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Pattern Formation over Multigraphs

Andras Gyorgy [Member IEEE] and Murat Arcak [Fellow IEEE]
Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, 
CA, 94720 USA

Abstract

Two of the most common pattern formation mechanisms are Turing-patterning in reaction-

diffusion systems and lateral inhibition of neighboring cells. In this paper, we introduce a broad 

dynamical model of interconnected modules to study the emergence of patterns, with the above 

mentioned two mechanisms as special cases. Our results do not restrict the number of modules or 

their complexity, allow multiple layers of communication channels with possibly different 

interconnection structure, and do not assume symmetric connections between two connected 

modules. Leveraging only the static input/output properties of the subsystems and the spectral 

properties of the interconnection matrices, we characterize the stability of the homogeneous fixed 

points as well as sufficient conditions for the emergence of spatially non-homogeneous patterns. 

To obtain these results, we rely on properties of the graphs together with tools from monotone 

systems theory. As application examples, we consider patterning in neural networks, in reaction-

diffusion systems, and contagion processes over random graphs.

Index Terms

Nonlinear dynamics; pattern formation; large-scale systems; networks; multigraphs

1 Introduction

Spatial pattern formation plays a fundamental role in the development of complex self-

organized systems, such as multi-cellular organisms [1], [2]. The vast majority of theoretical 

results about the emergence of patterns focus on diffusion-driven instabilities, the so-called 

Turing-patterning in both biological [3], [4], [5], [6], [7] and abiological systems [8], [9]. 

However, patterning is also faciliated by mechanisms without any diffusible molecules. For 

instance, Turing patterns can appear in systems made of immobile agents as a result of 

differential growth [10], or alternatively, in the case of lateral inhibition in the Notch 

pathway where neighboring cells inhibit each other from converging on the same fate [1], 

[11], [12], [13], [14]. Thus, there is growing attention targeted at understanding pattern 

formation mechanisms other than Turing-patterning.

Studies of patterning either focus on the continuous case with partial differential equations, 

or consider network analogues: interconnected dynamical systems where nodes represent 

systems and edges stand for interconnections (e.g., ecological metapopulations [15], [16], 

spreading of infections over transportation networks [17], [18], [19], diffusively coupled 

chemical reactors or cells [11], [20], [21], [22], [23]). Since the high-dimension of the 
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resulting problem renders the analysis difficult, studies so far mainly considered small 

networks comprising only a few nodes, and resorted to numerical simulations in the case of 

large-scale networks [11], [13], [22], [23], [24].

To characterize pattern formation in large-scale networks, we view the network as the 

interconnection of input/output models [25], [26]. Inputs and outputs correspond to, for 

instance, the concentration of species used for communication among cells, and the 

interconnection structure is encoded with directed and weighted graphs P(1), …, P(m), one 

for each layer of communication channels. Nodes represent modules (e.g., cells in reaction-

diffusion systems), edges stand for connection between two nodes, and weights represent the 

strength of this connection. In addition to studying the stability of the homogeneous fixed 

points, this formulation allows us to characterize sufficient conditions for the emergence of 

spatially non-homogeneous patterns irrespective of network complexity.

Recent efforts focusing on pattern formation over directed graphs [27], [28] and multigraphs 

[28], [29], [30], [31] share a common characteristic: the matrices describing coupling among 

nodes are the Laplacian operators associated with the network structures, yielding P(k) with 

zero row-sum. While this assumption is appropriate in the context of diffusion-driven 

instabilities, it does not permit the study of pattern formation propelled by mechanisms 

without diffusible molecules, e.g., in the case of lateral inhibition P(k) is row-stochastic 

(studied in [25], [26] when P(k) are identical and symmetric).

Considering the above, the novelty of this paper is that it focuses on pattern formation over 

large-scale multigraphs, with directed edges, and without restriction on the row-sum of P(k). 

Therefore, our results (1) apply to networks where communication among nodes occurs over 

multiple layers of channels, with possibly different interconnection structures (e.g., two 

nodes can be connected in one layer and disconnected in another); (2) allow for asymmetric 

communication among nodes (e.g., one node can have an effect on another without any 

effect from the other); and (3) capture a wide array of mechanisms leading to patterning 

(diffusion-driven instability and lateral inhibition both emerge as special cases). 

Additionally, while the above studies (except for [26]) only focus on the instability of the 

homogeneous fixed points, we also reveal sufficient conditions for the emergence of non-

homogeneous patterns and characterize their location relative to the homogeneous fixed 

points. Although our main motivation is understanding pattern formation in cellular systems, 

our results characterize the emergence of patterns in networked systems over directed 

multigraphs without restrictions to biological systems.

This paper is organized as follows. We first present the mathematical model considered for 

studying the emergence of patterns over directed multigraphs, together with the main 

questions of the paper and with the notation and technical assumptions. After focusing on 

the existence of the homogeneous fixed points, we consider pattern formation over networks 

with a single layer of communication channels, then generalize the results to the case of 

multigraphs with multiple layers of communication channels. Finally, we illustrate the 

implications of the results through application examples considering neural networks, 

reaction-diffusion systems, and contagion processes over random graphs.
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2 Mathematical Model and Notation

Consider a network of identical dynamical systems i = 1, 2, …, N, each described by the 

model

(1)

where xi ∈ ℝn denotes the state of system i, and ui ∈ ℝm and yi ∈ ℝm represent the input 

and output of this system, respectively, where  and 

. Introduce x, u and y as the concatenations of xi, ui and yi for i = 1, 

2, …, N, respectively, and define  and 

.

We consider interactions among subsystems of the form

(2)

where the entry  of the matrix P(k) ∈ ℝN×N represents the strength of the effect of 

subsystem j on subsystem i through the kth channel. Therefore, we represent the network by 

a set of m directed and connected graphs (V,P(k)), where V and P(k) denote the set of vertices 

and the weighted adjacency matrix (assumed to be irreducible), respectively.

In this paper, we study the fixed points of (1)–(2). When does the homogenous fixed points 

become unstable, setting the stage for patterning? When do spatially non-homogenous 

patterns emerge? By grouping modules that share the same fate, is it possible to reduce the 

complexity of the analysis?

While addressing these questions, we consider various subsets of the following main 

assumptions:

(A1) both f(·, ·) and h(·) are continuously differentiable;

(A2) for all u ∈ ℝm the set of equations 0 = f(x, u) has a solution denoted by x =: 

S(u), in which case we define T(u) := h(S(u));

(A3)
 is Hurwitz for all u ∈ ℝm;

(A4) the maps S : ℝm → ℝn and T : ℝm → ℛm are continuously differentiable;

(A5) T(·) is bounded and  is sign-stable (i.e., with T(i)(·) denoting the ith entry of 

T(·) we have that  or  for all u and i, j = 1, …, m);
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(A6) P(k)1N = p(k)1N for some p(k) ∈ ℝ for k = 1, …, m (constant row-sum);

(A7) P(1), …, P(m) commute and are diagonalizable (when m > 1).

Throughout the paper, we drop the superscript when m = 1. Furthermore, let ei denote the ith 

unit vector and write M ⪯ 0 and M ⪰ 0 to denote that all entries of M are non-positive and 

non-negative, respectively. Finally, ρ(M) and s(M) denote the spectral radius and the largest 

real part of the eigenvalues of M, respectively, whereas diag(v) defines the diagonal matrix 

composed of the elements of the vector v.

3 Results

Before studying the emergence of patterns, we focus on the existence of homogeneous fixed 

points. To this end, we first present an input/output formulation for studying the fixed points 

of (1)–(2), which will be used throughout the paper.

Lemma 1: Assume that (A2) holds. If  for i = 1, …, N and k = 1, …, m satisfy

(3)

then xi = S(ui) is a fixed point of (1)–(2). Conversely, if S(·) in (A2) is unique and x is a 
fixed point of (1)–(2) then the corresponding u(k) from (2) satisfies (3).

Proof: Follows from the definition of T(·) in (A2).

Lemma 2: Provided (A2), (A4), (A5) and (A6), ∃x0 ∈ ℝn such that x = 1N ⊗ x0 is a fixed 
point of (1)–(2).

Proof: It is sufficient to show that ∃u0 ∈ ℝm such that  satisfies (3), as then 

xi = x0 = S(u0) is a fixed point of (1)–(2) from Lemma 1. If u0 satisfies

(4)

with p(k) ∈ ℝ from (A6) then  satisfies (3). Therefore, in what follows we 

prove that ∃u0 ∈ ℝm such that u0 satisfies (4).

Since T(k)(ui) is bounded from (A5), we have |p(k)T(k)(·)| ≤ b(k) for some b(k) ≥ 0. Therefore, 

it follows from (A4) that the function
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is a continuous mapping of the compact convex set ℬ := [−b(1), b(1)] × … [−b(m), b(m)] into 

itself (i.e., F : ℬ → ℬ). Invoking the Brouwer fixed-point theorem [32] we conclude that 

there exists u0 ∈ ℬ such that F(u0) = u0, therefore, u0 satisfies (4).

In what follows, we assume that the conditions of Lemma 2 are met, thus (1)–(2) has a 

homogeneous fixed point of the form x = 1N ⊗ x0 for some x0 ∈ ℝn, and let u0 ∈ ℝm denote 

the corresponding value of ui for i = 1, …, N.

3.1 Patterning with a Single Layer of Communcation

In this section, we focus on the case when m = 1 in (2), thus we drop the superscript.

3.1.1 Stability of the Homogeneous Fixed Points—In the following theorem, we 

derive a sufficient condition for the instability of the homogeneous fixed point x = 1N ⊗ x0 

relying only on the input/output function T(·) and on the eigenvalues of P (necessary 

conditions are presented in Lemma 1 in the Appendix when the linearization of (1)–(2) is 

also available).

Theorem 1: Assume that (A1), (A2) and (A3) hold. The fixed point x = 1N⊗x0 of (1)–(2) is 
unstable if P has a real eigenvalue λi such that

(5)

Proof: With

(6)

it is sufficient to show that (5) implies that A+λiBC has an eigenvalue with positive real part 

according to Lemma 1 in the Appendix.

Since from [25] we obtain that T′(u0) = −CA−1B, (5) is equivalent to the condition 1 + 

λiCA−1B < 0. From Sylvester’s determinant theorem it follows that

Gyorgy and Arcak Page 5

IEEE Trans Netw Sci Eng. Author manuscript; available in PMC 2018 March 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Claim 2 in [26] yields that (−1)n det(A) > 0 since A is Hurwitz by (A3), thus we obtain that 

(−1)n det(A+λiBC) < 0. From this we conclude that A + λiBC has a positive real eigenvalue 

invoking Claim 2 in [26].

3.1.2 Emergence of Patterns—Next, we study the emergence of patterns. To this end, 

we rely on results from the theory of monotone systems together with the notion of balanced 

partitioning of graphs [33]. To simplify notation, consider M ∈ ℝN×N and introduce

which is the same as M except it has zeros in the diagonal.

Definition 1: The graph  = (V,W) is balanced if there is a partition of its set of nodes V 
into V1 and V2 such that all positive edges connect nodes within V1 or V2, and negative 

edges connect nodes between V1 and V2. Furthermore, define the bipartition vector b := (b1 

… bN)T such that bi = (−1)k if node i belongs to Vk (k = 1, 2).

Theorem 2: Provided (A2), (A4) and (A5), assume that the graph with irreducible adjacency 
matrix Ψ(PT′(u0)) is balanced with bipartition vector b. Introduce u* := 1Nu0 and the cone 

 = {u : S(u − u*) ⪰ 0} where S = diag(b). If

(7)

for some real eigenvalue λi of P, then both sets u* ±  contain a point u ≠ u* such that xi = 

T(ui) is a fixed point of (1)–(2).

Proof: Introduce the auxiliary dynamical system

(8)

and note that the fixed points of (8) are identical to the solutions of (3) when m = 1. 

Therefore, the fixed points of (8) are fixed points of (1)–(2) from Lemma 1. Therefore, in the 

rest of the proof we focus on the fixed points of (8).

First, introduce the coordinate transformation w := Su and note that S = S−1, yielding
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(9)

The Jacobian of (8) is given by J(u) := −I + PΔ(u) where Δ(u) := diag(T′(u1) … T′(uN)), so 

that the Jacobian of (9) is given by DF(w) := SJ(Sw)S. We next show that (9) is cooperative 
by proving that DF(w) is Metzler for all w ∈ ℝN. To this end, note that since the graph with 

irreducible adjacency matrix Ψ(PT′(u0)) is balanced with bipartition vector b, so is 

Ψ(PΔ(u)) from (A5). Therefore, we have that bibjpi,jT′(uj) ≥ 0 for i ≠ j and i, j = 1, …, N. It 

then follows that DF(w) is Metzler for all w ∈ ℝN, thus (9) is cooperative.

Second, we focus on the bounded forward invariant set  in Lemma 2 in the Appendix. 

From (A5) we have that ∃T̄ > 0 such that |T(·)| ≤ T̄. With this, introduce w̄ := max(|u0|, ||P||1 

T̄) and the set  := [− w̄, w̄]N. We next show that  := S  is forward invariant for (8). To 

see this, note that from (9) we obtain that

where . This yields Fw(w̄1N) ≤ 0 and Fw(−w̄1N) ≥ 0 from 

(9). Given that (9) is cooperative, thus monotone with respect to the standard orthant cone 

, we conclude that the hypercube  is forward invariant and it contains the equilibrium 

point Su* as w̄ ≥ |u0|. Therefore,  = S  is bounded, forward invariant and it contains u*.

Third, note that S−1J(u*)S = −I + S−1PT′(u0)S. We already proved above that D := S−1PT′ 
(u0)S is Metzler. Let di,j denote the entries of D (i, j = 1, …, N), introduce d := mini di,i and 

Q := D − dI together with α := 1 − d. With this, we obtain that S−1J(u*)S = −αI + Q such 

that Q ⪰ 0 is irreducible (since P is). Therefore, to invoke Lemma 2 in the Appendix, all 

there is left to show is that ρ(Q) > α.

To this end, note that the eigenvalues of D are λjT′(u0) and since D is Metzler from above, 

we invoke Corollary 4.3.2 in [34] to conclude that s(D) = λiT′(u0) for some i such that λi is 

real. Therefore, the condition in (7) yields that s(D) > 1. Furthermore, from Q = D − dI it 
follows that s(Q) = s(D) − d, and since α = 1 − d we obtain that s(Q) > α. Finally, from the 

Perron-Frobenius theorem (Theorem 4.3.1 in [34]) we have that ρ(Q) = s(Q), thus ρ(Q) > α.

Now we can invoke Lemma 2 in the Appendix with , S and Q defined above to conclude 

that both sets u* ±  contain a fixed point u ≠ u* of (8). This is equivalent to having 

solutions u of (3) in both sets u* ±  different from u*. Finally, we conclude from Lemma 2 

that such solutions u = (u1 … uN)T yield fixed points x = (T(u1) … T(uN))T of (1)–(2).
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3.1.3 Patterns with Groups—Finally, we search for equilibrium points of (1)–(2) in 

which subsystems are grouped into classes O1, …, Or such that xi = xj if i, j ∈ Ok. Such a 

solution yields patterns in which subsystems of the same class have identical steady states, 

and it reduces the complexity of the analysis by decreasing the dimension of the problem. To 

find these solutions, we rely on the notion of equitable partitions of graphs [33].

Definition 2: For a weighted and directed graph (V,P) with adjacency matrix P, a partition π 
of the vertex set V into classes O1, …, Or is said to be equitable if there exist p̄i,j for i, j = 1, 
…, r such that

(10)

Let the reduced adjacency matrix P̄ ∈ ℝr×r be formed by the entries p̄i,j.

Theorem 3: Provided (A2), (A4) and (A5), let π be an equitable partition of the vertices V 
of the graph (V,P) into classes O1, …, Or and let P̄ denote the resulting reduced adjacency 
matrix. Assume that Ψ(P̄T′(u0)) is irreducible and balanced with bipartition vector b̄. 
Introduce u* := 1ru0 and the cone  = {u : S(u − u*) ⪰ 0} where S = diag(b). If

(11)

for some real eigenvalue λ̄
i of P̄ then both sets u* ±  contain a point ū ≠ u* such that xi = 

T(ūj) for i ∈ Oj is a fixed point of (1)–(2).

Proof: Consider the reduced set of equations

(12)

Following the same steps as in the proof of Theorem 2, we conclude that (12) has 

equilibrium points ū ≠ u* in both sets u*± . Exploiting the fact that π is an equitable 

partition of (V,P), a solution ū of (12) also defines a solution u of (3) in which ui = ūj for all i 
∈ Oj, so that xi = T(ūj) for i ∈ Oj, concluding the proof.

3.2 Patterning with Multiple Layers of Communication

We now focus on the case of multiple layers of communication channels (m = 2, 3, … ). In 

what follows, we assume that (A7) holds, thus from Theorem 1.3.19. in [35] it follows that 
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there exists an invertible matrix W such that 

for k = 1, …, m, and define

(13)

As the proofs of theorems presented in this chapter are similar to those of the previous one 

for a single channel of communication, we provide them in the Appendix for the sake of 

brevity.

3.2.1 Stability of the Homogeneous Fixed Points—We first derive a sufficient 

condition for the instability of the homogeneous fixed point x = 1N ⊗ x0 relying only on the 

input/output function T(·) and the eigenvalues of P(k) for k = 1, …, m (necessary conditions 

are presented in Lemma 3 in the Appendix when the linearization of (1)–(2) is also 

available).

Theorem 4: Assume that (A1), (A2), (A3), (A4) and (A7) hold. The fixed point x = 1N ⊗ x0 

of (1)–(2) is unstable if

(14)

for some real Λi defined in (13).

3.2.2 Emergence of Patterns—We next study the emergence of patterns and their 

relationship with the homogeneous fixed point x = 1N ⊗ x0.

Theorem 5: Assume that (A2), (A4), (A5) and (A7) hold. Furthermore, assume that the 
graphs with adjacency matrices P(1), …, P(m) are balanced with the same bipartition vector 
b, and T′(u0) is also balanced with bipartition vector q. Introduce u* := 1N ⊗ u0 and the 
cone  = {u : S(u − u*) ⪰ 0} where S = diag(b) ⊗ diag(q). If for some i we have that

(15)

then both sets u* ±  contain a point u ≠ u* such that xi = T(ui) is a fixed point of (1)–(2).

3.2.3 Patterns with Groups—Finally, we search for equilibrium points of (1)–(2) in 

which subsystems are grouped into classes O1, …, Or such that xi = xj if i, j ∈ Ok. Let 
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P̄(k)ℝr×r denote the reduced adjacency matrices with eigenvalues 

, and define .

Theorem 6: Assume that (A2), (A4), (A5) and (A7) hold. Let π be an equitable partition of 
the vertices of the graphs with adjacency matrices P(1), …, P(m) into classes O1, …, Or for 
all k = 1, …, m. Furthermore assume that the graphs with adjacency matrices P̄(1), …, P̄(m) 

are balanced with the same bipartition vector b, and T′(u0) is also balanced with bipartition 
vector q. Introduce u* := 1r ⊗ u0 and the cone  = {ū : S(ū − u*) ⪰ 0} where S = (1rbT) ⊗ 
(1mqT). If for some i we have that

then both sets u* ±  contain a point ū ≠ u* such that xi = T(ūj) for i ∈ Oj is a fixed point of 
(1)–(2).

4 Application examples

We next focus on the emergence of patterns in neural networks, in reaction-diffusion 

systems, and in contagion processes over random networks to demonstrate how our results 

can be employed when studying pattern formation over networks of the form (1)–(2).

4.1 Pattern Formation in Neural Networks

Before illustrating how our results can be applied to study pattern formation over 

multigraphs, we first focus on pattern formation over single graphs here. In particular, 

consider the interconnection of N leaky integrate-and-fire neurons [36], described by

(16)

with a > 0 and where g(·) is an increasing function such that g(0) = 0. In what follows, we 

consider

(17)

to model the saturated nature of the interconnection channels. For simplicity, we focus on 

the case when P1N = 0N so that the origin is a fixed point of (16), thus x0 = u0 = 0.

From Lemma 4 in the Appendix it follows that the origin is globally asymptotically stable if 

−a + μωi has negative real part for i = 1, …, N, where ωi denotes the eigenvalues of the 
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matrix Pabs where [Pabs]i,j:= |pi,j |. As a concrete example, introduce the asymmetric 

interconnection matrix

(18)

describing the interconnection of N neurons in a ring structure such that each neuron 

activates itself and inhibits its neighbor on the right-hand side, and assume that N is even. 

Lemma 4 in the Appendix then yields that the origin is a globally asymptotically stable fixed 

point of (16)–(18) if μ < a/2 (left panel in Fig. 1).

Building on the results presented in Section III.A, we first show that an alternating pattern 

(right panel in Fig. 1) of the form x1 = −x2 = x3 = …= xN−1 = −xN ≠ 0 emerges when μ > 

a/2. Then we prove that this pattern is unique (up to rotation along the ring) and stable.

Invoking Theorem 3, we first prove that (16)–(18) has two fixed points other than the origin: 

one such that x2k−1 ≥ 0 and x2k ≤ 0; and another such that x2k−1 ≤ 0 and x2k ≥ 0 for k = 1, 

…, N/2. To this end, note first that the partition π of the vertices into O1 = {1, 3, …, N − 1} 

and O2 = {2, 4, …, N} is equitable. The eigenvalues of the corresponding reduced adjacency 

matrix

are λ̄
1 = 0 and λ̄

2 = 2. Second, the irreducible matrix

is balanced with bipartition vector b̄ = (1 −1)T. Third, since u0 = 0, we obtain that u*:= 1ru0 

is the origin, yielding the cone := {ū: diag(b̄)(ū − u*) ⪰ 0} = {ū: ū1 ≥ 0, ū2 ≤ 0}. 

Therefore, from Theorem 3 it follows that if μ > a/2 then there exist ū1 ≥ 0 and ū2 ≤ 0 not 

simultaneously zero such that for i = 1, …, N both

(19)
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and

(20)

are fixed points of (16)–(18), where T(ū1) ≥ 0 and T(ū2) ≤ 0 are not simultaneously zero.

Next, we prove that apart from the origin, the only fixed points of (16)–(18) are those in 

(19)–(20). To this end, consider first the unique solution x* > 0 of

(21)

and note that with ū1:= 2x* > 0 and ū2:= −2x* < 0 we have x* = T(ū1) > 0 and −x* = T(ū2) < 

0. Since |g(ui)| < G we have that ẋi can only be zero if |xi| < G/a, therefore, what is left to 

show is that if xi ∈ (0, x*) or xi ∈ (x*,G/a) then x can not be a fixed point of (16)–(18). To 

this end, note that

(22)

so that for x to be a fixed point we must have that

From (22) it follows that |M(x*)| = x* and we obtain that |M(xi)| < xi for |xi| < x* and |M(xi)| 

> xi for x* < |xi| < G/a. Therefore, we must have |xi| = x* for x to be a fixed point, and then 

from (22) it follows that either xi = (−1)ix* or xi = (−1)i+1x* for i = 1, 2, …, N.

Finally, we show that the alternating patterns in (19)–(20) are stable fixed points of (16)–

(18). To this end, define α:= 2μ/a and v:= 2ax*/G such that from (21) we have that v = (e2αv 

− 1)/(e2αv + 1), and let v = V (α) denote its positive solution. Define h(α):= 2αeαV (α)/

[(e2αV (α)+1)2], yielding g′(ū1) = g′ (ū2) = g′ (±2x*) = ah(α). Since 0 < h(α) < 0.5 for α > 1 

(verified numerically), this then implies that with P̃:= ah(α)P its spectral radius ρ(P̃) is such 

that ρ(P̃) = ah(α)ρ(P) < a. Lemma 5 in the Appendix then yields that the alternating patterns 

in (19)–(20) are stable fixed point of (16)–(18).
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4.2 Pattern Formation in Reaction-Diffusion Networks

We first briefly illustrate the idea underlying diffusion-driven pattern formation considering 

the system

(23)

such that a, b, c, d > 0, g(0) = 0 and g′ (·) > 0; for instance, see (17). The unconnected 

systems (P = 0) are stable at the origin if ad − bc < 0 and a < d, but can become unstable 

when interconnected. As a concrete example, consider the interconnection matrix

(24)

From Lemma 4 in the Appendix it follows that the origin is stable if g′ (0) < (a − d)/4, and 

conversely, it becomes unstable when g′ (0) > (a − d)/4. As previously, we can study the 

emergence of various patterns invoking Theorem 3. For instance, the partition π of the 

vertices into O1 = {1, 3, …, N−1} and O2 = {2, 4, …, N} is equitable, so that following a 

similar reasoning as in the previous example, we expect the emergence of an alternating 

pattern, verified in Fig. 2. The stability of various patterns can be analyzed using Lemma 5 

in the Appenidx, as demonstrated in the previous example.

Having illustrated diffusion-driven pattern formation on the idealized system in (23), we 

next focus on the Brusselator [37], a standard biochemical model for Turing pattern 

formation (other models, such as that of Gierer and Meinhardt [4], of Schnakenberg [38], 

and of Thomas [39] can be treated similarly). We demonstrate how our results can be used in 

the case of multigraphs, and illustrate that considering different interconnection structures 

for different species can decrease the often prohibitively large difference in diffusion 

coefficients required for pattern formation.

Consider first the non-dimensional model of an isolated Brusselator given by

(25)
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where a, b > 0. It follows from linearization about the steady state x = (1, b/a)T that the 

unique fixed point is stable if b < a + 1.

Upon interconnection, the dynamics of the network become

(26)

with gi(·) from (17). Since gi(0) = 0 and P(i)1N = 0N, we obtain u0 = (0, 0)T at the 

homogeneous steady state. Next, we study the stability of this fixed point.

Define . Then, from (26) Lemma 6 in the Appendix it follows that x = 1N 

⊗ x0 is unstable if for some i ∈ {1, …, N} we have

(27)

and stable otherwise. Since  and , we have that  for j = 1, 2 and i = 

1, …, N. For instance, consider the case when P(1) = P(2) = P with P from (24), so that 

. Considering the parameters a = 1, b = 1.8, and μ2/μ1 = 21 from [40], we 

need to have μ1 > 0.0174 to satisfy (27). When μ1 < 0.0174, the homogeneous steady state is 

stable (Fig. 3, top panels), conversely, a pattern emerges when μ1 becomes greater than 

0.0174 (Fig. 3, bottom panels).

Next, we illustrate how we can leverage different interconnection structures for different 

species to decrease the often prohibitively large difference in diffusion coefficients required 

for pattern formation. To this end, note first that (27) reveals that b > 1 is necessary for x = 

1N ⊗ x0 to become unstable, so that in what follows we consider this to be the case. Assume 

that (27) is satisfied for some i, and introduce . Then from (27) it follows that 

we must have  for x = 1N ⊗ x0 to become unstable. If the 

interconnection matrices are identical, i.e., P(1) = P(2), then  for i = 1, 2, …, N, 

yielding ε* = μ2/μ1. Since ε* > 1, we have that μ2 > μ1, thus the diffusibility of the inhibitor 

xi,2 dominates that of the activator xi,1, hence Turing instability is often referred to as “local 

activation with long range inhibition.”

Since ε* = μ2/μ1 can be much greater than 1, especially when b ≈ 1, this often presents 

experimental challenges in synthetic biology. To overcome this obstacle, it is possible to 

artificially decrease the diffusion coefficient of the activator by introducing a third molecule 
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binding to the activator, thus rendering it effectively inactive [41]. Instead of adding this 

molecule to all the physical channels among nodes, we can further decrease ε by adding this 

molecule only to a few select physical channels, thus introducing different interconnection 

matrices for activator and inhibitor (i.e., P(1) ≠ P(2)), yielding different eigenvalues  and 

 for i = 1, …, N.

To illustrate this, let  denote the smallest (largest in absolute value) eigenvalue of P(j) for 

j = 1, 2, and assume that (27) holds for i = N, thus the fixed point is unstable. This means 

that , so that if  then it is sufficient to have 

 such that ε̃< ε*. For instance, consider first the case when P(1) = P(2) 

= P with P from (24), so that . Next, rewiring the network for the activators 

xi,1 such that the corresponding interconnection matrix becomes P(1):= ([P(2)]2 + 6P(2))/3 

yields  (as N → ∞). This means that ε̃ = 0.75ε*, thus the required difference 

between diffusion coefficients is now reduced by 25%.

4.3 Contagion Processes over Random Graphs

Finally, we discuss pattern formation in connected random networks, illustrated considering 

contagion processes. Here we focus on two of the most common network models: Erdos-

Renyi random graphs [42] and scale-free networks generated by preferential attachment [43] 

(other network models can be anayzed similarly). Considering the symmetric and irreducible 

Laplacian matrix P associated with the network structure, we have that ρ(P) = s(P) = λmax > 

0 where λmax is the dominant eigenvalue of P (Theorem 4.3.1 in [34]), a quantity that plays 

a central role in pattern formation.

In Fig. 4 we display the dominant eigenvalue λmax of P for various network sizes as a 

function of density. According to these results, λmax is heavily influenced by how the 

random network is generated: it is significantly larger in the case of scale-free networks than 

in Erdos- Renyi random graphs. To illustrate what this means in the context of pattern 

formation, we next fix the network size (N = 200) and consider two networks generated by 

the above two methods with the same density (5%). The dominant eigenvalue λmax of the 

Laplacian matrices associated with these two networks differ significantly:  and 

 for scale-free networks and Erdos-Renyi random graphs, respectively, in 

accordance with the results depicted in Fig. 4.

As for nodal dynamics, we consider one of the standard compartmental models in 

epidemiology: the SIS model given by

(28)
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for i = 1, …, N, where α, β, γ, and δ are the birth, infection, revocery, and death rates, 

respectively [44]. In this model, xi,1 and xi,2 denote the number of susceptible and infected 

(e.g., with flu) agents in population i, respectively.

From (17) we obtain that g(ui) ≡ 0 when μ = 0, thus the nodes in the network are effectively 

not interconnected, so that trajectories of (28) converge to the homogeneous fixed point x = 

1N ⊗ x0 where x0 = (x0,1, x0,2)T. In the simulations we consider α = β = 1 and γ = δ = 10, 

yielding x0,1 = x0,2 = 1. According to Theorem 2, once (7) is satisfied, the homogeneous 

fixed point becomes unstable, thus giving rise to patterning. With g(ui) from (17) we obtain 

that T′(u0) = μ/11 with α = β = 1 and γ = δ = 10. Therefore, since , from (7) we 

expect no patterning when , patterning only in the scale-free 

network for , and patterning in both networks 

when , verified in Fig. 5.

Finally, to interpret the above results, note that P is symmetric, thus λmax = σmax where 

σmax is the largest singular value of P. From this, the induced 2-norm of P is ||P||2 = max||

z||2=1 ||Pz||2 = σmax = λmax = ρ(P). Let dmax denote the maximum vertex degree and assume 

that the vertex degree of node i is dmax. Let z* ∈ ℝN be such that zj = 1/dmax if pi,j = 1 

(nodes i and j are neighbors) and zero otherwise, so that ||z||2 = 1. From this we obtain that 

ρ(P) = ||P||2 ≥ dmax. The maximum vertex degree is usually (much) greater in the case of 

preferential attachment than in case of Erdos-Renyi random graphs (with the same density), 

in turn providing a (much) greater lower bound for the spectral radius ρ(P), elucidating the 

simulation results in Fig. 4, and as a result, those in Fig. 5.

5 Discussion

In this paper, we presented analytical results for pattern formation in large-scale networks. 

Our results are applicable to multigraphs having multiple layers of communication channels 

with possibly different interconnection structure for these layers, and we allow for 

asymmetric connections between nodes. Furthermore, by placing no restriction on the row-

sum of the interconnection matrices, our results apply to a wide set of mechanisms leading 

to patterning (e.g., diffusion-driven instability and lateral inhibition). Therefore, the results 

presented here significantly advance our understanding of patterning in a general setting by 

overcoming the dimensional constraints of earlier studies.

By relying only on the static input/output characteristic of each module and the algebraic 

properties of the interconnection matrices, we first characterized the stability of the 

homogeneous fixed points. Following this, we provided sufficient conditions for the 

emergence of non-homogeneous patterns for balanced graphs and demonstrated that 

equitable partitions provide templates for patterns such that modules share the same fate 

within partitions. Finally, we illustrated our results in the context of neural networks, of 

reaction-diffusion systems, and of contagion processes over random graphs.
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Within our formulation, we allowed for directed edges between nodes, different topologies 

for different layers of communication channels, and we placed no restriction on the row-sum 

of the interconnection matrices. Because of this general formulation, the practical 

applications of our results span many fields where the emergence of patterns is a central 

topic of interest. For instance, we demonstrated that considering different interconnection 

structures for different species in reaction-diffusion networks can be leveraged to decrease 

the often prohibitively large difference in diffusion coefficients required for pattern 

formation. This result can provide insight when studying self-organization in developmental 

biology [45] as well as guide the design of population-level behavior in synthetic biology 

[46]. Additionally, we illustrated not only that random networks with the same density can 

behave drastically differently in terms of patterning, but more importantly, that this 

difference can be understood by focusing on the dominant eigenvalue of the interconnection 

matrix. In addition to being relevant when focusing on the spreading of infectious diseases 

and the behavior of multiple connected habitats in ecology [47], this result is especially 

well-suited for studying social networks to understand, for instance, racial segregation in 

sociology [48] and the polarization of opinions in political science [49]. Finally, our results 

apply equally to different mechanisms underlying pattern formation (diffusion, averaging, 

lateral inhibition, etc.), both for the diffusion of matter (zero row-sum due to conservation 

laws [27], [28], [29], [30], [31]) and for the diffusion of opinions (non-zero row-sum due to 

lack of conservation laws [25], [26]), further broadening the applicability of our results and 

their practical implications.

The two most limiting assumptions of the results presented here concern the interconnection 

structure. First and foremost, to leverage results from monotone systems theory to conclude 

the emergence of non-homogeneous steady state patterns we relied on the fact that the 

graphs representing the connections among modules are balanced. To overcome this 

limitation, a generalization to a larger class of graphs needs to be developed. Second, in the 

case of multiple layers of communication channels, we assumed that the set of 

interconnection matrices P(1), …, P(m) commute. This allowed us to simultaneously 

diagonalize these matrices, thus significantly decrease the difficulty of analyzing the 

emergence of patterns. While this assumption is not overly restrictive in biological systems, 

where the interconnection channels are often identical for all species, it might not be the 

case in other contexts. For instance, in social networks different types of ties can have 

fundamentally dissimilar underlying interconnection structure. While a set of commuting 

adjacency matrices allow for complex interconnection structures, to broaden the 

applicability of our results this assumption needs to be weakened.
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Fig. 1. 
Pattern formation in neural networks. The origin is globally asymptotically stable when μ < 

a/2 (left panel, simulation parameters: N = 50, a = 1, G = 1, μ = 0.4). A unique alternating 

steady state pattern emerges when μ > a/2 (right panel, simulation parameters: N = 50, a = 1, 

G = 1, μ = 0.4).
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Fig. 2. 
Pattern formation in reaction-diffusion networks. Once g′ (0) > (a − d)/4, the origin becomes 

unstable and patterns emerge, for instance, the alternating pattern in which subsequent nodes 

have alternating fates along a ring (simulation parameters: a = G = μ = 1, b = c = d = 2, N = 

20.)
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Fig. 3. 
Emergence of patterns with N = 20 Brusselators interconnected in a ring structure. When μ1 

< 0.0174, the homogeneous steady state is stable (μ1 = 0.015 in the top panels). When μ1 

becomes greater than 0.0174, the homogeneous steady state becomes unstable and a pattern 

emerges: an alternating one in this particular simulation (μ1 = 0.02 in the bottom panels).
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Fig. 4. 
The dominant egienvalue λmax of the Laplacian associated with the network structure is 

greater in scale-free networks (SF) than in Erdos-Renyi random graphs (ER) of the same 

density.
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Fig. 5. 
Pattern formation with SIS nodal dynamics over an Erdos-Renyi random graph (top panels) 

and over a scale-free random network generated by preferential attachment (bottom panels). 

Both networks have N = 200 nodes and density of 5%. When μ is sufficiently small such that 

(7) is not satisifed, both the population size xi,1+xi,2 for each node and the infected fraction 

xi,2/(xi,1+xi,2) of the population are the same for all nodes. Once μ is greater than the critical 

threshold μ* ∝ 1/λmax such that (7) is satisfied, the homogeneous fixed point becomes 

unstable and patterns emerge. Since λmax is greater in scale-free networks than in Erdos-

Renyi random graphs (Fig. 4), the critical threshold μ* is smaller for the former. Simulation 

parameters: α = β = 1, γ = δ = G = 10, together with μ = 0.1 (black), μ = 0.4 (dashed light 

grey), and μ = 0.7 (solid dark grey).
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