
UC Irvine
ICS Technical Reports

Title
A guided tour of P-Nut (Release 2.2)

Permalink
https://escholarship.org/uc/item/7jj911nj

Author
Razouk, Rami R.

Publication Date
1987

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7jj911nj
https://escholarship.org
http://www.cdlib.org/

A Guided Tour of P-:\"UT (Rele·ase 2.2)

Ra,mi R. Razo·uk
Information and Computer Science Dept.

University of California, Irvine

1

The purpose of this report is to introduce the reader to the P-N.eT 1 suite of
tools. The reader is assumed to understand Petri Nets. For an introduction to
Petri Nets the reader is referred to [PetJ 81] and [Age79]. For further information
about Petri net extensions the reader is referred to :Oia82l. Additional references

' l

are provided throughout this document.

1 Introduction and Disclaimers

Before beginning this guided tour it is important to understand some of the history
and objectives of the P-.NCT system in order to accurately evaluate its merits and
deficiencies.

The P-NUT system is a set of tools. developed by the. Distributed Systems
Project in the Information and Computer Science Department of the University
of California at Irvine (UCI). The development of the tools has been funded in
part the the National Science Foundation and by a series of MICRO grants funded
jointly by the State of California and Hughes Aircraft. All the software in release
2.2 is available free of charge. yVith one exception, release 2.2 of P-NUT in
cludes ALL the source code as well as some demonstration files which will be used
throughout this document. The exception is the source code for a tool (TRACER
TOOL) which is a recently developed graphics program for debugging simulation
models. This tool is very experimental and executes only on SUN 3's. Because
of the experimental nature of this tool (and known bugs) it is only distributed to
those sites which can execute the binaries directly.

The tools have been built to assists researchers (faculty and graduate students
of FCI) in applying various Petri net based analysis methods which were developed
at UCI and elsevvhere. The overall objective of P-NUT is to support the design

1This work was supported in part by a :..IICRO grant co-sponsored by Hughes Aircraft and t,he
G niversity of California. and by a grant from the >i ational Science Foundation 1, OCR 84-06 i.S6)

2 Guided Tour of P-NUT (v2.2)

of complex distributed systems. A heavy emphasis is placed on models which
support concurrency. Time-dependent behavior is also a major concern. The
current tools are prototypes which are intended to show the feasibility of applying
analysis methods to real problems, and are intended to provide guidance for future
tool development. All software was developed by students and faculty of the
Information and Computer Science Department. Although great care was taken in
developing the software, no guarantees are made or implied about the correctness
of the software or its suitability for use outside the University. Although members
of the research group are eager to find out about (and corre~t) possible problems
which may exist in the software, the software is NOT supported.

The development of P-~UT began in the summer of 1984. The system is
therefore in its infancy. Only a few of the over~ll goals of the P-.~fUT system have
been met. Development is continuing at a frantic pace. Therefore, this release
of P-~UT (2.2) is an early release and will become obsolete by the summer of
1987. Release 3.0 vvill be a significantly enhanced version of the system which will
rapidly displace the older release. This release is intended for researchers who are
interested in investigating the use of the tools in some research area. The tools
are not ready for use in large development efforts. Release 2.2 of P-NUT is only
suitable for systems running some version of 4.2bsd UNIX 2 (e.g. SUN's version
3.0, C"LTRIX). Significant changes m~st be made to this software in order to make
it run on other U:HX systems (e.g. EUNICE on V1IS).

Now that we have dispensed with the preliminaries, Welcome to P-NUT!!!

2 Installing P-NUT

Release 2.2 of P-NUT is available in UNIX tar fo~mat on 1/2 inch tape or 1/4
inch cartridge tape (for SUN computers). The tape includes binaries for SU~ 3's,
but the source can be used to make binaries for any 4.2bsd compatible system. In
order to install the software a directory should be created to house all the source
and bin·ary files. It is preferred that a new user account be set up with the name
"pnut''. The user should go to the pnut home directory and type:

tar xvf /dev/rmt8

w_here rmt8 is the device name of the tape drive. The tape has been prepared so
that it ·will create several subdirectories within the pnut directory:

2 UNIX is a Trademark/ Service .\lark of the Bell System.

Installing P-NUT 3

bin The bin directory contains all executable binaries and shell scripts. In order
for a user to use pnut, the pnut/bin directory will have to be added to his/ her
search path ($PATH).

src The src directory contains all source code and the main 1Iakefile for P-NUT.
It is further subdivided into a set of directories. one for each tool in the
system. ALL the source code for release 2.2 is written in C.

doc The doc directory is intended to contain some tool user manuals and some
documentation. Documentation of release 2.2 is VERY scarce. The main
documentation is in the form of comments in the source code.

man The man directory contains online manual information. This information is
organized much like CNIX's man facility (In fact the pqut manual macros
were taken from UNIX's man macros). The pnut man directory is organized
as a set of numbered subdirectories, one per manual section. Release 2.2
contains only one manual section.

demo The demo directory contains several demonstration files. The important
files for the purpose of this guided tour are name dining.tpp and mp.net.
These files are discussed further in the following sections.

help The help directory contains help files used by the tracertool program. This
directory will only be needed on srN 3 systems which will run the tracertool
program.

The entire P-NUT system requires roughly -±.500 blocks of free disk space (2000
for source, 2.500 for binaries). Once the tape has been read in, the binaries must
be created. If the system on which the code will execute is a SUN 3, the binaries
will execute directly. No recompilation is necessary. If, on the other hand, the
code is to execute on other hardware supporting 4.2 UNIX, then the binaries will
have to be created. This can be done by using the make facilities of UNIX. A
~Iakefile can be found in pnut/src which can make and install all the p-nut tools.
To make and install the system all that must be done is to type:

make "BIN= binary-directory"

where binary-directory should be replaced by the full path name of the directo
ry where the binaries should reside. The default bin directory is ;'/g;'ds/pnut1 bin''
(specific to ·C CI's machines).

In order to see the effect of the make command, it is also possible to type

Guided Tour of P-NUT (v2.2)

make 11 BIN=binary-directory 11 test

The result is an echoing of all the commands which will be executed (the
commands will not be executed).

Once the tools have been compiled and installed it is possible to remove source
files created by lex and yacc by typing:

make veryclean

: The cleaning command saves disk space and is strongly recommended for users
who are not planning on modifying the code in any way.

Building the system may require several hours. If difficulties are encountered
the user should contact Rami Razouk in the ICS Department (iH-8.56-6354 or
714-856- i 403).

Once the system has been built some minor changes to some shell scripts are
necessary before using P-)J"UT. The bin directory contains a c-shell script named
pnutman. This script contains the path name of the manual directory. This path
name should be edited to reflect the correct path. The commands needed to run
troff must also be tailored to the new environment (some sites use dtroff in place
of troff). The bin directory also contains c-shell script name printstat. This
script also invokes troff and should also be tailored to the new environment. Both
printstat and pnutman use tseetool. a troff pre-viewer available for the SUN's.
If tseetool is not available, the shell script should be modified to use nroff and
more. The P,nal script which may require modification is the tracertool script.
This file is only used on SUN 3 systems running the tracertool program. The
script invokes the tracer program and passes it the path name of the help files.
This path name should be changed to reflect the new home directory for P-NuT.
P-~HJT is now ready to run.

3 A word about the P-NUT 'environment'

P-.NUT has been built as a set of small tool fragments (se~ figure 1), each dedicated
to performing some limited task (efficiently). F sing P-.:HTT involves putting to
gether these tool fragments in interesting ways. Tool fragments are 'put together,
by passing the output of one tool fragment as input to another. U~IX's pipes can
be used for that purpose to avoid storing intermediate results in files. \Vhenever
intermediate results are to be used repeatedly, they should be stored as files on
disk in order to save processing time. P-NUT tools have been built in the (best'?)
UNIX tradition. They read their inputs for 'standard input' and produce out
put to :standard output'. C nless the user specifically changes standard input and

A word about the P-NUT 'environment'

I I
I I

Graphics
Editor

Timed
Reachability ;

1
Graph Buildetj

I I

Reachability
Graph
Filter

Translator ~ Translator
Preprocessor l"'V-!

I Reachability I
Graph ,.----~

! Builder I

P-Nut
Lint

\
\

\
\
I
\

\

\
i

~
I
I
I

Simulator

Convert
I

i or i

I LCrrt i

I

Filter

\
\
!

\

f

Figure 1: The P-~GT suite of tools

i R h b'l' 1 i eac a i ity /
Graph I

Analyzer I

Pretty
Printer

Tracertool

Statistics

I

standard output, the tools will expect input from the terminal and will produce
their results (sometimes ugly intermediate results) to the terminal.

The tools interact in fairly simple ways. There are really only three interesting
types of objects that can be created and manipulated in P-~'TT (depicted as

6 Guided Tour of P-NUT (v2.2)

circles in 1):

1. Petri Nets

2. Reachability Graphs

3. Execution Traces

Petri nets (circle 0 in figure 1) are accepted by the system in textual form and
transformed into an internal representation (circle 1 in figure 1). It is this internal
representation that drives all remaining tools.

Reachability graphs (circle 2 in figure 1) are representations of all of (or part
of) the state-space of a Petri ~et. These are graphs whose nodes represent states
(there are many representations depending on what you are int.~rested in) and
whose edges represent state transitions. Depending on the technique used to
produce the graph, edges may contain more or less information. For example,
timed reachability graphs contain timing information while untimed graphs do
not. Graphs produced by some tools have special properties. For example, graphs
produces by Lconvert (linear convert) are linear sequence of states, i.e. every
state has exactly one successor except for some terminal state.

It is important to note that a reachability graph can only be interpreted (and
understood) if the n~t from which it is constructed is known. The binding of a
reachability graph to a net is permanent and is handled rather crudely in P-NUT:
the reachability graph includes the complete specification of the net. Clearly,
storage gains could be ac·hieved if P-~UT was interfaced with some sophisticated
database management system which could maintain this binding information.

Execution traces (circle 3 in figure 1) are representations of portions of the
state space of a net. An execution trace is one long path through that state space,
where the same state may be visited many many times. A trace is represented by
some initial state followed by a set of state deltas. It is a space-efficient way of
representing a linear sequence of states (when compared to a reachability graph).
As is the case with graphs, execution traces are specific to nets. The binding of
an execution trace (or a series of traces) to a net is also permanent and is handled
crudely by P-NUT. Each execution trace includes the complete specification of
the net. A. benefit of this crude mechanism is that the user need not worry about
the binding.

All intermediate forms are in ASCII format and can be examined easily. vVhile
this is a particularly useful feature for P-~UT developers, it is not intended for
P-.NTT users. ·The only other objects created (but not manipulated) by the tools
are user output (e.g. performance statistics reports).

Creating A Petri Net 7

The remaining sections of this report give a guided tour of the system. The
files included in the pnut/demo directory will be used throughout the report. To
use these files the reader should copy them into a private directory.

4 Creating A Petri Net

Two tools can be used to create a Petri Net. The main tool is the 'translator'
(transl) which transforms the textual form of a Petri Net into its internal form.
A textual description of a Petri :.I et consists of a listing of all the transitions in
the net. For each transition, the user can specify:

1. Data-dependent preconditions (optional}

2. Name (optional)

3. Input places (control preconditions)

4. Timing information (optional}

.5. Output places (control postconditions) (optional}

6. Actions (data transformations) (optional)

Data-dependent preconditions are boolean expressions on data variables. These
conditions are not supported by any toot (other than the translator) in release 2.2.

A transition can be given a name in order to simplify analysis. The name must
appear in a pair of •: '.

Input places consist of a comma-separated list of places which must hold tokens
before the transition can fire. If multiple tokens are needed, the number of tokens
is specified (in parentheses) after·the name of the place. Inhibitor arcs (arcs which
inhibit the firing of a transition if tokens are present in a place) can be described
by specifying (in parentheses following a particular place name) that zero tokens
are required in a place. For example for_k(0) specifies that the place n.amed fork
must have zero tokens on it in order for the transition to be enabled. In the model
supported by P-NGT if a transition's input places have enough tokens to allow the
transition to fire multiple times, the transition is considered to be enabled many
times concurrently. As a cons·equence, it is not possible to have a transition vvhose

· only inputs are inhibitor inputs. In such a case the transition would be considered
enabled and infinite number of times.

Timing information may include enabling times (delays before a transition can
begin to fire), firing times (duration of firing) and relative firing frequencies (the

8 Guided Tour of P-NUT (v2.2)

:t1: p1 -> p2(2), p3
:t2: p2 -> p4
:t3: p3 -> p5
:t4: p4(2), p5 -> p1
<p1> /* initial state */

Figure 2: Simple Petri Net

frequency with which this transition fires relative to other conflicting transitions).
This timing information is consistent with the model of time described in [RPS{.
Currently, only constants can be used to specify these values. The simulator
allows for these constants to be used as means of exponential distributions. The
most significant change in release 3.0 is expected to be support arbitrary timing
expressions.

Output places consist of a comma-separated list of places which will gain tokens
when the transition finishes firing. If multiple tokens are added to a place, the
number of tokens (an integer constant) is specified (in parentheses) after the name
of the place. It is possible for a transition to have no output places.

Actions are program segments which cause data variables to change. Currently
an interpreted language developed for the reachability graph analyzer [i\'IR8.5] (see
section 6) is used . .No tool, other than the translator supports these actions (release
2.2 supports auninterpreted'' models). Release 3.0 will support these actions for
simulation purposes.

Figure 2 shows a small example of a Petri Net.· The reader can create and store
the net by invoking the translator without redirecting input. This is accomplished
by typing:

transl > net.out

Since the translator will expect input from the terminal, the net can be typed in
directly (without mistakes!). When the net is completed (by typing a <CTRL>-D
for an end-of-file) the translator will produce the net in the file net.out.

The translator is not intended to be used interactively and does not tolerate
errors. The normal way of using the translator is to create a file (using an editor)
which holds the tex:tual description of the net. In order to facilitate debugging of
ne.ts a new tool (pnl) has been added to release 2.2. Pnl (P-.NUT Lint. patterned
after the lint program in U~IX) scans the net for syntactic errors as well as
patterns which often indicate semantic errors. For example~ pnl \vill warn the

Creating A Petri Net 9

I•
* Dining philosophers problem with three philosophers.
* Set n equal to the desired number of philosophers.

*I

for n=3 {

array philosopher_thinking(n), philosopher_1_fork(n), philosopher_~ating(n)
array fork_free(n)

for i=O to n-1 {
philosopher_thinking[i], fork_free[i] -> philosopher_1_fork[i]
philosopher_thinking[i], fork_free[(i+1) 'l. n] -> philosopher_1_fork[i]
philosopher_1_fork[i], fork_free[i] -> philosopher_eating[i]
philosopher_1_fork[i], fork_free[(i+1) 'l. n] -> philosopher_eating[i]
philosopher_eating[i], fork_free[i](O),

fork_free[(i+1) 'l. n](O) -> philosopher_thinking[i], fork_free[i],
fork_free[(i+1) 'l. n]

<philosopher_thinking[i], fork_free[i]>
}

}

Figure 3: TPP input for dining philosophers

user if a place is used at the output of a transition but not at the input of another.
·while such a pattern does not always signal an error it is often caused by ~imple
typographical errors. If no errors or warnings are found pnl simply reports how
many places and transitions were found in the net. ~ote that pnl only produces
a short report as its output. It does not duplicate the actions of transl.

Another tool which aids in creating Petri ~ets is the translator pre-processor
(tpp). As its name implies it is a pre-processor which supports more compact
representations of nets whose structure is regular. It allo\vs the user to specify
a net for one component and then to replicate that component (using looping

_constructs) in order to create the complete net. The function of the processor
i-s to ''unroll" the loops and to create a net which can be processed by transl.
File dining. tpp in the pn ut/ demo directory contains the dining philosopher net in
format suitable for tpp. Figure 3 shows that form.

10 Guided Tour of P-NUT (v2.2)

By changing the assignment to n it is possible to create nets for differerit
numbers of philosophers. A .j-philosopher net can be created by changing the file
to assign 5 to the variable n and then typing:

tpp dining.tpp I more

The output is the textual equivalent which can be processed by transl. It
should be clear what tpp does. To check the validity of the tpp output, it can be
sent to pnl by typing:

1

tpp dining.tpp I pnl

Note that pnl cannot process the input to tpp directly. The output of tpp
is normally piped directly to transl. The intermediate form of the .5-philosopher
net can be generated by typing:

tpp dining.tpp I transl > diningS.pn

File dining5.pn now contains the .5-philosopher net.
Tpp and transl support Timed Petri Nets. Timed nets include fixed enabling

and firing times, and firing frequencies. Figure 4 shows an example of a simple
shared-bus multiprocessor system. This model can be found in file mp.net in the
pn-ut/demo directory. The model of a single processor is given. The model is
expanded into multiple processors using tpp. In' this model, the processor fetches
instructions from local memory (consuming some cycles), decodes the instructions,
and then executes the instructions by fetching operands (if any), executing the
instruction and writing results (if necessary) back to memory. Interaction between
processors occurs when they contend for access to the bus (places bus_free and
b·us_b·usy) to read some operands and to write some results. The reader should
examine this model closely before going on. The parenthesized numbers in the
model describe enabling times, firing times. and firing frequencies. All firing times
are zero in this model because processing and propagation delays are modered with
enabling times. Probabilities (such as the probability of getting a particular type
of instruction) are provided as the third number. Sometimes these probabilities
are given as real numbers which add up to one (as probabilities should) or as .
integers from which the actual probabilities are calculated (e.g. firing frequencies

·of 1 and 1 yield probabilities of 0 . .5 and 0 .. 5). The calculation of probabilities in
Timed Petri Nets is a complex issue, especially if transitions are allowed to be
enabled multiple times concurrently. For further insight into this problem. the
reader is referred to :vVPS86!. :\" ote the use of inhibitor arcs associated vvith place

Creating A Petri Net

for n = 1 {
array fetch(n), ready(n), read(n), execute(n), write(n)
array nowrite(n), noread(n), local_read(n), remote_read(n)
array bus_read(n), done(ri), local_write(n), remote_write(n)
array bus_write(n)

for i = 0 to n-1 {
fetch[i] -> (2, 0, 1) ready[i] /* fetch instruction */
ready[i] -> (0, 0, 0.1) read[i], execute[i], write[i]
ready[i] -> (0, O, 0.4) read[i], execute[i]
ready[i] -> (0, 0, 0.2) noread[i], execute[i], write[i]
ready[i] -> (0, O, 0.3) noread[i], execute[i]
read[i] -> (0, O, 0.6) local_read[i]
read[i] -> (0, O, 0.4) remote_read[i]
local_read[i] -> (2, 0, 1) noread[i]
remote_read[i] ,bus_free -> (0, 0, 1) bus_read[i], bus_busy
bus_read[i], bus_busy -> (3, 0, 1) bus_free, noread[i]
noread[i], execute[i] -> (3, 0, 1) done[i]
done[i], write[i](O) -> (0, O, 1j fetch[i]
done[i], write[i] -> (0, O, 6) local_write[i]
done[i], write[i] -> (0, 0, 4) remote_write[i]
local_write[i] -> (2, 0, 1) fetch[i]
remote_write[i], bus_free -> (0, O, 1) bus_write[i], bus_busy
bus_write[i], bus_busy -> C3, 0, 1) bus_free, fetch[i]
<fetch[i]>
}

}

<bus_free>

Figure 4: Petri Net ~fodel of Multiprocessor

11

12 G.uided Tour of P-NUT (v2.2)

write. In this model the presence of in token in that place indicates that a write
to memory is needed. The absence of the token signals that no \Nri te is necessary.

By altering ·the assignment to n it is possible to generate nets for different
numbers of processors. A 1-processor system can be created by assigning 1 to n

and then typing:

tpp mp.net I transl > rnp1.pn

The last tool which is useful in creating Petri Nets is a graphics editor which
is currently under development. This editor is not included in release 2.2. It is
mentioned here in order to answer the frequent question regarding graphics input
capabilities in P-NGT. Release 3.0 of P-NUT should include a graphics editor.

5 Building and Printing Reachability Graphs

A reachability graph is a finite representation of the complete state space of the
system being modeled. A reachability graph consists of nodes which represent
distinct states which can be reached, and arcs which represent potential state
transitions. Since the state-space of a concurrent system is usually quite large, it
is very difficult (if not impossible) to construct the complete state-space. Rather,
a finite representation of the complete state-space is constructed by focusing at
tention on parts of the system which are of interest. In Petri Net, this focusing of
attention can be easily done by omiting portions of the model of'the system. For
example. by ignoring timing information, it is possible to construct a reachability
graph which retains only control-flow information (distribution of tokens on the
net). In this type of graph, the :•state" of the system is completely described by
the distribution of tokens on places. Arcs in such a graph can be labeled by the
Petri Net transitions which cause the system to go from ·the source state to the
destination state. It is this type of graph that is discussed at length in ~Pet81 J.

Othe~ types of reachability graphs can be constructed. In ~RP84] a ;'Timed"
reachability graph is defined where each state is characterized by the token distri
bution and by timing information about the various transitions in the net. The
arcs in these graphs are labeled with sets of transitions which begin or end firing

· simultaneously, and with a timing delay describing the amount of time it takes
to go from one state to another. ·whenever a state has multiple successors, each
su~cessor has a probability (actually associated with the arc).

Yet another type of reachability graph is one which can be constructed from
a simulation trace. It is possible to summarize simulation results by construct
ing a graph which represents all the states which were actually reached during a

Building and Printing Reachability Graphs

simulation. Arcs in such ;'partial" reachability graphs can be labeled with tim
ing delays and probabilities (actual frequencies with which arcs were traversed).
P-NUT provides separate tools for creating each type of graph.

5.1 Un-timed reachability graphs

Un-timed reachability graphs can be built using the Reachability Graph Builder
(RGB). Rgb can build only finite graphs (infinite graphs will be dealt with in
release 3). Rgb has been designed to be efficient in space and time by taking ad
vantage of the modeler's knowledge of the model [RH85J. If the model is known to
be bounded at less than 127 (no place ever holds more than 127 tokens), the pro
gram can save a good deal of memory. If the model is known to be safe (bounded
at 1), the program can save both time and space. This last version of rgb has
successfully built graphs of 20,000 states in less than seven minutes of cpu time
on a VAX 11/750. 3

In order to experiment with rgb, the reader should try to construct the reach
ability graph for the .5 dining philosophers. Since this net is safe, its reachability
graph can be built by typing

rgb -s dining5.pn > dining5.rg

This graph is built relatively quickly (considering its size). To see the results
of the analysis, it is possible to print the graph using the Reachability Graph
Printer (rgp). Try typing:

rgp dining5.rg I more

By piping the result of rgp through the more program, the graph can be
viewed slowly. rgp displays the graph as a tree, and numbers all the states. A
detailed description of each state is listed at the end of the display. In this case
the graph is large and difficult to scan (by a human). Analysis of reachability
graphs is discussed in section 6. Various parameters of rgp can be used to display
portions of the graph. By typing

rgp -b -s10 -d2 dining5.rg I more

rgp will display the portion of the graph at distance 2 backward from state
10.

3 VAX is a Trademark of Digital Equipment Corporation.

14 . Guided Tour of P-NUT (v2 .2)

5.2 Timed reachability graphs

Timed reachability graphs can be built using the Timed Reachability Graph
Builder (TRGB). In release 2.2, Trgb has been generalized to deal with any type
of timed Petri ~et so long as the enabling times and firing times are fixed (GSP ~'s
and DSPN's are not supported [MBC84] [MC86]). In many cases timed reachability
graphs are very large. Trgb does not detect potentially infinite graphs. It simply
continues to execute until it runs out of memory (or disk space). This tool is
primarily useful for systems with small state spaces.

An example of a timed reachability graph can be obtained by analyzing a 1-
processor model of the multiprocessor system described earlier. To accomplish
this, the mp. net file should be edited to ensure that a 1-processor model is created
(by assigning 1 to n). Once the editing is completed a 1-processor model can be
built by typing:

tpp mp.net I transl > mp1.pn

This model can then be analyzed using trgb by typing:

trgb < mp1.pn > rnp1.trg

The graph is now stored in file mpl. trg and can be displayed by typing:

rgp mp1.trg I more

Note that a timed reachability graph contains different information than an
untimed one. Arcs are labeled \vi th probabilities and time delays (zero proba
bilities and zero delays are omitted). The description of a state includes infor
mation about which transitions were enabled (Remaining Enabling Time: RET)
and which transitions were firing (Remaining Firing Time: RFT). ~ote also that
the probabilities appearing in the graph are consistent with those specified in the
model. A 2-processor model can also be analyzed in this way. but its graph is
considerably larger.

5.3 Partial Reachability Graphs

The third technique for generating reachability graphs is to transform the out
put of the simulator (an execution trace) into a graph. Such a graph is :.IOT a
representation of the complete state-space. It only represent the small portion
of the state-space \vhich \Vas visited during a particular simulation experiment.

Building and Printing Reachability Graphs 1.5

The generation of execution traces will be discussed later. For now it is suffi
cient to say that two conversion program (convert and lconvert) can be used to
transform an execution trace into a graph. First, lconvert is intended to simply
change the form of the execution trace. All the information is retained. Rather
than representing an execution as a state followed by a sequence of state deltas,
the execution is represented as a collection of states connected by edges. Graphs
produced by lconvert have the peculiar characteristic that each state has exactly
one successor (except for the final state) and that each state has exactly one pre
decessor (except for the initial state). The name of the tool (!convert) stands for
Linear Convert. The main reason to convert the form of an execution trace is to
use the reachability graph analysis tools on a trace.

The second conversion program (convert) attempts to reconstruct the state
space of the system being modeled in the form of a general graph (not linear).
To accomplish this goal convert recognizes states when they are revisited. \Vhen
a state is first visited during a simulation run, the state is added as a node in
the graph. vVhen that state is revisited, an arc is added to the original node
representing that state. In this release of P-NUT the convert program merges
duplicate arcs between nodes. If two arcs are found between a pair of states they
are combined into one. The delay associated with the arc is the (weighted) average
of the two delays. The weight associated with an arc is the number of times it was
traversed during an execution of the model. These weights are used in the delay
calculations as well·as in assigning probabilities to arcs. The graph produced by

. convert is generally orders of magnitude smaller than the equivalent execution
trace. Unfortunately, v~luable information is lo&t in this conversion process.

• The individual delays encountered in going from one state to another are
lost (only their average is known). Future releases may permit additional
data to be remembered such as variance (or possibly the representation of a
distribution) .

• The particular events which caused a state transition are also lost. In the
process of merging arcs it is not possible to preserve the information about
the individual events (they can't be averaged).

• Information about sequences of states are lost. By converting into a graph
some sequences will appear to be possible in the graph that in fact never
appeared in the execution trace. This is best illustrated by an example. If
the following trace is generated (where the S's are states):
515253515485 ...

·the resulting graph will show a path from 53 to 5 2 (since 5 3 can reach 51

and 51 can reach 5 2).

16 Guided Tour of P-NUT (v2.2)

An example of converting an executioll' trace will be discussed later.

5.4 Filtered Reachability Graphs

Release 2.2 of P-NUT includes a tool which is capable of producing one reachability
graph from another. The Reachability _Graph Filter (rgf) program allows the
user to construct a subgraph by defining the characterist!cs of the states which
are to be retained. These characteristics are specified in the form of predicates in
the RGA language described below. All states satisfying a predicate are retained
and all arcs between retained states are retained in the resulting subgraph. Rgf
therefore allows the user to focus attention on small sets of states which may be
of interest. Note that it is possible to create a set of disconnected subgraphs using
rgf.

6 Analyzing Reachability Graphs

Once reachability graphs have been constructed they can be analyzed interactively
using the Reachability Graph Analyzer (RGA). This tool allows a designer
to debug models and even to prove correctness. The input language is first order
predicate calculus with the addition of branching-time temporal logic operators.
In some sense the function of the tools is to accept a high level specification and to
verify that the behavior of the model (as represented by the reachability graph) is
consistent with that specification. Another way to view the tool is as an interactive
mechanism for "asking questions'' about the model. In the discussion below we
will be using the dining philosopher net as an example. To analyze the reachability
graph for 3 philosophers (the graph constructed earlier) type:

rga diningS.rg

The tools is "expression oriented" in that it views anything typed in at the
·terminal as an expression which needs to be evaluated. For example typing the
express10n

2+3

will cause rga to respond with 5. Expressions can be constructed using arith
metic, boolean, and set operators with existential and universal quantifiers. Simple
data types such as integers. reals, sets and sequences are supported. Assignment
statements and simple control structures (if-the-else) are also supported. In order

Analyzing Reachability Graphs li

to answer questions about a graph rga has an understanding of some predefin.ed
sets. It knows of the set of states in the graph (S) and the set of arcs in the graph
(A). The details of the capabilities of the tool are given in the rga user manual
[Mor84].

The simplest question to ask rga is the number of states and arcs. The cardi
nality of these sets can be obtained by typing:

card(S)
card(A)

In order to find out is there are any states which have no successors (deadlocked
states) it is sufficient to ask if there are any states whose number of successors is

-o.

exists s in S [nsucc(s) = 0]

Of course, this model of dining philosophers has a deadlock. To capture the
set of deadlocked states it is possible to create the set and assign it to a variable.

deadlocks := { s in S I nsucc(s) = 0 }

The assignments also produces the value being assigned. Therefore, a side
effect of assigning the set to the variable deadlocks is that the set is also displayed
at the terminal. Ending a line with a ';' causes the value of the expression to be
discarded. The reader should note that there is only one deadlocked state. To
display the marking in that state the setop function can be used. setop applies
an arbitrary function (in this case the showstate function) to a set. Therefore
the set of deadlocked states can be displayed by typing

setop(showstate, deadlocks)

Rga also supports the definition of functions. It is possible~ for example, to
define a function which, given a state, returns the number of philosophers which
are eating in that state. Such a function can be defined as follows:

eating(s) [n] : := n := O; \
forall pin philosopher_eating [n := n+p(s); true];\
n

This function has one formal parameter (s) and one· local variable (n). The
variable n keeps a running total of philosophers eating. The forall statement in
this case is used as a looping constructs which traverses the set of places called
philosopher_eating. This set of places \Vas defined i_~ .the net as an array. An array

18 Guided Tour of P-NUT (v2.2)

of places and transitions can be accessed as an ordered set in rga. In the loop, the
number of tokens in the place is added to n. Every philosopher which is eating will
have a token in the corresponding philosopher _eating/i/ place. The tr·ue expression
ensures that all the elements of the set are traversed (forall stops at the first false
value). Finally the value of the function is the value of the last expression: n.

To test this function it is possible to ask for the number of philosophers eating
in the initial state:

eating(#O)

Once this function is defined it is possible to ask if it is true that the number of
philosophers eating in any state is always less than 2 (for .) philosophers). This
can be determined by typing:

forall s in S [eating(s) <= 2]

The answer should be true. Temporal logic operators can be used to test the
fairness of the model by asking if it is true that every philosopher eventually eats.
This can be asked as follows:

forall p in philosopher_eating [inev(#O, p(C) = 1, true)]

This expression returns true if for every place indicating a philosopher eating, a
state will inevitably be reached from the initial state in which that place has a
token. Of course, in this model this fs not the case. Exiting rga is accomplished
by typing <CTRL-D> (Control-cl).

Rga is the most powerful and innovative tool in P-NUT. The reader is encour
aged to experiment further with it and to scrutinize the manual to get an idea of
rga's power.

7 Simulating a Petri Net

The P-NUT simulator is a simple simulation engine which "pushes" tokens around
a Timed Petri :Net. The input to the simulator is a Petri Net and a few simulation
commands. The output of the simulator is one or more execution traces. The
execution traces are not intended for the user and must be processed by other
tools before they are ready for human eyes. However, because the simulator out
puts directly to standard output, the user will see the execution traces unless
output is redirected. In the examples below several ways of redirecting output
are shO\vn. The example to be used will be a 2-processor multiprocessor example.
The 2-processor model can be created by editing the mp. net file and changing the
assignment to n (to 2). The net can then be created by typing:

Simulating a Petri Net 19

tpp mp.net I transl > mp2.pn

The simulator is invoked by typing:

simulator

Once in the simulator, output should be redirected to a file. This is accom
plished by typing:

> mp2.trace

This command will cause output to be stored in file mp2. trace. Next, a net
should be read into the simulator. This can be accomplished by typi_ng:

.-

< mp2.pn

The simulator now expects simulation commands. Typically a breakpoin~ is
set and the simulation is started.

stop when clock 300
run

The simulator stops when the. simulation time reaches 300. Another run can
be initiated (resulting in a second execution trace).

stop when clock 600
run

The simulator can be terminated by typing:

exit

The simulation results can now be examined using the stat and printstat
tools. Stat analyzes the trace and produces output which is compatible with tbl
.and. troff. Printstat simply makes sure that these tools are invoked correctly.
To generate the performance report for the simulation above. type:

stat < mp2.trace I printstat -q

The output is a report indicating (among other things) the average number of
tokens in every place. This data. can be used to derive utilization measures. For
example the average number of tokens in place bus_bus y indicates the utilization
of the shared bus. Since two traces were produced, the output of stat includes
confidence intervals (using batch means). The -q option of prints tat generates a

20 Guided Tour of P-NUT (v2.2)

''quick" version of the report to the terminal using nroff. The -t option of printstat·
generates output to a Laser Printer using troff.

If a shorter report is desired it is possible to filter the simulation and obtain
a report only about places and transitions of interest. The output of the filter
program is a valid execution trace and could be stored in a file for later processing.
The command below pipes that trace directly to the stat program in order to
obtain the performance statistics report. The command below request that only
data relevant to places bus_busy and bus_free (the places which model the two
states of the bus) be retained.

filter bus_busy bus_free < mp2.trace I stat I prinstat -q

The resulting report should be consistent with the report obtained from the
complete trace.

It is possible to avoid storing the complete simulation trace by filtering the
execution traces directly from the simulator. This is accomplished from inside the
simulator.

simulator
I "tee mp2.trace I filter bus_free bus_busy I stat > mp2.stat"
< mp2.pn
stop when clock 500

run
exit

This sequence of commands will cause the output of the simulator to be stored
in file mp:2.trace. filtered and then piped directly to the stat program. vVhen the
simulator exits, file mp2.stat should contain the performance statistics. The reader
should produce a report by typing:

printstat -q mp2.stat

8 Analyzing Simulation Results

A big drawback to most existing simulation tools is the inability to determine if
the observed behavior of the model is consistent with higher level specifications
of-the system. This drawback is primarily the result of the fact that simulation
models and tools are typically intended to provide performance data. Debugging
simulation models is very difficult. P-:.TUT addresses.~~is concern by allowing the

Analyzing Simulation Results 21

user to convert an execution trace produced by the simulator into a partial reach
ability graph which can be analyzed using rga. A user can therefore determine if
the behavior of the model (as observed during a particular simulation experiment)
is consistent with their expectations.

As was discussed earlier, there are two ways of converting a simulation trace
into a reachability graph. The first way recognizes that a particular state is usually
visited many times during a single simulation experiment. All identical states
can then be grouped together, thereby generating a graph where each state is
unique. As each state is revisited during a simulation, additional arcs are added
between states. The resulting graph (usually) has few states and a lot of arcs.
The number of arcs can be reduced by simply grouping arcs between each pair of
states. Information about individual arcs is lost in this process (e.g. the events
which caused the state transition) although some information can be retained (e.g.
the average time required for each state transition). This approach to analyzing a
simulation trace is attractive in that it produces a small compact graph which can
be analyzed efficiently. The drawback is that a good deal of information is lost in
the process. In addition to the information lost in grouping arcs, information is
also lost about sequences of states. The resulting graph contains state sequences
which did not occur in the real sLnulation. This fact must be remembered in
analyzing the resulting graph.

The second way of viewing a simulation trace as a reachability graph is to retain
all information and to simply convert the form of the trace to be compatible with
tools which expect re.achability graphs. In this approach no information is gained
or lost. The form is simply changed. The resulting graph is not a graph at all.
It is a linear sequence of states. Identical states (markings of the net) can appear
many times in a sequence. Changing the form of the trace does buys us the ability
to analyze the trace using RG A. Results of such analyses are quite accurate since
all information about a simulation is retained. The major drawback is that space
limitations preclude the analysis of very long traces. This problem can be eleviated
somewhat by filtering traces before converting them into reachability graph form.

Two tools have been added to P-.NTT to support these t·wo conversion pro
cesses. Convert is a tool which supports the first conversion process. It groups
together identical states and groups arcs between states by simply averaging their
timing delays and discarding all other information. To excercise this tool type and
print the result:

convert < mp2.trace > mp2.simrg
rgp mp2.simrg I more

The resulting reachability graph is in file mpz.simrg and can be analyzed by

22 Guided Tour of P-NUT (v2.2)

typing:

rga mp2.sirnrg

The number of distinct states visited can be obtained by typing:

card(S)

To test if it is true that the shared bus is either busy or free (to find errors in
the model) the user can type:

forall s in S [bus_busy(s) I bus_free(s)]

To determine if a particular path in the model was traversed during a particular
simulation experiment it is possible to ask if particular states were ever reached.
For example, typing the following commands will determine if there was ever a case
where a processor was ready to access the bus and couldn't because the bus was
busy. The first command constructs the set of places which indicate a processor
which is ready to use the bus. The second command detemines if a state exists
where the bus is busy and one of the selected places holds a token.

ready_to_use_bus := union(remote_read, remote_write)
exists s in S [bus_busy(s)&exists p in ready_to_use_bus[p(s)>O]]

An additional "feature'' of the convert program is that states in which the
system spends no time are ignored. Zero-time state transitions can hide interme
diate states which may be of interest. For example, a situation where a bus is
released by one processor and then instantly grabbed by another appears in the
graph as a single transition where the bus never becomes free. As a result, if the
user asks if it is the case that every allocation of the bus inevitably leads to a
release of the bus, the answer will be no. This problem can be demonstrated by
asking the question:

forall sin {s' in S I bus_busy(s')} [inev(s, bus_free(C), true)]

Future releases of P-NUT will allow the user the option to preserve information
about zero-time transitions.

The second view of reachability graphs is supported by the lconvert (Linear
Convert) program. It produces a graph which can also be analyzed by RGA. To
build and print such a graph type:

lconvert < mp2.trace > mp2.lrg
rgp mp2.lrg I more

The reader may want to experiment with using rga on the output of !convert.
The output of !convert can also be used to drive the tracertool program which
displays simulation results graphically.

On-line manuals 23

9 On-line manuals

P-~UT has a simple on-line help facility. To obtain information about a particular
tool the user can type:

pnutman <tool-name>

The user can also obtain a complete user manual by typing

pnutman "*"

Hardcopy versions of the manual can be obtained by typing

pnutman -t <tool-name>

In order for this command to work, it is necessary to edit the C-shell script
located in pn-ut/bin/pnutman. This shell script contains the appropriate troff
commands to produce hardcopy output. The troff commands are site-specific and
should be tailored (at UCI the troff command is itroff). Appendix A of this report
contains a complete user manual.

10 Conclusion

This document provides a brief and incomplete tour of the set of tools available in
P-.NUT. Release 2.2 of P-Nl7T is an early release which supports limited types of
Petri-~et models. Future releases will allow more flexible models of time and will
also support ;'interpreted" nets. Users of P~NUT are encouraged to provide the
P-NUT group with feedback. The group is eager to fix any problems although, as
stated earlier, no support can be guaranteed in a University environment.

2-± REFERE~VCES

References

[Age79] T. Agerwala. Putting Petri nets to work. IEEE Computer, 8.5-94,
December 1979.

lDia82] .M. Diaz. ~fodelling and analysis of communication and cooperation
protocols using Petri net based models. Computer Networks, 6:419-441,
December 1982.

[~IBC84] M.A. ~Iarsan, G. Balbo, and G. Conte. A class of generalized stochastic
Petri nets for the performance evaluation of multiprocessor systems.
ACM Transactions on Computer Systems, 2(2):93-122, 1984.

)IC86] M.A. :Vfarsan and G. Chiola. On Petri nets with deterministic and expo
nential transition firing times. In Proceedings of the Seuenth European
Workshop on Application and Theroy of Petrn Nets, Oxford, England,
June 1986.

[Mor84] E.T. :VIorgan. R GA Users 1.itanual. Technical Report 243, Information
and Computer Science Dept., University of California, Irvine, December
1984.

[1IR85] E. Timothy :VIorgan and Rami R. Razouk. Computer-aided analysis of
concurrent systems. In Proceedings of the .5th International Workshop
on Protocol Specification Verification and Testing; Toulouse, France.
June 198.5.

Yet81] J. Peterson. Petri ~Vet Theory and the Jlodeling of Systems. Prentice
Hall, Englevvood Cliffs, .N.J., 1981.

[RH85] R.R. Razouk and D.S. Hirschberg. Tools for Efficient Analysis of Con•
C'Urrent Software Systems. Technical Report 8.5-1.5, Information and
Computer Science Dept., University of California, Irvine, June 1985.

[RP84] R.R. Razouk and C. Phelps. Performance analysis using timed Petri
nets. In Y. Yemini and S. Yemini, editors, Protocol Specification .. Test
ing, and Verification TV, North-Holland Pub. Co., 1984.

::vVPS86] D.L. Woo, C.V. Phelps, and R.D. Sidwell. Timed Petri net probability
semantics. In Proceedings of the Seventh European lVorkshop on Ap
plication and Theroy of Petrn ~Vets, pages 131-149, Oxford. England,
June 1986.

CONVERT(1) P-NTT User's :Vlanual CONVERT (1)

NA...v1E
convert - convert an execution trace (filtered or unfiltered) into a reachability graph (a proba
bilistic finite state machine).

SYNOPSIS
convert [file]

DESCRIPTION
Converl transforms an execution trace (currently produced by the simulator) into a probabilistic
finite state machine and outputs it to standard output in a form consistent with standard PNUT
reachability graphs. The resulting graph can be printed using rgp and examined using rga.

If the input execution trace is unfiltered the resulting reachability graph will be a partial reacha
bility graph of the original net. If the input execution trace ha.s been filtered (using filter) the
resulting reachability graph is NOT a graph for a valid Petri Net. Only activity in filtered places
and transitions is retained.

In constructing the reachability graph, times associated with arcs are calculated by averaging the
delays which occur in the execution trace. ~o additional information such a.s probability distri
bution or standard deviation is currently retained.

Since execution traces (unlike reachability graphs) do not include information about future
actions, it is not possible for the reachability graph produced by convert to contain remaining
firing time and remaining enabling time information. The resulting reachability graph does
accurately describe the number of firings of a transition in a particular state.

SEE ALSO
filter, simulator, rgp, rga

Irvin~ Distribution 2.:2 12 D e c e m be r 1 9 8.)

FILTER(1) FILTER (1)

~.UIE

filter - filter execution trace and produce a smaller execution trace which includes only activi
ties related to specified places and transitions.

SYNOPSIS
filter [name ...]

DESCRIPTION
Filter transforms an execution trace into a shorter execution trace which represents only the
activities related to user-specified places and transitions. The places and transitions whose
activities are retained are specified at the command line as a list of names. Place and transition
names can be mixed and specified in any order. Incorrect names are ignored. N a.iues of place
and transition arrays must be listed one by one (in this version).

Input to filter is expected from standard input. Input redirection must be used if execution
traces are stored in a file.

The output of filter is an execution trace for a PARTIAL Petri Net. When the results are
analyzed (after using convert) the user should be aware of the fact that the analysis has been
applied to a partial net.

SEE ALSO
convert, simulator, stat

Irvine Distribution 2.·2 i·2 D~cember 198.S

P~C(1)

NA.\ilE
pnc - Petri Net Compiler

SY":'rOPSIS

P-.'.'HJT Cser's ~Ianual

pnc [flags] [Petri_net [Ada_program]

DESCRlPTION

P.\IC (1)

Pnc reads a Petri net (in the same form a.s read by transl(l)). If no Petri_net is given on the
command line, stdin is read. If no output file is specified, the Ada program is written to stdout.

The following flags are recognized:

- u package
Use the specified package.

- d Generate code which detects deadlocks and halts. Normally the generated programs are
expected to execute indefinitely.

All output is written to stdeT"r.

SEE ALSO
tpp(l), rgb{l), trgb(l), transl(l), pnl(l)

KN"OWN BUGS
Pnc does not handle inhibitor arcs correctly.

Irvine Distribution 2.2 9 Fe b ru a.r y 1 9 8 i

PNL (1) P-NGT Fser's :VIanual P)[L (1)

~.HIE

pnl - Petri Net Lint

SYNOPSIS
pnl [Petri_net]

DESCRIPTION
Pnl reads a Petri net (in the same form as read by transl(l)). If no Petri_net is given on the
command line, stdin is read. No flags are recognized.

Pnl checks the input for syntax errors by parsing it as transl(l) does. If there are no syntax
errors, pnl will perform some additional checks and issue warnings if possible errors are found.
Currently, these checks include (1) The use of a place on the left of some transition, but not
on the right of any transition or in the initialization. and (2) The use of a place on the right of
some transition and/or in the initialization, but not on the left of any transition.

Finally, a summary is printed giving the number of transitions and places in the net, and the
number of warnings issued by pnl. All output is written to stder-r.

SEE ALSO
tpp(l), rgb(l), trgb(l), transl(!)

[rvine Distribution 2.2 1·2 December 198.j

PRI;.TTSTA T (1) P-NUT Cser's ~Ianual PRINTSTA T (1)

NAME
printstat - print performance statistics generated by stat.

S~OPSIS

printstat [-qntc] [file]

DESCRIPTION
PRINTSTAT accepts the output of stat and formats it using tbl and nroff/troff. It allows the
user to control the formatting through the use of some options.

- q option produces a quick printout to the CRT (doesn't use ms macros). The

- n option produces nroff output (this is the default). The
\

- t option produces troff output and sends it to the printer. The

- c option produces troff output and pipes it through tseetool.

The file specified should contain output generated by stat. If no file is given, PRlNTSTAT
reads from stdin.

K.'fO\VN BUGS
WARNING: Some versions of tbl on the SUN's have a bug which will cause the statistics to be
improperly formatted. To get around the bug it is necessary to manually edit the output of stat
to specify that number columns (n in tbl) are left justified (l in tbl).

SEE ALSO
filter(!), simulator(!), stat(l)

Irvine Distribution ·2.2 16 December 1936 .)

RGA (1) P-~lJT User's ~1anual RGA (1)

N.UIE
rga - interactively analyze a reachability graph

S"\'"NOPSIS
rga [- s] [files. ..]

DESCRIPTION
RGA reads a Petri net and its reachability graph. It then allows the user to do computer
assisted interactive analysis of the graph.

The - s flag indicates that RGA should print dots as it reads the graph, for processing large
graphs. The files specified should contain first the Petri net whose reachability graph is being
analyzed, followed by the reachability graph itself, followed by RGA commands. :.I ormally, the
Petri net and its reachability graph will be contained in the same input file, produced by rgb,
trgb, or convert. The file /dev /tty is automatically appended to any list of files, including the
empty list. If no files are given, RG.A first reads from stdin.

When reading from a terminal. RGA prompts for input with a> character. Input at that point
may include either RGA expressions or commands, as described in The RGA. Users Jfanual.

SEE ALSO
transl(!), tpp(l), rgb(l), trgb(l), convert(!)

i·2 December 198.S

RG B (1) P-:HJ T User's :VI anual RGB(1)

NAME
rgb - build a reachability graph

SYNOPSIS
rgb - [s b(127]] [file]

DESCRIPTION
RGB reads a Petri net and builds its reachability graph. It allows the user to specify some simple
information about the Petri net which can be used to build the graph efficiently.

The - s flag indicates that the net is known to be safe. The - b fl.ag indicates that the net is
bounded, but that the bound is not known or is higher that 127. The - h127 flag indicates that
the net is bounded at 127 or less. The reachability graphs of such nets require less main
storage during building. The file specified should contain the Petri net whose reachability graph
is being built. Normally, the Petri net is produced by transl. If no file is given, RGB reads from
stdin.

SEE ALSO
transl(1), rga(1), rgp(1)

Irvine Distribution 2.2 ·2 Februarv 198.S

RGF (1)

rgf - filter reachability graphs

SYNOPSIS

P-NUT Cser's :\Ianual

rgf [files ...] [- eboolean expression J [states ... }

DESCRIPTION

RGF (1)

RGF reads a Petri net and its reachability graph. It echos the Petri net on its standard output.
A partial reachability graph containing selected states of the input reachability graph and the
arcs which connect them is then output.

The states may be selected in either of two ways. First, they may be specified on the command
line by number. Any argument which begins wit.h a digit is assumed to be a state number
specification. All states thus listed on the command line will be included in the output reacha
bility graph.

The second method of specifying states is by giving a boolean expression. All states for which
this expression evaluates to true will also be included in the output. Only the arcs in the origi
nal reachability graph which begin and end on a state in the partial reachability graph will be
included in the output.

RGF will read the Petri net and its reachability graph from its standard input if no files are
specified on the command line.

SEE ALSO
transl(1), tpp(1), rgb(1), trgb(1), convert(1), rga(1)

Irvine Distribution 2.J 11 .\lay 1986

RGP(1) P-NUT User's :\ianual RGP(1)

:'ll"A.ME
rgp - print a reachability graph

SYNOPSIS
rgp [options] [file]

DESCRlPTION
RGP reads a Petri net and its reachability graph and prints a tree representation of the reacha
bility graph. It allows the user to control the display through the use of some options.

-b flag causes the graph to be printed backwards (traverse predecessor links starting from
the specified state).

-s< NUMBER>
flag causes the printing to start at state numbered< NUMBER> .

-d< NUl\iffiER>
flag causes only states which are at distance < ~U~'lBER> (or less) from the starting
state to be printed.

-w< NUMBER>

SEE ALSO

flag indicates that the display should be tailored to a maximum line width of
< NU~IBER>. The file specified should contain the Petri net and its reachability graph
(as produced by convert, rgb or trgb). If no file is given, RGP reads from stdin.

convert(1), rgb(1), trgb(1)

Irvine Distribution 2.2 9 February in:- ')

snn;LA. TOR (1) P-:-IGT User's .\fanual SL\ [C LA TOR (1)

N.-LVIE
simulator - simulates execution of a (timed) petri net

S"\:i'TOPSIS
simulator [-ace prtvx file _names]

DESCRIPTION
Files given on the command line are evaluated from left to right with ·stdin' always being last.
Switches may appear anywhere and are always set before any file is read. Input files may con
tain either simulator commands or a Petri Net definition. Switches and file I/O may also be set
from within the simulator.

There are two input levels. The first is ·(stdin)' and the other is '(simulator)'. At '(stdin)' the
simulator has not yet received a Petri Net definition. :.iiost simulator commands are executable
from both levels.

The simulator~s output is meant for use with statistical packages for interpretation. A typical
session might be: set environment (for discussion of this please see manual), redirect output,
input a net from a file, set a halting point, run! examine statistics. Since the input interface
allows commands from a file, a script file may be used to run the simulator in background,
redirecting the simulator command I/O to a log file at invocation (by redirecting stdout), and
redirecting simulator/sratistical output (from within the simulator) to a file with the simulator
pipe () command.

Switches:

- a (not yet implemented -- will allow evaluation of actions)

- c TRUE outputs the clock value, FALSE outputs the change in clock value

- e TRUE echos the Petri Net canonical form as it is input, FALSE supresses it

- p TRLTE uses the probabilities (frequencies) assigned to transitions when choosing a set
of transition firings, FALSE uses a frequency of l for all transitions

- r (not yet implemented -- will allow evaluation of predicates)

- t (not yet implemented -- will allow execution of non-timed Petri Ne ts)

- v TRUE causes multiply enabled transitions to compete with ea.ch other for firing,
thereby increasing a multiply enabled transition's probability for firing, F A.LSE allows
only one enabling of a transition to compete for firing in the probability calculations

- x TRUE causes enabling times and firing times for all transitions to be exponentially dis
tributed with the specified enabling and firing times as the mean. FALSE (the default)
ca.uses enabling times and firing. times for all transitions to be constant. The simulator
also provides an internal mechanism (the exp command) to make times of individual
transitions exponentially distributed.

Switches toggle via the 'set <cepvx:' command (for more info~ "?set').

Help is available by typing help or ·; at either prompt.

SEE ALSO
convert(lL filter(l), stat(1)

DIAG:'iOSTICS
Self e xpla.nato ry.

Irvine Distribution 2.2 9 December 19S6

snIULA TOR (1) P-NUT User's ~Ianual SL\ r C LA TOR (1)

BVGS
The simulator does not work correctly when all the input arcs of a transition are inhibitor arcs.
There must be at least one non-inhibitor arc going into every transition.

Irvine Distribution 2.'2 9 December 19.'3r) 11

STAT(1) P-.>ITT Cser's :.Vlanual STAT(1)

stat - calculate performance statistics from execution trace

SYNOPSIS
stat L file]

DESCR1PTIO:'.'i
STAT reads a Petri net and a set of execution traces and produces a report on various perfor
mance related questions. If multiple execution traces are given to the stat program it will pro
vide confidence interval measures for the various performance statistics (confidence level is
fixed at 90%). Currently, execution traces are produced by the simulator or· the filter pro
grams. The output of the simulator (and filter) can be piped directly to stat.

The file specified should contain the Petri net and one or more execution traces. The report
includes: 1) max.imum number of concurrent tokens in a place, 2) minimum number of con
current tokens in a place, 3) average number of concurrent tokens in a place, 4) maximum
number of concurrent firings of a transition, .S) minimum number of concurrent firings of a
transition, 6) average number of concurrent firings of a transition, 7) ·number of times a transi
tion began and finished firing,

SEE ALSO
simulator(1), filter(1)

Trvint> Distribution '2.2 ')
l -

TPP (1) P->l"L'T User's :\Ianual TPP(1)

tpp - perform macro expansion on a Petri net specification

SYNOPSIS
tpp [- n] [Petri_net [Expanded_net]]

DESCRIPTION
Tpp reads a Petri net and expands certain macro constructs, writing an Expanded net suitable
for input to transl(l). Other than the special macro and looping constructs recognized by tpp,
the input should be in the form expected by transl, and the input will be copied to the output
file.

If no Petri_net is given on the command line, stdin is read. Similarly, stdout is written unless
an Expanded_net name is specified.

Tpp's input is a superset of that of the transl program. It is divided into two parts, function
declarations followed by a section which will generate the array, transition, and initial state
descriptions for transl. The function declarations section is identical to that in transl.

Tpp recognizes a special command for which allows identifiers to be set and/or looped through a
range of expression values. For each iteration of the loop, array, transition, and initial marking
descriptions are generated, evaluating expressions as integers. These expressions can occur
where parentheses are allowed in transl's input and within square brackets immediately follow-
ing a place name. -

The for statement takes one of three forms:
for id= expr {
for id= expr to expr {
for id= ex pr to ex pr by ex pr

After a line of one of these forms, one or more array, transition, or initial marking lines may
be given in arbitrary order, followed by a line containing a single "}" character. When tpp gen
erates its output, it produces all array declarations first, then all transitions, and finally all initial
marking declarations. so that its output is legal input for transl.

Immediately following a place identifier, and preceeding any token count in parentheses, an
expression may be given surrounded by square brackets. On each iteration of the enclosing
loops, the expression is evaluated. These expressions, the ones enclosed in parentheses, and
those used in the for statements themselves, can include any of the arithmetic operations
allowed in the RGA language. They should evaluate to an integer value. Multiple place names
separated by expressions in square brackets may be specified, thus allowing multiple subscripts.

The - n flag indicates that unnamed transitions should be numbered in the q,utput \Vith names
of the form $n. The numbered listing will facilitate graph analysis with RGA. Tpp can also
function as a Petri net pretty-printer, since it will accept any input acceptable by transl, and it
will always produce its output in a standard format.

SEE ALSO
transl(1)

Irvine Distribution ~.2 12 December l'.)8.S

TRANSL (1) P-:.l"C"T User's :\Ianual

~A.:VIE

transl - translate a Petri net to canonical form

SYNOPSIS
transl [- edefault_enable_time] [- fdefault_firing_time]
Translated_net /]

DESCRIPTION

TRANSL (1)

- pdefault_probability J ' Petri_net [

Transl reads a Petri net and translates it into an easily machine-processable canonical form
which may be read by other tools, including rgb and trgb.

If no Petri_net is given on the command line, stdin is read. Similarly, stdout is written unless a
Translated_net name is specified. The - e. - f. and - p flags may be used to override the
default enabling and firing times and transition firing probabilities. They are immediately fol
lowed by the floating point time. The defaults are otherwise 0.0 and 1.0, respectively.

The input consists of four sections. The first declares functions, the second declares arrays of
places and/or transitions. the third declares the transitions which make up the Petri net, and the
fourth defines the marking of the initial state of the net. Arrays of places are declared using
the array keyword, which is followed by one or more place array names and sizes separated by
commas. The sizes are given in parentheses. Thus

array philosophers_thinking(3)
declares an array of places called philosophers_thinkingO, philosophers_thinkingl, and
philosophers_thinking2. Arrays of transition are similarly declared using the tarray keyword.

If any RGA-type functions are to be defined, they are declared following the array declarations
using the same syntax as in the RGA. interpreter. Function definitions are preceded and suc
ceeded by%% (double percent signs).

The transitions section consists of a one line description of each transition which contains the
input and output places as well as optional timing information, actions, and preconditions, and
possibly a transition name. It has the following format:

'. preconditionj : name: input_places -> timing output_places
where only the -> and at least one input place are required. The input_places and output __ places
are the names of the input and output places for the transition, separated by commas. Transi
tion and place names consist of upper or lower case letters, digits, or underlines, and begin with
a letter. Multiple arcs are specified by placing the number of arcs in parentheses after the place
name. Similarly, inhibitor arcs are specified by giving the number of arcs as zero. The actions
and preconditions are boolean expressions in the RGA language. In the actions, local variables
may be specified within square brackets; e.g., {[i] i:= a+ 1}.

Timed Petri :J' ets a.re described by including at least one transition with the timing option. This
option has the following format: (enable_time, firing_time, probability) where each of the items
and trailing commas are optional. Each of these values. may be specified to be arbitrary expres
sions; usually they will be integer or floating point numbers.

These lines which describe the transitions are followed by one or more lines specifying the ini
tial marking which have the following format: <place, place, ... > where each of the listed
places will initially contain a token. To put more than one token in a place, put the number of
tokens it is to contain in parentheses after the place name: listing the place twice will not work.

Comments may be included by enclosing them between/* and*/. Comments are not restricted
to one line, but may be a.s long as needed. Lines may be broken after any comma if needed for
readability. arid spaces are ignored except to separate identifiers.

Transitions are not required to be named or have output places. If timing information is sup
plied for any transition in the net. then default values apply to all transitions for which it is oth
erwise not specified. The default enable time is O. and the default firing time is 1. The default
probability depends upon the pr0ba.bilities specified for the 0ther transitions in the same conflict

TRANSL (1) P-:.TUT User's :\Ianual TRA:-JSL (1).

set; it will be the value which puts the sum of the probabilities as close a.s possible to 100.

SEE' ALSO
tpp(l), rgb(l), trgb(l)

Irvine Distribution 2.~ 12 December 198.j l .S

JUN 2 9 1987

P-.:H~T r se r's :\I an ual TRGB(1)

NA.:\IE
trgb - builds the timed reachability graph for a timed Petri net

SYNOPSIS
trgb [- v] [Petri_~Vet [Reachability_Graph J]

DESCRIPTION

BUGS

Trgb reads a timed Petri net and builds its timed reachability graph. The input is read from the
standard input if not specified on the command line, and it is assumed to be a canonical-form
timed Petri net description. Output is to standard output if no output file is specified, and it
consists of a timed reachability graph in canonical form.

The - v option ca.uses states to be printed on stderr symbolically as they are discovered.

Typing the interrupt character ca.uses the current state of the graph to be dumped (creating a
partial reachability graph). This feature may be used in conjunction with the - v option when
debugging a Petri net whose reachability graph is infinite.

Trgb does not work correctly if ALL of ti· input arcs of a transition are inhibitor arcs.

AUTHOR
Tim Morgan

SEE ALSO
rgb, rga, simulator, rgp, convert

Irvine Distributi1jn 2.2 '] December 19 8 t5 1 t)

