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ABSTRACT OF THE THESIS 

Vehicle Classification and Identification of Salient Information in Images 

By 

Dalar Vartanians 

Master of Science in Electrical Engineering 

(Intelligent Systems, Robotics, and Control) 

University of California, San Diego, 2016 

Professor Massimo Franceschetti, Chair 

Vehicle classification is currently a widely implemented component in intelligent 

vehicles, surveillance systems, and traffic monitoring. The major component of vehicle 

classification is to learn what feature in the images of vehicle provides the most effective 

information, which distinguishes different models. In this work, the study of two different 

famous feature extraction mechanisms and three classifiers is carefully conducted to 

provide comparison and analysis. The next important component of this work is the 

investigation of the effect of viewing angle and lighting conditions on the performance of 
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the classifier. The latter is inspired by previous studies on face-recognition systems with 

different lighting conditions and poses [1].  
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Chapter 1  

 

Introduction  

 

1.1   Background  

Vehicle recognition has become popular for many applications especially in traffic 

control and surveillance systems. While vehicle classification into general categories such 

as sedan versus truck may not be a very challenging task, recognizing more specific 

differences such as make and model of vehicles (jeep93 versus jeep99) which is known as 

fine-grained recognition is more difficult and interesting to pursue [2]. Having a rich 

dataset available which includes images of 10 vehicles with different make and models 

under different viewing angles and lighting conditions, the performance of three well-

known learning methods, namely Softmax Regression, Linear Kernel Support Vector 

Machine and Adaptive Boosting, using features extracted from Convolutional Neural 

Networks (CNNs) and Histogram of Oriented Gradients (HOG) are explored. A 

comparison of the performance of the learning methods in terms of accuracy using CNNs 

and HOG features is presented.  

Another important aspect of the work is the investigation of the role of lighting 

conditions and camera angles on the performance of the classifier. The latter is motivated 

by the results of edge detection of vehicles and achieved by conducting the occlusion and 

dome experiments. The occlusion experiment is inspired by studying previous work in the 

literature for  the investigation of  sensitivity to  occlusion  [3]. The  Dome  experiment  is  
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performed to illustrate the results of the occlusion experiment in a compact manner 

utilizing   the information available in the dataset regarding the location of camera and light 

source for a given test image. 

 

The main contributions of this work are: 

•   Investigation of different combinations of features and learning algorithms on the vehicle 

classification. This provides a comparison of the state of the art feature extraction and 

learning methods while achieving excellent classification performance in terms of 

accuracy for the vehicle classification task. 

•  Experiments on edge detection, occlusion and camera angle that measure the robustness 

of the network to diverse lighting and viewing angle changes. The outcome of the 

experiments illustrates the robustness of a given viewing angle and lighting condition 

for a camera set up. These experiment also provides validation in terms of robustness 

of the network to missing a portion of information within images which occurs 

frequently in practical and real-life situations. For instance, in traffic monitoring very 

frequently a vehicle is partially covered with another vehicle or object on the road. The 

occlusion experiment mimics this effect and enables the evaluation of the network in 

terms of robustness to such instances.  
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Chapter 2 

 

Feature Extraction and Classification 

 

2.1 Feature Extraction 

 In machine learning, feature extraction is referred to extraction of certain values 

from an initial set of measurements which in these work are images. The extracted values 

are called features. The features are supposed to be informative and non-repetitive. 

Features which have the mentioned qualities are capable of producing high-accuracy 

results with classifiers. In addition, in many cases, such features facilitate better human 

interpretation of data. While traditionally features were hand engineered, now there exists 

methods for automatic learning of the features. Convolutional Neural Nets is an example 

of such method that automatically learns the most informative features. 

 

2.1.1 Convolutional Neural Nets 

CNNs do not need substantial pre-processing of raw data relative to other 

mechanism for feature extraction. This means that the network learns the required filters 

that should be applied to the raw data for feature extraction that in traditional machine 

learning algorithms were hand-engineered [22]. The reduced human effort in identifying 

and extracting informative features make the CNNs a very powerful tool in machine 

learning tasks. CNN is also desirable as with CNN one has an end to end mechanism for 

both feature extraction and classification. Classification will be discussed in later chapters. 
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Another appealing characteristic of CNNs is the use of fixed weight in 

convolutional layers. This implies that a fixed filter is used for each pixel in the layer. This 

approach is efficient in terms of memory usage and it has pleasantly proved to result in 

high accuracy of classification [4] [22]. In this work, both CNNs feature extraction and 

classification are conducted in Caffe deep learning framework [5]. The CNN feature 

extraction steps are illustrated in Figure 2.1 for better visualization [21]. Figure 2.2 

illustrates a simple CNN filter applied to an image. The 0 and 1 in red values are the values 

that should be learned by CNN. Note that these values do not have to be binary, 0 or 1 in 

general [21]. Figure 2.3 illustrates the pooling (sub-sampling) step [21]. This step again 

aims at deducing the dimension of features to speed up the learning without loss of 

information. The example in figure, illustrates “Max-pooling” which simply extracts the 

maximum value from a subset of pixels in the image. There exist “average-pooling” and 

other pooling formulations as well. However, in this work max-pooling was used.  

 
Figure 2.1: CNN Feature extraction pipeline  

 
Figure 2.2: A simple CNN filter illustration  
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Figure 2.3: Pooling (sub-sampling)  

 
 

 
Figure 2.4: The network architecture  
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The network architecture is based on LeNet architecture as shown in Figure 2.4, 

which is famously used to classify MNIST digits. The network involves four layers with 

weights; the first two are convolutional and the remaining two are fully-connected. The 

input of the net is 256 × 256 gray-scale image; the output of the last fully-connected layer 

is fed to a 10-class softmax regression which produces a distribution over the 10 class 

labels. Like many other convolutional neural networks, each of the first two convolutional 

layers is followed by a subsampling (pooling) layer that expands the receptive fields of the 

next layer. This is one of many possible architectures. However, in practice it works well. 

One aspect of CNN is the fine-tuning of hyper parameters and experimenting with different 

architectures to arrive at an optimal model which results in highest possible accuracy of 

classification. Compared to LeNet architecture, a few parameters are adjusted such as batch 

size (reduced to 10) to enable the processing on GPU.  

First, the network is fine-tuned on the vehicle dataset. Then, features are extracted 

from the last and the penultimate fully connected layers, respectively, for training different 

classifiers.  

 

2.1.2 Histogram of Oriented Gradient (HOG) 

Histogram of Oriented Gradient is a type of feature extraction method. It can be 

considered as the summary of local gradient in an image. HOG summarizes directions of 

gradient in a circular histogram. The strength is measured by the gradient magnitude. HOG 

was first formulated and described by Navneet Dalal and Bill Triggs in CVPR 2005 for 

human detection [6]. Its usage was later expanded for object detection, including vehicles 

detection in static images. One distinct characteristic of HOG is that it performs on local 
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portions of images. Therefore, it can be promising in terms of invariance to geometric and 

lighting changes. Histogram of Oriented Gradient works as follows. Unlike many other 

descriptors, which require preprocessing such as color normalization, HOG directly aims 

at calculating the local gradients of sub-blocks of images. Local regions are referred to the 

equally divided sub-blocks in an image. A typical block size that is used for HOG features 

is 32 × 32, but can be varied depending on image size. First, the gradient calculation is 

performed. Then, orientation based histogram is formed. The histogram normally ranges 

from 0 to 180 degrees or 0 to 360 degrees. This corresponds to the choice of “signed” or 

“unsigned” gradient [6]. A demonstration of HOG features on a vehicle from the available 

dataset is illustrated in Figure 2.3. 

 

Figure 2.5: The visualization of HOG feature. The HOG feature descriptor operates on 24 
× 24 blocks. It is clear to see the outline of the vehicles based on the shape of the local 

histogram.  
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2.2 Classification 

In machine learning, classification aims at deciding what is the category of a newly 

observed data among certain list of classes. This is generally achieved utilizing a training 

set data containing observations or examples whose specific class is known during the 

training of the classifier [20]. To attain the best classification performance, it is crucial to 

use the most informative and distinguishing features for training the classifier. Otherwise, 

no classifier will achieve desirable accuracies.  The following classifiers were explored 

with the features extracted by the methods described earlier.  

 

2.2.1 Softmax Regression  

Softmax regression is also referred to as multinomial logistic regression. It is a 

generalized version of logistic regression which enables the classification among multiple 

classes rather than the binary case only. CNNs widely use Softmax as the final 

classification layer. The following expression is the evaluation function for the Softmax 

Regression method. 

 

In this work vehicles of 10 classes are classified and thus K = 10. The goal is to 

minimize the following cost function to determine the optimal value of parameter θ. 
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, where 1{·} is an indicator function that does the following. 
 

 

The gradient of the objective function, J(θ) is the following. 

 

Softmax Regression (as part of Convolutional Neural Networks) outputs the class-label 
probabilities as:  

 

Finally, a sample is assigned with the label of highest probability [23].  

 

2.2.2 Support Vector Machine (SVM) 

A support vector machine (SVM) is a discriminative classifier which is defined by 

a separating hyperplane [7]. That is, utilizing a training set of labeled data (supervised 

learning), SVM outputs the optimal hyperplanes that maximize the margin between classes 

within the labeled data in the training set. Given a set of data x and corresponding labels y, 

SVM is aiming at  

 

By solving the dual problem:  

 

Then, compute,  
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where x+ and x− are the examples on positive and negative side of the boundary 

respectively and SV is the set of resulting support vectors from learning. Support vectors 

are the examples on the margin. The decision function to categorize a new example is:  

 

Moreover, by introducing regularization constant (widely noted by C), the problem 

becomes: 

 

with constraint of 0 ≤ αi ≤ C. Then, SVM has a soft margin that allows outliers. Figure 2.4 

illustrates this formulation geometrically.  

 
Figure 2.6: SVM with soft margin. γ is the distance from boundary to the closest point. αi 

controls the regularization. And, C is the regularization constant.  
 

This is important in the sense that by using a soft margin and allowing a few outliers 

in the training set, the trained network generalizes well with a test data which has not been 
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seen during training and avoids the problem of overfitting. Overfitting is an important 

concept in machine learning and it refers to the case when a trained classifier is able to 

achieve excellent accuracy on training set while it performs poorly on a test set. This must 

be avoided in order to produce practical classifiers that perform well on unlabeled data that 

the classifier observes for the first time.  

For the implementation of the training procedure, the LIBSVM library [2] with grid 

search and cross validation is used to find the optimal regularization constant C, which is 

C = 2−8 ≈ 0.00391 for all features. In addition, multiclass SVM option is chosen to 

accomplish multiclass classification.  

 

2.2.3 Adaptive Boosting (AdaBoost) 

AdaBoost is the abrivation for “Adaptive Boosting” machine learning classification 

algorithm. The method was developed by Yoav Freund and Robert Schapire who won the 

G ̈odel Prize for their contribution in 2003 [8]. The AdaBoost algorithm is used along with 

other types of learning algorithms to improve their performance. A series of classifiers 

,which are referred to as weak learners by AdaBoost, output their results individually. The 

individual outputs are then united into a weighted sum that is essentially the final classifier 

by AdaBoost [8]. AdaBoost is adaptive since succeeding weak learners are fine-tuned in 

favor of those examples that were misclassified by previous classifiers. And the boost term 

implies that the algorithm iteratively boosts the performance of the week learners.  

AdaBoost utilizes a given set of weak learning algorithm repeatedly in a series of 

iterations t = 1, …, T. In this work, the decision stumps with 20,000 threshold steps are 

used as weak learners. A decision stump is used as a machine learning model consisting of 
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a single-level decision tree. That is, it is a decision tree with one main node, named the 

root. The root is directly connected to the terminal nodes, called its leaves. A decision 

stump predicts the class of an example based on the value of only a single feature. For this 

reason, they are also called 1-rules [19]. Mathematically, this is:  

 

where h = !
"

 , i ∈ {0,…,N}, and N = 20000.  

The test accuracy does not increase after 2000 boosting rounds. Therefore, 2000 is 

chosen as the number of the weak learners. In addition, an early stopping criteria is set up 

which is simply letting the learning stop when training error is 0. The Adaboost algorithm 

works as simple as shown in Algorithm 1 in Figure bellow. 

 

Figure 2.7: Algorithm 1 

The “one-vs-all” scheme is used to assign the image to the class of largest score 

after we learn a set of binary classifiers gk(x), k ∈ {1, …, 10} for each vehicle class.  
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Chapter 3 

 

Viewing Angle and Lighting Conditions  

 

3.1 Edge Detection  

Edge detection consists of a set of mathematical techniques which aim at localizing 

pixels in a digital image where the image brightness changes sharply and exhibits 

discontinuities [11]. The pixels with sharp brightness discontinuities are organized into a 

set of line fragments. These fragments are called edges. Edge detection is a widely used 

technique in image recognition and for the task of feature extraction [11]. 

Edges in images are caused by a number of factors. The main factors are known to 

be “surface normal discontinuity, depth discontinuity, surface color discontinuity and 

illumination discontinuity.” The figure bellow provides an illustration of these factors 

[11][12]. 

 
Figure 3.1 The main factors for existence of edges in images 
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3.1.1 Image Processing Approach 

 In image processing applications, traditionally, image gradients have been 

employed for designing edge detection filters. Sober operator and Canny are famous 

examples of this approach. The main principle used is that the gradient of the image points 

in the direction of most notable change in intensity of the image. And the edge strength 

corresponds to the magnitude of the gradient. Below is a simple illustration of the main 

principles which are traditionally used for edge detection [12].  

The gradient points in the direction of sharpest fluctuation in intensity: 

    

The gradient direction is given by: 

   

The magnitude of gradient defines the edge strength: 

 

 An optimal edge detector must perform well in regards to both detection and 

localization. Good detection corresponds to detecting the true edges rather than noise while 

good localization corresponds to the detection of edges near the location of true edges. The 

traditional approaches to edge detection in image processing with designing filters always 

face a trade-off challenge between detection and localization. A recent approach to edge 
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detection is to handle the task of edge detection as an artificial intelligence/machine 

learning task rather than the traditional filtering approach. The next section, introduces a 

recent learning approach to edge detection which has proved to work well both in terms of 

accuracy of true edge detection and efficiency in terms of speed of performance.  

 

3.1.2 Machine Learning Approach 

 the machine learning approach to edge detection requires no predefined rules. It 

utilizes human-labeled data as a training set and lets the classification algorithm learn the 

rules. The figure bellow illustrates a comparison of the traditional filter-design approach to 

the machine learning approach.  

 
Artificial test data 

 

 
Detected edges using Canny filter with two different filter parameters. 

 

 
    Ground truth          Learned edges  

Figure 3.2 A comparison of filter-detected edges versus learned edges. 
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It is known that the edges in a local patch of an image are very codependent. They 

often contain recognized patterns, namely straight or parallel lines and junctions. In 

computer vision and machine learning fields, a class of learning methods called structured 

learning has been applied to problems with similar nature which has encouraged 

researchers to employ structured learning for the task of edge detection [13]. The 

“Structured Forests for Fast Edge Detection” developed by Piotr Dollar and Lawrence 

Zitnick at Microsoft Research has been employed in this work to provide a visualization 

and understanding of the effect of lighting conditions on the performance of the classifier 

and feature extractors explored for the task of vehicle classification. A brief summary of 

the principles involved in this edge detection method is followed by its application to the 

vehicle dataset bellow.  

Structured learning has been developed and used for a wild range of classification 

and detection tasks. Structured learning main goal is to learn mapping between complex 

input and output spaces. The complex spaces include sequences, object postures, graphs 

and more [14, 15, 16]. The method of Structured Forests for Fast Edge Detection differs 

from other structured learning methods in regards to several aspects. First, in the edge 

detection case it is assumed that only the output space is structured. And, standard space is 

supposed for the input. In common approaches for structured prediction, parameters for a 

certain scoring function are learned. Moreover, in other structured prediction methods and 

applications, to obtain a prediction, an optimization over the output space is necessary [17, 

18]. This necessitates the definition of an effective scoring function and an efficient 

optimization routine. In contrast, inference using structured forests for fast edge detection 

is broad-spectrum and efficient in regards to speed. The structured forests for fast edge 
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detection provides a learning skeleton for structured output forests that can be used with 

an extensive class of output spaces with a high accuracy and much faster speed of 

performance compared to traditional filter approaches for edge detection [13]. 

 

3.1.3 Edge Detection for Visualization of Illumination effects  

 In order to visualize the effect of lighting changes on appearance of images and 

therefore on classification performance, edge detection of vehicles is performed. To 

perform this task Structured Forests method of Edge detection is employed [11]. The 

Structured Forrest method utilizes the structure present in local image pieces. It aims at 

learning edge detectors that are both computationally efficient and perform with high 

accuracy. The method is formulated as predicting local edge masks in a structured learning 

basis applied to random decision forests. It maps the structured labels to a discrete space 

to evaluate information-gain measures. This method of edge detection is used as it has 

proved to be superior compared to many other methods of edge-detection in regards to 

accuracy and efficiency [9].  

To visualize the influence of lighting changes, the edges of the same vehicle under 

the same camera/viewing angle only at different lighting conditions are detected. This 

experiment very clearly illustrates the effect and importance of lighting changes. Across 

different lighting conditions diverse range of edges were detected for the same car under 

the same viewing angle. Mostly, this was due to presence of different shadows which are 

the result of change in lighting (location of the light source when the picture was taken). In 

figure 3.1, three extreme cases are depicted to illustrate this effect.  
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Figure 3.3: Edge-detected images of civic under 3 different lighting conditions and the 
same viewing angle. 

Due to this diverse detection of edges under different lighting conditions, edge-

detected images proved to be not a promising input to the network for learning as they 

would not eliminate the effects of lighting changes. However, it validated the importance 

of a more through investigation of lighting changes and view-angle studies. Two more 

experiments are followed to this end. 

 

3.2 Training for Occlusion and Dome Experiments  

 To conduct a study of lighting conditions and Viewing angle effects, Convolutional 

Neural Nets (CNN) was used to train the model due to its ability of learning the most 

informative features which generalizes well in a broad range of applications. To better 

observe, the effects of lighting conditions and viewing angles, the features extracted from 

the last layer of the architecture illustrated earlier were used. This features are more 

sensitive to lighting and viewing angle changes and also facilitated the process in terms of 

end to end feature learning and classification.  

 In order to generate a fair result which does not employ too many images for 

training (network simply would have seen all possibilities during training otherwise), 50% 

of the dataset was randomly picked and used in the training process for the occlusion and 
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dome experiments.  

 

3.2.1 Occlusion  

In order to assess the capability of the network to extract relevant features, 

occlusion experiment is performed, where every single image for each of the 10 car models 

is partially occluded by a square block (See figure 3.2 for visualization). Occlusion 

experiment is also important as in real-life traffic control application, portions of vehicle 

in the image may be covered by other objects or may be simply missing form the frame. 

Occlusion can create similar effect and one can observe the robustness of a given 

classification system to such scenarios.  

 
Figure 3.4: Occluded image of Honda Civic. The gray block is slid through out the image 
to create the effect of missing portions of the vehicle in the image being classified.  

 

Every time a block in the image is occluded, the image is tested for classification 

by a pre-trained model to determine the importance of the features extracted from that 

portion of the image. When the occluded image is classified incorrectly it is an indication 

that the informative part of the image is lost and that block is an important part for feature 
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extraction and classification use. This experiment also demonstrated the effectiveness of 

CNN in terms of learning effective features in terms of providing distinction among 

classes. The occlusion experiment verified that the most important portions of images are 

the ones that human would as well look at to identify the vehicle.  

The occlusion experiment is also motivated by exploring previous work in the 

literature on part-detection for fine-grained recognition and acquiring linear subspaces 

under different lighting conditions [8] [9].  

In addition to conclusion about the effectiveness of CNN in learning features, from 

the results, it is evident that certain lighting conditions and viewing angles are more robust 

to occlusion effects. As illustrated in Figure 3.3, occlusion results in different degree of 

classification error of a vehicle under different camera/viewing angle and different lighting 

conditions. This comparison illustrated the important role of lighting conditions since the 

camera angle is kept constant and only changing the lighting condition results in a very 

sensible change in classification results.  This result is also constant with previous work 

done for face detection where lighting conditions are thoroughly explored and even 

reconstructed to attain a richer dataset for training and build more effective classifiers that 

generalize well to diverse lighting conditions [1].  

Observing this interesting results in regards to lighting conditions, motivated 

another experiment to provide a compact visualization of these effects which is also more 

informative in terms of the effect of camera angle. This was promising to explore as one 

could observe the robust camera angles and conclude how the most distinguishing features 

were missing at certain camera angles.   
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Figure 3.5: Occlusion map for Maxima and for Mitsubishi from two different camera 
angles. 
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3.2.2 Dome 

As mentioned in the earlier section, the occlusion analysis is extended further to 

obtain a more comprehensive and compact visualization of the effect of occlusion on 

classification performance for each possible camera location, building a data dome of 

classification performance for each vehicle. Figure 3.4 provides a few examples of the 

domes of several vehicles. 

 

Figure 3.6: Data dome. The heat map refers to robustness to occlusion blocks in the image 
at different camera locations illuminating Avalon placed inside the dome under two 
different lighting. 
 

 
Figure 3.7: Heat map dome for Maxima. 
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Figure 3.8: Heat map dome for Jeep93 and Jeep99 both under the same lighting 
condition. 

 
 

In this case, images at every single viewing angle were occluded one block at a 

time and classified using a pre-trained model. Occluding every single image with a single 

block at a time results in 88 occluded versions of each image. When the occluded image is 

classified correctly it receives a score of 1 and when it is miss-classified it receives a score 

of 0. The average of the 88 scores is taken for every single view point to obtain a measure 

of robustness to occlusion at every camera angle (view point). The result is illustrated by a 

3D heat-map. The colors indicate the accuracy of classification after occlusion at every 

camera angle.   
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Chapter 4  

 

Experimental Evaluation  

 

4.1 Data 

The dataset used in this paper is provided by Matrix Research in Ohio. It consists 

of images of 10 different vehicle models (Avalon, Mazda, Jeep93, Jeep99, Civic, 

Mitsubishi, Camry, Maxima, Sentra and Tacoma). It contains synthetic images of each 

vehicle taken at 3601 different camera angles each under 17 different lighting conditions. 

The lighting condition refers to the location of the light source when the image is taken. 

Figure 4.1 bellow provides as visualization of the dataset. 

 

Figure 4.1: The vehicle is centered inside the dome. The red dots correspond to the 
locations of camera when the image was taken which numbers to 3601 different locations. 
The blue dots correspond to the location of the light source when the image was taken and 
there are 17 of them. 

 
One benefit that is gained from using synthetic data is that there is no noise or other
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objects besides the vehicle, which reduces the effort in noise removal and object 

segmentation. 

Some examples of the data are shown in Figure 4.2 bellow. Since real-world 

constraints may limit the number of samples available for learning, we explore the 

performance of the models using 10% of the data for training and 1% for testing. Both 

training and testing sets are picked randomly. As expected the performance of the network 

downgraded (see the evaluation section) which suggests some over-fitting by neural nets. 

This motivated exploring different feature extraction techniques as well as using different 

learning methods/algorithms for classification. (add more data examples) 

 

Figure Figure 4.2: Examples of synthetic vehicle dataset. 

 

4.2 Classifier Performance  

Table 1 shows classification performance with 9 different combinations of features 

and learning algorithms. From the feature extraction perspective, CNNs are known to be 

the current best feature descriptor due to its ability to automatically learn the best features 

rather than hand-designing them. The experiments are performed on CNN’s features of the 

2 fully connected layers of the same network, respectively. HOG (Histogram of Oriented 

Gradients), another popular features in the area of visual recognition, are also investigated 

and its performance is compared with CNN features. The number of bins of HOG is 8 and 
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the cell size is 8 × 8.  

To train classifiers on these features, 3 different learning algorithms are 

experimented, Softmax Regression, Support Vector Machine with linear kernel, and 

Adaptive Boosting, respectively, and their performance is compared.  

All of the combinations achieved very good classification accuracy, nearly all of 

them give less than 5% test error. SVM and AdaBoost with CNN-IP1 features (features 

extracted from the penultimate CNN fully connected layer) work best. Both achieving 

100% train and near 100% test accuracies. CNN features extracted from the last fully 

connected layer (CNN-IP2) does not work as well as the other two, even worse than the 

hand-crafted HOG features. This is because the penultimate fully connected layer captures 

richer information from the images and less over-fits the data. Softmax classifier is 

generally worse than SVM and AdaBoost since it does not encourage large margins. 

Table 1: Results of Classification  
Feature Method Train (%) Test (%) 
HOG 
HOG 
HOG 

Softmax 
SVM 

AdaBoost 

96.86 
97.57 
100 

96.41 
97.09 
99.17 

CNN-IP1 
CNN-IP1 
CNN-IP1 

Softmax 
SVM 

AdaBoost 

99.72 
100 
100 

98.77 
99.88 
99.64 

CNN-IP2 
CNN-IP2 
CNN-IP2 

Softmax 
SVM 

AdaBoost 

99.80 
96.50 
98.07 

92.03 
95.98 
96.96 

 
 

4.3 Occlusion and Dome 

The occlusion experiment validates that the network is effectively localizing 

important parts of the image and representing parts in a discriminative way as global cues, 

which is a key feature for fine-grained recognition [2]. This is by observing miss-
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classification mostly happens when discriminative portions of the image are lost due to 

occlusion.  

The dome experiment results show that while most viewing angles are robust to 

occlusion, there are some viewing angles where performance downgrades. This indicates 

that despite the networks learning relevant features, they are generally not invariant to 

nuisance conditions such as target pose angle and lighting conditions.  

The dome experiment also provides a compact visualization of the robustness of 

CNN to occlusion with respect to camera angle and lighting conditions. Looking at the 

dome of each vehicle the color at each camera angle indicates how discriminative that 

viewing angle is and it also indicated the robustness of that angle to occlusion effect.   The 

camera angles with high accuracies can be considered as containing more distinguishing 

features and more effective to be used for classification. One can also observe the effect of 

lighting conditions by comparing the domes of a single vehicle obtained for two different 

lighting condition. For instance, in figure 3.6. The dome of Avalon under two different 

lighting conditions looks different. 
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Chapter 5 

 

Conclusion 

 

Very high accuracies of classification were achieved on test set using all three 

learning methods, namely Softmax Regression, Linear-kernel SVM and AdaBoost applied 

to the fine-grained recognition of vehicles. The features extracted from the second to last 

layer of CNNs worked best while the CNNs features extracted from the last layer resulted 

in smallest accuracy with Softmax Regression. While the second-layer features resulted in 

relatively poor performance with Softmax Regression, Linear-kernel SVM and AdaBoost 

on second layer still performed well. This can be justified by recognizing the ability of the 

latter methods on enforcing a larger classification margin to avoid outliner and focusing on 

hard examples iteratively, respectively.  

Moreover, occlusion and dome experiments performed with CNNs features and 

Softmax Regression indicate the importance of viewing angle and lighting conditions as 

certain lighting conditions are much more robust to occlusion compared to others under 

the same viewing angle. The viewing angles (camera locations) also show different degrees 

of tolerance to occlusion. Moreover, the results of occlusion maps confirm that the 

convolutional neural nets are effectively localizing the vehicles in images and use the 

informative features to enable the classifier best distinguish among classes. In addition, the 

dome experiment provides a compact visualization of the best camera set up to be used for 

vehicle recognition tasks.  
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