To evaluate such impacts, a sensitively analysis of ε is carried out and 6 
illustrated in Figure 8. It can be observed that both the fuel consumption and the resultant SOC 7 
curves are very close to those of the binary mode control if the value of ε is small. A possible 8 

explanation is that a small ε value indicates a large probability to select the most aggressive 9 
action with the biggest Q value (or the lowest levels of ICE power supply). Therefore, the battery 10 

power is consumed drastically as it is with the binary mode control.  However,  if the value of ε 11 
is too large (e.g., >0.8), the battery power is utilized too conservatively where the final SOC is 12 

far away from the lower bound, resulting in much greater fuel consumption. It is found that the 13 
best value of ε in this study is around 0.7, which ensures the SOC curve is quite close to the 14 
global optimal solution obtained by the off-line DP strategy. With this best ε value, the fuel 15 

consumption is 0.3559 gallon, which is 11.9% less than that of the binary mode control and only 16 
2.86% more than that of DP strategy as shown in Figure 8. This also implies that an adaptive 17 

strategy for determining exploration rate along the trip could be a useful.  Figure 9(a) shows a 18 
linearly decreasing control of ε along the trip.  A smaller ε is preferred at the later stage of the 19 

trip because SOC is low and the battery power should be consumed more conservatively. With 20 

this adaptive strategy for ε, the proposed mode could also achieve a good solution with 0.3570 21 
gallon fuel consumption, which is 11.7% less than binary control shown in Figure 6.  22 
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 1 

Fig.6. Fuel consumption in gallon (bracketed values) and SOC curves by different 2 
exploration probabilities 3 

 4 

Fig.7. (a) Linear adaptive control of ε; (b) Linear adaptive control of ε with charging 5 
opportunity 6 

4.3 Model with charging opportunity (tour level) 7 

The most distinctive characteristics of PHEVs from HEVs is that PHEV can be externally 8 
charged whenever a charging opportunity is available. To further evaluate the impacts due to 9 
charging availability, we include this information in the proposed model as a decision variable. 10 
For simplicity, the charging opportunity is quantified by the gain in the battery’s SOC, which 11 

may be a function of available charging time and charging rate. Data for a typical tour is 12 
constructed by combining a round trip between the origin and destination (21).  We assume there 13 

is a charger in the working place (west-most point in the map) and the available charging gain 14 
has only two levels: 30% and 60%.  In this case, a corresponding adaptive strategy of ε is also 15 
used as shown in Figure 7(b). The rationale behind this adaptive strategy is that battery power 16 

should be used less conservatively (i.e., higher ε value) after charging, and/or when 𝐶𝑔 is higher. 17 
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 1 
Fig.8. Optimal results when available charging gain is 0.3 (𝐶𝑔=0.3) 2 

 3 

   4 
Fig.9. Optimal results when available charging gain is 0.6 (𝐶𝑔=0.6) 5 

 6 
The obtained optimal results are shown in Figure 8 and Figure 9. As we can see in both figures, 7 
the resultant SOC curves are much closer to the global optimal solutions obtained by DP than 8 

binary control. To obtain a statistical significance of the performance, the proposed model is 9 
tested with 30 different trips by randomly combining two trips and assume a charging station in 10 

between with a random 𝐶𝑔 (randomly choose from 30% and 60%). By taking binary control as 11 

baseline, the reduced fuel consumption is given in the following Figure 10. As we can see in the 12 

figure, RL model achieves an average of 7.9% fuel savings. It seems that having more 13 
information results in lower fuel savings which is counterintuitive. The reason is that the 14 
inclusion of additional information or state variable to the model exponentially increases the 15 
search space of the problem, which thereby increases the difficulty of learning the optimal 16 

solution. And also more uncertainty is introduced to the learning process due to the errors within 17 
the added information, which degrades the quality of the best solution the model can achieve.  18 
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 1 
Fig.10. Fuel consumption reduction compared to binary control 2 

 3 

5 CONCLUSIONS AND FUTURE WORK 4 

This paper proposes a data-driven reinforcement learning based real-time energy management 5 
system for PHEVs, which is capable of simultaneously controlling and learning the optimal 6 
power split operation. The proposed EMS model is tested with trip data (i.e., multiple speed 7 

profiles) synthesized from real-world traffic measurements. Numerical analyses show that a 8 

near-optimal solution can be obtained in real time when the model is well trained with historical 9 

driving cycles. For the study cases, the proposed EMS model can achieve better fuel economy 10 
than the binary mode strategy by about 12% and 8% at the trip level and tour level (with 11 

charging opportunity), respectively. The possible topics for future work are: 1) propose a self-12 
adaptive tuning strategy for exploration-exploitation (ε); 2) test the proposed model with more 13 
real-world trip data which could include other environmental states, such as the position of 14 

charging stations; and 3) conduct a robustness analysis to evaluate the performance of the 15 
proposed EMS model when there is error present in the measurement of environment states. 16 

 17 
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