UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Representation of Variables and Their Values in Neural Networks

Permalink
@s://escholarship.org[uc/item/7ig5_b5i3|

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 15(0)

Author
Wiles, Janet

Publication Date
1993

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/7jg5b5j3
https://escholarship.org
http://www.cdlib.org/

Representation of variables and their
values in neural networks

Janet Wiles
Departments of Computer Science & Psychology
University of Queensland QLD 4072 AUSTRALIA
janetw(@cs.uq.oz.au

Abstract

Neural nets (NNs) such as multi-layer

fcedforward and recurrent nets have had
considerable success in creating representations in
the hidden layers. In a combinatorial domain,

such as a visual scene, a parsimonious represent-
ation might be in terms of component features (or
variables) such as colour, shape and size (each of
which can take on multiple values, such as red or
green, or square or circle). Simulations are
described demonstrating that a multi-variable
encoder network can learn to represent an input
pattern in terms of its component variables,
wherein each variable is encoded by a pair of
hidden units. The interesting aspect of this
representation is that the number of hidden units
required to represent arbitrary numbers of
variables and values is linear in the number of
variables, but constant with respect to the number
of values for each variable. This result provides a
new perspective for assessing the representational
capacity of hidden units in combinatorial
domains.

Introduction

Cognitive models are designed to explicate the
processes that underlie cognitive phenomena.
However, the representations over which such
processes operate must either be specified a priori
in a model, or learnt within the model. NNs
provide a concrete mechanism for thinking about
ways in which such representations could be
learnt in cognitive tasks. The application of NN
to representation construction has produced many
illustrative simulations (e.g., Rumelhart, Hinton
& Williams, 1986; Elman, 1988) which in effect,
provide metaphors for thinking about both the
potential and limitations of the representational

1077

aspects of learning. There has been much
debate concerning the representational adequacy
of NN, specifically focussed on their
compositional and systematic properties (e.g., see
Fodor & Pylyshyn, 1988; and responses by
Smolensky, 1988; van Gelder, 1990; & the
special issue of Artificial Intelligence edited by
Hinton, 1990). Although, theoretically the
representational questions have been addressed,
questions remain concerning ways in which a
learning mechanism could induce the structure
inherent in a combinatorial domain. In previous
work, we showed that combinatorial structure in
a simple domain (3 colours, 3 shapes and 2
locations) can be represented by a multi-layer
network in terms of intersecting regions in HU
space (Wiles & Ollila, 1992). In a study of
generalization performance in combinatorial
domains, Brousse and Smolensky (1989) report
that multi-layer nets trained on subsets of a
combinatorial task generalized to a large fraction
of the domain, and with only a little extra training
could generalize to far more. The current study
explores representations as the number of values
for each variable in a combinatorial domain is
increased.

Review of structures in HU space

In a multi-layer net, a pattern of activation on the
input units is transformed (via the first matrix of
weights) to a pattern of activation on the HU
layer. This pattern of activation is then
transformed (via the second matrix of weights) to
a pattern of activation on the output unit layer. In
the simplest form, the pattern of activation in the
HU layers can be viewed as a redescription or
transformation of the input. If there are fewer
HUs than input units, the transformation acts in
such a way as to compress the input represent-
ation. If there are more HUs, then it will be

mailto:janetw@cs.uq.oz.au

expanded. Such shaping (i.e., compression or
expansion) is due to the backpropagation of
errors from the output layer (Rumelhart, Hinton
& Williams, 1986). Backpropagation distributes
error over the HUs, causing the patterns to
separate to the limits of the space available. The
opposing forces of separation and containment
force the HU space to structure the patterns into
an efficicnt representation system. Potential
representation systems can be viewed as
geometric structures in HU space.

For networks with only 2 HUs, the structure
of HU space can be scen directly by plotting the
first HU on the X-axis, and the 2nd HU on the
Y-axis. For networks with more HUs, there is
substantial regularity in the structures formed in
the hidden layer, although dimension reduction
techniques, such as principal components
analysis or canonical discriminant analysis (Kotz,
1982), may be required to reveal such structure
(see Elman, 1989; or Bloesch & Wiles, 1991, for
a review of the application of such techniques to
HU space analysis).

Discrete regions: The simplest structures are
formed by sets of patterns that cluster together,
each cluster falling within a distinct region (all
regions being disjoint). In a feedforward
network, these clusters represent equivalent
classes of inputs. In a recurrent network each
region represents a logical state (Giles et al.,
1990) and a change in the activation pattern on the
hidden layer represents a transition from one
logical state to another. The HU space and
allowable transitions can be viewed as an
embedded finite state machine.

Hierarchies: More complex structures can be
formed by grouping regions of similar patterns
together to form larger regions, effectively
representing hierarchies of patterns. Using
cluster analysis on a network trained on simple
sentences, Elman (1989) showed that patterns
representing specific instances of a word, such as
"dragon", would have very similar HU patterns
(i.e., cluster in a small region of HU space).
Neighbouring regions represented clusters of
related words such as "monster" or "lion". These
patterns were part of an hierarchy of animals,
animates (animals plus humans), and nouns. The
major division in the space was between nouns
and verbs. An interesting aspect of this hierarchy
was that the HU representation was purely spatial
(i.e., the relationship was defined by the
topographic relationships in the HU patterns)
even though no such information existed in the
spatial input and output patterns. Rather, the

1078

information used o construct the spatial code was
derived from the temporal relationships existing
in the pairs of input and output patterns from
sentences on which the network was trained.

Intersecting regions: Cluster analysis leads
to the view of HU space as an hierarchy of
regions. It is also possible to view the HU space
as a set of overlapping regions, with cach pattern
being in the intersection of several intersecting
regions. In a visual encoding task, Wiles & Ollila
(1992) traincd a network on simple scenes
composed of pairs of coloured shapes. Using
canonical discriminant analysis to group the
patterns by colour, they showed that scenes were
grouped into regions of the same colour, and that
a scene with a red square and a blue triangle
would be represented by a pattern that lay at the
intersection of regions of red and blue shapes.
Similarly, by grouping the patterns by shape
alone, the same scene would be represented by a
pattern at the intersection ol scenes for squares
and triangles. The limit to the number of
independently intersecting regions depends on the
number of HUs (i.e., the dimensionality of the
HU space). In short, the network developed a
compositional representation for features of the
scene.

Continuous representations: Spatial
representations are not restricted to the familiar
structures of symbolic processing. For example,
in compression tasks, such as the N-2-N encoder
(N input, 2 hidden and N output units; see Figure
1), the 2 HUs need to take on intermediate values
to represent the range of input patterns.
Theoretically, with sufficient precision, weights
exist for any such N (Kruglyak, 1990). For
example, for an 8-2-8 encoder, patterns in the
HU distribute themselves around an octagon,
with each output unit active for one pattern on the
octagon (Lister, 1992). These simulations show
that HU space can exploit the continuous nature
of the HU activation values to represent regular
structures. This continuous nature has also been
used to encode continuous distributions
representing regular structures such as spatial
scales, and irregular ones such as fractals
(Pollack, 1989).

HU representations of combinatorial
domains

In a combinatorial domain, such as a visual
scene, a parsimonious representation of the scene
might be described in terms of component

features such as colour, shape and size. The
features can be viewed as variables, which take
on a range of values (e.g., colours can be red,
green, blue, etc). In previous work we showed
that such combinatorial structure in simple scenes
(3 colours, 3 shapes and 2 locations) can be
represented by a multi-layer network in terms of
intersecting regions in HU sg)acc (Wiles & Ollila,
1992). The current study addresscs the question
of how such representations change as the
numbers of values for each variable increases.
The task we used to study multiple values was
modified from the earlier simulations to take into
account recent results on representational issues
in the output patterns in encoder networks, as
described below.

The n-2-n encoder task as a variable/
value representation. Multi-layer feed-
forward networks in which the input and output
patterns are identical are called encoder tasks. In
the standard encoder task, only local patterns are
present in the data (i.e., in each input pattern,
only one input and the corresponding output unit
1s non-zero, see Figure 1). In this standard
formulation, all input patterns are orthogonal,
and there is no structure inherent in the domain
that a network can exploit in representing such
data. Each input pattern in the data set is
represented by a unique dimension. In an
encoder task, there are fewer hidden units than

input units, hence the network must find a
compressed representation for the input patterns.
Only 2 HUs are needed to represent an arbitrary
number of input patterns which are locally coded
(Kruglyak, 1990). The aspect of the n-2—n task
that 1s of present interest is the fact that, in the
input representations, only one unit is 1 for any
pauern. Consequently, the set of patterns can be
considered as alternative values of a single
variable. The pattern that is active in the network
(either at the input, or hidden layers) represents
the value of the variable at that time.

In the standard form of the encoder task,
learning times (in weight updates) appear to scale
exponentially with the number of inputs, making
it a difficult search task for backpropagation to
find appropriate weights, even though
theoretically they must exist (Lister, 1992). Due
to such computational constraints on the learning
time it is not a feasible task on which to base
multiple variable/ multiple value studies.

Block codes in encoder tasks. Alternative
representations on the input and output units
effectively change the relationships between the
data patterns and as a result affect learning in the
encoder task. Preliminary experiments with
representations for the output patterns (Bakker,
Phillips & Wiles, in preparation) gave the
surprising result that if the output representations

N output units (local codes)

2

2 hidden units

T IR

0 0 0 1

0 0 0

N input units (local codes)

Figure 1. n-2-n encoder with local input and output codes.

are transformed from a local code (1 one, and n-
1 zeros) to a block code (n/2 consecutive oncs,
and n/2 consccutive zeros, using wraparound),
then encoder tasks are ecasy to learn
(approximately linear in the number of inputs).
These output codes reflect the structure that is
required in the hidden unit representations, but
also modify the position of the hyperplanes
specified by the weights into each output unit.
(Note that the modification to block output codes
does not negate Kruglyak's proof of the existence
of weights for arbitrary n.) The dramatic
improvements in learning times in the block
output codes provided the basis for simulations of
multiple variables and values.

The multi-variable encoder task (nk-2k-
nk encoder). The task used to test the
extension of the combinatorial task to multiple
values was based on the n-2-n encoder task,
changing the architecture to nk input units,
representing k variables, each taking on n values.
Within each variable, the input values were coded
using local codes, whereas the output values
using block codes (see Figure 2).

The data for the k-variable encoder differ
from the n—2-n encoder in their structure and
number. The k-variable encoder represents a
combinatorial domain, in which each variable is
mapped from the input units to its corresponding

output units, but is independent of the other
variables. Hence, there are nk patterns in the
data set. Based on Kruglyak's proof of the
existence of weights for the n—-2-n encoder task,
there must exist weights for the k-variable
encoder task. However, it is not at all obvious
that backpropagalion could find such a set of
weights, If 1t can, then it is essentially
performing a decomposition of the nk input
vector into the k variables that underlie the
structure in the data set.

Method

We simulated the k-variable encoder task, using
local input and block output codes, forn =8, 9
& 14, and k = 2 & 3, and performed a detailed
analysis of a simulation withn = 14 and k = 3
(for example, representing a scene which could
contain objects in any one of 14 colours, 14
shapes and 14 sizes). The training algorithm was
backpropagation with momentum of 0.9,
updating the weights after every pattern
presentation, initially using a tolerance margin on
the target values of 0.2, a learning rate of 0.05
and a success criterion within 0.4 of the target
values. After the network converged, a second
stage of training followed in which the tolerance

Nk output units (block codes)

11110000

00111100

00011110

10000000

00100000

2k hidden units

Figure 2. nk—-2k-nk encoder with local input and block output codes.

Nk input units (local codes)

1080

00010000

margin, learning rate and success critcrion were
halved. Again, after convergence, a third stage of
training proceeded with the same parameters
halved again.

Results

All the networks reached the first success
criterion in less than 500 passcs through the
training set (epochs), most in less than 100
epochs. Typical results for a n=8, k=2 (i.e., 16—
4-16) encoder were 48 epochs to the first success
criterion, 124 epochs to the second criterion.
Typical results for an n=14, k=3 (i.e., 42-6-42)
encoder were 24 epochs to the first success
criterion, 178 epochs to the second criterion. In
both cases, the networks continued to improve
their performance, but did not reach the third
success criterion even after another 500 epochs of
training. Detailed simulations are needed to
document the trends observed here, however it
appears that the training times to reach the first
criterion are linear (or even possibly sub-linear) in
the training set size (i.e., O(nk)). (As an aside,
exploratory simulations with local output codes
did not converge within the 500 epoch limits for
the larger networks, and do not appear to
conform to the same trends.)

After the three stages of training (the third
stage proceeded for 500 epochs), one 42-6-42
network was analysed with respect to the weights
formed, and the corresponding hidden unit
patterns for each of the 3 input variables. After
training, each variable came to be represented by
a pair of hidden units: effectively the network
decomposed the 42-6-42 encoder task into 3
separate 14-2-14 encoders, variable 1 represented
by HUs 2 and 4, variable 2 by HUs 3 and 5, and
variable 3 by HUs 1 and 6. The weights to and
from each of these HUs support this analysis.

Discussion

The present study sheds light on several
capabilities of NN not widely known. The first is
the application of Kruglyak's result on the n—2-n
encoder to the concept of variables: that is, that n
independent values can be represented using just
2 hidden units, for arbitrary size n. This result is
specific to sigmoid units (though it has a corollary
for other types of activation functions), and is a
consequence of the output units as hyperplane
decision boundaries. The block codes used in the
n—-2-n task embody a similarity structure that
reflects the spatial relations required for represent-

1081

ation of independent values in the 2D HU space.
Alternative structured codes would also be
possible requiring 3D or higher dimensional
structures.

The sccond capability concerns the
improvement in learning times for block codes
over local ones. It seems surprising that this
result generalised to multi-variable tasks, or even
that backpropagation could find the
decomposition of the input vector into k coherent
variables. Detailed studies are in progress
investigating the learning times for combinatorial
domains comparing local and block codes.

The third capability is due to Brousse and
Smolensky (1989) in which they showed that
learning in combinatorial tasks provides good
generalisation. Further studies are proceeding in
order to investigate whether the k-variable
encoder nets exhibit the same generalisation
phenomena reported by Brousse and Smolensky.

The original motivation for these studies was
to investigate how the representations in
combinatorial tasks (Wiles and Ollila, 1992)
would change as the number of values for each
variables increased. In the earlier studies we
pointed out that tetrahedral structures are the most
generally accessible structures for sigmoid (or
hyperplane) output units (the dimension of a
tetrahedron is the VC dimension of the space,
using sigmoid output units). From the current
simulations, it is clear that in the colour/shape/size
combinatorial space, any combination of values
must be accessible, but alternate groupings of
values within a variable need not be. The
implications of this understanding is that a value
in one variable (e.g., red) would be accessible in
combination with any single value in other
variables, such as a triangle, square, circle,
pentagon, etc. However, there need be no single
partition of combinations of values within a
variable, e.g., there may be no way of selecting
red and green as a single group, or square and
circle as a group.

Theoretical extensions

The simulations in the previous section can be
generalized to arbitrary numbers of variables and
values: Since two HUs are, in principle,
sufficient to encode any number of values for
each variable (weights exist for arbitrary n in the
n-2-n encoder task, Kruglyak, 1991), then k
variables can be represented by 2k hidden units.
This provides a new mechanism for thinking
about the representational capacity of hidden
units. In traditional information theoretic

approaches to calculating the capacity of a
representational system, a fixed n-ary logic is
assumed (e.g., binary, or 3-valued units). Bascd
on such an assumption, increasing the number of
values which a variable can take on increases the
minimum number of units required to represent
such a variable. For example, 8 values can be
represented in 3 binary units. A 9th value could
not — even in principle — be represented in 3
binary units. By contrast, in the simulations
presented here, a single variable with an arbitrary
number of values can be represented in a constant
number of HU (i.e., 2 HUs). This is an example
of a functional, rather than concatenative
representation system, in which the tradeoffs in
representational resources lie in the precision of
the representing space, rather than number of
bits.

Acknowledgements

This research was supported by an NSRG from
the University of Queensland. [thank Anthony
Bloesch, Jeff Elman, Mark Ollila and the NN
research group in CS and Psych at UQ for many
discussions on structures in HU space, Paul
Smolensky for discussions on the combinatorial
encoder tasks, and Kate Stevens for comments on

the paper.

References

Bakker, P. Phillips, S. & Wiles, manuscript in
preparation.

Bloesch, A. and Wiles J. (1991). Data represent-
ation and display techniques for represent-
ations in hidden unit space, First Indiana
Conference on Dynamics in Cognition:
Dynamic representation in cognition, Nov,
1991, Indiana University, Bloomington,
Indiana.

Brousse, O., and Smolensky, P. (1989). Virtual
Memories and massive generalization in
connectionist combinatorial learning.
Proceedings of the 11th Annual Conference of
the Cognitive Science Society, Lawrence
Erlbaum, NJ. 380-387.

1082

Elman, J.L. (1989). Representation and structure
in connectionist models. UCSD CRL
Technical Report 8903, August 1989.

Fodor, J. and Pylyshyn, Z. (1988).
Connectionism and Cognitive architecture: A
critical analysis, Cognition 28, 3-71.

Giles, C.L., Sun, G.Z., Chen, H.H., Lee, Y.C,
and Chen, D. (1990). Higher order recurrent
networks and grammatical inference. In
D.S.Tourctzky (Ed.) Advances in Neural
Information Processing Systems 2, Morgan
Kaufmann, San Mateo.

Hinton, G.E. (1990). Mapping Part-whole
hierarchies into connectionist networks.
Artificial Intelligence 46, 47-75.

Kotz, S., and Johnson, N.L. (1982).
Encyclopedia of Statistical Sciences. John
Wiley and Sons, NY.

Kruglyak, L. (1990). How to solve the N bit
encoder problem with just two hidden units.
Neural Computation, 234), 399-401.

Lister, R. (1992). Backpropagation and the N-2-
N encoder problem. In Proceedings of the
Third Australian Conference on Neural
Networks, Sydney, Australia, 198-201.

Pollack, J.B. (1989). Implications of recursive
distributed representations. In D. Touretzky
(Ed.) Advances in Neural Information
Processing Systems, Morgan Kaufmann, San
Mateo.

Rumelhart, D.E., Hinton, G.E., and Williams, R
(1986). Learning internal representations
through error propagation. In D.E.
Rumelhart, J.L.McClelland and the PDP
Research Group (Eds.) Parallel Distributed
Processing: Experiments in the Microstructure
of Cognition 1: Foundations. MIT Press,
Cambridge.

Smolensky, P. (1988). On the proper treatment
of connectionism. Behavioural and Brain
Sciences, 11, 1-59.

van Gelder, T. (1990). Compositionality: A
connectionist variation on a classical theme.
Cognitive Science 14, 355-384.

Wiles, J., and Ollila, M. (1992). Intersecting
regions: the key to combinatorial structure in
hidden unit space. Advances in Neural
Information Processing Systems 5, Morgan
Kaufmann, San Mateo.

	cogsci_1993_1077-1082

