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Abstract

Search for variation of the fine-structure constant and violation of Lorentz symmetry using
atomic dysprosium

by

Nathan Alexander Leefer

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Dmitry Budker, Chair

We report on the spectroscopy of radio-frequency transitions between nearly-degenerate,
opposite-parity excited states in atomic dysprosium (Dy). Theoretical calculations predict
that these states are very sensitive to variation of the fine-structure constant, α, owing
to large relativistic corrections of opposite sign for the opposite-parity levels. The near
degeneracy reduces the relative precision necessary to place constraints on variation of α
competitive with results obtained from the best atomic clocks in the world. Additionally,
the existence of several abundant isotopes of Dy allows isotopic comparisons that suppress
common-mode systematic errors. The frequencies of the 754-MHz transition in 164Dy and
235-MHz transition in 162Dy were measured over the span of two years. Linear variation of
α is found to be α̇/α = (−5.8 ± 6.9) × 10−17 yr−1, consistent with zero. The same data
are used to constrain the dimensionless parameter kα, characterizing a possible coupling of
α to a changing gravitational potential. We find that kα = (−5.5 ± 5.2) × 10−7, essentially
consistent with zero and the best constraint to date.

The same data are used to report a joint test of local Lorentz invariance and the Einstein
Equivalence Principle for electrons. We present many-body calculations which demonstrate
that the energy splitting of these states is particularly sensitive to violations of both special
and general relativity. Lorentz violation for electrons is limited at the level of 10−17, matching
or improving the best laboratory and astrophysical limits by up to a factor of 10, and
gravitational redshift anomalies for electrons to the level of 10−8. With some enhancements,
our experiment may be sensitive to Lorentz violation at the level of 9× 10−20.

We also report measurements of the differential polarizability between the nearly de-
generate, opposite parity states. The differential scalar and tensor polarizabilities due to
additional states were measured for the |M | = 7, . . . , 10 sublevels in 164Dy and 162Dy and

determined to be α(0)

BA = 180 (45)stat (8)sys mHz cm2/V2 and α(2)

BA = −163 (65)stat (5)sys mHz
cm2/V2, respectively. The average blackbody radiation induced Stark shift of the Zeeman
spectrum was measured around 300 K and found to be −34(4) mHz/K and +29(4) mHz/K
for the 164Dy and 162Dy isotopes, respectively. We conclude that ac-Stark related systemat-
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ics will not limit the precision of a search for variation of the fine-structure constant, using
dysprosium, down to the level of |α̇/α| = 2.6× 10−17 yr−1 for a one-year experiment.
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1 — The search for new physics

The Standard Model (SM) of particle physics and general theory of relativity (GR) are two
theories of modern physics that have proven remarkably successful at describing most of
the observable universe. Taken together they can describe both the large-scale structure of
the Universe and the myriad subatomic particles and their interactions, including the most
recent confirmation of the so-called Higgs boson [1, 2], first predicted nearly 50 years ago [3].

Despite the success of each theory within its respective domain, however, the movement
to find a single unified theory to describe all known interactions persists. The reason is
two fold. The reductionist movement to more simplicity has worked remarkably well in the
unification of the electromagnetic, weak, and strong forces in the SM. Given the inherently
quantum nature of these three forces and the universal coupling of gravity to energy, it
seems natural that a quantum description of gravity should also exist. The second reason is
that GR and the SM cannot be reconciled to describe phenomena where both gravity and
quantum effects are equally important, such as the singularities associated with black holes
or the epochs immediately following the Big Bang [4]. In addition to this, evidence has long
been accumulating that indicates our understanding of the Universe is imperfect. The nature
of dark matter [5] and dark energy [6], for instance, which together constitute roughly 95%
of energy content in the Universe, is still poorly understand [7].

In this dissertation we focus our attention on experiments dedicated to phenomenological
searches for previously unobserved physics. The two main results fall into the category of
experiments testing two components of the Einstein equivalence principle (EEP), which
states that the results of any nongravitational experiment should be independent of of where
it is carried out in spacetime (local position invariance) or in what direction it is oriented or
traveling (local Lorentz invariance).

The main results are presented first in Chapters 2 and 3. A discussion of systematic
effects can be found in Chapter 4, with a separate discussion of ac-Stark related systematics
in Ch. 5.

1.1 Varying constants

Variation of fundamental ‘constants’ was first proposed by Dirac in 1937 with the Large
Numbers Hypothesis (LNH) [8], an early formulation of what is now know as a ‘hierarchy
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problem’ [9]. The hypothesis was founded on the premise that a unified theory of physics
must be able to explain the existence of extremely large dimensionless ratios of fundamen-
tal quantities in our universe. Dirac posed this problem by considering the ratio of the
electromagnetic and gravitational forces between a proton and electron in a hydrogen atom

e2/a2
0

Gmemp/a20
∼ 1039, (1.1)

where e and me are the electron charge and mass, mp is the proton mass, a0 is the Bohr
radius, and G is the Newtonian constant of gravitation. Similarly, the age of the universe,
τu ∼ 1018 s, expressed in units of a characteristic atomic time, τa, produces the curious result

τu
τa

=
τu

a0/(αc)
∼ 1039, (1.2)

where α is the fine-structure constant and c is the speed of light. This coincidence prompted
Dirac to propose that large dimensionless ratios are not fundamental constants but rather
functions of the age of the Universe, specifically that any ratio or dimensionless quantity
which is approximately (1039)n scales with the age of the universe according to (τu)n. Rea-
soning along these lines produces a Newtonian gravitation constant that scales inversely
propotional to τu. This would give a present day fractional variation of

Ġ

G
∼ −1010 yr−1. (1.3)

Arguments along similar lines were also made for variation of other fundamental constants,
such as the number of nucleons in the Unverse, N ∼ 1078 ∝ τ 2U , which encounters the
problem of requiring continuous creation of matter in the universe [10]. Ultimately, modern
experiments based on laser ranging of the Earth-Moon distance have constrained present day
variation of G at the level of |Ġ/G| < 10−12 yr−1 [11]. Although Dirac’s hypothesis has been
effectively ruled out by these bounds, it motivated many of the early experimental searches
for variation of fundamental constants.

Several modern attempts have been made to theoretically motivate variation of funda-
mental constants [12, 13]. One example is string theories based on Kaluza-Klein models,
which introduce extra compact dimensions to the usual 3 + 1 spacetime dimensions in order
to unify the fundamental forces [14]. A consequence of this is a relationship between the
electromagnetic coupling (fine-structure) constant, α, and G that depends on the topology
and size of the extra dimensions. Any variation of the size of the extra dimensions could
manifest as a variation of G and/or α [15].

Astrophysical studies

In 1999, a study of Mg I, Mg II, and Fe II absorption lines in quasar emission spectra,
over a redshift range of 0.5 < z < 1.6, began to hint at a smaller value of α in the past,
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of size ∆α/α = (−1.1 ± 0.4) × 10−5 [16]. The data were acquired using the Keck I 10
m telescope in Hawaii and was the first application of the so-called many-multiplet (MM)
method, which sought to compare different transitions within absorbing systems in order to
guard against systematic errors [17, 18]. Over the next several years this group continued to
improve their analysis methods and incorporate new data [19, 20], ultimately reaching the
result of ∆α = (−0.54 ± 0.12) × 10−5 from an analysis of 128 absorbing systems over the
redshift range 0.2 < z < 3.7 [21].

Competing groups during this time carried out a parallel study using data acquired
with the European Southern Observatory (ESO) Kueyen 8.2 m telescope. An analysis of
absorption lines, using the same MM method, over the redshift range 0.4 ≤ z ≤ 2.3 found
∆α/α = (−0.06 ± 0.06) × 10−5 [22, 23], although there was significant debate over the
estimation of uncertainties [24, 25]. A study of a single system absorbing system at z = 1.15
found ∆α/α = (0.0± 0.3)× 10−5 [26].

Within the past several years an attempt has been made to reconcile the conflicting
results. A joint analysis of data, old and new, acquired from both observatories is consistent
with a spatial dependence of α, described by a spatial ‘dipole’ of the form

∆α

α
= (1.1± 0.25)× 10−6r cosΘ, (1.4)

where r is the distance from Earth in units of 109 lightyears and Θ is the angle from the
direction right ascension 17.5±0.9 h, declination −58±9 degrees [27]. Such a spatial variation
could manifest as a temporal variation of α in atomic clock experiments, where the magnitude
is determined by the average direction and speed of the solar system with respect to this
dipole. Unfortunately the steepest gradient of α points in the general direction of the galactic
center, such that α̇/α = −(0.07± 0.1)(1.4× 10−18), where the primary source of uncertainty
arises from the direction of the dipole [28]. The sensitivity necessary to see such a small effect
will not be achieved with any current technology and is many decades into the future.

The conflicting results mentioned so far are likely indicative of the significant systematic
uncertainties that contribute to observational studies. The experiments must contend with
not only the technical limitations of the measuring devices, such as nonlinearities of the
spectrographs used in astrophysical studies, but also make significant assumptions regarding
the local environments of absorbing systems up to 10 billion light years away. Any given
interpretation of observations as evidence for or against variation of constants will always
be subject to justifiable skepticism without the ability to perform repeatable and controlled
experiments.

Laboratory studies

A number of laboratory experiments have been carried out since the first astrophysical re-
sults were published. The majority of these rely on the comparison of transition frequencies
in ions, atoms, and molecules and are complementary to the development of new clock
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technology. Although all atomic energies are proportional to α2 through the overall Ryd-
berg scaling, this dependence drops out in the comparison of any two transition frequencies.
The observable dependence on fundamental constants enters through the fine-structure and
hyperfine-structure corrections of order α4. The hyperfine-structure corrections also intro-
duce two more dimensionless fundamental constants as will be shown shortly.

The frequency of an electronic transition in an atom, that is a transition between states
split by the normal Coulomb interaction, can be expressed

ωelec = R∞c · Aelec · Felec(α), (1.5)

where R∞ is the Rydberg constant, c is the speed of light, Aelec is a dimensionless factor de-
pendent on the atomic structure, and Felec(α) is a correction factor that contains relativistic
and manybody effects that depend on α. The fractional variation of this frequency can then
be written

δωelec

ωelec
=

1

Felec(α)

∂Felec(α)

∂α
δα

=

�
α

∂

∂α
lnF (α)

�
δα

α
. (1.6)

The frequency of a hyperfine transition within an electronic state can be written

ωhfs = R∞c · Ahfs · g ·
me

mp
· α2 · Fhfs(α), (1.7)

where Ahfs is again a dimensionless factor independent of any fundamental constants, g is
the nuclear g-factor, and me/mp is the electron-proton mass ratio. The variation of this
transition frequency can be expressed in a similar manner to Eq. (1.6) where

δωhfs

ωhfs
=

δg

g
+

δ(me/mp)

(me/mp)
+

�
2 + α

∂

∂α
lnFhfs(α)

�
δα

α
. (1.8)

In Ref. [29] it was shown that g and mp can be linked to the fundamental quantities ΛQCD,
the mass scale of quantum chromodynamics (QCD), and the quark mass mq = (mu+md)/2,
where mu,d are the masses of the up and down quarks.

For the purpose of parametrizing dependence on fundamental constants, the ratio of any
two transition frequencies can be conveniently expressed

X ≡ ω1

ω2

= A · αKα ·
�
me

mp

�Ke

·
�

mq

ΛQCD

�Kq

, (1.9)

where A is a scale factor and the Kα,e,q are sensitivity coefficients. We have chosen to main-
tain the dependence on me/mp simply because it is traditionally reported as a constrained
quantity in the literature. In the limit of small variations, the fractional change of this ratio
can be written
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∆X

X
≈ ∆lnX =

∆ω1

ω1

− ∆ω2

ω2

= Kα
∆α

α
+Ke

∆(me/m)

(me/mp)
+Kq

∆(mq/ΛQCD)

(mq/ΛQCD)
. (1.10)

The interpretation of any frequency comparison as a bound on variation of constants
is dependent on accurate calculation of the sensitivity coefficients. State of the art meth-
ods rely on a combination of configuration interaction and many-body perturbation theory
methods [30]. As a rule of thumb, electronic transitions in heavy atoms are highly sensitive
to variation of α due to significant relativistic corrections to energy levels, and electronic
transitions in light atoms are insensitive to variation of α based on similar reasoning. The
current most stringent bound of α̇/α = (−1.6± 2.3)× 10−17 yr−1 comes from a comparison
of optical transitions in the heavy Hg+ ion and relatively light Al+ ion [31]. Hyperfine tran-
sitions within a given electronic state, consider the ground state splitting in Rb, Cs, or H,
are roughly equally sensitive to all three parameters. A listing of various experiments and
the appropriate sensitivity coefficients can be found in Table 2.1.

1.2 Violation of Lorentz symmetry

Violation of Lorentz symmetry in this work is analyzed within the phenomenological frame-
work of the Lorentz-violating Standard Model Extension (SME) [32, 33]. The SME is moti-
vated by the assumption that the Standard Model (SM) of particle physics is the low-energy
limit of a a grand unified theory (GUT) that provides a quantum description of gravity. Al-
though it has been shown that some of proposed GUTs contain mechanisms for spontaneous
Lorentz symmetry [34], the SME is independent of the underlying theory.

Construction of the SME assumes that any GUT must reproduce the SM in a low energy
limit. This begins with the construction of a particle Lagrangian density that contains the
usual SM fields and Lorentz tensors, and adds all possible combinations of these with back-
ground coupling coefficients that serve to break Lorentz invariance. While there are infinitely
many such combinations, we will focus on terms only up to first order in the covariant deriva-
tive Dν ≡ ∂ν − qAν . In the SME, Lorentz violation (LV) must considered separately for the
different particle families, but in this work we restrict our attention to Lorentz violation for
electrons and its implications for atomic clock experiments. The Lagrangian density for an
electron in the minimal SME can be written [33, 35]

L =
1

2
iψ̄Γν

↔
Dν ψ − ψ̄Mψ, (1.11)

where ψ is a four-component spinor, the γν are Dirac gamma matrixes, and
↔

fDνg≡ fDνg−
(Dνf)g. The M ≡ m+ aµγµ+ bµγ5γµ+ 1

2
Hµνσµν and Γν ≡ γν + cµνγµ+ dµνγ5γµ contain the

Lorentz violating effects in the coefficients aµ, bµ, Hµν , cµν , and dµν . Coefficients excluded
by gauge invariance and renormalizability are not included in this construction [35].
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The formulation of the Lagrangian density in Eq. (1.11) allows experiments from a range
of disciplines to be compared on equal footing. The full range of Lorentz-violating experi-
mental signatures is beyond the scope of this work, and a comprehensive review of up-to-date
experimental results can be found in Ref. [36]. We instead focus our attention on the mass-
less cµν electron coefficient. This coefficient has the effect of changing the energy-momentum
(dispersion) relation for an electron in an anisotropic manner. This leads to predictable
modifications of well known effects in electrodynamics, and some of the best bounds on cµν
come from studies of synchotron radiation and inverse Compton scattering of ultrarelativistic
electrons from astrophysical sources [37, 38].

In this work we are interested in the effect of cµν on electrons bound in atoms. The
experimental signature of the modified dispersion relationship in these systems is a shift
of bound states energies that can be detected by measuring transition frequencies between
states. In Ref. [35] the authors perform a series of Foldy-Woutheysen transformations [39,
40] in order to extract the modification to the non-relativistic, free-electron Hamiltonian due
to LV:

δh = −mc2c00 + (cj0 + c0j)pjc−
�
cjk +

1

2
c00δjk

�
pjpk
m

, (1.12)

where p and m are the electron momentum and mass, respectively, and c without subscripts
is the speed of light. Indices are chosen such that greek indices span µ = 0, 1, 2, 3, roman
indices represent spacelike components j, k = 1, 2, 3, and summation over repeated indices is
implied.

The observable Lorentz-violating effects are expected to be suppressed by some power of
the characteristic GUT energy scale, assumed to be order of the Planck massMp ∼ 1018 GeV,
relative to the SM electroweak energy scale, mw ∼ 102 GeV. This allows the Hamiltonian
modification to be treated perturbatively for electrons in atomic states, where the first-order
energy shift of an atomic state m is given by �m|δh|m�. Of the three terms in Eq. (1.12),
the first generates an unobservable constant shift and the second is zero because ��p� = 0
for bound states. The second term might give rise to spontaneous mixing between opposite
parity atomic states that could be detected with standard Stark-interference techniques [41],
but such an effect is likely to be unobservable based on the existing bounds on cµν . The
remaining observable energy shift is then governed by the third term

δh = −
�
cjk +

1

2
c00δjk

�
pjpk
m

. (1.13)

The quantities cjk, δjk, and pjpk are rankd-2 tensors, and Eq. (1.13) can be expressed in the
irreducible spherical tensor representation [42]

δh = −C(0)

0

T (0)

0

2m
−

2�

q=−2

(−1)q

6m
C(2)

q T (2)

−q , (1.14)
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where

C(0)

0
= c00 +

2

3
cjj, C(2)

0
= (cjj − 3c33)

C(2)

±1
= ±3(c31 ± ic32), C(2)

±2
= 3(c11 − c22 ± ic12),

and

T (0)

0
= �p 2, T (2)

0
= �p 2 − 3p2

3

T (2)

±1
= ±p3(p1 ± ip2), T (2)

±2
= (p2

1
− p2

2
)/2± ip1p2.

For bound states, only the T (0)

0
and T (2)

0
have nonzero matrix elements (the other operators

induce transitions between atomic states), so the energy shift can be written

δ�m = −C(0)

0

�m|T (0)

0
|m�

2m
− C(2)

0

�m|T (2)

0
|m�

6m
. (1.15)

The quantity �m|T (2)

0
|m� is worth considering, as this is the quadrupole moment of the

electron momentum in state m. The axis of the quadrupole moment, determined by the
quantization axis chosen for an experiment, represents a prefered alignment of the electron
momentum. As this axis changes with respect to a stationary coordinate system in which C(2)

0

is constant, the energy shift of state m will undergo a corresponding change. An observable
frequency shift of a transition between two atomic states, δωmn = (δ�m − δ�n)/�, therefore
requires that states m and n have different electron momentum quadrupole moments. Note
also that the magnitude of a non-zero T (2)

0
operator can be expected to have a magnitude on

the order of �p2. The best experiments seeking to constrain cµν with this method will likely
study electronic transitions in heavy atoms, where the electron kinetic energy scales roughly
quadratically with the nuclear charge, Z.

The constraints on Lorentz violation for electrons in this thesis are complementary to
studies of Lorentz violation for photons. It has been shown in Ref. [43] that a suitable
coordinate redefinition can map Lorentz violating effects for photons into the cµν coefficient
in the fermion sector. Optical cavity experiments that constrain non-birefringent anisotropies
of photon propagation can then be interepreted as constraints on cµν for electrons with this
transformation. Furthermore, optical cavity experiments that use matter-filled cavities are
sensitive to cµν as it modifies electronic states in the material of the cavity, generating
anisotropic changes in cavity length [11, 44, 45].

1.3 Dysprosium

Atomic dysprosium (Dy) is a rare-earth element with nuclear charge Z = 66 and seven nat-
urally abundant, stable isotopes with mass numbers A = 156, 158, 160, 161, 162, 163, 164.
Dysprosium has long been a system of experimental interest, beginning with proposals to
study nuclear electric-dipole moments [46] in 161Dy, and later attempts to measure atomic



CHAPTER 1. THE SEARCH FOR NEW PHYSICS 8

parity nonconservation effects [41]. Recent demonstrations of the ability to laser cool [47]
and magnetooptically trap [48] Dy has made it an ideal system to study strongly interacting
degenerate gases [49], owing to the large ground-state magnetic moment µ ∼ 10µB.

For the purpose of this work we focus on a coincidence of atomic energy levels in Dy that
is unique within the existing spectroscopic literature. Two distinct electronic states, the
even parity 4f 105d6s, J = 10 (state A) and odd parity 4f 95d26s, J = 10 (state B) states, are
almost completely degenerate at an energy of E = 19, 797.96 cm−1 [50]. The occcurrence of
this ‘accidental’ degeneracy is random chance arising from the high density of excited states
in Dy and large relativistic corrections to electron energies that are on the order of optical
frequencies, ∼ 1015 Hz [51].

This system permits an electric dipole transition between the even parity (state A) and
odd parity (state B) states, making the system nearly ideal for constraining variation of
α or Lorentz violation for electrons. The large and opposite-sign relativistic corrections to
A and B [51] make the energy splitting sensitive to variation of α, and the large electron-
momentum quadrupole moments in these states (see Ch. 4 or Ref. [52]) make the splitting
sensitive to the Lorentz violating cµν tensor. In addition, the small size of the energy splitting
drastically reduces the measurement precision necessary to place competitive constraints on
these effects. Rather than constraining the relative variation of A and B by measuring their
energy above the ground state very precisely, we can directly measure the almost negligible
energy difference between them at a much lower level of precision. As a reference, the best
constraints on variation of α or cµν typically require measurement precision at the level of
10−17 or 10−16 [11, 31, 53]. The results in this work are based on measurement precision at
the level of 10−10.

Statistical sensitivity

Based on this statement of relative precision, it is natural to ask why we can’t simply
measure the Dy splitting at the level of 10−17 as well, place definitive constraints on the
effects under discussion, and move on. There is no general principle prohibiting such a
measurement precision in nearly degenerate sytems, measurements of the hyperfine splittings
in Rb and Cs have achieved this level of precision, but in the specific case of dysprosium
the limitation is one of practical statistics. The fundamental uncertainty associated with
measuring the frequency of an atomic resonance can be estimated as the natural linewidth
of the resonance, γ. This uncertainty can only be reduced by repeated measurements of the
transition frequency,

σω =
γ√
N
, (1.16)

where N is the number of measurements made. In our spectroscopy of the B to A transition
we typically perform measurements on 109 atoms/second. State B is metastable, τB >
200µs, so the natural linewidth of the transition is determined by the lifetime of state A,
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τA ∼ 8µs [54]. We now write
σω

2π
=

1

2π

1/τA

3× 105
√
T
, (1.17)

where T is the measurement time and the factors of 2π are included to express the result in
units of real frequency. Evaluating terms we find

σω

2π
=

0.6√
T
Hz. (1.18)

For a typical measurement time of one hour, we can reasonaly expect to reach 10 mHz
uncertainty, or 10−11 precision for a 1 GHz transition frequency. Improving this to a precision
of 10−17 would take roughly 100 million years, a timescale on which systematic effects will
likely play a significant role.

Procedure

The experimental details of the rf-spectroscopy have been exhaustively detailed in a number
of previous publications [55–59] and theses [60, 61]. Discussions of the method for deter-
mining the transition frequency have been included in Appendix A and Appendix B, and
a more detailed discussion of the experimental apparatus is included in Sec. 5.5. Here we
include a brief overview of the experiment. A partial energy level diagram showing states
of interest in Dy is shown in Fig. 1.1. The metastable state B can be populated by two
laser transitions at 833-nm and 669-nm, followed by a spontaneous decay into B with 30%
branching ratio 1.1. The spectroscopy is performed on a thermal beam of Dy atoms, and
efficient laser excitation of the entire Doppler distribution is achieved using an adiabatic pas-
sage technique demonstrated to have near 100% efficiency [62]. Atoms in state B can then
be resonantly excited to A by applying a radio-frequency electric field. The exact transition
frequency depends on the isotope under consideration and can range from 3 MHz in 163Dy to
> 2 GHz [54]. A listing of the B → A transition frequencies for the most abundant isotopes
and the relative laser tunings necessary to populate state B for each transition can be found
in Table 1.1. Once atoms are in state A they return to the ground state with a natural
lifetime of ∼ 8µs. Multiple decay paths to the ground state exist, with the two dominant
paths ending in the emission of a 626-nm or 564-nm photon. The current experiment uses
the 564-nm fluorescence to probe the transition (see Appendix A).

Isotope comparisons

The degeneracy between A and B is so complete that isotope dependent shifts of energy
levels can reverse the relative energies of A and B. The dependence of the sign of �B − �A
on isotope presents a powerful tool for rejection of systematic effects. The sensitivity of A
and B to variation of α or cµν is isotope independent [55], thus the sign and magnitude
of ∆�A and ∆�A is the same in all isotopes. The magnitude of the transition frequency
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A BEnergy

ω1

ω2

ω1’

ω2’

rf

Figure 1.1: Relevant energy levels in atomic dysprosium. The expanded energy scale on the right
demonstrates how the opposite sign of the energy splitting between states A and B in certain
isotopes of Dy can be used to guard against systematic effects. A change in α or a non-zero cµν

causes the magnitudes of the frequencies ω1 and ω2 to decrease and increase, respectively. Any
observed frequency shift that does not obey the expected isotopic sign dependence can be ruled
out as a systematic effect.

between A and B, however, will change with a sign determined by the sign of �B − �A. This
is illustrated in Fig. 1.1. Comparing transition frequencies in different isotopes, therefore,
allows systematic effects that do not shift all transition frequencies according to the expected
relative sign dependence to be rejected. In the current work we compare the -234.7 MHz
transition in 162Dy and 753.5 MHz transition in 164Dy, where the frequency is considered
positive for �B > �A. Extending the work to include more isotopes will increase the fidelity
of systematic rejection.
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νrf �dF�/�dJ� Mass No. FA FB 883 nm detuning 669 nm detuning
(MHz) (Abund.) (MHz) (MHz)

-1328.6 1.00 160 (2%) 10.0 10.0 -2487 2242

-1856.4 0.15

161 (19%)

7.5 8.5 -2493 2908
-1714.7 1.04 11.5 11.5 -2256 1202
-1249.7 0.99 10.5 10.5 -2486 1718
-962.3 0.15 12.5 11.5 -2256 1202
-791.5 0.94 9.5 9.5 -2549 2293
-349.2 0.89 8.5 8.5 -2493 2908
-172.7 0.19 11.5 10.5 -2486 1718
68.9 0.86 7.5 7.5 -2360 3545
514.0 0.20 10.5 9.5 -2549 2293
1096.9 0.19 9.5 8.5 -2493 2908
1576.0 0.15 8.5 7.5 -2360 3545

-234.7 1.00 162 (26%) 10.0 10.0 -1200 1082

-1967.8 0.15

163 (25%)

12.5 11.5 -1214 1620
-1581.3 0.86 7.5 7.5 -154 -1080
-1134.9 0.89 8.5 8.5 -532 -633
-609.7 0.94 9.5 9.5 -866 -47
-363.2 0.15 7.5 8.5 -532 -633

3.1 0.99 10.5 10.5 -1110 698
504.6 0.19 8.5 9.5 -866 -47
713.1 1.04 11.5 11.5 -1214 1620
1531.0 1.10 12.5 12.5 -1122 2740
1543.9 0.20 9.5 10.5 -1110 698

753.5 1.00 164 (28%) 10.0 10.0 0 0

Table 1.1: Calculated E1 transition frequencies < 2 GHz using the hyperfine constants and isotope
shifts from Ref. [54]. Positive frequency is chosen to mean �B > �A. Reduced matrix elements are
denoted by �dF � and �dJ� = 1.5(1)× 10−2 ea0 ≈ 19 kHz/(V/cm). The last two columns indicate
the frequencies of the 833-nm and 669-nm lasers necessary to optimally populate atoms into state
B for each rf transition, relative to the 164Dy transition frequencies. For hyperfine transitions these
tunings are chosen for the strongest transitions where ∆F = ∆J .
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2 — Variation of α

2.1 New limits on variation of the fine-structure

constant using atomic dysprosium

We report on the spectroscopy of radio-frequency transitions between nearly-degenerate,
opposite-parity excited states in atomic dysprosium (Dy). Theoretical calculations predict
that these states are very sensitive to variation of the fine-structure constant, α, owing
to large relativistic corrections of opposite sign for the opposite-parity levels. The near
degeneracy reduces the relative precision necessary to place constraints on variation of α
competitive with results obtained from the best atomic clocks in the world. Additionally,
the existence of several abundant isotopes of Dy allows isotopic comparisons that suppress
common-mode systematic errors. The frequencies of the 754-MHz transition in 164Dy and
235-MHz transition in 162Dy were measured over the span of two years. Linear variation of
α is found to be α̇/α = (−5.8 ± 6.9) × 10−17 yr−1, consistent with zero. The same data
are used to constrain the dimensionless parameter kα, characterizing a possible coupling of
α to a changing gravitational potential. We find that kα = (−5.5 ± 5.2) × 10−7, essentially
consistent with zero and the best constraint to date.

This chapter is currently under review for publication in Physical Review Letters. The preprint is
available at http://arxiv.org/abs/1304.6940
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Variation of fundamental constants was first formulated by Dirac as the Large Numbers
hypothesis [8, 10]. The observation that dimensionless ratios of quantities such as the age
of the universe to atomic time scales and the electromagnetic to gravitational force between
a proton and electron were of the same order of magnitude, ∼ 1040, led to the hypothesis
that these ratios were functions of the age of the Universe. A consequence of this hypothesis
is a gravitational constant, G, that scales inversely proportional to the age of the universe.
Although modern experiments based on lunar ranging [63] have ruled out present-day vari-
ation of such magnitude, the variability of fundamental constants remains an active area of
theoretical and experiment research. Any such variation would be a violation of the Einstein
Equivalence Principle (EEP) and an indication of physics beyond General Relativity (GR)
and the Standard Model (SM) of particle physics [12, 13].

Changing constants would manifest in a wide range of physical observables. The dimen-
sionless electromagnetic-coupling constant, the fine-structure constant, α, is of particular
importance due to the implications of its variation on clock-comparison experiments. Any
variation of α would lead to a change in the relative frequencies of co-located clocks even
in the absence of external fields. This is forbidden by an assumption of EEP. In this letter
we report new constraints on variation of α with respect to time and changing gravitational
potential from a comparison of radio-frequency transitions in two isotopes of atomic dyspro-
sium (Dy) [54, 55]. These new results improve on our earlier constraints [56, 57] by almost
two orders of magnitude and are competitive with existing limits from other experiments [31,
64–70].

The most stringent laboratory constraints on variation of fundamental constants come
from clock-comparison experiments. We restrict our attention to clocks based on transitions
in atoms and molecules. The ratio of any two such clock frequencies can be written [29]

X =
ω1

ω2

= A× αKαµKe
e µKq

q , (2.1)

where A is a dimensionless factor dependent on atomic structure, µe = me/mp is the electron-
proton mass ratio, and µq = mq/ΛQCD is ratio of the quark mass to QCD-mass scale. The
dimensionless constants µe and µq are important for comparisons involving transitions with
hyperfine structure [64, 69] or molecular transitions [71]. The change of this ratio can be
written as

∆lnX = Kα∆lnα +Ke∆lnµe +Kq∆lnµq, (2.2)

where the sensitivity coefficients Kα,e,q depend on the particular frequency ratio under con-
sideration. A summary of coefficients for various comparisons can be found in Table 2.1.
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Figure 2.1: Partial energy diagram for Dy showing states of interest. Preparation of atoms is
accomplished via two laser excitations and a spontaneous decay with 30% branching ratio into
metastable state B. Atoms are excited from state B to A by a resonant, frequency-modulated rf
electric field. State A decays with lifetime ∼ 8 µs. A photomultipler tube and lock-in amplifier
detect the 564-nm fluorescence. The bottom right inset shows typical lock-in signals for 164Dy at
the 1st and 2nd harmonics of the modulation frequency.
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ratio Kα Ke Kq ref.
164,162Dy/Cs (−2.6,+8.5)× 106 −1 −0.002 [this work]
Rb/Cs −0.49 0 −0.021 [64]
Yb+/Cs −1.83 −1 −0.002 [65]
CSO/Cs 3 −1 0.1 [66]
Hg+/Al+ −2.95 0 0 [31]
Sr/Cs −2.77 −1 −0.002 [67]
H(1S-2S)/Cs −2.83 −1 −0.002 [69]

Table 2.1: Sensitivity coefficients for several clock comparisons. CSO refers to crystal-sapphire
oscillator. The large sensitivity of the Dy transition frequency to variation of α is a relative
enhancement due to the near degeneracy of the electronic states involved in the transition. Column
references are for experimental details. Calculations of sensitivity coefficients can be found in
Refs. [51, 72].

In Dy we make use of an ‘accidental’ degeneracy of energy levels to greatly relax the mea-
surement precision necessary to place competitive limits on variation of α. Large relativistic
corrections to electron energies in Dy create an almost complete degeneracy of opposite-
parity excited states, labeled A and B by convention (Fig. 2.1). This system has been the
subject of investigations spanning over two decades, including an attempt to measure par-
ity nonconservation [41, 73]. Recently an analysis of the data from the present work has
also been used to place stringent limits on violations of Lorentz symmetry and the Einstein
Equivalence Principle [74].

The energy difference corresponding, ωBA = (�B − �A)/�, is sensitive only to variation
of α. In practice, however, any measurement must have a standard ‘ruler’ for comparison.
The frequencies in our experiment are measured with respect to the stabilized oscillator of
a cesium (Cs) beam standard, which introduces sensitivity to variation of both µe and µq.
Changes in the frequency ratio ωBA/ωCs can be written

∆ln
ωBA

ωCs

= Kα
∆α

α
+Kµe

∆µe

µe
+Kµq

∆µq

µq
. (2.3)

As shown in Table 2.1, the Dy/Cs frequency comparison is over six orders of magnitude more
sensitive to variation of α than to variation of µe and µq. This is a relative enhancement
of sensitivity, rather than an absolute enhancement, owing to the near degeneracy of levels
A and B . At our present level of measurement precision, variation of µe or µq would only
be observable at levels orders of magnitude larger than stringent constraints placed by other
experiments [64]. Thus our experiment is effectively sensitive only to variation of α,

∆ln
ωBA

ωCs

=
∆ωBA

ωBA

− ∆ωCs

ωCs

≈ Kα
∆α

α
. (2.4)
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Instability of the Cs reference, a > 30 yr old HP5061A, presents another source of concern
for measurements spanning several years. A separate comparison between the Cs reference
and a GPS stabilized Rb oscillator (Symmetricom TS2700) is performed during all data
collection as a check against this. The fractional instability of the Cs reference, as compared
to Rb reference, has been measured to be < 10−12 yr−1, well below our dominant measure-
ment errors. The influence of Cs-reference instability is ignored, and the magnitude of the
frequency |ωBA| is assumed to vary with α according to [51]

∆|νBA|
2π

≈ ±(2× 1015 Hz)∆α/α, (2.5)

where the sign is negative for ωBA > 0 and positive for ωBA < 0. The present work is based
on measurements of the ωBA/(2π) ≈ 753.5 MHz and ωBA/(2π) ≈ −234.7 MHz transitions in
164Dy and 162Dy (see Fig. 2.1). Comparing isotopes with sensitivities of opposite sign allows
for the cancellation of common systematic errors that might otherwise mimic variation of α
in a single isotope.

The spectroscopy is performed on a thermal beam of Dy atoms, produced in an oven
heated to ∼ 1400 K inside a vacuum chamber with residual gas pressure of ∼ 10−7 torr.
After two collimators/conductance chokes the atoms enter the interaction chamber where
the residual gas pressure is ∼ 10−9 torr. The atoms undergo laser excitations at 833 nm and
669 nm, employing an adiabatic-passage technique [62], followed by a spontaneous decay
at 1.4 µm with 30% branching ratio to state B. Narrow-band lasers provide high-fidelity
isotope selection. Upon excitation to state B atoms then enter the interaction region, where
excitation from B to A occurs via a frequency-modulated electric field. Atoms spontaneously
decay from state A via two steps to the ground state. Fluorescen at 564 nm is directed
by a polished-aluminum light-collection system (∼ 4% overall efficiency) into a glass pipe,
detected by a photomultiplier tube (PMT), and sent to a lock-in amplifier for processing.
Figure 2.2 shows a simplified diagram of the experiment.

The apparatus has been designed to minize the systematic uncertainties presented in Ta-
ble 2.2. In our previous result [56] the sensitivity was limited by the collisional pertubation
of energy levels by background gases [75], poor suppression of Zeeman shifts owing to im-
perfections in laser-light polarization, and systematic shifts related to inhomogeneity of the
rf field. In the new apparatus the high-vacuum system reduces collisional shifts to below the
1 mHz level. The electric-field region has been designed to ensure field homogeneity across
the range of operating frequencies. Doppler shifts are suppressed by creating an rf-standing
wave in the interaction region in addition to orienting the k-vector of any residual traveling
wave perpendicular to the atomic-beam propagation axis. Two layers of magnetic shielding
limit background magnetic fields to below 500µG in all directions and three-axis magnetic
field coils allow residual fields to be canceled out.
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Figure 2.2: Schematic of the experimental set-up. Argon-ion lasers pump a dye laser producing
669-nm light and a Ti:sapphire laser producing 833-nm light. Components in vacuum are within
the dashed boundaries. a) Skimmers collimate the atomic beam, and double as conductance chokes
for differential pumping between the oven chamber and interaction chamber. b) In-vacuum linear
polarizers are the last optical element for the laser light before interacting with Dy atoms. c)
Lenses diverge the laser light to match the atomic beam divergence. d) Polished aluminum mirrors
guide fluorescence to a photomultiplier tube. e) An interference filter wih 564-nm peak transmission
suppresses stray laser and oven light. f) A glass pipe guides fluorescent light to a PMT for detection.
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systematic stability (mHz) |α̇/α| (10−17 yr−1)

electronic offsets 200-470 10-23.5
BBR/temperature 66 3.3
Zeeman shift 50 2.5
ac-Stark shift 32 1.6
residual amplitude modulation 20 0.5
dc-Stark shift < 1 < 0.04
collisional shift < 1 < 0.04
quadrupole shift < 1 < 0.04
clock stability < 1 < 0.04

Total 220 - 480 11 - 24

Table 2.2: Current levels of known systematics. The total systematic uncertainty is obtained
by adding in quadrature. The corresponding uncertainties for |α̇/α| assume two measurements
separated by one year.

The dominant systematic is an electronic offset in the acquisition electronics, which
may create a shift in the zero-crossing of the first-harmonic signal and apparent shift of
the transition frequency. Sensitivity to electronic offsets is amplified by the relatively large
transit-broadened linewidth of the transition, γ ∼ 2π × 40 kHz. We attempted to measure
these offsets by varying the PMT gain, in order to change the useful signal size while leaving
electronic noise unchanged. This idea is based on the offset compensation scheme presented
in Ref. [76], but currently only constrains electronic offsets at the level of 500 nV. The
importance of this effect depends on the absolute signal size and is reflected in the range of
uncertainties in Table 2.2.

The ac-Stark shift in a two-level system is approximately zero for a resonant electric field,
with a negligible contribution expected from what is known as the Bloch-Siegert shift [55].
Strongly coupled off-resonant levels may lead to large shifts correlated with rf-power. A
measurement of the off-resonant contributions to the dynamic polarizabilities in 164Dy and
162Dy found δν � 70E2 mHz, where E2 is mean-squared field value. Typical values of
E2 are 4.5 (V/cm)2, corresponding to a stability of 3 mHz/% change in rf power. The
uncertainty associated with this systematic is conservatively estimated from an assumption
of 10% control over the rf power in the interaction region.

Additional Stark related systematics are the dc-Stark effect and blackbody radiation
(BBR) induced Stark shifts [77]. Charged particles in the atomic beam can cause charge
accumulation on the electric field plates and produce DC fields. A pair of sweep electrodes
biased at 500 V is used to sweep charged particles out of the atomic beam, and the DC field
is periodically measured via Zeeman-crossing spectroscopy [41, 54]. These are consistently
found to be at the level of 10 mV/cm. The temperature dependence of the transition frequen-
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cies has been measured near room temperature to be +29(4) mHz/K and −34(4) mHz/K
for 164Dy and 162Dy, respectively. The isotopic dependence of the sign is consistent with
BBR induced Stark shifts, but the attribution of these shifts to BBR is preliminary [78].
Currently, the 2 K temperature stability of the interaction region is used to estimate the
systematic uncertainty due to this effect.

Suppression of Zeeman-effect related systematics is accomplished by performing spec-
troscopy with the Zeeman structure unresolved. Linear polarizers are located in vacuum
and are the last optical elements for the 833-nm and 669-nm laser light, ensuring symmet-
ric population of the ±M magnetic sublevels of state B. A magnetic field then leads to a
broadening of the unresolved line, but no shift. A measured residual Zeeman shift of ∼ 2.5
Hz/mG represents a suppression of ∼ 1000 from the sensitivity of the m = 10 sublevel. The
magnetic field stability along the quantization axis, chosen to coincide with the rf field, is at
the level of 20µG. We note that the magnetic field insensitive mB = 0 → mA = 0 transition
is forbidden between levels A and B where ∆J = 0.

Residual amplitude modulation refers to a power imbalance of the carrier sidebands in
the frequency-modulated spectrum of the electric field. Such an imbalance distorts the
atomic lineshape and creates an apparent frequency shift. Poor impedance matching and
termination of the rf transmission line made this a dominant systematic in early data at the
1 Hz level. Measuring the transition frequency with the in-phase and quadrature channels
of the lock-in amplifier allows the size and stability of RAM to be measured directly with
the atoms as discussed in Sec. 4.1. This protocol was implemented beginning May 2011. In
August 2011 custom narrow-band, radio-frequency circulators (DPV CO) were installed to
suppress transmission-line etalons. A frequency shift, introduced by switching between these
configurations, was measured and a correction applied to earlier data.

The transition frequencies ν164 and ν162 measured over the span of two years are shown
in Fig. 2.3. The reduced uncertainties beginning in May 2011 are primarily due to the
characterization and eventual suppression of RAM. To constrain a linear variation of α in
time a global linear least-squares fit is performed, in which the two isotopes’ data are fit
by independent offsets and equal magnitude slopes of opposite sign. The best-fit slope of
−0.12± 0.14 Hz/yr corresponds to the result

α̇ = (−5.8± 6.9)× 10−17 yr−1, (2.6)

which is consistent with zero within 1 standard deviation. This result approaches within a
factor of 3 the level obtained with the best optical clocks in the world [31], and is limited
by systematic uncertainties. The contribution of statistical uncertainties is at the level of
α̇/α ∼ 1.7 × 10−17 yr−1. The data are also fit by equal slopes of the same sign, which is
sensitive to common mode systematics, but not variation of α. This fit gives a slope of
(0.41± 0.14) Hz/yr. The 3-sigma, non-zero drift at the level of ∼ 0.5 Hz could be explained
by a drifting electronic offset, which as a technical systematic is expected to be the same
sign for both isotopes.
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Our data can also be used to constrain violations of local position invariance, assuming
a model where fundamental constants are influenced by light scalar fields that scale lin-
early with changes in the local gravitational potential [79]. We can express this as ∆α/α =
kα∆U/c2, where ∆U/c2 is a change in the dimensionless gravitational potential. The el-
lipticity of the Earth’s orbit provides semi-annual changes in the laboratory gravitational
potential, ∆U/c2 = ±1.65 × 10−10, at the aphelion and perihelion of Earth’s orbit for plus
and minus, respectively. To constrain kα the data are again fit by global linear least-squares
to cosine functions with equal amplitudes but 180◦ phase difference. The period is equal to
one solar year and zero phase is fixed at Earth’s perihelion on Jan. 3, 2010. The best-fit
amplitude of oscillation is found to be 0.18± 0.17 Hz, providing the best bound to date on
the dimensionless coupling to be

kα = (−5.5± 5.2)× 10−7, (2.7)

providing the best constraint so far on this parameter [64]. The sensitivity is again limited by
systematics. The statistical contribution to the uncertainty is at the level of kα ∼ 1.2×10−7.
A global fit to the two isotopes’ data with 0◦ phase difference, sensitive to common mode
systematics, has an amplitude of −0.17 ± 0.17 Hz. The data and best fits are shown in
Figure 2.3

We have presented updated constraints on variation of α that represent almost two orders
of magnitude improvement over previous results, with the present level of sensitivity still
limited by systematic effects. While more stringent control of these systematics, particularly
electronic offsets, presents a clear avenue to achieving the ultimate practical statistical limit
of 10−18 calculated in [55], recent astrophysical evidence [27] for spatial variation of α suggests
an observable variation of α in the laboratory at the level of 10−19 [28]. A new generation of
experiments based on the spectroscopy of optical nuclear transitions [80] or optical transitions
in highly-charged ions [81] will be necessary to observe this effect.
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Figure 2.3: Changes in the transition frequencies for 162Dy (filled circles) and 164Dy (empty
circles) over the span of two years. The frequencies for 162Dy and 164Dy are displayed with respect
to 234,661,102 Hz and 753,513,708 Hz, respectively. a) The data are fit by linear functions with
equal magnitude slopes of opposite sign (solid) and same sign (dashed). b) The data are fit by
cosine functions with equal amplitudes but 180◦ phase difference (solid) and 0◦ phase difference
(dashed). The variation of the dimensionless gravitational potential, scaled in relative units by
5× 1010, is shown by the light solid line.
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3 — Test of Lorentz symmetry

3.1 Limits on violations of Lorentz symmetry and the

Einstein equivalence principle using

radio-frequency spectroscopy of atomic

dysprosium

We report a joint test of local Lorentz invariance and the Einstein Equivalence Principle
for electrons, using long-term measurements of the transition frequency between two nearly
degenerate states of atomic dysprosium. We present many-body calculations which demon-
strate that the energy splitting of these states is particularly sensitive to violations of both
special and general relativity. We limit Lorentz violation for electrons at the level of 10−17,
matching or improving the best laboratory and astrophysical limits by up to a factor of 10,
and gravitational redshift anomalies for electrons to the level of 10−8. With some enhance-
ments, our experiment may be sensitive to Lorentz violation at the level of 9× 10−20.

This chapter is currently under review for publication in Physical Review Letters. The preprint is
available at http://arxiv.org/abs/1303.2747
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Local Lorentz invariance (LLI) and the Einstein equivalence principle (EEP) are funda-
mental to both the standard model and general relativity [82]. Nevertheless, these symmetries
may be violated at experimentally accessible energy scales due to spontaneous symmetry
breaking, or some other mechanism of an as yet unknown unified theory of physics at the
Planck energy scale [34, 83]. This has motivated the development of many experimental tests
of both LLI and EEP [84, 85], and of a phenomenological framework, known as the stan-
dard model extension (SME), within which the results of these tests can be quantitatively
compared with one another [32]. This widely used [36] framework augments the standard
model Lagrangian with every possible combination of standard model fields that are not
term-by-term invariant under Lorentz transformations, while preserving the overall Lorentz
invariance of the total action, and maintaining gauge invariance and energy-momentum con-
servation [32]. Violations of LLI, which themselves constitute violations of EEP [82, 85], have
also been shown to violate other tenets of general relativity, such as the universality of free
fall, and local position invariance [86].

In this letter, we show, using many-body calculations, that the energies of the nearly
degenerate 4f 105d6s and 4f 95d26s states of dysprosium (Dy) [18, 87–89] are extremely sen-
sitive to physics that breaks LLI and the EEP in the dynamics of electrons. We report the
results of an analysis of a modest amount of Dy spectroscopy data acquired over two years
that significantly improves upon the best laboratory [11], accelerator [90], and even some as-
trophysical [37] limits on a specific class of LLI and EEP violating physics for electrons. We
show that Dy spectroscopy also offers substantial promise as a gravitational redshift test [91],
constraining electron-related gravitational redshift anomalies at the level of 10−8 [52].

The EEP and LLI require that spacetime, while it may be curved, is locally flat, and
Lorentzian [82]. This means that the relative frequencies of any set of clocks at relative rest
and located at the same point in (or within a sufficiently small, approximately flat volume
of) spacetime be independent of a) where that point is located in a gravitational potential
(also known as local position invariance), or b) the velocity of their rest frame relative to
any other reference frame (LLI). In the SME, violation of EEP and LLI for electrons can
be described as a modification of the electrons’ dispersion relation, which in turn leads to
variations in the energies of bound electronic states as a function of velocity and position in
an external gravitational potential [35, 86].

We focus on the symmetric, traceless cµν tensor in the electron sector of the SME, and
work in a coordinate system scaled such that the speed of light is a constant c in all frames.
In the SME, the cµν tensor modifies the kinetic term in the electronic QED Lagrangian to
become [33]

L = 1

2
iψ̄ (γν + cµνγ

µ)
↔
Dν ψ − ψ̄mψ, (3.1)

where m is the electron mass, ψ is a four-component Dirac spinor, γν are the Dirac gamma

matrixes, and
↔

fDνg≡ fDνg − (Dνf)g, with Dν ≡ ∂ν − qAν . The cµν tensor is frame-
dependent [33, 35, 92, 93], and is uniquely specified by its value in a standard reference frame.
We use the Sun-centered, celestial equatorial frame (SCCEF) for this purpose, indicated by
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Figure 3.1: Energy levels of Dysprosium. Atoms are optically pumped (solid lines) to a state which
decays (wavy lines) into the metastable state B. A linearly polarized rf field drives the B → A

transition, which is detected via fluorescence at 564nm. Insets a) and b) show the magnified
diagram for 164Dy and 162Dy, respectively. Lorentz-symmetry violation shifts the rf resonance by
δωrf = (∆EB−∆EA)/�. Measured frequencies are always positive, so the sign of the observed shift
is determined by the sign of the level splitting.

the coordinate indexes (T , X, Y , Z), for ease of comparison with other results [36]. The
component indexes for laboratory frame coordinates are given as (0, 1, 2, 3), where t = x0/c
is the time coordinate. Roman indexes are used to indicate the spatial components of cµν , and
are capitalized to indicate the SCCEF frame. The cµν tensor has six parity-even components:
cTT , plus the five cJK ’s; and three parity-odd components: cTJ , which introduce direction and
frame dependent anisotropies in the electrons’ energy-momentum, or dispersion relation [33].
This shifts the energies of bound electronic states as a function of the states’ orientation and
alignment in absolute space, breaking both LLI and rotational symmetry [35].

In general relativity, global Lorentz invariance is broken by the curvature of space-time.
In terms of the global coordinate system, this curvature influences the motion of freely falling
particles by modifying their dispersion relations. General relativity preserves local Lorentz
invariance because gravity modifies all particles’ dispersion relation in the same way –at any
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point in space time, it is always possible to define coordinates such that gravity’s modifica-
tions to particles’ dispersion relations drop out. The additional effect of the cµν coefficients,
however, makes it impossible to completely remove gravity from the local equations of mo-
tion, leading to locally observable gravitational-potential dependent shifts in the energies of
bound electronic states, or anomalous gravitational redshift phenomena [52, 86]. This energy
shift is proportional to the electron’s kinetic energy [35].

Dysprosium, an atom with 66 protons and a partially filled f -shell, is well suited to
measuring the electron cµν coefficients. It possesses two near-degenerate, low-lying excited
states with significant quadrupole moments, and opposite parity: 4f 105d6s J = 10 (state A)
and 4f 95d26s J = 10 (state B), which differ by a transposition of an electron from the 4f
to the 5d orbital. The energy difference between these states can be measured directly by
driving an electric-dipole transition (Fig. 3.1) with a radio-frequency (rf) field, and should
be particularly sensitive to anomalies proportional to the electrons’ kinetic energy, since the
4f orbital lies partly within the radius of filled s, p, and d shells that screen the nuclear
charge from the larger 5d orbital. The same properties of Dy that make measurements of
the B → A transition particularly sensitive to variations in the fine structure constant, α [55,
56, 94], also make them highly sensitive to violations of LLI and EEP.

In terms of spherical-tensor operators, Eq. (3.1) produces a shift δh in the effective
Hamiltonian for a bound electron with momentum �p given by [35, 40, 86]

δh = −
�
C(0)

0
− 2U

3c2
c00

�
p
2

2m
−

2�

q=−2

(−1)q

6m
C(2)

q T (2)

−q , (3.2)

where we have included the leading order (2U/3c2)c00 gravitational redshift anomaly [86],
and

C(0)

0
= c00 +

2

3
cjj, C(2)

0
= (cjj − 3c33)

C(2)

±1
= ±3(c31 ± ic32), C(2)

±2
= 3(c11 − c22 ± ic12),

are written in terms of the laboratory-frame values of the cµν tensor, with summation implied

over like indexes. Note that C(2)

0
is also known as cq in the literature [35]. The spherical tensor

components of the squared momentum are written as T (2)

0
= �p 2 − 3p2

3
, T (2)

±1
= ±p3(p1 ± ip2),

and T (2)

±2
= (p2

1
− p2

2
)/2 ± ip1p2. The energy shift for a state |J,M� of an atom due to the

perturbation (3.2) is the expectation value of the corresponding N electron operator. Since
only tensors with q = 0 contribute to energy shifts of bound states, we need only calculate
matrix elements for the �p 2 and T (2)

0
= �p 2 − 3p2

3
operators.

To calculate these matrix elements, we use a version of the configuration interaction
method optimized for atoms with many electrons in open shells. This method has been
used to calculate energy levels, transition amplitudes, dynamic polarizabilities, “magic” fre-
quencies in optical traps, and the effects of α variation and parity violation in Dy and other
atoms [30, 51]. Calculated values of the reduced matrix elements for the A and B states of Dy
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States
A B

leading config. 4f 105d6s 4f 95d26s
Term 3[10] 7Ho

J 10 10
Energies (cm−1)

Expt. [50] 19798 19798
Calc. [73] 19786 19770

Matrix Element (atomic units)
�J � cγ0(γjpj − 3γ3p3) � J� 69.48 49.73
�J � p

2 − 3p2
3
� J� 69.84 49.89

�JM |p2|JM� 437 422

Table 3.1: Matrix elements of the relevant operators of Lorentz violation for states A and B of
163Dy in units of the Hartree energy Eh = (6.5× 1015 Hz)h.

are presented in Table 3.1. To check our results, we repeat the matrix element calculation
using the fully relativistic form of the Hamiltonian [40]. The corresponding operators are

cγ0γjpj and T (2)

0
= cγ0(γjpj − 3γ3p3), respectively. We find good agreement between both

calculations, consistent with our initial approximation.
All frequency measurements are made with reference to a standard Cs reference oscillator.

If LLI is violated, it is possible that the electron cµν coefficients may also affect the frequency
of our reference. The symmetries of the 6s1 state and the clock transition largely suppress
quadrupole shifts in the hyperfine frequency of the Cs reference, and the fractional shift
of the reference due to the anomalous redshift contributed by the cµν terms is expected to
be ≈ −4

3
cTT [52]. For our purposes, however, violations of LLI and anomalous redshifts of

the Cs hyperfine reference frequency can be neglected. The quadrupole term is strongly
suppressed due to the symmetries of the 6s1 state [35], and the scalar shift is expected to be
∼ (10 GHz)cµν [52], while as Table 3.1 shows, the splitting between the A and B states of
Dy will be ∼ (100 THz)cµν or greater.

Dysprosium metal is heated in an oven to ∼ 1400 K to produce an effusive atomic beam.
The Dy atoms are optically pumped into the metastable state B via two consecutive laser
excitations with 833 nm and 669 nm light followed by a spontaneous decay. The atoms are
resonantly excited from state B to A via an rf electric field, whose linear polarization defines
the atoms’ quantization axis. The polarization of the excitation laser is chosen to create a
symmetric population among the ±M magnetic sublevels of state B along this quantization
axis. The A state relaxes to the ground state in a cascade decay, emitting 564 nm light in
the process. The transition frequency is determined by measuring the intensity of the 564
nm fluorescence (with a photomultiplier) as a function of radio frequency. A more detailed
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description of the experimental procedure and apparatus can be found in Refs. [56, 58].
We measure the average frequency shift of all populated magnetic sublevels, driven by a

linearly polarized rf electric field. Each state’s energy shift varies with the projection of its
total angular momentum according to:

δE = −1

2

�
C(0)

0
− 2U

3c2
c00

�
�JM |p2|JM� − 1

6
C(2)

0

�J M 2 0|J M�√
2J + 1

�J � T (2)

0
� J�, (3.3)

where J is the atom’s total angular momentum and �J M 2 0|J M� is a Clebsch-Gordan
coefficient. The actual population distribution among the magnetic sublevels is measured
by resolving the Zeeman structure of the two states and measuring the peak amplitude of
each transition. These amplitudes are used as weights in an average over the shift for each
|JM� state in Eq. (3.3) to determine the average shift of the unresolved line. Using the rf-
field polarization to define the quantization axis, the average shift in the B → A transition
frequency ωrf for 162Dy and 164Dy is given by

δωrf

2π
= ∓

�
1014Hz

��
500

�
C(0)

0
− 2U⊙

3c2
c00

�
+ 9.1C(2)

0

�
, (3.4)

where ωrf is defined to be positive, producing a negative (positive) shift for 162Dy (164Dy),
and U⊙ = −M⊙G/rlab is the Sun’s gravitational potential. The overall sign of the first term
is determined by the sign of the splitting between state A and B, and that of the second
term is by the populations of the magnetic-sublevels. This sign flip between the two isotopes
aids in the rejection of common-mode systematic backgrounds.

The value of C(0)

0
and C(2)

0
in the laboratory-frame is a function of the value of cµν in

the SCCEF, as well as the orientation and velocity of the lab, and so any anomalous δωrf

measured in the lab must vary in time [35]. The precise relation between C(0)

0
and C(2)

0
and

the SCCEF value of cµν can be found in Sec. 3.2. In the laboratory frame, moving with the

Earth’s orbital velocity cβ⊕ relative to the SCCEF, cTT makes a small contribution to C(2)

0
,

scaled by a factor of β2

⊕ ≈ 1× 10−8. Over the course of a year, the gravitational potential of
the laboratory due to the Sun modulates sinusoidally with amplitude ∆U⊙/c2 = 1.7×10−10,
yielding a measurement of cTT via the scalar component of Eq. (3.3).

Using repeated measurements of δωrf taken over a span of nearly two years, we obtain
constraints on eight of the nine elements of cµν in the SCCEF. The analysis is performed in
two parts. The cJK coefficients are constrained using data collected over the course of 12
hours beginning on Oct. 19, 2012. For each isotope the mean value of 20 successive frequency
measurements (∼ 10 seconds) is assigned an error bar according to the standard error of the
mean for that bin. The resulting data are fit with Eq. (3.4), including an independent,
constant frequency offset for each isotope, after a transformation to the SCCEF coordinate
system has been made. The short duration of this data set allows us to neglect the slow (1
yr−1 and 2 yr−1) variations induced by the cTT and cTJ terms. These terms are neglected
in this fit, as they are suppressed by at least one factor of β⊕ ∼ 10−4, and are already
sufficiently bounded by astrophysics [37] that their effect on our measurements of cJK is
roughly 100 times less than our statistical sensitivity.
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Figure 3.2: Full record of frequency measurements for 162Dy (upper data set) and 164Dy (lower data
set). Frequencies are plotted relative to 234 661 065 Hz for 162Dy and 753 513 695 Hz for 164Dy.
Error bars are obtained by binning measurements into sets of 20 and calculating the standard error
of the mean for each set. The solid line indicates the least-squares fit. Inset, is an expanded view
of the most recent measurements beginning on Oct. 19, 2012, with time given in Pacific Standard
Time (Coordinated Universal Time minus 8 hours).

The cTJ and cTT coefficients are constrained using data collected between November 2010
and July 2012. The data are binned and assigned error bars as previously described. Since
the above analysis of the 12 hour data set provides tight constraints on cJK coefficients, the
second fit includes only the cTJ and cTT coefficients. The fit routine is the same as before,
adding an independent linear slope for each isotope to account for long-term systematic drifts.
The resulting fit includes a large signal for the combination cT (Y−Z) ≡ cTY sin η−cTZ cos η =
(−3.8 ± .5) × 10−12, where η is the Earth’s axial tilt. As such a signal is inconsistent with
existing limits on cT (Y−Z) [37, 90], we suspect the presence of uncontrolled systematic shifts
in δωrf with characteristic modulation frequencies near 1 day−1 and 2 day−1, and amplitude
300 mHz. These systematics may be due in part to, e.g. , magnetic field fluctuations (∼ 50
mHz), blackbody shifts due to changes in the temperature of the spectroscopy chamber
(∼ 60 mHz) [78], and changes in electronic offsets (∼ 140 mHz). Daily fluctuations in these
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Combination Limits
new existing

0.10 cX−Y − 0.99 cXZ −8.9± 11 −33± 19 ×10−17

0.99 cX−Y + 0.10 cXZ 3.8± 5.6 −8.6± 62 ×10−17

0.94 cXY − 0.35 cY Z −0.4± 2.8 43± 19 ×10−17

0.35 cXY + 0.94 cY Z 3.2± 7.0 5.3± 23 ×10−17

0.98 cT (Y+Z) − 0.18 cTX −1.0± 18(3.3) 0.3± 1.8 ×10−15

0.18 cT (Y+Z) + 0.98 cTX 5.6± 7.7(2.4) −1.5± 5.4 ×10−15

cT (Y−Z) −21± 19(2) .011± .028 ×10−13

cTT −8.8± 5.1(4.0) 10−6(2± 2) ×10−9

cTT (gravitational) −14± 28(9) 4600± 4600 ×10−9

Table 3.2: Constraints on combinations of electron cµν-coefficients from spectroscopy of the radio
frequency transitions in 162Dy and 164Dy. We use the shorthand notation cX−Y ≡ cXX − cY Y ,
cT (Y+Z) ≡ cTY cos η + cTZ sin η, and cT (Y−Z) ≡ cTY sin η − cTZ cos η, where the angle η = 23.4◦ is
the angle between the Earth’s spin and orbital axes. Constraints above the horizontal divider are
obtained from one day’s worth of data, while those below the line are obtained from analysis of
over two years of data, see text. Some error bars for the latter set of constraints are adjusted for
systematic error. Statistical error bars are indicated in parenthesis where this occurs. Past bounds
on cJK , cTJ , and cTT are from analysis of non-gravitational experiments or observations [11], [37],
and [90], respectively, while purely gravitational limits on cTT are taken from [52].

systematic shifts have less effect on our bounds on cTX and cT (Y+Z) ≡ cTY cos η + cTZ sin η,
as these are primarily sensitive to the yearly modulation signal produced by the larger scalar
component of Eq. (3.4) (see Table 3.4). Nevertheless, the least squares error bars assume
that systematic noise is uncorrelated, and overestimate the precision of our experiment in
the presence of correlated noise. To estimate the size of the systematics we repeat the least-
squares analysis using a modified Lorentz violating model that does not reverse sign for 162Dy
relative to 164Dy. This model is insensitive to any real Lorentz violations, but is sensitive
to common mode systematics errors. The mean values from this fit are used to estimate
systematic uncertainties for each parameter, while the statistical errors are estimated from
the original fit.

We have also analyzed our results as a test of the gravitational redshift for electrons in
the Sun’s gravitational potential by fitting the long term data to terms proportional to the
gravitational potential, neglecting frame-dependent effects. We obtain a purely gravitational
limit on the electron’s cTT coefficient of −14± 7× 10−9.

The data and fits are shown in Fig. 3.2. The fit results are displayed in Table 3.2
with uncertainties quoted for 68% confidence limits. The reduced chi-squared, χ̄2, for the
short and long time-scale fits are 1.2 and 1.8, respectively. The larger χ̄2 for the long-
term fits is likely due to uncontrolled systematics that have not been accounted for in our
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Figure 3.3: Allan deviation from a two hour measurement of the 164Dy transition frequency (7:00
to 9:00 on the Fig. 3.2 inset).

purely statistical estimation of error bars. To provide conservative estimates on parameter
uncertainties we have performed an overall scaling of the error bars in both fits to provide
χ̄2 = 1.

We have tightened the experimental limits on four of the six parity-even components
of the cµν tensor by factors ranging from 2 to 10 [11, 36]. We also report limits on two
combinations of the parity-odd cTJ that are on par with the best astrophysical constraints [36,
37]. As a gravitational redshift test in the Solar potential, our experiment constrains electron-
related anomalies in the gravitational redshift at the level of 10−8.

With optimization, our experiment could yield significantly improved constraints. As
shown in Fig. 3.3, our experiment is statistically sensitive to the laboratory-frame observable
C(2)

0
= cjj − 3c33 at the level of 2.2× 10−16 after only 400 seconds of averaging.

Despite this, our present experiment must wait a full day for the Earth to rotate the
laboratory in the fixed reference frame, making it susceptible to systematics that vary over
the course of a day. This could be addressed by active rotation of the entire apparatus, or
by rotating the polarization of the rf electric field, making it possible to reach statistically
limited sensitivities to C(2)

0
at the level of 1.5×10−17 in one day, and 7.8×10−19 in one year.
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Further improvement could be obtained by optically pumping the atoms to the M = ±10
sublevels, increasing the experiment’s sensitivity to C(2)

0
by a factor of ∼ 4.5. Another factor

of two could potentially be gained by increasing the interaction time of the atoms in the
rf field, as the measured linewidth of 40 kHz is twice the natural 20 kHz linewidth of state
A. An optimized experiment may thus reach sensitivities at the order of 8.7 × 10−20 using
data collected over one year. This would be three orders of magnitude better than the
presently reported limits on cJK , two orders of magnitude better than the best sensitivities
attainable by existing optical resonator tests [53, 95], and could prove more sensitive than
astrophysical tests [37, 38, 96]. Still narrower linewidths may also be possible in spectroscopic
measurements of the Zeeman and hyperfine structure of the ground state of trapped Dy [48],
other rare-earth elements, and of the long-lived states of rare-earth ions in doped materials.

Optical transition energies in trapped ion or neutral atom clocks may also be sensitive to
electrons’ cµν , as might measurements of transitions between electronic and ro-vibrational
states of some molecules. The latter might also provide access to analogous proton and
neutron anomalies. The sensitivity of each system depends on the scalar and quadrupole
moments of the momentum of the states involved, the derivation of which will be the subject
of future work.

3.2 Frame Dependence of δωrf

The laboratory frame components of the cµν tensor are found in terms of the sun-centered
equatorial frame (SCCEF) components by requiring that the Lagrangian of Eq. (3.1) be
invariant under the observer Lorentz transformation between frames. This condition leads
to

cµν = cMNΛ
M
µ ΛN

ν , (3.5)

where cMN is the c tensor defined in the SCCEF. In the SCCEF the Z axis points along the
Earth’s rotation axis, the X−Y plane is the Earth’s equatorial plane, and the X axis points
in the direction of the Sun from Earth at the vernal equinox. The Lorentz transformation
ΛM

µ is a rotation, dependent on experimental geometry and the rotation of the Earth, to
align the laboratory defined axes with these SCCEF axes followed by a boost, determined
mainly by the Earth’s orbital velocity, to the rest frame of the Sun. Our laboratory frame
is defined such that z is parallel to the quantization axis defined by the polarization of the
rf field. Thus z points θ = 15◦ north of east, x points θ = 15◦ east of south, and y points
vertically down. The rotation from the SCCEF to the laboratory frame is given by

R =




cosχ cos θ cosωT⊕ − sin θ sinωT⊕ sin θ cosωT⊕ + cosχ cos θ sinωT⊕ − sinχ cos θ

− sinχ cosωT⊕ − sinχ sinωT⊕ − cosχ
− cosχ sin θ cosωT⊕ − cos θ sinωT⊕ cos θ cosωT⊕ − cosχ sin θ sinωT⊕ sinχ sin θ



 ,

(3.6)
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where χ = 52.1◦ is the colatitude of our laboratory, ω is the angular frequency of the Earth’s
rotation in the SCCEF (i.e.2π× an inverse sidereal day), and T⊕ is measured from the first
time that East, as measured in the laboratory, and the SCCEF X-axis coincides after a
vernal equinox. The boost of the laboratory in the SCCEF frame is given by [36]

�β =




β⊕ sinΩT − βL sinχ sinωT

−β⊕ cos η cosΩT + βL sinχ cosωT
−β⊕ sin η cosΩT



 , (3.7)

where η = 23.4◦ is the angle between the ecliptic plane and the Earth’s equatorial plane,
β⊕ = 2π(1 a.u.)/c(1 yr) � 10−4 is the boost from the Earth’s orbital velocity, βL = R⊕ω �
1.5× 10−6 is the boost from the rotational velocity of a point on the Earth’s equator, 2π/Ω
is a sidereal year, and T is the time since the epoch, chosen to be the vernal equinox in
the year 2000 [36]. The boost βL sinχ, though included in our fits, is too small to make a
significant contribution to our fits, and will henceforth be dropped from this discussion.

Since the transformation between frames is time-dependent, constant values of cMN in
the SCCEF give rise to time varying frequency shifts in the laboratory value of cµν , and thus
to time variations in δωrf , via Eq. 3.4. Since cMN also gives rise to an anomalous gravitational
redshift, there is an additional contribution proportional to cTT , such that δωrf ≈ ∓(5×1016

Hz) × 2∆U/(3c2) cos(ΩT − φ⊙), as given in Eq. (3.4), where ∆U ∼ 1.7 × 10−10c2 is the
amplitude of the Earth’s yearly modulation in the solar gravitational potential due to the
eccentricity of the Earth’s orbit, and φ⊙ is such that cos(ΩT −φ⊙) is minimized at perihelion
(∼Jan 3).

The cJK coefficients contribute leading order energy shifts at much shorter time scales
(daily) than the cTJ and cTT coefficients (yearly). As such, the cJK coefficients are con-
strained using a single long data set acquired over the course of one day to minimize the
influence of systematic effects acting on long time scales. To fit the cJK terms, we assume
that the parity-odd cTJ coefficients are as constrained by astrophysical observations [37], and
that the contribution of the cTT term to the daily modulation of δωrf is negligible. Although
we retain all terms up to O(β2

⊕) in our fit function, the dominant terms that are relevant to
our fit are

δωrf = A+
�

j

(Sj sinωjT + Cj cosωjT ) , (3.8)

where A is an independent offset parameter for each isotope, and the relevant frequencies ωj,
and quadratures Sj and Cj which contain the relevant components of cJK , are summarized
in Table 3.3. Since our experiment alternates between measuring δωrf for 162Dy and 164Dy,
we do not directly compare δωrf for the two isotopes. We therefore perform a simultaneous
fit of the separate functions (3.8) for each isotope, subject to the constraint that the values
of cJK must be the same for both.

The cTJ and cTT coefficients are constrained using data acquired at irregular intervals over
two years. To fit the cTJ and cTT terms, we set cJK to zero, and drop terms proportional to β2

⊕
that do not multiply cTT , since existing bounds on cX+Y ≡ cXX+cY Y are sufficient to ensure
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ωj Sj Cj

ω⊕ 3Q
�
cXZ sinχ sin 2θ + cY Z sin 2χ sin

2 θ
�

3Q
�
cXZ sin 2χ sin

2 θ − cY Z sinχ sin 2θ
�

2ω⊕
− 3

2Q
�
cX−Y cosχ sin 2θ−

1
2 cXY

�
1 + 3 cos 2θ − 2 cos 2χ sin

2 θ
� �

3Q
�
cXY cosχ sin 2θ+

1
8 cX−Y

�
1 + 3 cos 2θ − 2 cos 2χ sin

2 θ
� �

2Ω − 5
3Sβ

2
⊕ (cXX cos η + cY Y sin η) − 5

6Sβ
2
⊕
�
cXX − cY Y cos

2 η − cZZ sin
2 η − cY Z sin 2η

�

Table 3.3: Dominant time-varying terms in the fit for the cJK coefficients. The frequencies ω⊕
and Ω are the sidereal-day and yearly frequencies, respectively. The colatitude of the experiment
is given by χ ∼ 52.1◦, θ ∼ 15◦ is the angle the quantization axis is rotated towards the South
from West, and η ∼ 23.4◦ is the angle between the ecliptic and the Earth’s equatorial plane. The
orbital boost is β⊕ ∼ 10−4. The constants S ∼ ∓5 × 1016 Hz and Q ∼ ∓9.1 × 1014 Hz are the
scalar and quadrupole shifts, respectively, from Eq. (3.4). For ease of comparison with Table 3.2,
we have defined cX−Y ≡ cXX − cY Y and cX+Y ≡ cXX + cY Y . Additional terms of O(Qβ2

⊕) have
been suppressed, although they are included in our fits.

its doubly boost-suppressed contribution to δωrf is negligible at our level of precision [36].
The fit function is

δωrf = A+MT +
�

j

(Sj sinωjT + Cj cosωjT ) , (3.9)

where as before, A is an isotope-dependent offset, and the MT term is applied to remove
any linear drifts. The relevant frequencies ωj, and quadratures Sj and Cj, which contain the
relevant components of cTJ and cTT , are summarized in Table 3.4. We perform a joint fit
on the 162Dy and 164Dy data as before, and note an apparently large signal for cT (Y−Z) ≈
(38 ± 5) × 10−13, roughly 7.6 times the statistical error bar. As such a result would be
inconsistent with other experiments [36], we suspect it may be due to modulated systematic
errors that we cannot fully distinguish from our model function with the existing dataset.
To estimate these errors, we fit the same data to a modified fit function that does not
change sign for the two Dy isotopes, thus maximizing our sensitivity to any common-mode
systematics, and replace our original statistical error bars on each coefficient with their
magnitudes in the fit to the modified function, if they are greater. If our original signal for
cT (Y−Z) were not due to systematics, and thus truly due to Lorentz symmetry violation, we
would expect to obtain a small value for cT (Y−Z) in the fit to the modified function. Instead,
we observe that the mean value of cT (Y−Z) without isotopic sign reversal is nearly as large as
it is for the fit to the Lorentz-violating model, and thus conclude that this is not evidence
for violation of LLI. On the other hand, our estimates of the systematic error in our fits to
cTX and cT (Y+Z) is comparatively quite low. This is consistent with the hypothesis that our
systematic background modulates with a period of one or half a day, and averages out over
longer times, since our sensitivity to cTX and cT (Y+Z) comes primarily from the once-yearly
modulated scalar term in Eq. (3.4), while cT (Y−Z) is equally sensitive to both yearly and
daily modulations proportional to the quadrupole term (see Table 3.4).
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In both cases, the uncorrelated combinations of coefficients reported in Table 3.2 were
found by diagonalizing the covariance matrix from the least-squares fit to Eqs. (3.8) and
(3.9).
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4 — Systematics

Systematics are imperfections in the experimental apparatus that give rise to measured
transition frequencies that are different from some ‘true’ values. These effects can be divided
into two categories: stable systematics that do not vary in time and unstable systematics
that may vary in some non-random fashion. Note that the distinction between systematic
and random statistical errors is often one of semantics. Statistical errors are assumed to be
any quantity that varies rapidly relative to a characteristic measurement time and randomly
so as to average to zero over repeated measurements. We concern ourselves with unstable
systematics that might mimic variation of α or a non-zero cµν .

The following discussion of systematics is relevant primarily to the variation of α results
and the values presented in Table 2.2. In that analysis the data collected over the course
of a day are averaged down to a single frequency measurement. The systematics discussed
here are assumed to vary over the long time periods between days on which data have been
collected. The instability of the systematics is assessed and used as a systematic uncertainty
for each day of data. This is assigned by adding in quadrature to the statistical error bar
for each day.

The constraint on cµν relies on the ability to resolve signals modulated at relatively
high frequencies and the data must be kept close to its original form of many frequency
measurements spread over the course of hours at a time. Systematic uncertainties cannot be
properly added to the data in this form without a better model for the temporal behavior
of the systematic effects.

4.1 Residual amplitude modulation

Residual amplitude modulation (RAM) of the frequency-modulated electric field used to
probe the B → A transition frequency can be described by writing the electric field as

E(t) = E0 [1 + � cos (ΩT + φAM)] cos (ωt+m sinΩt), (4.1)

where ω and Ω are the carrier and modulation frequencies, m is the modulation index, �
characterizes the size of the RAM, and φAM is an arbitrary phase that is generally assumed
to be 0. As shown in Fig. 4.1, RAM of this form creates an asymmetry in the electric field
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sideband amplitudes, leading to a distortion of the resonant lineshape and shift of the first-
harmonic zero crossing. The derivation of an analytic formula for lock-in detected, frequency-
and amplitude-modulated lineshapes can be found in Appendix C. Summing Eq. (C.20) over
only the k = 0,±1 terms, the frequency shift of the first-harmonic zero crossing due to RAM
is found to be

δω

2π
≈ �

�
8mΩ

γ2 + 4Ω2
+

4mΩcos(φ)

γ(2Ω sin(φ)− γ cos(φ))

�−1

, (4.2)

where φ is the reference phase of the lock-in amplifier. For a modulation frequency Ω/(2π) =
10 kHz, modulation index m = 1, transition linewidth γ/(2π) = 40 kHz, and φ set to
maximize the first-harmonic slope at zero crossing, the shift is predicted to be δω = 4.1 ×
104 � Hz. Reaching the proposed statistical limit of δω/(2π) = 10 mHz therefore requires
minimizing and stabilizing RAM at the level of � ≤ 2.5× 10−7. In the following sections we
discuss the origins of RAM, a method for measuring the parameter �, and a technique to
eliminate sensitivity to RAM.

A more accurate analytic formula for the RAM induced shift was obtained by summing
Eq. (C.20) over k = 0, ...,±5, which finds that δω/(2π) = 4.4 × 104 � Hz. Equation (4.2)
is then a good estimation for the shift at the 7% level, however all results discussed in this
section are understood to use the more accurate formula.

Effective RAM

Residual amplitude modulation is assumed to have two origins: intrinsic RAM due to imper-
fect frequency modulation of the electric field, and effective RAM due to resonances (etalons)
in the radio-frequency transmission line. In this section we attempt to show that intrinsic
RAM occuring at the modulation frequency is equivalent to effective RAM.

We assume that transmission line etalons are much broader than the atomic resonance
and can be described by a linear frequency dependence of the transmitted power

P (ω)/P0 =
β

2π
(ω − ω0) + 1, (4.3)

where P0 is the electric field power at the unshifted atomic transition frequency ω0. The
factor of 1/(2π) is included so that β characterizes the fractional change in power per unit
frequency rather than angular frequency.

In order to relate β to the RAM parameter �, we consider a modulated electric field with
carrier frequency set to ω0. The power contained in a discrete frequency component of the
electric field at ω0 + kΩ is

Pk =
�
Jk(m) +

�

2
(Jk−1(m) + Jk+1(m))

�2

, (4.4)
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Figure 4.1: a) Amplitude of the discrete frequency components of the modulated electric field.
Filled circles show the spectrum for pure frequency modulation with modulation index m = 1.
Empty circles show the same spectrum with the addition of RAM with paramter � = 0.2.
b) Calculated first-harmonic lineshapes with the same modulation parameters. The lock-in phase
has been chosen to maximize the slope of the zero-crossing. For � = 0.2 the zero crossing of the
dispersive line shape has shifted by ∼ 10 kHz.

where Jk(m) is a Bessel function of the first kind and k = 0,±1,±2... → ±∞. It is convenient
to set ω0 = 0. The ratio of powers in the ±k sidebands can then be written

P+k

P−k
=

P (+kΩ)

P (−kΩ)
. (4.5)

The ratio P+k/P−k is the ratio of powers in the ±k sidebands of a frequency modulated signal
with intrinsic RAM, characterized by �, that is passed through a perfect transmission line.
The ratio P (+kΩ)/P (−kΩ) is the ratio of powers in the ±k sidebands of a frequency mod-
ulated signal without RAM that is passed through transmission line with a linear frequency
dependence of the power characterized by β. Equation (4.5) gives the expression

�
Jk(m) + �

2
[Jk−1(m) + Jk+1(m)]

J−k(m) + �
2
[J−k−1(m) + J−k+1(m)]

�2

=
βkΩ/(2π) + 1

1− βkΩ/(2π)
. (4.6)

We us the relationship J−k(m) = (−1)kJ+k(m) and assume that � � 1 and βkΩ � 1.
Rearranging and ignoring terms O(�2) we find that

� ≈ Jk(m)

Jk−1(m) + Jk+1(m)

β

2π
kΩ =

m

4π
βΩ. (4.7)

This allows us to relate a frequency dependent power characterized by β to an effective RAM
characterized by �.
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Conceptual model

We now consider a simple model that allows us to estimate the shift due to transmission line
resonances. The atomic lineshape is assumed to be Lorentzian with amplitude that scales
linearly with electric-field intensity,

S(ω) =
P (ω)

P0

γ2/4

ω2 + γ2/4
, (4.8)

where we have set the resonant frequency ω0 = 0 for convenience. Using Eq. (4.3) to describe
the transmission line we have

S(ω) =
γ2

4

βω/(2π) + 1

ω2 + γ2/4
. (4.9)

The first-harmonic detected lineshape in frequency-modulated spectroscopy can be ap-
proximated by the first derivative of the underlying lineshape, although the reference phase
dependence is lost. The transition frequency is assumed to be where the first-harmonic line-
shape equals zero, so to approximate the frequency shift generated by β we set the derivative
of Eq. (4.9) equal to 0 at frequency δω,

dS(ω)

dω

����
δω

=
γ2

4

�
β/(2π)

δω2 + γ2/4
− 2δω(βδω/(2π) + 1)

(δω2 + γ2/4)2

�
= 0. (4.10)

The solution for δω is the quadratic equation β/(2π)δω2 + 2δω − β/(2π)γ2/4 = 0 with two
solutions

δω± =
−1±

�
1 + (β/(2π))2γ2/4

β/(2π)
. (4.11)

The δω− solution is a non-physical solution corresponding to a local minimum where the
power, P (δω−), is less than zero. This is a consequence of assuming the coupled power
always scales linearly with frequency. Taking δω+ to be the measured resonance frequency
and assuming (β/(2π))2γ2/4 � 1 we obtain the expected shift,

δω ≈ 1

16π
βγ2. (4.12)

This is written in terms of the RAM parameter � by solving Eq. (4.7) for β, which yields

δω ≈ 1

4

1

mΩ
�γ2. (4.13)

When m = 1, Ω/(2π) = 10 kHz, and γ/(2π) = 40 kHz we find the shift δω/(2π) ≈ 40� kHz,
in excellent agreement with result of Eq. (4.2), from a much more sophisticated derivation.
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Figure 4.2: Frequency dependence of the rf power incident on the SMA vacuum feed-throughs.
Vertical lines denote the position of the 162Dy, 235 MHz and 164Dy, 754 MHz transitions. The
complex structure suggests the existence of multiple transmission line etalons with different free-
spectral ranges.

Measurement of RAM

Characterizing and eliminating the systematic uncertainty due to RAM first requires the
ability to measure it. In Ref. [61] a radio-frequency mixer was used to directly measure
the quantity |E(t)|2. For a purely frequency-modulated field this quantity contains a DC
component and rapidly oscillating terms around 2ω. In the presence of non-zero �, however,
low-frequency terms at Ω and 2Ω appear with predictable relative amplitudes based on
Eq. (4.1). The amplitude of these components was found to be consistent with � ∼ 10−4,
corresponding to frequency shifts of ∼ 4 Hz. The accuracy of the measurement, however,
was uncertain due to possible imperfections in the mixing circuit.

To confirm these values, we attempted to characterize the frequency dependence of the
rf transmission line. The frequency of an rf synthesizer was scanned from 1 − 1000 MHz
at constant amplitude. The power incident on the electric-field vacuum feedthrough was
measured with a calibrated directional coupler and spectrum analyzer. The results of this
scan are shown in Fig. 4.2. The β parameters obtained from the local slopes around 235 MHz
and 754 MHz are consistent with � ∼ −2.5 × 10−4 for m = 1 and Ω/(2π) = 10 kHz. These
values are consistent with the values in [61].

The first policy implemented to reduce the effect of RAM was a redesign of the rf trans-
mission line. The dominant fringe structure in Fig. 4.2 has a free-spectral range of ∼ 16 MHz,
similar in size to the ∼ 20 MHz free-spectral range expected of the nearly 5 meter long coax-
ial cables separating the rf generator, rf amplifier, and vacuum chamber (assuming PTFE
insulation). On August 24, 2011 all cable lengths were shortened to less than 1 meter,
and narrow band radio-frequency circulators were installed to terminate reflections and sup-
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Figure 4.3: Frequency dependence of the rf power incident on the vacuum feed-throughs for the
162Dy, 235 MHz (left) and 164Dy, 754 MHz (right) transitions.

press etalons in the transmission line. The transmission line frequency dependence around
235 MHz and 754 MHz, with the appropriate circulators installed, is shown in Fig. 4.3. The
local slopes were reduced by nearly two orders of magnitude, corresponding to � ≈ −8×10−7

and � ≈ 4× 10−7 near 235 MHz and 754 MHz, respectively.
A direct method of characterizing residual amplitude modulation of the electric field

makes use of the phase dependent frequency shift in Eq. (4.2). Varying the detection phase of
the lock-in amplifier allows a direct measurement of � using the atoms as a probe. Figure 4.4
demonstrates this phase dependence of measured transition frequencies before and after
redesign of the transmission line. Fitting Eq. (4.2) to these data via least-squares permits a
direct measurement of �.

Equation (4.2) also suggests a phase, tanφ = γ/(2Ω), where the sensitivity to RAM goes
to zero. The least-squares fits in Fig. 4.4 establish this RAM insensitive reference phase for
the lock-in amplifier, φ = 60.7(5)◦. Standard data taking protocol since installation of the
rf circulators and transmission line has been to acquire data at this phase.

While the presence of RAM can generate an apparent frequency shift, the instability of
RAM is relevant for assessing systematic uncertainties in the long term measurement of Dy
transition frequencies. The value of � has been regularly measured with this procedure since
2011-05-29. The summary of these measurements is shown in Fig. 4.5, where the installation
of the new transmission line is apparent by the sudden reduction in �. The instability of
RAM, σ�, is taken to be half of the interval containing 68% of measurements.

Before the new transmission line was installed the RAM sensitivity was δω/(2π) ≈ 4.4×
104� Hz. The systematic uncertainty is therefore ∼ 0.5 Hz for the three instances where
RAM was measured with this transmission line. For all measurements before 2011-05-29,
that used the same transmission line, a conservative systematic uncertainty of 1 Hz is applied
to reflect the lack of knowledge regarding RAM.

The installation of the new rf transmission line and adoption of operating at the RAM
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Figure 4.5: Summary of RAM measurements at the a) 235 MHz, 162Dy transition and b) 754 MHz,
164Dy transition. The shaded interval contains ∼ 68% of all measurements.

insensitive lock-in phase φ = 60.7(5)◦ creates a discrete frequency shift between pre and post
measurements. On 2011-08-24 the frequency shift between configurations was measured for
164Dy and 162Dy to be 15.15 Hz and 12.4 Hz, respectively. This correction has then been
applied to all measurements made prior to installation of the new transmission line.

Although the new configuration is nominally insensitive to RAM, a deviation from the
RAM insensitive phase can give rise to systematic shifts, estimated to be

δω

2π
≈ 2× 103�δφHz, (4.14)

for m = 1, Ω/(2π) = 10 kHz, γ/(2π) = 40 kHz, and δφ is given in degrees. We assume
that the phase uncertainty is δφ ≈ 0.5◦, and use the assessed RAM instabilities indicated
in Fig. 4.5. The contribution of RAM to long term systematic uncertainties is thus 18 mHz
and 5 mHz for 164Dy and 162Dy, respectively.

Further improvements

The phasing procedure discusses so far comes at the expense of statistical sensitivity. With
the modulation parameters presently used,m = 1 and Ω/(2π) = 10 kHz, the RAM insensitive
phase decreases statistical sensitivity by more than a factor of two (see App. A, Fig. A.2).
This can only be regained by acquiring data for nearly four times as long due to the scaling
of statistical sensitivity as 1/

√
T . These modulation parameters, however, were chosen

somewhat arbitrarily as approximately the optimal modulation parameters for the natural
20 kHz linewidth of the rf transition, rather than the 40 kHz power and transit-broadened
linewidth in the apparatus. It is possible that different modulation parameters can provide
reduced sensitivity to RAM without losing statistical sensitivity.

The analytic expression for the first-harmonic lineshape found in App. C has been used
to predict the relative statistical sensitivity for modulation parameters assuming statistical
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Figure 4.6: Contour lines show the projected statistical sensitivity relative to that at presently
used modulation parameters for a) lock-in phase chosen for maximum statistical sensitivity and b)
lock-in phase chosen to eliminate sensitivty to RAM. The intersecting gridlines indicate the present
modulation parameters and the best choice of RAM insensitive modulation parameters.

sensitivity is directly proportional to the slope of the first-harmonic signal near resonance.
Contour maps in modulation-parameter space of the statistical sensitivity relative to the
maximum statistical sensitivity at m = 1, Ω/(2π) = 10 kHz are shown in Fig. 4.6. The
modulation parameters m = 1.14 and Ω/(2π) = 26.4 kHz are projected to be the best
choice at a RAM insensitive phase, where the statistical sensitivity drops to ∼ 83% of the
sensitivity at present. The maps also predict that modulation parameters m = 1.65 and
Ω/(2π) = 10 kHz could increase the maximum statistical sensitivity to 120% of its current
value. Future work will focus on confirming these predictions.

4.2 Electronic offsets

As discussed in Appendix A, the transition frequency is measured by assuming the ratio of
first- and second-harmonic lineshapes is described by a linear function

R(ω) =
L1(ω)

L2(ω)
=

M
2π

(ω − ω0), (4.15)

where the transition frequency is assumed to be ω = ω0, where R(ω0) = L1(ω0) = 0. The
phase dependence of the function Ln(ω) will be ignored for now. Systematic offsets of
the lock-in signals can generate a frequency shifts of zero crossing and apparent shift of the
transition frequency. We will define u1 and u2 as the offsets of the first- and second-harmonic
signals and write



CHAPTER 4. SYSTEMATICS 45

L1(ω) + u1

L2(ω) + u2

=
M
2π

(ω − ω�
0)

L1(ω)

L2(ω) + u2

+
u1

L2(ω) + u2

=
M
2π

(ω − ω�
0), (4.16)

where the zero crossing has shifted by an amount ω�
0 − ω0. If we assume that the offsets u1,2

are small, such that |u1,2| � L2(ω), we can write

L1(ω)

L2(ω)
− L1(ω)

L2(ω)

u2

L2(ω)
+

u1

L2(ω)
− u1

L2(ω)

u2

L2(ω)
≈ M

2π
(ω − ω�

0). (4.17)

Taking the difference of Eq. (4.15) and Eq. (4.17) leaves us with the expression

L1(ω)

L2(ω)

u2

L2(ω)
− u1

L2(ω)
+

u1

L2(ω)

u2

L2(ω)
≈ M

2π
(ω�

0 − ω0). (4.18)

Near resonance L1(ω)/L2(ω) ≈ 0. This allows us to drop all terms containing u2 in Eq. (4.18),
and after reorganizing terms we find that

δω

2π
≈ − u1

ML2(ω)
. (4.19)

Typical values for the inverse slope are M−1 ∼ 2000 Hz for the optimal lock-in phase, and
M−1 ∼ −4500 Hz for the RAM insensitive lock-in phase, while typical values for the second-
harmonic amplitude are L2(ω) = 5 mV near resonance. The sensitivity to electronic offsets
of the first-harmonic signal is therefore

δω

2πu1

∼
�

400Hz/mV optimal phase
−900Hz/mV RAM insensitive phase

(4.20)

Reaching the goal sensitivity of 10 mHz therefore requires stabilizing electronic offsets at
the level of 25 nV, or 10 nV in order to take advantage of the previously discussed RAM
insensitive phase.

A preliminary measurement of electronic offsets, shown in Fig. 4.7, acquires the first-
harmonic lock-in signals in the absence of the atomic signal. Mean values for the in-phase
and quadrature channels are -240(9) nV and -560(9) nV, respectively. The magnitude of
the first harmonic signal, ∼ 600 nV, could generate an apparent shift as large as 540 mHz,
although the exact size of this shift may depend on the amplitude of the atomic signal, per
Eq. 4.19.

Given the high sensitivity to electronic offsets, a reliable estimate of their size and stability
is crucial for characterizing the measurement error of the experiment. The previous method
allows a precise measurement of electronic offsets, but does not contain information about
the electronic offsets present during actual frequency measurements.
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Figure 4.7: Lock-in noise measurement in the absence of atomic signals. Filled squares (circles)
show the in-phase (quadrature) detection channels.

A new method was inspired by the work presented in Ref. [76], and the basic principle is
demonstrated in Fig. 4.8 a). The signal size is made to vary in such a way that the electronic
offsets are left unchanged. In the presence of an electronic offset, such a change will cause
the apparent transition frequency to shift, allowing the offset to be measured.

Care must be taken that changing the signal size is not done at the expense of introducing
other systematic shifts. As of now, the gain of the PMT is varied by changing the detector
supply voltage. The slope of the first- to second-harmonic ratio, M, the second harmonic
amplitude, L2(ω), and the transition frequency are measured for each gain setting. The
transition frequency is then plotted against the quantity (−ML2(ω))−1, which allows the
offset u1 to be determined from the slope (see in Fig. 4.8).

The slopes for both 164Dy and 162Dy are consistent with one another and with zero. The
electronic offset can reasonably be expected to be isotope independent, so the mean offset
is u1 ≈ 260 ± 380 nV. A conservative estimate of 500 nV is used to estimate systematic
uncertainties for previously collected data. The uncertainties are assigned based on the
second-harmonic amplitudes and inverse slopes, M−1, for each set of data.

The method presented is intended as proof of principle for allowing informed estimates
of systematic uncertainties. Future work will include the calibration of electronic offsets
as standard protocol, and will aim for greater precision. It should also be noted that an
electronic offset that is independent of lock-in phase could negatively influence the RAM
phasing procedure discussed earlier. This has not yet been investigated but is a priority for
future work.
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Figure 4.8: a) Varying the signal amplitude while leaving the offset u1 unchanged creates an
apparent frequency shift, allowing the offset to be estimated. b) transition frequencies for 164Dy
(empty circles) and 162Dy are plotted against the quantity (−ML2(ω))−1 as explained in the main
text. The slopes are consistent with zero offset at the 68% confidence level.

4.3 Zeeman shifts

Stabilizing the transition frequency in Dy is complicated by the large electronic angular
momentum, which gives rise to an extraordinarily high sensitivity to stray magnetic fields.
The frequency shift of an individual Zeeman transition is given by

δν = (gAMA − gBMB)µBB,

where gA,B and mA,B denote the g-factors and magnetic quantum numbers of states A and
B, µB ≈ 1.4 kHz/mG is the Bohr magneton, and B is the magnetic field applied along the
quantization axis. If we choose the quantization axis such that our rf-electric field is linearly
polarized we are restricted to ∆M = 0 transitions, thus M = MA = MB. Using the g-factors
from Ref. [50], the sensitivity to magnetic fields becomes

δω

2πB
≈ M 220Hz/mG. (4.21)

Because the transition is ∆J = 0 we are forbidden from operating on the the magnetic-
field insensitive M = 0 → 0 transition. Equation (4.21) can be averaged according to
Eq. (B.4) using the normalized weights, aM , in Table B.1. The magnetic field sensitivity of
the unresolved line from this average is

δω̄

2πB
= −15(13)Hz/mG, (4.22)

where δω̄/(2π) is the average shift of unresolved Zeeman transitions. This agrees with
experimentally measured shifts of the unresolved line on the order of 2 Hz/mG.
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Figure 4.9: Magnetic field dependence of the Zeeman unresolved, 164Dy transition. Filled and
empty circles correspond to scans with and without a λ/4 plate, respectively, in the 669-nm beam
path. Both sets of data are fit with quadratic functions, shown as solid lines, for the purpose
of finding the crossing field. The residual shift at the crossing point, without the λ/4 plate, is
−1.7(2) Hz/mG.

The magnetic field along the quantization axis is canceled during each experiment with
a Helmholtz coil surrounding the interaction region. The population of atoms in state B
magnetic sublevels, and the sensitivity of the unresolved line to magnetic fields, can be
modified by changing the polarization of the 669-nm excitation light. A vacuum feedthru
allows a λ/4 plate to be inserted after the last linear polarizer in the 669-nm light beam path.
The current through the Helmholtz coil is scanned (with a conversion of ∼ 0.95 mG/mA)
with and without the λ/4 plate while measuring the transition frequency. The magnetic field
is canceled when these frequencies agree. An example scan is shown in Fig. 4.9.

The magnetic field along the quantization axis can be reliably canceled with a precision
of 25 µG, the scatter of successive measurements of the crossing field. The residual magnetic
field sensitivity with all linearly polarized laser excitation light is ∼ 2 Hz/mG, consistent
with the estimate based on population measurements. The total magnetic field induced
uncertainty for each measurement is therefore assigned to be 50 mHz.

4.4 Collisional Shifts

Collisions between Dy atoms in the atomic beam and trace background gases in the vacuum
chamber can lead to perturbations of the radio-frequency energy splittings between the
nearly degenerate. Shifts as a function of partial pressure for various gases were measured
in 2005 [75], with results re-tabulated for convenience in Table 4.1.
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Figure 4.10: A scan of trace gases in the main interaction chamber, with the pressure given in units
of 10−10 Torr. The horizontal line indicates the specified noise level of the RGA. The measured
collisional shifts documented in Table 4.1, indicate a total shift of ∼ 0.6 mHz. Collisional shifts for
H2O have not been measured, but are expected to be similar in magnitude to others.

The pressure in the main chamber is monitored with two sensors. During periods of
downtime the pressure is monitored with a glass enclosed Bayard-Alpert ionization gauge
from MDC Vacuum Products, with a specified lower vacuum limit of 2×10−10 Torr. Typical
readings are 3.5(5) × 10−9 Torr. During an experiment the ion-gauge controller has been
found to contribute unwanted electronic noise to the data acquisition, so the pressure is
monitored with a Stanford Research Systems RGA200 residual gas analyzer. This RGA
can identify trace gases up to 200 a.m.u., with a minimum detectable partial pressure of
5 × 10−11 Torr. A typical scan of trace gases is shown in Figure 4.10. The total expected
shift at these partial pressures is ∼ 0.6 mHz, negligible in comparison to other effects.

Shift rates H2 N2 O2 He Ne Ar Kr Xe

(Hz/µTorr) -0.02(2) -1.71(3) -1.97(25) 1.25(2) -0.01(2) -2.21(5) -2.78(5) -2.74(4)

Table 4.1: Pressure shift rates for 162Dy, where the transition frequency is ∼234.7 MHz. The
magnitude of the shift rates are approximately the same for other isotopes of Dy, whereas the
sign of the shift depends on the sign of the splitting between levels A and B. This feature makes
pressure shifts α̇-mimicking systematics.
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5 — The ac-Stark effect

5.1 Measurement of dynamic polarizabilities in

dysprosium

We report measurements of the differential polarizability between the nearly degenerate,
opposite parity states in atomic dysprosium at 19797.96 cm−1. The differential scalar and
tensor polarizabilities due to additional states were measured for the |M | = 7, . . . , 10 sub-

levels in 164Dy and 162Dy and determined to be α(0)

BA = 180 (45)stat (8)sys mHz cm2/V2 and

α(2)

BA = −163 (65)stat (5)sys mHz cm2/V2, respectively. The average blackbody radiation in-
duced Stark shift of the Zeeman spectrum was measured around 300 K and found to be
−34(4) mHz/K and +29(4) mHz/K for the 164Dy and 162Dy isotopes, respectively. We con-
clude that ac-Stark related systematics will not limit the precision of a search for variation of
the fine-structure constant, using dysprosium, down to the level of |α̇/α| = 2.6× 10−17 yr−1

for a one-year experiment.

This chapter is currently being prepared for submission to Physical Review A, by C.T.M. Weber, N.
Leefer, and D. Budker.
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5.2 Dynamic polarizabilities

The response of an atom to an external electric field is described by the linear electric
polarizability. Specifically, the ac-Stark shift of an electronic energy level |m� due to an
oscillating electric field with root mean square (rms) value E is given by [97]

∆Wm/h = −1

2
αmE

2, (5.1)

where αm is the electric-dipole polarizability1 of level m. Note that a bold α will refer to
polarizabilities and should not be confused with the fundamental constant, α. The polariz-
ability of an atomic state |m� can be written in the form [97–99]

αm = α(0)

m (F ) + iα(1)

m (F )
M

F
(�× �∗) · ẑ +α(2)

m (F )
3M2 − F (F + 1)

F (2F − 1)

3|� · ẑ|2 − 1

2
, (5.2)

where � is the polarization vector of the electric field, F is the total electronic angular momen-
tum of state |m�, M is the projection of angular momentum along the chosen quantization
axis, ẑ, and the quantities α(0)(F ), α(1)(F ), and α(2)(F ) are, respectively, the scalar, vec-
tor, and tensor polarizabilities of state |m�. These three quantities allow us to characterize
ac-Stark shifts in a form independent of the experimental geometry or magnetic sublevel.

The differential ac-Stark shift of the B → A transition frequency is

∆νBA =
∆ωBA

2π
= (∆WB −∆WA) /h = −1

2
(αB −αA)E

2. (5.3)

The even-mass-number isotopes of Dy have zero nuclear spin, and their total angular mo-
mentum is F = 10 for both states A and B. The odd-mass-number isotopes, 163Dy and
161Dy, have nuclear spin I = 5/2 with the corresponding range of total angular momenta
F = 15/2, 17/2, . . . , 25/2 for A and B. In the case of a linearly polarized electric field, where
�× �∗ = 0 and only transitions with MA = MB = M are allowed, we can write

∆νBA = −1

2

�
α(0)

B −α(0)

A

�
E2 − 1

2

�
α(2)

B −α(2)

A

� 3M2 − F (F + 1)

F (2F − 1)
E2. (5.4)

The radio-frequency (rf) spectroscopy of levels A and B is performed with an electric field
that is nearly resonant with the B → A transition. We will assume that the energy splitting
between states A and B is much smaller than the energy splitting between this nearly
degenerate pair of states and all other states. With this assumption we distinguish between
two contributions to the differential polarizabilities in Eq. (5.4): the resonant electric-dipole
interaction between states A and B and the off-resonant electric-dipole interaction of states
A and B with all other states.

1Note that there are different conventions used in the literature for the polarizability. In this work we
use the rms-electric field to maintain consistency with the definition of dc polarizabilities.
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The resonant contribution to the differential polarizability is frequency odd with respect
to detuning from resonance, and for a perfectly resonant electric field it is a negligible
contribution to ac-Stark shifts, neglecting the Bloch-Siegert shift [55], which is related to the
‘counter-rotating’ frequency component of the oscillating electric field [42].

The off-resonant contribution to the differential polarizability, however, will be approx-
imately constant in this frequency regime and can lead to systematic errors in the rf spec-
troscopy of transitions between A and B. We make this distinction explicit by writing
Eq. (5.4) as

∆νBA = �dBA�2
|�FM10|FM�|2

2F + 1
f (νBA, ν)E

2 − 1

2

�
α(0)

BA +α(2)

BA

3M2 − F (F + 1)

F (2F − 1)

�
E2, (5.5)

where α(0)

BA and α(2)

BA are the differential scalar and tensor polarizabilities that include only
the off-resonant contributions, �dBA� is the reduced dipole matrix element between states A
and B, and

f (νBA, ν) = Re

�
1

νBA − ν − iΓAB
2·2π

+
1

νBA + ν + iΓAB
2·2π

�
(5.6)

contains the dependence of the resonant differential polarizability on the electric field fre-
quency, ν. The quantity ΓBA is determined by the radiative lifetimes of states A and B as
well as transit effects; in our setup it is empirically determined to ≈ 45 kHz.

To facilitate further discussion we introduce the compact notation

d2BA := �dBA�2
|�FM10|FM�|2

2F + 1
,

αBA := α(0)

BA +α(2)

BA

3M2 − F (F + 1)

F (2F − 1)
. (5.7)

This allows us to rewrite Eq. (5.5) as

∆νBA = d2BAf (νBA, ν)E
2 − 1

2
αBAE

2, (5.8)

where the dependence on M is implicit, and where dBA is the dipole matrix element, and
αBA is the total differential polarizability for only the off-resonant contributions.

The reduced dipole matrix element was previously measured in Ref. [54]. We repeat
measurements of �dBA� to calibrate the electric field amplitude in our experiment. This
calibration is used to determine the total off-resonant differential polarizabilities of states
A and B from ac-Stark shifts of the transition frequency. The off-resonant scalar and ten-
sor differential polarizabilities are distinguished by repeating this measurement for several
individual Zeeman transitions.
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5.3 Measurements

Zeeman structure of the transition

To determine αBA unambiguously we apply a magnetic field of sufficient strength to fully
resolve the Zeeman structure of the transition. This enables us to measure Stark shifts of
individual Zeeman transition between states A and B. The quantization axis is chosen to
coincide with the linear polarizations of the applied electric field, such that only MB = MA,
∆M = 0 transitions are observed. The change in the transition frequency due to the magnetic
field is given by

νZ(M) = M · µB/h · gBA · B ≈ M · 240 [Hz/mG] · B[mG],

where νZ(M) is the differential Zeeman shift of the magnetic sublevel M in the transition
B → A, µB is the Bohr magneton, gBA = gB − gA = 0.157 is the difference in g-factors for
the states A and B [50], and B the field strength of the applied magnetic field.

Suppressing magnetic-field instabilities

Over the course of a typical measurement (≈ 20 min) at constant temperature the magnetic
field drifts by ≈ 0.03 mG, leading to drifts of ≈ 60 Hz for the measured transition frequency
between the M = 10 sublevels. As states A and B have the same total angular momentum
F , the magnetic field insensitive MB = 0 → MA = 0 transition is forbidden [42]. We choose
to suppress the magnetic field related uncertainties by measuring the transition frequencies
of the +M and −M sublevels nearly simultaneously.

The frequency νBA(M) for the B → A transition between sublevels M under the influence
of a magnetic and an electric field is given by:

νBA(M) = νBA + νZ(M)− 1

2
αABE

2 + d2BAf [νBA + νZ(M), ν]E2. (5.9)

Under our assumption that the separation between states A and B is much smaller than
their separation from any other states, αAB should also be magnetic field insensitive.

The Zeeman shift νZ(M) changes sign with respect to the sign of M , while the Stark
shift does not, thus our measured quantity is the magnetic field insensitive average of the
±M Zeeman transitions:

ν̄BA =
1

2
[νBA(+M) + νBA(−M)]

= νBA − 1

2
αBAE

2+ (5.10)

1

2
d2BA

�
f [νBA − νZ(M), ν] + f [νBA + νZ(M), ν]

�
E2.
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Figure 5.1: Frequency of the M = +10, M = −10 and the M = ±10 average Zeeman transition,
offset for presentation. Over the course of this measurement the individual Zeeman transitions
changed by ≈ 3500 Hz while the ±M average changed by ≈ 8 Hz, demonstrating a suppression
of ≈ 450 in this case. The actual separation between the M = +10 and M = −10 transition
is ≈ 3 × 106 Hz. These data were taken while the interaction region was cooled toward liquid
nitrogen temperatures. The relatively large drift in magnetic field of > 1 mG is believed to be due
to thermoelectric currents induced by temperature gradients between dissimilar metals.

Two effects may make the cancellation of magnetic fields imperfect. The −M and +M
transitions are measured sequentially, ≈ 1 s apart from each other. In a magnetic field
drifting at rate Ḃ [mG/s] the average ±M frequency will have a systematic shift of (1/2) ·
220 ·MḂ∆t Hz, where ∆t is the measurement interval in seconds.

Second, the Zeeman shift in the two-state term cancels incompletely due to the form
of f (νBA, ν), Eq. (5.6). This impairment is negligible in practice as long as the difference
between the Zeeman shifted transition frequencies, νBA(±M), and the electric field frequency
ν is much larger in magnitude than the change in the Zeeman shift due to varying magnetic
fields (typically) |νBA(±M)− ν| ≥ 106 Hz vs δνZ(M) < 4× 104 Hz).

We find empirically that changes of the Zeeman shifts are suppressed by nearly three
orders of magnitude. An example of the cancellation can be seen in Fig. 5.1.
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5.4 Measurement Procedure

The transition frequencies are measured by scanning the frequency of a frequency-modulated
electric field, the ‘probe’ field, near resonance. We perform lock-in detection of the 564-nm
fluorescence light emitted by Dy atoms during the final decay step of level A to the ground
state with a photomultiplier tube and lock-in amplifier. Near resonance, the lock-in signals
at the first and second harmonic of the 10-kHz modulation frequency are approximated by
a linear function that crosses zero on resonance, and a constant function, respectively. The
quantity from which we determine the resonance frequency is the ratio of these signals, as
it is insensitive to changes in signal size that may arise from fluctuations in the density of
excited state atoms. For small detunings this ratio is given by

R(ν) = M (ν − νBA) , (5.11)

where ν is the probe-field frequency and M is the empirically determined slope (Fig 5.2).
We measure R repeatedly for three probe-field frequencies at intervals of 200 Hz near the

expected transition for each Zeeman transition (Fig. 5.2). The slope M is determined from
the linear least squares fit to the mean signal ratios. With the slope S, each measurement
of R is converted into a transition frequency via the relation

ωBA = ωrf −
R(ωrf)

M . (5.12)

5.5 Experimental Setup

The rf spectroscopy is performed with the atomic-beam apparatus depicted in Fig. 5.3.
A thermal beam of Dy atoms is emitted by an effusive oven, operated at ≈1400 K. Two
vacuum chokes are used to facilitate a pressure differential from 10−7 to 10−9 torr between
the oven and interaction regions. Excitation of atomic states is performed with 833-nm
and 669-nm light with an adiabatic-passage population technique that uses diverging laser
beams matched to the transverse divergence of the atomic-beam [62]. The 669-nm light is
generated by a Coherent CR-699 dye laser using dicyanomethylene (DCM) dye and pumped
by a Coherent Innova-300 argon-ion laser. Two sources have been used to generate the 833-
nm light. One source is a custom built master-oscillator power-amplifier system, consisting
of a Littrow-configuration extended-cavity diode laser (ECDL) whose output is amplified
with a tapered amplifier (TA). The other source is a Coherent CR-899 Ti:Sapphire laser
pumped by a Coherent Innova-400 argon-ion laser; typical powers are 150 mW (669 nm)
and 250 mW (833 nm).

The laser and rf interaction regions are surrounded by two layers of magnetic shielding
that suppress external fields to below 0.5 mG. Three pairs of coils within the shielded volume
provide additional control over magnetic fields in all directions.
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Figure 5.2: The Zeeman structure of the B → A transition is resolved with a 550-mG field. We
measure the ratio R of the 564-nm fluorescence signals at the 1st and 2nd harmonic to the frequency
modulated probe field in the order i = 1, · · · , 6 at the frequencies νi, to approximate simultaneous
measurement of the νBA(−M) and νBA(+M).

Two rf-electric fields, a ‘probe’ and a ‘Stark’ field, are provided by two signal generators
with separate amplifiers (Fig. 5.4). These amplified rf fields are combined and fed to the
interaction region, incorporating a rectangular electrode that is surrounded on all sides by a
grounded box. This nested rectangular configuration supports a transverse electromagnetic
mode and provides a homogeneous field up to 1 GHz. The ‘surfaces’ of the electrodes and
box are defined by a series of parallel gold-plated 0.002-in Be-Cu wires stretched across gold-
plated copper frames at 2-mm intervals. This electrode design is effectively transparent to
atoms and photons, while effectively solid for the wavelength range we operate in (> 30 cm).
A partial view of the electrode frames, without wires, can be seen in Fig. 5.3.

Atoms that are excited from B to A decay back to the ground state, with a lifetime of
≈ 8 µs, via several channels. In one of these channels the final step includes the emission of
a 564-nm photon. Three concave mirrors made from polished aluminum focus these 564-nm
photons into a Pyrex lightpipe, which guides the light into a photomultiplier tube (PMT).
The PMT signal is processed with a digital lock-in amplifier.

The magnetic field coils, rf electrodes, and light-collection mirrors constitute a single
assembly. This assembly is clamped to two copper rods inside the vacuum chamber. The
copper rods pass to the exterior of the vacuum setup, thermally and electrically isolated from
the chamber by ceramic feedthroughs. These copper ‘cold fingers’ allow the rf electrodes
and surrounding light-collection mirrors to be heated or cooled without introducing heating
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Figure 5.3: Section view of the atomic beam apparatus.
a) oven chamber; b) gate valve; c) interaction-region chamber; d) Dy oven; e) vacuum chokes; f)
laser access/in-vacuum polarizer; g) magnetic coils; h) lightpipe; i) rf electrodes; j) light-collection
mirrors; k) two-layer magnetic shielding

elements or cryogens into the vacuum environment. The temperatures of the light-collection
assembly, oven, and vacuum chamber are continuously monitored with thermocouples.
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Figure 5.4: Radio-frequency setup for the measurement of ac-Stark shifts.



CHAPTER 5. THE AC-STARK EFFECT 58

0 10 20 30 40 50

−5

 0

 5

−5

 0

 5

−5

 0

 5

0 10 20 30 40 50

−5

 0

 5

−5

 0

 5

−5

 0

 5

 

 

 E
2

 [V
2

 / cm
2

]

164
Dy

/

/

 E
2

 [V
2

 / cm
2

]

162
Dy

/

/

∆
 ν

B
A

 [
H

z]
 

∆
 ν

B
A

 [
H

z]
 

M = ±10 M = ± 9 M = ± 7

Figure 5.5: The mean ac-Stark shift of the ±M transitions in 162Dy and 164Dy, as a function of
squared electric-field strength E2. Lines of best fit are obtained from least-squares fit of Eq. (5.14)
to the data. Measurements for different Zeeman transitions are offset from each other for display
purposes.

5.6 Results - ac-Stark shift

We determine the differential off-resonant polarizability, αAB, from the average ac-Stark
shift of the ±M transition frequencies,ν̄BA , by applying a second, unmodulated oscillatory
electric field, νS, referred to as the ‘Stark field.’ We measure the Stark shifts as both a
function of Stark-field amplitude (Fig. 5.5) and Stark-field frequency (Fig. 5.6).

For measurements as a function of Stark-field amplitude, the shift of the difference in
±M transition frequencies is used to calibrate the electric field according to

∆ [νBA(+M)− νBA(−M)] =d2BA

�
f [νBA + νZ(M), νS]−

f [νBA − νZ(M), νS]
�
E2,

(5.13)

where in calculating dBA we use �dBA�2 � 19.22 V2/cm2 [54], and the Zeeman transition
frequencies, νBA ± νZ(M), are known from measurements at E2 = 0. Typical mean-squared
Stark-field amplitudes range from 0 to 15 V2/cm2 for 164Dy and 0 to 50 V2/cm2 for 162Dy.
The large difference in maximum value is hypothesized to be due to a substantial frequency
dependence of the impedance mismatch between the rf transmission line and the electric
field plates. The shift of ν̄BA is given by

∆ν̄BA =

�
d2BA

2

�
f [νBA − νZ(M), νS] + f [νBA + νZ(M), νS]

�
− αAB

2

�
E2. (5.14)
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The frequency of the Stark field is chosen such that the two-state shift cancels in the average
shift of ν̄BA (neglecting the Bloch-Siegert shift discussed below). This occurs at the frequency
νS = ν̄BA|E=0 (around ≈ 753.5 MHz, see Fig. 5.6). The remaining shift is given only by the
differential off-resonant polarizability and the Bloch-Siegert shift, which is on the order of
� 30 mHz and accounted for in the analysis. These data and the resulting least-squares fits
to Eq. (5.14) are shown in Fig. 5.5.

An error in setting the Stark-field frequency would systematically alter the measured total
differential polarizability through imperfect cancellation of the two-state shift. We minimize
the deviation of the Stark-field frequency by referencing the probe-field and Stark-field gener-
ators to a Cs frequency standard. This ensures a deviation from the expected frequency that
is less than 2 Hz, reducing the systematic uncertainty in the total differential polarizability
to < 0.2 mHz cm2/V2. This is negligible compared to the statistical uncertainty, which is
on the order of 100 mHz cm2/V2.

For the measurements as a function of Stark-field frequency, we again make use of the fact
that the shift of the average ±M transition frequencies is given by Eq. (5.14). The differential
off-resonant polarizability, αAB, and the mean-squared Stark field amplitude, E2, are free
parameters of the least-square fits of Eq. (5.14) to measured shifts of the M = 7, 8, and 9
transitions in 164Dy, as shown in Fig. 5.6.

The total differential off-resonant polarizabilities are determined for theM = 7, 8, 9, and 10
transitions in 164Dy and 162Dy, as shown in Fig. 5.5 and Fig. 5.6, and fit via least-squares
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Figure 5.6: Average ac-Stark shift of the ±M sublevels, as a function of the Stark-field frequency
νS . The zero crossings at the centers of the dispersive resonances indicate the approximate location
of the individual Zeeman transition frequencies. The mean-squared amplitude of the Stark field
was ≈ 9 V2/cm2.
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according to the relationship

αBA = α(0)

BA +α(2)

BA

3M2 − F (F + 1)

F (2F − 1)
. (5.15)

The differential scalar and tensor off-resonant polarizabilities are found to be

α(0)

BA = 180 (45)stat (8)sys mHz cm2/V2,

α(2)

BA = −163 (65)stat (5)sys mHz cm2/V2. (5.16)

Assuming that the differential polarizability arises due to the electric-dipole interaction of
state A or B with only one other state, the ratio α(2)

BA/α
(0)

BA = −0.9(4) is consistent with
a total angular momentum of J = 9 or J = 11 for the partner state [99]. The closest
documented state is the odd-parity, 4f 95d26s J = 9 state at 19,558 cm−1 [50]. The energy
of this state relative to the energy of state A (19,797 cm−1) is consistent with the sign of
the scalar polarizability. The magnitude of the scalar polarizability would require a reduced
dipole-matrix element between this state and state A of �d� = 6.9(0.9) ea0.

We also cannot rule out the existence of close lying states not listed in the spectroscopic
databases. Studying Raman transitions within the Zeeman manifold of either state A or B
would allow their individual contributions to the differential polarizability to be determined
and will provide more information about the off-resonant states.

If the off-resonant differential polarizabilities are due to the interaction with states that
are far removed, like the one at 19,558 cm−1, the polarizabilities presented in Eq. (5.16) are
valid into the DC frequency range. Using the value for �dBA� from Ref. [54] the two-state
DC differential polarizabilities are given by [97]:

α(0)

BA −α(0)

BA =

�
31 (4) mHz cm

2

V
2

164Dy

100 (14) mHz cm
2

V
2

162Dy
,

α(2)

BA −α(2)

BA =

�
172 (24) mHz cm

2

V
2

162Dy

54 (8) mHz cm
2

V
2

164Dy
.

(5.17)

In this case the off-resonant polarizabilities add a significant contribution to the total two-
state DC polarizabilities of states A and B.

5.7 Blackbody radiation

The electric field of blackbody radiation (BBR) from the environment can cause ac-Stark
shifts of atomic energy levels [100]. The mean-squared electric-field amplitude, in a frequency
interval dν, of blackbody radiation in a vacuum surrounded by an enclosure of uniform
temperature T is given by Planck’s law as [101]

E2

BBR(T, ν)dν = 32π2
hν3

c3
3002

e
hν
kT − 1

dν V2/cm2, (5.18)
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where k is the Boltzmann constant, c is the speed of light, T is the absolute temperature in
Kelvin, and all the quantities on the right-hand side are assumed to be in the centimeter-
gram-second (cgs) units; the factor of 300 converts the expression to units of V2/cm2 .

Blackbody radiation is unpolarized and isotropic with no preferred axis. The ac-Stark
shift of the B → A transition is therefore given by the differential scalar polarizability and
the integral over all frequencies ν,

∆νBA(T ) = −1

2

� ∞

0

E2

BBR(T, ν)
�
α(0)

B −α(0)

A

�
dν. (5.19)

We again differentiate between the BBR related shift due to the interaction between A and
B and the contribution from off-resonant states by writing

∆νBA(T ) =

� ∞

0

E2

BBR(T, ν)

�
d2BAf (νBA, ν)−

1

2
α(0)

BA

�
dν. (5.20)

The separation between states A and B is small compared to characteristic frequencies of
BBR at 300 K. From the value for the dipole matrix element presented in Ref. [54], we can
calculate the BBR radiation shift due to d2BA around 300 K to be

d

dT

� ∞

0

E2

BBR(T, ν)d
2

BAf (νBA, ν) dν|T=300K < 10−10 Hz

K , (5.21)

which is negligibly small. The dense level structure of Dy, however, makes it probable that
energy levels with strong electric-dipole coupling to state A or B exist within the thermal
radiation spectrum, leading to a non-negligible BBR induced ac-Stark shift. It is important
to note that the value for α(0)

BA reported earlier in this paper is valid only for the range of
frequencies where ν < 1 GHz. The value of α(0)

BA in Eq. (5.20) is a frequency dependent
quantity [97] with unknown behavior in the range of BBR frequencies (≥ THz).

We measure the transition frequency, νBA, as a function of temperature of the interaction
region, consisting of the light-collection mirrors and electric field plates as shown in Fig. 5.3.
These measurements were performed at two settings of the magnetic field: with a ≈ 650 mG
magnetic field to resolve the Zeeman transitions (Fig 5.8), and at zero magnetic field with
the Zeeman structure unresolved (Fig 5.7). These measurements should produce the same
measured shifts due to the absence of vector or tensor terms in Eq. (5.19).

The functional dependence of BBR induced shifts on temperature is generally unknown
due to the temperature dependence of the BBR spectrum and the frequency dependence
of α(0)

BA. A common assumption, however, is that the energy splitting between A or B
and other states is much larger than the characteristic energy of the BBR spectrum. In
this approximation, the off-resonant scalar polarizability in Eq. (5.20) is the same as that
measured in Sec. 5.6 and we can write

∆νBA = −1

2
α(0)

BA

�
T

300 K

�4

8.322 V2/cm2. (5.22)

Here 8.32 V2/cm2 is the rms value of room temperature BBR.
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5.8 Results - Blackbody radiation shifts

The transition frequency νBA for 164Dy and 162Dy was measured for environment tempera-
tures ranging from 120 K and 350 K.

At zero magnetic field, with unresolved Zeeman structure, the temperature was only
varied from 300 to 360 K. Results are shown in Fig. 5.7, and the measured slopes are:

d

dT
νBA

����
300K

=

�
−34(4) mHz/K 164Dy
+29(4) mHz/K 162Dy.

(5.23)

The signs of the measured frequency shifts are expected to be opposite for these two isotopes
due to the different sign of the energy splitting between A and B. The temperature range
is too small to verify a T 4 dependence. Performing a linear expansion of Eq. (5.22) around
300 K we find that the linear slopes correspond to differential scalar polarizabilities:

α(0)

BA =

�
74 (9) mHz cm2/V2 164Dy
63 (9) mHz cm2/V2 162Dy

(5.24)

These values are on the same order as the polarizabilities measured at radio frequencies; how-
ever, these are not expected to be the same due to the possibility of many more atomic states

300 310 320 330 340 350

�3

�2

�1

0

1

2

3

Temperature �K�

∆Ν
�Hz�

Figure 5.7: Frequency shifts of the unresolved 162Dy (filled circles) and 164Dy (empty circles) B → A

transitions as a function of interaction region temperature. Solid lines indicate least-squares fit to
the data.
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contributing significantly to BBR shifts. In Dy the closest neighbor state at 19,558 cm−1 is
only 7 THz removed from A or B, compared to the 24 THz peak of the BBR spectrum at
300 K, with a full-width at half-maximum bandwidth of 27 THz.

The transition frequencies were also measured across a larger temperature interval, see
Fig. 5.8. For these measurements a ≈ 650 mG magnetic field was applied to resolve the
Zeeman structure and more effectively cancel drifting magnetic fields. The temperature of
the light collection mirrors was varied from 120 K to 340 K.

The differential scalar polarizabilities obtained from a T 4 least-squares fit to the data are
consistent in sign and magnitude for the two isotopes, but are not consistent within errors.
These measurements appear to be influenced by systematic errors uncorrelated with BBR
intensity, as evidenced by relatively large deviations from the T 4 dependence in the 162Dy
data that are not present in the 164Dy data. One hypothesis is that large changes in the
magnetic field, possibly due to thermoelectric currents generated by temperature gradients
across dissimilar metals, are not completely canceled out in the±M average frequency. These
results should be considered preliminary due to the presence of this unexplained departure
from the T 4 dependence in only one isotope.

5.9 Summary

We have presented measurements of the off-resonant differential polarizabilities of states A
and B in 162Dy and 164Dy for radio-frequency electric fields, and the effect of temperature
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on the transition frequency between these states in both isotopes.
Non-zero off-resonant polarizabilities could result in systematic errors in the measured

value of νBA. In the experiment dedicated to constraining variation of α we are not concerned
with the overall systematic error, but the stability of the systematic error over the course of
the experiment’s lifetime. The stability of each ac-Stark related systematic is discussed in
order to project the systematic limits on a search for variation of α.

The probe electric field in the rf spectroscopy of the B → A transition has a typical
mean-squared amplitude of E2 = 4.5 V2/cm2. Assuming a stability of δE2 = 0.45 V2/cm2,
the two-state ac-Stark shift for a resonant probe field contributes a systematic frequency
uncertainty of

σνBA = �dBA�2F (νBA, νBA)δE
2
�

M

aM

|�JM10|JM�|2

2J + 1

=

�
8 mHz 162Dy
2 mHz 164Dy

, (5.25)

where the sum is over the normalized signal amplitudes, aM , of the unresolved Zeeman
transitions. These amplitudes are measured with the Zeeman structure of the transition
fully resolved (see Appendix B.

The systematic uncertainty arising from off-resonant ac-Stark shifts is evaluated with the
maximum likelihood differential polarizabilities from Eq. (5.16):

σνBA =
1

2
δE2

�

M

aM

�
α(0)

BA +α(2)

BA

3M2 − (J(J + 1))

J(2J − 1)

�

= 32 mHz.

(5.26)

The temperature of the light collection mirrors was found to vary between 294 ◦C and 298 ◦C
for measurements spanning over two years. Using the result of Eq. (5.23) gives an estimate
of the stability of νBA due to temperature dependent effects of

σνBA = 66 mHz. (5.27)

Dysprosium atoms are also subject to the thermal radiation from the atomic-beam oven.
The higher temperature of the oven (1400 K vs. 300 K) makes its radiation ≈ 470 times
more intense. Due to the distance between the interaction region and the oven, however, the
intensity of oven BBR at the rf region is reduced by a factor ≈ 10−4. The typical temperature
variability of the oven of is ±10 K, and neglecting the change in the frequency spectrum of
BBR, the systematic uncertainty due to oven BBR radiation is

σνBA = 16 mHz. (5.28)
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The four systematic uncertainties discussed are added in quadrature to evaluate the total
ac-Stark related systematic uncertainty:

σνBA = 75 mHz. (5.29)

For two measurements, separated by one year, of the transition frequencies νBA in each
isotope this systematic uncertainty will limit the experimental sensitivity to variation of
α at the level of |α̇/α| = 2.6 × 10−17 yr−1, which would be comparable to the present
best limit [31]. The ac-Stark systematic limit can be reduced by better stabilization of the
interaction region temperature and improved stability of the rf-field amplitude. Further
studies of the BBR induced shifts may allow frequency measurements to be corrected for
drifts of the interaction region temperature. We have also shown that the off-resonant
polarizabilities contribute substantially to the differential dc-polarizability of levels A and
B.

This work, in addition to helping constrain systematics uncertainties for searches of
variation of α also provides additional spectroscopic information about the states A and B
that can be used to test the atomic-structure calculations that are used in conjunction with
these experiments [51].
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6 — Conclusion

The results in this work are some of the best bounds on variation of the fine-structure
constant and possible Lorentz violating effects for electrons. Both results show potential for
improvement, although the systematic limitation due to electronic offsets of the constraint
on varying α is unlikely to be easily addressed. The work on Lorentz violation currently
shows more promise for rapid improvement. The possibility of putting the experiment on
a rotating platform and acquiring constraints on cµν over the course of hours, rather than
days or years, drastically reduces the susceptibility of the experiment to the kinds of slowly
varying systematic effects believed to currently limit our results. Work is currently underway
to implement this, and it should be noted that data acquired for Lorentz violation is always
complementary to data constraining variation of α, assuming that rotating the experiment
does not introduce new unforeseen systematic effects.

Beyond these two results, plans are in place to use the present apparatus to resume
investigations into atomic parity nonconservation. The last attempted measurement of this
effect in dysprosium yielded a result consistent with zero and limited by statistics [41], but
was inconsistent with theoretical calculations at the time [88]. With revised calculations that
still predict a non-zero effect but resolve this inconsistency [73], we expect that the improved
sensitivity of the apparatus will allow us to finally determine if Dy is a viable candidate for
the study of parity violation in atoms.
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[34] V. Alan Kostelecký and Stuart Samuel. “Spontaneous breaking of Lorentz symmetry
in string theory”. In: Physical Review D 39.2 (1989), pp. 683–685. doi: 10.1103/
PhysRevD.39.683.
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A — Frequency measurements

During data collection the 564-nm fluorescence light emitted by Dy atoms during the final
decay step of level A to the ground state is detected with a photomultiplier tube (PMT).
The PMT signal is sent to a lock-in amplifier that detects the signal components at the
first and second harmonics of the modulation frequency. The theory of lock-in detection is
briefly summarized in Sec. C.1. The lock-in amplifier, a Signal Recovery 7280, simultaneously
detects both the in-phase and quadrature components of both harmonic signals. This allows
the lock-in phase to be adjusted post-data collection by application of Eq. (C.17).

A measurement of the transition frequency occurs in two steps. The probe electric-field
frequency is first scanned across a ∼ 4 kHz range around resonance. Lock-in detected signals
from such a scan are shown in Fig. A.1. Close to resonance the first and second-harmonic
signals are well described by linear and constant functions, respectively. The ratio of first-
harmonic to second-harmonic signals are fit to the function

Rφ(ω) =
L1

φ(ω)

L2(ω)
=

Mφ

2π
(ω − ω0), (A.1)

where the transition frequency is assumed to be ω = ω0 where R(ω0) = 0. The phase
dependence of L2(ω) is ignored as the second-harmonic detection phase is simply chosen to
maximize signal size at resonance. The ratio of harmonics is chosen as it is expected to
be insensitive to changes in the overall signal size, due to fluctuations in the atomic beam
density, laser power, or rf power.

A measurement of the slope Mφ is referred to as the calibration. After calibration the
electric-field frequency is set to a fixed value ωrf near ω0 and the ratio Rφ(ωrf) acquired re-
peatedly. The transition frequency is calculated from the mean of the repeated measurements
according to

∆ωφ
0 =

ω0 − ωrf

2π
=

−1

Mφ

1

N

N�

i

Ri
φ(ωrf). (A.2)

The statistical uncertainty, corresponding to the half 68% confidence interval, for a measure-
ment of ∆ω0 is taken to be the standard error of the mean,

σ(∆ωφ
0 ) =

σ(∆ωφ
0 )√

N − 1
, (A.3)
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Figure A.1: a) Filled and empty circles show the in-phase and quadrature first-harmonic lock-in
signals as the electric field frequency is scanned across the atomic resonance. Empty squares show
the magnitude of the second-harmonic lock-in signals. b) Filled (empty) circles show the ratio of
the in-phase (quadrature) first harmonic to second-harmonic lock-in signals. The reference phase
of the first-harmonic channel was 60.7◦ for these data.

where σ(∆ωφ
0 ) is the standard deviation of the frequency measurements and assumed nor-

mally distributed measurement errors.
We have kept the dependence on phase explicit to demonstrate that acquiring data at the

in-phase and quadrature channels of the lock-in amplifier allows the data to be rephased after
acquisition has been performed. According to Eqs. (A.1), (A.2), and (C.17) the transition
frequency at any phase φ can be calculated according to

∆ωφ
0 =

−1

Mφ

1

N

N�

i

Ri
φ0
(ωrf) cos (φ− φ0) +Ri

φ0+π/2(ωrf) sin (φ− φ0), (A.4)

where
Mφ = Mφ0 cos (φ− φ0) +Mφ0+π/2 sin (φ− φ0). (A.5)

The quantities Mφ0 and Ri
φ0

are the in-phase slope and ratio at phase φ0, and Mφ0+π/2

and Ri
φ0+π/2) are the quadrature slope and ratio at phase φ0. Figure A.2 demonsrates the

application of Eq. (A.4) to actual data, where the in-phase and quadrature slopes M were
taken from Fig. A.1. Data acquisition at the RAM insensitive phase, discussed in Sec. 4.1,
comes at the expense of more than a factor of two in statistical sensitivity.
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B — Unresolved Zeeman structure

The Zeeman structure of the B → A transition in our experiment is unresolved, as demon-
strated in Fig. B.1. Selection rules allow 20 transitions between the J = 10 levels for a given
electric-field polarization (M = 0 → M � = 0 is forbidden for ∆J = 0). In our experiment
we define the quantization axis along the electric-field axis. With this geometry we observe
only the ∆m = 0 transitions. The expression for an unresolved lineshape can be written

K(ω) =
�

M

aMKM(ω), (B.1)

where ω is the electric-field frequency (angular) and aM is the normalized weight of theMB =
M → MA = M transition, determined by transition strengths and sublevel populations. The
individual lineshapes Km(ω) are arbitrary, but we will assume Lorentzians of the form

KM(ω) =
γ2/4

(ω − ωM)2 + γ2/4
, (B.2)

where ωM is the resonant frequency of the M -sublevel transition, γ is the full-width half-
maximum (FWHM) linewidth of the transition, and the lineshape has been normalized to
unity at resonance.
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Figure B.1: The left and right plots show the first- and second-harmonic lineshapes of the 164Dy
transition with no magnetic field (filled circles) and ∼ 575 mG magnetic field (empty circles). The
resolved spectrum has been scaled on the vertical axis 3× for display purposes.
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The resonant frequency of a transition is taken to be the frequency at which the lineshape
amplitude is maximum, or when the first derivative of the lineshape is zero,

dK
dω

����
ωo

=
�

M

aM
−2(ωo − ωM)γ2/4

((ωo − ωM)2 + γ2/4)2
= 0, (B.3)

where ωo is the observed transition frequency. There is more than one solution to Eq. (B.3),
but only one that corresponds to the maximum of L(ω). In order to find this frequency we
assume the sublevel dependent shifts are small, i.e. |ωo − ωM | � γ/2 for all M . We now
expand Eq. (B.3), retaining terms up to order (ωo − ωM)/γ,

dK
dω

����
ωo

�
�

M

aM
−8(ωo − ωM)

γ2
= 0

�
�

M

aM (ωo − ωM) = 0.

This has the solution
ωo =

�

M

aMωM , (B.4)

which is simply the weighted average of the indidual Zeeman transition frequencies. A
practical study of systematics on an unresolved line therefore requires knowledge of the
individual Zeeman transition weights. Any effect, e.g. the Stark and Zeeman effects, that
depend on M must take this distribution into account.

The Zeeman transition weights have been measured by applying a ∼ 575 mG magnetic
field along the quantization axis to completely resolve the Zeeman structure. A frequency-
modulated, rf electric field is scanned across the spectrum while a photomultiplier (PMT)
tube detects the atomic fluorescence at 564 nm. A lock-in detector measures the amplitude
of the PMT signal contained at the first and second-harmonics of the modulation frequency.
An example scan is shown in Fig. B.1.

A nonlinear least-squares fit is performed to both harmonics of the spectrum using an
analytic lineshape of the form

K(ω) =
�

M �=0

aMLn
φ (ω − (ωAB +G ·m)) ,

where M = −10 → 10, the aM are normalized transition weights, ωAB/(2π) � 753.5 MHz
is the unshifted transition frequency, G/(2π) ∼ 0.126 MHz is the magnetic field induced
Zeeman splitting, φ is the lock-in detector phase, and n indicates the lock-in detector har-
monic. The derivation of the lineshape Ln

φ for arbitrary harmonic can be found in Section C,
Eq. (C.20). The fitting is performed on the first and second harmonics of four Zeeman spec-
tra, giving eight measurements of the transition weights. The fits are shown in Fig. B.2 and
normalized weights are shown in Table B.1.
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|M | 1 2 3 4 5 6 7 8 9 10

+ 0.0010(1) 0.0062(4) 0.018(1) 0.036(2) 0.056(2) 0.076(1) 0.0927(4) 0.103(2) 0.091(4) 0.016(1)

− 0.0010(1) 0.0061(5) 0.018(1) 0.036(2) 0.057(2) 0.078(2) 0.0949(3) 0.105(2) 0.093(4) 0.016(1)

Table B.1: Normalized weights of the ±m sublevels contributing to the unresolved lineshape of the
B → A transition in Dy.

�������������������������������������
����������
�������������
�
�

�

��

�

�

�
��
�
�
�
�������������
�
�

�

�
�

�

�

�

��

�

�

�
�������������
�
�

�

�
�

�

�

�

��

�

�

�
�������������
�
�

�

��

�

�

�

��

�

�
�
�������������
�
�
�

��

�

�

�
��
�
�
��
�������������
�
�
��
�

�

�
��
�
�
��������������
��
��
�
�
�
���
��
����������������
�������������
��������������������������������������������������������������������������������������������

�����������
�������������
��
���
�
���
��
��������������
�
�
�
��
�

�

�
��
�
��
�������������
�
�
�
��
�

�

�

��
�
�
��
������������
�
�

�

��

�

�

�

��

�

�
��
������������
�
�

�

��

�

�

�

��

�

�
�
�������������
�
�

�

��

�

�

�

�
�

�

�
�
�������������
�
�
�
��
�

�

�

��

�

�
��
��������������
���������
������������������������������������

���������������������������������������
������������������������
�

�

�
�
�

�

�
���
��
��������������

�

�

�
�
�

�

�
���
��
��������������
�

�

�
�
�

�

�
���
��
��������������
�

�
�
��
�

�
����
���������������
�
�
���
�
�
����
���������������
�
�
����
�������
��������������
����������������������������

��������������������������������������������������������������������������������������������������������������������������������
�������������������������
�
�
����
������
��������������
�
�
���
�
�
����
���������������
�

�
���
�

�
���
��
��������������
�

�

�
�
�

�

�
���
��
��������������
�

�

�
�
�

�

�

���
��
��������������
�

�

�
�
�

�

�
���
��
���������������
�������������������������������������������

752.0 752.5 753.0 753.5 754.0 754.5 755.0

�2

0

2

4

Frequency �MHz�

�������������������������������������
����������
�������������
�
�
�
��

�

�

�
��
�
�
��
������������
�
�
�

��

�

�

�
��
�
�
�
�������������
�
�
�
��

�

�

�
��
�
�
��
�������������
�
�
��
�

�

�
��
�
�
��
�������������
�
�
��
�

�

�
��
�
��
��������������
��
���
�
����
���
���������������
���������
��������������������������������������������������������������������������������������������������������������������������������������������������

����������
���������������
��
���
�
�
��
��
��������������
��
�
��
�

�

�
��
�
��
�������������
�
�
�
��
�

�

�
��
�
�
�������������
��
�
�
��
�

�

�

��
�
�
��
������������
�
�
�
��
�

�

�

��

�
�
��
������������
�
�
�
��
�

�

�

��
�
�
��
���������������
���������
�����������������������������������

����������������������������������������
�����������������������
�
�
���
�
�
����
���������������
�
�
���
�
�
����
���������������
�
�
���
�
�
�����
��������������
�
�
���
�
������
���������������
��
���
���������������������
���������������������������

�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
��������������������������
��
�����������������������
�
�
���
�
�
�����
��������������
�
�
���
�
�
����
���������������
�
�
���
�
�
����
���������������
�
�
���
�
�
����
�����������������
������������������������������������������

752.0 752.5 753.0 753.5 754.0 754.5 755.0

�2

0

2

4

Frequency �MHz�

�������������������������������������
����������
�������������
�
�
�
��

�

�

�
��
�
�
��
������������
�
�
�

��

�

�

�
��
�
�
�
�������������
�
�
�
��

�

�

�
��
�
�
��
�������������
�
�
��
�

�

�
��
�
�
��
�������������
�
�
��
�

�

�
��
�
��
��������������
��
���
�
����
���
���������������
���������
��������������������������������������������������������������������������������������������������������������������������������������������������

����������
���������������
��
���
�
���
��
���������������
�
�
��
�

�

�
��
�
��
�������������
�
�
�
��
�

�

�
��
�
�
��������������
�
�
�
��
�

�

�

��
�
�
���
�����������
�
�
�
��
�

�

�

��
�
�
��
������������
�
�
�
��
�

�

�

��
�
�
��
���������������
���������
�����������������������������������

����������������������������������������
�����������������������
�
�
���
�
�
����
���������������
�
�
���
�
�
����
���������������
�
�
���
�
�
�����
��������������
�
�
���
�
�������
��������������
��
���
���������������������
���������������������������

�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
��������������������������
��
�����������������������
�
�
���
�
�
�����
��������������
�
�
���
�
�
����
���������������
�
�
���
�
�
����
���������������
�
�
���
�
�
����
�����������������
������������������������������������������

752.0 752.5 753.0 753.5 754.0 754.5 755.0

�2

0

2

4

Frequency �MHz�

�����������������������������������������������
�
�
�������������
�
�

�

�
�
�

�

�

�

�

�

�

�

�
�
�
��
�
�
�
�

�

�

�
�

�

�

�

�
�

�

�

�

�
�
���
��
�
�

�

�

��

�

�

�

��

�

�

�

�
�
�
����
�
�

�

�

�
�

�

�

�

��

�

�

�
�
������
�
�
�

�
�
�

�

�

�

�
�

�
�
�����������
�
��

�

�

�
�
�
�
�������������
�
�
�

�
�������������������
��
����������������������������������� �����������������������������������

��
������������������
�
�
���������������
�
�
�
�

�

�

�
�
�
����������
�
�
�

��
�

�

�

�

�

�
�

��
������
�
�

�

�

��

�

�

�

�
�
�

�

�
�
�����
�
�
�

�

�
�
�

�

�

�

�
�

�

�

�
�
�
����
�
�

�

�

�

�
�

�

�

�

�

�

�

�
�

��
�
���
�
�

�

�

�
�
�

�

�

�
�

�

�

�
�
�������������
�
�
�����������������������������������������������

�����������������������������������������������
�������������������
�
�
��
�
�
���
������������
�

�
��

�

�
���
������������
�

�
��

�
����
������������
�
���
�
���
�������������
�
���
������
�����������
����
�����������������
����������������������������������������������������������� �������������������������������������������������������

��������������������
��������������������
�
�
��
�
�������
���������
�
���
�
���
�������������
�

���

�
���
������������
�

�

��
�

�
���
������������
�
�
��
�
�
���
��������������
�������������������������������������������������

752.0 752.5 753.0 753.5 754.0 754.5 755.0

�2

0

2

4

Frequency �MHz�
Figure B.2: The 164Dy transition with resolved Zeeman structure. The top and bottom spectra
are the second and first-harmonics, respectively, of the lock-in detected lineshapes. The solid lines
are the results of nonlinear least-squares fits using the analytic lineshapes derived in the following
section.
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C — Lineshape derivation

C.1 Frequency- and amplitude modulated

spectroscopy

The radio-frequency spectroscopy of Dy is performed with a frequency-modulated electric
field. Frequency modulation of the electric field gives rise to amplitude modulation of the
atomic fluorescence, with a phase determined by the detuning of the electric-field carrier
frequency from the atomic resonance. A lock-in amplifier is used to perform phase-sensitive
detection (PSD) of the fluorescence with a high level of noise rejection. In this section we
derive analytic functions to describe the fluorescence lineshapes.

Electric-field frequency spectrum

The electric field used for spectroscopy has the form

E(t) = Eo[1 + � cos (Ωt+ φAM)] cos (ωt+m sinΩt), (C.1)

where Eo is the elctric field amplitude, � is a measure of RAM, ω and Ω are the carrier and
modulation frequencies, respectively, and φAM is an arbitrary phase between the amplitude
and frequency modulations. To simplify calculations we use Euler’s formula to write

E(t) =
Eo

2

�
1 +

�

2

�
ei(Ωt+φ) + e−i(Ωt+φ)

� �
·
�
ei(ωt+m sinΩt) + e−i(ωt+m sinΩt)

�
. (C.2)

This expression can be simplified further by using the Jacobi-Anger expansion,

eim sin θ =
∞�

k=−∞

Jk(m)eikθ,

where Jk(m) is the k-th Bessel function. Applying this expansion yields

E(t) =
Eo

2

�
1 +

�

2

�
eiΩteiφ + e−iΩte−iφ)

� �
·
�
eiωt

∞�

k=−∞

Jk(m)eikΩt + e−iωt
∞�

k=−∞

Jk(m)e−ikΩt

�
.
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The fully simplified expression is

E(t) =
Eo

2

∞�

k=−∞

�
eiωt Gk(m)eikΩt + e−iωtG∗

k(m)e−ikΩt
�
, (C.3)

where

Gk(m) = Jk(m) +
�

2

�
Jk−1(m)eiφ + Jk+1(m)e−iφ

�
. (C.4)

Equation (C.3) is identical to the expression for a purely frequency- or phase-modulated
electric field, with the regular Bessel functions, Jk(m), replaced by the complex valued Gk(m)
defined by Eq. (C.4).

Two-level system

To derive the expected lineshape we consider a two-state Hamiltonian

H =

�
ω0 − iγ

2
dE(t)

dE∗(t) 0

�
, (C.5)

to describe the two-state system

|ψ(t)� =
�

A(t)e−i(ω0−iγ/2)t

B(t)

�
, (C.6)

where d is the dipole-matrix element between states A and B, ω0 is the (positive) energy
difference between A and B, and γ is the relaxation rate of state A.

Atoms in our experiment start in state B and are excited to state A. The atomic
fluorescence at 564 nm is directly proportional to the population of state A, that is PA(t) =
|�A|ψ(t)�|2. To first find A(t) we need to solve the Schrödinger equation

i
∂|ψ(t)�

∂t
= H|ψ(t)�. (C.7)

After substituting Eq. (C.6) and Eq.(C.5) in to Eq.(C.7) we get

i
dA(t)

dt
e−i(ω0−iγ/2)t = E(t)B(t) (C.8)

i
dB(t)

dt
= E∗(t)A(t)e−i(ω0t−iγt/2). (C.9)

As a first approximation we will assume that the population of atoms in state B is relatively
unchanged, B(t) ≈ 1. This leaves us with a linear equation for A(t) given by

dA(t)

dt
= −iE(t)ei(ω0t−iγt/2). (C.10)
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The solution A(t) for a an electric field E(t) = E0eiωt is

A(t) =
−E0

ω + ω0 − iγ/2

�
ei(ω+ω0−iγ/2)t − 1

�
, (C.11)

and the quantity �A|ψ(t)� is

�A|ψ(t)� = A(t)e−i(ω0−iγ/2)t

=
−E0

ω + ω0 − iγ/2

�
eiωt − e−i(ω0−iγ/2)t

�
. (C.12)

We will define the transfer function T (ω) = −1/(ω + ω0 − iγ/2). The solution for �A|ψ(t)�
is linear in the electric field E(t), and the frequency- and amplitude-modulated field from
Eq. (C.3) is a simple sum over discrete oscillatory terms. The solution for the full electric field
then requires making the replacement in Eq. (C.12) ω → (ω + kΩ) and E0 → E0/2Gk(m),
adding another term with ω → −(ω + kΩ) and E0 → E0/2G∗

k(m), and summing the entire
expression over k:

�A|ψ(t)� = E0

2

�

k

�
T (ω + kΩ)Gk(m)

�
ei(ω+kΩ)t − e−i(ω0−iγ/2)t

�
+

T (−ω − kΩ)G∗
k(m)

�
e−i(ω+kΩ)t − e−i(ω0−iγ/2)t

� �
. (C.13)

The steady state population PA(t) = |�A|ψ(t)�|2 is

PA(t) ≈
E2

0

4

�

kk�

�
T (ω + kΩ)Gk(m)T ∗(ω + k�Ω)G∗

k�(m)ei(k−k�)Ωt +

T (−ω − kΩ)G∗
k(m)T ∗(−ω − k�Ω)Gk�(m)ei(k

�−k)Ωt

�
(C.14)

after dropping damped terms (t � 0) and ignoring rapidly oscillating terms around 2ω. If
we assume positive frequencies such that ω > 0, the term T (ω+kΩ)T ∗(ω+k�Ω) is in general
a small number and we can write

PA(t) ≈
E2

0

4

�

kk�

T (−ω − kΩ)T ∗(−ω − k�Ω)Gk�(m)G∗
k(m)ei(k

�−k)Ωt. (C.15)

Lock-in detection

A lock-in amplifier is a phase-sensitive amplifier that takes an input signal f(t) and provides
the output
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Figure C.1: First- and second-harmonic lineshapes of the 164Dy transition are shown in the left
and right panels, respectively. The second-harmonic has been scaled up by 3× for display purposes.
For each harmonic, a single fit is performed on the combined in-phase (filled circles) and quadrature
(empty circles) data. The quadrature lineshape is constrained to have the same fit parameters as
the in-phase lineshape, but with a π/2 offset added to the detection phase parameter.

Ln(φ) =
1

T

�
f(t) cos (nΩt+ φ) dt (C.16)

where Ω is a reference frequency, typically a multiple of some modulation frequency, n
specifies the detection harmonic of the reference frequency, and T is the integration time
(implied in the integration limits). An arbitrary phase, δφ can be added to the reference
waveform such that

Ln(φ+ δφ) = Ln(φ) cos δφ+ Ln(φ+ π/2) sin δφ. (C.17)

The signals Ln(φ) and Ln(φ+π/2) are commonly referred to as the in-phase and quadrature
amplitudes for a particular phase φ. Equation (C.17) shows that measuring both the in-
phase and quadrature components allows a calculation of the lock-in signal at any arbitrary
phase.

We now consider the lock-in amplifier outputs obtained from Eq. (C.15) for arbitrary
harmonic n of the modulation frequency:

Ln(φ) =
1

2T

�
PA(t)

�
einΩteiφ + e−inΩte−iφ

�
dt

=
E2

0

8T

� �

kk�

T (−ω − kΩ)T ∗(−ω − k�Ω)Gk�(m)G∗
k(m)·

�
ei(k

�−k+n)Ωteiφ + ei(k
�−k−n)Ωte−iφ

�
dt. (C.18)
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We assume that the finite integration time of the lock-in amplifier is long enough to make
us of the identity (1/T )

�
ei(m−n)Ωtdt = δm,n. The final result is

Ln
φ(ω) =

E2

0

8

�

kk�

T (−ω − kΩ)T ∗(−ω − k�Ω)Gk�(m)G∗
k(m)

�
δk�,k−ne

iφ + δk�,k+ne
−iφ

�

=
E2

0

8

�

k

T (−ω − kΩ)T ∗(−ω − (k − n)Ω)Gk−n(m)G∗
k(m)eiφ+

T (−ω − kΩ)T ∗(−ω − (k + n)Ω)Gk+n(m)G∗
k(m)e−iφ. (C.19)

The infinite sum in Eq. (C.19) allows us to substitute k → k + n in the first term only,
allowing us to write

Ln
φ(ω) =

E2

0

8

�

k

T (−ω − (k + n)Ω)T ∗(−ω − kΩ)Gk(m)G∗
k+n(m)eiφ+

T (−ω − kΩ)T ∗(−ω − (k + n)Ω)Gk+n(m)G∗
k(m)e−iφ

Ln
φ(ω) =

E2

0

4

�

k

Re

�
T (−ω − (k + n)Ω)T ∗(−ω − kΩ)Gk(m)G∗

k+n(m)eiφ
�
. (C.20)

An example of a nonlinear least-squares fit of Eq. (C.20) to sample lineshapes is shown in
Fig. C.1.




