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In this issue of the Journal, Accordini et al. document the

findings from their study of the multigenerational asthma

effects of tobacco smoking.1 They found that grand-

mothers’ tobacco smoking during pregnancy was
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associated with their own children’s asthma, and that the

mothers’ smoking was associated with asthma in the

grandchildren. Importantly, they found that the grand-

mothers’ smoking (in generation 1) when pregnant with

the mothers (in generation 2) was linked to the grandchil-

dren’s asthma with nasal allergies (in generation 3),

through pathways other than through the mothers’ asthma

or smoking during pregnancy. This is not entirely surpris-

ing. There is growing evidence that phenotypic risk factors

can be subject to vertical or multigenerational inheritance.

Furthermore, tobacco smoking is detrimental to health,

having been linked to substantial morbidity and mortality

from cancer, respiratory disease and heart disease, among

others.2 In pregnancy, tobacco smoking is known to lead

to poor perinatal, pediatric and life-long outcomes, such as

birth outcomes including low birth weight, small-for-

gestational age, birth defects and many others.

The vertical transmission of the asthma effects of smok-

ing within the maternal line will, at first, seem to suggest

another reason for stopping or not initiating smoking dur-

ing pregnancy in (grand)mothers. It is unclear whether tell-

ing smokers that their tobacco smoking will have

deleterious health effects in their progeny will prove effec-

tive. Similar arguments could be made for the ‘transmis-

sion’ of the asthma effect of fathers’ smoking during their

reproductive development. Nonetheless, it is important to

learn about the multigenerational asthma effects of smok-

ing for the reasons outlined by Accordini et al.1 The study

provides important evidence that grandparents’ health

behaviour can have a lasting impact on their children’s and

grandchildren’s health and, perhaps, further down the line.

If this suggested mechanism proves to be durable, it offers

an important early window for tackling risk factors of

asthma. This study supports an epigenetic mechanism

whereby (nicotine from) tobacco smoking leads to epige-

netic variations that are transmitted from grandmothers to

their grandchildren, through pathways other than through

asthma phenotypes in their children.3–5 Epigenetics has

been gaining focus in studies of human health and disease,

including asthma.3–9 The study findings indicate the need

for further investigation of epigenetic and other mecha-

nisms that could be responsible for the links between

ancestral tobacco smoking and asthma in descendants.

The authors should be commended for their thoughtfully

executed study, especially for their multicenter, multilevel,

multigenerational, multiple-exposure, single-mediator design

and analysis, coupled with sensitivity analysis for uncon-

trolled confounding (see also the Supplementary Appendix

of Accordini et al).1 The study explored possible explana-

tions of the multigenerational signals it found: multigenera-

tional genetic, epigenetic or environmental mechanisms. The

explanations also considered implications of information

bias, collider-stratification bias due to unmeasured con-

founder(s) of mediator–outcome relations, and uncontrolled

confounding of exposure–outcome relations. The authors1

were rightly worried that such biases could explain part or

all of their results. They used causal graphical theory to

guide their choice of variables for confounding control for

their assumed data generating process.10,11 They also con-

ducted probabilistic bias analysis12,13 to assess the sensitivity

of their results to an unmeasured common cause of the

exposures, mediator and outcome. Taken together, these are

important developments for a multigenerational epidemio-

logical study.

What should we expect from future studies on this

topic? First, we need more large multigenerational studies

with prospectively collected repeated measurements on

exposures, mediators, epigenetic markers, covariates and

outcomes from diverse populations around the world.

Clever, multistage designs with committed funding will be

needed for feasible and well powered studies.

Second, we need modern mediation analysis with an eye

on path-specific and heterogeneous effects to shed light on

mechanisms involved in the multigenerational links from

smoking to asthma phenotypes.14–17 Attention should also

be paid to the complexities of identification and estimation

of mediated effects in multilevel, multiple-exposure, multi-

ple-mediator and multiple-outcome studies of multigenera-

tional effects of tobacco smoking and other exposures.

I propose the use of a multiple-exposure, multiple-mediator

and multiple-outcome (MEMMMO) framework in studies

of multigenerational epigenetic inheritance. A well-

developed MEMMMO framework consists of a structural

causal model of the connections and the assumptions

needed to identify and estimate the multiple mediational

and interaction effects of multiple exposure interventions on

multiple outcomes that have complex links over time.

In this framework, effect decomposition for mediation anal-

ysis should consider other types of direct and indirect effects

beyond controlled direct effects in multigenerational studies

whenever the assumptions for natural, controlled or inter-

ventional effect decomposition appear defensible.14,15 The

causal mediation analysis of these studies within a

MEMMMO framework will require further methods and

software development, given the current limitations in the

literature.14,17–22

Third, future studies should undertake multiple-bias

modeling to address the impact of different combinations

of uncontrolled confounding, selection bias and informa-

tion bias on study results and conclusions.12,14,23–29

Multiple-bias modeling can involve probabilistic sensitivity

analysis conducted using Monte Carlo simulations and can

be subsumed under an integrated general approach to

causal mediation analysis (namely, g-computation via
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Monte Carlo simulation) and record-level bias analysis

(namely, generalized bias simulation, again using Monte

Carlo methods).15,23

Indeed, epigenetic investigations can and should benefit

from modern causal inference methods and conduct more

mediation, interaction and bias analyses.
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