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Alternative splicing is an elaborately regulated co-/post-transcriptional process that 

dramatically expands the diversity and complexity of the eukaryotic transcriptome and 

proteome. A coordinated cell type-specific alternative splicing network is essential for cell-

fate determination and tissue-identity acquisition. Defects in splicing machinery, including 

the cis-acting elements and trans-acting factors, can result in extensive aberrant splicing, 

which has been implicated in a wide range of human diseases, especially cancers and 

neurological disorders. Large-scale RNA sequencing (RNA-seq) data accumulated in public 

repositories or generated by consortium projects provide an unprecedented resource for 

more comprehensive elucidation on splicing regulation in development and disease. In the 
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meantime, it also posed new challenges for the development of computational tools on 

faster profiling and more precise interpretation of the alternative splicing. 

 The first part of the dissertation presents rMATS-turbo, referring to rMATS 4.0.1 or 

above, an ultra-fast computational tool for alternative splicing analysis in a time- and 

memory-efficient manner. We provide two major application scenarios of rMATS-turbo to 

demonstrate its capability for straightforward and fast splicing analysis. Firstly, we 

described a single-command differential splicing analysis between two cell lines, yielding a 

robust identification of splicing alterations, including those derived from novel splice sites. 

Secondly, we demonstrated the workflow for comprehensive profiling of splicing landscape 

using 1,019 RNA-seq datasets (18.58 T base) from the Cancer Cell Line Encyclopedia. 

Benchmarks of time and memory consumption revealed that rMATS-turbo still performs 

well even with increasing read depth or sample size. These results illustrated the ultra-fast 

nature of rMATS-turbo, which makes it a useful tool for splicing analysis on large-scale 

RNA-seq data. 

 In the second and third parts of the dissertation, we exploited rMATS-turbo and 

other computational approaches to study the dynamics and regulation of splicing in tissue 

development and disease. In the second part, we sought to evaluate how alternative 

splicing, under the control of RNA binding proteins (RBPs), affects cell fate commitment 

during induced osteogenic differentiation of human bone marrow-derived multipotent 

stem/stromal progenitor cells (MSPCs). Our analysis revealed temporal coordination 

between widespread alternative splicing changes and RBP expression alterations. We also 

developed a new computational platform to screen key RBPs during development using 

time-course RNA-seq data. Nine RBPs were identified as potential key splicing regulators 
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during osteogenic differentiation. Perturbation of two candidate RBPs, KHDRBS3 and 

CPEB2 inhibited MSPC osteogenesis in vitro, validating our computational prediction of 

“driver” RBPs. 

 In the third part of the dissertation, inspired by previous studies implying a linkage 

of PRMT9 with splicing and brain development, we aimed to unravel the direct molecular, 

cellular, and pathological contributions of PRMT9 on neurological disorders. First, we 

showed that the autosomal recessive intellectual disability-associated variant, PRMT9 

G189R, cannot catalyze SF3B2 methylation on R508 (R508me2s) and is extremely 

unstable. We also demonstrated that Prmt9 conditional KO in excitatory neurons resulted 

in impairment of learning, memory, and maturation of functional synapses in mice. The 

transcriptomic analysis discovered widespread splicing alterations, but no steady-state 

gene expression changes in KO mice, which indicates that alternative splicing 

independently defines the brain-specific transcriptome in Prmt9 KO mice. Moreover, genes 

with splicing changes were enriched in neuron- and synapse-related pathways. All of those 

findings indicated a PRMT9-SF3B2-splicing-synapse regulatory cascade linking PRMT9 

with brain development. Finally, a working model was proposed that PRMT9-mediated 

SF3B2 R508me2s regulates splicing through 3’ splice site competition by altering 

SF3B2/pre-mRNA interaction. Overall, this work clarified the molecular, cellular, and 

functional contributions of PRMT9 and also deepened our insights into the splicing 

regulations in the pathogenesis of intellectual disability and related disorders.  
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 1 

1 INTRODUCTION 

The generic information coded by DNAs can be passed to RNA molecules though 

transcription, which acts as the molecular templates for the synthesis of proteins. However, 

the number of protein-coding genes is extremely low compared to the diversity of 

proteome in eukaryotic cells. The proteomic complexity is achieved by both co-/post-

transcriptional processing of the precursor mRNA (pre-mRNA), and the post-translational 

modifications of protein products. A ubiquitous and pivotal step of nascent RNA processing 

is alternative splicing, an essential biological process that generates a vast and diverse RNA 

population by selective intron removal and exon joining 1. Indeed, genome-wide studies 

estimated that 90-95% of human genes undergo alternative splicing. 

 RNA splicing is elaborately coordinated by context-dependent interaction between 

cis-acting elements and trans-acting factors 2-5. The core cis-acting elements strictly 

required by the spliceosome consist of 5’ and 3’ splice site, branch point site, and 

polypyrimidine track upstream of the 3’ splice site 2,6 on the pre-mRNA. Other cis-acting 

elements comprise splicing regulatory elements (SREs) on pre-mRNA, including exonic 
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splicing enhancers (ESEs), exonic splicing silencers (ESSs), intronic splicing enhancers 

(ISEs), and intronic splicing silencers (ISSs). Trans-acting factors can be categorized into 

two major types: 1) RNA components of spliceosome (small nuclear RNAs, snRNAs) that 

base-pairing with cis-acting elements. For example, U1 snRNA and U2 snRNA can be 

anchored to 5’ splice site and branch point site adjacent 3’ splice site; 2) protein 

components of spliceosome complex and other RNA binding proteins (RBPs) that 

selectively binds to the SREs. 

 It is now well established that temporal control of alternative splicing is critical for 

cell-fate determination and tissue-identity acquisition 7. Dysregulation of the splicing 

networks has also been reported to contributes to the pathogenesis of diseases 8,9, 

especially cancers 10 and neurological disorders 11,12, yielding a massive inventory for 

potential therapeutic targets 13-15. Splicing alterations underlying disease progression often 

involve changes in splicing regulatory machinery, including both cis-acting elements and 

trans-acting factors. In fact, population-scale transcriptomic studies have shown that about 

one-third of disease-causing genetic mutations are related to mis-splicing, for example, the 

creation of cryptic splice sites 16. The physiological and pathological contributions of 

mutations in cis-acting elements are usually mediated by splicing changes in individual 

gene 17, while defects in trans-acting factors usually induce transcriptome-wide 

alternations in splicing. Trans-acting snRNAs has been reported to be recurrently mutated 

in multiple cancer types 18,19 as well as neurodegenerative disease 20, which lead to splicing 

alterations with an excessive usage of cryptic splice sites 18,19. Besides, internal m6Am 

modifications of U2 snRNA can also induce splicing changes 21,22. As for the protein 

component of trans-acting factors, cancer-associated hotspot mutations in spliceosomal 
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proteins or RBPs has been identified and proved to generate aberrant splicing 23,24, which 

can be targeted by pharmacological modulation of the spliceosome 25. Variation of protein 

abundance of splicing factors also plays an important role in development 26 or disease 27. 

Last but not least, post-translational modifications of splicing factors become an active 

research topic for splicing 28,29 and splicing-related clinical investigations 30.  

 To date, there are a number of computational tools developed for the detection, 

quantification, and differential analysis of alternative splicing from RNA sequencing (RNA-

seq) data 31-38. A common challenge for most of those computational tools is that they are 

computationally intensive, which limits their application on large-/population-scale 

dataset. In the meantime, due to the advances in sequencing technologies and reduction of 

sequencing cost, enormous RNA-seq dataset have been generated, leading to a rapid 

accumulation of RNA-seq data in public repositories, such as Sequence Read Archive (SRA) 

39. Moreover, the emerge of large-scale consortium-based studies also provides 

unprecedented resources for population-scale alternative splicing analysis (for example, 

TCGA 40, ENCODE 41, GTEx 42 and CCLE 43). This further poses computational burdens on 

alternative splicing analysis, and urges the development of computationally efficient tools 

for comprehensive profiling of splicing landscape from massive RNA-seq datasets. 

 As an effort to resolve this challenge, in Chapter 2 of this dissertation, we describe 

the rMATS-turbo, referring to ultra-fast version rMATS 4.0.1 or above, which exhibits 

dramatic improvement in processing speed and storage efficiency for alternative splicing 

analysis. We provide two major application scenarios of rMATS-turbo to demonstrate its 

capabilities as well as benchmark its time and memory usage. Firstly, we performed a 

general single-command two-group comparison between two cell lines, which identified 



 4 

robust differential splicing changes, including events derived from cryptic splice sites. 

Secondly, we demonstrated the workflow for parallel processing of large-scale datasets in a 

time- and memory-efficient manner using 1,019 RNA-seq datasets (18.58 T base) from the 

Cancer Cell Line Encyclopedia. Both examples were performed on a shared high-

performance computing cluster with a Unix-based operating system using a single thread. 

The first example takes ~6 h with 11 GB peak RAM. The second example takes ~ 3 days 

when running the prep steps in parallel (24 GB RAM), which illustrated the ultra-fast 

processing speed of rMATS-turbo to perform splicing analysis using large-scale RNA-seq 

data. 

 In Chapter 3 and Chapter 4 of the dissertation, we applied rMATS-turbo on various 

datasets to elucidate the dynamics and regulation of alternative splicing under normal 

tissue development or disease scenario. In these two sections, we demonstrated the 

regulation of splicing by temporal expression of trans-acting RBPs and post-translational 

modification of trans-acting spliceosomal proteins, respectively. In Chapter 3, We sought to 

evaluate how AS, under the control of RBPs, affects cell fate commitment during induced 

osteogenic differentiation of human bone marrow-derived multipotent stem/stromal 

progenitor cells (MSPCs). We generated a time-course RNA sequencing (RNA-seq) dataset 

representative of induced MSPC differentiation to osteoblasts. Our analysis utilizing 

rMATS-turbo revealed widespread AS changes coordinated with differential RBP 

expression at multiple time points, including many AS changes in non-differentially 

expressed genes. We also developed a computational platform to identify key splicing 

regulators of alternative splicing during osteogenic differentiation using time-course RNA-

seq data, which takes into account the temporal patterns of exon skipping and RBP 
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expression as well as RBP binding in the vicinity of regulated exons. In total, we identified 

nine RBPs as potential key splicing regulators during MSPC osteogenic differentiation. 

Perturbation of two candidate RBP genes, KHDRBS3 and CPEB2, by siRNA knockdown, 

inhibited MSPC osteogenesis in vitro, validating our computational prediction of “driver” 

RBPs. Overall, this work highlighted a high degree of complexity in the splicing regulation 

during osteogenic differentiation. Our computational approach may be applied to other 

time-course RNA-seq data to explore dynamic regulation of alternative splicing by RBPs in 

other biological processes or disease trajectories. 

 In Chapter 4, we aimed to measure the enzymatic activity of PRMT9 G189R 

mutant, which is previously proved causal in autosomal recessive intellectual disability 

disease, and to decipher the linkage between PRMT9 and brain-related functions. Both in 

vitro and in vivo methylation assays showed that wild-type but not the G189R mutant 

PRMT9 can catalyze the symmetric dimethylarginine of SF3B2 at R508. G189R mutant 

PRMT9 has also been proved unstable, as demonstrated by significantly shortened protein 

half-life. To dissect the behavior and cellular consequences of Prmt9 depletion in excitatory 

neurons, Prmt9 conditional knockout (cKO) mice were bred, which exhibited impaired 

learning, memory and formation of functional synapses. RNA-seq samples were extracted 

from hippocampus tissue of two-week-old wild-type or whole body Prmt9 KO mice and 

subject to RNA-seq. Our transcriptomic analysis discovered wide-spread splicing 

alterations, but no steady-state gene expression changes in KO samples. Also, we revealed 

that genes with splicing changes were enriched in neuron- and synapse-related pathways. 

All of those findings indicated a PRMT9-SF3B2-splicing-synapse regulatory cascade linking 

PRMT9 with brain development. Finally, sequence feature comparisons suggested that 



 6 

PRMT9-mediated SF3B2 R508me2s regulates splicing through 3’ splice site competition by 

altering SF3B2/pre-mRNA interaction. The CLIP-qPCR measurement of SF3B2 interaction 

with 3’ splice site sequences in upstream and downstream of differentially spliced exons 

supported this model. Overall, this work clarified the molecular, cellular and functional 

contributions of PRMT9, which deepened our insights into the pathogenesis of intellectual 

disability and related disorders. 
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2 RMATS-TURBO: AN 
ULTRA-FAST 
COMPUTATIONAL 
PLATFORM FOR 
PROFILING OF SPLICING 
LANDSCAPE USING LARGE-
SCALE RNA-SEQ DATA 

2.1 Introduction 

Enormous RNA sequencing (RNA-seq) data have been produced due to the advances in 

sequencing technologies and reduction of sequencing cost, resulting in rapid accumulation 

of RNA-seq data in public repositories, such as Sequence Read Archive (SRA) 39. Moreover, 

the emergence of large-scale consortium-based studies also provides unprecedented 
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resources for population-scale alternative splicing analysis (for example, TCGA 40, ENCODE 

41, GTEx 42 and CCLE 43). One key computational challenge underlying the accumulation of 

data is the time and memory limitation required for alternative splicing analysis on large-

scale datasets. 

A plethora of computational approaches have been developed to facilitate the identification 

and quantification of differential alternative splicing from RNA-seq data. There are two 

major quantification strategies: isoform-based models (e.g. Cuffdiff231, DiffSplice32) and 

count-based models. The latter can be further divided into exon/junction-based models 

(e.g. DEXSeq33, JunctionSeq34) and event-based models (e.g. rMATS35, LeafCutter36, MAJIQ37, 

SUPPA238). Isoform-based methods aims to reconstruct full-length transcripts and perform 

statistical test based on isoform-resolution abundances. However, they highly depend on 

accurate transcript quantification and have decreased resolution on the genome compared 

to count-based models. Exon/junction-based methods have hyper-focused resolutions on 

the exons or junctions, but cannot infer the types of the splicing events. Based on a 

comprehensive evaluation of differential splicing tools 44, rMATS and MAJIQ scored better 

than other event-based methods in terms of number of detected events, as well as precision 

and recall rate. However, no single tool outperformed the others across all measurement. 

For example, MAJIQ does not support paired sample comparisons between groups, 

although it requires the least maximum memory. Another major common limitation shared 

by isoform-based methods and event-based methods is that the time and memory 

consumption increased dramatically with the number of samples, which restricts their 

application on large-scale and multi-consortium datasets. 
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 Among those methods, rMATS 35, a software that enables the robust and flexible 

detection of differential alternative splicing from replicate RNA-seq, is developed and 

actively maintained by our lab. It has been widely used for alternative splicing analysis in 

various species under different circumstances 27,45-50, including the reveal of functional map 

of human RNA binding proteins by ENCODE consortium 3. Over the years we have made 

substantial updates and added numerous features to the rMATS software, especially the 

rMATS-turbo re-implementation, which refers to version rMATS 4.0.1 or above. rMATS-

turbo inherits the statistical model and robustness of rMATS while incorporating new 

splicing graph data structure and data processing pipeline, allowing for more sensitive 

differential alternative splicing detection and ultra-fast processing speed, making it a more 

powerful tool on large-scale RNA-seq datasets. While widely used by the research 

community 27,47-56, the rMATS-turbo software has never been systematically introduced. 

Here we will describe the workflow and features of rMATS-turbo, and demonstrate how to 

use it to process massive RNA-seq datasets in a parallel manner on a computer cluster. 

2.2 Results 

2.2.1 Overview of the rMATS-turbo framework 

The rMATS-turbo computational program is designed to identify and quantify alternative 

splicing events in large-scale RNA-seq datasets, as well as to analyze the statistical 

significance of splicing changes between user-defined groups. Figure 2.1 provides an 

overview of the rMATS-turbo software workflow. The whole rMATS-turbo framework can 

be separated into two steps: 1) the prep step and 2) the post step. In the prep step, rMATS-

turbo takes FASTQ or BAM files as input and transforms them into individual splicing 
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graphs, with exons represented by nodes and exon-exon junctions represented by edges. 

The splicing graphs are expanded by RNA-seq reads on the backbone constructed from the 

reference annotation file. In the post step, the splicing graphs from all inputs are merged 

together into a single splicing graph. This merged splicing graph can then be used 1) to 

identify different types of splicing events based on the graph structure, and 2) to quantify 

exon usage based on the edge weights. The post step also implements a statistical model to 

facilitate the detection of significant differential splicing changes between user-defined 

groups. Box 2.1 provides detailed descriptions of how to use the prep and post steps, as 

well as other arguments of rMATS-turbo.  

 The rMATS-turbo software can identify and quantify the five basic patterns of 

alternative splicing, including skipped exon (SE, exon skipping), alternative 5’ splice site 

(A5SS), alternative 3’ splice site (A3SS), mutually exclusive exon (MXE), and retained intron 

(RI, intron retention) events. Exon inclusion levels are assessed by using the percent 

spliced in (PSI) value, which represents the percentage of mRNA transcripts that include a 

specific exon or splice junction. PSI can be calculated from the following formula:  

 

where I and S represent read counts for the inclusion isoform and skipping isoform, 

respectively; and  and  represent the effective lengths for the inclusion isoform and 

skipping isoform, respectively. Supplementary Figure 2.6 presents a detailed illustration 

of the classification of supporting reads and calculation of effective lengths. Each type of 

alternative splicing event has a corresponding set of output files, which are described in 

Box 2. 
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2.2.2 rMATS-turbo facilitate easy and robust analysis of alternative splicing 
in a user-friendly manner 

Compared to rMATS, rMATS-turbo retains the statistical robustness in identifying 

differential splicing changes while introducing new options and modules to enhance its 

performance, as itemized below. 

• Most alternative splicing analysis tools underperform on large-scale datasets 

because of long computational time and high memory usage. Thus, the most 

important improvement offered by rMATS-turbo is that the computational time and 

memory usage are dramatically decreased compared to rMATS, especially when 

running on large-scale datasets (n ≥ 200). This feature makes rMATS-turbo an 

extremely powerful tool for alternative splicing profiling on large-scale datasets 

from various consortium projects. This improvement is enabled by decoupling of 

the prep and post steps (Figure 2.1), which allows for the parallel processing of 

input files in individual prep steps. Specifically, the graph-construction prep step is 

separated from the splicing event-detection post step by using the ‘--task prep’ and 

the ‘--task post’ options. Separation of the prep and post steps also allows for the 

addition of additional samples after the initial run. Rather than running the entire 

tool on all samples whenever a new sample arrives, users can process new samples 

in a separate prep step. Then, the splicing graphs from previous runs can be merged 

together by running the post steps together.  

• rMATS-turbo incorporates a new feature, ‘--novelSS’, which allows the detection of 

splicing events that involve unannotated (or cryptic) splice sites. Although an exon 

definition mechanism is present to maintain the splicing fidelity and prevent 
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uncontrolled splicing at cryptic sites, non-annotated splicing events are increasingly 

being discovered through the analysis of mouse and human RNA-seq data 57. 

Moreover, mutations in the RNA 18,19 or protein 23 components of the spliceosome 

have been reported in multiple cancers, which can result in the global selection of 

cryptic splice sites. The ‘--novelSS' feature could be useful for deciphering aberrant 

splicing in cancers that exhibit excess usage of cryptic splice sites.  

• The statistical model in rMATS was built into the entire pipeline as a single module. 

In rMATS-turbo, the user has the option (using ‘--task stat’) to decouple the 

statistical model from the event identification and quantification procedure, to fulfill 

the demand for multiple comparisons when more than two groups are involved. 

Taking the event definition file and count file (Box 2.1) from the post step of 

rMATS-turbo as input, the ‘--task stat’ option only executes the statistical 

comparison between defined groups. When applying this option, users should 1) 

process all samples together using the typical rMATS pipeline (prep and post steps) 

with the ‘--statoff’ tag to disable the statistical model. 2) The output directory will 

contain all of the necessary event definition files and count files for all five types of 

splicing events. The count files will contain information for all samples. Count 

information for a specific comparison can be extracted from the count files by using 

the code provided in rMATS_P/prepare_stat_inputs.py. 3) Finally, users can use the 

event definition files and extracted count files as input to conduct statistical 

comparisons between desired groups. 



 19 

• Whereas the default statistical model considers the samples to be unpaired, we now 

provide an option (‘--paired-stat’) to perform paired statistical comparisons, using 

the model described in our PAIRADISE software 58.  

• We have included an option to allow users to focus on a splicing event of interest, 

and to enable simpler multi-lab or multi-project comparisons. Specifically, the ‘--

fixed-event-set’ option allows rMATS-turbo to read a user-defined event set and 

perform the quantification. 

• One-sample or one-group quantification is now permitted. To enable this, the user 

should only provide ‘--b1’ or ‘--s1’ options and should omit ‘--b2’ or ‘--s2’ options. 

• Other minor improvements include user-defined permission of variable read length 

by using the ‘--variable-read-length’ flag and permission of hard/soft-clipping of 

RNA-seq reads by using the ‘--allow-clipping’ flag. 

• Splicing events detected by rMATS-turbo can be visualized by using the 

rmats2sashimiplot software (https://github.com/Xinglab/rmats2sashimiplot) designed 

specifically for rMATS-turbo output. 

2.2.3 Applications of the protocol 

The original rMATS implementation and the current ultra-fast rMATS-turbo version 27,47-56 

are widely used to perform transcriptome-wide alternative splicing analysis. Especially, we 

actively maintained the user interface of the software, which helped users quickly and 

easily adopt the new versions of rMATS, including rMATS-turbo. To date, various versions 

of rMATS have been downloaded > 70k times from different resources, including 

SourceForge (http://rnaseq-mats.sourceforge.net), Bioconda 

https://github.com/Xinglab/rmats2sashimiplot
http://rnaseq-mats.sourceforge.net/
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(https://anaconda.org/bioconda/rmats), Github (https://github.com/Xinglab/rmats-turbo) and 

Docker (https://hub.docker.com/r/xinglab/rmats). Although mostly applied to RNA-seq data 

of human and mouse 51,53, the rMATS software has proven useful in various non-

mammalian organisms, including Drosophila 48, birds 49, as well as in plants, including 

soybean 46, grape 45, and Arabidopsis thaliana 47,50. The software has been successfully 

exploited to reveal wide-spread splicing changes in normal tissue development 55,59,60 and 

in different diseases 27,52,54,56. It has also recently been used to reveal a large-scale binding 

and functional map of RNA binding proteins in ENCODE consortium 3.  

 The general analytical framework of rMATS-turbo can be utilized to infer the 

statistical significance of splicing changes between user-defined groups, for example, 

normal tissue versus disease tissue 27, control group versus treatment group 53, or step-

wise time series of samples during development 26,61. This analysis can aid in the 

prioritization of splicing changes that are of high biological relevance or 

diagnostic/prognostic/therapeutic value 52,54. Moreover, through the parallel processing of 

input FASTQ/BAM files by separate prep steps and a summarizing post step, rMATS-turbo 

is remarkably competent for comprehensive splicing quantification on large- or 

population-scale RNA-seq studies. Finally, the resulting PSI value matrix can be further 

adapted for clustering to uncover the potential relationships between samples. The PSI 

matrix can also be correlated to score-based values by linear regression for other purposes, 

such as when using gene expression values to indicate potential regulation of splicing by 

certain RNA binding proteins. 

 To illustrate the application of rMATS-turbo, we describe in detail how to use 

rMATS-turbo in two representative application scenarios. Note, however, that this protocol 

https://anaconda.org/bioconda/rmats
https://github.com/Xinglab/rmats-turbo
https://hub.docker.com/r/xinglab/rmats
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can be generalized to many other scenarios and datasets. The datasets from Examples 1 

and 2 are described in the ‘Materials - Required data’ section, with detailed information 

given in the Supplementary Table 2.1 and 2.2. 

2.2.3.1 Example 1: sinlge-command general two-group differential splicing analysis  

For this example, we performed rMATS-turbo with a one-line command with prep and post 

steps running together, using RNA-seq data from two prostate cancer cell lines (PC3E and 

GS689). In addition, the ‘--novelSS’ flag was used to demonstrate the cryptic splice site 

detection feature. Epithelial-mesenchymal transition (EMT) is a reversible and dynamic 

process with changes in cellular organization from epithelial to mesenchymal phenotypes 

62, leading to functional consequences in cell migration, invasion and metastasis. The PC3E 

cell line has epithelial cell-like characteristics, whereas the GC689 cell line exhibits 

mesenchymal and invasive properties.  

 The final output files (n = 36) will be generated to the output folder specified by 

the ‘--od’ parameter. There will be 7 files for each of the five types of alternative splicing 

events and 1 file summarizing the total number of events detected by rMATS-turbo. A more 

detailed description of the output files can be found in the public rMATS-turbo GitHub 

repository (https://github.com/Xinglab/rmats-turbo) and in Box 2.2. 

 Using junction reads from RNA-seq with rMATS-turbo, we identified a total of 

690,094 alternative splicing events, including all 5 basic types (Figure 2.1). After we 

filtered out events supported by fewer than 10 junction reads and events with extreme PSI 

values (average PSI value < 0.05 or > 0.95 in both groups), the number of alternative 

splicing events decreased to 155,056 (Figure 2.2a). SE events were the most prevalent 

https://github.com/Xinglab/rmats-turbo
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type, accounting for ~40% of the total number of filtered alternative splicing events 

(Figure 2.2a). 

 rMATS-turbo also tests for statistical differences of alternative splicing between 

the PC3E and GS689 cell lines. rMATS-turbo reports p-values and delta PSI in the final 

output file. After filtering by FDR (≤0.01) and delta PSI value (≥0.05), rMATS-turbo 

identified 14,220 events (~ 9.16%) that were significantly different between the PC3E and 

GS689 cell lines (Figure 2.2b, 2.2c). For example, the USO1 (General Vesicular Transport 

Factor P115) gene demonstrated a dramatic isoform switch on cassette exon 14 

(chr4:76716488-76716509), from the exon-inclusion isoform (91% inclusion level) in the 

epithelial-like PC3E cell line to the exon-skipping isoform (5% inclusion level) in the 

mesenchymal-like GS689 cell line (Figure 2.2d). This is consistent with previous 

observation that USO1 showed a reduction in exon 14 (chr4:76716488-76716509) 

inclusion in Hepatocellular carcinoma 63. 

 Alternative splicing events derived from novel splice sites were discovered by 

turning on the novel splice site detection feature (‘--novelSS’ flag). Most of these novel 

splice sites were of the canonical ‘GT-AG’ dinucleotide (data not shown), which verifies the 

reliability and validity of novel splice site detection. For example, a novel exon 

(chr19:18232916-18232937) in the MAST3 (Microtubule Associated Serine/Threonine 

Kinase 3) gene is exclusively included/expressed in GS689 cells but not in PC3E cells 

(Figure 2.2e). This novel exon is a 21-nucleotide ‘micro-exon’ that is highly evolutionarily 

conserved, which has been reported to be misregulated in human brain 64,65.  
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2.2.3.2 Example 2: multi-command ultra-fast profiling of alternative splicing in a large RNA-seq 
dataset 

In this example, the rMATS-turbo process is split into parallel processing of input files via 

multiple separate prep steps, followed by a single post step. RNA-seq data of 1,019 human 

cell lines from the Cancer Cell Line Encyclopedia (CCLE) are leveraged to illustrate the 

ability of rMATS-turbo to parallelly process a large amount of input files. We predicted the 

EMT phenotype of CCLE cell lines by adapting the quantitative measurement of and EMT 

score given by a two-sample Kolmogorov–Smirnov test (2KS), which is based on the 

expression of specific gene signatures 66,67. The SE events highly correlated with the EMT 

scores were visualized by a heatmap. 

 After running the prep steps (Experiment 2, step 4) separately and in parallel for 

each BAM file, the splicing graphs will be generated and saved to ‘.rmats’ files in the ‘--tmp’ 

directory. The ‘.rmats’ files track info from each BAM file separately according to the path 

of the BAM files specified in the input configuration files from ‘--b1’ and/or ‘--b2’ 

parameters. Then, in the post step (Experiment 2, step 5), the ‘.rmats’ splicing graph files 

will be merged together to identify and quantify alternative splicing events. Similar to 

Example 1, the final output files of rMATS turbo (n = 36) will be generated to the output 

folder specified by the ‘--od’ parameter. PSI values for each event are indicated in the 

‘IncLevel1’ and/or ‘IncLevel2’ columns in the [AS type].MATS.JC.txt output file. In contrast 

to Example 1, the p-value and delta PSI columns are marked as NA because all BAM files are 

assigned to group 1 (‘--b1’) and statistical inference was not employed. 

 Using rMATS-turbo, we identified a total of 1,428,168 alternative splicing events 

by junction reads from the RNA-seq data of 1,019 CCLE cell lines. PSI value quantifications 
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can be further utilized to characterize the cell lines and can be correlated to any other 

score-based values to select events of interest after post-processing by stringent filters. For 

example, of the 1,078,334 SE events identified by junction reads, 52,797 SE events 

remained after filtering by read count (average junction reads ≥ 20) and PSI value range 

(PSI5% percentile ≤ 0.95 and PSI95% percentile ≥ 0.05). Of these, 162 were highly correlated 

(Pearson correlation R2 > 0.4) with EMT scores calculated from the two-sample KS test 

based on expression levels of signature genes 66,67. We were able to match 207 signature 

genes (164 epithelial signature genes; 43 mesenchymal signature genes) from the cell line 

signature genes described by Tan et al. to genes in our expression data. As shown in Figure 

2.3, the epithelial or mesenchymal status classification was supported by previous studies 

67,68. The selected SE events showed a clear transition pattern in cell lines originated from 

tissues with hybrid epithelial/mesenchymal states (e.g. breast and lung) 62. By contrast, the 

events showed a more unified pattern in cell lines marked as exclusively mesenchymal (e.g. 

central nervous system, kidney, liver, and skin) or mostly epithelial (e.g. large intestine) 68. 

2.2.4 rMATS-turbo enables ultra-fast splicing analysis on large-scale dataset 

To evaluate the runtime and memory requirement for both prep and post steps of rMATS-

turbo, we documented the wall clock time and maximum memory usage by analyzing the 

1019 CCLE cell lines from CCLE dataset. The benchmarking was performed on a shared 

high-performance computing (HPC) cluster maintained by the Children's Hospital of 

Philadelphia (CHOP). Jobs were run on a system with 24 cores and 128 GB of memory, 

using only one core for each job.  
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 Since prep steps can be run in parallel, the benchmarks are more relevant to the 

size of input FASTQ/BAM files. As shown in Figure 2.4a and 2.4b, the prep step takes ~ 1 h 

and < 1 G memory to generate the splicing graph for a single BAM file under default 

settings, even for samples with deep sequencing depth (>200M). To conserve time, prep 

steps can be run separately and in parallel for different samples. Ultimately, the total time 

required for prep steps on all 1019 will depend on how many resources can be allocated to 

run individual jobs. For the summarizing post step, which merges the splicing graphs 

generated by individual prep steps, the benchmarks are more relevant to the number of 

samples. Under default settings, both runtime and maximum memory usage increased 

linearly along with the number of samples. And it takes ~ 5 h and < 25 G to detect and 

quantify alternative splicing from splicing graphs generated from 1,000 samples (Figure 

2.5a, 2.5b).  

 We also tested the influence of user’s selected options (eg. Novel splice site 

detection feature) on runtime and memory usage of both prep and post steps. For prep 

steps, the time usage for a single sample remains unchanged upon novel splice site 

detection, and the memory usage increased very mildly, with most jobs completed using < 

3 G memory (Figure 2.4c, 2.4d). However, for post step, both time and memory usage 

increased exponentially along with the number of samples when utilizing the novel splice 

site detection feature (Figure 2.5c, 2.5d), which is expected because of the dramatic 

increase of novel nodes and edges added to the merged splicing graphs from different 

samples. One recommended solution for detection of novel splicing events from large scale 

dataset (> 500 samples) is to 1) run post steps on separate batches (< 200 samples), 2) 

merge the detected events from different batches manually as a user-defined event list, and 
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then 3) run the post step on all samples to only perform splicing quantification with ‘--

fixed-event-set’ option. 

 In total, using the resources described in above, it takes ~ 3 d to run both the 

splicing graph-generating prep steps and the events-detecting post step on 1,019 CCLE cell 

lines under default setting. This demonstrated the ultra-fast nature of rMATS-turbo and its 

competence of comprehensive splicing profiling on large-scale or cross-consortium 

datasets. 

2.3 Discussion 

Overall, rMATS-turbo has been proved to be computationally efficient. With decoupled 

splicing graph-generating prep steps and the events-detecting post step, it is able to 

process large-scale datasets with limited memory and dramatically increased speed. 

Although statistical test is designed for two-group comparison, the decoupling of statistical 

test module to the whole analysis pipeline makes it more convenient to perform pairwise 

differential splicing comparisons when multiple conditions are present, which is extremely 

helpful for time-course data, such as RNA-seq data of cell differentiation 48. For two-group 

comparison of relatively small dataset, users can use a straightforward one-line command 

to finish the splicing quantification and differential splicing detection simultaneously 

(application example 1). For splicing profiling of large-scale datasets in a time- and 

memory-efficient manner, users can perform the splicing graph-generation prep steps 

parallelly for each individual sample, and then run a single summarizing post step to detect 

and quantify splicing changes (application example 2). Both procedures help to identify 

splicing changes that are biologically relevant.  
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 Nonetheless, one big drawback of rMATS-turbo is that the time and memory usage 

are sensitive to the number of input samples when the novel splice site detection feature is 

turned on (‘--novelSS’ flag). This makes sense because the number of novel junctions (novel 

nodes and novel edges) would increase dramatically with the number of input 

reads/samples, resulting in exponential expansion of the splicing graph. To make use of 

this novel splice site detection feature on large-scale dataset, one recommended solution is 

to run the post steps on smaller batches (< 200 samples), then merge the detected splicing 

events, including the novel ones, into one single repository, and finally run a single post 

step to only perform the quantification using the ‘--fixed-event-set’ option.  

 In addition, the numbers of reads for either ‘inclusion isoform’ and ‘skipping 

isoform’ (Supplementary Figure 2.6) are the sum of all involved junctions. This will 

create less reliable events if the read counts from one junction is in imbalance with another 

junction, especially in regions with complex splicing patterns. Reliable results will require 

appropriate filtering criteria. Further updates will incorporate reports of read counts for 

individual junctions. 

2.4 Methods 

Since this is a protocols paper, the Method section will describe in details a list of the 

essential materials (including equipment, required data and equipment setup) as well as 

the procedures as a numbered list of direct instructions on how we performed the analysis. 

Critical steps will be highlighted to emphasize those that should be performed in a precise 

manner to maximize the likelihood of success or ensure the best performance. 
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2.4.1 Materials 

2.4.1.1 Equipment 

• Hardware: Computer with Unix-based operating system with ≥25 GB of RAM (32 GB 

is needed for read alignment using STAR if FASTQ files are used as input).  

• Software: Listed below are the software and versions used in this analysis. 

o rMATS-turbo 4.1.1 (https://github.com/Xinglab/rmats-turbo) 

o rmats2sashimiplot 2.0.4 (https://github.com/Xinglab/rmats2sashimiplot) 

o rMATS-turbo dependencies 

o Python 2.7 (Python 3 is also supported) 

o Python libraries  

o Cython 0.27.3 

o numpy 1.16.6 

o BLAS and LAPACK 0.3.7 

o gcc 4.8.5 

o gfortran 4.8.5 

o cmake 3.14.0 

o PAIRADISE (optional) (https://github.com/Xinglab/PAIRADISE) 

o samtools 1.10 (optional) 

o rmast2sashimiplot dependencies 

o Python 2.7 (Python 3 can be used after running 2to3.sh) 

o Python libraries 

o scipy 1.2.1 

o matplotlib 2.2.3 

https://github.com/Xinglab/rmats-turbo
https://github.com/Xinglab/rmats2sashimiplot
https://github.com/Xinglab/PAIRADISE
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o pysam 0.15.4 

o bedtools 2.29.2 

o sratoolkit 2.9.2: for downloading the FASTQ files from SRA archive. 

o STAR 2.7.1a: for alignment of downloaded FASTQ files. 

o R 3.6.1 (optional) 

o Conda 4.8.3 (optional) 

o wget 1.14 (optional) 

2.4.1.2 Required data 

For application example 1, RNA-seq data for PC3E and GS689 cell lines (151.64 GB bases) 

can be downloaded from the SRA archive under accession BioProject PRJNA438990 

(Supplementary Table 2.1). For application example 2, RNA-seq data for the 1,019 cancer 

cell lines from CCLE (18.58 TB bases) can be downloaded from the SRA archive under 

accession BioProject PRJNA523380 (Supplementary Table 2.2). In addition, other required 

input data include: 

• Human hg19 reference genome (6.96 GB) 

(ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_31/GRCh37_mappin

g/GRCh37.primary_assembly.genome.fa.gz) 

• Human hg19 GTF annotation file (65 MB) 

(ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_31/GRCh37_mappin

g/gencode.v31lift37.annotation.gtf.gz) 

• Human hg19 GFF3 annotation file (77 MB) 

(ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_31/GRCh37_mappin

ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_31/GRCh37_mapping/GRCh37.primary_assembly.genome.fa.gz
ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_31/GRCh37_mapping/GRCh37.primary_assembly.genome.fa.gz
ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_31/GRCh37_mapping/gencode.v31lift37.annotation.gtf.gz
ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_31/GRCh37_mapping/gencode.v31lift37.annotation.gtf.gz
ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_31/GRCh37_mapping/gencode.v31lift37.annotation.gff3.gz
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g/gencode.v31lift37.annotation.gff3.gz). This input file is needed by the rmats2sashimiplot 

software when generating the sashimi plot based on genome coordinates. 

2.4.1.3 Equipment setup 

Downloading and installing rMATS-turbo 

After the required dependencies are installed, rMATS-turbo can be downloaded and 

installed through the GitHub repository: 

 

Alternatively, rMATS-turbo and all required dependencies can be installed at once through 

Conda by using the following command: 

 

Downloading and installing rmats2sashimiplot 

The rmats2sashimiplot package can be downloaded from the Github repository: 

 

rmats2sashimiplot is written in Python 2. If using Python 3, the following command must 

first be run to convert the package to Python 3 scripts: 

 

Next, the rmats2sashimiplot package can be installed by running the setup.py file: 

ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_31/GRCh37_mapping/gencode.v31lift37.annotation.gff3.gz
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The package can also be used without installation by providing the path to the script: 

 

Downloading and preparing the required data 

The human hg19 reference genome and related GTF and GFF3 annotation files can be 

downloaded by using ‘wget’ with the following commands: 

 

rMATS-turbo can take either FASTQ or BAM files as input. If FASTQ files are used, rMATS-

turbo will first call the STAR program to perform read mapping. We recommend that users 

perform the alignment separately and use the pre-aligned BAM files as input for rMATS-

turbo. FASTQ files for the datasets used for Example 1 (PC3E and GS689 cell lines) and 

Example 2 (1,019 CCLE cell lines) can be downloaded directly from the SRA archive with 

the sratoolkit software, and then mapped to the human hg19 genome by STAR 69 as follows: 

 

1. Download the .sra files to the workspace of sratoolkit (sra_workspace, specified 

while installing sratoolkit) and then convert the files to FASTQ files. 
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$SRA_RUN represents the SRA run accession number for each cell line. A full list of 

SRA run accession numbers and related sample information for the PC3E and GS689 

cell lines (BioProject PRJNA438990) and CCLE cell lines (BioProject PRJNA523380) 

are available in the Supplementary Table 2.1 and 2.2, respectively. 

2. Generate a reference genome index for STAR using the downloaded hg19 reference 

genome and the related GTF annotation file. 

 

The index will be generated to the STAR_index/gencode.v31lift37 folder indicated 

by the ‘--genomeDir’ parameter. 

3. Align the RNA-seq reads to the hg19 genome with STAR. 

 

$sample_name_1.fastq and $sample_name_2.fastq represent the paths of two 

unzipped FASTQ read pairs from paired-end RNA-seq.  

▲ CRITICAL STEP To facilitate detection of novel/cryptic splice site-derived 

events, we recommend that users use the two-pass alignment mode (--

twopassMode Basic) from STAR 69. 



 33 

▲ CRITICAL STEP STAR usually requires ~32 GB of RAM for mapping to the human 

genome. 

2.4.2 Procedures 

Here we describe all steps for two representative application scenarios of rMATS-turbo. 

Example 1 is a general two-group differential splicing analysis using RNA-seq data from the 

PC3E and GS689 prostate cancer cell lines (BioProject PRJNA438990). Example 2 is the 

profiling of alternative splicing in a large-scale dataset, using RNA-seq data of 1,019 human 

cell lines from CCLE (BioProject PRJNA523380). Supplementary Table 2.1 provides 

troubleshooting advices for running rMATS-turbo, on steps marked with ‘Troubleshooting’ 

marks. 

2.4.2.1 Example 1: sinlge-command general two-group differential splicing analysis 

Set up working directory and input files for rMATS-turbo analysis • Timing ~ 5 min 

1. Set up working directory where all outputs will be written. 

 

2. Generate configuration text files (b1.txt and b2.txt) as input file for rMATS-turbo. 

These two files contain comma-separated lists of FASTQ/BAM files for group1 and 

group2, respectively. 

▲ CRITICAL STEP Either FASTQ files or BAM files can be used by rMATS-turbo. If 

FASTQ files are provided, rMATS-turbo will perform sequencing alignment using 

STAR software. 
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$prefix_dir_group1: Folder containing all FASTQ/BAM files for group 1. 

$prefix_dir_group2: Folder containing all FASTQ/BAM files for group 2. 

Run rMATS-turbo to perform differential splicing analysis using <--task both> 

parameter • Timing ~ 4 h 45 min 

3. Run rmats.py with specified parameters.  

▲ CRITICAL STEP If BAM files are used, the configuration file(s) should be 

specified by ‘--b1’ and/or ‘--b2’; if FASTQ files are used, the configuration files 

should be specified by ‘--s1’ and/or ‘--s2’. 

▲ CRITICAL STEP To facilitate detection of novel/cryptic splice site-derived 

events, we recommend using the two-pass alignment mode (--twopassMode Basic) 

from STAR 69. 

▲ CRITICAL STEP The ‘--paired-stats’ flag can be used if each entry in ‘--b1’ is 

matched with its pair in ‘--b2’ (paired replicates). If this flag is used, the PAIRADISE 

58 software will be utilized to identify differential alternative splicing events based 

on a paired statistical model. 

▲ CRITICAL STEP rMATS-turbo can be executed on multiple threads (specified by 

the ‘--nthread’ parameter) to significantly shorten the runtime. 
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The ‘--novelSS’ flag enables detection of splicing events derived from novel splice 

sites. 

" TROUBLESHOOTING 

Perform downstream analysis and visulization of rMATS-turbo results • Timing ~ 1 h 

4. Filter significant events from the two-group comparisons. The following criteria 

were used and are recommended for Example 1: 

• Read coverage filter: average read count ≥ 10 for both groups. 

• PSI range filter: filter out events with average PSI value < 0.05 or > 0.95 for 

both groups. 

• FDR filter: FDR ≤ 0.01 

• PSI value difference filter: |ΔPSI| ≥ 0.05 

5. Run rmats2sashimiplot software to generate sashimi plots for selected splicing 

events. 

 

where: 

-e refers to the path to a file containing events for which the sashimi plot will be 

generated. The format of this file should be the same as the rMATS-turbo final 

output (e.g. SE.MATS.JC.txt); 

--l1 and –l2 are labels for group 1 and group 2, respectively; 
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--group-info refers to the path to a file that groups the replicates. One sashimi plot 

will be generated for each group (in contrast to the default behavior of one plot per 

replicate). Each line of the file defines a group and is formatted as “group name: 

indices of mapping files”. The content of the example sashimi_groupInfo.txt file used 

in Example 1 is as follows: 

 

" TROUBLESHOOTING 

2.4.2.2 Example 2: multi-command ultra-fast profiling of alternative splicing in a large RNA-seq 
dataset 

Set up input files for rMATS-turbo analysis with prep and post steps separated • 

Timing ~ 5 min 

1. Set up working directory where all outputs will be written. 

 

2. Generate configuration text files for prep step of rMATS-turbo. 

 

$bam1: File path of the input BAM file. 

3. Generate configuration file for post step of rMATS-turbo. This file contains comma-

separated paths of all FASTQ/BAM files. 
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▲ CRITICAL STEP Regardless of whether they are absolute paths or relative paths, 

the paths of the FASTQ/BAM files must be the same in the prep configuration file 

and the post configuration file. 

 

Run rMATS-turbo with prep and post steps separated • Timing ~ 3 d 

4. Run the prep step with the ‘--task prep’ parameter on each sample (BAM files) 

separately. Each prep step takes ~ 1 h to generate the splicing graph for a single 

BAM file (Figure 2.4a).  

▲ CRITICAL STEP For Example 2, in this step, the splicing graph-generating prep 

steps were performed separately and in parallel for each BAM file. This approach is 

extremely helpful for large-scale data analysis because it dramatically decreases 

time and memory usage. The use of ‘--b2’ and ‘--s2’ can be skipped because only one 

FASTQ/BAM configuration file is used. 
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5. Run the post step with the ‘--task post’ parameter on all samples. In this step, the 

splicing graphs generated by the prep steps are merged together to enable detection 

of alternative splicing events. 

▲ CRITICAL STEP The command uses the ‘--statoff’ flag to disable the statistical 

test because only one group is provided. If this flag is not added and only one group 

is provided, the statistical test would be automatically disabled (with a warning 

message).  

 

" TROUBLESHOOTING 

Perform downstream analysis of rMATS-turbo results • Timing ~ 30 min 

6. Filter high-confidence alternative splicing events detected by rMATS-turbo. The 

following criteria were used and are recommended for Example 2:  

• Read coverage filter: average read count ≥ 20 across all 1,019 samples. 

• PSI range filter: 5% quantile of PSI values ≤ 0.95; 95% quantile of PSI values 

≥ 0.05 

7. Calculate the EMT score matrix of the 1,019 CCLE cell lines using the two-sample KS 

test based on expression levels of EMT signature genes, as described in the 

literature 66,67. A total of 207 signature genes (164 epithelial signature genes; 43 

mesenchymal signature genes) from the cell line signature genes described by Tan 

et al. are mapped to genes in our expression data. 



 39 

8. Generate heatmap visualization of alternative splicing events detected by rMATS-

turbo. Skipped exon events showing a high correlation (Pearson correlation R2 > 

0.4) with EMT scores were selected to be displayed in the heatmap.  

2.4.3 Code availability 

rMATS-turbo is freely available on Github (https://github.com/Xinglab/rmats-turbo), 

Bioconda (https://anaconda.org/bioconda/rmats), and SourceForge (http://rnaseq-

mats.sourceforge.net). Source code for rmats2sashimiplot is publicly available at the 

following GitHub repository (https://github.com/Xinglab/rmats2sashimiplot).  

2.4.4 Data availability 

The FASTQ files of PC3E and GS689 cell lines for Example 1 (BioProject PRJNA438990) and 

CCLE cell lines for Example 2 (BioProject PRJNA523380) can be downloaded freely at the 

SRA archive (https://www.ncbi.nlm.nih.gov/sra). The demonstration output files of 

rMATS-turbo and rmats2sashimiplot, as well as the code required to generate the plots are 

available at the GitHub repository (https://github.com/ywang1993/nature_protocols). 

EMT scores calculated from the two-sample KS test based on 207 signature genes for the 

1,019 CCLE cell lines can be retrieved from the folder CCLE/EMT_score in this repository. 

  

https://github.com/Xinglab/rmats-turbo
https://anaconda.org/bioconda/rmats
http://rnaseq-mats.sourceforge.net/
http://rnaseq-mats.sourceforge.net/
https://github.com/Xinglab/rmats2sashimiplot
https://www.ncbi.nlm.nih.gov/sra
https://github.com/ywang1993/nature_protocols
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2.5 Figures 

 

Figure 2.1 Overview of the rMATS-turbo workflow to identify, quantify, and analyze 

alternative splicing events in large-scale RNA-seq datasets.  

The entire workflow comprises two major steps: 1) the prep step, and 2) the post step. The 

prep step enables parallel processing of either FASTQ or BAM files as input to generate 

corresponding splicing graphs. When FASTQ files are used, RNA-seq reads are first aligned 

to the reference genome and converted to standard BAM format by calling STAR software. 

One splicing graph per BAM file is generated and stored in an .rmats file, with exons as 

nodes and junction reads as edges. The post step merges all splicing graphs generated by 

the prep step(s), and then detects and quantifies alternative splicing events. The post step 
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also implements a statistical model that permits the sensitive and robust detection of 

differential alternative splicing events when two groups are provided.  
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Figure 2.2 rMATS-turbo enables identification of significant differential alternative 

splicing events, including those derived from novel splice sites, between PC3E and 

GS689 cell lines. 

(a) Summary pie chart of total alternative splicing events identified by rMATS-turbo in 

PC3E-GS689 dataset after filtering by read count (≥10 in both groups) and PSI value range 

(filter out events with average PSI value < 0.05 or > 0.95 in both groups). (b) Summary pie 

chart of alternative splicing events with significant changes between the two groups (FDR ≤ 

0.01 and |ΔPSI| ≥ 0.05). (c) Volcano plot of skipped exon (SE) events. Each dot represents 

one SE event. The horizontal and vertical dashed lines mark the threshold of significance 
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level (FDR ≤ 0.01) and PSI value change (|ΔPSI| ≥ 0.05), respectively. (d) Sashimi plot 

showing the change in usage of a target exon in USO1. (e) Sashimi plot showing the change 

in usage of a novel exon in MAST3. Black bars and dashed lines on the bottom represent exons 

and introns annotated in the reference, respectively. Solid peaks represent reads per kilobase per 

million mapped (RPKM) mapped to each region. Arches represent splice junctions. Numbers 

represent numbers of reads mapped to each splice junction. PSI values are indicated on top of the 

sashimi plot. Number and PSI value of events shown in this figure are calculated by junction 

reads only. 
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Figure 2.3 Global alternative splicing profiling of the CCLE dataset (n = 1,019). 

The 1,019 cell lines (represented by columns) are grouped by their tissue of origin and 

then ordered by EMT scores calculated from the two-sample KS test based on expression 

level of signature genes (depicted on the top of the heatmap). Red and blue colors 

represent epithelial and mesenchymal status, respectively, classified based on the EMT 

score (red < 0; blue > 0) and KS test p-values (p < 0.05). Heatmap colors represent the Z-

score-transformed PSI values for 162 skipped exon events (represented by rows) that are 

highly correlated (R2 > 0.4) with EMT scores. E/M classification of cell lines from two other 

papers are also shown 67,68. E, epithelial; M, mesenchymal; EMT, epithelial to mesenchymal 

transition. 
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Figure 2.4 Benchmarks of runtime and memory usage for the rMATS-turbo prep step 

based on the read coverage when running on a single BAM file.  

Panel a and b represent the prep steps running without the novel splice site detection 

feature. Panel c and d represent the prep steps running with the novel splice site detection 

feature turned on by adding the ‘--novelSS’ flag. Panel a and c represent the wall clock 

runtime for the job to finish. Panel b and d represent the maxvmem, which is the maximum 

amount of RAM used by the jobs when running. 
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Figure 2.5 Benchmarks of runtime and memory usage for the rMATS-turbo post step 

based on the number of input splicing graphs generated by the prep steps.  

Panel a and b represent the post steps running without novel splice site detection feature. 

Panel c and d represent the post steps running with the novel splice site detection feature 

turned on by adding the ‘--novelSS’ flag. Panel a and c represent the wall clock runtime for 

the job to finish. Panel b and d represent the maxvmem, which is the maximum amount of 

RAM used by the jobs when running. 
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Supplementary Figure 2.6 Schematic illustration of the classification of supporting 

reads and calculation of effective lengths for alternative splicing events.  

Diagrams on the left demonstrate the structures of different alternative splicing events that 

rMATS-turbo recognizes from the splicing graphs. The number of supporting reads can be 

counted by using either only the junction reads (JC) or both the junction and exon body 

reads (JCEC). Depending on whether JC or JCEC reads are used, the effective length 

calculation is adjusted as shown in the formulas on the right side of the diagram. Red line: 

position of junction read of inclusion isoform; orange line: position of exon read of 

inclusion isoform; blue line: position of junction read of skipping isoform; green line: 

position of exon read of skipping isoform. 
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2.6 Tables 

Supplementary Table 2.1 Summary of PC3E and GS689 cell lines used in application 

example 1. 

RUN ASSAY 
TYPE 

BIOPROJECT CELL 

LINE 

INSTRUMENT LIBRARY 

LAYOUT 

LIBRARY 

SELECTION 

TISSUE 

SRR6862379 RNA-Seq PRJNA438990 PC3E Illumina HiSeq 4000 PAIRED cDNA prostate cancer 

SRR6862380 RNA-Seq PRJNA438990 PC3E Illumina HiSeq 4000 PAIRED cDNA prostate cancer 

SRR6862381 RNA-Seq PRJNA438990 PC3E Illumina HiSeq 4000 PAIRED cDNA prostate cancer 

SRR6862382 RNA-Seq PRJNA438990 GS689 Illumina HiSeq 4000 PAIRED cDNA prostate cancer 

SRR6862383 RNA-Seq PRJNA438990 GS689 Illumina HiSeq 4000 PAIRED cDNA prostate cancer 

SRR6862384 RNA-Seq PRJNA438990 GS689 Illumina HiSeq 4000 PAIRED cDNA prostate cancer 

 

 

Supplementary Table 2.2 Summary of the 1,019 CCLE cell lines used in application 

example 2. 

Available at Github repository https://github.com/ywang1993/nature_protocols 

  

https://github.com/ywang1993/nature_protocols
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Supplementary Table 2.3 Troubleshooting table for rMATS-turbo.  

Step Problem Possible reason Solution 
3 (Example 
1) 

Output files are 
empty or only 
contain 
headers 

1. ‘--readLength’ parameters are 
not provided correctly 

2. Input reads differ in read length 
from that of the ‘--readLength’ 
parameter, but the ‘--variable-
read-length’ flag is not added 

3. Input reads have hard/soft 
clipping, but the ‘--allow-
clipping’ flag is not added 

1. Provide a precise read length after the 
‘--readLength’ flag 

2. Add ‘--variable-read-length’ flag if 
lengths of input reads differ 
significantly 

3. Add ‘--allow-clipping’ flag if there are 
many hard/soft clipped reads in the 
input BAM files 

5 (Example 
1) 

rmats2sashimi 
job takes too 
long to finish 

Input file contains too many events 
to plot 

Only select a limited number of events to 
plot, or split input events into multiple 
files and run rmats2sashimiplot on each 
file separately 

5 (Example 
2) 

ValueError: 
invalid literal 
for int() with 
base 10 

Statistical test is performed but 
only one group of samples is 
provided 

Add ‘--statoff’ flag to disable the 
statistical test; or ensure you have 
updated to the latest version, in which 
the statistical test is automatically 
disabled with a warning message when 
only one group is provided 

5 (Example 
2) 

XX.bam not 
found in .rmats 
files; 
XX.bam found X 
times in .rmats 
files 

Splicing graphs (in .rmats file) for 
FASTQ/BAM files in --b1 or --b2 file 
are not found or found multiple 
times in the --tmp folder. 

1. Ensure that the FASTQ/BAM file paths 
are exactly the same between the prep 
and post steps. Assignment of 
FASTQ/BAM files to prep steps does 
not restrict the choice/order of ‘--
b1’/’--s1’ and/or ‘--b2’/‘--s2’ for a post 
step 

2. Ensure that only one splicing graph 
(in .rmats file) is present in the --tmp 
folder (and its subfolders) for one 
input FASTQ/BAM file 
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2.7 Boxes 

Box 2.1 Description of arguments of rMATS-turbo 

  -h, --help            show this help message and exit 
  --version             show program's version number and exit 
  --gtf GTF             An annotation of genes and transcripts in GTF format 
  --b1 B1               A text file containing a comma separated list of the 
                        BAM files for sample_1. (Only if using BAM) 
  --b2 B2               A text file containing a comma separated list of the 
                        BAM files for sample_2. (Only if using BAM) 
  --s1 S1               A text file containing a comma separated list of the 
                        FASTQ files for sample_1. If using paired reads the 
                        format is ":" to separate pairs and "," to separate 
                        replicates. (Only if using fastq) 
  --s2 S2               A text file containing a comma separated list of the 
                        FASTQ files for sample_2. If using paired reads the 
                        format is ":" to separate pairs and "," to separate 
                        replicates. (Only if using fastq) 
  --od OD               The directory for final output from the post step 
  --tmp TMP             The directory for intermediate output such as ".rmats" 
                        files from the prep step 
  -t {paired,single}    Type of read used in the analysis: either "paired" for 
                        paired-end data or "single" for single-end data. 
                        Default: paired 
  --libType {fr-unstranded,fr-firststrand,fr-secondstrand} 
                        Library type. Use fr-firststrand or fr-secondstrand 
                        for strand-specific data. Default: fr-unstranded 
  --readLength READLENGTH 
                        The length of each read 
  --variable-read-length 
                        Allow reads with lengths that differ from --readLength 
                        to be processed. --readLength will still be used to 
                        determine IncFormLen and SkipFormLen 
  --anchorLength ANCHORLENGTH 
                        The anchor length. Default is 1 
  --tophatAnchor TOPHATANCHOR 
                        The "anchor length" or "overhang length" used in the 
                        aligner. At least "anchor length" NT must be mapped to 
                        each end of a given junction. The default is 6. (Only 
                        if using fastq) 
  --bi BINDEX           The directory name of the STAR binary indices (name of 
                        the directory that contains the SA file). (Only if 
                        using fastq) 
  --nthread NTHREAD     The number of threads. The optimal number of threads 
                        should be equal to the number of CPU cores. Default: 1 
  --tstat TSTAT         The number of threads for the statistical model. If 
                        not set then the value of --nthread is used 
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  --cstat CSTAT         The cutoff splicing difference. The cutoff used in the 
                        null hypothesis test for differential splicing. The 
                        default is 0.0001 for 0.01% difference. Valid: 0 <= 
                        cutoff < 1. Does not apply to the paired stats model 
  --task {prep,post,both,inte,stat} 
                        Specify which step(s) of rMATS to run. Default: both. 
                        prep: preprocess BAMs and generate a .rmats file. 
                        post: load .rmats file(s) into memory, detect and 
                        count alternative splicing events, and calculate P 
                        value (if not --statoff). both: prep + post. inte 
                        (integrity): check that the BAM filenames recorded by 
                        the prep task(s) match the BAM filenames for the 
                        current command line. stat: run statistical test on 
                        existing output files 
  --statoff             Skip the statistical analysis 
  --paired-stats        Use the paired stats model 
  --novelSS             Enable detection of novel splice sites (unannotated 
                        splice sites). Default is no detection of novel splice 
                        sites 
  --mil MIL             Minimum Intron Length. Only impacts --novelSS 
                        behavior. Default: 50 
  --mel MEL             Maximum Exon Length. Only impacts --novelSS behavior. 
                        Default: 500 
  --allow-clipping      Allow alignments with soft or hard clipping to be used 
  --fixed-event-set     A directory containing fromGTF.[AS].txt files to be used 
                        Instead of detecting a new set of events. 
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Box 2.2 Output files of rMATS-turbo 

Each type of alternative splicing event has a corresponding set of output files. In the filename templates 

below, [AS_Event] is replaced by one of the five alternative splicing patterns: skipped exon (SE), 

alternative 5’ splice site (A5SS), alternative 3’ splice site (A3SS), mutually exclusive exon (MXE), or 

retained intron (RI). As shown in Supplementary Figure 1, the number of supporting reads can be 

counted by only the junction reads (JC) or by both junction and exon body reads (JCEC). The output file 

from different counting methods is also indicated in the file name. 

 

--od contains the final output files from the post step: 

• [AS_Event].MATS.JC.txt: Final output including only reads that span junctions defined 

by rMATS. 
• [AS_Event].MATS.JCEC.txt: Final output including both reads that span junctions defined by 

rMATS and reads that do not cross an exon boundary. 

• fromGTF.[AS_Event].txt: All identified alternative splicing (AS) events derived from GTF and 

RNA. 

• fromGTF.novelJunction.[AS_Event].txt: Alternative splicing (AS) events that were 

identified only after considering the RNA (as opposed to analyzing the GTF in isolation). Does 

not include events with an unannotated splice site. 

• fromGTF.novelSpliceSite.[AS_Event].txt: This file contains only events that include an 

unannotated splice site. Only relevant if --novelSS is enabled. 

• JC.raw.input.[AS_Event].txt: Event counts including only reads that span junctions defined 

by rMATS. 

• JCEC.raw.input.[AS_Event].txt: Event counts including both reads that span junctions 

defined by rMATS and reads that do not cross an exon boundary. 

• Shared columns: 

o ID: rMATS event id 

o GeneID: Gene id 

o geneSymbol: Gene name 

o chr: Chromosome 

o strand: Strand of the gene 

o IJC_SAMPLE_1: Inclusion counts for sample 1. Replicates are comma separated 
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o SJC_SAMPLE_1: Skipping counts for sample 1. Replicates are comma separated 

o IJC_SAMPLE_2: Inclusion counts for sample 2. Replicates are comma separated 

o SJC_SAMPLE_2: Skipping counts for sample 2. Replicates are comma separated 

o IncFormLen: Length of inclusion form, used for normalization 

o SkipFormLen: Length of skipping form, used for normalization 

o PValue: Significance of splicing difference between the two sample groups. (Only 

available if the statistical model is on) 

o FDR: False Discovery Rate calculated from p-value. (Only available if statistical model is 

on) 

o IncLevel1: Inclusion level for sample 1. Replicates are comma separated. Calculated 

from normalized counts 

o IncLevel2: Inclusion level for sample 2. Replicates are comma separated. Calculated 

from normalized counts 

o IncLevelDifference: average(IncLevel1) - average(IncLevel2) 

• Event specific columns (event coordinates): 

o SE: exonStart_0base exonEnd upstreamES upstreamEE downstreamES downstrea

mEE 

§ The inclusion form includes the target exon (exonStart_0base, exonEnd) 

o MXE: 1stExonStart_0base 1stExonEnd 2ndExonStart_0base 2ndExonEnd upstre

amES upstreamEE downstreamES downstreamEE 

§ If the strand is + then the inclusion form includes the 1st exon 

(1stExonStart_0base, 1stExonEnd) and skips the 2nd exon 

§ If the strand is - then the inclusion form includes the 2nd exon 

(2ndExonStart_0base, 2ndExonEnd) and skips the 1st exon 

o A3SS, 

A5SS: longExonStart_0base longExonEnd shortES shortEE flankingES flankin
gEE 

§ The inclusion form includes the long exon 

(longExonStart_0base, longExonEnd) instead of the short exon 

(shortES, shortEE) 

o RI: riExonStart_0base riExonEnd upstreamES upstreamEE downstreamES downs

treamEE 
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§ The inclusion form includes (retains) the intron (upstreamEE, downstreamES) 

• summary.txt: Brief summary of all AS event types. Includes the total event counts and 

significant event counts. By default, events are counted as significant if FDR <= 0.05. The 

summary can be regenerated with different criteria by running rMATS_P/summary.py 

 

--tmp contains the intermediate files generated by the prep step: 

• [datetime]_[id].rmats: Summary generated from processing a BAM 

• [datetime]_bam[sample_num]_[replicate_num]/Aligned.sortedByCoord.out.bam: result 

of mapping input FASTQ files 

• [datetime]_read_outcomes_by_bam.txt: Counts of the reads used from each BAM along with 

counts of the reasons that reads were not able to be used  
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3 ELUCIDATING DYNAMICS 
AND REGULATION OF 
ALTERNATIVE SPLICING 
DURING OSTEOGENIC 
DIFFERENTIATION 

3.1 Introduction 

As humans age the balance of bone and fat content in the skeleton shifts toward increased 

fat with reciprocal reduction in bone content; this eventually leads to enhanced skeletal 

fragility 70,71. Age-related bone loss resulting in osteoporosis and increased fractures 

represents a major health problem with increased morbidity and decreased quality of life 

72,73. Human bone-forming cells or osteoblasts are derived from bone marrow-derived 

multipotent stem/stromal progenitor cells (MSPCs). As their name implies, when provoked 

MSPCs are capable of undergoing osteogenesis, adipogenesis, chondrogenesis and 
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myogenesis 74,75 with a major differentiation branch point between osteogenesis and 

adipogenesis. This branch point represents a binary fate choice for MSPC. The signals that 

specify MSPC to specific cell differentiation pathways are not fully understood but 

transcription factors are considered by most to be the dominant signal. RUNX2 76,77 and 

PPARγ 78,79 are well known transcription factors that have central roles in osteogenesis and 

adipogenesis, respectively. Our understanding of osteogenic differentiation from MSPC has 

made tremendous progress in the last several decades. This includes: 1) establishing 

criteria for MSPC characterization 80-82; 2) optimizing procedures for isolation 83,84 and 

culture of MSPC 85,86; and 3) determining some of the key regulatory molecules, particularly 

those that control transcription, that modulate MSPC differentiation patterns 87,88.  

 In the mouse, recent studies in transcription and epigenetic mechanisms 

regulating MSPC differentiation using single-cell RNA sequencing (scRNA-seq) approaches 

have yielded important findings with regard to the fate decisions in MSPC differentiation 89-

91. For example, Zhong et al identified a lineage commitment progenitor population that 

could differentiate to adipocytes or osteocytes 91. Additionally, two groups 89,90 found that 

the expression profiles of transcription factors revealed that adipogenesis required a much 

larger number of expressed transcription factors compared to osteogenesis, and that there 

existed a subset of transcription factors that acted in both pro-osteogenic and anti-

adipogenic manner, supporting a net gain in osteoblasts over adipocytes. One report 

demonstrated that adipogenesis invoked more chromatin remodeling relative to 

osteogenesis 89. In each report noted above, selection of either the osteogenesis or 

adipogenesis differentiation path appeared to be binary. 
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 In this work, we studied the role of AS during induced osteogenic differentiation of 

MSPC. We conducted a time course study with primary MSPCs derived from the marrow 

space of human femurs cultured in osteogenic media. At selected time points, RNA was 

obtained for RNA-seq. Extensive and dynamic transcriptomic alterations were found to be 

orchestrated during induced osteogenic differentiation, including remodeling of the gene 

expression and splicing programs. We developed a multi-step bioinformatic strategy to 

identify significantly differentially-expressed RBPs that may be key regulators of AS during 

the process of osteogenesis. 

3.2 Results 

3.2.1 Extensive transcriptomic alterations characterize the induced, stepwise 
differentiation of primary MSPCs to osteoblasts. 

In order to evaluate gene expression and AS regulation during osteogenesis, we cultured 

primary bone marrow-derived MSPCs in osteogenic differentiation media over 12 days to 

obtain temporal MSPC osteogenic differentiation datasets. Cells were stained for alkaline 

phosphatase activity and mineralization by alizarin red every two days (Figure 3.1A). The 

anticipated increase in staining intensity was observed qualitatively (Figure 3.1A) and 

quantitatively (Figure 3.1B). RNAs were isolated in triplicate on day 0, day 2, day 4, day 6, 

day 8 and day 12, followed by high-throughput RNA-seq (Supplementary Figure 3.6A). 

The RNA-seq-derived gene expression data showed that markers of immature osteoblasts 

(MYC and SOX9) were gradually downregulated as markers of osteoblast differentiation 

(RUNX2 and ALPL) were upregulated during the time course (Figure 3.1C), consistent with 

osteogenic differentiation of the MSPCs. These sequential changes in histological staining 
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and RNA-seq-derived marker gene expression confirmed MSPC progression toward a 

mature osteoblast.  

 A substantial remodeling of the gene expression and AS profiles occurred in 

osteogenic media-induced osteogenic differentiation of MSPCs. Using rMATS-turbo (rMATS 

4.0.2) 35, we uncovered ~23,000 AS events across all 18 samples (Supplementary Figure 

3.6D), including exon skipping, alternative 5’ splice sites, alternative 3’ splice sites and 

intron retention. Because exon skipping is the most prevalent and most well-characterized 

type of AS events in human transcriptomes 6 and because it represented 72% of the total 

AS events in this study, we focused on exon skipping events (Supplementary Figure 

3.6D). Temporal profiling of induced changes in the MSPC transcriptome from RNA-seq 

was assessed globally by principal component analysis (PCA). The PCA plots of total gene 

expression, RBP gene expression, and exon skipping showed similar temporal patterns 

(Figure 3.1D), suggesting coordination between total gene expression, RBP gene 

expression and exon skipping. Moreover, the genes contributing most to the separation of 

samples on PC1 in the total gene expression PCA plot were highly enriched in RNA splicing-

related gene ontology terms (Supplementary Figure 3.6B, 3.6C), further indicating the 

coupling of gene expression and splicing programs during induced MSPC osteogenic 

differentiation. Interestingly, genes contributing most to the separation of samples on PC2 

in the exon skipping PCA plot were enriched in regulation of transmembrane calcium ion 

transport terms as well as regulation of RNA splicing terms (Supplementary Figure 3.6E, 

3.6F). This is consistent with the observation that the net flux of calcium to the 

extracellular environment in osteoblasts is closely related to mineralization of the 

collagenous extracellular matrix 92, again highlighting the importance of AS in osteogenic 
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differentiation. Together, this transcriptome-wide analysis of osteogenic differentiation 

identifies interplay of gene expression, splicing and bone development related biological 

processes. 

3.2.2 Pair-wise differential analysis identifies temporal patterns of gene 
expression and exon skipping during MSPC-to-osteoblast differentiation 

It has been well established that coordinated splicing networks play a vital role in cell fate 

determination and result in physiological consequences in various developmental and 

tissue remodeling processes in humans 7. In the field of skeletal modeling and remodeling 

the focus has been on changes in transcription factor gene expression 89. On the other hand, 

there is a lack of systematic assessment of splicing networks in skeletal development and 

maintenance. To fill this knowledge gap and elucidate the dynamics and regulation of AS 

during osteogenic differentiation, we performed pair-wise comparisons on both gene 

expression and exon skipping in MSPC over 12 days of induced osteogenesis (Figure 3.2A). 

Beginning in the early stages of osteogenesis (day 0-2), there was a robust and dynamic 

alteration in the splicing program of MSPCs as they matured to an osteoblast phenotype 

(Figure 3.2A).  

 To further decipher the relationship between gene expression and exon skipping 

in the process of induced MSPC osteogenic differentiation, we investigated the expression 

patterns of splicing-regulated genes. Interestingly, most of those splicing-regulated genes 

were not differentially expressed (Figure 3.2B), suggesting that splicing, in and of itself, 

represents another layer of transcriptome remodeling during osteogenesis. For example, 

the filamin A gene (FLNA), of which missense point mutations are associated with a range 



 66 

of X-linked skeletal dysplasias 93, was persistently highly expressed in both the MSPC and 

mature osteoblast population of cells with no change in gene expression over the 12-days 

of induced osteogenesis (Figure 3.2B, 3.2C). Despite no change in expression of FLNA, the 

inclusion level (percent spliced in, PSI) of the alternatively spliced exon 30 

(ENST00000369850), which maps to the functional filamin domain repeat 15, steadily 

decreased from 0.72 to 0.52 over 12 days of osteogenic induction (Figure 3.2C).  

 Notably, of 604 exon skipping events (from 488 genes) with significant PSI value 

changes in at least 3 pair-wise comparisons, 53 were located in 47 genes encoding 

transcription regulators (Supplementary Table 3.1). Those exon skipping-regulated 

transcription regulators were often affected by 1) loss of a portion or the entirety of a 

functional domain encoded by the alternatively spliced exon, 2) a frame shift resulting in 

disruption or presence of downstream functional domains of the translated protein or 3) 

nonsense-mediated decay (Supplementary Table 3.1); either of these scenarios can lead 

to loss/gain of transcriptional action of the protein with a corresponding global 

reconstruction of the gene expression network. Exon skipping events residing in 

transcription regulator genes without frameshift, NMD induction or functional domain 

encoding exons, can also exert functional consequences. An example is differential 

inclusion/exclusion of exon 4 in the transcriptional co-activator gene, paired mesoderm 

homeobox protein 1 gene (PRRX1; also known as PRX1) (Supplementary Figure 3.7). 

Two isoforms were produced by alternative splicing of the cassette exon 4 in PRRX1: the 

exon 4 skipping isoform, PRRX1A and exon 4 inclusion isoform, PRRX1B. Interestingly, the 

inclusion of exon 4 in the PRRX1 gene introduced an early stop codon, shifting exon 5 to the 

3’ untranslated region encoding a shorter protein isoform (PRRX1b) lacking the functional 
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OAR (otp, aristaless, and rax) domain (Supplementary Figure 3.7A, 3.7B). The OAR 

domain is involved in DNA binding and inhibition of transcription activation 94,95. Previous 

studies have established that PRRX1a and PRRX1b act differentially to regulate progenitor 

cell proliferation and differentiation 96,97. Indeed, the sashimi plot in Supplementary 

Figure 3.7C shows that the inclusion level of exon 4 decreased from 63% on day 0 to 41% 

on day 12, resulting in an isoform switch from the OAR-absent PRRX1B to the OAR-

containing PRRX1A during induced MSPC osteogenesis. This suggests that OAR-containing 

PRRX1A favors an osteogenic differentiation fate more than does the OAR-absent PRRX1B. 

This result parallels with previous observations in the mouse system where 

overexpression of Prrx1b, but not Prxx1a, interferes with Osx- and Runx2-directed mRNA 

expression and inhibits pre-osteoblast-to-osteoblast differentiation 98. 

 Many AS events are coordinately regulated by trans-acting RBPs in a 

developmental stage-specific manner 2,99. The global changes in RBP gene expression 

(Figure 3.2D) and exon skipping PSI values (Figure 3.2F) were displayed as heatmaps; 

each defined by 5 clusters with distinct inter-cluster temporal patterns determined by 

unsupervised hierarchical clustering. Overall, the most pronounced changes for both RBP 

gene expression and exon skipping were observed in the early stages of induced 

osteogenesis (from day 0 to day 2, Figure 3.2D, 3.2F). The temporal RBP gene expression 

patterns and temporal exon skipping PSI value patterns were further delineated into lines 

(Figure 3.2E, 3.2G). Distinct patterns of RBP gene expression emerged from different 

clusters (Figure 3.2E): steady upregulation (e.g., cluster 3); steady downregulation (e.g., 

cluster 2); early stage change (e.g., cluster 1) or late stage change (e.g., cluster 5). Distinct 

patterns of exon skipping PSI values were also observed (Figure 3.2G). This included 
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clusters of exons with: progressive inclusion (e.g., cluster 5); progressive exclusion (e.g., 

clusters 3) and early stage change (e.g., clusters 1 and 2).  

3.2.3 Computational screening identifies RBP candidates for regulation of 
exon skipping during osteogenic differentiation 

To further identify RBPs that could control the splicing program in induced MSPC 

osteogenic differentiation, we developed a computational screening method searching for 

potential ‘key splicing regulators’ among 129 RBPs with known motif position weight 

matrix 100,101. Trans-acting regulatory RBPs usually bind to cis-acting RNA elements in the 

precursor mRNA (pre-mRNA) in a sequence-specific manner with the resulting RBP-

directed splicing behavior frequently dependent on the location of the RBP binding site 

relative to the regulated exon 2,102. Taking this cis-trans locational information into 

consideration, the method described here combineed both correlation analysis and region-

specific motif enrichment analysis to estimate the region-specific regulatory potential of 

RBPs to bind to and influence pre-mRNA splicing (Figure 3.3A). Detected exon skipping 

events not significantly changed in any of the 5 pair-wise comparisons with day 0 were 

classified as background events, while exon skipping events that were significantly changed 

in at least three of the five comparisons were retrieved as foreground events. For each 

differentially expressed RBP, foreground events were assigned into a ‘positive’ or ‘negative’ 

foreground event set based on the correlation coefficient between its PSI value and the RBP 

gene expression if highly correlated (r2>0.5) (Figure 3.3A, top). Sequences extracted from 

each exon skipping event were subsequently scanned for the presence of an RBP binding 

site based on the motif scores calculated from matching the position weight matrix of the 

RBP motifs to possible binding positions (Figure 3.3A, middle). Finally, one-tailed Fisher’s 



 69 

exact tests were performed to estimate the region-specific enrichment of motifs in the 

foreground event sets compared to the background event set (Figure 3.3A, bottom). 

Eleven RNA binding motifs for nine RBPs were determined to be significantly enriched in at 

least one region for at least one foreground event set (Figure 3.3B, 3.3C).  

 KH RNA Binding Domain Containing, Signal Transduction Associated 3B, 

(KHDRBS3, SLM2, T-STAR) was one of the identified RBP splicing regulators with its RNA 

binding motif enriched in exon body region from negatively-correlated foreground event 

set and showed a temporal increase in expression during induced osteogenic 

differentiation (Figure 3.3B, 3.3C). Previous studies reported that KHDRBS3 and another 

member from the STAR family, KHDRBS1 (SAM68), are involved in splicing regulation in a 

variety of developmental and disease processes 7,103-107. Examples of two significantly 

changing exon skipping events, unaccompanied by a difference in gene expression, are 

shown in Supplementary Figure 3.8. During induced osteogenesis two potential 

KHDRBS3 pre-mRNA targets, the transcription factor coregulator gene AIRD4B (RBP1L1, 

RBBP1L1) and the periostin (POSTN) gene were alternatively spliced but not differentially 

expressed. In both instances a KHDRBS3 RNA binding motif was present in the body of the 

regulated exon with the PSI value of the target exon being significantly negatively 

correlated with KHDRBS3 gene expression (Supplementary Figure 3.10, 3.8A, 3.8C). 

 ARID4B and ARID4A (RBP1, RBBP1) are two homologous members of the AT-rich 

interaction domain (ARID) gene superfamily 108; they encode subunits of the SIN3 

Transcription Regulator Family Member A (SIN3A)/HDAC (histone deacetylase) 

transcriptional corepressor complex which functions in various cellular processes 

including proliferation, differentiation and cell fate decision 109,110. As depicted in 
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Supplementary Figure 3.8B, the alternatively spliced cassette exon 16 in ARID4B, which 

encodes part of the Tudor-knot domain, is significantly more often skipped (PSI 

diminished) in day-12 compared to day-0 differentiating MSPC. Compared to the 

traditional Tudor domain, which is involved in protein-protein interaction 111, the Tudor-

knot contains crucial configurations needed for RNA binding activity 112. Therefore, partial 

disruption of the Tudor-knot during induced osteogenesis might result in changes in the 

assembly or stability of ARID4B involved supramolecular complexes. For example, in the 

mouse Arid4a is reported to be a Runx2 coactivator that promotes osteoblastic 

differentiation 113. Considering the fact that ARID4A and ARID4B can also physically 

interact with each other 114, the alteration of their protein-protein or protein-RNA 

interaction might squelch ARID4A’s function as a RUNX2 coactivator.  

 Periostin is a secreted extracellular matrix protein that was originally identified in 

cells from the mesenchymal lineage in the skeleton (e.g., osteoblasts and osteoblast-derived 

cells). Periostin expression promotes bone anabolism partially though its ability to regulate 

osteoblast differentiation from mesenchymal progenitors 115; deletion of Postn gene 

impairs fracture consolidation in mice 116. As was the case with ARID4B, POSTN expression 

did not change significantly over the course of induced osteogenesis but exon skipping in 

POSTN pre-mRNA did, indicating that POSTN has the potential to contribute to osteogenic 

differentiation without a change in expression level. There are multiple isoforms of 

periostin reported, all differing in their C-terminal sequences 117. This is consistent with 

our observation that the inclusion level of exon 18 which resides in the C-terminal region of 

POSTN decreased from 76% to 50% over the 12-day course of MSPC osteogenesis 

(Supplementary Figure 3.8D).  
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Cytoplasmic Polyadenylation Element Binding Protein 2 (CPEB2) was another of the 

identified RBP splicing regulators. CPEB2 showed a temporal increase in expression during 

induced osteogenic differentiation (Figure 3.3B, 3.3C) like KHDRBS3. The CPEB2’s RNA 

binding motif was found enriched in the downstream intron region of some skipped exons 

in the negatively-correlated foreground event set. CPEB family proteins function as 

regulators of cytoplasmatic polyadenylation and translation of target mRNAs (Hagele et al., 

2009; Turimella et al., 2014); however, recent studies report the involvement of CPEB 

family proteins in splicing regulation in a variety of developmental and disease processes 

7,103-107. 

 One significant differentially skipped exon event unaccompanied by a difference in 

gene expression during induced osteogenesis was found in the transcription factor FOXM1 

(HFH-11, HNF-3, MPP-2, INS-1) (Supplementary Figure 3.9). In the downstream intron of 

this FOXM1 skipped exon XX a CPEB2 RNA binding motif was present and PSI value change 

of this exon was negatively correlated with CPEB2 gene expression (Supplementary 

Figure 3.10, 3.9A). FOXM1 is a member of the forkhead-box family of transcription factors, 

which function in various cellular processes, principally proliferation (Costa et al., 2003; 

Laoukili et al., 2007), with dysfunction associated with a number of human diseases 

(Banayoun et al., 2011). With regard to cell fate decisions and MSPC differentiation 

specifically, FOXM1 has been shown in both human embryonic kidney (Zhang et al., 2011) 

and human osteosarcoma (Zhang et al., 2017) cell lines to interact with β-catenin, promote 

β-catenin nuclear localization, and stimulate osteogenesis via expression of WNT target 

genes. Four FOXM1 splice variants arise from AS of exons 6 and 9 (Zhang et al., 2016). Of 
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most interest has been the inclusion of exon 9, which inactivates FOXM1 via disruption of 

its trans-activation domain (Kelly et al., 1997). As depicted in Supplementary Figure 3.9B, 

the alternatively spliced exon 9 in FOXM1 was significantly more often skipped (PSI 

diminished) in day-12 compared to day-0 differentiating MSPC. Considering the disruptive 

properties of exon 9, skipping this inhibitory exon during induced osteogenesis may 

enhance FOXM1’s pro-osteoblastic function by enriching its interaction with β-catenin. 

3.2.4 siRNA knockdown of KHDRBS3 and CPEB2 reduce osteogenesis in 
vitro 

As noted above, KHDRBS3 and CPEB2 were two of the nine RBPs that emerged from our 

computational screening pipeline (Figure 3.3 and Supplementary Figure 3.10). Both 

RBPs showed a robust increase in expression over time during induced osteogenesis, 

making them ideal candidates for siRNA knockdown to test the biological significance of 

KHDRBS3 and CPEB2 during osteogenesis. KHDRBS3 and CPEB2 specific, and non-

targeting negative control siRNA knockdown was performed in MSPC effects observed over 

seven days of induced osteogenic differentiation (Figure 3.4, 3.5). As assessed by qPCR, 

statistically significant knockdowns of KHDRBS3 (Figure 3.4A) and CPEB2 (Figure 3.5A) 

relative to non-targeting negative control in all time points and two of three time points 

respectively was obtained. Additionally, KHDRBS3 and CPEB2 reduction at protein level 

(Figure 3.4E, 3.5E) was also observed in western blots at all post-transfection time points. 

Diminished osteogenic differentiation was confirmed by significant reduction of the 

osteogenic maturation markers RUNX2 (Figure 3.4B, 3.5B), BGLAP (bone gla protein; 

Figure 3.4C, 3.5C), and ALPL (alkaline phospahatase activity; Figure 3.4D, 3.5D) in at 

least two out of three and in most cases three out of three time points. The knockdown of 
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these CPEB2 yielded significant reductions in these osteogenic maturation markers as did 

siRNA knockdown of RUNX2, a known transcription factor crucial to osteogenesis (Figure 

3.5B, 3.5C, 3.5D). These data indicate that KHDRBS3 and CPEB2 expression normally 

supports osteogenesis perhaps via action upon downstream target genes (e.g. ARID4B, 

POSTN, and FOXM1) promoting maturation of MSPC down the osteogenic pathway.  

3.3 Discussion 

While there have been some studies of AS events that occur during tissue-specific 

adipogenesis 118-121, there is much less known about AS during the differentiation of 

mesenchymal progenitors down the osteogenic pathway in the human bone marrow niche. 

Studies of AS during osteogenesis have focused primarily on exon skipping in RUNX2, the 

master regulator gene for osteogenesis 122. Skipping exon 5 and/or 7 in RUNX2 pre-mRNA 

produces isoforms of RUNX2 incapable of DNA binding and downstream transactivation of 

genes required for normal bone formation, including osterix (OSX), OCN (osteocalcin), OPN 

(osteopontin) and COL1A1 (Park, et al., 2020). Some of these downstream genes can also 

be regulated by AS. For example, COL1A1 encodes alpha-1 type I collagen, which is the 

most plentiful collagen in bone. Aberrant AS of the COL1A1 gives rise to a form of the 

human skeletal disease osteogenesis imperfecta 123-125.  

 In this study, we generated a 12-day time-course RNA-seq dataset from primary 

cultures of MSPCs harvested from a human femur after they were induced to differentiate 

to bone-forming osteoblasts in vitro. This dataset not only permited a comprehensive 

examination of stepwise changes for both gene expression and AS, but also opened for the 

first time the opportunity to examine, in a completely unbiased mode, the potential 



 74 

regulatory role of differentially expressed RBP-directed changes in AS in MSPC 

differentiation. We found a high degree of similarity between the temporal patterns of 

overall gene expression, RBP gene expression and exon skipping (Figure 3.1D), suggesting 

that these events are mechanistically linked. We also observed that genes with the greatest 

variance in expression were significantly enriched for splicing-related gene ontology terms 

(Supplementary Figure 3.6B, 3.6C) and that a large proportion of the differentially 

spliced genes encode transcription regulators, defined as transcription factors and co-

regulators of transcription (Supplementary Table 3.1). 

 By combining temporal correlation of exon skipping and RBP expression with RBP 

binding site enrichment in the vicinity of regulated exons (Figure 3.3), we present a 

computational approach to identify key RBPs that drive AS changes in osteogenic 

differentiation. Considering the fact that AS is often regulated by binding of trans-acting 

RBPs to cis-acting RNA elements in a position-dependent manner 2,6,126, it is important to 

understand how the region-specific RBP binding influences nearby AS events. Instead of 

using the whole set of differential AS events for each candidate RBP, two sets of AS events 

were determined based on positive or negative temporal correlation with RBP expression 

in osteogenic differentiation. RBP motif enrichment was assessed in three regions 

(upstream intron, exon body, downstream intron) as a proxy for region-specific RBP 

association. It should be noted that this computational strategy is generic and can be 

applied to any time-course RNA-seq dataset and to any type of AS patterns to elucidate RBP 

regulation of AS.  
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In this work, nine RBPs were identified as potential key splicing regulators in the process of 

MSPC to osteoblast differentiation. Among those were three RBP genes, two of which, 

KHDRBS3 and CPEB2, exhibited a two-fold increased expression during osteogenesis 

(Figure 3.3C). KHDRBS3 has been found to control cell fate in development or disease 

7,106,107, and CPEB2 to impact splicing regulation in a variety of developmental and disease 

processes 7,103-107. As depicted in Figure 3.4 and 3.5, siRNA knockdown of KHDRBS3 and 

CPEB2 resulted in a commensurate decrease in osteogenic differentiation markers RUNX2, 

BGLAP, and RUNX2. This result indicated that an increase in KHDRBS3 and CPEB2 

expression influenced normal MSPC osteogenesis and that our computational strategy was 

successful in identifying key splicing regulators in the dynamic setting of MSPC-to-

osteoblast differentiation. Although suggestive, further evidence from RNA-seq 

identification of altered alternative splicing after KHDRBS3 and CPEB2 siRNA knockdown 

and KHDRBS3 and CPEB2 CLIP-seq would be needed to prove KHDRBS3 and CPEB2’s role 

in regulating the splicing of the targeted genes identified here.  

3.4 Methods 

3.4.1 MSPC culture 

Primary cultures of MSPCs were obtained from PromoCell (C-12974, Heidelberg, 

Germany). Cells were characterized by the vendor according to criteria proposed by the 

International Society for Cellular Therapy 81. Lot 402Z027 (47, male, Caucasian) was used 

in the RNA-seq study reported here. Lot 429Z013.1 (56, male, Caucasian) was used in the 

siRNA knockdown experiments. MSPCs were initially cultured in recommended growth 

media (PromoCell, C28009) and differentiated in MSPC osteogenic differentiation medium 
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(PromoCell, C-28013) on plates coated with human fibronectin (PromoCell, C-43060). 

Media was changed every two or three days. Samples for osteogenic differentiation RNA-

seq data were obtained at day 0, 2, 4, 6, 8, and 12 and daily samples from day 0 to 7 for 

siRNA knockdown. 

3.4.2 Cell staining for biomarkers of osteogenic differentiation 

Alkaline phosphatase staining reagent (5-Bromo-4-chloro-3-indolyl phosphate/Nitro blue 

tetrazolium) was prepared from BCIP/NBT tablet (Sigma B-5655, St. Louis, MO) in 10 ml 

water and incubated on cell monolayers after PBS wash for 10 minutes. BCIP/NBT reagent 

was removed by washing with PBS-Tween 0.05% followed by a PBS wash. Alkaline 

phosphatase staining was quantified by spectrophotometry at 620 nm. Alizarin Red S (ARS; 

Sigma A-5533) was prepared at 2% in water and adjusted to pH 4.1 and filtered before 

usage. Cells were fixed with 10% buffered formalin (Fisher) and washed with water prior 

to addition of 2% ARS, pH 4.1 for 20 minutes. Excess ARS stain was washed from cells by 

water four times. Staining was quantified by spectrophotometry at 405 nm. 

3.4.3 siRNA knockdown  

KHDRBS3, CPEB2, and RUNX2 SMART pool On-Target Plus siRNA (Dharmacon) and 

negative control On-Target Plus non-targeting pool siRNA (Dharmacon) was used for 

experiments. Transfection of 7000 cells per well (96-well plates) was conducted with X-

treme GENE siRNA transfection reagent (Sigma) at 160 ng siRNA to 1 ul regent ratio. After 

eight hours, siRNA and transfection reagent containing media was removed and replaced 

with MSPC osteogenic differentiation medium. Media was changed every two or three days 
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for a total of seven days. RNA was isolated from 96-well plates using RNeasy 96 (Qiagen). 

For qPCR gene expression analysis, cDNA was synthesized by SuperScript IV reverse 

transcriptase (Thermofisher) and qPCR performed with TaqMan Fast Advanced Master Mix 

(Thermofisher) with eukaryotic 18S rRNA endogenous control probe/primer 

(ThermoFisher) and gene specific probe/primers: RUNX2 (Hs01047973_m1), BGLAP 

(Hs01587814_g1), ALPL (Hs01029144_m1), CPEB2 (Hs01039673_m1) and KHDRBS3 

(Hs00938827_m1).  

3.4.4 Western Blot Analysis 

Osteogenesis induced hMSC (PromoCell, C-12974, lot 445Z012.1, white male 61 years old) 

cultured in two wells of a 12-well plate were used at each time-point (day 0, 3, 5, and 7) 

and treatment condition (non-targeting negative control siRNA, KHDRBS3 or CPEB2 

siRNA). Protein samples lysed with RIPA and denatured and reduced with 6x Laemmli 

sample buffer with incubation at 95C for 5 minutes. Proteins were separated on Bis-Tris 4-

20% precast PAGE gel (GenScript, M0065) in Tris-MOPS-SDS running buffer (GenScript, 

M00138) and transferred to PVDF (Millipore, IPFL10100). After blocking for 1 hour at 

room temperature, primary antibodies rabbit anti-KHDRBS3 (1:250; Sigma-Aldrich, 

HPA000981) or rabbit anti-CPEB2 (1:500; Genetex GTX117457) and mouse anti-actin 

(1:5000; Abcam, ab8226) were incubated with membrane overnight at 4°C. Blots were 

washed 2x rapidly followed by 3x5 minute washes with PBS/0.1% Tween-20. Secondary 

antibodies 680RD anti-mouse (Licor, 926-68070) and 800CW anti-rabbit-800 (Licor, 926-

32211) were incubated at 1:20,000 each for 1 hour at RT. Blots were washed 2x rapidly 

followed by 3x5 minute washes with PBS/0.1% Tween-20. Blots were imaged and 
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quantitated on Licor Odyssey CLx imaging system. KHDRBS3 and CPEB2 signals were 

normalized against actin and expressed relative to day 0 pre-transfection cells. 

3.4.5 RNA isolation and sequencing library preparation 

For RNA-seq, RNA was extracted from 24-well plate MSPC cultures at 0, 2, 4 6, 8 and 12 

days of induced osteogenesis with Trizol (ThermoFisher) and purified with Direct-zol RNA 

microprep columns (Zymo Research). Three biological replicates were isolated at each time 

point. RNA-seq libraries were prepared with TruSeq Stranded mRNA Library Kit (lllumina) 

after which RNA was assessed for quality by Tape Station (Agilent) and quantified by Qubit 

(ThermoFisher). RNA-seq libraries were pooled, quantified by Qubit 3.0, diluted 

accordingly and committed to Illumina Paired End 101 base sequencing at the UCLA Broad 

Stem Cell Research Center High Throughput Sequencing Facility.  

3.4.6 RNA-seq read alignment 

High-quality raw sequencing reads were obtained and assigned to a corresponding sample 

by demultiplexing with a maximum of 1 mismatch allowed in the barcode sequence 

(barcode sequence length 7). Alignment was done using Hisat2 (v2.0.3-beta) 127 with 

default parameters and a pre-built index for reference plus transcripts based on genome 

assembly GRCh37 (hg19) annotation (grch37_tran, 

ftp://ftp.ccb.jhu.edu/pub/infphilo/hisat2/data/grch37_tran.tar.gz).  

 



 79 

3.4.7 Gene expression quantification and differential gene expression analysis 

Gene expression/transcript abundance were measured in both raw counts and TPM 

(Transcripts Per Million) using the alignment tool kallisto (v0.43.1) 128. Ensemble v75 

GRCh37 (hg19) cDNA annotation was used as the guiding reference for kallisto. Transcript-

level estimates from kallisto were summarized into gene expression matrices by tximport 

(v1.6.0, R package) 129 for downstream gene-level analysis. Differential expression analysis 

was conducted with the count-based tool DeSeq2 (v1.18.1, R package) 130. Technical 

replicates were collapsed, and lowly expressed genes (TPM ≤ 5 in all samples) were filtered 

out before performing differential expression analysis. For each comparison, genes with an 

absolute log2 fold change > log2(1.5) and an FDR (false discovery rate)-adjusted p-value < 

0.01 were assumed to be differentially expressed genes. The differentially expressed gene 

list for the entire osteogenic differentiation pathway was defined as genes differentially 

expressed in all comparisons between time point day 0 and other time points (day 2, 4, 6, 8, 

12).  

3.4.8 Alternative splicing analysis to identify significantly changing 
foreground events and background events 

AS events were detected and quantified by rMATS-turbo 35, with Ensemble v75 GRCH37 

(hg19) GTF annotation. Exon inclusion levels, measured as PSI values, were calculated by 

junction reads (reads spanning the splicing junctions) normalized by effective junction 

length. AS events with low junction read support (≤ 10 average junction reads, ≤ 10 total 

inclusion junction reads or ≤ 10 total skipping junction reads over all 18 samples), or with 

extreme PSI value ranges (PSI ≤ 0.05 or ≥ 0.95 in all 18 samples) were excluded from 
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downstream analysis. Differential exon skipping analysis was then performed using 

rMATS-turbo (with default parameter -c 0.0001) for five pair-wise comparisons between 

time point day 0 and other available time points (day 2, 4, 6, 8, 12). Exon skipping events 

for each comparison were considered differential if they met the following criteria: 1) >10 

average junction reads (inclusion and skipping junction reads) in both groups; 2) do not 

have extreme PSI values (PSI ≤ 0.05 or PSI ≥ 0.95 for all 6 samples in the comparison); 3) 

FDR < 0.01; and 4) absolute change in PSI (|ΔPSI|) > 0.05. The significant event set for the 

whole osteogenic differentiation pathway was composed of events that were identified to 

be differentially spliced in at least 3 of the 5 comparisons. The background event set for the 

whole osteogenic differentiation pathway was defined as events with no significant change 

during MSPC osteogenic differentiation which meet the following cutoffs in all 5 

comparisons: 1) > 10 average junction reads in both groups; 2) do not have extreme PSI 

values (PSI ≤ 0.05 or PSI ≥ 0.95 for all 6 samples in the comparison; and 3) FDR > 0.5. 

3.4.9 Principle component analysis (PCA) 

A total of 129 RBPs (including many well-characterized splicing factors) were curated from 

two different sources 100,101 and included in PCA analysis of RBP expression. For total gene 

or RBP expression, a pseudo-count of 1 was added to each TPM value before log2 

transformation to avoid arithmetic error and large negative values. PCA was then 

performed after removing genes/RBPs/exon skipping events with no variance among 

samples. Samples were projected to their PC1-PC2 space by PCA score. LOESS (locally 

estimated scatterplot smoothing) regression lines with 95% confidence intervals were 

added to the PC1-PC2 plot using R package ggplot2 (v3.1.0). 
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3.4.10 Gene set enrichment analysis (GSEA) 

GSEA (v3.0) software 131 was utilized on pre-ranked gene lists based on absolute values of 

principle component loadings from PCA. Ranked lists from total gene expression PCA 

included only the top 10,000 genes; for ranked lists from exon skipping, duplicated genes 

with lower rank were removed. All gene ontology gene sets (c5, v7.0, https://www.gsea-

msigdb.org/gsea/msigdb/download_file.jsp?filePath=/msigdb/release/7.0/c5.all.v7.0.symbols.gmt

) were used as a gene sets database with 1000 permutations to calculate the enrichment 

score and p-values. Top gene ontology terms from the GSEA analysis served as input for 

REViGO webserver (http://revigo.irb.hr/) to account for the semantic similarities and 

dispersibilities of gene sets. Representative gene ontology terms were visualized in 

semantic similarity-based scatter plots after removing redundant terms.  

3.4.11 Hierarchical clustering of time course datasets and heatmaps 

Hierarchical clustering was performed on Z-score transformed TPMs of differentially 

expressed RBPs (from a total of 1542 RBPs) 132 or PSI values of differentially spliced exons 

detected in the whole osteogenesis pathway as described above (hclust function in R 

package stats, v3.4.4).  

3.4.12 Protein family domain analysis 

Pfam domain scanning was conducted to search for potential functional domains affected 

by exon skipping events. Preprocessed Pfam annotation data, which maps HMM predicted 

high-quality Pfam-A domains to UCSC hg19 coordinates, were downloaded from the UCSC 

hg19 annotation database 

https://www.gsea-msigdb.org/gsea/msigdb/download_file.jsp?filePath=/msigdb/release/7.0/c5.all.v7.0.symbols.gmt
https://www.gsea-msigdb.org/gsea/msigdb/download_file.jsp?filePath=/msigdb/release/7.0/c5.all.v7.0.symbols.gmt
http://revigo.irb.hr/
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(http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/ucscGenePfam.txt.gz). 

Sequences of target exons or frameshifted downstream exons from differential exon 

skipping events were extracted and then scanned against the Pfam annotation data using 

bedtools (v2.25.0) 133. 

3.4.13 RBP candidate screening method 

189 RBP binding motifs with position weight matrix information for 129 RBPs (including 

many well-characterized splicing factors) were curated from two different sources and 

screened in this analysis. This includes 78 6-mer motifs for 78 RBPs from RNA Bind-n-Seq 

(RBNS) 100 and 111 7-mer motifs for 82 RBPs from RNAcompete 101.  

Significant/background event lists and differentially expressed RBPs were identified as 

described before (see AS analysis section and gene expression analysis section). For each 

motif of the differentially expressed RBPs, significant exon skipping events were further 

assigned to two foreground event sets. They were composed of events (n > 50) whose PSI 

value was positively or negatively correlated (R2 > 0.5, rlm function in R package MASS, 

v7.3-49) with differential RBP gene expression across different time points.  

To identify region-specific RBP regulatory patterns for exon skipping events, we evaluated 

three regions around the alternatively spliced exons: 1) 300 nt of intronic sequence 

upstream of the target exon; 2) the exon body sequences; and 3) 300 nt of intronic 

sequence downstream the target exon. Scores for each motif were calculated by sliding 

window scanning of the position weight matrix at each possible binding position. Region-

specific motif occurrence was then determined by comparing the calculated motif scores 

with a threshold score (80% of the maximum PWM score). If there was any position with a 

http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/ucscGenePfam.txt.gz
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calculated motif score ≥ the threshold score for a particular exon skipping event, then the 

motif occurrence was marked as “True” for this event in the corresponding region; 

otherwise it was marked “False”. 

To determine whether a motif occurred in a specific region more often in foreground event 

sets than in the background event set, a one-tailed Fisher’s exact test was used to test the 

null hypothesis that the number of events with motif occurrence at a specific region was 

not different between the foreground (either positive or negative set) and the background 

event set. If an RBP motif was of significantly enriched occurrence (p < 0.05) in any region 

for any foreground event set, it was considered a key RBP for exon skipping regulation in 

the MSPC osteogenic differentiation process.  
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3.5 Figures 

 

Figure 3.1 Extensive transcriptomic alterations characterize the induced stepwise 

differentiation of MSPC to osteoblasts. 

(A) Photographs of blue alkaline phosphatase and red hydroxyapatite (bone calcification) 

staining of MSPCs cultured in osteoblast differentiation medium over 10 days.  

(B) Measurement of optical density in photographed wells in panel A.  

(C) From-left-to-right are normalized expression measures from RNA-seq at indicated time 

points, showing a temporal decrease in immature marker (MYC and SOX9) expression and 

increase in osteoblast marker (RUNX2 and ALPL) expression. Error bars represent the 

MEAN±SEM (n=3).  
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(D) From left-to-right, principal component analysis (PCA) plots of total gene expression 

(left), RBP gene expression (middle), and exon skipping (right). Samples were projected to 

the space of the first two principal components (PCs) with percentage of variation 

explained shown in x- and y-axis labels. Local regression lines are added by LOESS (locally 

estimated scatterplot smoothing) method, with 95% confidence intervals shown in grey. 
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Figure 3.2 Pair-wise differential analysis identifies temporal patterns of gene 

expression and exon skipping during MSPC-to-osteoblast differentiation.  

(A) Mosaic plot display of significant exon skipping events in pair-wise comparisons with 

day 0. Each box is constructed by two factors, the specific comparison (x-axis) and total 

number of comparisons (y-axis) where events were identified as significant. The size of the 

box and number shown for each box represent the number of exon skipping events in each 

category. 

(B) Scatter plot comparing gene expression on day 0 vs. day 12. Red and blue dots 

represent up-regulated and down-regulated genes, respectively. Genes with significant 

exon skipping changes (denoted as AS genes) are depicted in yellow. Background genes, 

e.g., those with no differential gene expression and no exon skipping changes, are shown in 

grey. 
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(C) Sashimi plot of FLNA gene from panel B is an example of a gene whose expression is not 

significantly changed but does harbor a significant change in exon skipping over time. The 

black bars and dashed lines on the bottom represent exons and introns, respectively. Solid 

peaks represent reads per kilobase per million mapped (RPKM) mapped to each region. 

Arches represent splice junctions and the numbers represents number of reads mapped to 

each splice junction. PSI values are indicated on the right side of the plot for each time 

point. 

(D-G) Heatmaps and line graphs illustrate the temporal coordination among RBP gene 

expression and exon skipping during induced osteogenic differentiation. Panel D, heatmap 

showing Z-score transformed transcripts per million (TPM) for 523 differentially 

expressed RBP genes; panel E, line plots revealing the patterns of change for corresponding 

clusters in panel D; panel F, heatmap showing Z-score transformed PSI values for 604 

significantly changed exon skipping events; panel G, line plots revealing the patterns of 

change in PSI value for corresponding clusters in panel F. Red line represents the median 

value for each cluster. 
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Figure 3.3 Computational screening identifies nine RBP candidates that may regulate 

exon skipping in osteogenic differentiation.  

(A) Schematic diagram describing the computational workflow for key splicing regulator 

screening. As depicted in the top panel, differential exon skipping analysis was performed 

to determine a background event set. For each differentially expressed RBP, significantly 

changing exon skipping events during osteogenesis were further split into two foreground 

sets, whose PSI change was positively (red, r2 > 0.5) or negatively (blue, r2 > 0.5) correlated 

with the corresponding change in RBP gene expression. As shown in the middle panel, a 

sliding window scanning tool was used to detect putative RBP RNA binding motifs in three 

regions in and around the skipped exon: 300 nt into the upstream intron (orange); the exon 

body (purple); and 300 nt into the downstream intron (green). The bottom panel shows a 

tabular registration of detected motif occurrence. One-tailed Fisher’s exact test was 

performed to ascertain the significance of motif occurrence enrichment in one of the three 
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regions (upstream intron, exon body, or downstream intron) on the positive (red) or the 

negative (blue) foreground compared to background (grey). SE, exon skipping. 

(B) Heatmap depicting the log-transformed p values of 11 candidate RBP motifs (y-axis) 

exhibiting statistically significant enrichment in at least one of the foreground-region 

combinations; p values < 0.05 are marked by asterisk. Sequence logos are shown on right 

side of the heatmap. The two foreground event sets and the three regions are indicated on 

the top of the heatmap. 

(C) Heatmap depicting Z-score of transformed TPM values of 9 candidate RBPs identified 

by the computational screening method. 
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Figure 3.4 KHDRBS3 knockdown reduced osteogenic differentiation of MSPC.  

KHDRBS3-specific siRNA knockdown (n=4) compared to non-targeting siRNA (n=4) at 

time-points post-transfection and exposure to osteogenic differentiation media was 

assayed by qPCR for effects upon: (A) KHDRBS3, (B) RUNX2, (C) BGLAP, and (D) ALPL 

expression; and (E) KHDRBS3 protein expression by western blot and normalized to actin 

expression. For qPCR graphs (panel ABCD) error bars represent the MEAN±SD (n=4). 

Asterisks indicate significance by two-tailed t-test. For the western blot (panel E), pt = pre-

transfection.  
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Figure 3.5 CPEB2 knockdown reduced osteogenic differentiation of MSPC.  

CPEB2 specific siRNA knockdown (n=4) compared to non-targeting siRNA (n=4) at time-

points post-transfection and exposure to osteogenic differentiation media was assayed by 

qPCR for effects upon: (A) CPEB2, (B) RUNX2, (C) BGLAP, and (D) ALPL expression; and (E) 

CPEB2 protein expression by western blot and normalized to actin expression. For qPCR 

graphs (panel ABCD), error bars represent the MEAN±SD (n=4). RUNX2, a known 

transcription factor crucial to osteogenesis, specific siRNA knockdown (n=4) is shown by 

the orange bars in graphs BCD. Asterisks indicate significance by two-tailed t-test. For 

western blot (panel E), pt = pre-transfection. 
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Supplementary Figure 3.6 Transcriptome-wide analysis of osteogenic differentiation 

identifies interplay of gene expression, splicing and bone development related 

biological processes. 

(A) Summary of read depth and mapping statistics from RNA-Seq dataset.  

(B) REVIGO scatter plot depicting gene ontology terms enriched among genes with high 

PC1 loading from total gene expression PCA (see left panel, Figure 3.1D). Gene ontology 

enrichment was evaluated by gene set enrichment analysis (GSEA). GSEA calculated 

enrichment scores and p-values are indicated by size of circles and color scale, 

respectively; x- and y-axis represent the semantic similarities between terms. 

Representative gene ontology terms were labeled. 

(C) Representative GSEA enrichment plot (GO_RNA_SPLICING) from panel A. 
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(D) Summary table of AS events detected by rMATS-turbo after filtering by read coverage 

and PSI value range. SE, exon skipping; A5SS, alternative 5’ splice sites; A3SS, alternative 3’ 

splice sites; RI, intron retention. 

(E) REVIGO scatter plot depicting GO terms enriched among genes with high PC2 loading 

from exon skipping PCA (see right panel, Figure 3.1D). 

(F) Representative GSEA enrichment plot 

(GO_REGULATION_OF_CALCIUM_ION_TRANSMEMBRANE_TRANSPORT) from panel E. 
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Supplementary Figure 3.7 Exon 4 inclusion/exclusion of PRRX1 results in an isoform 

switch. 

(A) Gene structure representation of the PRRX1 gene. Bars and dashed lines represent 

exons and introns, respectively. Untranslated regions (UTR) are denoted in grey. Two stop 

codons residing in exon 4 and 5 are depicted as STOP signs. The OAR (otp, aristaless, and 

rax) domain is located in the green region in exon 5. 

(B) Protein structure representation of the two PRRX1 isoforms. The top PRRX1b isoform 

has exon 4 incorporated and the bottom PRRX1a isoform has exon 4 excluded. The stop 

codon in exon 4 of the inclusion isoform renders exon 5 and OAR domain untranslated. 
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(C) Sashimi plot showing AS changes of the PRRX1 gene on day 0 (upper panel) and day12 

(lower panel). The black bars and dashed lines on the bottom represent exons and introns, 

respectively. Solid peaks represent RPKM of reads mapped to each region. Arches 

represent splice junctions and the numbers represent number of reads mapped to each 

splice junction.  
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Supplementary Figure 3.8 Examples of exon skipping events in putative targets of 

KHDRBS3. 

(A, C) Correlation between exon skipping (PSI) and KHDRBS3 gene expression changes 

over 12 days of induced osteogenesis in MSPC. Genes harboring the significantly changing 

exon skipping event are indicated on the y-axis. Linear regression lines (red) and 

confidence intervals (grey) are shown for correlated KHDRBS3 expression and ARID4B PSI 

(A) and POSTN PSI (C) during induced osteogenesis and r2 values of the correlation are 

shown in the upper right corner. 

(B) Sashimi plot of an exon skipping event in the transcription factor gene ARID4B. The 

black bars and dashed lines on the bottom represent exons and introns, respectively. Solid 

peaks represent RPKM mapped to each region. Arches represent splice junctions and the 
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numbers of reads mapped to each splice junction. On the bottom is the depiction of protein 

family (Pfam) domains in ARID4B protein. 

(D) Sashimi plot of the exon skipping event in gene POSTN. The target exon 18 is located in 

the C-terminal sequence of POSTN, where extensive AS changes occur. 
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Supplementary Figure 3.9 Examples of exon skipping events in a putative target of CPEB2. 

(A) Correlation between FOXM1 exon skipping (PSI) and CPEB2 gene expression changes 

over 12 days of induced osteogenesis in MSPC. FOXM1 significant exon skipping event PSI 

value are indicated on the y-axis. Linear regression lines (red), confidence intervals (grey) 

are shown, and r2 value of the correlation is shown in the upper right corner. 

(B) Sashimi plot of an exon skipping event in the transcription factor gene FOXM1. The 

black bars and dashed lines on the bottom represent exons and introns, respectively. Solid 

peaks represent RPKM mapped to each region. Arches represent splice junctions and the 

numbers of reads mapped to each splice junction. On the bottom is the depiction of exons 8, 

9, and 10 of FOXM1. 
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Supplementary Figure 3.10 Heatmap of candidate RBP motif hits in exon skipping 

events occurring in a transcription factor.  

Candidate RBP motifs (from Figure 3.3B) are indicated along the x-axis; additional 

information includes the region of significant RBP binding motif enrichment (up 

intron=upstream intron, exon=exon body, dn intron=downstream intron) and direction of 

correlation (pos=positive or neg=negative). Posted along the y-axis are the gene symbols of 

the transcription factor and exon identification number in that transcription factor where 

the differential exon skipping event was detected. The colors of heatmap represent motif 
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occurrence in the designated region. r2 values > 0.5 for the correlation between RBP gene 

expression and PSI value of the exon skipping event are indicated numerically in the 

appropriate boxes.  
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3.6 Tables 

 

Supplementary Table 3.1 Transcription factors with exon skipping events are often 

affected by frame shift and/or disruption of functional domains.  

Shown are transcription factors with significant exon skipping changes during osteogenic 

differentiation. Column 3 reports the protein family domain (Pfam) affected by 

inclusion/exclusion of target exon, due to the presence/absence of the domain, encoded by 

the target exon or the downstream exon (*) which is frame-shifted by 

incorporation/exclusion of target exon. Column 4 indicates whether the target exon 

GeneID geneSymbol PFAM frame shift NMD PSI00-PSI12 FDR(day00-day12) chrom strand exon start exon end uptreamES upstreamEE downstreamES downstreamEE
ENSG00000039560 RAI14 - NO - 0.168606812 0 chr5 + 34813678 34813765 34812284 34812313 34814687 34814774
ENSG00000116132 PRRX1 - NO - 0.21618986 1.19E-13 chr1 + 170699417 170699489 170695360 170695542 170705188 170705374
ENSG00000122034 GTF3A zf-C2H2 YES - 0.097629224 2.21E-13 chr13 + 28006867 28006941 28004669 28004758 28008275 28008287
ENSG00000001167 NFYA - NO - -0.267664243 3.48E-11 chr6 + 41048549 41048636 41046767 41046903 41051784 41051931
ENSG00000068903 SIRT2 - YES - 0.154433978 6.01E-08 chr19 - 39389018 39389065 39384458 39384507 39390145 39390351
ENSG00000108312 UBTF HMG_box NO - 0.171796905 1.37E-07 chr17 - 42289711 42289822 42289240 42289374 42290186 42290307
ENSG00000157216 SSBP3 SSDP NO - 0.092628716 2.68E-07 chr1 - 54723741 54723822 54722799 54722859 54747110 54747200
ENSG00000135111 TBX3 T-box NO - 0.27274122 6.55E-07 chr12 - 115117717 115117777 115117309 115117456 115118683 115118951
ENSG00000125945 ZNF436 - NO - 0.350190291 1.01E-06 chr1 - 23694465 23694558 23693534 23693661 23695858 23695935
ENSG00000064655 EYA2 - YES - 0.218708723 1.97E-06 chr20 + 45700823 45700891 45644819 45644936 45717877 45718020
ENSG00000166888 STAT6 STAT_int* YES NMD* 0.09131425 2.06E-06 chr12 - 57503825 57503893 57501945 57502082 57504911 57505157
ENSG00000153786 ZDHHC7 - NO - -0.192762388 3.03E-06 chr16 - 85022368 85022479 85015475 85015600 85023909 85024241
ENSG00000082641 NFE2L1 - NO - -0.136495916 3.44E-06 chr17 + 46134393 46134483 46133747 46133960 46134705 46134864
ENSG00000113649 TCERG1 FF YES NMD -0.16991098 6.02E-06 chr5 + 145889629 145889723 145888707 145888808 145890003 145890328
ENSG00000005801 ZNF195 KRAB* YES - 0.276500981 6.31E-06 chr11 - 3394806 3394886 3392806 3392933 3400267 3400355
ENSG00000102103 PQBP1 - YES - -0.127281594 1.30E-05 chrX + 48759495 48759794 48759206 48759319 48760008 48760072
ENSG00000198453 ZNF568 - NO - -0.263769264 1.58E-05 chr19 + 37413487 37413748 37408480 37408550 37416101 37416160
ENSG00000074219 TEAD2 TEA NO - -0.237218087 1.65E-05 chr19 - 49859215 49859227 49858559 49858676 49860508 49860571
ENSG00000196498 NCOR2 - NO - -0.093681883 2.67E-05 chr12 - 124825147 124825240 124824839 124824989 124826368 124826601
ENSG00000139546 TARBP2 dsrm YES NMD* -0.119554016 3.19E-05 chr12 + 53895843 53895968 53895089 53895245 53896810 53896996
ENSG00000064655 EYA2 - YES - 0.191078217 4.14E-05 chr20 + 45702796 45702974 45644819 45644936 45717877 45718020
ENSG00000139546 TARBP2 dsrm YES NMD* -0.06649497 6.33E-05 chr12 + 53895798 53895968 53894704 53895245 53896810 53896913
ENSG00000101849 TBL1X LisH* YES - -0.273448155 6.54E-05 chrX + 9621584 9621729 9608312 9608400 9622254 9622328
ENSG00000198176 TFDP1 DP YES - 0.075586604 8.95E-05 chr13 + 114292132 114292211 114290848 114291015 114294434 114294999
ENSG00000005801 ZNF195 - NO - 0.194226144 0.000115099 chr11 - 3394806 3394905 3392806 3392933 3400267 3400369
ENSG00000005889 ZFX Zfx_Zfy_act* YES - 0.149878128 0.000137914 chrX + 24193505 24193560 24190872 24190917 24197299 24197667
ENSG00000102103 PQBP1 - YES - -0.08218082 0.000148055 chrX + 48759509 48759661 48759206 48759319 48760008 48760070
ENSG00000085274 MYNN BTB* YES - 0.183656738 0.000159271 chr3 + 169491818 169491885 169491214 169491250 169492052 169492349
ENSG00000198176 TFDP1 DP YES - 0.090569578 0.000308031 chr13 + 114292132 114292199 114290848 114291015 114294434 114294713
ENSG00000115207 GTF3C2 - YES - 0.129756297 0.000350349 chr2 - 27573180 27573499 27566197 27566445 27579605 27579866
ENSG00000111653 ING4 ING NO NMD -0.060823976 0.000376274 chr12 - 6764803 6765079 6762395 6762562 6765892 6765964
ENSG00000100084 HIRA - NO - -0.06751115 0.000488248 chr22 - 19365391 19365589 19363153 19363315 19371142 19371228
ENSG00000134852 CLOCK - YES - -0.135910675 0.000584389 chr4 - 56376078 56376232 56355540 56355632 56412648 56412813
ENSG00000177981 ASB8 Ank_3 NO - 0.067965541 0.00060343 chr12 - 48543869 48543923 48543311 48543781 48544983 48545088
ENSG00000116731 PRDM2 - NO - 0.203212682 0.000658775 chr1 + 14099572 14099683 14075855 14075982 14142921 14143065
ENSG00000090060 PAPOLA - NO - -0.054834451 0.000925408 chr14 + 97026985 97027048 97022511 97022750 97029155 97029230
ENSG00000054267 ARID4B Tudor-knot NO - 0.173855012 0.000945713 chr1 - 235377083 235377341 235359345 235359430 235383107 235383283
ENSG00000112983 BRD8 - YES - -0.057979735 0.001008484 chr5 - 137499775 137499822 137498818 137499033 137500008 137500102
ENSG00000187079 TEAD1 TEA NO - -0.205878924 0.001083303 chr11 + 12900435 12900447 12886384 12886447 12901254 12901389
ENSG00000179094 PER1 - NO - -0.073428664 0.001235771 chr17 - 8049275 8049455 8047372 8048311 8049689 8049806
ENSG00000106459 NRF1 Nrf1_DNA-bind YES - -0.105166536 0.001602051 chr7 + 129311268 129311383 129297182 129297414 129317471 129317598
ENSG00000185024 BRF1 TFIIB NO - -0.126536098 0.001684363 chr14 - 105707601 105707751 105695156 105695250 105718843 105718916
ENSG00000198176 TFDP1 DP YES - 0.139016818 0.0018896 chr13 + 114291934 114292211 114290848 114291015 114294434 114294625
ENSG00000102081 FMR1 - NO - 0.162169694 0.002627816 chrX + 147019617 147019680 147018984 147019119 147022094 147022181
ENSG00000171456 ASXL1 ASXH NO - -0.145845325 0.003703502 chr20 + 31017703 31017856 31017140 31017234 31019123 31019287
ENSG00000186448 ZNF197 KRAB* YES - -0.086552457 0.003889162 chr3 + 44673596 44673688 44672553 44672713 44673964 44674091
ENSG00000137309 HMGA1 - NO - -0.055388456 0.004489747 chr6 + 34204980 34205094 34204649 34204740 34208513 34208659
ENSG00000100429 HDAC10 Hist_deacetyl NO - -0.235606061 0.005589482 chr22 - 50687756 50687945 50687531 50687597 50688063 50688132
ENSG00000111206 FOXM1 - NO - 0.072458342 0.010560464 chr12 - 2970464 2970578 2966848 2968829 2973485 2973661
ENSG00000067066 SP100 SAND NO - 0.168979088 0.023504136 chr2 + 231372707 231372746 231371017 231371160 231375839 231375881
ENSG00000152784 PRDM8 - YES - 0.203431373 0.039352881 chr4 + 81115266 81115393 81112625 81112723 81117166 81117278
ENSG00000138785 INTS12 - NO - 0.113845432 0.085586846 chr4 - 106624042 106624180 106621006 106621171 106624804 106624966
ENSG00000134982 APC Arm YES - -0.017115841 0.825678682 chr5 + 112170647 112170862 112164531 112164669 112173249 112173419

* affected PFAM/NMD is related to frame-shifted downstream exon (downstream exon which is frame-shifted by inclusion/exclusion of target exon).
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incorporation results in a frameshift. Column 5 indicates whether the target exon or the 

frameshifted downstream exon (*) is involved in nonsense mediated decay.  
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4 PRMT9 AFFECTS 
NEURON DEVELOPMENT 
BY REGULATING SPLICING 
THOUGH SF3B2 
METHYLATION 

4.1 Introduction 

Protein arginine methylation is a widespread post-translational modification that plays a 

pivotal role in many biological processes. Mammalian genomes encode a family of 9 protein 

arginine methyltransferases (PRMTs), which can be categorized into three types based on 

their catalytical products. Type I, type II and type III PRMTs can deposit mono-

methylarginine (MMA) mark; while type I and type II (including PRMT5 and PRMT9) 

enzymes can further establish asymmetric dimethylarginine (ADMA) and symmetric 

dimethylarginine (SDMA), respectively 134,135. PRMTs are involved in many fundamental 
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cellular processes and exhibit physiological roles liking them to various diseases 134, such 

as cancer, metabolic diseases and neurodegenerative 29,136,137 disorders.  

 One of the representative processes regulated by PRMTs is pre-mRNA splicing, 

which is also a highly regulated mechanism in brain development 11,12,64,138. For example, 

RNA binding proteins (RBPs), most of which are trans-acting splicing factors 2,100, are the 

most enriched cellular substrates of PRMTs 30. Both type II enzymes, PRMT5 and PRMT9, 

contribute to the methylation of key components of the splicing machinery 28,139. Moreover, 

they have been shown to methylate distinct substrates and do not display redundancy 

28,139,140. PRMT9 can catalyze the symmetric dimethylation at R508 (R508me2s) of 

spliceosome-associated protein 145 (SAP145, also known as SF3B2), which is a core 

component of U2 snRNP, linking PRMT9 to U2 snRNP maturation and alternative splicing 

regulation 28. The R508me2s of SF3B2 is required for the interaction between SF3B2 and 

survival motor neuron (SMN) 28. The SMN protein is regarded as the direct cause of 

neurodegenerative disorder spinal muscular atrophy 141, thus indicating a physiological 

role of PRMT9 in maintaining normal brain function.  

 Loss-of-function mutations in PRMTs are rare, but could lead to strong 

pathophysiological contributions 135,142. A rare missense mutation (dbSNP rs769164317, 

variant frequency = 0.000008) in PRMT9 causing G to R amino acid substitution at site 189 

(G189R) is identified as a causative variant for autosomal recessive intellectual disability 

(ARID) 143. In addition, the aberrant overexpression of PRMT9 has also been demonstrated 

to promote hepatocellular carcinoma invasion and metastasis 144. These observations 

further highlight the importance of PRMT9 in the pathogenesis of brain-related diseases. 
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 In this study, we sought to dissect the catalytical consequences of PRMT9 G189R 

mutant and decode the regulatory mechanism of PRMT9 on brain development to shed 

light on the pathogenesis of ARID and other neurological diseases. We found that PRMT9 

G189R mutant has eliminated methyltransferase activity and diminished stability. In 

addition, we directly investigated the consequences of Prmt9 depletion in the hippocampus 

tissue and found that mice with tissue-specific Prmt9 cKO in excitatory neurons exhibit 

impaired learning, memory and synapse maturation. From a transcriptome-wide analysis 

using RNA-seq data generated from hippocampus tissue of wild-type (WT) and Prmt9 

whole body KO mice, we revealed a PRMT9-SF3B2-splicing-synapse regulatory cascade 

that links PRMT9 to brain development. We also inspected the sequence features of 

alternative splicing events altered by Prmt9 KO, and proposed a working model that 

PRMT9-mediated SF3B2 R508me2s regulates splicing through 3’ splice site competition by 

altering SF3B2/pre-mRNA interaction. 

4.2 Results 

4.2.1 PRMT9 G189R mutant is catalytically inactive and unstable 

To deepen our insights into the ARID-causative PRMT9 G189R mutant 143, we performed 

amino-acid sequence alignment of PRMTs, which revealed that the G189 is located at a 

highly conserved motif I region (Supplementary figure 4.6). This underlines the 

importance to evaluate the enzymatic activity of PRMT9 G189R mutant protein, especially 

the methyltransferase activity for the formation of SDMA on SF3B2. We performed in vitro 

methylation assays by incubating SF3B2 fragments with either wild-type, G189R mutant 

PRMT9, or a previously reported catalytically inactive mutant PRMT9 with quadruple 
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mutations (L182A, D183A, I184A, and G185A, denoted as 4A) 28. It shows that the 

methyltransferase activity is completely abolished in G189R mutant and 4A mutant PRMT9 

in vitro (Figure 4.1A). In vivo methylation assays were conducted by rescuing the 

expression of either wild-type, G189R, or 4A mutant PRMT9 to PRMT9 KO Hela cells 

followed by western blotting by SF3B2 R508me2s methyl-specific antibody. Wild-type, but 

not the G189R or 4A mutant, PRMT9 can restore the methylation of SF3B2 in vivo (Figure 

4.1B).  

 To determine the effects of G189R mutant on protein stability of PRMT9 in vivo, 

the half-life of wild type or the G189R mutant PRMT9 were calculated in cycloheximide 

(CHX)-treated Hela cells. As shown in Figure 4.1C, the protein level of G189R mutant 

PRMT9 decreased to 50% in ~1-2 hours and is totally degraded within 4 hours, while the 

protein level of wild-type PRMT9 remains largely unchanged. These data demonstrated 

that the G189R mutant significantly shortens the half-life of PRMT9 protein. 

4.2.2 Prmt9 cKO in excitatory neurons resulted in impaired learning, memory 
and synapse maturation in mice 

PRMT9 G189R mutant was identified as disease-causing variant in ARID 143. It has also 

been shown previously that aberrant overexpression of PRMT9 promote hepatocellular 

carcinoma invasion and metastasis 144. However, studies directly linking PRMT9 and brain 

development were scarce and the function of PRMT9 on ARID remains enigmatic. To 

address this question, we generated Prmt9 tissue-specific conditional KO (cKO) mice using 

Emx1-Cre recombinase, which depleted the expression of Prmt9 in excitatory neurons of 

the developing and adult cerebral cortex and hippocampus 145,146.  
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 We then evaluated the behaviour and learning ability of Prmt9 cKO mice. The 

Morris water maze is a gold standard procedure for assessment of spatial learning and 

memory 147 (Figure 4.2A). Prmt9 cKO mice displayed a significantly delayed acquisition 

compared to wild-type mice (Figure 4.2B). Pavlovian fear conditioning is an associative 

learning task in which mice learn to pair a neutral conditional stimulus (tone) with an 

aversive unconditional stimulus (electrical foot shock) (Figure 4.2C) 148. Prmt9 cKO mice 

froze significantly less than the wild-type mice (Figure 4.2D), demonstrating the 

importance of Prmt9 in associative learning. 

 To determine the cellular changes underlining impaired learning and memory, we 

cultured neurons from hippocampus tissue. Functional excitatory synapses were quantified 

by double staining of glutamate receptors (GluN1, NMDA receptor; GluA1, AMPA receptor) 

and pre-/post-synaptic markers (Synapsin I, pre-synaptic marker; PSD95, post-synaptic 

marker) (Figure 4.2E). Prmt9 cKO neurons exhibit decreased puncta density for GluN1, 

GluA1 and PSD95 and reduced colocalization of NMDA/AMPA receptors and pre-/post-

synaptic markers (Figure 4.2E). These results demonstrated a reduction of functional 

excitatory synapses in Prmt9 cKO mice. 

4.2.3 Alternative splicing acts independently to define brain-specific 
transcriptome in Prmt9 KO mice 

The effect of PRMT9 on SF3B2 methylation, and the methylation-dependent SF3B2-SMN 

interaction reported by Yang et al 28 strongly suggest that the impaired brain function 

might result from dysregulation of pre-mRNA splicing by unmethylated SF3B2 in Prmt9 KO 

mice.  
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 To test this hypothesis, we extracted RNA samples from hippocampus tissue of 

two-week-old wild-type control mice and whole body Prmt9 KO mice, and generated high-

depth RNA-seq data (Supplementary figure 4.7A). The expression of the floxed exon 5 is 

completely vanished and expression of other regions of Prmt9 is also dramatically 

diminished in Prmt9 KO samples (Supplementary figure 4.7B). The RNA-seq data were 

subject to comprehensive gene expression and alternative splicing analysis. Five types of 

alternative splicing events were analysed, including exon skipping (SE), alternative 5’ or 3’ 

splice sites (A5SS, A3SS), mutual exclusive exons (MXE) and intron retention (RI). 

 Extensive alternative splicing alterations were observed from the Prmt9 KO 

samples (Figure 3A, Supplementary figure 4.7C), with enrichment of A3SS events 

(Supplementary figure 4.7C), indicating 3’-splice-site-related regulation of splicing by 

Prmt9. In contrast, no differentially expressed genes (except for Prmt9 gene itself) were 

identified in wild-type versus Prmt9 KO hippocampus (Figure 4.3B). Similar phenomenon 

has been observed in a previous study where no significant steady-state gene expression 

changes were detected in wild-type versus neuronal splicing factor Nova2 knockout 

neocortex 149. These results suggest that alternative splicing acts independently to define 

brain-specific transcriptome in hippocampus tissue of Prmt9 KO mice. 

 In addition to the unchanged gene expression profile in both Prmt9 KO and Nova2 

KO, we found that lots of the validated Nova-regulated synaptic genes 149 are differentially 

spliced in Prmt9 KO samples (Figure 4.3C). For example, changes of exon 5 and exon 21 

skipping is observed in Glutamate Ionotropic Receptor NMDA Type Subunit 1 (Grin1, also 

known as GluN1) gene (Figure 4.3C), a core component of NMDA receptor complex at the 

glutamatergic synapse 150. The alternative splicing of exon 5 and exon 21 in Grin1 has 
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already been demonstrated to regulate maturation of excitatory synapse 151 and control 

long-lasting synaptic potentiation, learning and memory in mice 152. A3SS events is 

detected in Rap1 GTPase-activating protein 1 (Rap1gap) gene whose expression is 

enriched in striatal medium spiny neurons 153. The proximal 3’ splice site is used more 

frequently on Prmt9 KO samples compared to wild-type, resulting in increased ratio of the 

longer transcript (Figure 4.3C). Other Nova-regulated synaptic genes with alternative 

splicing changes includes Potassium Inwardly Rectifying Channel Subfamily J Member 6 

(Kcnj6, also known as Girk2) 154, Erythrocyte Membrane Protein Band 4.1 Like 3 (EPb41l3, 

also known as 4.1B) 155 and Calsyntenin 1 (Clstn1) 156.  

 To confirm the differential splicing detected from RNA-seq, we exploit RT-PCR to 

validate the isoform switch of selected genes with changes in exon skipping, alternative 3’ 

splice sites or intron retention. Changes in the abundance of RT-PCR products 

corresponding to each splicing isoform is consistent with detected splicing changes from 

RNA-seq (Figure 4.3C, Supplementary figure 4.7E).  

4.2.4 Splicing alterations are highly associated with excitatory synapse-related 
pathways  

To further examine the relationship between dysregulation of splicing and impaired brain 

function in Prmt9 KO mice, we conducted Gene Ontology (GO) and pathway enrichment 

analysis of genes with splicing changes in the form of SE or A3SS. Most of the top enriched 

pathways are related to brain function (Figure 4.4A). For example, pathways involved in 

the activation or unblocking of NMDA receptor from BioPlanet database 157 represent an 

active area of brain research 158,159. Considering that we have already matched splicing 
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alternations in several Nova-regulated synaptic genes, it is expected that genes with 

splicing changes are also significantly enriched in the splicing factor Nova regulated 

synaptic proteins pathway 149 from WikiPathway database 160. We also performed 

enrichment analysis on GO terms. Similarly, genes with SE or A3SS changes are also 

enriched in neurotransmission-related biological processes, cellular component and 

molecular functions (Supplementary figure 4.7D). 

 Several other mutations identified in the same study as PRMT9 G189R variant 

involves genes with neuron- or brain-specific functions, for example, genes in the 

intellectual-disability-associated Ras/Rho/PSD95 (Postsynaptic density protein-95) 

network 143. Interestingly, many of the genes with causative variants for ARID detected in 

that study, or their paralogs, are responsive to Prmt9 KO in mice (Figure 4.4B). PSD95, 

also known as Discs Large MAGUK Scaffold Protein 4 (DLG4), is an abundant scaffold 

protein of excitatory synapses, which organize synaptic signal transduction in Ras 

signalling and Rho signalling pathways 161. Variants in DLG4 leads to DLG4-related 

synaptopathy, a new rare brain disorder 162. Post-transcriptional repression of PSD95 

cellular expression though splicing has also been proved critical during early neural 

development 163,164. We revealed that most genes in the Ras/Rho/PSD95 network, or their 

paralogous genes, displays splicing changes upon Prmt9 KO in mouse hippocampus tissue 

(Figure 4.4C). These findings indicate that Prmt9 KO-induced splicing changes might 

contribute to the pathogenesis of ARID and related disorders. 
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4.2.5 PRMT9-mediated SF3B2 R508me2s regulates splicing through 3’ splice 
site competition by altering SF3B2/pre-mRNA interaction 

The cis-acting elements strictly required by the spliceosome consist of 5’ and 3’ splice site, 

branch site and polypyrimidine track upstream of the 3’ splice site 2,6. Also, previous 

studies indicate that sequence-dependent binding of SF3B complex to the anchoring site 6-

25 nt upstream of the branch point site is essential for anchoring U2 snRNP to pre-mRNA 

165. SF3B2 is a core component of U2 snRNP complex that recognizes and binds to 

sequences near 3’ splice site 166. Thus, we hypothesized that splicing changes induced by 

PRMT9 KO might result from altered 3’ splice site usage mediated by unmethylated SF3B2 

R508. Indeed, the transcriptome-wide splicing analysis discovered that differential splicing 

events are enriched in the A3SS category, implying a regulatory mechanism related to 3’ 

splice site usage (Supplementary figure 4.7C).  

 To further inspect the selective features of splicing changes induced by Prmt9 KO, 

we compared sequence features near the differentially spliced cassette exons (SE events) 

(Figure 4.5A) against a transcriptome-wide background cassette exon set. We first 

examined the splice strength for the two 5’ splice sites and two 3’ splice sites  involved in 

the definition of SE event. No significant difference was observed for 5’ splice sites in either 

upstream or downstream intron, whereas cassette exons more included and excluded upon 

Prmt9 KO are associated with weaker 3’ splice sites in upstream and downstream introns, 

respectively (Figure 4.5B). We also extracted sequences of introns upstream and 

downstream of the cassette exons for prediction of branch point sites using the BPP 

software 167. The branch point A predicted in introns upstream of more included cassette 

exons are more distal to their corresponding 3’ splice sites (Figure 4.5C), and have lower 
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predicted branch point sequence scores (Figure 4.5D). Also, as shown in the nucleotide 

frequency logos near the predicted branch point adenosine, more degenerate sequences 

were observed within the anchoring site in upstream and downstream introns for cassette 

exons more included and excluded upon Prmt9 KO, respectively (Figure 4.5E). 

Interestingly, in the human spliceosomal Bact complex (PDB: 6FF4 168), SF3B2 R508 is 

spatially closest to the uracil (U 381) nucleotide of pre-mRNA, which is 13 nt upstream of 

branch point adenosine (A 194) (Figure 4.5F). The spatial location of R508 is consistent 

with the location of SF3B anchoring sites, which further indicates that SF3B2 R508 

methylation might impact Sf3B2/pre-mRNA interaction. The length of cassette exons and 

their flanking introns are less distinguishable between included and excluded SE events 

(Supplementary figure 4.8A, 4.8B). 

 Overall, we revealed from the sequence feature comparisons that more included 

cassette exons were always associated with weaker features near 3’ splice sites in 

upstream intron (3’ splice site strength, branch point sequences, more degenerate 

anchoring sites); while more excluded cassette exons were always associated with weaker 

features near 3’ splice sites in downstream intron (3’ splice site strength, more degenerate 

anchoring sites). This suggested that the regulation of splicing by Prmt9 is related to 3’ 

splice site competition 2, which could be affected by the methylation of SF3B2 R508me2s. 

Moreover, the spatial location of SF3B2 R508 and the sequence changes in SF3B anchoring 

site on pre-mRNA indicated that the methylation of SF3B2 R508me2s might affect its 

interaction with pre-mRNA. Inspired by these observations, we proposed a working model 

that PRMT9-mediated SF3B2 R508me2s regulates splicing through 3’ splice site 

competition by altering SF3B2/pre-mRNA interaction (Figure 4.6).  



 123 

 To test this hypothesis, we examined the SF3B2/pre-mRNA interaction near 3’ 

splice sites in upstream and downstream of cassette exons in Stxbp5l and Grin1, both of 

which showed more exclusion in Prmt9 KO mice (Figure 4.3C). Indeed, the CLIP-qPCR 

demonstrated that interactions of SF3B2 with sequences near 3’ splice sites in downstream 

introns were relatively more enhanced in Prmt9 KO mice compared to its interactions with 

sequences near 3’ splice sites in upstream introns (Figure 4.5G). Although these results 

validated the 3’ splice site competition model, additional experiments need to be further 

conducted to investigate whether the differential interaction of SF3B2 with pre-mRNA is 

related to sequence feature changes, especially changes of sequences in the SF3B complex 

anchoring site. 

4.3 Discussion 

PRMT9 G189R mutant was identified as disease-causing variant in ARID 143, which is 

located in a conserved motif I region. However, little is known on its pathogenic 

contributions in ARID. In this study, both in vitro and in vivo methylation assay proved that 

the PRMT9 G189R mutant is catalytically inactive and cannot methylate SF3B2, the well-

known substrate of PRMT9 methyltransferase 28,140.  

 The methylation of SF3B2 at R508 by PRMT9 is required for SF3B2-SMN 

interaction, indicating a brain-related function of PRMT9 28. Abnormal expression of 

PRMT9 has also been proved to promote hepatocellular carcinoma invasion and metastasis 

144. However, in vivo functional outcomes and the cellular changes associated with PRMT9 

has never been examined. We generated a tissue-specific Prmt9 KO mouse model, and 

demonstrated impairment of learning, memory and synapse maturation when Prmt9 is 
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knocked out from excitatory neurons. These results further shed light on the pathogenesis 

of ARID and other related disorders, and also highlighted the clinical relevance of targeting 

arginine methylation in brain tumors and neurodegenerative diseases 30,135,169. 

 Considering the fact that SF3B2 is a core component of U2 snRNP complex 166, and 

splicing is misregulated in PRMT9 KO Hela cells 28,140, it is reasonable to further investigate 

the splicing alterations and their relationship with brain-related genes. We generated a 

whole-body Prmt9 KO mouse model and performed RNA-seq followed by transcriptome-

wide gene expression and splicing analysis, and revealed a PRMT9-SF3B2-splicing-synapse 

regulatory cascade that links PRMT9 to brain development. Surprisingly, no steady-state 

change in gene expression was observed from our data. In contrast, many genes involved in 

synapse development and brain function were subject to splicing changes. Moreover, genes 

with alternative splicing changes were significantly enriched in neuron-/synapse-related 

pathways, Gene Ontology terms, and signalling networks. It also provided a valuable 

resource for splicing variations that can be further experimentally investigated. 

 Furthermore, inspired by the results from sequence feature comparisons and the 

spatial structure of SF3B2 in spliceosomal Bactcomplex, we proposed a working model that 

PRMT9-mediated SF3B2 R508me2s regulates splicing through 3’ splice site competition by 

altering SF3B2/pre-mRNA interaction (Figure 4.6). Splice site selection not only depends 

on the intrinsic properties of single splice site, but is often involved with the competition of 

two or more splice sites for the assembly of splicing complexes 2,170. For example, it has 

been shown that 5’ splice sites competition could facilitate proximal splicing 171, and is 

involved in the commitment of splice site pairing 172. Splice site competition can also 

explain the non-monotonicity of the mutation-splicing map in the mathematical prediction 
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of mutational effects on splicing 170. Our model captures this fundamental component of 

splice site choice. Our CLIP-qPCR assay identified differential SF3B2/pre-mRNA interaction 

between 3’ splice sites in the upstream and downstream intron, supporting the 3’ splice 

site competition model. However, further experiments are still needed to figure out 

whether the differential SF3B2/pre-mRNA interaction was associated with sequence 

features, especially sequence changes in SF3B complex anchoring site. 

4.4 Methods 

4.4.1 Knockout mice 

4.4.1.1 cKO mice 

Prmt9 were conditionally knocked out in mice using Emx1-Cre recombinase, whose 

expression is restricted to excitatory neurons in the developing and adult cerebral cortex 

and hippocampus 145,146. Prmt9 cKO mice are subject to behaviour test. Hippocampal 

neurons from Prmt9 cKO mice were also isolated and cultured for immunocytochemistry. 

4.4.1.2 Whole body KO mice 

Prmt9 whole body KO mice were generated by CMV-Cre recombinase. RNA samples were 

extracted from hippocampus tissue of two-week-old wild-type or Prmt9 whole body KO 

mice followed by RNA sequencing. 

4.4.2 Amino-acid sequence alignment using ClustalW 

The parameters for the alignment using ClustalW 173 were set as follows: Gap Penalty: 10, 

Gap Length Penalty: 0.2, Delay Divergent Seqs (%) 30, Protein Weight Matrix: Gonnet 
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Series for multiple alignment parameters, and for pairwise alignment, Gap Penalty: 10, Gap 

Length 0.1, Protein Weight Matrix: Gonnet 250. 

4.4.3 RNA-seq 

RNA samples were extracted from hippocampus tissue of two-week-old wild-type or Prmt9 

whole body KO mice (n = 3 for each group). Quality of RNA samples was ensured by 

calculation of RNA integrity number as well as degradation measurement using 2200 

TapeStation system. Poly(A)+ cDNA libraries were subsequently generated using TruSeq 

stranded mRNA Library Prep Kit. Libraries were sequenced on NovaSeq 6000 System using 

S4 flow cell with a PE 2x100 kit at the Translational Genomics Research Institute (TGen).  

4.4.4 Gene expression and alternative splicing analysis from RNA-seq data 

The quality of raw RNA-seq datasets were inspected using FastQC. Reads were aligned to 

the mouse genome (mm10/GRCm38) by STAR (v2.7.1a) 69 using two-pass mode with 

Ensembl release 97 annotations.  

 Gene expression values were quantified in TPM (Transcripts Per Million) using 

kallisto (v0.43.1) 128 and subsequently summarized to gene expression matrix using 

tximport (v1.6.0, R package) 129. Differential expression analysis was performed with the 

count-based tool DeSeq2 (v1.18.1, R package) 130. Genes with fold change > 1.5 and FDR < 

0.01 were identified as differentially expressed genes between wild-type and Prmt9 KO 

mice. UCSC genome browser track was utilized to visualize and confirm the change of 

Prmt9 expression in wild-type and Prmt9 KO mice.  
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 Alternative splicing events detection, quantification and differential splicing 

analysis were conducted using rMATS-turbo (v4.1.0). Five types of alternative splicing 

events were detected, including exon skipping (SE), alternative 5’ or 3’ splice sites (A5SS, 

A3SS), mutual exclusive exons (MXE) and intron retention (RI). Novel splice site detection 

feature of rMATS-turbo was turned on to identify alterations in both annotated and cryptic 

splicing events. Exon inclusion levels were calculated as PSI (Percent Spliced In) value 

between 0 and 1, which is the ratio of reads supporting the inclusion isoform to total reads. 

To enhance the robustness and reliability of the analysis, events with low read support (75 

percentile of read count < 10 in either group) or constitutively spliced (average PSI value < 

0.05 or > 0.95 in both groups) were excluded from downstream analysis. Differentially 

spliced events were further filtered by the cut-offs of FDR (d 0.01) and PSI value difference 

(t 0.05). Virtualization of selected differential splicing events was achieved by 

rmats2sashimiplot software. 

4.4.5 Validation of differential splicing events using RT-PCR and agarose gel 
electrophoresis 

Selected differential splicing events were validated by semi-quantitative reverse 

transcription–polymerase chain reaction (RT–PCR) assay followed by agarose gel 

electrophoresis. PCR primers were designed to amplify the region around target exon for 

each splicing event. PCR products were separated by gel-electrophoresis with different 

bands representing different isoforms. Expression abundance shift between different 

isoforms were visualized by the change of intensity for different bands.  
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4.4.6 Gene set enrichment analysis 

Genes with differential splicing were tested for enrichment in both Gene Ontology (GO) 

terms and biological pathways (BioPlanet 157, Elsevier and WikiPathway 160), which were 

retrieved from Enrichr 174 libraries (https://maayanlab.cloud/Enrichr/#libraries). To 

eliminate the bias resulted from gene expression on differential splicing analysis, a 

customized background excluding lowly expressed genes (DeSeq2 baseMean value t 5) 

were used instead of leveraging all genes in the mouse genome as background gene list. 

Genes with splicing alterations in the top 2 categories (SE and A3SS) were selected as 

foreground gene list. The significance of enrichment was then evaluated by hypergeometric 

test, and adjusted p values were calculated from Benjamini-Hochberg procedure. 

4.4.7 Ras/Rho/PSD95 network analysis 

Protein nodes of the Ras/Rho/PSD95 network were curated from two resources 143,150. 

Protein-protein interaction edges were collected from STRING (v11.5) 175 database, with 

active interaction sources extracted from experimental data (BIND, DIP, GRID, HPRD, 

IntAct, MINT, and PID) or databases (eg. Biocarta, BioCyc, GO, KEGG, and Reactome).  

4.4.8 Sequence feature analysis for differential exon skipping events 

Comparisons were performed between differentially spliced cassette exons (exon skipping 

events) and a transcriptome-wide background. The background cassette exon set, or 

native-exons, were defined as exons that are alternatively spliced under normal conditions 

(0.05 < mean PSI < 0.95 in wild-type samples).  

https://maayanlab.cloud/Enrichr/#libraries
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4.4.8.1 Splice site strength 

Splice site sequences were extracted from 5’ splice sites and 3’ splice sites in both upstream 

introns and downstream introns. Splice site strengths were calculated using MaxEntScan 

176. The statistical significance of splice site strength differences between differentially 

spliced cassette exons and native background cassette exons were assessed using 

Wilcoxon’s rank-sum test. 

4.4.8.2 Branch point prediction and comparison 

Branch point prediction is performed using BPP 167 software in both upstream intron and 

downstream intron. It reports both the specific position of predicted branch point relative 

to the corresponding 3’ splice site as well as the score of predicted branch point. The 

statistical significance of branch point score differences between differentially spliced 

cassette exons and native background cassette exons were assessed using Wilcoxon’s rank-

sum test. 

4.4.8.3 Anchoring sites ahead of branch point 

Sequences ranging from -25 nt to 4 nt relative to the predicted branch points were 

extracted, which includes the anchoring sites for SF3B complex 165. Observed frequencies of 

nucleotides at each specific position were visualized by WebLogo 177. 

4.4.9 RBP motif enrichment analysis for differential exon skipping events 

189 RBP binding motifs with position weight matrix information for 129 RBPs (including 

many well-characterized splicing factors) were curated from two different sources and 
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screened in this analysis. This includes 78 6-mer motifs for 78 RBPs from RNA Bind-n-Seq 

(RBNS) 100 and 111 7-mer motifs for 82 RBPs from RNAcompete 101.  

 Significant and background alternative splicing events were defined as described 

before (Gene expression and alternative splicing analysis from RNA-seq data section). To 

identify region-specific RBP regulatory patterns for exon skipping events, we evaluated 

three regions around the alternatively spliced exons: 1) 300 nt of intronic sequence 

upstream of the target exon; 2) the exon body sequences; and 3) 300 nt of intronic 

sequence downstream the target exon. Scores for each motif were calculated by sliding 

window scanning of the position weight matrix at each possible binding position. Region-

specific motif occurrence was then determined by comparing the calculated motif scores 

with a threshold score (80% of the maximum PWM score). If there was any position with a 

calculated motif score ≥ the threshold score for a particular exon skipping event, then the 

motif occurrence was marked as “True” for this event in the corresponding region; 

otherwise it was marked “False”.  

 To determine whether a motif occurred in a specific region more often in 

foreground event sets than in the background event set, a one-tailed Fisher’s exact test was 

used to test the null hypothesis that the number of events with motif occurrence at a 

specific region was not different between the foreground and the background event set. P 

values were adjusted by Benjamini-Hochberg Procedure. 
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4.5 Figures 

 

Figure 4.1 PRMT9 G189R mutant is catalytically dead and unstable 

(A) In vitro methylation assay. Wild type, but not the G189R/4A mutant, PRMT9 can 

methylate SF3B2 fragment in vitro. The in vitro methylation was performed by incubating 

either wild-type or mutant PRMT9 with SF3B2* fragment (a.a. 400-500) as substrate. 

Loading of protein was checked by ponceau staining. 4A represents a previously reported 

enzymatic mutant PRMT9 with 4 amino acids (LDIG) within the conserved motif I mutated 

to AAAA. 

(B) In vivo methylation assay. Wild type, but not the G189R/4A mutant, PRMT9 restores 

SF3B2 R508me2s in PRMT9 KO Hela cells. PRMT9 KO HeLa cells were transfected with 

Flag-PRMT9 (WT), Flag-G189R and Flag-4A mutant PRMT9. Total cell lysates were subject 

to western blotting detection with R508 methylation-specific antibody (αSF3B2 

R508me2s), αSF3B2, αFlag and αActin antibodies. 

(C) Stability measurement of wild-type PRMT9 and G189R mutant PRMT9 in Hela cells. 

Hela cells were treated with CHX to prevent new protein synthesis. Cell lysates were 

collected at indicated time after CHX treatment and analyzed by western blotting. The 
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percentage of remaining proteins were quantified by the intensity of bands from western 

blotting.  
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Figure 4.2 Prmt9 cKO in excitatory resulted in impaired learning, memory and 

synapse maturation in mice 

(A) Schematic diagram of the Morris water maze test 147. 

(B) Acquisition of the spatial memory shown by mean (±SEM) escape latency (time used to 

reach a hidden escape platform) over 8 consecutive days.  

(C) Schematic diagram of the fear conditioning procedure 148. Auditory tone is given as 

neutral conditional stimulus and electrical foot shock is given as aversive unconditional 

stimulus. 

(D) Graphic representation of percent time freezing during fear conditioning procedure. 
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(E) Representative photomicrographs of functional-synapse markers in cultured 

hippocampal neurons of wild-type and Prmt9 cKO mice. On the top shows the double 

labeling of two different glutamate receptors, GluN1 (red, NMDA receptor) and GluA1 

(green, AMPA receptor). On the bottom shows the double labeling of post-synaptic scaffold 

protein PSD95 (red) and pre-synaptic vesicle marker SYN (synapsin I, green).  

(F) Quantification of protein staining detected in (E). Puncta density (mean ± SEM) were 

quantified to indicate the protein abundance in mouse hippocampal neurons. 
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Figure 4.3 Alternative splicing acts independently to define brain-specific 

transcriptome 

(A) Violin plot of alternative splicing events significantly changed upon Prmt9 KO in mice. 

Positive ΔPSI represents increased inclusion of events upon Prmt9 KO, whereas negative 

ΔPSI represents more exclusion of events upon Prmt9 KO. Number of significant events 

within each category were indicated within parentheses along x-axis labels. SE, exon 
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skipping / skipped exon; A5SS, alternative 5’ splice sites; A3SS, alternative 3’ splice sites; 

RI, intron retention / retained intron; MXE, mutually exclusive exon. 

(B) Scatter plot of gene expression levels in wild-type and Prmt9 KO mice. Genes with 

significant alternative splicing changes are depicted in yellow.  

(C) Sashimi plot visualization and experimental validation of selected differential splicing 

events. The black bars and dashed lines in the middle represent exons and introns, 

respectively. The splice site highlighted by red triangle is a cryptic splice site not annotated 

in the reference genome. Purple and red sashimi plots illustrate the splicing patterns in 

wild-type and Prmt9 KO mice, with solid peaks representing RNA-seq read coverages in 

RPKM (reads per kilobase per million mapped), arches representing splice junctions, and 

the numbers representing number of reads mapped to each splice junction. PSI values are 

also indicated on the right side of the sashimi plot. In the bottom, RT-PCR validations were 

shown. Higher band intensity of PCR products indicates higher expression of 

corresponding splicing isoform. The ratios of exon inclusion isoform to exon exclusion 

isoform are quantified and displayed in bar plots. The cassette exon in Grin1 is exon 21. 
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Figure 4.4 Genes with alternative splicing changes are significantly enriched in 

brain-related pathways 

(A) Pathway enrichment analysis of alternatively spliced genes (SE or A3SS). Top 10 

enriched pathways from 3 database resource origins (BioPlanet pathway, Elsevier pathway 



 138 

collection, or the WikiPathway) are shown in the bar charts. The length of bars depicts the 

Benjamini-Hochberg adjusted p values calculated from hypergeometric test. Odds ratio of 

the enrichment were indicated by opacity of bars. 

(B) Circular plot of genes with causative variants for autosomal recessive intellectual 

disabilities (ARID). Genes exhibit splicing alterations upon Prmt9 KO are annotated in blue, 

while genes which are not differentially spliced themselves but whose paralogous genes 

were differentially spliced are annotated in red.  

(C) Ras/Rho/PSD95 network. Connecting edges collected from STRING database stands for 

protein-protein interactions. ARID-related genes were highlighted by the star shape in the 

center of the nodes. Genes exhibit splicing alterations upon Prmt9 KO are annotated in 

blue, while genes which are not differentially spliced themselves but whose paralogous 

genes were differentially spliced are annotated in red. 
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Figure 4.5 Sequence features of exon skipping events affected by Prmt9 KO 

(A) Schematic illustration of cis-acting elements on pre-mRNA. 
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(B) Violin plot showing the maximum entropy score of 5’ and 3’ splice sites in upstream or 

downstream introns of differentially spliced cassette exons. The statistical significance 

against background native cassette exons were assessed using Wilcoxon’s rank-sum test. 

ns, not significant. 

(C) Density plot of the relative positions of predicted branch point sites to their 

corresponding 3’ splice sites. 

(D) Violin plot of BPP scores from predicted branch point sites. The statistical significance 

against background native cassette exons were assessed using Wilcoxon’s rank-sum test. 

ns, not significant 

(E) Sequence logo showing the frequency of nucleotide near the predicted branch point 

sites. The height of the symbols within the stack indicates the observed frequency of the 

corresponding nucleotide at that position. The 0 point demarks the position of the branch 

point adenosine (BPA). Sequences were shown from -25 nt to 4 nt relative to the BPA, 

which include the reported anchoring site of SF3B complex 6 to 25 nt ahead of BPA 165.  

(F) Protein structure of human spliceosomal Bact complex (PDB: 6FF4 168) with focus on the 

PRMT9-methylated R508 of SF3B2 protein. BPA on the pre-mRNA (A 394) is shown in red. 

R508 of SF3B2 is spatially close to the uracil (U 381) on pre-mRNA, which is 13 nt 

upstream of BPA. 

(G) CLIP-qPCR assay of cells from hippocampus tissue of wild-type and Prmt9 KO mice. 

The SF3B2-bound RNA segments near 3’ splice sites in the upstream and downstream 

introns of cassette exons were quantified using qPCR and normalized against the IgG-

bound RNAs. Asterisks represent a significant difference in SF3B2/pre-mRNA interaction 
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at indicated regions between wild-type and KO samples. The cassette exons for Stxbp5l and 

Grin1 are from differential exon skipping events shown in Figure 4.3C.   
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Figure 4.6 Proposed working model: PRMT9-mediated SF3B2 R508me2s regulates 

splicing through 3’ splice site competition by altering SF3B2/pre-mRNA interaction 

The top panel shows the competition between the two 3’ splice sites involved in exon 

skipping events. The two 3’ splice sites are engaged in competition with each other for the 

assembly of splicing complexes, which causes the alternative exon in the middle to be 

either included or excluded in the final transcript 2. For exons whose upstream intron is 

associated with weaker 3’ splice site features (e.g. weaker 3’ splice site, weaker branch 

point sequences, more degenerate sequences in anchoring site of SF3B complex), 

compared to the downstream 3’ splice site, the selection of upstream 3’ splice site would be 

relatively enhanced by unmethylated SF3B2 in the PRMT9 loss-of-function mutant or KO, 

leading to more exon inclusion isoform. Vice versa, for exons associated with weaker 3’ 

splice site features in downstream introns, the selection of downstream 3’ splice site would 

be relatively enhanced while the selection of upstream 3’ splice site would be relatively 
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diminished by unmethylated SF3B2, resulting in more exon skipping in PRMT9 loss-of-

function mutant or KO. 
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Supplementary Figure 4.7 Amino-acid sequences and protein structure of human 

PRMT9 

(A) Amino-acid sequences of human PRMTs are aligned using ClustalW. The conserved 

Motif I is boxed with black squares. The blue asterisk indicates the G189 amino acid in 

PRMT9a. The number on the left indicates the positions of amino acid of individual PRMT, 



 145 

starting at the initiator methionine. Human PRMT sequences used included PRMT1: 

NP_001527.3; PRMT2: NP_996845.1; PRMT3: NP_005779.1; PRMT4: NP_954592.1; 

PRMT5: NP_006100.2; PRMT6: NP_060607.2; PRMT7: NP_061896.1; PRMT8: 

NP_062828.3; and PRMT9: NP_612373.2. (b) 

(B) Protein structure of human PRMT9 (PDB: 6PDM 178) with focus on the G189 amino 

acid. 
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Supplementary Figure 4.8 Alternative splicing analysis of RNA-seq data from wild-

type and Prmt9 KO mice. 

(A) Summary of sequencing depth and mapping statistics of RNA-Seq dataset. 

(B) Genome browser tracks of Prmt9 gene in wild-type and Prmt9 KO mice. Refseq 

annotation of Prmt9 gene is diagrammed at the top. The exon 5 highlighted by the black 

box is the floxed exon. Knockout of exon 5 creates a pre-mature stop codon in exon 6, 

resulting in global reduction of Prmt9 mRNA. 

(C) Pie charts depict the number of alternative splicing events in each category. There is an 

enrichment of A3SS events in significantly changed splicing events compared to all splicing 

events detected from the RNA-seq. All events, all alternative splicing events detected from 

the RNA-seq after filtering by number of supporting reads; Novel events, alternative 

splicing events harboring at least one cryptic splice site which is not annotated from the 

reference genome; (Novel) significant events, (novel) alternative splicing events 

significantly changed upon Prmt9 KO. SE, exon skipping / skipped exon; A5SS, alternative 

5’ splice sites; A3SS, alternative 3’ splice sites; RI, intron retention / retained intron; MXE, 

mutually exclusive exon. 

(D) Gene Ontology (GO) enrichment analysis of alternatively spliced genes (SE or A3SS). 

Top 10 enriched GO terms for Biological Process, Cellular Component and Molecular 

Function are shown in the bar charts. The length of bars depicts the Benjamini-Hochberg 

adjusted p values calculated from hypergeometric test. Odds ratio of the enrichment were 

indicated by opacity of bars.  
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(E) Sashimi plot visualization and experimental validation of additional differential splicing 

events. The black bars and dashed lines in the middle represent exons and introns, 

respectively. The splice site highlighted by red triangle is a cryptic splice site not annotated 

in the reference genome. Purple and red sashimi plots illustrate the splicing patterns in 

wild-type and Prmt9 KO mice, with solid peaks representing RNA-seq read coverages in 

RPKM (reads per kilobase per million mapped), arches representing splice junctions, and 

the numbers representing number of reads mapped to each splice junction. PSI values are 

also indicated on the right side of the sashimi plot. In the bottom, RT-PCR validations were 

shown. Higher band intensity of PCR products indicates higher expression of 

corresponding splicing isoform. The ratios of exon inclusion isoform to exon exclusion 

isoform are quantified and displayed in bar plots.   
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Supplementary Figure 4.9 Additional sequence features of exon skipping events 

affected by Prmt9 KO 

(A) Violin plot of cassette exon length. The statistical significance against background 

native cassette exons were assessed using Wilcoxon’s rank-sum test. ns, not significant. 

(B) Cumulative density function plot of intron length upstream or downstream of the 

cassette exon. The statistical significance against background native cassette exon set was 

assessed by two-sample Kolmogorov–Smirnov test (2KS) test. The KS statistic and p values 

were shown in the middle of the plot. ns, not significant. 

(C) Heatmap depicting the log-transformed Benjamini-Hochberg adjusted p values of RNA 

binding protein (RBP) motifs enriched in the target cassette exon or its flanking introns. 

Adjusted p values < 0.05 are marked by asterisk. Origins of motif information are indicated 
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by the database column. Included, cassette exons more included upon Prmt9 KO; excluded, 

cassette exons more excluded upon Prmt9 KO. Upstream intron, intronic region 300 nt 

upstream of the cassette exon; exon, the exon body region; downstream intron, intronic 

region 300 nt downstream the cassette exon. 
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5 CONCLUDING REMARKS 

A wealth of studies, comprising high-throughput sequencing, protein structure 

visualization, functional assays, cell culture, and transgenic mouse models, have helped to 

define the physiological roles of splicing in cell fate commitment and diseases such as 

cancer, neurodegenerative and other related disorders. Also, our knowledge of pre-mRNA 

splicing has remarkably expanded with advances in the sequencing technologies and 

development of computational tools to detect and quantify splicing variations. 

 In the meantime, the accumulation of RNA-seq data, especially those generated 

from consortium studies, also presented new challenges for the global profiling of splicing 

landscapes using massive datasets. It urges the development of new computational tools 

that are time- and memory-efficient for splicing analysis of large-scale datasets. Novel 

discoveries of associations between genetic variants and disease, or between splicing and 

other biological processes are continuously emerging under various settings. Examination 

of the splicing-related regulatory mechanisms underlying those associations would be 
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extremely helpful to narrow down the inventory for further experimental validation and 

enlighten the pathogenesis of diseases. 

 To resolve the computational challenge on big data analysis, in Chapter 2, we 

developed the rMATS-turbo, a computational tool designed for splicing analysis that 

exhibits dramatic improvement in processing speed and memory efficiency. A simple 

single-command differential analysis on relative smaller dataset produced robust 

identification of splicing alterations between cell lines, including those derived from cryptic 

splice site usage. The decoupling of splicing graph generation steps and splicing event 

detection step enables parallel processing of input samples and can strikingly reduce the 

time and memory consumption. Multi-command analysis on 1,019 RNA-seq datasets 

(18.58 T base) from the CCLE database can be finished in ~ 3 days, when parallelly 

processed. These results demonstrated that rMATS-turbo can facilitate robust, 

straightforward, and ultra-fast analysis of alternative splicing, which is suitable for splicing 

profiling in large-scale dataset. 

 In Chapter 2 and 3, we try to utilize rMATS-turbo, as well as other computational 

platforms and approaches to computationally elucidate the splicing regulatory mechanism 

underlying tissue development and disease. In Chapter 3, we used the osteogenic 

differentiation of MSPCs, to study the regulation of splicing by temporal expression of 

trans-acting RBPs using time-course RNA-seq data. Extensive splicing changes has been 

identified, which shows temporal correlation with expression of specific RBPs. We 

developed a new computational framework, combining correlation analysis and RBP motif 

enrichment analysis, to determine key splicing regulators of osteogenic differentiation. 

Perturbation of two out of nine RBP candidates identified by our computational framework 
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lead to reduced osteogenesis differentiation in vitro. Overall, this work highlights a high 

degree of splicing regulation network during osteogenic differentiation. And the 

computational framework can be generalized to other time-course data to elucidate the 

splicing regulations in other biological processes and disease trajectories.  

 In Chapter 4, we attempt to figure out whether PRMT9 contributes to brain 

development though SF3B2 methylation mediated splicing regulation. We showed that the 

PRMT9 G189R mutant, which is previously reported as causative variant for autosomal 

recessive intellectual disability, has eliminated methyltransferase activity and diminished 

stability. Also, the tissue-specific knockout of Prmt9 in excitatory neurons exhibit impaired 

learning, memory, and functional synapse maturation in hippocampus tissue. We also 

generated a deep RNA-seq dataset from wild-type and Prmt9 whole body knockout mice 

for global gene expression and alternative splicing analysis. We revealed a PRMT9-SF3B2-

splicing-synapse regulatory cascade that associates Prmt9 to brain development in mice, as 

evidenced by: 1) Except for Prmt9 itself, no steady-state gene expression change was 

observed in Prmt9 KO mice; 2) Many of the synaptic genes were subject to splicing 

changes, which has been validated by RT-PCR; 3) Genes with splicing changes were 

significantly enriched in synapse-related pathways and GO terms; 4) ARID-causative genes 

and genes in the Ras/Rho/PSD95 network, or their paralogous genes, displayed splicing 

changes upon Prmt9 KO. Moreover, computational comparison of sequencing features 

associated with SE event suggested that Prmt9 affects splicing by regulating 3’ splice site 

competition. This is confirmed by the spatial proximity of the SF3B2 R508, which can be 

methylated by PRMT9, to the anchoring site on the pre-mRNA. A working model is 

proposed that PRMT9-mediated SF3B2 R508me2s regulates splicing through 3’ splice site 
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competition by altering SF3B2/pre-mRNA interaction. This model is supported by the 

differential interaction of SF3B2 with 3’ splice site sequences between upstream and 

downstream introns. It can be further verified by additional experimental assays inspecting 

whether the differential interaction results from changes in sequence features, especially 

changes in SF3B complex anchoring site. 

 To summarize, the development of new computational approaches and data 

analysis can be inspired by advances in technologies and emerge of new biological 

discoveries. The design of computational analysis should take pre-existing biological 

knowledges into account. Reciprocally, it would facilitate the understanding of molecular 

changes underlying biological processes, and guide the design of functional assays to 

validate computational findings. In terms of alternative splicing, with the reinforced 

understanding of its regulation in development and disease, it is expected that the clinical 

relevance of splicing to disease diagnosis, prognosis, and therapy will be emphasized. For 

example, cancer cells with specific genetic backgrounds may respond differently to the 

perturbation of upstream regulators in the splicing regulatory cascade; Neoepitopes arising 

from individual splicing alterations can be targeted by immunotherapy in personalized 

medicine. Overall, we anticipate that computational approaches studying splicing 

regulatory mechanisms could deepen our insights into the pathogenesis of diseases, and 

guide new biological and clinical discoveries. 
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