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ORIGINAL ARTICLE
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Institute of Health and Medical Research Joint Research Unit 1219, Bordeaux, France

ORCID ID: 0000-0001-8036-3079 (S.U.).

Abstract

Rationale: The cellular and molecular landscape and translational
value of commonly used models of pulmonary arterial hypertension
(PAH) are poorly understood. Single-cell transcriptomics can
enhancemolecular understanding of preclinicalmodels and facilitate
their rational use and interpretation.

Objectives: To determine and prioritize dysregulated genes,
pathways, and cell types in lungs of PAH rat models to assess
relevance to human PAH and identify drug repositioning candidates.

Methods: Single-cell RNA sequencing was performed on the
lungs of monocrotaline (MCT), Sugen-hypoxia (SuHx), and
control rats to identify altered genes and cell types, followed by
validation using flow-sorted cells, RNA in situ hybridization, and
immunofluorescence. Relevance to human PAH was assessed by
histology of lungs from patients and via integration with human
PAH genetic loci and known disease genes. Candidate drugs were
predicted using Connectivity Map.

Measurements and Main Results: Distinct changes in genes
and pathways in numerous cell types were identified in SuHx and
MCT lungs. Widespread upregulation of NF-kB signaling and
downregulation of IFN signalingwasobserved across cell types. SuHx
nonclassical monocytes and MCT conventional dendritic cells
showed particularly strong NF-kB pathway activation. Genes altered
in SuHx nonclassical monocytes were significantly enriched for
PAH-associated genes and genetic variants, and candidate drugs
predicted to reverse the changes were identified. An open-access
online platform was developed to share single-cell data and
drug candidates (http://mergeomics.research.idre.ucla.edu/
PVDSingleCell/).

Conclusions: Our study revealed the distinct and shared
dysregulation of genes and pathways in two commonly used PAH
models for the first time at single-cell resolution and demonstrated
their relevance to human PAH and utility for drug repositioning.

Keywords: pulmonary hypertension; single-cell RNA sequencing;
drug repurposing; monocrotaline; Sugen-hypoxia
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Despite advances in the management of
pulmonary arterial hypertension (PAH), it
remains an incurable and progressive
disease characterized by severe pulmonary
vascular remodeling, poor quality of life, and
guarded long-term prognosis (1). Notably,
current therapies focus on relieving
symptoms and do not reverse vascular
remodeling, the key pathological feature of
PAH. The lack of therapies targeting
underlying mechanisms in PAH may be in
part because of our limited understanding
of the pathogenic cell types and their
specific molecular pathways. It has been
increasingly recognized that in addition to
pulmonary vascular cells, other cell types in
the lung, including various immune-cell
populations, may also play an important
role in PAH and other pulmonary diseases
(2–7). However, to our knowledge, a
comprehensive evaluation to systematically
compare these various cell types has not
been undertaken in the most widely used
preclinical models of PAH, namely the
monocrotaline (MCT) and Sugen-hypoxia
(SuHx) rat models. Given that numerous
novel therapies tested in PAH animal
models have not translated to the bedside
(8), a more comprehensive understanding
of the cellular and molecular landscape
of these models is needed to unravel
mechanistic insights and enhance the
ability of preclinical work to predict drug
efficacy in humans (9).

In this study, we performed lung single-
cell RNA sequencing (scRNA-seq) in MCT

and SuHx rats to investigate altered cell
types, genes, and pathways and further
integrated the findings with human genetics
to assess human relevance. We then
identified potential drug-repurposing
candidates through computational
screening of drug transcriptional profiles
against the dysregulated transcriptional
programs revealed by scRNA-seq. Lastly, to
facilitate dissemination of the data and
findings, we offer an open-access online
platform for the wider research community
(http://mergeomics.research.idre.ucla.edu/
PVDSingleCell/). Some of the results of
these studies have been previously reported
in the form of an abstract (10).

Methods

The main methods are below with
additional details provided in an online
supplement.

Animals
Adult male Sprague-Dawley rats (250–350
g) were used for all animal experiments,
which were approved by the University of
California, Los Angeles, Animal Research
Committee. For the SuHx model, rats were
injected subcutaneously with Sugen 5416
(20 mg/kg) followed by being kept in
hypoxia at 10% O2 for 21 days and then
by being kept in normoxia for 14 days.
For the MCT model, rats were injected
subcutaneously with MCT (60 mg/kg)
followed by being kept in normoxia for 28
days. Age-matched control rats were kept
in normoxia for 28 days. Echocardiography
and right heart catheterization were
performed. Lungs were then harvested and
enzymatically dissociated into single-cell
suspensions, which was followed by
scRNA-seq (11) (n= 6/group).

scRNA-seq Analysis
Expression data was normalized, filtered,
and clustered using the Seurat R package (R
Foundation for Statistical Computing) (12).
Cell types were identified on the basis of
known cell-type marker genes. Cell-type
proportions were quantified and compared
between PAH models and control animals,
as previously described (13). Global
transcriptomic shifts between groups were
assessed using a Euclidian distance method
(14). Differentially expressed genes (DEGs)
were determined for each cell type between
control and either SuHx or MCT rats using

MAST (Model-based Analysis of Single-
Cell Transcriptomics) (15). To annotate
DEGs for biological pathways or PAH
relevance, gene-set enrichment analysis was
performed using hallmark pathways from
the Molecular Signature Database (16) as
well as using human PAH-associated gene
sets obtained from DisGeNET (17) and
the Comparative Toxicogenomics Database
(18).

scRNA-seq Validation in Rat and
Human Lung Tissues
The identities of select cell types were
validated using bulk RNA-seq on cells
purified by fluorescence-activated cell
sorting (FACS) from the lungs of an
additional set of rats (n= 4/group).
Select scRNA-seq DEGs from SuHx
and MCT rats were validated by RNA
in situ hybridization (ISH) and
immunofluorescence using rat lung sections
(n= 5–6 rats/group). The same DEGs were
further evaluated by RNA ISH on human
lung sections from patients with PAH
compared with control patients (n= 7–8
subjects/group).

Integration of Rat PAH Single-Cell
DEGs with Human PAH Genome-
Wide Association Study
To evaluate the relevance of the rat DEGs to
human PAH, we assessed the human
orthologs of rat DEGs for enrichment of
genetic variants associated with PAH from a
human genome-wide association study
(GWAS) (19) using marker set enrichment
analysis in the Mergeomics R package (20).

Identification of Drugs Predicted to
Reverse Rat Disease Signatures
Using Connectivity Map
Signatures of MCT and SuHx DEGs for each
cell type were queried against the full
Connectivity Map (CMap) (21) database of
compound expression signatures induced
in human cell lines to prioritize those with
highly matching or opposing signatures.
Pattern-matching algorithms scored each
reference perturbagen profile for the
direction and strength of enrichment
with query scRNA-seq DEG signatures.
Perturbagens with positive or negative
connectivity scores have similar or opposite
signatures to that of the query (i.e., genes
that are increased in the scRNA-seq DEG
query are decreased by the perturbagen or
vice versa).

At a Glance Commentary

Scientific Knowledge on the
Subject: The cellular and molecular
landscape and translational value of
commonly used models of pulmonary
arterial hypertension (PAH) are poorly
understood. Single-cell transcriptomics
can enhance molecular understanding
of preclinical models and facilitate their
rational use and interpretation.

What This Study Adds to the Field:
Our study revealed the distinct and
shared dysregulation of genes and
pathways in two commonly used PAH
models for the first time at single-cell
resolution and demonstrated their
relevance to human PAH and utility
for drug repositioning.
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Figure 1. Single-cell RNA sequencing identifies diverse lung cell types in rat models of pulmonary arterial hypertension. (A) Schematic of study design for
single-cell RNA sequencing analysis on the lungs of monocrotaline (MCT), Sugen-hypoxia (SuHx), and control rats (n=6/group). (B) Uniform manifold
approximation and projection plot showing lung cells from 18 rats with clusters labeled by cell type. (C) Dot plot highlighting log10 average expression of
select marker genes used to identify cell clusters. The dot size corresponds to the percentage of cells expressing a gene in a given cluster. (D) Uniform
manifold approximation and projection plot showing lung cells colored by disease condition: MCT in red, SuHx in blue, and control in gray (n=6/group).
(E) Bar table showing relative contributions of cells from disease models (MCT in red and SuHx in blue) versus the control model (gray) within each cell-type
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Data Availability
The scRNA-seq data set and lists of cell
type–specific marker genes and disease
DEGs are available online at http://
mergeomics.research.idre.ucla.edu/
PVDSingleCell/CellBrowser/. Connectivity
scores of the entire panel of perturbagens
from the CMap analysis are available at
http://mergeomics.research.idre.ucla.edu/
PVDSingleCell/CMap/.

Results

scRNA-seq Identifies Diverse Cell
Populations in the Rat Lung
The PAH phenotype in MCT and SuHx
rats was confirmed by echocardiography
(see Figures E1A, E1B, and E2B–E2L in the
online supplement), immunohistochemistry
(Figure E1C), and right heart catheterization
(Figure E2A). The scRNA-seq of 18 lungs
(6/group) profiled 33,392 cells (Figure 1A)
after quality control (Figures E3A–E3D,
E4A, and E4B), with even representation of
groups (Figures E4C and E4D). After
clustering on the basis of transcriptomic
similarity, we identified 28 distinct cell
types expressing established markers for
epithelial, stromal, lymphoid, and myeloid
cell populations and rare populations,
including conventional dendritic cells
(cDCs) and regulatory T cells (Tregs)
(Figures 1B, 1C, and E5). Batch
correction did not further optimize
clustering and cell-type identification
(Figure E4E) (12). Each cluster included
cells from each group (Figures 1D and 1E).
Compared with control animals, we
observed a significant increase in the
normalized cell fractions of interstitial
macrophages (iMFs) in MCT rats and
alveolar macrophages (aMFs) in SuHx rats
(Figure 1E).

FACS and Bulk RNA-seq Validate
scRNA-seq Cell-Type Identities and
Proportions
To validate the rare lung cell types identified
from scRNA-seq, namely cDCs and Tregs,
and their corresponding gene signatures, we
performed bulk RNA-seq on FACS-purified
cells and subsequent deconvolution using
our scRNA-seq signatures as a reference

(Figure 2A). We used canonical markers to
isolate cDCs (CD642 CD11b/c1, RT1B1)
and Tregs (CD41, CD251, CD2781) by
FACS (Figures 2B and 2C). Deconvolution
of FACS-purified transcriptomes showed
strong enrichment for the correct cell
types as identified by scRNA-seq, thus
validating the accuracy of scRNA-seq
cell signatures (Figure 2D). Furthermore,
FACS-determined relative cell proportions
between disease models and the control
model showed a pattern similar to that
from scRNA-seq (Figures 2E–2H).
Specifically, both scRNA-seq and FACS
showed significantly increased cDCs in
MCT rats, but not in SuHx rats, and Tregs
did not change in either model compared
with the control model.

scRNA-seq Reveals DEGs with
Cell-Type Specificity in PAH Models
A total of 4,724 and 2,324 DEGs were
identified in MCT and SuHx rats (false
discovery rate, 0.05), respectively, across 17
cell types (Figure 3A). There were 1,511
DEGs common in both models, of which 921
were regulated in the same direction. aMFs,
the largest cell cluster, had the most DEGs,
likely due to high statistical power. We also
assessed changes on a transcriptome scale
within each cell type using a Euclidean
distance-based approach that is less
influenced by cluster size (14) (Figure 3B).
Despite MCT rats having more DEGs, aMFs
and nonclassical monocytes (ncMonos) from
the SuHx model demonstrated the strongest
global transcriptomic shifts from the control
model.

A closer examination of DEGs revealed
genes whose differential expression was
model and cell-type specific (Figure 3C). In
total, there were 2,088 and 574 DEGs
specific to one cell type in MCT and SuHx
rats, respectively. For example, Il6st, which
encodes a signal transducer that mediates
IL-6 signaling, was upregulated exclusively
in a subpopulation of endothelial arterial
type 1 (EA1) cells from SuHx; Il6 was
specifically upregulated in SuHx ncMonos
and MCT neutrophils, suggesting model-
specific differences in IL-6 signaling.
Gpr15 was exclusively upregulated in
SuHx Tregs and encodes an orphan G

protein–linked receptor implicated in Treg
homing (22).

Furthermore, we identified 19 and 8
DEGs that were differentially expressed
in the same direction in at least five cell
types in either MCT or SuHx rats, among
which 6 (Nfkbia, Scgb1a1, Ifi27, Slfn3,
Mt-cox3, and AY172581.24) were altered
across various immune cells in both models
(Figure 3D). For example, Ifi27, which
encodes IFNa–inducible protein 27 and
plays a role in apoptosis and vascular
response to injury (23, 24), was
downregulated across cell types in both
models and in human PAH lungs (Figure
E6) (25).

scRNA-seq Reveals Pathways with
Cell-Type Specificity in PAH Models
Pathway enrichment of DEGs revealed cell
type–specific dysregulation of many
pathways (Figure 4A). The most distinct
difference between models was a strong
downregulation of IFN signaling across
multiple cell types in the MCT model
that in the SuHx model was weaker or
in the opposite direction (Figure 4B).
The relevance of IFN downregulation to
human PAH was demonstrated in EA1
cells as an example (Figures 4C and 4D).
The most notable commonality between
models was a widespread upregulation of
TNFa/NF-kB signaling across cell types,
most notably in SuHx ncMonos (Figure 4E
and 4F).

Validation of Select DEGs by RNA ISH
and Immunofluorescence
Given the importance of ncMonos,
suggested in our analyses above, we
validated a DEG from ncMonos by RNA
ISH on both rat and human lung sections
(Table E1). We defined ncMonos as positive
for both CD16 and Mal. Mal is the top
marker for ncMonos in our scRNA-seq
(Figure 1C) and is involved in the
MyD88 pathway, important in human
lung ncMonos (26). We validated the
upregulation of Ccrl2, a top SuHx ncMono
DEG, encoding a chemokine receptor–like
protein whose function is unknown but is
upregulated during monocyte-to-MF
differentiation (Figure 5A) (27). We also
validated the upregulation of Fabp4, a top

Figure 1. (Continued ). cluster. The cell-type cluster referred to on the y-axis is defined as the total number of cells of a cell type from the control model and
either the MCT or SuHx model (but not both models). A significant increase in proportions of iMFs in MCT and aMFs in the SuHx model were noted
relative to the control model. Wilcoxon rank-sum test: *P,0.05 and **P, 0.01. DEG=differentially expressed gene; NK=natural killer cell.
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(E–H) FACS-determined relative cell-type proportions between disease models and the control model (F and H) showed a similar pattern to that of our
scRNA-seq results (E and G). A significant increase in cDCs was noted in MCT compared with control rats. Furthermore, both methods consistently
showed no significant changes in the number of cDCs in the SuHx model compared with the control model. The number of Tregs was also unchanged
using either method in both disease models when compared with the control model. Wilcoxon rank-sum test: *P,0.05 and **P,0.01. FACS=
fluorescence-activated cell sorter.
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MCT aMF DEG, encoding a fatty
acid–binding protein involved in lipid
metabolism and inflammation (Figure 5B)
(28). We further demonstrate similar
upregulation of both proteins by
immunofluorescence in rat lungs (Figures
5C and 5D).

Integrative Analysis of Rat scRNA-seq
DEGs with Human PAH Genes
Supports the Relevance to Humans
We curated genes implicated in PAH
from DisGeNET and the Comparative
Toxicogenomics Database (Figure 6A) and
demonstrated that the top pathways

enriched in these public gene sets
(Figure 6B) were also highly enriched in
our rat scRNA-seq (Figures 4A and 4E).
When directly testing rat DEGs for
enrichment of these PAH genes, we noted a
marked upregulation in SuHx ncMonos in
particular (Figures 6C–6E).
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Figure 3. Single-cell RNA sequencing reveals differentially expressed genes (DEGs) in individual cell types of pulmonary arterial hypertension models.
(A) Jitter plot showing changes in gene expression for each cell type due to monocrotaline (MCT) (top) or Sugen-hypoxia (SuHx) (bottom) conditions
compared with the control condition. Each dot represents the differential expression MAST (Model-based Analysis of Single-Cell Transcriptomics) z-score
of a gene. Dots indicating a false discovery rate (FDR), 0.05 are in color. The gray dots indicate values that were not significant (ns). (B) Dot plot showing
shifts in gene expression on a whole-transcriptome scale within each cell type for MCT (red) and SuHx (blue) models compared with the control model
using a Euclidean distance (E.d.)-based statistical approach as previously described (14). The x-axis shows the log ratio of observed-to-null E.d. The
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model. (C) Dot plot comparing DEGs across cell types and disease models shows genes whose differential expression was specific to a disease model
and a particular cell type. For example, Gpr15, which encodes an orphan G protein–linked receptor believed to be important in regulatory T cell (Treg)
homing (22), was exclusively upregulated in Tregs from SuHx rats. (D) Dot plot showing DEGs consistent across immune-cell types. For instance, Ifi27,
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both models. (C and D) The horizontal dashed line for each gene represents zero logFC. (B–D) Gray dots indicate values that were ns, and the size of the
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Figure 4. Single-cell RNA sequencing reveals pathways in individual cell types of pulmonary arterial hypertension models. (A) Heatmap showing cell
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We further integrated rat scRNA-seq with
a PAH GWAS using Mergeomics to assess
human relevance (Figures 6F and 6G). We
found significant enrichment for GWAS
signals among DEGs in both models from a
number of immune cells of both myeloid
and lymphoid origins, supporting that DEGs
from our rat models are relevant to PAH

pathogenesis in humans (Figure 6H and Tables
E2–E4).

scRNA-seq Uncovers Perturbations
in Vascular Cell Types Relevant to
Human PAH
Given the importance of pulmonary
vascular cell types to PAH pathogenesis, we

provide a closer examination of the
endothelial arterial subpopulations of EA1
and EA2 cells, as well as of smooth muscle
cells (SMCs) and fibroblasts (Figures 7A
and 7B). We show model- and cell
type–specific alterations of many
established and unknown genes in PAH
(Figure 7C) and a distinct pathway
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dysregulation (Figure 7D). We also
highlight select DEGs that are similarly
altered in public human cell
type–specific data sets (Figure 7E). For
example, Bmpr2, the most well-studied
PAH gene, was downregulated in MCT
EA1 cells but not in EA2 cells, whereas
downregulation was not observed in
SuHx vascular cells, which is consistent
with a recent study (29). Cst3, encoding
cystatin C, was upregulated in MCT and
SuHx EA1 cells. Furthermore, Cst3
serum levels correlated with right
ventricular indices and predicted

mortality in patients with PAH, despite
unknown mechanism in PAH (30, 31).

Integration of Rat DEGs with CMap
Identifies Potential Candidate Drugs
for Repositioning
To investigate the utility of scRNA-seq
DEGs to identify the therapeutic potential of
existing drugs for PAH, we screened all
cell-specific transcriptional signatures
against the molecular profiles of thousands
of pharmacologic perturbagens tested in
human cell lines from CMap, including 5
approved PAH drugs, 26 drugs tested in

PAH clinical trials, and 15 drugs that have
shown efficacy in PAH animal models
(Figures 8A and 8B). Comparisons of drug
connectivity profiles revealed interesting
patterns. For example, bosentan, an
endothelin receptor antagonist currently
used in patients with PAH, and tacrolimus,
a calcineurin inhibitor for which a phase 2
clinical trial for PAH was completed, had
very similar connectivity profiles across
cell types and disease models, suggesting
converging pathways that are likely due
to similar activation of BMP signaling
(32, 33). In contrast, distinct connectivity
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downregulation. The dot size represents 2log10(FDR). Significant upregulation of PAH genes was noted in myeloid cell types in both models, and in
nonclassical monocytes (ncMonos) in particular. (D and E) Dot plots showing all (left) and top 5 (upper right) cell type–specific rat signature enrichment for PAH
genes from the DisGeNET (D) and CTD (E) databases. The red (MCT) and blue (SuHx) dots indicate meeting the FDR,0.05 criterion, and gray dots indicate
values that were not significant (ns). The dot size represents2log10(FDR). A number of significant cell type–specific rat signatures by disease model are shown
in the lower right (FDR,0.05). In the left-sided plots, dots on opposite sides of an NES of 0 for a given row represent opposite directionalities of cell
type–specific enrichment of MCT and SuHx models. The SuHx ncMonos DEGs were most highly enriched for PAH genes comparing both models. For
the MCT model, DEGs from iMFs and cDCs demonstrated the strongest enrichment for PAH genes. (F) Schematic of analytical approach for human
PAH genome-wide association study (GWAS) integration. Human orthologs of rat scRNA-seq DEGs were assessed for enrichment of genetic variants
associated with PAH in human GWAS to further assess human relevance of the rat signatures. GWAS SNPs were filtered by keeping the top 50% by P value
strength and LD r2,0.5, after which SNPs were mapped to genes by integrating with lung-specific expression quantitative loci (eQTLs) curated from public
databases. DEGs within each cell type (P,0.01 to include DEGs from rare cell types with low statistical power) were then tested for enrichment of these
GWAS-integrated expression SNPs (eSNPs). The GWAS P values of each eSNP set (by cell type and disease model) were then compared against that of
eSNPs generated from random gene sets to assess the significance of enrichment for stronger GWAS association P values using a modified chi-square
statistic. (G) Manhattan plot showing 2log10(P) values of 39,263 eSNPs used for rat DEG enrichment analysis after GWAS SNP filtering and eQTL
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profiles were observed among drugs from
the same class, such as with treprostinil
and iloprost (Figure 8B), both of which
are synthetic analogs of prostacyclin but
have opposing effects on a preclinical
model of lung cancer (34), likely due to
different off-target effects mediated by
differential engagement of other
eicosanoid receptors. Our analysis also
predicted that sildenafil reverses MCT’s
SMC signature most enriched for genes
related to epithelial-to-mesenchymal
transition (EMT), consistent with prior
studies investigating sildenafil’s effect on
pulmonary arterial SMCs (PASMCs) from
humans (35–37) and MCT rats (38).
Upregulated EMT genes in our MCT
SMC signature were also found
to be downregulated in a toxicogenomic
microarray of sildenafil-exposed rat
hepatocytes (Figures E7A–E7C) (39).

We next examined drugs predicted to
reverse the transcriptional signature of
SuHx ncMonos, given that these cells were
most highly enriched for genes and
pathways relevant to PAH. Out of 2,429
compounds screened, the drug with the
strongest reversal of SuHx DEGs in
ncMonos was treprostinil, one of the most
effective PAH-targeted therapies currently
in use (Figure 8E). Two other top drugs
screened against SuHx ncMonos were

recently shown to attenuate or prevent
PAH in animal models: tipifarnib, a
farnesyltransferase inhibitor currently
undergoing clinical trials for various
cancers (40), and memantine, an NMDA
receptor antagonist used to treat
Alzheimer’s dementia (41). Our analysis
also revealed novel candidates for
repurposing, such as palonosetron, a
serotonin-receptor antagonist used to
treat chemotherapy-induced nausea, and
guaifenesin, an expectorant used to loosen
airway mucus via unknown mechanisms
(Figure 8C).

Dissemination of scRNA-seq and
Drug Repositioning Results
We implemented a web server to enable
interactive browsing of the entire scRNA-
seq data set, as well as searching and
downloading of cell type–specific marker
genes, disease signatures, and drug
predictions (Figure 9).

Discussion

In this study, we uncover comprehensive
cellular landscapes of altered genes and
pathways at single-cell resolution in the
lungs of two widely used animal models of

PAH. Comparison of landscapes between
SuHx and MCT models reveals critical
similarities and differences in key cell types.
We integrated rat scRNA-seq with human
data to determine human relevance and
with pharmacotranscriptomic data to
identify potential drug-repurposing
candidates. Finally, we offer an open-access
platform for the wider research community
to access the data and findings.

The mechanisms leading to the PAH
phenotype in MCT and SuHx rat models
are believed to differ in that MCT is
associated with endothelial toxicity and
marked lung inflammation, whereas SuHx
is characterized by angioproliferative
pulmonary vascular disease (42). SuHx is
overall believed to recapitulate PAH more
closely than MCT, such as in the formation
of neointimal plexiform lesions, the
pathological hallmark of PAH. However,
human relevance of these models is likely
more nuanced at the cellular and molecular
level. The lack of in-depth understanding of
lung cell types and their respective pathway
alterations in PAH limits our ability to
rationally leverage these models in
translational science. In this study, we
found cell type–specific upregulation of
known PAH pathways across multiple
cell types in both MCT and SuHx models,
most notably involving NF-kB signaling.
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Figure 7. Single-cell RNA sequencing uncovers perturbations in lung vascular cell types relevant to human pulmonary arterial hypertension (PAH). (A)
Uniform manifold approximation and projection plot showing vascular cells from 18 rat lungs with clusters labeled by cell type. (B) Heatmap showing
normalized expression of top marker genes used to identify the vascular cell types, in which each row is an individual cell. Shown to the left are the
condition and cell type to which each cell belongs. (C) Volcano plots showing differentially expressed genes (DEGs) within vascular cell types for the
Sugen-hypoxia (SuHx) or monocrotaline (MCT) models versus the control model, in which the x-axis represents MAST (Model-based Analysis of Single-
Cell Transcriptomics) z-scores and the y-axis indicates 2log10(P). Significant upregulated (z.0) or downregulated (z,0) genes are shown as red
(P, 0.05) or dark red (false discovery rate [FDR],0.05) dots. DEGs (P, 0.05) labeled and highlighted in yellow represent human PAH-associated genes
from either (black text) or both (red text) of the CTD and DisGeNET databases. Otherwise, DEGs are labeled with their gene names if the FDR, 0.05
(endothelial arterial type 1 cell [EA1]) or P, 0.01 (EA2, SMC, Fb). (D) Dot plots showing the top five upregulated and top five downregulated pathways
within vascular cell types as determined by gene-set enrichment analysis. Colored dots in red (MCT) or blue (SuHx) indicate significant values (P,0.05),
whereas gray dots represent values that were not significant (ns). The dot size corresponds to the 2log10(P) value. (E) Box plots showing expression of
select DEGs in rat lung vascular cell types with similar changes shown side by side in human orthologs from public cell type–specific expression data sets:
BMPR2: Gene Expression Omnibus series (GSE) 126262, primary PAECs from two patients with PAH with BMPR2 mutations versus nine unused donor
controls; FOXF1: GSE126262, primary PAECs from four male patients with PAH versus five male unused donor controls; CST3, STAT3, SGK1 and AMD1:
GSE70456, four BMPR2 siRNA–transfected versus four control siRNA–transfected primary human PAECs from four donors; MGP, MMP2, CCND1, F2R,
FBN1, and EPAS1: GSE2559, primary human PASMCs from two patients with PAH versus two normal subjects (n=4 vs. 3, respectively, including BMP2-
treated vs. untreated). P values from RNA sequencing (GSE126262) were determined by using DESeq2, whereas those from microarray (GSE70456 and
GSE2559) were determined by using R limma: *P,0.05, **P,0.01, ***P,0.001, and ****FDR,0.05. CTD=Comparative Toxicogenomics Database;
Fb=fibroblast; KD=knockdown; NES=normalized enrichment score; PAEC=pulmonary artery endothelial cell; PASMC=pulmonary arterial SMC;
SMC=smooth muscle cell.
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Although prior studies have demonstrated
NF-kB’s importance in PAH (43, 44), our
study systemically resolves and implicates
understudied cell types that most strongly
mediate this critical pathway: SuHx
ncMonos and MCT cDCs. Similar to cDCs
in human PAH (45), cDCs in rat PAH
were increased in MCT (but not SuHx)
lungs compared with control lungs, as
determined by scRNA-seq and FACS. In
addition, iMFs were also increased in MCT
lungs but not in SuHx lungs, which is
concordant with prior studies in MCT rats
and human PAH (46). MCT iMF and cDC
transcriptional signatures were significantly
enriched for PAH GWAS single-nucleotide
polymorphisms and known PAH genes,
whereas those of SuHx signatures were not
(Figures 6D, 6E, and 6H). Therefore, for the
investigation of cell types such as cDCs or
iMFs, the MCT model may recapitulate
human PAH better than the SuHx model
does.

A rather unexpected finding from
pathway analysis was the widespread
downregulation of IFNa and IFNg
signaling across both immune and vascular

cells, which was most notable in the MCT
model. In endothelial cells, many of
the genes accounting for the decrease in
IFN signaling in our study were also
downregulated in BMPR2-silenced human
pulmonary arterial endothelial cells. A
harmful downregulation of this pathway is
supported by prior data showing that
exogenous IFNa decreased proliferation
in human pulmonary arterial endothelial
cells and PASMCs in vitro and reversed
PAH in animal models (47). However,
other studies suggest that excess IFN
signaling may contribute to PAH (48, 49).
Further research is needed to dissect
the nuanced role of this pathway in
PAH.

In addition to resolving PAH-relevant
cell types and pathways, scRNA-seq
revealed many altered genes with cell-type
and model specificity. Ccrl2, which has not
been previously implicated in PAH, was the
top upregulated gene contributing to the
strong NF-kB pathway enrichment and
transcriptional signature in SuHx ncMonos;
we confirmed Ccrl2’s upregulation in
human PAH ncMonos by lung histology.

Fabp4, a fatty acid–binding protein that we
found to be highly upregulated in MCT and
human PAH aMFs, is a transcriptional
target of HIF-1a and has been implicated in
regulating inflammatory cytokines and NF-
kB signaling in aMFs (28, 50). Further
investigation of the role and mechanisms of
altered genes, such as Ccrl2 in ncMonos
and Fabp4 in aMFs, is warranted.

Many of the DEGs identified in our
study could be simply correlated with
disease rather than pathogenic drivers of
PAH. Given that genetic risk signals carry
causal information, we integrated rat
scRNA-seq with a human GWAS to infer
causality of cell-type transcriptional
programs in human PAH. Transcriptional
signatures of ncMonos from SuHx and
MCT models, along with numerous other
myeloid and lymphoid cells, including iMFs
and cDCs from MCT rats and Tregs from
MCT and SuHx rats, were significantly
enriched for genetic variants from a human
PAH GWAS, suggesting that these cell
types and their corresponding pathways
may play a causal role in PAH. The
relevance of ncMonos is supported by
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Figure 8. Integration of rat differentially expressed genes (DEGs) with Connectivity Map identifies potential candidate drugs for repositioning. (A)
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strongly positive connectivity scores have highly similar signatures to that of the query, whereas those perturbagens with strongly negative scores have
signatures that strongly oppose that of the query (i.e., genes that are upregulated in the scRNA-seq DEG query are downregulated by treatment with the
perturbagen or vice versa). (B) Heatmap showing connectivity scores of rat scRNA-seq DEGs to drugs approved for use in patients with pulmonary arterial
hypertension (PAH) (black), drugs currently or previously in PAH clinical trials (blue), and preclinical drugs with demonstrated efficacy in PAH animal models
(green). The size of dots corresponds to absolute values of the connectivity score. The PAH-related drugs showed distinct matching patterns to cell
type–specific PAH rat signatures. For example, bosentan and tacrolimus had very similar connectivity profiles across cell types and disease models,
although they come from different classes of drugs. (C) The top 10 drugs with the most negative connectivity scores, which are thus predicted to most
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increased ncMonos in patients with PAH
(46), and its deficiency in HIF-1a leads to
impaired maturation of iMFs and disease
attenuation in hypoxic mice (51). Blocking
CX3CL1–CX3CR1 signaling, which is
important for ncMono survival (52),
decreased lung iMFs and attenuated
vascular remodeling in rodent models (46).
Our unbiased comparative study further
prioritizes ncMonos as a particularly
important cell type in PAH pathogenesis.

To gain further translational insights, we
leveraged awealth of pharmaco transcriptomic

data to query PAH signatures identified from
all lung cell types in both models. Supporting
this approach, our analysis predicted
sildenafil’s action in reversing MCT’s SMC
signature most enriched for EMT genes,
consistent with prior studies investigating
sildenafil’s effect on human PASMCs (35–37).
Thus, sildenafil may have a therapeutic effect
in PAH beyond pulmonary vasodilation.
Indeed, targeted in vivo delivery of sildenafil
to PASMCs was recently shown to inhibit
vascular remodeling and improve survival in
MCT rats (38). Further validating our

approach, treprostinil, one of the most
effective PAH-targeted therapies currently in
use for patients with PAH, was the top drug
predicted to reverse the SuHx ncMono
disease signature that was most enriched for
NF-kB signaling. Although treprostinil’s
primary clinical effect in PAH is believed to
be pulmonary vasodilation via the
prostacyclin pathway, an additional
therapeutic mechanism may be attenuation
of NF-kB signaling, based on our results
and previous human and murine studies
(53–56).
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Figure 9. The PVD Single-Cell Omics website offers an open-access online platform. The entire rat single-cell RNA sequencing gene-expression data set
and lists of cell type–specific marker genes and disease differentially expressed genes are available online in the form of an interactive cell browser at
http://mergeomics.research.idre.ucla.edu/PVDSingleCell/CellBrowser/. Connectivity scores of the entire panel of perturbagens from the CMap analysis are
available to query at http://mergeomics.research.idre.ucla.edu/PVDSingleCell/CMap/. CMap=Connectivity Map; PAH=pulmonary arterial hypertension;
PVD=pulmonary vascular disease.

Figure 8. (Continued ). strongly reverse the transcriptional signature of SuHx nonclassical monocytes (ncMonos), are shown (out of 2,429 compounds
screened). The drugs predicted against SuHx ncMonos were of particular interest, given the strong upregulation of both NF-kB signaling and human PAH
genes. The drug with the most negative connectivity score was treprostinil, one of the most effective PAH-targeted therapies currently in use in patients
with advanced PAH.
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Our analysis also predicted other top
drugs that may reverse the SuHx ncMono
signature for repositioning in PAH. Among
these, palonosetron, a 5-HT3 receptor
antagonist used for chemotherapy-induced
nausea, may have therapeutic potential in
PAH through inhibiting the upregulation in
serotonin signaling, known to occur in PAH
pathobiology, and/or through inhibiting
NF-kB, the top pathway implicated in
SuHx ncMonos. Indeed, another 5-HT3
receptor antagonist, tropisetron, modulates
NF-kB in a rat model of type 2 diabetes
(57). Another top prediction was
guaifenesin, an expectorant which acts to
loosen airway mucus through unknown
mechanisms. Guaifenesin may act as a
NMDA receptor antagonist targeting the
dysregulation in glutamate–NMDA
receptor signaling in PAH (41, 58) or
may act through modulating pathways
like TNFa/NF-kB signaling that are
upregulated in SuHx ncMonos, as revealed
in our analysis and suggested in a prior
human study (59). Although guaifenesin
is a common over-the-counter medicine
used by patients with PAH on an as-
needed basis for mucus relief, it may not
be available at the doses and frequency

needed to treat PAH. Such drug
predictions warrant further investigation
as potential repurposing candidates for
PAH.

The overall strengths of our study
include offering the first single-cell
resolution landscape of two widely used
rat models of PAH; comprehensive
comparative and integrative omics analysis
to prioritize cell types, genes, and pathways
relevant to human PAH; high-throughput
computational screening to identify
potential drug repositioning candidates for
future testing; and an open-access resource
for the wider PAH research community.
Select key findings were also experimentally
validated using alternative methods,
such as FACS with bulk RNA-seq, ISH,
and immunofluorescence. There are also
limitations to our study that underscore the
need to further improve on current single-
cell approaches, particularly the need to
enzymatically dissociate the heterogenous
cell populations that may be particularly
fragile or tightly embedded in the
extracellular matrix (3). Our lung
dissociation yielded fewer vascular cells
overall than immune cells, which limited
statistical power within these cell clusters

and potentially favored larger immune
clusters in our comparative analyses.
Alternative methods such as single-nucleus
RNA-seq may mitigate such limitations.
Despite this limitation, separate analysis of
the captured vascular cells still provided
valuable insights. Furthermore, our study
unravels numerous genes, pathways, and
drugs that warrant experimental and
functional testing in future studies.

In conclusion, our scRNA-seq study of
SuHx andMCT rat lungs dissects the distinct
and shared dysregulation of gene-expression
programs and pathway activation in
individual cell populations, elucidates their
relevance to human PAH pathobiology and
drug repositioning, and will help guide the
rational use of these preclinical models in
future translational studies in PAH. n
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