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M. Dąbrowski,1,* M. Cinal,2 M. Przybylski,1,3 G. Chen,4 A. T. N’Diaye,4 A. K. Schmid,4 and J. Kirschner1,5

1Max Planck Institut für Mikrostrukturphysik, 06120 Halle, Germany
2Institute of Physical Chemistry of the Polish Academy of Sciences, 01-224 Warsaw, Poland

3Faculty of Physics and Applied Computer Science, and Academic Centre for Materials and Nanotechnology,
AGH University of Science and Technology, 30-059 Kraków, Poland

4NCEM, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
5Naturwissenschaftliche Fakultät II, Martin Luther Universität Halle-Wittenberg, 06120 Halle, Germany

(Received 24 December 2015; revised manuscript received 26 January 2016; published 10 February 2016)

The evolution of the domain structure with the thickness of bcc Fe films deposited on the Ag(116) vicinal
surface is studied by spin-polarized low-energy electron microscopy. We show that a spin reorientation transition
proceeds via two mechanisms: continuous rotation of magnetization within the vertical plane perpendicular to
the steps and discontinuous reorientation of the in-plane component of magnetization, leading to splitting of the
domains. In contrast to previously investigated systems with stripe domains, we reveal that in the case of a vicinal
ferromagnetic surface, the domain width increases while changing the orientation of the magnetization from a
canted out-of-plane state into an in-plane state. A theoretical model developed in this work successfully describes
the domain structure behavior observed in our experiments and can be equally applied to other ferromagnetic
films grown on vicinal surfaces.

DOI: 10.1103/PhysRevB.93.064414

I. INTRODUCTION

One of the key features of ferromagnetic films with the
easy axis of the magnetization oriented perpendicular to the
sample plane is the formation of a stripe domain phase.
The stripe phase is the result of the competition between the
exchange interaction, favoring parallel alignment of spins, and
dipolar interaction, which favors antiparallel alignment over
large distances [1–3]. Considerable attention has been paid to
studies of stripe domains in the vicinity of a spin reorientation
transition (SRT), where a rapid decrease of the domains’
size upon increasing the film thickness has been observed
in Fe/Cu(001) [4,5] and Co/Au(111) [6–8]. These pronounced
variations of the domain size are in very good agreement with
theoretical predictions [2] and are associated with a decrease
of the effective anisotropy energy Keff = Ks − Kdip (since
the dipolar anisotropy Kdip increases, while the perpendicular
magnetocrystalline anisotropy Ks remains roughly constant,
upon increasing the film thickness).

The fundamental question is whether the above scenario
remains valid for all ferromagnetic thin films with perpen-
dicular magnetization. In particular, how the SRT proceeds
in systems with reduced symmetry, like films grown on
stepped/vicinal surfaces. For films grown on vicinal surfaces
the competition between magnetocrystalline anisotropy terms,
preferring orientations of magnetization M along the principal
crystallographic directions, and the dipolar anisotropy, prefer-
ring an orientation of M in the film plane (which, for vicinal
surfaces is not equivalent to the principal crystallographic
planes) [9], results in tilted orientations of M. Since the dipolar
energy of stripe domain system is postulated to depend on
the magnetization direction [10], it makes the description of

*Corresponding author: mdabrows@pitt.edu; Present address: De-
partment of Physics and Astronomy, University of Pittsburgh,
Pittsburgh, PA 15260, USA.

the magnetic anisotropy more complex because the effective
anisotropy constant Keff can depend on the tilting angle. Yet
a separate problem is an appropriate definition of such an
anisotropy constant for stepped films.

In this article we combine theoretical and experimental
studies in order to understand the SRT mechanism in ferromag-
netic film on vicinal surfaces. By employing spin-polarized
low energy microscopy (SPLEEM) [11], we observe the
evolution of the magnetic microstructure as a function of
thickness of Fe film grown on the Ag(116) vicinal surface.
The well-known surface preparation and properties [12–16]
make Fe/Ag(116) well suited for studies of the SRT process on
the microscopic level. We show that the SRT from out-of-plane
to in-plane orientation consists of two stages: (i) continuous
rotation of magnetization direction within stripe domains and
(ii) discontinuous switching of the in-plane component of
the magnetization. We also demonstrate that domain size
increases exponentially with increasing the film thickness. Our
experimental results are explained within a theoretical model.
The domain size and the magnetization orientation obtained
from the experiment allow us to determine the dependence of
the anisotropy constants on the film thickness.

The outline of the paper is as follows. In Sec. II we
present a theoretical model that allows us to calculate the
domain size and the effective anisotropy constant for films
with arbitrary magnetization direction and reduced symmetry
due to their deposition on a vicinal substrate. Section III is
devoted to experimental details. A discussion and analysis of
the experimental results within the framework of our model
is carried out in Sec. IV. Finally, the main conclusions are
summarized in Sec. V.

II. THEORY

The magnetostatic energy Edip for a system of stripe
magnetic domains with sharp domain walls in a ferromagnetic
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film has previously been calculated within the continuum
approximation for magnetization M perpendicular to the film
surface. The expression of Edip per unit volume obtained by
Kooy and Enz [17],

Edip(t,D) = 16M2
s

π2

D

t

∑
n=1

(n odd)

1

n3
[1 − e−nπt/D], (1)

depends on the domain size D, the film thickness t , and the
saturation magnetization Ms. Based on the expression (1),
Kaplan and Gehring [2] derived the following formula for
the optimum domain size:

D = 0.954 teπD0/(2t) . (2)

The characteristic length D0 = σw/(2πM2
s ) is defined with

the domain wall (DW) energy σw (per unit area of the wall)
and the density 2πM2

s of the magnetostatic energy in a
ferromagnetic film in the monodomain state (i.e., for D → ∞)
with magnetization perpendicular to the film surface. The
formula is valid for t � D0.

A. Dipolar anisotropy energy for arbitrary
magnetization direction

We expand the expression for the magnetostatic energy Edip

to arbitrary orientation of magnetization M, described by the
polar angle θ with respect to the film surface normal and the
azimuthal angle ϕ with respect to the atomic steps (as shown
schematically in Fig. 2). For convenience we introduce the
azimuthal angle of the magnetization with respect to the DW
planes ϕ̃ = ϕ − ϕDW, where ϕDW denotes the orientation of
the DWs with respect to the steps. The following formula,

Edip(t,D,θ,ϕ̃) = Edip(t,D; θ = 0)(cos2 θ − sin2 θ sin2 ϕ̃)

+ 2πM2
s sin2 θ sin2 ϕ̃, (3)

is derived by representing Edip with the scalar magnetic
potential and subsequent use of the Poisson equation; the
concise derivation is given in the Appendix.

B. Domain size for arbitrary magnetization direction

According to Eq. (3), the dependence of Edip(t,D,θ,ϕ̃) on
the film thickness t and the domain size D is determined by the
term including Edip(t,D; θ = 0), given by the expression (1).
Thus, the part of Edip(t,D,θ,ϕ̃) dependent on t and D is im-
mediately found with Eq. (1), if the constant 2πM2

s is replaced
with the angle-dependent factor 2πM2

s (cos2 θ − sin2 θ sin2 ϕ̃).
In consequence, the optimum domain size D, found by
minimizing the total energy density Edip(t,D,θ,ϕ̃) + σw/D

with respect to D, is also given by formula (2) provided that the
expression for the characteristic dipolar length D0 is modified
as follows:

D0(θ,ϕ̃) = σw

2πM2
s (cos2 θ − sin2 θ sin2 ϕ̃)

. (4)

In the particular case when the magnetization M is parallel to
DWs (ϕ = ϕDW), the dipolar length is given by

D0(θ,ϕ̃ = 0) = σw

2πM2
s cos2 θ

. (5)

This formula was recently assumed in Ref. [10], based on
the interpretation of Eq. (2) that D0 is given by the ratio
of σw and the magnetostatic energy of the monodomain film
2πM2

s cos2 θ , not only for the magnetization perpendicular to
the film surface (θ = 0), but also for a tilted magnetization.
The formula (5) is presently shown to be valid, but only for
ϕ̃ = 0, as it seen in Eq. (4).

It is clearly seen from the relations (2) and (5) that the
domain size D increases with increasing tilting angle θ for
fixed t and σw. The domain size D depends on the film
thickness t through both the explicit occurrence of t in Eq. (2)
as well as due to the thickness dependencies of θ and the
effective anisotropy constant Keff , which affects the DW
energy σw.

C. Effective anisotropy within the plane
perpendicular to the steps

The domain wall energy

σw = 4
√

AKeff (6)

depends in a simple way on the effective anisotropy constant
Keff (per unit volume) and the exchange stiffness constant A.
This expression is valid for a 180◦ DW of the Bloch type
where the angular dependence of energy −Keff cos2(θ − θ0)
on the magnetization rotating within the wall is defined with
the uniaxial anisotropy Keff and the angle θ0 that corresponds
to the easy axis (with the assumption that ϕ = ϕDW). Such
dependence is in fact also valid for thin stepped films with
magnetization tilted from the surface normal within the plane
perpendicular to the steps, if the bulk anisotropy, which is
of the fourth order in spin-orbit coupling, is negligible in
comparison with the second-order anisotropy terms arising
from the reduced symmetry of a stepped film.

The energy of a monodomain ferromagnetic film on a
stepped substrate depends on the direction of the magnetization
M as follows [13]:

E(θ,ϕ) = Kdip cos2 θ + Ks sin2 θ ′ − Ku sin2 θ ′ cos2 ϕ ′

− 1
2Ksp sin 2θ ′ sin ϕ′ + Ebulk(θ ′,ϕ ′)

≡ Kdip cos2 θ + E(2) + Ebulk

≡ Kdip cos2 θ + EMCA(θ ′,ϕ ′), (7)

where θ ′ and ϕ′ denote angles measured with respect to
the Ag crystallographic axes [001] (normal to the terraces
surface) and [1̄10] (in the terraces plane, parallel to the
steps), respectively. The expression (7) includes the usual
form of the shape anisotropy energy (i.e., the magnetostatic
energy of the ferromagnetic film in the monodomain state).
The shape anisotropy constant is equal to Kdip = 2πM2

s t if
the system energy E is calculated per unit area of the film
surface. The magnetocrystalline energy EMCA arising from
the spin-orbit interaction (treated as a perturbation in the
Hamiltonian) comprises the second-order energy correction
E(2) and the fourth-order contribution Ebulk corresponding to
bulk anisotropy. The second-order contribution is expressed
with the three anisotropy constants Ks, Ksp, and Ku, where the
latter two arise due to reduced symmetry in films on a vicinal
substrate.

064414-2



CANTED STRIPE PHASE EVOLUTION DUE TO A SPIN . . . PHYSICAL REVIEW B 93, 064414 (2016)

If the magnetization M is perpendicular to the steps (i.e.,
ϕ = ϕ′ = 90◦), we have

θ = θ ′ + α, (8)

where α denotes the vicinal angle. If the bulk anisotropy is
neglected, the film energy (7) can then be written as

E⊥(θ ) = E(θ,ϕ = 90◦) = −Keff cos2(θ ′ − θ ′
0) + const

= −Keff cos2(θ − θ0) + const, (9)

where the following trigonometric identities cos 2γ =
2 cos2 γ − 1 (for γ = θ,θ ′,θ ′ − θ ′

0) and cos(2θ ′ − 2θ ′
0) =

cos 2θ cos 2θ0 + sin 2θ sin 2θ0 have been applied. The effec-
tive anisotropy constant is defined as

Keff =
√

(Kdip cos 2α − Ks)2 + (Kdip sin 2α − Ksp)2, (10)

with the three anisotropy constants Kdip, Ks, Ksp and the
vicinal angle α. The expression for E⊥(θ ) is valid in the
extended angle range 0◦ � θ � 360◦, which describes all
possible orientations of the magnetization within the plane
perpendicular to the steps. In such description the angle
interval 180◦ < θ � 360◦ corresponds to the polar angle
(360◦ − θ ) < 180◦ and the azimuthal angle ϕ = −90◦ in
the standard definition of these angles.

The tilting angle θ0 = θ ′
0 + α corresponds to the easy axis

and it can be found from the relation

tan 2θ ′
0 = Kdip sin 2α − Ksp

Kdip cos 2α − Ks
, (11)

which is obtained from the energy extremum condition
∂E⊥/∂θ ′ = 0 applied to E⊥(θ ′) = E(θ = θ ′ + α,ϕ = 90◦)
found from Eq. (7). The choice between θ ′

0 and θ ′
0 + 90◦,

which both satisfy Eq. (11), is done based on the energy
minimum auxiliary condition ∂2E⊥/∂θ ′2 > 0. Thus we are left
with two values of the tilting angle θ ′

0 (<180◦) and θ ′
0 + 180◦,

corresponding to the opposite directions of the magnetization,
which are equivalent in the absence of external fields.

III. EXPERIMENTAL DETAILS

The experiments were performed in an ultrahigh-vacuum
system with a base pressure of 2 × 10−11 Torr. An Ag(116)
vicinal crystal [13.3◦ off the (001) surface] with the step edges
oriented along the [110] direction was used. The Ag(116)
surface was cleaned by cycles of Ar ion sputtering at 1 keV and
annealing at ∼775 K. Scanning tunneling microscopy (STM)
images (not shown) confirm that this preparation procedure
yields vicinal surfaces characterized by regular monoatomic
steps with an average terrace width of 0.86 nm. These regular
step arrays also cause sharp double-split diffraction spots
in low-energy electron diffraction (LEED), and in the work
reported here we used LEED imaging to confirm surface
quality prior to SPLEEM experiments. Fe films were grown
in situ and at room temperature in the SPLEEM instrument.
During deposition, low-energy electron reflectivity oscillations
associated with layer-by-layer film growth were used for
precise growth rate and film thickness measurements. (This
approach was described previously, for example in Ref. [5].) In
order to explore detailed magnetic properties at high thickness

resolution, for this work wedge-shaped films of 1 mm width
and ∼14 monolayer (ML)/mm slope were prepared by placing
a shutter into the Fe molecular beam. After growth, the films
were warmed up to 450 K in order to improve the surface
morphology [12].

The domain structure of Fe/Ag(116) was imaged by using
spin-polarized low energy microscopy [18,19]. The magnetic
contrast in SPLEEM is quantified by the asymmetry intensity
Aex = (1/P )(I↑ − I↓)/(I↑ + I↓), where I↑ and I↓ represent
the reflected intensities for antiparallel polarized incident elec-
tron beams and P denotes the degree of incident electron beam
polarization (∼20% in this case). Subtraction of I↑ and I↓ and
subsequent division by their sum eliminates the nonmagnetic
features of the image and yields an asymmetry image in which
intensities are proportional to the incident beam polarization
and the component of the local magnetization vector along
the incident beam polarization direction. By measuring the
magnetic contrast in three orthogonal polarizations of the
incident beam, three components of the magnetization vector,
Mx , My , and Mz, are derived and the local three-dimensional
magnetization vector can be determined. The magnetic con-
trast in SPLEEM is determined by the spin-dependent band
structure and therefore, changes with energy [20]. By taking
several SPLEEM images at different electron energies and
different Fe thicknesses, we found the optimum contrast at
energy E = 13.5 eV. The measurements were performed at
two temperatures: 300 and 130 K.

In a typical SPLEEM experiment, a spin-polarized low-
energy electron beam is directed towards the sample surface at
normal incidence, and the specular beam of the backscattered
electrons is magnified in an electron-optical column to form
an image of the sample surface (bright-field mode) [21,22].
Interestingly, we have found that in the case of our sample,
the imaging of the first-order diffraction beam (dark-field
mode) [21,22] significantly enhances the magnetic contrast
in comparison to the usually used bright-field mode. This is
due to the fact that the atomic terraces in our vicinal surface
are perpendicular to the [001] direction, which is 13.3◦ off the
sample normal. By tilting the macroscopic plane of the sample
by ∼2–3◦, the incident electron beam impinges the surface at
off-normal angle and brings the desired first-order diffraction
beam close to the optical axis of the microscope’s projection
column.

IV. RESULTS

SPLEEM measurements for three orthogonal electron
polarizations have been performed in the Fe film thickness
range from 0 to 14 ML at 130 and 300 K. Thickness-dependent
SPLEEM images were acquired by moving the sample position
across the Fe wedge with respect to the microscope’s optical
axis. The triplets of SPLEEM images for chosen thicknesses
of Fe film are shown in Fig. 1. The domain structures at 130
and 300 K are qualitatively similar and the images at 130 K are
shown solely. Blue and red regions result from the component
of the surface magnetization vector along the axis defined by
the orientation of the spin polarization of the illuminating beam
(parallel and antiparallel, respectively). No magnetic contrast
(Aex = 0), i.e., white color in SPLEEM images, is observed
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FIG. 1. SPLEEM images with varying thickness of Fe film grown
on a Ag(116) surface obtained at 130 K. The color scale represents
orientation of magnetization M with respect to the polarization P of
the incident beam. (Blue and red areas correspond to parallel and
antiparallel orientations of M and P, respectively.) The polarization
direction of the illuminating beam is indicated on top of the image
columns. The images are 11.5 μm in diameter.

for the polarization of the incident beam perpendicular to
the direction of magnetization at the surface or if |M| = 0
(nonmagnetic surface).

The lowest thickness of Fe film at which any domain
structure was distinguished is 2.85 ML. Since the Curie
temperature TC for 2.5-ML-thick bcc Fe film grown on
Ag(001) was reported to be around 325 K [23,24], it is
plausible that reduced Curie temperature is responsible for
the absence of the magnetic contrast below 2.85 ML.

At film thickness above 2.85 ML, SPLEEM images ac-
quired with the polarization P of the incident beam aligned
perpendicular to the surface plane show the formation of an
out-of-plane stripe domain phase (left column in Fig. 1). As the
Fe film thickness increases, stripe domains expand and arrange
to an alignment where the DWs are oriented perpendicular
to the step edges. Starting at around 4 ML, a continuous
increase of the contrast is observed in images acquired with
the polarization P of the incident beam aligned in-plane and
perpendicular to the step edges (middle column in Fig. 1).
Up to around 7 ML, only negligible magnetic contrast is
observed when the beam polarization is aligned parallel to
the step edges (right column in Fig. 1), which means that
there is no magnetization component along this direction (Mx

nearly zero). For 7.5-ML-thick Fe film, the domain pattern
changes dramatically. A rapid change of the magnetization
orientation is manifested by a significant reduction of the
out-of-plane signal (left panel marked 7.5 ML) accompanied
by an increasing in-plane signal (middle and right panels
marked 7.5 ML) and splitting of the stripe domains.

In the film thickness range of about 4–7 ML the si-
multaneous presence of out-of-plane (left column) and in-
plane (middle column) magnetic contrast means that the
magnetization vector is canted. In contrast to more complex
canted magnetization structures observed in films grown on
low-index substrates [25,26], the vicinal substrate used in our
experiment locks the azimuthal orientation of the canting angle
and the magnetization vector rotates within the vertical plane
perpendicular to the surface steps.

The substantial out-of-plane magnetic contrast observed in
the films of thicknesses up to 7.5 ML (left column, Fig. 1)
essentially vanishes in 9.5-ML-thick films, indicating that at
this thickness the magnetization is oriented nearly exactly in
the sample plane. In addition, the magnetic contrast is visible
exclusively in images acquired with beam polarization parallel
to the step edges (9.5 ML in Fig. 1), indicating that the SRT
into the sample plane is accompanied by an abrupt switching
of the in-plane magnetization component into the direction
along the step edges. The domains are larger (in comparison
to thinner Fe films) and DWs have no preferential orientation
with respect to substrate steps. Moreover, DW spin structure
can be now observed from the magnetic contrast perpendicular
to the easy axis of magnetization (see 9.5-ML-thick Fe film in
Fig. 1, middle panel), indicating that Neél-type domain walls
are present [27].

This Fe film-thickness-dependent SRT summarized in
Fig. 1 can be described more quantitatively by measuring the
canting angle θ and azimuthal angle ϕ for every domain from
the amount of magnetic contrast in the SPLEEM images. This
measurement is plotted in Fig. 2, where the angles θ and ϕ are
defined with respect to the crystallographic directions of the
Ag(116) substrate as shown in the inset. Note that for clarity
of this plot we avoided negative angles by rotating domains
pointing down by 180◦.
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FIG. 2. Tilting angle θ and azimuthal angle ϕ of magnetization
as a function of Fe film thickness evaluated from SPLEEM images
obtained at 130 K.

The orientation of the magnetization as a function of Fe
film thickness at 130 K is shown in Fig. 2. Initially, starting
from the thinnest investigated Fe film, magnetization is canted
away from the sample normal by ∼20◦ with the inclination
towards the direction perpendicular to the steps (ϕ = 90◦).
This means that M is oriented nearly along the [001] direction,
i.e., perpendicular to the terrace’s plane (the miscut angle
between the [001] and [116] directions for Ag(116) crystal is
equal to 13.3◦). Up to the film thickness of 5 ML there are no
significant changes in orientation of the magnetization. Above
5 ML, the tilting angle starts to increase while keeping the
azimuthal orientation perpendicular to the steps. At 7.5 ML,
an abrupt change of θ and a discontinuous switch of the
in-plane magnetization orientation from perpendicular to the
steps toward along the steps (ϕ = 90◦ → ϕ = 0◦) is observed.
This rapid change of the orientation of magnetization is
associated with the splitting of the stripe domains, as shown in
Fig. 1. With further increase of Fe thickness, the orientation of
magnetization remains the same, i.e., in-plane along the step
edges. The dependence of the tilting angle θ and the azimuthal
angle ϕ on Fe film thickness obtained at 300 K (not shown) is
nearly identical as at 130 K.

When well-ordered stripe domains are present, the do-
main size D can be estimated by taking line profiles
across the domain walls (see Fig. 3). We define the do-
main size D as a distance between the centers of two
oppositely oriented domains. The domain size for given
Fe thickness is the average value within the field of view
(11.5 μm).

The thickness dependence of the domain size D at two
different temperatures, 130 and 300 K, is shown in Fig. 4.
Starting with the thinnest Fe films, the size of the domains
D increases exponentially with the film thickness. At around
4.5 ML, the domains measured at 130 K are over 2 times
larger than those measured at 300 K. Interestingly, with further
increase of the Fe film thickness, the domains measured at 130
K become similar to those measured at 300 K. Above 5 ML
the domain size increases rapidly at both temperatures and
eventually exceeds the field of view (D > 11.5 μm).

FIG. 3. The line profile along the white arrow in the SPLEEM
image (see inset) obtained for a 3.9-ML-thick Fe film with the
polarization axis of electrons perpendicular to the sample plane. The
domain size (the stripe width) D is defined as the distance between
the centers of two neighboring domains.

Note that the measurement was performed on a wedge
sample and there is a thickness gradient, which is perceptible,
even within the area of a single image. (The spread of the
thickness within the field of view, from the top to the bottom,
is around 0.16 ML.) As a consequence, it can be observed that
within the single image, there is a gradient of the domain size,
which highlights the strong dependence of the domain size on
Fe film thickness.

V. DISCUSSION

A. Orientation of domains

Except for very thin Fe film, below 3.3 ML, where the
domains do not have well-defined stripe shape, the DWs in

FIG. 4. Domain size D as a function of thickness of Fe film grown
on a Ag(116) surface estimated from SPLEEM images obtained at
130 and 300 K. The size of domains is an averaged value over the
area corresponding to the field of view (11.5 μm).
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the canted state of magnetization are oriented perpendicular
to the steps (see Fig. 1). This means that DWs lie along the
ϕDW = 90◦ direction, which corresponds to the orientation of
the tilted magnetization with the azimuthal angle ϕ = 90◦.
It can be explained by the fact the nonparallel alignment
of magnetization with respect to DWs is not energetically
favorable, since the magnetostatic energy increases with the
angle ϕ̃ = ϕ − ϕDW. Indeed, the magnetostatic energy (3),
rewritten as

Edip(t,D,θ,ϕ̃) = Edip(t,D; θ = 0) cos2 θ + [
2πM2

s

−Edip(t,D; θ = 0)
]

sin2 θ sin2 ϕ̃ , (12)

is clearly larger for nonzero ϕ̃ �= 0 than for ϕ̃ = 0, since
2πM2

s > Edip(t,D; θ = 0). The latter relation is satisfied be-
cause the magnetostatic energy of perpendicularly magnetized
film (θ = 0) becomes smaller after the stripe domains are
formed; this can be proved in a strict way from Eq. (1),
as shown in [28]. The fact that Edip(θ,ϕ̃) is larger than
Edip(θ,ϕ̃ = 0) can also be understood on more general grounds
by using the expression Edip = 1

2

∫
dr ρ(r) ψ(r) [found from

Eq. (A2) by partial integration], where for ϕ̃ �= 0, the effective
magnetic charge density ρ(r) = −∇rψ has poles not only
at the film surfaces, ρ ∼ δ(z − 0),δ(z − t), but also on the
domain walls, ρ ∼ δ(x − nD) (n = . . . ,−2,−1,0,1,2, . . .).

B. Evolution of the magnetization direction

The theory predicts that the transition from out-of-plane
to in-plane orientation does not need to be accompanied
by a vanishing effective anisotropy constant, responsible for
decreasing domain size in films grown on atomically flat
surfaces. Upon increasing the number of Fe layers N , the shape
anisotropy (per unit film area) gradually increases and changes
of the tilting angle can be briefly described in the following
stages; θ = α for Kdip sin 2α = Ksp, followed by θ = 45◦ + α

for Kdip cos 2α = Ks and eventually θ approaching 90◦ when
Kdip dominates magnetocrystalline anisotropy terms Ks and
Ksp for large N . Thus, the value of the tilting angle is governed
by the interplay between the increasing shape anisotropy and
two magnetocrystalline anisotropy terms, corresponding to
two easy axes, (001) and (110), of the Fe film. Both differences
Kdip cos 2α − Ks and Kdip sin 2α − Ksp that define the tilting
angle in Eq. (11) also contribute to Keff given by Eq. (10),
but they do not vanish for the same film thickness. Therefore,
the effective anisotropy Keff within the plane perpendicular
to the steps does not vanish during the SRT and, in fact, it
can even increase upon increasing the film thickness, while
magnetization rotates within this plane provided that Ks and
Ksp have appropriate thickness dependencies.

The observed abrupt change of the magnetization direction
from tilted, within the plane perpendicular to the steps to in-
plane, parallel to the steps occurs at the thickness for which
the energy

E|| = E(θ = 90◦,ϕ = 0) = Ks − Ku (13)

becomes lower than

E⊥,min = E⊥(θ = θ0) = 1
2 (Kdip + Ks − Keff) . (14)

These two expressions are obtained from Eqs. (7), (10), and
(11), with Ebulk = 0. However, the condition E|| < E⊥,min,
written as

Ku > 1
2 (Ks − Kdip + Keff), (15)

does not gives a simple formula for the film thickness at which
such discontinuous switching of magnetization orientation
takes place.

C. Anisotropy constants

With the domain size D and the tilting angle θ = θ0 mea-
sured experimentally with SPLEEM, the effective anisotropy
constant Keff can be found from Eqs. (2) and (5):

Keff = A−1
[
tM2

s ln(D/0.954t)
]2

cos4 θ . (16)

The obtained results for Keff are shown in Fig. 5. The second
relation between the anisotropy constants and the SPLEEM
data is given by Eq. (11) for the tilting angle θ ′

0 from the terrace
normal which corresponds to the tilting angle θ0 = θ ′

0 + α

from the film normal. In this way, we can determine from
Eqs. (10) and (11) the two unknown magnetocrystalline
anisotropy constants Ks and Ksp, since Kdip = 2πM2

s t is
known. They are given by the following formulas:

Ks = Kdip cos 2α + psKeff| cos 2θ ′
0| , (17)

Ksp = Kdip sin 2α + pspKeff| sin 2θ ′
0| , (18)

where, within the range 0◦ � θ0 < 90◦ of experimentally
observed tilting angles, we have ps = 1 for θ0 � 45◦ + α

and ps = −1 for θ0 > 45◦ + α, while psp = 1 for θ0 � α and
psp = −1 for θ0 > α; the latter relations come from the energy
minimum condition ∂2E⊥/∂θ2 > 0.

The obtained values of Ks, Ksp that reproduce the ex-
perimental values of the domain size and the tilting angle
are shown in Fig. 5. Both anisotropy constants Ks and Ksp

depend almost linearly on the Fe film thickness. A very
similar linear dependence of Ks on the film thickness, with

FIG. 5. Anisotropy constants Keff , Ks, Ksp obtained from the
tilting angle θ0 and the domain size D measured in the SPLEEM
experiment at T = 130 K. The values are obtained with the exchange
stiffness constant A = 1.49 × 10−11 J/m.
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Ks increasing from ∼0.35 to ∼0.70 meV (per surface atom) in
the thickness range from 3 to 7 ML, was found experimentally
for flat Fe/Ag(001) films [29]. The fact that the anisotropy
constants Ks, Ksp, and Keff are much larger than the fourth-
order bulk anisotropy constant (Kbulk = 5.4 × 104J/m3 [30],
which corresponds to 0.0040 × N meV/surface atom) justifies
neglecting the bulk anisotropy term in our theoretical model
for the investigated range of film thicknesses.

The canted structure in the vicinity of the SRT has been
observed before for Ni [31,32] and Co [33] films grown on
vicinal surfaces. In particular, it has been found that the canted
magnetization is oriented within the plane perpendicular to
the steps, which is predicted by our model to be a common
characteristic of the SRT in ferromagnetic films on vicinal
surfaces.

A local increase of the determined Ks, seen as a deviation
from its roughly linear thickness dependence, is found at
around 4.5 ML. The magnitude of this local oscillation as well
as the resulting bump in the Keff(N ) dependence are small.
Nevertheless, this bump still leads to the significant increase
of the domain size observed at ∼ 4.5 ML, since D depends
exponentially on the square root of the effective anisotropy
constant. This clearly demonstrates that even small changes
of surface anisotropy have a substantial effect on the domain
structure. The local change in the domain size D at around 4.5
ML occurs solely at low temperature and therefore suggests
to be related to quantum well states’ (QWS) contribution to
the magnetic anisotropy (which can be visible only at low
temperature and only at specific thicknesses) [34,35]. Such
a relation is strongly supported by the observation of large
anisotropy of the orbital magnetic moment at this thickness,
ascribed to the QWS from the d band (see Supplemental
Material in [16]).

VI. SUMMARY AND CONCLUSIONS

In summary, we present a comprehensive study of the
domain structure of Fe films grown on the Ag(116) vicinal
surface. We show that upon increasing the film thickness,
the canted magnetization in stripe domains rotate towards the
sample plane within the plane perpendicular to the steps and
simultaneously, the domain size increases exponentially. This
increase is explained by the fact that in the Fe/Ag(116) stepped
films the effective uniaxial anisotropy increases while the
magnetization rotates towards the in-plane direction. We also
demonstrate that with approaching the in-plane orientation,
abrupt switching of the magnetization from perpendicular to
the steps to parallel to the steps is observed and accompanied
by characteristic splitting of the stripe domains. Using the
values of the domain size and the magnetization orientation
obtained from the experiment and basing on the theoretical
model developed in this work, we provide the dependencies
of the anisotropy constants on Fe film thickness. Additional
interesting aspects beyond the scope of this paper include
properties of domain walls and quantum well effects on
the domain structure. To address these problems, further
studies focused on higher resolution and lower temperature
measurements are required.

APPENDIX: MAGNETOSTATIC ENERGY OF
FERROMAGNETIC FILM WITH STRIPE

DOMAINS FOR ARBITRARY DIRECTION
OF MAGNETIZATION

The total magnetostatic energy

Edip = 1

2

∫
dr

∫
dr′

(
M(r) · M(r′)

|r − r′|3

− 3[M(r) · (r − r′)][M(r′) · (r − r′)]
|r − r′|5

)
(A1)

of a ferromagnetic system with continuous distribution of
magnetization M can be represented as [36]

Edip = 1

2

∫
dr M(r) · ∇r ψ(r) (A2)

in terms of the scalar magnetic potential

ψ(r) =
∫

dr′ M(r′) · (r − r′)
|r − r′|3 . (A3)

Let us note that, in fact, Eq. (A2) is the general formula for the
potential magnetic energy, since H = −∇r ψ(r) is the static
magnetic field produced by the ferromagnet.

For a film with stripe domains, the magnetization vector

M(r) = [Mx(y),My(y),Mz(y)]

= M(y)(sin θ cos ϕ̃, sin θ sin ϕ̃, cos θ ) (A4)

varies along the y axis perpendicular to the DWs and does not
depend on x and z, where the x axis is parallel to DWs and
the z axis is perpendicular to the film surface. The periodic
function M(y) is defined as

M(y) =
{−Ms for − D + 2nD < y < 0 + 2nD

Ms for 0 + 2nD < y < D + 2nD,
(A5)

where n = . . . ,−1,0,1, . . ..
Then, the magnetostatic energy per unit volume, for the

stripe domain system, is defined by

Edip = 1

2

1

(2D)t

∫ D

−D

dy

∫ t

0
dz M(r) · ∇r ψ(r), (A6)

since the magnetization M(x,y,z) does not depend on x

and, consequently, the magnetic potential ψ(x,y,z) is also
independent of x. The latter conclusion immediately results
from Eq. (A3) upon the substitution x ′ → x ′ + x, which leads
to the following expression for the magnetic potential:

ψ(r) =
∫

dr′ My(y ′)(y − y ′) + Mz(y ′)(z − z′)
[(x ′)2 + (y − y ′)2 + (z − z′)2]3/2

=

−
∫

dr′
[
My(y ′)

∂g(r,r′)
∂y

+ Mz(y
′)

∂g(r,r′)
∂z

]
, (A7)

where

g(r,r′) = [(x ′)2 + (y − y ′)2 + (z − z′)2]−1/2 = 1/|r∗ − r′|
(A8)

064414-7
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is defined with r∗ = (0,y,z). Then, from Eqs. (A6) and (A7),
we find

Edip = − 1

4Dt

∫ D

−D

dy

∫ t

0
dz

∫
dr′

×
[
My(y)My(y ′)

∂2g

∂y ′2 + Mz(y)Mz(y
′)

∂2g

∂z′2

]

− 3

4Dt

∫ D

−D

dy

∫ t

0
dz

∫
dr′

× [My(y)Mz(y ′) + Mz(y)My(y ′)](y − y ′)(z − z′)
[(x ′)2 + (y − y ′)2 + (z − z′)2]5/2

,

(A9)

where the relations ∂2g/∂y2 = ∂2g/∂y ′2, ∂2g/∂z2 = ∂2g/∂z′2
have been used. The second term of Edip in Eq. (A9) vanishes,
since the substitution z ↔ z′ leads to the negative of this
term. Also, one can add My(y)My(y ′)∂2g(r,r′)/∂x ′2 inside
the brackets in the first term of Edip in Eq. (A9) since the
integral of ∂2g(r,r′)/∂x ′2 over x ′ (within the limits −∞ and
∞) vanishes. As a result, the magnetostatic energy is expressed
as follows:

Edip = − 1

4Dt

∫ D

−D

dy

∫ t

0
dz

∫
dr′

[
My(y)My(y ′)

×
(

∂2g

∂x ′ 2
+ ∂2g

∂y ′ 2

)
+ Mz(y)Mz(y

′)
∂g

∂z′ 2

]
.

(A10)

Since the function g(r,r′) satisfies the Poisson equation(
∂2

∂x ′ 2
+ ∂2

∂y ′ 2
+ ∂2

∂z′ 2

)
g(r,r′) = −4πδ(r′ − r∗), (A11)

the above expression (A10) for Edip can be further simplified
to the following form:

Edip = π

Dt

∫ D

−D

dy

∫ t

0
dzM2

y (y) − 1

4Dt

∫ D

−D

dy

∫ t

0
dz

∫
dr′

× [Mz(y)Mz(y
′) − My(y)My(y ′)]

∂2g

∂z′ 2
. (A12)

The calculation of the first integral in Eq. (A12) is straightfor-
ward since M2

y (y) = M2
s sin2 θ sin2 ϕ̃ is constant throughout

the film; see Eqs. (A4) and (A5). Thus, using the angle
dependence of My and Mz, given in Eq. (A4), we get the
following formula for the magnetostatic energy for arbitrary
orientation of magnetization:

Edip(t,D,θ,ϕ̃) = 2πM2
s sin2 θ sin2 ϕ̃

+ (cos2 θ − sin2 θ sin2 ϕ̃)J (t,D) (A13)

where

J (t,D) = − 1

4Dt

∫ D

−D

dy

∫ t

0
dz

∫
dr′ M(y)M(y ′)

∂2g

∂z′ 2
.

(A14)

From this relation we immediately see that

J (t,D) = Edip(t,D; θ = 0) (A15)

and, consequently, the final expression (3) for Edip(t,D,θ,ϕ̃)
is obtained.
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