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Abstract

ID3's information gain heuristic is well-known to be biased towards multi-valued attributes. This bias is

only partially compensated by the gain ratio used in C4.5. Several other alternatives have been proposed
and are examined here (distance, orthogonality, a Betafunction, and two chi-squared tests). Gain ratio and
orthogonality are strongly correlated, and all of these metrics are biased towards splits with one or more
small expected values, under circumstances where the split likely ocurred by chance. Both classical and
Bayesian statistics lead to the multiple hypergeometric distribution as the exact posterior probabilityof the
null hypothesis. Both gain and the chi-squared tests are shown to arise in asymptotic approximations to the
hypergeometric, revealing similar criteria for admissibility and showing the nature of their biases. Previous
failures to find admissible stopping rules in CART and IDS are traced to coupling these biased approxima
tions with one another or with arbitrary thresholds; problems which are overcome by the hypergeometric.
Empirical results show that hypergeometric pre-pruning should be done, as trees pruned in this way are
more practical, simpler, more efficient, and generally no less accurate than unpruned or post-pruned trees.
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1 Introduction and Background

Top-Down Induction of Decision Trees (TDIDT [55]) is a family of algorithms for inferring clas
sification rules (in the form of a decision tree) from a set of examples. The goals are varied, and
criteria for judging success are equally varied. Motivations for learning intensional descriptions
such as decision trees include:

• efficiency or practicality - the population may be infinite or impractically large, with excessive
storage or look-up time required

• generalization - if all members of the population are not available for study or if the population
is noisy or has continuous attributes, it may be necessary or desirable to interpolate or
extrapolate from the available instances

• comprehensibility - to reduce a large set of observations of some phenomenon to a more
comprehensible form, such as the phase diagram of a material, which depicts the conditions
under which the material is solid, liquid, or gaseous, and the boundary conditions under which
two or all three states may co-exist

TDIDT algorithms make a greedy choice of one of a set of candidate splits (decision nodes) for
a data set and recursively partition each of its subsets. Splitting terminates if all members of a
subset are in the same class or the set of candidate splits is empty.

Some TDIDT algorithms have included additional criteria to stop splitting when the incremental
improvement is deemed insignificant. These stopping criteria are collectively referred to as pre-
pruning. Other algorithms have added recursive procedures for post-pruning (replacing one or
more of the splits with a terminal node). Most procedures described as post-pruning go beyond
mere pruning, replacing a split with some other split (typically a child of the replaced node).

At each decision node, split selection is addressed as two separate but interdependent subproblems:

1. choosing a set of candidate splits

2. selecting one of the candidates (or, perhaps, none of them, if pre-pruning is used)

Split selection is addressed as two separate subproblems because the problem of inferring optimal
decision trees is NP-complete [32]. In more concrete terms, there are more than 10^^ distinct ways
to partition a set containing only 20 items and, thus, more than 10^^ possible decision trees (for N
items, the number of possible distinct partitions, T, is bounded by (A/2)! < T < A!). Practical
algorithms can explore only a small portion of such a vast solution space. Greedy hill-climbing is
a general strategy for reducing search, but here it must operate in the context of exploring only a
tiny subset of the operators (possible splits). TDIDT builds complex trees by recursive refinement
of simpler trees {i.e., it explores only relatively simple splits at each decision node).

The earliest TDIDT algorithms restricted candidates to splits on the values of a single attribute
and only binary splits for continuous attributes. More recent algorithms extend the candidate space
in various ways, including

1. multi-way splits for continuous attributes [22]

2. combinations of two discrete attributes [18]



3. combinations of continuous attributes, such as linear discriminant functions [63, 64]

4. m-of-n boolean functions [50] (a function of n boolean attributes that is true if any m or
more of the attributes are true)

5. combinations of several trees built by stochastically choosing among the best few candidate
splits at each decision node in each of the trees [3]

The process of choosing a split from among the candidates takes place in the context of, and may
interact strongly with, the choice of a set of candidates. At each decision point, both of these
processes take place in the context of all of the choices made at higher levels in the tree.

The interactions of the two phases of split selection with one another, with the context created
by earlier choices, and with the greedy search strategy create a very complex environment, one
in which it is very difficult to determine what the impact would be of changing some aspect of a
procedure. It is equally difficult to determine which aspects of a procedure may be responsible for
the poor or good performance of an algorithm on any particular problem.

An important facet of the changing context for split selection is that the mean subset size decreases
with the depth of the decision node. A fundamental principle of inference is that the degree of
confidence with which one is able to choose between alternatives is directly related to the number of
examples. There is thus a strong tendency for inferences made near the leaves of a TDIDT decision
tree to be less reliable than those made near the root.

The strong interaction of the choice of the set of candidates and the selection among candidates is
exemplified by pre-pruning the exclusive-or (XOR) of two Boolean attributes. Neither attribute,
taken alone, appears to have any utility in separating the classes; yet the combination of the two will
completely separate the classes. If only single-attribute splits are allowed, and pre-pruning based
on apparent local utility is used, the resulting tree wiU have a single leaf of only 50% accuracy.

This example is often cited as an argument against pre-pruning. The difficulty actually is the result
of the interaction of pre-pruning and allowing only single-attribute splits, and one could equally
well argue against a very restricted choice of a candidate set. For any given set of candidates,
pre-pruning wiU tend to preclude discovering a significantly better tree for problems where the
correct concept definition contains compound features similar to exclusive-or. There are, however,
at least two approaches which would lead to discovering the better decision tree. One approach
is not to pre-prune but, rather, to post-prune as appropriate. The other approach is to expand
the set of candidates. Both of these approaches increase the learning time — if both ultimately
discover equivalent trees, we should prefer the approach entailing the least additional work.

For a given set of candidates, pre-pruning results in shorter learning times but precludes exploring
a part of the potential solution space. Post-pruning results in longer learning times but explores
all the potential solution space that the set of candidates and greedy search wiU permit. Since the
point of restricting the set of candidates (which typically precludes a larger set of potential trees
than does pre-pruning) is to reduce the learning times to a practicable level, it seems hard to justify
an argument against pre-pruning solely because it precludes a subset of potential trees.

The main focus of this paper is on the second phase of split selection, the use of heuristic functions
to select a split from among a set ofcandidates. Another objective is to explore causes (other than
the exclusive-or difficulty) of the poor performance ofpre-pruning in early empirical studies [9, 55].

In light of the foregoing discussions, the design of experimental studies of different heuristic func
tions must be guided by two principles:



1. Care must be taken to ensure that only the heuristic functions are being changed, or that
changes in other factors are systematic and that the effects of various factors are not con
founded in the design. It is particularly important to control the set of candidate splits.

2. For any given combination of a heuristic function and a procedure for choosing a candidate
set, one can always find a set of problems on which the combination will perform poorly (or
well). Identifying these is important, but evaluation of algorithms or heuristics intended for
general use should not be limited to studying only these problems. It is important to make
the evaluations on a wide variety of problems. The evaluation data sets should be chosen a
priori^ and should include differences in the following factors:

(a) data set size

(b) complexity of the inferred decision trees

(c) the number, kinds, and arities of attributes

(d) degree of noise in the data

(e) apphcation domains

Evaluation criteria involve issues of accuracy, complexity, and accuracy/complexity tradeoffs. There
is no single measure which combines these in an appropriate manner for every application (see [43]
for a review of these issues). Measures of complexity include the number of leaves and their average
depth (weighted according to the fraction of the population covered by each leaf), and the run-time
of the learning algorithm. To distinguish between these, the following terminology will be used:

complexity - number of leaves

efficiency - weighted average depth

practicality - tree building, pruning, and cross-validation CPU time

Within rather broad bounds of complexity, the dominant goal is usually to infer trees where the
population instances covered by each leaf are, as nearly as possible, members of the same class. If
each leaf is labeled with some predicted class, the accuracy of the leaf is defined as the percentage
of the covered population instances for which the class is correctly predicted. The accuracy of
the tree is defined as the average accuracy of the leaves, weighted according to the fraction of the
population covered by each leaf.

In most cases, accuracy can only be estimated, and it is important to report a variance or confidence
interval as well as the point estimate. Either cross-validation or bootstrapping should be used to
estimate accuracy and confidence intervals (see [44] for a review of these techniques).

2 Impact of Different Choices of Candidate Split Sets

We have seen in the exclusive-or example that the choice of a candidate set can interact strongly
with other factors, particularly with pre-pruning, to preclude or strongly bias against discovering
accurate decision trees for some problems. Figure 1 illustrates a different aspect of the choice of
candidate sets. Here, there are 2 continuous attributes (a; and y) and 2 classes, and the boundary
between classes is linear (class = 1 if j/ > x, else class = 0). If the candidate splits are restricted
to splitting on a single attribute, the leaves of the decision tree each cover a rectangular area with



Figure 1: Linear Class Boundaries
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sides parallel to the axes. The boundary between the classes can only be approximated as a step
function, and the accuracy of the tree is directly related to the complexity of the tree and to the
sample size (the more leaves and the smaller the area covered by each leaf, the better — the shaded
area in Figure 1 is equal to the error rate in the region 0 < a: < 1 and 0 < ?/ < 1). If the splits are
further restricted so as to allow only binary splits on continuous attributes, a deeper tree will be
required in order to achieve the same accuracy.

If sphts on linear combinations ofcontinuous attributes {e.g. discriminant functions) are allowed
then, for the same sample size, both better accuracy and a simpler tree can be obtained, and trees
with accuracy equivalent to single attribute splits can be obtained from smaller samples.

Another feature of this problem is that if only binary splits on a single attribute are allowed, the
incremental improvement that could be achieved by any particular split is very small. Pre-pruning
might preclude making any binary splits on continuous attributes in these cases. Again, this is
caused by the interaction of pre-pruning with the restrictions on candidate splits, rather than by
pre-pruning per se.

The choice of a candidate set defines a language for describing the boundaries between classes. If
an accurate description of the true class boundaries in this language is very complex (as in XOR
or approximating a hnear boundary with a step function), then pre-pruning is likely to have a
deleterious effect because pre-pruning may prevent discovery of these very complex decision trees.

The point ofpruning is to prevent or correct overfitting, the building oftrees that are more complex
than can be supported by the available data using principles of sound statistical inference. When
only the very simplest kinds of candidate sphts are allowed, the empirical evidence from earher
studies ofpre-pruning [9, 55] indicates that better results are obtained from building overly complex
trees and post-pruning than from pre-pruning. The results of our analysis of the exclusive-or and
hnear boundaries problems seem to indicate that both better accuracy and simpler trees can be
obtained by expanding the set of candidate sphts. It is not clear whether it is more effective in
general to expand the candidate sphts and pre-prune, to build more complex trees and post-prune,
or to combine the two approaches.

Expanding the set of candidate sphts is not a panacea. In the first place, unrestricted search is NP-
complete. Further, when continuous attributes are involved, the set ofpossible functions combining
several attributes is unbounded. It is still necessary to restrict the candidates to relatively simple



Figure 2: Linear Class Boundaries and XOR
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functions by bounding the number of attributes in a combination and limiting continuous functions
to, for instance, linear or quadratic forms.

Expanding the set of candidates is not always straightforward. In Figure 2, for instance, the class
boundaries are linear (class = 1 if | ?/ —a; |> 0.2, else class = 0). Linear discriminant analy
sis [36, 63, 64] fails in this case (all of the instances are predicted to be class 1, a 40% error rate)
because the simple discriminant analysis assumptions (that each class is homogeneous and can be
adequately described by a single multivariate normal distribution, and that the means of the classes
are different) do not hold for these data.

In addition to having linear class boundaries, the problem shown in Figure 2 has a trait in common
with the exclusive-or problem — diagonally opposite corners of the attribute space have the same
class. Ordinary linear discriminant analysis seeks a single line separating two classes, and may
fail to find a satisfactory boundary when two lines are required. In this case, the effect of linear
discriminant analysis is the same as the effect of pre-pruning in the exclusive-or problem.

In summary,expanding the set of candidate splits is a very powerful tool and can permit discovering
decision trees that are both more accurate and less complex. In terms of increasing the number
of problems for which reasonably accurate and simple trees can be learned, expanding the set of
candidates (within reasonable bounds on the increased search space) is likely to be more effective
than is using post-pruning rather than pre-pruning. However, there are no guarantees, and there
is no one-size-fits-all strategy for how to expand the candidate set.

3 Impact of Different Choices Among Candidate Splits

Figure 3 shows two different decision trees for the same data set, choosing a different split at the
root of the tree. In this case, the accuracy of the two trees is the same (100%), but one of the trees
is more complex and less efficient than the other. This problem has the characteristics that the set
of candidate splits is sufficient to fully separate the classes (CART — Classification and Regression
Trees terms this a complete data set [9]) and that each of the candidate splits is necessary. The
choice of one split over another is a matter of complexity and efficiency, rather than of accuracy.

A set of candidate splits might be insufficient because of missingdata, noise,or some hidden feature.



Figure 3: Alternative Splits
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If we introduce noise into the population^ then, for 100 samples of size 100 randomly drawn from
this noisy population, the average results of splitting on A first versus splitting on B first are
shown in Table la. Here also, the difference between the alternative split orderings is a matter of
complexity and efficiency, not accuracy.

Returning to the noise-free population, if weadd an irrelevant attribute^ X and split on A first then
B, or on B first then A, we get the same trees shown in Figure 3 (the first two lines in Table lb)
and attribute X will not be used. The effects of splitting on attribute X first, or splitting on X
between the splits on A and B are also shown in Table lb. Again, the difference between the
alternative split orderings is a matter of complexity and efficiency, not accuracy.

Rather than the irrelevant attribute X, suppose that we added a binary attribute Y, which is equal
to the classification 99% of the time, but opposite to the class 1% of the time, randomly. Splitting
on this attribute alone would give 99% accuracy, so it is clearly relevant, but redundant (since
the pair of attributes A and B give 100% accuracy). The results for splitting on A, B, and Y in
different orders are identical to those given in Table lb for A, B, and X.

As a final example in this vein, consider the effects of adding both noise and irrelevant or redundant
attributes. Add a third attribute Z to the noisy population of Table la, one that is just another
noisy version of the original attribute A. If the level of noise in this attribute is varied, its behavior
ranges from being irrelevant at a 50% noise level to being redundant as its noise level approaches
1%. The effects of splitting on A, B, and Z in various orders are shown in Table Ic. When attribute
Z is more nearly irrelevant, the order of the attribute splits is largely of matter of complexity and
efficiency, rather than accuracy. As Z becomes more relevant, but redundant, splitting on attribute
Z before or between the splits on attributes A and B has a significant negative impact on accuracy
as well as on efficiency and complexity.

From the foregoing examples, for unpruned trees, the order in which various splits are made is
largely a matter ofcomplexity andefficiency, rather than ofaccuracy. Accuracy may besignificantly
impacted when redundant attributes are noisy and strongly correlated. Insofar as the accuracy of

Ŵe introduce noise by randomly reversing the class of 1% of the instances; by reversing the value ofAin 1% of
the instances independently of the class noise; and by altering the value of B in 1% of the instances independely of
the class and attribute A noise, letting B = 0 and B = 2 change to 1, and 5 = 1 change to either 0 or 2 with equal
likelihood.

^One which is binary and random, completely independent of the class and of the values of A and B.



Table 1: Effects of Split Order

a. Effects of Noise

Error Rate No. of Nodes No. of Leaves Wtd. Avg. Depth
A first 2.5% 9 6 2

B first 2.5% 8.72 5.36 1.84

b. Effects of An Irrelevant/Redundant Attribute
Error Rate No. of Nodes No. of Leaves Wtd. Avg. Depth

A,B 0 9 6 2

B,A 0 8 5 1.75
X,A,B 0 19 12 3
X,B,A 0 17 10 2.75

X, AB/BA 0 18 11 2.88
X, BA/AB 0 18 11 2.88

A,X,B 0 19 12 3
B,X,A 0 16 9 2.5

A,B,Z
B,A,Z
A,Z,B
B,Z,A
Z,A,B
Z,B,A

Z,AB/BA
Z, BA/AB

c. Combined Effects of Noise and Redundancy
37.5% Noise Level

No. of

Nodes

3.3

3.0

19.0

17.2

19.0

17.7

18.3

18.3

No. of

Leaves

8.2

7.5

12.0

9.6

12.0

10.3

11.1

11.1

Avg.
Depth

2.4

2.8

3.0

2.6

3.0

2.8

2.9

2.9

10% Noise Level

No. of

Nodes

13.3

13.0

18.1

16.3

18.1

16.6

17.3

17.7

No. of

Leaves

8.2

7.5

11.4

9.2

11.4

9.8

10.6

10.8

Avg.
Depth

2.4

2.2

3.0

2.5

3.0

2.7

2.8

2.9

unpruned trees is concerned, the ordering of the splits is not a significant factor in most cases. This
is one of the factors underlying the frequent observations [9, 21] that various heuristic functions for
choosing among candidate splits are largely interchangeable.

It is important not to overemphasize differences in complexity and efficiency, in the sense that if
significant differences in accuracy occur, the difference in accuracy would typically be ofoverriding
importance. When the accuracies of various trees are equivalent, however, there is certainly a
preference for simpler and more efficient trees. The differences in complexity and efficiency in the
examples given above and, indeed in most of the applications in the UCI data depository [49], are
relatively minor. For more complex applications involving scores of attributes and thousands of
instances, these effects wiU be compounded, and may have a much greater impact. It should also be
noted that all of these differences in accuracy and complexity are being explored in the context of
having severly restricted the set ofcandidate splits for the sole purpose ofreducing the complexity
of an NP-complete problem to manageable proportions. Differences in complexity and efficiency
may be greatly magnified as the set of candidate splits is expanded.

Liu and White [41] discuss the importance of discriminating between attributes which are truly
'informative' and those which are not. The examples in Figure 3 and Table 1 do not consider the



possible effects of pruning. Consider the effects of pruning in Table Ic. From Table la, we know
that splitting on the noisy attributes A and B alone (and ignoring attribute Z) achieves an error
rate of 2.5%. Subsequently splitting on attribute Z does not improve accuracy (it appears to be
harmful), and adds significantly to the complexity of the trees. There is strong evidence that the
final split on attribute Z overfits the sample data and should be pruned.

When the split on attribute Z does not come last, simple pruning would not correct the overfitting
(it would, in fact, be very harmful). The pruning strategy used in the C4.5 [58] algorithm, replacing
the split with one of its children and merging instances from the other children , would be beneficial
here. This kind of tree surgery is by far less practical than simple pruning, and could be avoided if
the candidate selection heuristic chose to split on Z last. The presence of this kind of tree surgery
in an algorithm suggests that the algorithm's heuristic does not choosesplits in the best order from
the point of view of efficient pruning.

Thus, the following three criteria should be considered in choosing a split selection heuristic:

1. it should prefer splits which most improve the final tree's accuracy and avoid or minimize the
impact of those which are harmful to accuracy

2. for splits leading to equivalent accuracies, it should prefer splits which lead to simpler and
more efficient trees

3. it should order the splits so as to permit practical pruning

4 Approximate Functions for Selection Among Candidates

A natural approach is to label each of the split subsets according to their largest class and choose
the split which has the fewest errors. There are several problems with this approach (see [9, pp.
93-98]), the most telling being that it simply has not worked out well empirically.

Various other measures of a split's utility have been proposed. Virtually all of these utility measures
agree as to the extreme points {i.e., that a split in which the class proportions are the same in
every subset (and, thus, the same as in the parent set) has no utility, and a split in which each
subset is pure (contains only one class) has maximum utility). Intermediate cases may be ranked
differently by the various measures. Most of the measures fall into one of the following categories:

1. Measures of the difference in some function of the class proportions (such as entropy) between
the parent and the split subsets. These measures emphasize the purity of the subsets, and
CART [9] terms these impurity functions.

2. Measures of the difference in some function of the class proportions (typically a distance or
an angle) between the split subsets. These measures emphasize the disparity of the subsets.

3. Statistical measures of independence (typically a test) between the class proportions and
the split subsets. These measures emphasize the weight of the evidence, the reliability of class
predictions based on subset membership.

Suppose, for instance, that we randomly choose 64 items from a population and observe that
24 items are classified positive and 40 negative. If we then observe that 1 of the positive items
is red and aU other items are blue, how reliable is an inference that all red items are positive,
or even a weaker inference that red items tend to have a different class than blue ones?



Fayyad [21] cites several studies showing that various impurity measures are largely interchangeable,
i.e., that they result in very similar decision trees, and CART [9] finds that the final (unpruned)
tree's properties are largely insensitive to the choice of a sphtting rule (utility measure).

A convenient representation for splits is a contingency, or cross-classification, table:

sub-1 CT sub-V Total C" is the number of categories
cat-1 Jii rTi F is the number ofsubsets in the split

m„ is the no. of instances in subset v

fcv is the no. of those which are in class c
cat-C fci ••• fcv nc JV is the total no. in the sample
Total mi ••• my N is the total no. in class c

Variants of the information gain heuristic used in ID3 [55] have become the defacto standard metrics
for TDIDT split selection. This heuristic, or various modifications of it, is used (for instance) in
FOIL [57], FOCL [53], CART [9], CN2 [15], GID3(*) [20], and C4.5 [58]. The information gain
function calculates the difference (decrease) between the entropy of the population and the weighted
average entropy of the subpopulations.

=(I[- (I) los. (I)]) -(E (^) t [- {t) (fe)]) (^)
The gain ratio function used in C4.5 [58] partially compensates for the known bias of gain towards
splits having more subsets (larger F).

gain ratio =gain j YL -(^) (2)
Lopez de Mantaras [42] proposes a different normalization, a distance metric (1 —d)

1- d = gain YYY -

Fayyad, et al [21] give an orthogonality (angular disparity) measure for binary attributes

/ c \ I ^ / c \ f c

'"•'-(i'-i.)/\{p,){i4 — 1 — COS0

where 6 is the angle between the class frequency vectors, fd and fc2.

Buntine [11] derives a Beta-function sphtting rule

-W{a) _ A n^=i ^{fcv +q) , .
r(c,)cv n r(m„ +ca)

The parameter, a, is typically either 0.5 or 1.0, and describes the assumed prior distribution for
the contingency table cells. Information gain appears as part of an asymptotic approximation to
this function. In this regard, it should be noted (see [1, pp. 944-5]) that the incomplete Beta



function also has a strong relationship to x^, the hypergeometric, the binomial, Student's /, and
the F (variance-ratio) distributions. Which is to say that aU sensible measures of split utility
asymptotically converge (rank attributes in the same order). Hence the repeated empirical findings
that the various measures are largely interchangeable.

In addition to the above heuristics from the machine learning literature, the analysis of categorical
data has long been studied by statisticians. (See Agresti [2] for a thorough review of this field.)
The Chi-squared statistic [4, pp. 452-462], [35, pp. 320-323], [60, pp. 572-592], [2, pp. 47-48]

ifcv ^cu)^
EE
C=1 V=1

where Ccv = {ric m^lN)

is distributed approximately as x^ with (C - 1) x (F - 1) degrees of freedom^. The quantities Ccv
are the expected values of the frequencies fey under the null hypothesis that the class frequencies
are independent of the split. This test^ is a good approximation (is admissible^) when aU of the
ecv are greater than 1 and no more than 20% are less than 5 (Cochran's rule [16, 17]).

^ If Xi,.. .,Xy are independent random variables, each having a standard (zero
mean, unity variance) normal distribution, then Xf has a chi-squared (x^) dis
tribution with u degrees of freedom [1, pp. 940-943]. Here, the X,- = {fey - eey)ly/eff
terms are approximately standard normal iff the nuU hypothesis is true and aU of the
eey are large.

^ A statistical procedure is robust if the actual significance level is close to the
procedure's estimated level, even under deviations from assumptions [60, p. 321]. An
inference procedure is biased if its expected (average) deviation from the actual confi
dence level is not zero. A biased, non-robust procedure is inadmissible.

The Likelihood-Ratio Chi-squared statistic [2, pp. 48-49]

ln(:^) =-2 InA (7)
c=lt;=l \^cv/

where A=(^11H//"I likelihood ratio
\c=l V=1 / / \ C=1 «=1 /

is also distributed approximately as x^ with (C - 1) X(F - 1) degrees of freedom. The asymptotic
convergence of the statistic'* is slower than that of X^, and the x^ approximation to is
usually poor when N <b CV [37, 38, 40].

Replacing eey by {ue my/N) in Equation 7 and rearranging gives = 21n(2)X gain. In the argu
ments supporting adoption of information gain, minimum description length (MDL), and general
entropy-based heuristics [19, 55, 59], [31, pp. 178-181,216-223], the product of the parent subset
size and the information gain from splitting {N x gain) is approximately the number of bits by
which the split would compress a description of the data. The gain approximation is closely related
to a conventional maximum likelihood analysis, and message length compression has a limiting x^
distribution that may converge less quickly than the more familiar X^ test. Mingers [45] discusses
the metric (denoted there as G), and White and Liu [65] recommend that the x^ approximation
to either G^ or X^ be used in preference to gain, gain ratio, etc.

'Proposed by Karl Pearson in 1900 [54], and clarified by R. A. Fisher in 1922 [23],
^Proposed by S. S. Wilks in 1935-1938 [66, 67],



Table 2: A Troublesome Data Set

Cat Atr A Atr B Atr C Atr D Atr E Atr F Atr G Atr H

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

P 17 7 19 5 3 21 11 13 18 6 15 9 9 15

N 34 6 35 5 10 30 25 15 35 5 31 9 21 19

Total 1 63 1 i 51 13 54 10 13 51 36 28 53 11 46 18 30 34

f 0.4
4.9

3.8

4.9

10.5

4.1

6.8

11.3

info gain l-d ORT G' W(l) Po
gain ratio § h-A

.022 .193 .021 .502 1.69 1.99 .687 .375

.020 .028 .012 .078 1.86 1.81 .693 .101

.009 .014 .006 .041 .79 .77 .700 .185

.017 .024 .010 .051 1.45 1.53 .697 .131

.019 .019 .010 .045 1.69 1.69 .697 .090

.018 .027 .011 .079 1.65 1.60 .694 .119

.019 .022 .010 .056 1.67 1.64 .696 .099

.015 .015 .008 .035 1.36 1.37 .700 .106

The and tests are unreliable here.

Normalized Rank (apparent best = 1, worst = 8)
liifb gaiii 1- d ORT W W(I) P
gain ratio §

A 1 1 1 1 2.1 1 1 8

B 2.0 7.4 5.0 7.3 1 2.0 4.4 1.3

C 8 8 8 7.9 8 8 7.8 3.3

D 3.7 7.6 5.8 7.7 3.7 3.6 6.5 2.0

E 2.7 7.8 6.1 7.9 2.1 2.7 6.6 1

F 3.2 7.5 5.4 7.3 2.4 3.2 4.8 1.7

G 3.0 7.7 5.9 7.7 2.2 3.0 5.9 1.2

H 4.6 7.9 6.9 8 4.3 4.6 8 1.4H I 4.0 (.y O.t) » 4.J 4.0 » 1.4
§ Note the strong correlation (0.998) of gain ratio and ORT

5 Some Troublesome Data Sets

Consider a data set which produces the trial splits shown in Table 2. Information gain chooses
attribute A for the first split. There is but a single instance of A = 1 in these data. Intuitively,
splitting off single instances in this fashion is hardly efficient. Suppose there were no instances of
A = 1, either because of noise or random chance in drawing the sample? Then, clearly, attribute
A would be of no use in separating the data and would have had the lowest gain (zero). Likewise,
if there were two instances of A = 1, one in each class, attribute A would have the lowest gain.
Apparently, when the relative frequencies of the attribute values are very non-uniform, as here,
information gain is hyper-sensitive to noise and to sampling variation.

Gain ratio, distance, orthogonality, and the Beta function aU emphatically choose attribute A
for these data, evidence that these measures also suffer (even more) from this hyper-sensitivity.
Mingers [47] has previously noted and expressed concern about this tendency to favor unbalanced
splits. This attribute (A) is clearly more suited to making subtle distinctions at the end of a chain
of other tests, than to making coarser cuts near the root of the tree. There are two arguments for
postponing use of this attribute until late in building the tree:



1. it is inefficient to place it at the root — every new instance to be classified must be subjected
to this test, which is irrelevant for most instances

2. it may not be necessary to use the attribute test at all, if the information it conveys is
completely subsumed by some other split

Church, et al [14] use an information gain statistic. Mutual Information, to select which ofmany co-
occurring words are likely to be useful features for disambiguating word senses in natural language.
In this context the bias ofentropy-based statistics is often catastrophic, being expressed as a strong
preference for one-in-a-million chance co-occurrences. (A word which occurs only once in a million-
word text happens to occur near one instance of the target word and is chosen in preference to more
pertinent words which co-occur frequently. In particular, this leads to a predilection for choosing
proper nouns to disambiguate the senses of a verb — the fact that some proper noun occurs might
be pertinent, but the particular name certainly is not.)

6 An Exact Test

".. .the traditional machinery of statistical processes is whoUy unsuited to the needs
of practical research. Not only does it take a cannon to shoot a sparrow, but it misses
the sparrow! The elaborate mechanism built on the theory of infinitely large samples
is not accurate enough for simple laboratory data. Only by systematically tackling
small sample problems on their merits does it seem possible to apply accurate tests to
practical data." — R. A. Fisher (1925)

"To-day exact tests of significance need no apology. ...In most cases the new
methods actually simplify the handling of the data. The conservatism of some uni
versity courses in elementary statistics, in stereotyping unnecessary approximations
and inappropriate conventions, stiU hinders many students in the use of exact methods.
... departures from tradition have not been made capriciously, but only when they have
been found to be definitely helpful." — R. A. Fisher (1954) [25]

Fisher's Exact Test for 2x2 contingency tables (sometimes called the Fisher-Irwin Test)® [2, pp. 59-
62], [35, pp. 332-337], [60, pp. 586-592] is based on the hypergeometric distribution, which gives
the exact probability of obtaining the observed data under the null hypothesis, conditioned on the
observed marginal totals (uc and m^).

The achieved level of significance, a (the confidence level of the test is 1 - a) is the sum of the
hypergeometric probabilities for the observed data and for all hypothetical data having the same
marginal totals (ric and m„) which would have given a lower value for Pq. Tocher [62] shows that
Fisher's test is uniformly most powerful unbiased, i.e., that in the significance level approach to
hypothesis testing, no other test will out-perform Fisher's exact test (the power of a test is the
probability that the null hypothesis will be rejected when some alternative hypothesis is reaUy
true [60, p. 290] — see Hodges [35, pp. 393-400] on the role of uniformly most powerful tests in
choosing a test statistic).

^Proposed independently by R. A. Fisher [24, 25] and J. O. Irwin [33] in 1935.



White and Liu [65] note that, for small Fisher's exact test should be used in place of the
approximation, and suggest that a similar test for larger tables could be developed. The extension
of Fisher's exact test for contingency tables larger than 2 x 2 is given by the multiple hypergeometric
distribution [2, pp. 62-64] [26]

This exact probability expression can be derived either from classical statistics, as the probabil
ity of obtaining the observed data given that the null hypothesis is true [2, pp. 62-64], or from
Bayesian statistics, as the probability that the null hypothesis is true given the observed data (see
Appendix C).

For choosing among several candidate splits of the same set of data, Pq is a more appropriate
metric than the significance level. If we are seeking the split for which it is least likely that the null
hypothesis is true, that is measured directly by Pq, whereas significance measures the cumulative
likelihood of obtaining a given split or any more extreme spUt, given that the nuU hypothesis is
true. (This is consistent with Minger's [45] suggested use of

The following approximate relationships can be derived (see Appendix D):

21n(2)Again « -21n(Po) - (C - l)(y - l)ln(27riV)

-|- (terms increasing as the interaction weighted sum of squares) (10)
« -21n(Po) - (C-l)(F-l)ln(27riV)

-f (terms increasing as the main-effects sum of squares) (11)

(The sum of squares terminology used here arises in analysis of variance (ANOVA) (see [48])
— main-effects refers to the variances of the marginal row and column totals, and Uc, and
interaction refers to the additional variance of the fcv terms over that imposed by the rriy and Uc
totals). Thus, both X^, G^, and gain arise as terms in alternative approximations to the reliability
of a split. In neither case should it be assumed that aU the remaining terms vanish, even as N —>• oo.
Both factors are positive, indicating that these measures tend to overestimate the reliability of very
non-uniform splits. The relationship of Pq to Buntine's Beta is discussed in Appendix D.

Values of each of the measures (Pq, gain, gain ratio, distance, orthogonality, chi-squared, and Beta)
were calculated for over 1,000 2x2 tables® (see Figure 4). These data confirm the analyses above:

• when Cochran's criteria are satisfied, « -2.927 - 2 In(Po) and G^ w when they are
not, X^ and G^ tend to be spuriously high, and overestimate reiability

• a similar linear relation to In(Po) is found for the other measures, with an even stronger
tendency to overestimate reliability when X^ « x^ is not valid

• very high values of information gain and the other measures occur frequently when the null
hypothesis cannot be rejected (Pq > 0.5) — occurrence of these high values is strongly
correlated with circumstances under which the X^ w X^ approximation is invalid

• when X^ a X^ is valid, all of the measures converge (rank splits in roughly the same order,
though differing indetail) —when X^ « X^ is invalid, thesplit rankings can bequite divergent

®iV = (2,4, 8,..., 64), m = (1... JV/2), rm = (1... m), fu = (0 ... mi).



Figure 4: Comparison of Measures
a. Information Gain b. Geiin Ratio

V. + . +*'^+

Hypergeometric Hypergeometric

c. Orthogonality d. Distance

Hypergeometric Hypergeometric

e. Chi-squared f. Log-likelifx>od

O Chhsq valid
+ Chi-sq Invalid



• applying logarithmic or trigonometric transformation functions to discrete data can give very
misleading results, particularly when any of the integer quantities involved is small

Observation 1 The chi-squared statistics, information gain, gain ratio, distance, and orthogonal
ity all implicitly assume an infinitely large sample — i.e., that continuous population parameters are
adequately approximated by their discrete sample estimates (e.g., substituting Uc/N for pc, the pro
portion of class c in the population), and that a discrete (e.g., binomial) distribution is adequately
approximated by a continuous normal distribution.

When Cochran's criteria are not satisfied, these assumptions may be incorrect, and these heuristics
inadmissible. For such ill-conditioned data, use of these metrics entails a high likelihood of rejecting
the null hypothesis when it is really true. (A data set is ill-conditioned for an analysis when slight
changes in the observations would cause large perturbations of the estimated quantities.)

Observation 2 Buntine's Beta function derivation explicitly assumes that the class distributions
in the subsets of a split are a priori independent of one another. While this assumption can be
admitted for a single split considered in isolation, it is not appropriate when comparing alternative
splits of a given population.

For example, given a population where each item has 3 binary attributes:

class = (pos, neg) color = (blue, red) size = (large, small)
Let a{i,j) = Prob{class = i \ color= j} 'y(j) = Prob{color = j}

/3{i,k) = Prob{class= i \ size = k} 6{k) = Prob{size = k}
and 0{i) = Prob{class = i}

Now, 6{i) = a{i,blue) x ^{blue) + a{i,red) x 'y{red) (12)
= f3{i, small) x S{small) + ^{i, large) x 6{large)

Because of Equation 12, the statements

a{i,blue) is independent of a{i,red) and ^(i, small) is independent of j3{i, large)

cannot both be true of the same population.

Observation 3 The null hypothesis probability function Pq appears to be a measure which properly
incorporates all thesefactors, and may be a more suitable split selection metric than gain, gain ratio,
distance, orthogonality. Beta, or chi-squared.

7 Stopping Criteria

A characteristic of these kindsof inductive algorithmsis a tendency to overfit noisydata (noisein the
form of sampling variance, incorrect classifications, errors in the attribute values, or the presence
of irrelevant attributes). Breiman, et al [9] initially searched for a minimum gain threshold to
prevent overfitting. Since {N x gain) has approximately a distribution (which has very complex
thresholds), attempting to find a simple threshold for gain was foreordained to fail.

Quinlan [55] originally proposed that the significance test (Equation 6) be used to prevent
overfitting in ID3 by stopping the process of splitting a branch if the 'best' split so produced were
not statistically significant. Besides the unfortunate interaction exemplified by the exclusive-or
problem, there are two reasons that this strategy does not work well:



1. for splits with small e^v components the ^ approximation to is not valid, and should
not be used (there are similar difficulties with and with gain) — the divide-and-conquer
strategy of TDIDT creates ever smaller subsets, so that this difficulty is certain to arise after
at most log2(iVo/5) splits have been made (where Nq is the size of the entire data set)

2. and gain converge at different ratesand may rank splits in different orders —gain probably
does not order the splits correctly for efficient pruning by

Both of these approaches were abandoned in favor of some form of post-pruning (either a cost-
complexity [9, pp 65-81], reduced-error [56], or pessimistic pruning [58] approach). There have
been a number of studies in this area [10, 12, 46, 47, 51, 52, 61]. Among the notable findings are:

• in general, it seems better to post-prune using an independent data set than to pre-prune as
originally proposed in IDS [55]

• k-fold cross-validation seems to work better for pruning than point estimates such as X^

• the decision to pruneis a form ofbias—whether pruning will improve or degrade performance
depends on how appropriate the bias is to the problem at hand

• pruning, whether by X^ or cross-validation, may have a negative effect on accuracy when the
training data are sparse (i.e., iU-conditioned)

Note —A decision to prune the data opens the possibility ofcommitting Type II errors (accepting
the nuU hypothesis when some alternative hypothesis is really true, as in pre-pruning in the XOR
problem). A decision not to prune when using real data almost certainly introduces Type I error
(overfitting — rejecting the null hypothesis when it is really true). There are no certainties in
statistical inference, at best there is a balancing of the risks and costs of various inferential errors.

Observation 4 The previous negative results concerning pre-pruning may be due to use of dif
ferent inadmissible statistics for split selection and stopping, and to interaction with the restricted
split candidates set, rather than to any inherent fault of pre-pruning. Use of the Pq function for
both selection and stopping might permit more practical construction of simpler and more efficient
decision trees without loss of predictive accuracy.

Consider, for example, the following potential splits:

Attribute A

Class N

Class P

Total

A = 0

27

43

70

A = 1

473

457

930

info. gain=.00286 gain ratio=.00782
1 - d=.00209

G^=2.m

w{i)/N=.mm

ORT=.02912

X2=3.932

Po=.0139

Attribute B

B=0 B=l

Class N

Class P 10 490 500

Total 13 987 I lOOO"
info. gain=.00290 gain ration.02902

1 - d=.00265 ORT=.12291

X2=3.819
1T(1)/A=.69563 i'o=-0343

Attribute B has the larger gain (and gain ratio, etc.) X^ for this split is slightly below the 95%
cut-off for x^- Both splits are, in fact, significant at the 95% level, and A is the better choice.

Splitting on gain and stopping on X^ stops without generating any tree. Splitting on gain and
post-pruning leads to (see Figure 5)



SPLn"=GAIN

STOP=fxxie

(A)=.7794
split on A

Figure 5: Alternative Split/Stop Strategies

(A)=.00198
(B)=.00201
split on B

POSTPRUNE

(A)=.0005
spliton fiT

SPLIT=PO

STOP=PO

(B)=.0048
split on B

(A)=.0139
P=.0343
spliton A

(B)=.1311
STOP

?473'457

[(B = 0) A(A = 0) ^ (Class P)] A [(B = 0) A(A = 1) (Class N)]

Splitting and stopping using Pq leads to the more general rule [(A = 0) A(J3 = 0) => (Class F)]
directly, without generating and later pruning a subtree under {B = 1).

8 Empirical Comparisons of the Measures

Sixteen data sets were used to evaluate the generality of these results. The particular data sets are
described briefly in Appendix A, and were chosen to give a good variety of application domains,
sample sizes, and attribute properties. None of the data sets chosen has any missing values. Two
issues arise with respect to handling the attributes:

• Numeric attributes must be nominalized (made discrete). Various procedures have been
proposed for this, differing along dimensions of

1. arbitrary vs. data-driven cuts

2. once-and-for-all vs. re-evaluating cut-points at every level in the tree

3. a priori (considering only the attribute's distribution) vs. ex post (also considering the
classification)

4. multi-valued vs. binary cuts

5. the function used to evaluate potential cut-points

The particular method used has important consequences for both efficiency and predictive
accuracy, and (especially for the on-line re-evaluation approaches) can interact with selection
and stopping criteria in unpredictable ways.

• Orthogonality is defined (Equation4) only for binary splits, and each attribute having V > 2
values must be converted to binary splits for this measure. This can be done most simply
by creating V binary attributes. Quinlan [58] describes a procedure for iteratively merging
branches of a split using gain or gain ratio; this procedure could either be pursued until only
a 'best' binary split remained, or stopped at some threshold and the resulting Q-way split
converted to Q binary attributes. Other procedures are given in [9, 13].



The hypergeometric function (and, strictly, the other measures, as well) apphes only when the
cut-points for continuous attributes and the binarization of discrete attributes are defined a priori.
Defining these expost, as in C4.5 [58, pp. 25-26] and CART [9, p. 108], etc. directly contradicts the
null hypothesis (that the class is a pnon independent ofthe subset membership). The modifications
to the expression for Pq necessary to accomodate ex post cut-points and binarization, and full
consideration of the efficacy of various strategies for handling numeric and multivalued attributes
are planned topics for a future paper. In order to control the splitting context and to avoid bias in
comparing the selection metrics, two a priori, once-and-for-all, multi-valued strategies were used
here for every numeric attribute in every data set.

1. 'natural' cut-points determined by the procedure in Appendix A

2. arbitrary cut-points at approximately the quartiles (approximate because the cut-points are
not allowed to separate instances with equal values—quartiles because the average using the
'natural' cut-points was approximately 4 subsets per attribute).

The resulting cut-points are not intended to be optimum (and may not even be "good"), merely a
priori, consistent, and unbiased. Results obtained here should be compared only to one another,
and not to published results using other (especially ex post) strategies on the same data set. For
binarization, all attributes having V > 2 values were replaced with V binary attributes. In each
experiment, a tree was grown using all of the instances, and the complexity and efficiency of this
tree were determined. Accuracy was then estimated by 10-fold cross-validation.

8.1 Unpruned Decision Trees

The results for the unpruned trees built using the various metrics are summarized in Table 3. (Only
the data sets where there were noticeable differences in accuracy are shown in detail, full results
are shown in Appendix E.l). Two different values are shown for the Beta metric's a parameter; 1,
corresponding to a uniform prior distribution, and 0.5, the Jeffreys prior (see [30, pp. 48-50,79]).
The and trees were built without regard to significance or admissibility.

None of the differences in accuracy between the split metrics is statistically significant. The dif
ferences between the arbitrary and 'natural' nominalizations is generally very small (but see the
Glass and WAIS data sets), and sometimes positive, sometimes negative. The average accuracy
for orthogonality is slightly lower than the accuracies of the other metrics (the difference is not
significant at the 95% level).

The trees have about the same number of leaves on the average. The and trees have the
fewest leaves (12% fewer than Fq on the average), and orthogonality, gain ratio, gain, and the Beta
function have the most leaves (6% more than Pq on the average).

The gain ratio and orthogonality trees are 60% deeper (less efficient), and the Pq trees 25% more
efficient on the average. With arbitrary subsets, all of the measures build shallower trees with more
leaves, though the change in depth for Pq is small. The quartile trees are all about the same depth.
These results reflect the fact that a classifier must be more complex to deal with arbitrary division
into subsets, and the tendency for all the metrics except Pq to be 'fooled' into using the very small
splits present in the natural subsets data.

Po is more practical in virtually every case, reducing training time by 30% on the average over the
nearest competitor (X^) and by 60% over the least practical (gain ratio). With a single exception



Table 3: Unpruned Trees, Binary Splits

Gain Gain l-d Ort 1T(1) W{.h)
Ratio

Overall 75.1

Natural 72.8

Quartiles 73.2

Overall 1295

Natural 371

Quartiles 531

Overall

Natural

Quartiles

Overall 5852

Natural 1236

Quartiles 778

Cross-Validation Accuracy, %
74.9 74l 73T 74?7 74X
72.6 72.1 70.9 72.5 72.4

73.1 73.1 71.9 73.0 73.5

75.3 75.0

72.9 73.0

73.8 72.6

Total Number of Leaves

1267 Tm 1351 1318 Uf2 IM IMI mF
365 371 369 324 311 262 259 298

488 424 562 536 527 421 421 502

Weighted Average Depth
10.1 15.8 10.3 9.1 8.1 9.1 7.3

13.9 17.1 10.6 9.6 8.9 9.0 6.6

5.9 7.5 6.7 6.5 5.8 5.8 6.2

Total Run Time (sec)
6585 7394 5004 4956 4490 4410 3028

1606 1242 1036 1049 998 943 746

959 655 621 652 606 536 428

(the WAIS data, where the natural subsets are binary), the quartile subsets reduce training time,
40-50% on the average. This time savings is directly attributable to the reduced dimensionality
(number of attribute-value pairs) of the quartile subsets.

These data support the conjecture that in virtually every case unpruned trees grown using Pq are
less complex, more efficient and practical, and no less accurate than trees grown using the other
metrics. They also reinforce the conclusion that, for unpruned trees, the choice of metric is largely
a matter of complexity and efficiency, and has little effect on accuracy.

8.2 Effects of Post-Pruning

Quinlan's pessimistic post-pruning method was used (C4.5 [58, pp. 35-43,159-163,278-279]), at the
default 0.25 confidence factor level. The results are summarized in Table 4 (full details are given
in Appendix E.2). Some of the noteworthy features of these data are:

1. There are no significant differences in accuracy between the unpruned and post-pruned trees,
nor between the various metrics. That is to say, the choice of a splitting heuristic and
the decision whether or not to post-prune are largely matters of complexity, efficiency, and
practicality, not of accuracy.

2. The differences between metrics in the number of leaves and depth of the trees, though still
present after post-pruning, are much smaller. That is, the metrics that overfit most (notably
gain ratio and orthogonality) benefit most from post-pruning, though some overfitting remains
after post-pruning.



Table 4: Post-Pruned Trees, Binary Splits

Gain Gain l-d Ort VP(T) W{^) 1^
Ratio

Overall 74.7

Natural 72.5

Quartiles 72.2

Overall 1155

Natural 267

Quartiles 504

Overall

Natural

Quartiles

Cross-Validation Accuracy, %
75.3 7A5 Til TSlO 75^
73.4 72.7 72.2 73.1 73.3

73.3 72.1 72.3 72.5 73.8

75.2 75.1

72.9 73.2

73.8 73.0

Total Number of Leaves

1051 IMq 1142 nil UTi l025 lOlQ 1203"
240 253 263 257 262 243 244 292
462 410 529 519 521 406 409 499

Weighted Average Depth
10.0 8.1 10.3 8.4 8.1 7.7 8.6 7.2

9.9 8.5 9.5 7.7 7.5 7.9 8.1 6.4
6.2 5.7 7.0 6.5 6.5 5.7 5.8 6.2

Total Run Time (sec)
Overall 7448 26868 9l65 43506 93M 7787 6676 9794 SleT
Natural 1769 4669 2539 5783 2189 1960 1727 1717 1086
Quartiles 1244 1340 1255 1135 1017 1016 1000 866 867

3. Post-pruning had virtually noeffect on the complexity and efficiency ofthe treesbuilt using Pq
as the splitting metric, and very little effect on the trees built using and X"^. Post-pruning
these trees is largely wasted effort.

4. Post-pruning is very expensive, and not cost-effective. Simpler, more efficient, and equally
accurate trees can be obtained at half the run-time (or less) by using Pq as the splitting metric
without post-pruning rather than using another metric and post-pruning.

The run-times for tree building and post-pruning are roughly proportional to the data set size
and to the square of the unpruned tree depth. The extremely long run times for gain ratio and
orthogonahty are largely due to the word sense and Pima (natural cut points) data sets — both
are large samples with many attributes and several very small spht subsets.

8.3 Effects of Stopping

The effects of stopping based on Pq are summarized in Table 5. (Full details are given in Ap
pendix E.3). Though accuracy for the Servo and Obesity problems is reduced by pruning at the
0.05 level, the differences are not statistically significant (at the 95% level). The improved accuracy
of the pre-pruned quartiles Pima data is significant at the 99.5% confidence level.

The decreased accuracy for the Servo data is largely due to pruning the XOR-like subtree shown
in Figure 6. For the Obesity data, linear discriminant analysis fails, suggesting that the classes are
not homogeneous (see Figure 2). The Obesity attributes are very noisy and correlated, and the
data are very sparse relative to the concept being studied (see [48, pp. 224-229]).



Figure 6: An XOR-like Substructure

B screw -B

I type I

dass D screw ~D

Overall, accuracy is mildly concave, peaking at around the Pq = 0.05 level. These results support
the conjecture that growing and stopping decision trees using Fq at the 0.05 level usually does no
harm and may, in fact, be mildly beneficial to accuracy.

The number of leaves is reduced by 75% from the unpruned Pq and gain trees. The average depth
is reduced by 35% over the unpruned Pq trees, and by 50% over unpruned gain trees. Training time
is reduced by 30% over unpruned Pq trees, by 60% over unpruned trees built using information
gain, and by 75% over post-pruned gain trees.

The overall effects of splitting and stopping using Pq versus splitting using the various metrics and
then post-pruning by the pessimistic method are shown in Table 6 and Figure 7. For comparison,
the results of pre-pruning using the criterion (disallow a split if Cochran's criteria are satisfied
and is less than the 95% critical value of for the split) are shown for the other metrics (see
Appendix E.4 for full details). This rule rarely resulted in a tree different from the unpruned tree.
Splitting and stopping using Pq is more practical, and results in trees which are simpler, more
efficient, and generally no less accurate than splitting and post-pruning using any of the metrics.

8.4 Binary vs. Multi-way Splits

An additional set of experiments was conducted to determine the effectsof using binary as opposed
to multi-way splits. These data are summarized in Table 7. The most striking features of these
data are that the multi-way trees have 2 or 3 times as many leaves as the binary split trees, are only
one-half to one-third as deep, and reduce training/validation time by 80-85%. The time savings is
a straightforward consequence of the increased branching factor reducing the height of the tree and
of roughly halving the number of attribute-value pairs.

A very substantial time penalty is incurred when F-ary attributes are forced into V binary splits.
Overall, learning time increases at least quadratically in the dimensionality of the data set. Ap
proaches such as thosesuggested byWeiss and Indurkhya [63] to reduce dimensionality and optimum
binarization techniques such as those used in C4.5 [58] and ASSISTANT [13] shoud be pursued.
With the caveat that the method ofhandling numeric attributes and steps to reduce dimensionality
can influence accuracy and interact with stopping in unpredictable ways.



Table 5: Effects of Stopping, Binary Splits

Data Set Unpruned | Pruning Threshold Level
conf. limits | 0.5 0.1 0.05 0.01 0.005 0.001

Cross-Validation Accuracy, %
Finance 1 Quartiles 75 57-90 79 79 79 71 64 144
Obesity Natural 58 37-77 47 44 49 40 133 1 13
Obesity Quartiles 51 31-71 42 49 49 40 129 136
Pima Quartiles 65 60-70 68 § 73

CO

§ 74 § 74 § 75
Servo Motors 95 89-98 93 91 89 89 90 181

Overall • 73.4-76.4 75.3 76.4 76.4 75.9 75.5 74.1

Natural 1 70.2-75.6 72.5 74.0 73.4 71.7 71.7 70.7
Quartiles 69.8-75.2 74.0- 74.9 75.1 75.0 74.8 73.1

f below the 95% confidence limits § above the 95% confidence limits

Overall

Natural

Quartiles

Total Number of Leaves

Weighted Average Depth

164 125

48 39

60 44

Overall 7.30 6.7 1 5.21 4 .78 3.83 3.57 2.96
Natural 6.67 5.78 4.29 4 .12 3.16 2.95 2.40

Quartiles 6.22 MjHll6 4.77 4 .19 3.30 2.99 2.42

Overall

Natural

Quartiles



Table 6: Overall Effects of Pre- and Post-Pruning

Gain Gain 1 - d Ort 1E(1) 1E(.5) Pq
Ratio

Post-Pruned 74.7

Unpruned 75.1
Pre-pruned 75.3

Post-Pruned 1155

Unpruned 1295
Pre-pruned 1186

Post-Pruned

Unpruned
Pre-Pruned

Post-Pruned 2:04

Unpruned 1:38
Pre-Pruned 1:29

Wtd. Avg. Accuracy, %
75.3 74.5 74.6

74.9 74.8 73.7

75.1 75.2 74.5

75.0 75.5 75.4 75.2 75.1

74.7 74.8 75.3 75.3 75.0

74.7 74.2 74.2 75.0 76.4

Total Number of Leaves

1267 1191

1267 1191

Wtd. Avg. Depth

Total Run Time (hh:mm)

1171 1025 1019 1203

1272 1070 1061 1213

1123 1070 1061 295



Figure 7: Stopping vs. Post-Pruning
a. Cross-validationAccuracy (%) b. Number of Leaves

gain ratio 1-d CRT W(1) W(.5) X'̂ 2 PO gain ratto 1-d ORT W(1) W(.5) X'a PO

j Post-pruned| | Unpruned Pre-pruned j Post-pruned | | Unpruned m Re-pruned

c. Weighted Average Depth d. CPU Time (hrs)

gain ratio 1-d ORT W(1) W(.5) <y2 X'2 PO gain ratio 1-d ORT W(1) W(.5) X'^2 PO

1Post-pruned •• Unpruned H Re-pruned j Post-pruned | | Unpruned H Re-pruned

There is a slight decrease in accuracy for the multi-way splits, which becomes smaller as the stopping
threshold level decreases (and, in fact, is sometimes reversed below the 0.01 level). The effect is
more pronounced for data sets with lower accuracy. The reversal at the most severe pruning levels
is a consequence of the binary split trees being over-pruned at those levels. When attributes are
converted to binary splits in this way Pq is larger (more apt to be pruned) for each of the new
binary features than for the multi-valued feature (see Appendix A), and the cut-oflF level of Pq
should be adjusted upward accordingly.

9 Conclusions

1. Information gain, gain ratio, distance, orthogonality, chi-squared, and Beta each downplay
some part of the influence of the number of partitions or the marginal totals of the classes
and attribute values. Whenever one or more of the expected values in a split is small,
these measures are prone to overestimate the reliability of the split. The divide-and-conquer
strategy of building classification trees almost inevitably leads to very small subtrees where
these measures are inadmissible.

2. The Po null hypothesis probability measure proposed here overcomes the difficulties encoun-



Table 7: Binary vs. Multi-way Splits

Data Set Binary j Multi-way
unpruned

Gain Pq
Pq pruned

0.05 0.01 0.005

unpruned Pq pruned
Gain Pq 0.05 0.01 0.005

Cross-Validation Accuracy %
Finance 1 Nat 77 75 177 65 69

Qua 172 75 79 171 64

Glass Nat 51 153 52 52 44

Obesity Nat 56 58 49 §40 § 33
Qua 40 51 49 40 § 29

Wine Qua 93 89 89 § 86 93

Overall 77.1 76.7 78.0 77.4

Natural 72.6 72.8 73.2 71.6 MR

Quartiles 74.1 72.7 75.4 75.3

67 65 f 58

71.9 72.7 73.1 75.0

If binary is better (95% confidence level) § multi-way is better (95% confidence level)

Number of Leaves

Overall 944 955 216 140 120

Natural 366 292 80 56 46

Quartiles 422 502 109 68 60

Weighted Average Depth
Overall 8.8 6.2 3.9 3.0 msi 3.5 3.6 2.6 2.3 2.1
Natural 13.9 6.8 4.2 3.2 •1 4.3 4.2 3.0 2.7 2.5

Quartiles 5.8 6.2 4.2 3.3 3.0 3.1 3.3 2.6 2.3 2.2

Training & Validation Time (sec)
Overall 2074 1354 944 809 771 323 201 170 159 156
Natural 1234 745 519 460 436 127 83 72 68 67

Quartiles 585 428 307 259 252 127 72 64 58 57



tered when the classes and attribute values are unevenly distributed or the number of parti
tions is large. The unpruned trees it builds are simpler, more efficient, and generally no less
accurate than those built by the other measures.

3. The Pq measure can be used to stop splitting. This is more practical, and the resulting trees
are simpler, more efficient, and generally no less accurate than unpruned or post-pruned trees.
A stopping threshold level of Pq > 0.05 is recommended.

4. The arguments against stopping are equally arguments against use of very sparse (or other
wise ill-conditioned) data, biased heuristics, different inadmissible heuristics for splitting and
stopping, and very restricted candidate sets. There is no point in continuing the inductive
process when the null hypothesis is probably true (Pq > 0.5), and in most domains little point
in continuing when Pq > 0.05.
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Appendices

A Data Sets

Table 8: Description of Data Sets

Data Set Source Description

BUPA UCI liver disorder data, 345 instances in 2 classes
6 numeric attributes i—> 35 binary, very nonuniform

Finance 1 Morrison insurer financial ratios, 52 instances in 2 classes
6 numeric attributes i—>• 29 binary, very nonuniform

Finance 2 Morrison bankruptcy financial ratios, 66 instances in 2 classes
5 numeric attributes i—26 binary, very nonuniform

Solar Flare C

Solar Flare M

Solar Flare X

UCI solar fiare data

type C has 3 classes
type M has 4 classes
type X has 2 classes
10 nominal attributes i—> 25 binary, fairly uniform

Glass UCI forensic data on glass, 214 instances in 7 classes
9 numeric attributes i—>• 58 binary, very nonuniform

Iris either Iris species data, 150 instances in 3 classes
4 numeric attributes i—> 17 binary, fairly uniform

Obesity Morrison obesity characteristics, 45 instances in 4 classes
13 numeric attributes i—>• 80 binary, some uniform, some not

Pima UCI diagnosis of diabetes, 768 instances in 2 classes
8 numeric attributes i—»• 36 binary, some uniform, some not

Servo Motors UCI servo motor rise time, 167 instances
continuous response i—>• 5 nominal classes
4 nominal attributes i—> 19 binary, highly uniform

Soybean UCI soybean diseases, 47 instances in 4 classes
21 nominal attributes i—>• 46 binary attributes, highly uniform

Thyroid UCI thyroid disorder, 215 instances in 3 classes
5 numeric attributes i—• 32 binary, very nonuniform

WAIS Morrison senility factor data, 49 instances in 2 classes
4 numeric attributes i—> 4 binary, some uniform, some not

Wine UCI wine type data, 178 instances in 3 classes
13 numeric attributes i—• 75 binary, fairly uniform

Word Sense author senses of lie/lay/lying, 869 instances in 16 classes
100 binary attributes, extremely non-uniform

The data sets are described in Table 8. Except for the word sense data, raw data and more detailed
descriptions with full citations can be found in one or the other of two convenient sources:

UCI University of California, Irvine machine learning data depository [49].

Morrison Multivariate Statistical Methods, by Donald F. Morrison [48, App. B, pp 466-480].



B Nominalizing Attributes and Converting to Binary Splits

To nominalize a numeric attribute, all the attribute's values were lumped without regard to class,
and a histogram measured for (x,_i < x < a:,) where the Xi and Aa; are taken at the nearest "nice"
(0.1, 0.2, 0.5, etc.) value to range(a;)/40. This histogram was smoothed by applying a linear filter
(3-point moving average of the 3-point moving averages). The cut points were taken as the local
minima and 'shoulders' in this smoothed histogram. With q cut points in ascending order, nominal
values were assigned, (0, if a; < cuti), (1, if cuti < x < cut2), ••• {q, if cut, < x).

To make a F-valued attribute binary, V binary variables were created and associated with the
attribute values in order of their appearance in the source documentation or in ascending numeric
order (1 if the attribute has that value, 0 if it has any other value).

One consequence of this conversion to binary splits is that each of the binary splits has a higher
Po value (hence, increased risk of Type II error) than the multi-way split — consider a tertiary
attribute for binary classes:

Po(multi) =

Po(binary-1) =

ni! 712!

N\

ni! 712!

N\

Po(multi) = constant x

Po(binary-l) = constant x

mil 7712! 7773! \

/ii' /21! /12! 722! /13! 723! /
mi! (7772 + ma)!

/ll! /21! (/12 +/13)! (/22 +/23)!

m2 -I- 7773

/12 + /l3

constant x ^ +fi3-i j' (See [1, p.822])

= Po(multi) -I- constant X ^ ma

/12 + fi3 —i

Po(multi) • likewise for binary-2 and binary-3

C Derivation of the Hypergeometric

The posterior likelihood of a hypothesis, H, is given by Bayes' Theorem

P{H Idata) = P(data | H) P{H) / P(data) (13)

Typically, P{H) = 1 and P(data) = 1 (we believe a priori that our hypothesis is correct and our
data unbiased). This results in P{H |data) = P(data |P), the general principle (see Iversen [34,
p. 62]) that Bayesian methods using non-informative priors lead to the same numeric results as
classical statistics (the interpretation is different). {Note—For random sampling data, P(data) = 1
applies to the data without regard to order, not to the particular permutation.)

Given models P(data \II,h) and P(data |3?) in terms of some sets of parameters, %and 3?, then

P(data \H) =J •J P(data |H, h) P{n) {dhidhi •••) (14)



P(data) =J •••J P(data | 3?) P(3?) {d^id^2•••)

Absent prior knowledge of the parameters, their priors, P{h) and P(3f), should be non-informative
(see Box & Tiao [8, pp. 25-60]); and it is helpful if they are conjugate (easily integrated).

For N independent random instances {i = 1 •••A) of an experiment having C xV distinct possible
outcomes [(y,,x,), for yi — 1...C and Xj- = 1...^] and constant likelihood for each outcome
[pcv = P{y —C,x = u)], the likelihoods of the sequence {(yi,Xi).. .(y^v,a^Ar)} and the unordered
data fcv = freq(y = c,x = v) are given by the multinomial distribution ([30, pp. 96-101])

(16)

c({/„} I{p„})=nnp»

where tIq ^

Pcv —4^cvV^v 'pcv —P{,yi = CI Xj = u)

fv = Pi^^i = u) = ^^Jpcv —^cPcvVv

^c ~ P{yi = c) = ^yPcv —

YlcPcv = YlvVv —Ylc^C —IZcYlvPcv —1

For application of Hayes theorem to the multinomial, Dirichlet's integral

=J '"J dipidip2 •••dtpg-i _ nr(rj)
r(M)

is helpful, where the integration is taken overthe region rpi > 0, S = J2''Pi^ M = Yii'i. A conjugate
prior for the multinomial (Equation 16 or 17) takes the form of a Dirichlet density

PUPcv} Ia) = n HpcT' (20)

which is non-informative for a w l(see Box & Tiao [8, pp. 25-60]).

Multiplying Equations 17 and 20, and applying the Dirichlet integral (Equation 19) gives

P(If 11 . N\ TjCVa) Unnfcv + a)nUcvlia; TiN +CVa)

See Hartigan [30, pp 100-101] on the difficulties of selecting the parameter a for a Dirichlet prior
— rather than seeking a particular a, a pure Bayesian approach chooses a non-informative prior
for a near unity ((1 —̂ ) <a<(l —̂ -f A)) where 6 and A are small positive values. Choosing



gives P{{fcy}) = P(unordered data) = 1, which is consistent with our a priori assumption that the
observed data are unbiased. Applying this same process (Equations 19, 20, and 21) to Equation 16
gives

P(data) = P{{yi,Xi}) = UUfcJ

Under the null hypothesis, Hq, (Vu : 4>cv = 0^, and pcv = Oc (fv), and the multinomial of Equa
tion 16 becomes

IPo,{«c},{v'v})=niK^cvt;)^" = (n^'r) (n^c') (23)

Taking P(Po) = 1, independent priors for and {ffv)

?({«,} I IPo.".)=

and appropriate priors for P{ay) and P(ax) (analogous to Equation 21) leads to

P(data IH„) =P({s,„Xi) |Ho) =(A^) (A^) (24)
From the expression for P(data) (Equation 22) and P(data | Hq) (Equation 24) and Bayes' theorem
(Equation 13) we get the multiple hypergeometric distribution:

P„ HP(Ho Idata) =(I^) (0^) / (H^) (25)

D Approximations to the Hypergeometric

D.l Gain and Chi-squared

For n ^ 0, Stirling's approximation, ln(n!) w 0.51n(27rra) -t- nln(n) - n, leads to

/n^-1 M 1 / ^ \

where Ik{Mj/N) = J2[—{Mj/N)log2iMj/N)] is the entropy (information) function. Taking
second order terms of a Taylor series for ln(Mj/N) about 1/k =

^ N\o(2)h{M,/N) + Avar(Mj/;V)

-b i (A; ln{k) -{k-l) ln(27riV)) (27)
Applying the approximation from Equation 27 to the hypergeometric of Equation 25, and noting
that

gain = IcinclN) + IvirriylN)- IcvifcviN)



—21n(Po) ~ 2JVln(2)gain
+ (C-l)(F-l)ln(2;riV) - [C(F - l)ln(C) + F(C - l)ln(F)]

[c2f2(C7F - 1) Var(/^/iV)-
C\C - 1) Var(nc/iV) - V\V - 1) Var(m„/iV)] (28.)

Or, if ln(/c„) is replaced by its Taylor series around Ccv = ricm^/N (rather than around the overall
mean, N/CV)

-21n(Po) «
+ {C- l)(y - 1)ln(27riV) + [C(F - 1)ln(C) + V{C - 1)ln(F)]
_{C-1){V-1) Var(n,/iV) + Var(m,,/iV)]

2 IS (/ci; ^cv){fcv ^^cv) / ^cv

D.2 Buntine's Beta

In Buntine's derivation [11]

Pcv = P{,yi —c, Xj = n I P,/3) = <^<-„(P) •
where (t>cv{H) = P{yi = c\xi = v, H) = P{xi = v \ fS)

/? is a set of (unknown) population characteristics

and H is some hypothesis about the classification and partition

Assuming that the priors of the hypothesis and the population characteristics are a prior indepen
dent, P(P, /3) = P(P) •P{/3), then

P{H I Pi = c, Xi = V)(X (l)cv •P{H)

piH\{u}) (X p(p).nn<^-

The hypothesis H is represented as the conjunction of the structure of the partition, r, and the
class probabilities {(j)cv}

P{H) = P(r,{<^,„}) = P(r).P({</.,,}|r)
P(P|{<^,„}) cx P(r)-P({^e.}|r).nn<^-

P({4>cv} I t) is modeled as the product of V independent Dirichlet densities,

Ir)=n [(^) nc-']=nnc- oo)
leading to Buntine's Beta,

P(t 1{u- xl) a P(t) • . nnr(/cr +a) _ -w(T,a) /oi\1jy., X.Ij a P(r) ^ +Ca) ' '



Applying Stirling's approximation and a Taylor series as in Section D.l leads to Icvifcv/N) as an
approximation to l^(r, a).

There are two notable differences between Buntine's Betaderivation and that given for the hyper-
geometric in Appendix C:

1. Buntine gives his expression in parametric form (the Dirichlet parameter, a), while the hy-
pergeometric removes a via a non-informative prior. Though this difference is obvious in the
formulas, its impact on split rankings may be subtle for a near unity.

2. The priors (Equations 20 and 30) differ in two respects:

• r(CFQ!) versus I{CaY —since these are only normalizing factors for the integration,
this is probably of little consequence.

• nnp?.-' = (n^J'-'Onn ^versus H0 ^cv ^ ^PPlyii^g the Dirichlet inte
gral, the hypergeometric derivation incorporates the linear constraints Ylv 'fv4>cv = in
addition to (pcv = 1, while Buntine does not. This difference may have a large impact
when some of the or 6^ terms are small.

Factor 2 above arises from Buntine's assumption of V independent Dirichlet priors for {(t>cv},
where the hypergeometric derivation assumes that only V-1 are independent. This difference is
equivalent to conditioning on both sets of marginal counts in the contingency table (leading to the
hypergeometric) vs. treatingonly one of the marginal distributions as fixed (Beta) —the difference
between conditional and unconditional tests. Agresti [2, pp. 65-66] cites and summarizes various
arguments [5, 6, 7, 27, 28, 29, 39, 68] as to whether these analyses should be conditional.
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Table 11: Wtd. Avg. Depth of Unpruned Trees

Data Set Gain

BUPA Nat

Qua
Finance 1 Nat

Qua
Finance 2 Nat

Qua

Solar Flare C

Solar Flare M

Solar Flare X

Glass Nat

Qua
Iris Nat

Qua
Obesity Nat

Qua
Pima Nat

Qua

Servo Motors

Soybean

Thyroid Nat

Wine

Word Sense

Overall

Natural

Quartiles

Gam

Ratio

l-d Ort 17(1) 17(.5) G' X' Po

5.3 8.

4.2 4.

2.9 2.9

2.0 2.4

7.8 11.1

3.8 3.8

3.3 3.4

4.9 4.8

4.0 7.1

3.9 5.3

16.5 44.4

Weighted Averages
10.1 15.8

1 13.9 17.1

5.9 7.5

16.8 14.0 14.0 7.6

7.8 4.1 4.1 7.5

5.9 5.1 5.

4.0 4.2 4.

8.1 7.5 7.4 6.8

7.8 6.3 7.9 6.8

4.5 3.6 3.7 3.7

9.5 8.8 '

6.9 6.6

11.2 11.1

8.2 8.0

2.0 2.0

5.7 7.8

3.8 3.8

3.3 3.3

4.9 4.8

4.0 4.4

3.8 4.2

15.8 22.3
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Table 15: Wtd. Avg. Depth of Post-Pruned Trees

Data Set

BUPA Nat

Qua
Finance 1 Nat

Qua

Finance 2 Nat

Qua

Solar Flare C

Solar Flare M

Solar Flare X

Glass Nat

Qua
Iris Nat

Qua
Obesity Nat

Qua

Pima Nat

Qua
Servo Motors

Soybean
Thyroid Nat

WAIS

Wine

Word Sense

Overall

Natural

Quartiles

5.3 6.2

4.0 4.1

2.4 2.4

2.5 2.5

7.8 9.2

7.2 8.7

3.7 4.5

2.6

Weighted Averages

10.7 11.7

7.7 4.1

5.2 5.1

4.0 4.2

2.4 2.4

2.5 2.5

7.6 8.1

6.9 6.6

2.4 2.4

2.5 2.5

7.4 6.8

7.1 6.3

2.0 2.0

5.1 7.8

3.8 3.8

3.3 3.3

4.5 4.5

4.0 4.4

3.8 4.2

15.7 21.0
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E.3 Pre-Pruned Trees, Binary Splits

Table 17: Accuracy of Pre-Pruned Trees, Binary Splits
Unpruned

conf. limits

Pruning Threshold Level
data set

BUPA

Finance 1

Finance 2

Nommalize

Natural

Quartiles

Natural

Quartiles
Natural

Quartiles

Solar Flare C

Solar Flare M

Solar Flare X

Glass

Obesity

Pima

Servo Motors

Soybean
Thyroid

WAIS

Wine

Word Sense

Natural

Quartiles
Natural

Quartiles
Natural

Quartiles
Natural

Quartiles

Natural

Quartiles

Natural

Quartiles

Natural

Quartiles

Overall

Natural

Quartiles

60 53-67

62 55-69

80-91

79-90

94-99

44-62

61-78

89-99

82-96

89-98

88-100

82-94

87-97

62-93

45-82

84-96

82-95

59-68

0.1 0.05

61 57

59 57

77 77

79 79

94 94

97 97

88 88

89 90

98 98

52 52

67 70

95 95

92 92

44 49

49 49

Weighted Averages
75.0 73.4-76.4 75.3 76.4 76.4 75.9

73.0 70.2-75.6 72.5 74.0 73.4 71.7

72.6 69.8-75.2 74.0 74.9 75.1 75.0

0.005

58

62

69

64

94

97

89

90

98

44

61

96

94

33

29

0.001

58

54

60

44

94

94

89

90

98

46

63

96

92

13

36



Table 18: Number of Leaves - Pre-Pruned Trees, Binary Splits

data set Nominalize

BUPA Natural

Quartiles
Finance 1 Natural

Quartiles
Finance 2 Natural

Quartiles
Solar Flare C

Solar Flare M

Solar Flare X

Glass Natural

Quartiles
Iris Natural

Quartiles
Obesity Natural

Quartiles
Pima N atural

Quartiles
Servo Motors

Soybean
Thyroid Natural

Quartiles
WAIS Natural

Quartiles
Wine Natural

Quartiles
Word Sense

Overall

Natural

Quartiles

Unpruned

Totals

Pruning Threshold Level
0.1 0.05 0.01 0.005 0.001

21 18

32 21

16 12

44 28

8 8

4 4
9 8

9 6

2 2

3 2

11

10

94 73

164 125

48 39

60 44



Table 19: Wtd. Avg. Depth of Pre-Pruned Trees, Binary Splits

data set Nominalize

BUPA Natural

Quartiles
Finance 1 Natural

Quartiles
Finance 2 Natural

Quartiles
Solar Flare C

Solar Flare M

Solar Flare X

Natural

Quartiles
Natural

Quartiles
Obesity Natural

Quartiles
Pima Natural

Quartiles
Servo Motors

Soybean
Thyroid Natural

Quartiles
WAIS

Wine

Natural

Quartiles
Natural

Quartiles
Word Sense

Overall

Natural

Quartiles

Pruning Threshold Level
0.5 0.1 0.05 0.01 0.005 0.001

6.8 4.1 4.1 1.9 1.9 1.0

7.3 5.5 4.8 3.3 2.0 1.0

4.2 2.1 1.7 1.0 1.2

4.0 2.5 2.5 2.4 2.4

Weighted Averages

3.9 1.9

3.8 3.0

1.0 1.0

4.6 3.5

4.8 4.4

2.4 2.1

3.4 3.

3.6 3.2

3.2 2.4

4.9 4

5.1 3

2.0 1.9

2.0 2.0

4.4 4.4

3.7 3.

10.7 9.3
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E.4 X^-Stopped Trees, Binary Splits

Table

Data Set

BUPA Nat

Qua
Finance 1 Nat

Qua
Finance 2 Nat

Qua

Solar Flare C

Solar Flare M

Solar Flare X

Glass Nat

Qua
Iris Nat

Qua
Obesity Nat

Qua

Pima Nat

Qua
Servo Motors

Soybean
Thyroid Nat

WAIS

Wine

Word Sense

Overall

Natural

Quartiles

21: Accuracy
Gain Gain

Ratio

52 57

61 62

of X^-Stopped Trees,
1-d Ort W{1)

Weighted Averages

Binary Splits
W{.b) G'

50 52 51 57

60 55 68 57

73 73 71 77

67 69 73 79

94 94 94 94

92 92 91 97

86 87 87 88

85 84 85 90

97 97 97 98

51 46 52 52

68 66 66 70

93 95 95 95

91 90 90 92

51 56 60 49

56 49 53 49

72 72 7372 72

65 67

96 94 95 89

98 98 96 96

91 91 90 93

92 93 93 92

94 92

89 90

f Stopped using Pq

74.2 74.2 75.0 76.4

71.7 72.0 72.7 73.4

71.9 71.5 73.4 75.1
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Table 23: Wtd. Avg. Depth of X^-Stopped Trees

Data Set

BUPA Nat

Qua
Finance 1 Nat

Qua
Finance 2 Nat

Qua
Solar Flare C

Solar Flare M

Solar Flare X

Glass Nat

Qua
Iris Nat

Qua
Obesity Nat

Qua
Pima Nat

Qua
Servo Motors

Soybean

Thyroid Nat

Qua

WAIS Nat

Qua
Wine Nat

Qua

Word Sense

Overall

Natural

Quartiles

Gain Gain l-d Ort fT(l) fT(.5)
Ratio

G' X' Pq

f

5.3 6.2

4.0 4.1

2.4 2.4

2.5 2.5

8.0 10.3

8.3 10.6

3.6 4.5

9.0 17.0

2.9 2.9

2.0 2.4

7.8 11.1

3.8 3.8

3.3 3.4

4.9 4.8

4.0 7.1

3.9 5.3

16.5 44.4

Weighted Averages

5.1 5.

4.2 4.

4.1

4.8

1.7

2.5

2.4 2.4 1.7

2.5 2.5 1.7

7.5 7.4 3.9

6.3 7.9 3.8

3.6 3.7 1.0

8.8 7.6 4.6

6.6 7.3 4.8

5.3 5.3 3.6

4.1 3.9 3.2

4.9

5.1

2.0

2.0 2.0 2.0

5.7 7.8 4.4

3.8 3.8 2.4

3.3 3.3 1.0

4.9 4.8 1.0

4.0 4.4 3.9

3.8 4.2 3.7

15.8 22.3 10.7

Stopped using Pq

8.6 8.1 9.1 4.8

9.2 8.9 9.0 4.1

5.7 5.8 5.8 4.2
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E.5 Comparisons of Stopping and Post-Pruning

Table 25: Wtd. Avg. Accuracy Comparisons
Gain Gain 1 —d Ort M^(l) 1T(.5) G

Ratio

All 26 Data Sets

Post-Pruned 74.7 75.3 74.5 74.6 75.0 75.5 75.4 75.2 75.1

Unpruned 75.1 74.9 74.8 73.7 74.7 74.8 75.3 75.3 75.0

Pre-pruned 75.3 75.1 75.2 74.5 74.7 74.2 74.2 75.0 76.4

Natural Cut-Points

Post-Pruned 72.5 73.4 72.7 72.2 73.1 73.3 72.4 72.9 73.2

Unpruned 72.8 72.6 72.1 70.9 72.5 72.4 72.5 72.9 73.0

Pre-pruned 72.5 73.2 72.6 72.8 72.4 71.7 72.0 72.7 73.4

Post-Pruned

Unpruned
Pre-pruned

Quartiles Cut-Points

Table 26: Total No. of Leaves Comparisons

Gain Gain 1-d Ort W{1) fT(.5) X
Ratio

All 26 Data Sets

Post-Pruned 1155 1051 1039 1142 1141 1171 1025 1019 1203

Unpruned 1295 1267 1191 1351 1318 1272 1070 1061 1213

Pre-pruned 1186 1267 1191 1351 1164 1123 1070 1061 295

Natural Cut-Points

Post-Pruned 267 240 253 263 257 262 243 244 292

Unpruned 371 365 371 369 324 311 262 259 298

Pre-pruned 371 365 371 369 289 277 262 259 82

Quartiles Cut-Points
Post-Pruned 504 462 410 529 519 521 406 409 499

Unpruned 531 488 424 562 536 527 421 421 502

Pre-pruned 422 488 424 562 423 424 421 421 109



Post-Pruned

Unpruned
Pre-Pruned

Post-Pruned

Unpruned
Pre-Pruned

Post-Pruned

Unpruned
Pre-Pruned

Table 27: Wtd. Avg. Depth Comparisons

Gain Gain \-d Ort VT(1) VF(.5) Pq
Ratio

All 26 Data Sets

Natural Cut-Points

Quartiles Cut-Points

Table 28: Total Run Time Comparisons

Gam Gain l-d Ort 1U(1) W{.5) G
Ratio

Unpruned
Pre-Pruned

Post-Pruned

Unpruned
Pre-Pruned

Unpruned
Pre-Pruned

Natural Cut-Points

Quartiles Cut-Points

7787 6676 9794 5261

4956 4490 4410 3028

4820 4478 4769 2242

1960 1727 1717 1086

1049 998 943 746

1057 1010 945 520

1016 1000 866 867

652 606 536 428

580 618 531 307



E.6 Multi-way Splits

Table 29: Accuracy fc: Complexity of Multi-way Splits
Data Set

BUPA Natural

Quartiles
Finance 1 Natural

Quartiles

Finance 2 Natural

Quartiles
Solar Flare C

Solar Flare M

Solar Flare X

Glass Natural

Quartiles

Iris Natural

Quartiles
Obesity Natural

Quartiles
Pima Natural

Quartiles
Servo Motors

Soybean
Thyroid Natural

Quartiles
WAIS t Quartiles
Wine Natural

Quartiles

Overall

Natural

Quartiles

Accuracy % No. of Leaves

unpruned Pp pruned unpruned
gain Pp 0.05 0.01 0.005 gain Pp

Pp pruned
0.05 0.01 0.005

55 57 59 51

58 58 57 58

67 65 58 67

52 71 71 52

95 92 9

89 89 9

85 87 88 88

85 85 89 89

97 97 97 97

47 44 51 50

66 69 62 62

95 93 9

92 90 9

51 58 56 62

49 40 44 58

96 95 93 92

98 98 96 98

91 91 91 91

92 93 92 92

65 67 73 71

89 90 88 91

90 92 90 93

Weighted Averages

57 137 142

57 100 253

54

56

93

56 I 49

93 I 40
98

91

08 120

14 124

38 53

94 212

41 152

260 268

502 496

40 40

6 6

56 56

58 58

76 76

34 37

26 14 1

70 43 4

59 37 30

12 61 52

Totals



Table 30: Efficiency k Practicality of Multi-way Splits

Data Set

BUPA Natural

Quartiles
Finance 1 Natural

Quartiles
Finance 2 Natural

Quartiles
Solar Flare C

Solar Flare M

Solar Flare X

Glass Natural

Quartiles
Iris Natural

Quartiles
Obesity Natural

Quartiles
Pima Natural

Quartiles
Servo Motors

Soybean
Thyroid

WAIS t
Wine

Naturcd

Quartiles
Quartiles
Natural

Quartiles

Wtd. Avg. Depth Run Time (sec)
unpruned Pp pruned unpruned Po pruned
gain Po 0.05 0.01 0.005 gain Pq 0.05 OI 0.005

4.4 4.3 2.1 1.5 1.0 15 11 8 7 7

2.1 3.9 3.0 2.7 2.7 15 11 9 8 8

2.0 2.0

1.6 1.6

3.5 3.2

3.5 3.6

6.3 6.2 4.5

4.2 4.1 3.2

2.4 2.4 2.2

2.4 2.4 1.9

1.3

2.2 2.2 2.

2.3 2.3 2.

49 39

57 33

1.9 0.9

33 32

29 26

0.7 0.6

9 9

Weighted Averages Totals

Overall 3.5 3.6 2.6 2.3 2.1 327 203 173 162 159
Natural 4.3 4.2 3.0 2.7 2.5 127 83 72 68 67
Quartiles 3.1 3.3 2.7 2.4 2.2 126 71 63 58 57
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