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Abstract

This study presents an analysis of the small molecule bioactivity profiles across large quanti-

ties of diverse protein families represented in PubChem BioAssay. We compared the bioac-

tivity profiles of FDA approved drugs to non-FDA approved compounds, and report several

distinct patterns characteristic of the approved drugs. We found that a large fraction of the

previously reported higher target promiscuity among FDA approved compounds, compared

to non-FDA approved bioactives, was frequently due to cross-reactivity within rather than

across protein families. We identified 804 potentially novel protein target candidates for FDA

approved drugs, as well as 901 potentially novel target candidates with active non-FDA

approved compounds, but no FDA approved drugs with activity against these targets. We

also identified 486348 potentially novel compounds active against the same targets as FDA

approved drugs, as well as 153402 potentially novel compounds active against targets with-

out active FDA approved drugs. By quantifying the agreement among replicated screens,

we estimated that more than half of these novel outcomes are reproducible. Using bicluster-

ing, we identified many dense clusters of FDA approved drugs with enriched activity against

a common set of protein targets. We also report the distribution of compound promiscuity

using a Bayesian statistical model, and report the sensitivity and specificity of two common

methods for identifying promiscuous compounds. Aggregator assays exhibited greater

accuracy in identifying highly promiscuous compounds, while PAINS substructures were

able to identify a much larger set of “middle range” promiscuous compounds. Additionally,

we report a large number of promiscuous compounds not identified as aggregators or

PAINS. In summary, the results of this study represent a rich reference for selecting novel

drug and target protein candidates, as well as for eliminating candidate compounds with

unselective activities.

Introduction

High throughput screening (HTS) is a key technology for identifying bioactive small molecules

for chemical genomics and drug discovery applications. Challenges encountered in the
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discovery of small molecules with high target specificity include experimental noise in HTS

experiments and an extremely large search space. The potentially testable compound-protein

target space consists of nearly two trillion possible combinations, if we regard each of the over

91 million small-molecules in the PubChem compounds database (at the time of writing) as

potential drug candidates, and each of the annotated protein coding genes in the Homo sapiens
genome (19950 genes according to GENCODE 25) as a potential drug target [1, 2]. This search

space becomes much larger if we consider alternative splicing, non-protein biomolecule tar-

gets, and potential targets from other species, e.g. microbiome targets and parasite targets. In

recent years, a substantial number of small molecule vs protein target assays have become

available in the public domain, which investigate a portion of this search space. At the time of

writing, the PubChem BioAssay database contains just over 230 million small molecule bioac-

tivity outcomes, over half of which involve activity against a clearly defined protein target [3].

It includes most of the bioactivity data available in the public domain as it imports assays from

many sources such as ChEMBL, and also provides negative (inactive) assay outcomes not

reported in many databases [4]. This large data volume presents an opportunity to systemati-

cally investigate small molecule-target interactions, with the potential to provide insights rele-

vant to future drug discovery efforts [3, 5–11]. These data also have potential utility for

identifying and excluding drug candidates with undesirable binding properties (e.g. unselective

promiscuous binders), developing multi-target (polypharmacological) drug treatments, pre-

dicting potential side and toxic effects of small molecules, and assessing the druggability of

novel target proteins [8, 12–21]. The following gives a brief overview of previous work in this

field.

Shortly after the NIH Molecular Library Roadmap Initiative made available large public

screening data in PubChem BioAssay, Han et al. reported the distribution of assay participa-

tion, target selectivities, and target diversity in these data, while Zhang et al. later reported bias

in target and compound selection among these data [8, 22, 23]. Hu and Bajorath quantified the

distribution of active target proteins in the PubChem, DrugBank, and ChEMBL databases, and

found that 37.4% of FDA approved drugs interact with more than five targets, while other

active compounds tend to interact with only 1–2 targets, with only a 7.6% probability of more

than five [4, 24, 25]. Recently, Jasial et al. analyzed compound promiscuity in PubChem BioAs-

say and found a median of 2 active targets for non-FDA approved compounds [26]. In com-

parison to previous work in this field, our study is unprecedented by providing a broader

analysis of the publicly available small molecule bioactivity space, including target selectivity

profiles within and across protein families considering variable evolutionary distances.

The concept of target selectivity has been introduced in previous literature, in order to

quantify the number of distinct protein targets a compound exhibits activity against. Two

common metrics for quantifying target selectivity have been frequently used. First, the total

number of active targets across all participating assays, is referred to simply as target selectivity

[8]. Second, the fraction of actives out of the total number of screened targets has been referred

to as the hit ratio [27]. We analyzed target selectivity with both methods, as they have comple-

mentary strengths and weaknesses.

In this study, we mined large public bioactivity data to investigate many outstanding ques-

tions about the patterns of target selectivity among small molecules. Fig 1 provides a visual

overview of important steps in our data analysis strategy. To investigate why FDA approved

drugs on average exhibit activity against a greater number of targets than non-FDA com-

pounds, we computed the target selectivity of small molecules against protein clusters obtained

with three distinct methods that classify protein sequences across increasingly large evolution-

ary distances. While FDA approved drugs have on average a greater number of targets, these

targets more frequently share sequence similarity than targets of non-FDA active compounds.

Large-scale bioactivity analysis of the small-molecule assayed proteome
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We also found that many of these multi-target FDA approved drugs fall into biclusters,

where a common set of drugs share activity against a common set of protein targets that are

enriched for common molecular function annotations, suggesting a shared chemical mecha-

nism leading to cross-reactivity. To determine which targets are more accessible to small mole-

cule perturbations than others, we quantified the number of active compounds for targets

grouped by shared protein domains, and found active compounds for targets which contain

32.4% of the domains present in the H. sapiens proteome. Clustering the targets by similar

amino acid sequences, we found 9120 active target outcomes for FDA approved drugs not cur-

rently annotated in drug databases. By quantifying the rate of agreement among millions of

replicated compound-target pairs across distinct assays, we estimate that over half of these

novel results are accurate bioactivity outcomes. To investigate the frequency of highly promis-

cuous compounds, we used a statistical model to infer the hit ratio of each compound, and

report 1157 likely-promiscuous compounds not previously identified by two common meth-

ods of identifying promiscuous compounds, aggregator assays and PAINS substructures [12,

28].

Fig 1. Bioactivity data mining strategy. Public bioactivity data was first summarized in a compound-target

bioactivity matrix (A). Protein targets and small molecules were clustered by sequence (B) and structure (C)

respectively, and compound-target sets with shared bioactivity profiles were identified with biclustering (D).

For small molecules, the distributions of (E) target selectivity (the number of active targets) and (F) hit ratio

(the fraction of screened targets that are active) were quantified. For protein targets, enriched GO (Gene

Ontology) terms (G) among proteins with common bioactivity were identified, and a network (H) was

constructed which connects target proteins with similar bioactivity profiles. These analyses highlight several

interesting bioactivity patterns, identify promiscuous and selective compounds, and identify druggable protein

targets and protein domains.

doi:10.1371/journal.pone.0171413.g001
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Results and discussion

Bioactivity data

Bioactivity data curation and overview. The bioactivity data analyzed by this study were

downloaded from PubChem BioAssay on April 6th, 2016. They included 1.2 million distinct

small molecule structures tested against 5069 protein targets in 68029 assay experiments [3].

We were able to utilize all experiments annotated with a single clearly defined protein target,

and reporting an active score for at least one small molecule. Assays with no active scores, or

no machine readable protein target annotation were excluded. Much of this data summarizes

the results from primary screening experiments which provide only binary active/inactive

results, but we also analyze confirmatory assays, if binary calls are also provided.

As compounds were screened against variable numbers of targets, the compound vs target

bioactivity space obtained from PubChem BioAsssay is sparse. Currently, there are 162 million

compound-target activity records available, populating 2.6% of the full bioassay matrix with at

least one measurement. Within the explored bioactivity space, active values are relatively rare

(just over 2.3 million), representing just over 1.3% of total tested values, or about 0.027% of the

total space. If we consider just the 566983 “highly screened” compounds tested against at least

10 distinct targets, the density of tested bioactivity outcomes increases to 6.1%. The patterns of

bioactivity among these “highly screened” compounds are the focus of this study, as they pro-

vide information about bioactivity profiles across many targets. Collapsing the protein target

space by merging very similar sequences, such as truncations, and close orthologues and para-

logues, reduces these targets from 5069 protein targets to 2249 target clusters, producing a

smaller and more dense bioactivity matrix. This is described in more detail in the Methods sec-

tion (see “Clustering Protein Targets by Sequence”). A subset of the bioactivity space is non-

sparse, with a set of 81660 compounds by 247 target clusters that has been explored 100%,

which we discuss in S1 Text and provide as a downloadable reference for users in S7 File.

To facilitate comparisons throughout this study among FDA approved and all other com-

pounds, we obtained a list of the 1173 FDA approved drugs with known PubChem ids from

the DrugBank database, and quantified the number of screened targets for both categories

[25]. Table 1 shows the distribution of total screened protein targets for the compounds in

PubChem BioAssay. The overall distribution is also plotted in S3 Fig in Supporting Informa-

tion. While a disproportionately large fraction of non-FDA compounds were screened against

a small number of targets, the distribution of screening frequencies between highly screened

Table 1. Screening frequency of FDA approved and non-FDA compounds against increasing numbers

of protein targets. Data is included from all assay experiments in PubChem BioAssay annotated with one

clearly defined protein target, and reporting an active score for at least one small molecule. Multiple assays

against the same target are counted only once.

Screened Protein Targets FDA Approved Drugs Non-FDA Compounds

1 31 359135

2–4 41 135786

5–9 27 151385

10–49 197 150202

50–99 128 51849

100–199 150 30277

200–299 85 69098

300–399 94 202225

400–499 106 63219

�500 139 82

doi:10.1371/journal.pone.0171413.t001
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FDA approved and non-FDA compounds is similar. Highly screened FDA approved drugs

were screened against a mean of 242 targets (median 184), while highly screened non-FDA

approved compounds were screened against a mean of 224 (median 280) targets. Therefore,

these data allow us to compare patterns of target selectivity between many FDA approved and

non-FDA approved compounds with similar assay participation profiles. Additionally, the hit

ratio statistical model we introduce below in the “Promiscuous Binders and Hit Ratio Statisti-

cal Model” section provides a robust method of comparing target selectivity across compound

sets with varying assay participation.

When comparing the bioactivity profile and target selectivity among compounds, we focus

on compounds with evidence of activity against at least one protein target, as active com-

pounds are more likely to be of biological or pharmacological interest. Of the 566983 “highly

screened” compounds mentioned above, 312308 have also been found active against one or

more targets. Among the highly screened active compounds, 759 are FDA approved drugs,

whose patterns of target selectivity we compare and contrast with non-FDA approved highly

screened active compounds.

Data quality and reproducibility. Systematically analyzing public bioactivity data pres-

ents many data quality challenges stemming from experimental error, and missing or incorrect

annotation. While efforts such as the BioAssay Research Database (BARD) and BioAssay

Ontology are underway to curate a set of assays with detailed high quality annotations, these

represent a very small subset of the publicly available bioactivity data [29, 30]. To assess the

reliability of the data, we estimate an error rate for compound-target combinations tested mul-

tiple times in separate assays by quantifying how often the results agree or disagree. This esti-

mate combines all errors causing in vitro screening outcomes from different primary

screening assays to disagree, such as underlying experimental noise, data curation and annota-

tion errors, as well as disagreement resulting from unique experimental context or conditions

for a particular assay, that are not provided in a machine readable format. While we can quan-

tify how often activity outcomes disagree across different assays, the PubChem BioAssay data

does not include information about the exact cause of a disagreeing activity outcome, or in

which assay the error occurred in. As this data includes assays of variable design and robust-

ness, individual assays will have different error rates. However, our estimate represents the

probability of any individual compound-target activity outcome reporting an incorrect result

when combined and analyzed in aggregate, as we do in this study.

Table 2 shows the number of distinct compound-target pairs that were screened a given

number of times. In S1 Text we solve algebraically for the error rate based on the frequency of

agreeing or disagreeing sets among compound-target pairs tested in exactly two different

assays. As explained and justified in S1 Text, our estimate is an approximation which requires

two simplifying assumptions. First, we set the average false positive and false negative rates

across the entire dataset equal, and estimate an overall error rate e. Second, we assume that the

fraction of true active compound-target pairs in the total PubChem BioAssay data is

Table 2. Screening Frequency. The number of distinct compound-target combinations screened in multiple

assays, listed for increasing numbers of assays.

Times Screened Number of Compound-Target Pairs

2 21220270

3 3308744

4 726700

5 29610

�6 376787

doi:10.1371/journal.pone.0171413.t002
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approximately the same for both the set with two replicates, and the larger set of data with

more or less than two replicates. Based on these assumptions, we estimate an error rate of

approximately 0.698%, representing the probability of any individual bioactivity outcome

reporting the opposite of its true result.

The high throughput screening experiments we analyze here require choosing a hit thresh-

old, which assigns a binary active or inactive outcome to each compound tested, based on the

magnitude of its experimentally measured activity level. The specific hit threshold is a subjec-

tive choice of the experimentalist that balances the acceptability of false positives and false neg-

atives for a given purpose, and is not provided to us in a machine readable manner. Thus, it is

not feasible to provide here a precise estimate of the fraction of actives which are true positives

[31]. In many drug discovery efforts, false positives are more problematic than false negatives.

As a result, experimentalists are more likely to choose a stringent activity cutoff, biased

towards avoiding false positives. As such, these data suggest a rough estimate on the lower

bound of the fraction of active compound-target outcomes which are true positives of approxi-

mately 66%, but it may be higher. Therefore, we expect that despite a considerable error rate,

more than half of the unreplicated positive activity outcomes in these data are meaningful in

the context they are used for in this study.

Protein target diversity. To assess the target protein diversity represented in PubChem

BioAssay, we enumerated the number of distinct targets by three methods which group targets

across increasingly large evolutionary distances, including (i) unique protein identifiers, as

well as clustering (ii) by protein sequence similarity and (iii) by Pfam domains [32]. The 68029

assay experiments we analyzed grouped into 5069 clusters of assays sharing an identical dis-

tinct GenBank Protein GI (Gene Identifier), each of which has a unique amino acid sequence

[33]. By clustering these targets together based on an amino acid sequence identity of at least

60%, a kClust E-value� 10−4, and an alignment coverage of at least 80% for the longer

sequence, we identified 2249 distinct target clusters [34]. This method clusters together minor

truncations engineered for screening purposes, as well as closely related orthologues and para-

logues (see “Clustering Protein Targets by Sequence” in Methods). To investigate target diver-

sity at the domain level, we mapped Pfam-A domains to each protein target with a distinct GI

as described in the Methods section under “Protein Annotations and GO Enrichment”. The

domain mapping results were used for two different domain-based protein clustering

approaches: single domain clustering and domain composition clustering. The former assigns

proteins to clusters based on the presence of single domains. This approach assigns multiple

domain proteins to several clusters (i.e. “fuzzy clustering”). To investigate the magnitude of the

effect these duplications may have on downstream analyses, we also performed domain compo-
sition clustering, where multiple domain proteins are assigned to the same cluster if they share

the same domains disregarding their order. This stricter method results in nearly unique clus-

ter assignments of proteins while enabling the identification of domains occurring on the

same targets. Because we were mainly interested in assessing which Pfam domains participated

in bioassays rather than individual combinations of domains, most downstream analyses

involving Pfam domains were performed with the single domain clustering results. It is also

important to point out that the exact binding site within the bioassayed proteins is not readily

available to us. This means it is not possible to determine for most bioassayed proteins whether

their annotated Pfam domain(s) overlap with the actual binding site of the corresponding

compounds. Thus, compound-target interactions investigated by this study refer to entire pro-

teins rather than specific Pfam domains. Additional annotation data or experimental inquiry

would be necessary to pinpoint the true target domain(s) within proteins.

To assess the Pfam domain participation in the bioassay data, we quantified the distribution

of screening participation by active and inactive compounds for the targets with different

Large-scale bioactivity analysis of the small-molecule assayed proteome
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Pfam domains in Fig 2, with all domains shown in the left panel, and the subset present in the

H. sapiens proteome shown in the right panel. In total there are 2838 distinct Pfam domains

represented in PubChem BioAssay that are associated with active compounds, and therefore

have at least some evidence of druggability. In comparison, 32.4% of the 7431 distinct Pfam

domains represented in the H. sapiens proteome are also represented in these bioassays and

report active compounds, while 27.1% of them were screened directly on H. sapiens proteins.

Additionally, there are proteins with active compounds in PubChem BioAssay which contain

433 Pfam domains not present in the H. sapiens proteome, many of which are domains

restricted to bacteria and plants. There are 795 Pfam domains that are extremely highly

screened, with activity outcomes for over 200k compounds each. The number of domains with

active compounds is greater than inactive compounds, due to assays which do not report inac-

tive outcomes. While these are mostly small assays reporting few activity outcomes, they sub-

stantially increase the information about the druggable space by reporting active compounds

for 792 domains not present in the other assays, 614 of which are present in the human prote-

ome. Because proteins often contain multiple Pfam domains, duplications are unavoidable

with this type of protein family clustering. Out of 5069 distinct protein targets, 79% (3989 pro-

teins) have two or more domains. We clustered these 3989 multi-domain proteins based on

the composition of Pfam domains in each (domain composition clustering), and found only

1959 distinct clusters with a unique combination of domains, showing that the same sets of

multiple-domains frequently occur together. As a resource to readers, we provide the domain

composition clusters for each domain in S8 File of Supporting Information. We also use this

result to show in most tables and figures only one representative domain for a set co-occurring

together on the same targets. The details of this approach are described in the Methods section

(see “De-duplication of Single Domain Clusters”).

Fig 3A enumerates the relative abundance of active FDA approved drugs, active non-FDA

compounds, and total protein targets for the 30 domains with the largest number of active

Fig 2. Pfam domain screening participation. The quantity of Pfam domains is plotted on the horizontal (x)

axis whose protein targets have at least as many active or inactive compounds as shown on the vertical (y)

axis. The left panel includes all Pfam domains in the PubChem BioAssay targets, while the right panel

includes just those domains also present in the H. sapiens proteome, including non-H. sapiens targets which

share a common domain with an H. sapiens protein.

doi:10.1371/journal.pone.0171413.g002

Large-scale bioactivity analysis of the small-molecule assayed proteome
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Fig 3. Frequency of active pubchem bioassay compounds across protein target domains. The target proteins represented in PubChem

BioAssay have been classified by Pfam protein domains present in the H. sapiens proteome (vertical axis). We report data for all proteins which

encode a Pfam domain present in the H. sapiens proteome, even if the assay was performed against a protein from another species. We show here

only domains with at least 100 amino acid residues in the homology model, to avoid small repeats and domains unlikely to be drug targets.

Additionally, we report for multi-domain clusters only the most frequent and functionally descriptive members as outlined in the Methods section

(see “De-duplication of Single Domain Clusters”). Domains of unknown function (DUFs) were also removed since they are rarely the functional

target of bioassays. The quantity of targets with each domain among the PubChem BioAssay data, and within the H. sapiens proteome (all

proteins, including those not screened in PubChem BioAssay) are shown on the right in both plots. (A) The top 30 Pfam domains with the greatest

number of active FDA approved drugs, in decreasing order. (B) The top 34 Pfam domains with the greatest number of non-FDA compounds, but no

active FDA approved drugs, in decreasing order. A full table is provided in the S2 File of Supporting Information including the number of active

compounds for each domain, non-H. sapiens domains, all domains occurring on the same proteins, and domains with less than 100 residues.

doi:10.1371/journal.pone.0171413.g003

Large-scale bioactivity analysis of the small-molecule assayed proteome
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FDA approved drugs. As can be seen by comparing column 1 (FDA Approved Drugs) to col-

umn 2 (Non-FDA Compounds), the fraction of screened compounds active against each

domain is significantly higher for FDA approved drugs. However, due to the much greater

number of non-FDA compounds, the total number of non-FDA actives is much higher than

the number of FDA approved drugs. For comparison, the number of proteins within each

Pfam domain is given in Column 3 of Fig 3A for both proteins represented in PubChem Bio-

Assay and those encoded in the H. sapiens genome. In some cases, the number of targets in

PubChem BioAssay exceeds those in the H. sapiens proteome because it includes targets from

other species, as well as engineered targets (e.g. truncations) developed for screening purposes.

The proteins targeted by the greatest number of FDA approved drugs include rhodopsin-like

GPCRs, cytochrome P450 enzymes, and nuclear hormone receptors, with a large number of

non-FDA compounds also targeting these proteins.

Several domains such as Tyrosyl-DNA phosphodiesterase and protein kinase have a large

number of active non-FDA compounds compared to the ordering of domains, which is based

on a decreasing number of FDA approved active compounds. In cases such as kinases this may

be explained by the large number of assays screening distinct targets within a large protein

family. However, in other cases such as Tyrosyl-DNA phosphodiesterases there are a compara-

tively large number of active non-FDA compounds despite relatively fewer target proteins

screened within this much smaller family. Overall, we found 486348 non-FDA compounds

active against individual targets (distinct GenBank GIs) that also have active FDA approved

drugs, representing a set of potentially novel compounds active against potentially therapeutic

targets.

As we reported previously, the FDA approved drugs show activity against 1789 protein tar-

gets, whereas the non-drug compounds show activity against an additional 3020 protein tar-

gets, of which 901 are substantially distinct at the sequence level, based on the clustering by

sequence similarity mentioned above [35]. Fig 3B lists the top 34 domains contained in pro-

teins with no active FDA approved compounds, but the greatest number of non-FDA com-

pounds. These targets with domains not known to be accessible to FDA approved drugs

represent a greatly expanded space of potentially druggable targets and small molecule drug

candidates. In total, we found 153402 compounds active against individual targets (distinct

GenBank GIs) with no active FDA approved drugs. While some of these compounds will be

false positives due to experimental noise, the magnitude of actives suggests a large quantity of

truly active compounds. We provide the number of active FDA approved and non-FDA com-

pounds for the full set of Pfam domains in the S2 File of Supporting Information.

Target selectivity

Target selectivity distribution. Highly screened bioactive small molecules can be catego-

rized according to target selectivity, which is the number of distinct protein targets they show

activity against. By quantifying the distribution of target selectivities, we can identify highly

selective and less selective compounds, as well as compare the selectivities of FDA approved

drugs to non-FDA approved compounds. To address this, we computed the distribution of

target selectivities among the highly screened active compounds in PubChem BioAssay, each

of which were tested against 10 or more protein targets, and active against at least one. We

computed target selectivity based on the three types of protein clustering methods mentioned

in the previous section. “Target selectivity” counts each target with a distinct amino acid

sequence (distinct GenBank Protein Gene Identifiers) separately, while “cluster selectivity”

counts the number of sequence-based clusters a compound shows activity against. Third,

“domain selectivity” counts activity against any set of targets sharing a common Pfam protein

Large-scale bioactivity analysis of the small-molecule assayed proteome
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domain only once. Due to the existence of protein targets with multiple domains, we compute

the number of domain clusters independently for each compound. For example, if a com-

pound is active against 5 targets, but 4 share a common domain, its domain selectivity is 2.

This is the same as counting the number of connected components in a graph where each

node represents an active protein target, and edges represent target pairs sharing a common

Pfam domain. The distribution of counts for all three clustering methods is shown in Fig 4. Fig

4B includes a boxplot which highlights the quantiles for each distribution, while in Fig 4A,

counts are shown for values up to 20. There are an additional 144 FDA approved drugs and

6285 non-FDA compounds with greater than 20 individual active targets. These are not shown

in Fig 4A as they represent a very small fraction of the total compounds, and for highly promis-

cuous compounds, may simply represent the number of screened targets instead of a biologi-

cally relevant quantity. The “Promiscuous Binders and Hit Ratio Statistical Model” section

below quantifies and visualizes selectivity in a way that normalizes by assay participation,

allowing us to investigate selectivity distributions among highly promiscuous compounds.

Interestingly, the FDA approved drugs show a much greater frequency of activity against

many targets, and reduced frequency of activity against only one or two targets as compared to

non-FDA compounds, as shown in Fig 4. In S1 Text of the Supporting Information we also

Fig 4. Distribution of active proteins per compound. Both plots show the distribution of target selectivity among PubChem BioAssay

compounds, with selectivity quantified by three methods which cluster protein targets across increasingly large evolutionary distances, as

described in the text. FDA approved drugs (red) are shown separately from non-FDA approved compounds (blue). (A) Semi-log plot of the target

selectivity distributions, where horizontal (x) axis represents the number of active protein targets and/or protein target clusters, while the vertical (y)

axis represents the fraction of each compound set that is active against a particular number of targets. (B) Box plot of the target selectivity

distributions, with horizontal lines at the 25%, 50%, and 75% quantiles for each distribution. The vertical (y) axis represents the number of active

protein targets and/or protein target clusters. Whiskers extend to 1.5 times the inter-quartile range, however we limit the vertical (y) axis to 16 in

order to zoom into the higher density region.

doi:10.1371/journal.pone.0171413.g004
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provide a table with median, mean, and trimmed mean values for all three clustering methods.

We performed a one sided Mann-Whitney-Wilcoxon test to determine if the FDA approved

drugs have higher counts than the non-FDA approved compounds vs. the null hypothesis that

they have equal or lower counts. The values W were 180M, 173M, and 154M for target, cluster,

and domain selectivity counts respectively, with p-value < 2.2 � 10−16 by normal approxima-

tion for all three comparisons. While this observation was reported in previous literature, we

report an even higher number of targets for the FDA approved compounds, based on the

larger volume of data we analyze here [24, 36]. This higher number of active targets is unlikely

to be due to biased assay participation, because as discussed in the above “Bioactivity Data

Curation and Overview” section, non-FDA compounds were screened against a higher

median number of targets, yet show a lower median number of active targets. Additionally, in

the “Promiscuous Binders and Hit Ratio Statistical Model” section below, we report that this

trend is still present when analyzed with a statistical model that accounts for the individual

assay participation of each compound.

As shown in Fig 4, the target promiscuity of FDA approved drugs decreases substantially as

related targets are clustered across increasingly large evolutionary distances, while the target

promiscuity of non-FDA compounds decreases to a much lesser extent. For the FDA approved

drugs, the median selectivity drops from 7 to 4 when targets sharing common domains are

clustered. The Mann-Whitney-Wilcoxon test results in the previous paragraph also quantify

the magnitude of this difference. As this test is based on position in a ranked list, the result

indicates that for a large number of FDA approved compounds, there is a greater number of

non-FDA compounds with higher domain selectivity counts, than the number of non-FDA

compounds with higher target selectivity counts. These results highlight a fundamental differ-

ence in the overall trend of bioactivity between FDA and non-FDA compounds active against

many targets. While the FDA approved drugs tend to be active against many more targets than

non-FDA compounds, a greater fraction of these targets share common Pfam domains and/or

overall sequence similarity. While a substantial fraction of the active targets of FDA approved

drugs are closely related, the FDA approved drugs also exhibit activity against a slightly higher

number of unrelated targets than the non-FDA compounds.

To determine whether the greater promiscuity of FDA approved drugs for related targets is

caused by a biased screening participation within certain target families, we performed com-

parisons where we normalized the differences in assay participation among FDA and non-

FDA drugs. Due to the sparsity of the data, this analysis had to be restricted to a subset of target

clusters with sufficient bioassay data where it was possible to obtain equal assay participation

among FDA and non-FDA drugs by iteratively and randomly removing bioassay outcomes

from the more frequently tested cases. A detailed outline this analysis is provided in the S1

Text in Supporting Information (see “Target Selectivity Distribution Among Targets Sharing a

Common Pfam Domain”). This result demonstrates that the greater fraction of active targets

sharing common Pfam domains among the FDA approved compounds is still observable after

controlling for differences in assay participation at the individual domain level. One plausible

explanation for this trend is that many FDA approved drugs have been optimized to bind to

their targets with high affinity resulting in more frequent cross-reactions with related targets

than less optimized non-FDA drugs.

We further explore the selectivity against distinct Pfam domain families in the next section.

As a resource for readers, we report the target selectivity, cluster selectivity, and domain selec-

tivity for all highly screened actives in the S1 File of Supporting Information.

Selectivity across pfam domains. As the FDA approved drugs exhibit wide variation in

target selectivity, with both highly selective, and highly promiscuous compounds, we wanted

to determine whether promiscuous and selective compounds exhibit activity against different

Large-scale bioactivity analysis of the small-molecule assayed proteome
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subsets of the protein target space. To answer this question, we identified the highly screened

compounds exhibiting activity against the target proteins grouped by Pfam domains. We then

computed for each domain the median domain selectivity counts of the active compounds.

Domain selectivity is the same as introduced in the “Target Selectivity Distribution” section

above, where active targets sharing a common domain are counted only once. We performed

this separately for the FDA approved, and non-FDA compounds, while excluding domains

with less than 10 active compounds from both sets. Table 3 quantifies the number of domains

grouped into 8 bins of median domain selectivity, showing an extremely wide variation of

median domain selectivities, including both domains whose active compounds tend to be

highly promiscuous, and domains whose active compounds tend to be highly selective. Table 4

lists the top 16 Pfam domain families whose active FDA approved drugs are most promiscuous

across proteins with different domains, while Table 5 lists the top 19 Pfam domain families

whose active FDA approved drugs are most selective across proteins with different domains.

Domains not present in the H. sapiens proteome are not shown in Tables 4 and 5, but were

included in the analysis and are available in the S2 File of Supporting Information.

To determine whether functional activities are enriched within the individual selectivity

bins of Table 3, we used the Molecular Function Gene Ontology annotations (MF GO) of the

corresponding Pfam domains to perform a GO term enrichment test based on the hypergeo-

metric distribution (see “Protein Annotations and GO Enrichment” Methods section) [37].

Since we were mostly interested in enrichments within general functional categories, we

restricted this analysis to the slim terms of the MF GO. This allows us to identify functional

categories that are more abundant within the selectivity bins than one would expect by chance.

Fig 5 shows the enriched GO terms (p-value < 0.05) for each bin of target selectivity. We also

show in the right column the total number of protein targets in PubChem BioAssay annotated

with each term.

Several target selectivity bins are enriched with a characteristic set of MF GO terms. For

example, FDA approved drugs active against oxidoreductase targets appear in a promiscuous

bin (14–16.5), whereas drugs targeting binding proteins appear in a more selective bin (5–7.5).

Overall, this result demonstrates that the different protein domains represented in PubChem

BioAssay can be grouped into those druggable primarily with selective compounds, and those

druggable primarily with promiscuous compounds. Interestingly, the patterns of term enrich-

ment are different between the FDA approved and non-FDA compounds, with many of the

top target classes druggable by more promiscuous FDA-approved compounds having

Table 3. Frequency of pfam domains binned by median domain selectivity of active compounds. Each

row represents a set of Pfam domains whose active compounds (against targets with that domain) have a

median domain selectivity in the range specified. Domain selectivity is the same as introduced in the “Target

Selectivity Distribution” section above, where active targets sharing a common domain are counted only once.

The ranges are ordered from top to bottom by increasing number of distinct domain active targets. We report

bin counts separately for FDA Approved and Non-FDA compounds.

Bins of Median Domain Selectivity FDA Approved Domain Counts Non-FDA Domain Counts

2–4 6 113

5–7.5 80 169

8–10.5 119 81

11–13.5 71 16

14–16.5 63 7

17–19.5 29 3

20–22 17 2

23.5–25.5 6 0

doi:10.1371/journal.pone.0171413.t003

Large-scale bioactivity analysis of the small-molecule assayed proteome

PLOS ONE | DOI:10.1371/journal.pone.0171413 February 8, 2017 12 / 36



primarily selective non-FDA active compounds and vice versa. This raises the question of if

the selectivity levels characteristic of FDA approved drugs are a necessary property for those

compounds therapeutic efficacy, or if more selective non-FDA compounds may also include

viable drug candidates with a reduced chance of off-target effects. The highly enriched molecu-

lar function terms in some bins also raises the question of if these compound-target interac-

tions may share a characteristic selectivity due to a shared chemical mechanism of bioactivity.

Stretched exponential distribution. The distribution of active targets for non-FDA com-

pounds shown in Fig 4A show a very regular pattern, with a slight curvature in semi-log space.

We found that this distribution is well described by the stretched exponential function shown

in Eq 1 (R2 = 0.99912 for non-FDA cluster selectivity), where c and x0 are constant fit parame-

ters, and the variable x represents the number of active protein targets. This is not due to the

distribution of assay participation, as assay participation has a very irregular pattern with a

large number of compounds screened against many targets as shown in Table 1 and S3 Fig in

Supporting Information. Stretched exponential functions are commonly observed in natural

multiplicative processes, and we report detailed methods and related citations for this observa-

tion in S1 Text of the Supporting Information [38].

PðxÞ ¼ e� ðx=x0Þ
c

ð1Þ

Target selectivity and compound complexity. We investigated the distribution of target

selectivities across compounds of different molecular sizes, and found that the overall distribu-

tion is similar. However, very large compounds tend to have fewer active targets, and FDA

Table 4. Top 16 pfam domains with least selective active drugs. Only domains present in the H. sapiens proteome are shown, and are sorted and selected

by decreasing domain selectivity among FDA approved drugs. We also excluded domains with under 100 amino acid residues in the homology model, to

avoid small repeats and domains unlikely to be drug targets. Additionally, we report for multi-domain clusters only the most frequent and functionally descrip-

tive members as outlined in the Methods section (see “De-duplication of Single Domain Clusters”), and also removed domains of unknown function (DUFs).

To the left of the slash in each column is the median target selectivity of FDA approved compounds active against this domain, and to the right is the median

selectivity of non-FDA compounds. Selectivity is quantified by three methods of increasingly grouped protein targets as described in the text. For example, the

non-FDA approved compounds active against targets with the PF00183 domain are active against a median of 12 targets with distinct GenBank identifiers, so

this domain has a 12 after the slash in the first column.

Domain Median Target

Selectivity FDA

Approved/non-FDA

Median Cluster

Selectivity FDA

Approved/non-FDA

Median Domain

Selectivity FDA

Approved/non-FDA

PF16178 Dimerisation domain of Ca+-activated chloride-channel, anoctamin 41/8 36/7 25/6

PF03520 KCNQ voltage-gated potassium channel 44.5/7 40/7 25/6

PF10488 Phosphatase-1 catalytic subunit binding region 49/14 46.5/14 23.5/12

PF10401 Interferon-regulatory factor 3 46.5/8 45.5/8 22/7.5

PF09038 Tumour suppressor p53-binding protein-1 Tudor 43.5/6 36.5/6 21/6

PF02518 Histidine kinase-, DNA gyrase B-, and HSP90-like ATPase 36/12 31/12 21/10

PF00180 Isocitrate/isopropylmalate dehydrogenase 33/11 27/10 19/9

PF02127 Aminopeptidase I zinc metalloprotease (M18) 31/9 29/9 19/8

PF00758 Erythropoietin/thrombopoietin 41/10 28/9 18.5/7

PF00044 Glyceraldehyde 3-phosphate dehydrogenase, NAD binding domain 33/13 27/13 18/12

PF00011 Hsp20/alpha crystallin family 29/10 28/10 18/5

PF01231 Indoleamine 2,3-dioxygenase 41.5/13 31/12.5 18/9

PF00452 Apoptosis regulator proteins, Bcl-2 family 29/10 27/10 17.5/9

PF00817 impB/mucB/samB family 23/11 23/11 17/9

PF03388 Legume-like lectin family 19/6 19/6 17/5

PF00443 Ubiquitin carboxyl-terminal hydrolase 23/19 23/18 17/15

doi:10.1371/journal.pone.0171413.t004
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approved drugs are slightly smaller on average than non-FDA compounds (see S1 Text and S4

Fig). One possible explanation for this trend is that FDA approved drugs have been selected in

the drug discovery process to be smaller than less optimized experimental drugs. The defini-

tion of molecular size used here is the quantity of non-hydrogen atoms. The largest FDA

approved drugs tend to be natural products, which have several distinct patterns of target

selectivity. For example, large antibiotics that evolved to inhibit prokaryotic ribosomal RNA

structures tend to be extremely selective or inactive against protein targets, whereas many nat-

ural antimitotic and antiparasitic molecules are highly promiscuous. More detailed results of

this molecular size target selectivity analysis are provided in S1 Text and S4 Fig of the Support-

ing Information.

Promiscuous binders and hit ratio statistical model

Hit ratio model. Cross-reactive or “promiscuous” compounds are regarded as problem-

atic in drug discovery efforts, as they show activity in a large fraction of HTS experiments, but

fail to exhibit selective activity against the desired biological target(s) [8, 12, 27, 28]. Here we

model the probability of a compound being promiscuous by estimating the hit ratio, θ with

Bayes’ rule, based on its individual screening data. Hit ratio is the expected fraction of active

targets that would be found if a compound were screened against the full target space repre-

sented in PubChem BioAssay. We model hit ratio with a binomial distribution, using a beta

Table 5. Top 19 pfam domains with most selective active drugs. Only domains present in the H. sapiens proteome are shown, and are sorted and

selected by increasing domain selectivity among FDA approved drugs. We also excluded domains with under 100 amino acid residues in the homology

model, to avoid small repeats and domains unlikely to be drug targets. Additionally, we report for multi-domain clusters only the most frequent and functionally

descriptive members as outlined in the Methods section (see “De-duplication of Single Domain Clusters”), and also removed domains of unknown function

(DUFs). To the left of the slash in each column is the median target selectivity of FDA approved compounds active against this domain, and to the right is the

median selectivity of non-FDA compounds. Selectivity is quantified by three methods of increasingly grouped protein targets as described in the text. For

example, the non-FDA approved compounds active against targets with the PF00144 domain are active against a median of 6 targets with distinct GenBank

identifiers, so this domain has a 6 after the slash in the first column.

Domain Median Target

Selectivity FDA

Approved/non-FDA

Median Cluster

Selectivity FDA

Approved/non-FDA

Median Domain

Selectivity FDA

Approved/non-FDA

PF06512 Sodium ion transport-associated 7/4 5.5/4 3/2.5

PF00144 Beta-lactamase 11.5/6 5.5/6 4/5

PF14580 Leucine-rich repeat 14/6 12/6 4/5

PF00324 Amino acid permease 14/7 7/7 5/6

PF00194 Eukaryotic-type carbonic anhydrase 18/11 12/6 5/2

PF02931 Neurotransmitter-gated ion-channel ligand binding domain 13/5 10/4 5.5/2

PF00001 7 transmembrane receptor (rhodopsin family) 13/4 10/4 6/3

PF13481 AAA domain 15/9 12.5/9 6/8

PF09818 Predicted ATPase of the ABC class 15/6 12.5/6 6/5

PF07859 alpha/beta hydrolase fold 11/4 9/4 6/4

PF00186 Dihydrofolate reductase 9/6.5 8.5/6 6/3.5

PF01494 FAD binding domain 13/13 10/13 6/11

PF02155 Glucocorticoid receptor 13.5/7 12/7 6/3

PF00104 Ligand-binding domain of nuclear hormone receptor 13/6 10/6 6/5

PF00109 Beta-ketoacyl synthase, N-terminal domain 8.5/4 8/4 6/4

PF00061 Lipocalin / cytosolic fatty-acid binding protein family 12/16 8/14.5 6/9.5

PF02159 Oestrogen receptor 14/6 12/6 6/4

PF00067 Cytochrome P450 14/4 11/3 6/3

PF00075 RNase H 12.5/8 10.5/8 6/7

doi:10.1371/journal.pone.0171413.t005
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distribution conjugate prior in the manner developed by Dančı́k, V et al. (see “Hit Ratio Bayes-

ian Model and Mixture Distribution” Methods section) [27]. This method enables filtering,

and comparative ranking of compound promiscuity unbiased by individual assay

participation.

By taking an equal number of random samples from the hit ratio posterior distributions for

a set of compounds, we generate an equally weighted convex combination of hit ratio probabil-

ities. This represents the probability of any individual compound from a set having a specific

hit ratio, allowing us to compare the evidence for different hit ratios across different com-

pound sets. Here we investigate the promiscuity of FDA approved drugs vs non-FDA com-

pounds, and also investigate the ability of two common methods of identifying promiscuous

compounds, pan-assay interference compound (PAINS) functional groups and promiscuous

aggregator assays to distinguish between compounds that show selective vs promiscuous

behavior in large bioactivity data [12, 28].

FDA approved vs non-FDA compounds. In Fig 6A we plot the hit ratio probability dis-

tributions for FDA approved and non-FDA compounds, computed as described above. The

non-FDA compounds have a high probability density at low hit ratios (left side of plot),

whereas the FDA approved drugs have much greater density at high hit ratios (middle and

right of plot), consistent with the greater number of active targets described in the above “Tar-

get Selectivity Distribution” section. Quantitatively, for individual FDA approved drugs, there

is an 85% probability of having a hit ratio below 17.8% (P(θapproved < 0.178) = 0.85), while

there is an 85% probability of a non-FDA drug having a hit ratio below a much lower threshold

of 3.27% (P(θother < 0.0327) = 0.85). We also performed a two-sample Kolmogorov-Smirnov

test, which measured a distance of D = 0.465 between the two probability distributions, indi-

cating that the FDA approved and non-FDA compounds have nearly half of their probability

Fig 5. Molecular Function Gene Ontology (MF GO) slim term enrichment vs domain selectivity. Pfam

domains are binned by the median domain selectivity of active compounds against targets with these

domains, as in Table 3. The domains in each bin were computed separately based on FDA approved and

non-FDA compounds, shown here side by side. For each bin of domain selectivity, the enrichment of MF GO

slim terms against the background of all bins is shown. Enriched terms are sorted increasingly by the lowest p-

value obtained, with all terms shown here having a p-value < 0.05. The right column dot plot shows the

number of protein targets in PubChem BioAssay annotated with each MF GO slim term.

doi:10.1371/journal.pone.0171413.g005
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Fig 6. Mixture distribution of hit ratios. The probability density of hit ratios (θ) shown here, is an equally weighted convex combination of hit

ratio probabilities for individual compounds, which represents the probability of any individual compound from a set having a specific hit ratio.

Smoothing was applied to reduce sampling noise in low probability regions. The colored bars highlight a region of each probability distribution,

with arrows pointing to a close-up plot of the probability density in that region. (A) Hit ratio distributions for FDA approved compounds vs non-

FDA approved compounds. (B) Hit ratio distributions for aggregator compounds vs non-aggregators. (C) Hit ratio distributions for PAINS vs

non-PAINS.

doi:10.1371/journal.pone.0171413.g006
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density at different hit ratios. This test metric has a range between 0 and 1, indicating the maxi-

mum distance between the cumulative sums of the two probability distributions. Both the

FDA approved drugs, and non-FDA compounds show a multimodal distribution dominated

by highly selective compounds (left side of plot, approximately θ� 0.05), a tail of middle range

selective compounds (middle of plot, approximately 0.05< θ� 0.55), and a portion of promis-

cuous binders (right side of plot, approximately 0.55 < θ). The promiscuous binder tail among

FDA approved compounds is dominated by drugs with well known promiscuous activity such

as dasatinib (active against 145 out of 204 screened targets in the PubChem BioAssay data),

sunitinib (active against 272 out of 313 screened targets), and morphine (active against 15 out

of 16 screened targets) [39]. As cancers tend to exhibit robustness against inhibition of individ-

ual kinases, compounds which exhibit broad polypharmacology across the kinases are widely

utilized in clinical oncology and represent many of the most promiscuous drugs [40].

Promiscuous aggregators. Promiscuous aggregators are small molecules that pose a sig-

nificant challenge to high throughput screening, as they form colloidal aggregates that nonspe-

cifically inhibit enzymes and other protein targets [12, 41]. To assess the ability of

experimentally identified aggregators to distinguish between compounds with a high vs low

hit ratio, we computed the hit ratio probability distributions separately for promiscuous aggre-

gators and non-aggregators, as shown in Fig 6B. To facilitate this, we obtained a list of 1185

highly screened active aggregators and 55248 highly screened active nonaggregators previously

identified by detergent-dependant inhibition of AmpC β-lactamase as reported by Feng et al.
(see “Promiscuous Aggregators” in Methods) [41].

For aggregator compounds there is an 85% probability of having a hit ratio below 3.18% (P
(θapproved < 0.0318) = 0.85), while there is an 85% probability of a non-aggregator having a hit

ratio below a slightly lower threshold of 2.73% (P(θother< 0.0273) = 0.85), showing that aggre-

gators tend to be more promiscuous across the PubChem BioAssay data, but by a small mar-

gin. The maximum distance between the hit ratio probability distributions in cumulative

probability space is D = 0.0596 as measured by a two-sample Kolmogorov-Smirnov test, dem-

onstrating that a majority of aggregators and nonaggregators have a very similar overall hit

ratio distribution compared to the distance of 0.465 between FDA approved and non-FDA

approved drugs reported in the previous section. However, aggregators show high fidelity in

identifying highly promiscuous compounds, as shown in the upper range of hit ratios in Fig

6B (right side of plot). This indicates that while most of the aggregators fail to show promiscu-

ous activity across the PubChem BioAssay data, a large fraction of the most promiscuous com-

pounds are identified as aggregators. We further investigate the ability of aggregators to

identify promiscuous compounds in the “Sensitivity and Specificity of Aggregators and

PAINS” section below.

Pan-assay Interference Compound (PAINS). Pan-assay interference compounds

(PAINS) are small molecules with substructural features that have been found to exhibit pro-

miscuous activity across many high throughput screens, and may interfere with drug discovery

efforts designed to identify target selective compounds [28]. We computed the hit ratio proba-

bility distribution separately for PAINS vs non-PAINS as shown in Fig 6C. We used the RDKit

software library to identify 19988 PAINS compounds, and 298166 non-PAINS compounds,

among the set of highly screened actives in PubChem BioAssay (see “Pan-Assay Interference

Compounds” in Methods).

For individual PAINS compounds there is an 85% probability of having a hit ratio below

6.60% (P(θapproved < 0.0660) = 0.85), while there is an 85% probability of a non-PAINS com-

pound having a hit ratio below a lower threshold of 3.08% (P(θother < 0.0308) = 0.85), showing

that PAINS tend to be more promiscuous than non-PAINS. The maximum distance between

the hit ratio probability distributions in cumulative probability space is D = 0.228 as measured
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by a two-sample Kolmogorov-Smirnov test, demonstrating that PAINS have just under one

quarter of their probability density at different hit ratios than non-PAINS. However, compared

to the aggregators in Fig 6B, they show lower fidelity in identifying highly promiscuous com-

pounds represented in the upper range of hit ratios (see right side of both plots). This suggests

that promiscuous aggregators and PAINS may have mutually complementary utility for

informing the curation of drug discovery libraries, as we investigate further in the next section.

By comparing the probability distributions in Fig 6A and 6C, PAINS have a hit-ratio distri-

bution similar to, but somewhat less promiscuous than the FDA approved drugs. This raises a

concern, as PAINS are most frequently used to eliminate non-viable drug candidates. How-

ever, we find that PAINS have a mean target selectivity count of 8.09 (median 4), but a median

domain selectivity count only slightly lower, at 6.72 (median 4). Therefore, for PAINS com-

pounds which are active against many targets, a substantially smaller fraction hit targets with

common domains, as compared to the FDA approved drugs, as described in the above “Target

Selectivity Distribution” section. This highlights a fundamental difference between PAINS and

FDA approved drugs. While both tend to have activity against many targets, PAINS tend to be

active against targets with unrelated sequences, while FDA approved drugs tend to be active

against related targets.

Sensitivity and specificity of aggregators and PAINS. The highly screened active com-

pounds can be divided into promiscuous and non-promiscuous categories based on the evi-

dence in PubChem BioAssay, by choosing a promiscuity probability cutoff where P(θ� 0.25)

> cutoff. The number of promiscuous compounds at each cutoff is shown in the lower panel

of S6 Fig in Supporting Information. For a given cutoff fraction, based on the public bioactivity

data, our model predicts that approximately this fraction of compounds classified as promiscu-

ous will have a true hit ratio above 0.25. We assessed the sensitivity (true positive rate) and

specificity (true negative rate) of both PAINS and aggregators to categorize promiscuous com-

pounds throughout a range of cutoffs from 0.01 to 0.9999. Here, sensitivity is defined as the

fraction of compounds classified as promiscuous at a given cutoff that are also identified as

PAINS or aggregators respectively, while specificity is the fraction classified as non-promiscu-

ous that were also identified as non-PAINS or non-aggregators respectively.

PAINS showed a maximum sensitivity of 21% at a cutoff of 0.08, and aggregators showed a

maximum sensitivity of 38% at a cutoff of 0.9996. Both non-PAINS and non-aggregators had a

nearly constant specificity throughout this range, with non-PAINS having a specificity of 94%,

and non-aggregators having a higher specificity of 98%.

As shown in the upper panel of S6 Fig in Supporting Information, the two have opposite

trends where PAINS show decreasing sensitivity at increasing promiscuity cutoffs, while

aggregators show increasing sensitivity at higher cutoffs. This is consistent with the probability

distributions in Fig 6, in that both identify compounds with high hit ratios, but the PAINS

compounds are more enriched in the middle range of hit ratios, while the aggregators tend to

be highly promiscuous. While aggregators show both higher sensitivity and higher specificity,

they identify a much smaller subset of promiscuous compounds that have extremely high hit

ratios, and are not able to identify the large number of compounds with middle-range hit

ratios that PAINS identifies.

Using a promiscuity probability cutoff of 0.5, our statistical model found 1409 promiscuous

binders among the entire highly screened active PubChem BioAssay compound set, as shown

in the center of S6 Fig in Supporting Information. Of these promiscuous binders, 1157 are not

currently included among the set of PAINS or aggregators used here, and 75 are FDA

approved drugs. The number of FDA approved drugs reduces to 24 with a higher promiscuity

probability threshold of 0.999. As a resource for readers, we include the computed promiscuity

probabilities P(θ� 0.25) for all highly screened actives in Supporting Information S1 File,
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sorted by decreasing probability of promiscuity. This also serves to rank the compounds by

target selectivity, with a ranking that is meaningful based on the experimental evidence, despite

varying levels of assay participation.

Comparison between annotated drug targets and public HTS data

We systematically compared the bioactivity data in PubChem BioAssay with the annotated tar-

gets of FDA approved drugs in DrugBank, in order to assess the level of agreement between

the two, and identify the number of potential novel targets for the FDA approved drugs [25].

To enable this, we created a drug-target matrix encoding both bioactivity data and target anno-

tations in a directly comparable manner. The rows represent the highly screened FDA

approved drugs, while the columns represent all of the PubChem BioAssay screened and

DrugBank annotated targets for these compounds. As many PubChem BioAssay activity

results were generated with truncations of endogenous proteins, or using close orthologues to

putative H. sapiens targets from other species, it was necessary to merge data from very similar

targets, as described in the “Clustered Compound-Target Matrix” methods section. This

resulted in 1829 distinct protein target columns, of which 1416 have a H. sapiens representative

UniProt identifier. Each compound-target pair (position) in the matrix was assigned one of six

possible values depending on its DrugBank annotation (annotated vs. unannotated) and its

PubChem BioAssay activity results (untested, active, inactive). The resulting comparison

between the BioAssay data and DrugBank annotations is shown in Table 6. There is a high

level of agreement between the DrugBank target annotations and the PubChem BioAssay data,

with 1082 compound-target pairs in agreement, and only 83 compound-target pairs in dis-

agreement, where they are annotated as active in DrugBank but were found inactive in Pub-

Chem BioAssay. While the matrix is very sparse, with the majority of compound-target pairs

both unscreened and unannotated, the PubChem BioAssay data substantially increases the

density of the compound-target matrix, with 7817 active compound-target pairs not present in

the DrugBank annotation, representing a new space of potential targets for these drugs. There

are 867 protein target clusters (751 H. sapiens) that are annotated as active within DrugBank,

however an additional 804 protein target clusters (576 H. sapiens) show activity in PubChem

BioAssay but have no existing DrugBank annotation. Some of these active but currently unan-

notated targets may represent new target space that can be used to repurpose existing drugs

for novel therapeutic purposes, or to explain currently unknown or unannotated targets in

existing therapies. We provide a full list of these potentially novel drug-target pairs in S3 File

of Supporting Information.

While the false positive rate of these PubChem BioAssay activity outcomes is not precisely

known, our estimate above using replicated assay pairs suggests that the number of false posi-

tives is less than, and of the same order of magnitude as the number of true positives.

Table 6. Comparison of pubchem bioassay activity data to drugbank target annotations. All com-

pound-target pairs for FDA Approved drugs are grouped into one of six possible categories. Depending on the

HTS results in PubChem BioAssay, a compound-target pair is annotated as either untested, inactive, or active

(rows in this table). Additionally, the compound-target pair is either annotated or unannotated as a known

active target in DrugBank (columns in this table). Counts outside of parenthesis represent results against all

protein targets, whereas counts to the right in parenthesis represent results against the subset in which the

representative UniProt indentifer for each target cluster is from the H. sapiens proteome.

Unannotated in DrugBank Annotated Target in DrugBank

Untested in PubChem 1431855 (1111148 H. sapiens) 2097 (1900 H. sapiens)

Inactive in PubChem 153783 (115181 H. sapiens) 83 (83 H. sapiens)

Active in PubChem 7817 (6848 H. sapiens) 1082 (1008 H. sapiens)

doi:10.1371/journal.pone.0171413.t006
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Consequently, we predict that at least half of these novel drug-target activity results are experi-

mentally repeatable. Additionally, as we demonstrate in the next section, many of these new

currently unannotated active values fall into dense biclusters, where the same compound has

been found active against a large number of closely related protein targets across many assays.

As these biclusters are highly enriched for a large number of active scores, these are unlikely to

be a result of random error. We provide a full list of these high confidence biclusters in S4 and

S5 Files of Supporting Information.

Drug-Target (DT) biclustering analysis

Biclustering overview. To investigate the possibility of shared patterns of activity between

sets of FDA approved drugs and their protein targets, we created a drug-target binary activity

matrix based on the drug-target matrix in the above section. Each drug-target combination

was assigned a value of 1 if active in PubChem BioAssay, or annotated as a known target in

DrugBank. Untested or inactive values are assigned a value of 0. The resulting bioactivity

matrix has a total active in PubChem BioAssay and/or annotated as active in DrugBank score

density of 0.69%. We then clustered this matrix using the BicBin sparse biclustering algorithm

(see methods) [42]. This type of clustering algorithm clusters rows and columns simulta-

neously allowing us to identify both sets of compounds and targets sharing similar activity pro-

files within each dimension. BicBin was chosen among several biclustering algorithms as it

finds sparse biclusters with flexible options, scales to large matricies, and finds top-scoring

clusters first. We identified the 16 highest scoring biclusters which contained at least two com-

pounds and at least two targets as shown in Table 7. These biclusters had an activity density

substantially higher than the entire matrix, ranging from 31.46% to 92.19%. These biclusters

contain 406 drugs, of which 136 appear in multiple biclusters with a maximum of 6 biclusters

per compound, and 346 unique representative protein targets, of which 107 appear in multiple

biclusters with a maximum of 4 biclusters per protein. S1 Fig in Supporting Information

Table 7. Top pfam domains in each bicluster. Shown are the top 16 highest scoring drug-target biclusters with more than one compound and more than

one target. The number of drugs (cids) and targets is shown in columns 2 and 3, respectively. The 4th and 5th columns give the name of the most abundant

domain and its frequency, respectively. The last (6th) column shows the BicBin score, representing the density and size of the bicluster. The BicBin score is

the negative exponent of the Chernoff Bound. It is inversely proportional to the probability of each bicluster occurring by random chance, as described in

Methods.

# Compounds Targets Top Pfam Domain W/ Domain Score

1 62 27 PF00001 7 transmembrane receptor (rhodopsin family) 22 13.35

2 130 5 PF00067 Cytochrome P450 5 11.61

3 119 9 PF00104 Ligand-binding domain of nuclear hormone receptor 6 9.52

4 53 18 PF00194 Eukaryotic-type carbonic anhydrase 9 7.28

5 4 97 PF00069 Protein kinase domain 89 7.28

6 10 24 PF00001 7 transmembrane receptor (rhodopsin family) 13 5.97

7 48 23 PF00001 7 transmembrane receptor (rhodopsin family) 15 5.61

8 63 28 PF00001 7 transmembrane receptor (rhodopsin family) 7 4.79

9 2 67 PF00069 Protein kinase domain 49 4.46

10 2 78 PF00001 7 transmembrane receptor (rhodopsin family) 10 4.05

11 8 8 PF00484 Carbonic anhydrase 6 4.76

12 6 13 PF00520 Ion transport protein 4 3.91

13 57 4 PF00001 7 transmembrane receptor (rhodopsin family) 2 4.36

14 18 5 PF00001 7 transmembrane receptor (rhodopsin family) 5 4.78

15 2 57 PF00001 7 transmembrane receptor (rhodopsin family) 6 3.89

16 12 16 PF00817 impB/mucB/samB family 3 3.84

doi:10.1371/journal.pone.0171413.t007
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shows the entire matrix represented as a bipartite graph with compounds colored by their

highest scoring bicluster (white if unclustered), and protein targets in black. We found that the

very sparsely connected graph clusters into very densely connected biclusters where a sizable

set of distinct drugs has been found to be active against a sizable shared set of distinct targets.

To functionally annotate each bicluster, we identified the most common Pfam domains pres-

ent in their protein targets [32]. As shown in Table 7, in some biclusters most or all of the pro-

tein targets share a common domain that is the likely the target of these compounds, e.g. 22

out of 27 targets in bicluster 1 share the rhodopsin-like receptor domain (PF00001: 7 trans-

membrane receptor). Fig 7 visualizes the compound-target activities in bicluster 1 as a heat-

map. In other biclusters, only a small fraction share a common domain such as bicluster 15

where only 6 out of 57 targets share PF00001. These cases warrant deeper investigation as to

why they share a common activity pattern, but with a more heterogeneous domain composi-

tion. This questions is investigated in the next section. As mentioned in the previous section,

we provide a full list of these biclusters in S4 and S5 Files of Supporting Information.

Drug-Target (DT) bicluster GO slim analysis. To further categorize each bicluster by

functional processes, we performed an enrichment analysis of the Molecular Function GO

Slim terms associated with the representative protein targets within each bicluster. Fig 8 shows

the most enriched terms for each bicluster. Most biclusters exhibit a distinct pattern of

enriched GO terms, distinguishing them from other biclusters. For example, bicluster 5 con-

sists of four kinase inhibitor drugs with known broad kinase-activity (Dasatinib, Sorafenib,

Erlotinib, and Gefitinib), and a highly enriched kinase GO term (PF00069, p-value 9.11 �

10−64) present in the annotation of 89 out of a total of 97 targets in this bicluster. Additionally

if the entire drug-target network is colored by the GO terms present in each target, a distinct

regional pattern emerges, where targets sharing active compounds also tend to share common

GO terms as shown in S2 Fig of Supporting Information. Overall the GO Slim annotations

provide a more informative functional summary of each bicluster than the Pfam annotations.

This is often the case because a greater portion of the targets in each bicluster tends to share

the most enriched GO term, but not necessarily a specific Pfam domain.

As the top scoring biclusters listed here include approximately half of the highly screened

active FDA approved compounds, they constitute specific examples which partially explain the

higher number of active targets among FDA approved drugs compared to non-FDA com-

pounds (consider Fig 4, as well as the greater probability density at higher hit ratios in Fig 6A).

In summary, a substantial fraction of the FDA approved compounds show broad activity

across a large set of related targets in the same bicluster, which are enriched for common Pfam

domains and/or MF GO slim terms.

Compound structure vs bioactivity bicluster analysis. In order to compare the com-

pound structure vs bioactivity patterns among these biclusters, we clustered the FDA approved

drugs by structural similarity using atom pair (AP) descriptors and the Tanimoto coefficient

as similarity metric [43]. Fig 9 shows the compounds from the 11 largest bioactivity biclusters,

positioned according to structural similarity, and colored according to their lowest numbered

(densest and/or largest) bioactivity bicluster. The structural distances were used to project

each compound into two dimensional plane with multi-dimensional scaling (MDS) where the

points (compounds) are spaced proportionally to the chemical structure difference between

the compounds, with more similar compounds closer together. Visually, two distinct patterns

can be identified where structurally similar compounds (in close proximity) also cluster

together with similar bioactivity (e.g. bicluster 1 shown in light blue, a cluster of primarily aro-

matic compounds active against G-protein-coupled receptor targets). However, the opposite

can also be observed, where compounds with very similar bioactivity have diverse structures

(e.g. bicluster 3 shown in light green, a cluster with many nuclear receptor targets).
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Fig 7. Bioactivity of drug-target bicluster 1. The vertical axis lists the drugs in this bicluster by common name, and the horizontal axis represents

the UniProt names for the representative targets of each sequence-similar target cluster. The compound-target pairs are colored according to one

of six colors: untested in PubChem BioAssay (black), inactive in PubChem BioAssay (grey), active in PubChem BioAssay (dark green), untested

but annotated as active in DrugBank (green), inactive in PubChem BioAssay but annotated as active in DrugBank (blue), and active and also

annotated as active in DrugBank (light green). Rows and columns are sorted by bioactivity profile similarity.

doi:10.1371/journal.pone.0171413.g007
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To estimate the extent to which the structure-function principle (i.e. that similar structures

have similar bioactivities) applies to this data, we clustered the 406 compounds represented in

the biclusters into discrete clusters using complete linkage hierarchical clustering with subse-

quent tree cutting with k = 11. The latter value matches the number of biclusters remaining

when the compounds are each assigned to a unique bicluster. To quantify the similarity

among the structural clusters and the bioactivity clusters from of the above biclustering sec-

tion, we compared the numbers of identical and unique compound pairs appearing in the two

clustering results using the Jaccard index. The result indicated that 15.21% of compound pairs

were joined into clusters by both methods. If the structural clustering is replaced with a ran-

dom grouping into one of 11 clusters weighted by the cluster size distribution in the structure

clustering, we see a mean Jaccard index of only 11.10% (sd = 0.39% and permutation p-value

0.0001) across 10,000 random clusterings. This quantifies what can be seen visually in Fig 9,

that overall structural similarity correlates with bioactivity similarity, but with a sizable num-

ber of exceptions.

Fig 8. Molecular Function Gene Ontology Slim (MF GO Slim) term enrichment for each drug-target bicluster. Enrichment measured by

hypergeometric test. Terms with p� 0.05 are shown and sorted increasingly.

doi:10.1371/journal.pone.0171413.g008
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Target-Protein (TP) network

In order to extend the drug-target biclustering analysis shown above to the full set of PubChem

BioAssay bioactivity data, we created a Target-Protein (TP) network where proteins are con-

nected if they are targeted by over 50% of the same non-promiscuous compounds (as

described in Methods). This was inspired by the TP network previously published by Yildirim

et al., while adding a bioactivity similarity threshold and excluding promiscuous compounds,

in order to enable the incorporation of large primary screening data while limiting spurious

edges [44]. This graph approximates the structure of a full compound-target binary activity

matrix (or bigraph), in a computationally efficient manner by excluding the small molecule

nodes.

Fig 10 contains a visualization of the entire Target-Protein (TP) network. It has 2407 nodes

(target proteins with at least one edge) and 11317 edges. There are 176 connected components

with the majority of nodes in the largest. The average degree is 9.40 with a graph density of

0.004. In Fig 10, protein targets are colored according to the 11 most abundant Molecular

Function Gene Ontology Slim (MF GO Slim) terms among the PubChem BioAssay protein

Fig 9. Bicluster (color) vs compound structure (position). Multidimensional scaling (MDS) was used to embed small molecules into a two

dimensional space (x- and y-axis). Each point represents an FDA approved drug. A density map colored by each bicluster is shown for the MDS

principal coordinate 1 (on top) and principal coordinate 2 (on right). The distance between the points is proportional to the chemical similarity

between the two compounds. Bioactivity-based biclustering results are also indicated by colors, with each compound assigned to its lowest

numbered (densest and/or largest) bicluster. Only the 11 biclusters with the largest number of compounds are shown, to allow for a visually distinct

color palette.

doi:10.1371/journal.pone.0171413.g009
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targets, with nodes lacking any of these 11 terms labeled in black (other). If a target is anno-

tated with more than one of these 11 terms, the most specific term was chosen as the represen-

tative color for that node. Fig 10 demonstrates a distinct grouping of protein targets with

shared bioactivity by MF GO terms. As the structure of the network was not informed with

MF GO annotations, this indicates that the overall pattern demonstrated above for the drug-

target biclustering analysis also extends to the full set of compounds and targets in the Pub-

Chem BioAssay data, in that targets sharing a common MF GO slim annotation tend to have a

distinct but shared set of active small molecules.

Fig 10. Target-protein network and Molecular Function Gene Ontology Slim (MF GO Slim). Each node represents a protein target, and

edges connect any two protein targets with greater than 50% bioactivity similarity across non-promiscuous binding compounds. Targets are colored

according to MF GO Slim terms, with unannotated targets colored black. Shown are 2407 nodes (target proteins with at least one edge) and 11317

edges representing shared bioactivity among the mutually screened subset of the 1.2M compounds tested in the bioassays we analyze in this

study.

doi:10.1371/journal.pone.0171413.g010
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Methods

Most analysis steps were performed with the open source software R, bioassayR and Chemmi-

neR. The latter two are Bioconductor packages developed by the authors. bioassayR was co-

developed alongside this study to support large scale bioactivity data analysis, and is provided

as a resource to readers at http://bioconductor.org/packages/bioassayR/. Several of the bioac-

tivity methods are described in the bioassayR paper by Backman et al [35]. The full source

code of the analysis presented in this paper is freely available online at http://github.com/

girke-lab/targetSelectivity on GitHub and http://doi.org/10.5281/zenodo.220994 on Zenodo.

Bioactivity database

We used the R package bioassayR to build a database which contains all small molecule bioac-

tivity screens from PubChem BioAssay which include at least one real activity score (active or

inactive) and have a single protein target specified. Both raw numeric scores, and discrete

active/inactive categories were parsed, and stored in the database, however direct cross-com-

parison between the numeric scores is limited by varying assay designs and scoring methods.

Clustering protein targets by sequence

We used the kClust tool to cluster the non-redundant set of both the protein targets in Pub-

Chem BioAssay as well as the protein targets interacting according to DrugBank with FDA

approved drugs [25, 34]. Stringent threshold settings were chosen to merge very close ortholo-

gues, paralogs, and engineered proteins (e.g. truncations performed for screening purposes).

The parameters used were s = 2.93, E-value�10−4, c = 0.8. For each resulting cluster, a single

representative protein was chosen for annotation purposes. These representatives were chosen

with the following order of precedence: an annotated H. sapiens drug target (from DrugBank),

any H. sapiens target with a known UniProt identifier, a non H. sapiens target with a known

UniProt identifer, and lastly a non H. sapiens target with only a GenBank GI number and no

known UniProt identifier.

Clustering the compound-target matrix

We used bioassayR to generate a compound-target binary sparse matrix summarizing a sub-

stantial fraction of the protein target bioactivity data in PubChem BioAssay. Only compounds

screened against at least 10 protein targets (distinct GenBank GIs) were included, in order to

avoid biasing the selectivity analysis by compounds with too limited data. In order to reduce

the sparseness and duplication in these data, assays sharing identical protein targets, or targets

falling into the same sequence cluster (see above) were merged into a common column. The

merging was performed in a way where active scores take precedence over inactive scores.

Each column was annotated by a representative protein for that target cluster, as described

above.

Protein annotations and GO enrichment

Pfam-A (version 29.0) domains were mapped to target proteins with HMMER3 (version

3.1b2) [32, 45]. An E-value�0.01 was used as domain reporting threshold. The target proteins

included all PubChem BioAssay targets, DrugBank annotated targets, and the H. sapiens refer-

ence proteome (proteome ID UP000005640) provided by UniProt [46]. Gene Ontology anno-

tations for protein targets were obtained from UniProt, while Gene Ontology annotations for

Pfam domains were obtained from InterPro [47]. The subset of GO slim terms (Generic
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version) was obtained from the GO Consortium. Hypergeometric GO term enrichment tests

were performed using the R language GOstats and GSEABase packages [48].

BicBin biclustering of drug-target matrix

The BicBin algorithm was used to identify bioclusters iteratively using the parameters α = 0.6,

β = 0.6, representing no bias between adding compounds or targets [42]. These thresholds

were chosen to find the largest possible biclusters, without merging biclusters that share little

or no overlapping activity. The BicBin biclustering algorithm used here finds dense biclusters

of compound-target activity by scoring them with the multiplicative version of the Chernoff

Bound applied to the Binomial distribution, which estimates the upper limit of the probability

of these clusters occurring by random chance [42]. The bicluster scores shown in Table 7 rep-

resent the negative exponent of the Chernoff bound, and therefore higher scores correspond

to lower probabilities, and therefore larger and denser biclusters. Biclusters were found and

scored iteratively, by first zeroing out the previous biclusters.

Hit ratio bayesian model and mixture distribution

We model hit ratio θ of each compound with a binomial distribution, using a beta distribution

conjugate prior in the manner developed by Dančı́k, V et al [27]. For a given number of active

targets n, out of N screened targets, we assume that n has a binomial distribution, as in Eq 3.

We then apply Bayes’ rule (Eq 2) to compute the posterior P(θ|n) with a beta distribution con-

jugate prior as in Eq 4. The values of α and β are computed from the mean μ and standard

deviation σ of hit ratios among all active compounds screened against at least 20 distinct tar-

gets, using the bioassayR function crossReactivityPrior and Eqs 5 and 6.
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We then compute the probability of a compound being a promiscuous binder P(θ� 0.25)

with the bioassayR function crossReactivityProbability, and can obtain random samples from

the posterior distribution of each compound with the R language function rbeta. To obtain an

equally weighted convex combination of hit ratios for a compound set, we took an equal num-

ber of samples with rbeta for each compound, and then took one million unbiased samples

without replacement from these. To plot this distribution we used the geom_density function

of the ggplot2 software library with the option adjust = 3 to smooth sampling noise in the tails.

The Bayesian hit ratio model is based on an underlying assumption that the available activ-

ity data for a given compound represents activity against a random sample with replacement
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of the screenable protein target space. While this is a reasonable approximation for com-

pounds screened against a large number of diverse targets, in many cases compounds screened

against a small number of targets are likely to have substantial bias in their target set. There-

fore, there is a strong possibility that a compound with only one or two active targets is highly

selective, or is an inactive compound with a false positive, resulting in overfitting that would

make the computed hit ratio an overestimate. As reported by Jasial et al., these compounds

with a small number of active targets are unlikely to exhibit undiscovered promiscuity or activ-

ity against many additional targets as they are screened in an increasing number of assays [26].

For this reason, here we model hit ratio primarily to identify compounds with a large number

of active targets (polypharmacological and promiscuous compounds), while looking at the

absolute number of active targets when investigating highly selective compounds, as shown in

the “Target Selectivity Distribution” section. Additionally, by using only highly screened com-

pounds, we avoid both many cases of overfitting, and avoid plotting probability distributions

for compounds with highly uninformative data, that would result in a non-localized probabil-

ity density function.

Promiscuous aggregators

We obtained a list of known promiscuous aggregator and nonaggregator small molecule Pub-

Chem compound identifiers (cids) by referencing PubChem BioAssay assays #584 and #585 as

described by Feng et al. [41] These assays together identify detergent-dependant inhibitors of

AmpC β-lactamase. We obtained the list of promiscuous aggregators by identifying com-

pounds marked as active in the assay without detergent (#585), but inactive in the assay with

detergent (#584). The list of nonaggregators includes both inhibitors active in both assays, and

noninihibitors inactive in the assay without detergent. We excluded from consideration all

compounds which obtained an inconclusive result in either assay, or were not highly screened,

having been tested in PubChem BioAssay against less than 10 distinct targets. We also

excluded compounds without activity against at least one protein target in PubChem BioAssay.

This resulted in a list of 1185 promiscuous aggregators, and 55248 nonaggregators.

Pan-Assay Interference Compounds (PAINS)

We used the RDKit software library (version 2016.03.1) SMARTS based PAINS filters to iden-

tify compounds classified by the PAINS filters A, B, or C. These SMARTS filters are based on

the SMARTS conversion published by Saubern et al. based on the SLN format filters originally

published by Baell et al. [28, 49] This identified 19988 PAINS compounds, and 298166 non-

PAINS compounds, among the set of highly screened actives in PubChem BioAssay. 68 of the

compounds we identified as PAINS are also FDA approved drugs. An additional 7814 com-

pounds had structures we could not parse with RDKit and were excluded.

Target-Protein (TP) network and network visualizations

Targets were connected by bioactivity profile similarity using the trinarySimilarity function of

bioassayR, with default options. This computes Tanimoto similarity coefficients between bio-

activity profiles, by considering only commonly tested compounds. The Tanimoto, as com-

puted here, is the size of the intersection divided by the size of the union of active compounds

between the two targets. If the pair of targets did not share at least 12 mutually screened com-

pounds, or at least 3 actives, we categorized this pair as having insufficient evidence, and

assigned a similarity value of 0. The similarity matrix was converted to a binary connection

matrix based on a similarity value of at least 0.50, and then converted to a graph object with

the R package igraph [50]. All network visualizations were generated with Gephi using the
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ForceAtlas2 layout algorithm [51, 52]. Because the layout engine itself was not provided with

any annotation information (color), the color based groupings are solely based on the level of

connectivity.

We did not exclude infrequently screened compounds as in the other sections in this study,

as this analysis was able to make meaningful use of those compounds. We found the overall

structure of the graph is roughly the same at different similarity thresholds, however we chose

this higher cutoff to reduce the number of edges in the visualization. This high evidence

threshold also avoids spurious edges resulting from false positive activity outcomes. Despite

such a high cutoff, the majority of the graph is highly connected, showing that a large number

of target pairs share very similar activity profiles across a large number of small molecules.

Compounds were excluded if their probability of promiscuous binding was greater than 50%

(P(θ� 0.25) > 0.5). This resulted in the exclusion of 29179 compounds. As this analysis was

not limited to highly screened compounds, this is a much higher number than the quantity of

highly screened promiscuous compounds reported above. Out of all protein targets in Pub-

Chem BioAssay, only 2249 had at least one edge. Removing this small fraction of promiscuous

binding compounds (2.52% of total compounds) substantially reduced the number of edges in

the network. The number of node pairs (edges) with a computable similarity (enough shared

actives or mutually screened targets) above 50% dropped from 283353 to 194444 and the num-

ber of highly similar node pairs we connected with edges dropped from 84298 to 9854.

De-duplication of single domain clusters

As outlined above, clustering of target proteins by the presence of single Pfam domains results

frequently in duplicates of nearly identical clusters for multi-domain proteins. To eliminate

this redundancy in most figures and tables, we also included domain composition clustering.

For this we generated a list all single and multiple domain mappings in the target proteins of

PubChem BioAssay using the same mapping parameters as described above under “Protein

Annotations and GO Enrichment.” We provide this list as a downloadable resource to readers

in S8 File of Supporting Information. Next, for the set of domains presented in a given table or

figure, we created an undirected graph, where each domain is a node, and each edge represents

a pair of domains which were found together in at least one target protein. Then we iteratively

identified the largest clique (fully connected subgraph), while removing all nodes from this cli-

que for the next iteration. These cliques identify the largest independent sets of domains which

have all been found to co-occur. Finally, we chose a single domain to represent this cluster in

the corresponding figure or table. For each clique, we chose the domain which occurs in the

greatest number of screened targets. Note that this de-duplication was performed only within

plots and tables, and that the results without de-duplication are provided for download in S2

File of Supporting Information.

Conclusion

By systematically analyzing a large volume of public bioactivity data, we highlight several new

patterns of bioactivity that may prove useful for informing drug discovery efforts. We also pro-

vide additional context to the previously reported finding that FDA approved drugs are, on

average, active against a greater number of targets than non-FDA approved active molecules

identified by HTS methods [24, 26]. We show that this greater number of targets is not due to

biased assay participation, both by using a statistical model which considers the evidence for

each compound individually, and by looking at the mean and median assay participation.

While still noticeable, the difference in the number of active targets between FDA approved
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and non-FDA compounds decreases substantially if proteins sharing very similar amino acid

sequences, or common domains are not counted separately.

As demonstrated by the high number of previously unannotated active targets (Table 6),

and the high density of drug-target activity biclusters (Table 7 and Fig 8), several sets of FDA

approved drugs exhibit activity across a shared set of related targets. Previous literature sug-

gests several plausible explanations for how these drugs may have similar or identical bioactiv-

ity profiles, while inducing distinct therapeutic phenotypes in-vivo. For example, it has been

demonstrated that several common drug target receptor families exhibit biased signaling,

where a given receptor can activate a large number of downstream processes, in different ratios

unique to a given ligand structure, tissue, and organism state [53, 54]. Additionally, bioavail-

ability and biological compartmentalization can limit the in vivo access of a small molecule

drug to only a small fraction of the targets it may show activity against in vitro [55]. Complex

network effects and biological feedback can also cause a drug interacting with multiple targets

to exhibit functional selectivity. For example, Lehar et al. (2009) published an analysis of syner-

gistic drug combinations, showing that combinations of multiple drugs acting against different

targets in the same pathways tend to induce a phenotype at lower doses, with lower incidence

of off-target effects [56]. Lastly, binary active/inactive HTS data may fail to resolve different

receptor binding kinetics that would cause a drug to exhibit target selectivity in the context of a

specific dosage level. For example, drugs are often classified and evaluated according to thera-

peutic index (TI), or the ratio between the dose that results in toxicity to the dose that produces

a desired efficacy [57]. For low TI drugs where the desired effect and toxicity are mediated

with different receptors that have only slightly different binding affinities, binary active/inac-

tive data could be expected to report activity for both the therapeutic and toxic targets.

This cross-reactivity we observe in FDA approved drugs raises the question and possibility

of exploiting this pattern to identify viable drug candidates in noisy and error prone HTS data.

With false positives occurring at the same order of magnitude as true positive bioactivity out-

comes, it is likely that a substantial fraction of singular active values are due to experimental

error. For some drug discovery efforts against target classes where the FDA approved drugs

tend to show cross-reactivity within a protein family, it may be appropriate to regard targets

sharing a common Pfam domain or molecular function annotation as replicates, and libraries

can be enriched for broad activity within this category, while removing both highly-selective

compounds, and promiscuous binders active against a large fraction of the screened targets.

We demonstrate that these data contain a large number of novel active targets for FDA

approved drugs, a large number of novel compounds active against known drug targets, and a

large set of novel compound-target pairs with no evidence of druggability by FDA approved

drugs. By quantifying the rate of agreement between replicated pairs of compound-target

activity outcomes, we estimate that less than half of these novel outcomes are due to experi-

mental and data curation errors, and therefore may represent a valuable resource for further

drug discovery efforts.

Additionally, we use the statistical model mentioned above to score all highly screened

active compounds in PubChem BioAssay by their probability of being promiscuous binders

given the available data, and assess the ability of PAINS and aggregators to identify the most

experimentally promiscuous compounds. We find that both methods offer mutually comple-

mentary strengths at identifying different sets of promiscuous binders, and we also report

1157 compounds with a greater than 50% chance of being promiscuous, that were not

included among the sets of known PAINS or aggregators we used for our analysis. We provide

the promiscuity probability values for all highly screened active compounds, as well as the

source code and results for these analyses as a reference to readers, with the hope that they will

contribute to the discovery of medically and biologically useful small molecules.
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Supporting information

S1 Text. Fully screened sub-matrix, error rate, selectivity by molecular size, and stretched

exponentials. This text contains more analysis details on the fully screened sub-matrix we pro-

vide as a downloadable reference, an algebraic estimate of error rates, our target selectivity by

molecular size analysis, and a more in-depth discussion and methods for the stretched expo-

nential selectivity distribution.

(PDF)

S1 Fig. Drug-Target (DT) bipartite network biclusters. Protein targets are shown in black,

with FDA approved drugs shown in color, based on their bioactivity bicluster. Unclustered

compounds are shown in grey. No color key is provided, as some colors were reused in order

to visualize a large number of biclusters. Node position is based on connectivity, with the same

positions as in S2 Fig.

(PDF)

S2 Fig. Drug-Target (DT) bipartite network Gene Ontology (GO). FDA approved drugs are

shown in black, with protein targets show in color based on the most specific Molecular Func-

tion GO Slim term for each target. Unannotated targets are shown in white. No color key is

provided, as some colors were reused in order to visualize a large number of GO terms. Node

position is based on connectivity, with the same positions as in S1 Fig.

(PDF)

S3 Fig. Distribution of distinct protein target assay participation. Data is included from all

assay experiments in PubChem BioAssay annotated with one or more clearly defined protein

targets, and reporting an active score for at least one small molecule. The dashed vertical line is

drawn at 10 targets, which is the minimum value we categorize in this study as a “highly

screened” compound.

(PDF)

S4 Fig. Target selectivity by molecular size. Violin plot with horizontal lines drawn at the

0.25, 0.5, 0.75 quantiles with tails trimmed to the range of data, as described in the “Target

Selectivity by Molecular Size” section of S1 Text. Molecule size is quantified here by the num-

ber of non-hydrogen (heavy) atoms. (A) Target selectivity vs. molecular size across the entire

range (y axis) of variation in these data. (B) Target selectivity vs. molecular size zoomed in on

the y-axis to show more detail.

(PDF)

S5 Fig. Selectivity distribution. The distribution of cluster selectivity counts for non-FDA

approved compounds as shown in Fig 4, along with best fit lines using two-parameter versions

of the exponential, power law, and stretched exponential functions, as described in the

“Stretched Exponential Selectivity Distribution” section of S1 Text. The stretched exponential

fits the data better than the exponential, or power law functions (with R2 = 0.99912, 0.99131,

and 0.97916 respectively).

(PDF)

S6 Fig. Sensitivity of PAINS and aggregators vs promiscuity probability cutoff. The top

panel shows the sensitivity (true positive rate) of PAINS and aggregators to categorize promis-

cuous compounds throughout a range of promiscuity probability cutoffs P(θ� 0.25)> x over

the range x = [0.01, 0.9999]. The bottom panel shows the number of promiscuous compounds

at each cutoff value. While the Bayesian model classifies all highly screened compounds, the

values shown in the top panel are computed only with the subsets that were classified as
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aggregators/non-aggregators, and PAINS/non-PAINS respectively. There is an intersection of

44 compounds in this analysis which are classified as both PAINS and aggregators, out of

56330 highly screened active compounds which were tested and had valid results in both.

(PDF)

S7 Fig. Target selectivity distribution among targets sharing a common protein domain.

The distribution of active and tested targets for FDA approved and non-FDA approved com-

pounds within targets sharing a common Pfam domain, as described in the “Target Selectivity

Distribution Among Targets Sharing a Common Protein Domain” section of S1 Text. See

Table V in S1 Text for the full names of each domain, as well as the number of FDA approved

compounds, non-FDA compounds, and total protein targets for each domain. Horizontal

lines are positioned at the 25%, 50%, and 75% quantiles for each distribution, with whiskers

extending to 1.5 times the inter-quartile range. (A) The distribution of active protein targets

within each domain. (B) The distribution of total screened targets within each domain. (C)

The same as A except with iterative random removal of activity outcomes from the most highly

screened FDA Approved drugs, such that the median number of screened targets for the FDA

approved compounds is equal to or slightly less than that for non-FDA approved compounds,

to enable cross-comparison without bias due to screening volume. (D) The same as B except

with iterative random removal of activity outcomes from the most highly screened FDA

Approved drugs, such that the median number of screened targets for the FDA approved com-

pounds is equal to or slightly less than that for non-FDA approved compounds, to enable

cross-comparison without bias due to screening volume.

(PDF)

S1 File. Target selectivity, cluster selectivity, domain selectivity, and promiscuity probabil-

ity P(θ� 0.25) for all highly screened active compounds. This is a zipped Excel readable tab

separated text file with PubChem compound ids (cid) for each compound in the first column.

Compounds are sorted in order from most promiscuous, to most selective. This also serves as

a ranked list of target selectivity in reverse order.

(ZIP)

S2 File. List of pfam domains including median target, cluster, and domain selectivities for

FDA approved and non-FDA compounds. This is a zipped Excel readable tab separated text

file with Pfam identifiers for each domain in the first column. This is the full data shown in

Tables 4 and 5, including non-H. sapiens domains. All domains with at least one active com-

pound are included. We also include the number of active FDA approved and non-FDA

approved compounds as shown in Fig 3.

(ZIP)

S3 File. Potentially novel targets for FDA-approved drugs. This is a zipped Excel readable

tab separated text file with PubChem compound ids (cids) for each compound in the first col-

umn, and a representative UniProt protein target identifier for each sequence-similar target

cluster in the second column. These represent compound-target pairs reported as active in

PubChem BioAssay, but not represented among the DrugBank annotated targets list. Several

targets had no UniProt translation and include a GenBank GI number instead, prefixed with

“gi_”.

(ZIP)

S4 File. FDA approved drug biclusters. This is a zipped Excel readable tab separated text file

with PubChem compound ids (cids) for each compound in the first column, and a bicluster

for each compound in the second column corresponding to the drug-target biclusters
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described in the text.

(ZIP)

S5 File. Protein target biclusters. This is a zipped Excel readable tab separated text file with a

representative UniProt protein identifier for each sequence-similar target cluster in the first

column, and a bicluster for each in the second column corresponding to the drug-target

biclusters described in the text. Several targets had no UniProt translation and include a Gen-

Bank GI number instead, prefixed with “gi_”.

(ZIP)

S6 File. Target-protein network. This is a Gephi readable zipped GML (Graph Modeling Lan-

guage) formatted file, which contains the target-protein network described in the manuscript.

Each node (protein) is labeled with a GenBank GI number and a Molecular Function GO slim

term.

(ZIP)

S7 File. Fully screened compound vs target cluster binary matrix. This is a zipped Excel

readable tab separated text file with PubChem compound ids (cid) for each compound in the

first column. The first (header) line contains a unique representative UniProt identifier for

each sequence-similar protein target cluster. Six targets had no UniProt translation and

include a GenBank GI number instead, prefixed with “gi_”. Zero values represent inactive

compound-target activity outcomes, while values of one represent active outcomes.

(ZIP)

S8 File. Pfam domain co-occurrence on protein targets. This file reports all protein domain

combinations that occur together on the same protein targets among the PubChem BioAssay

target set, as identified with the HMMER analysis described in the main text. This is a zipped

Excel readable tab separated text file with Pfam domain ids in the first column, and domain

compositions including this Pfam domain in the second column with domains separated by

an underscore. The third column lists all domain co-occurrences (also underscore separated)

for this Pfam domain, and is repeated (and identical) for all rows corresponding to the same

Pfam domain. Out of 2798 Pfam domains which occur on multiple-target proteins, approxi-

mately half (1388 domains) is found in only one unique combination on these targets.

(ZIP)
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