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Epithelial mesenchymal transition and hedgehog signaling
activation are associated with chemoresistance and invasion

of hepatoma subpopulations

Xiaoli Chen1, Shilpa Lingala1, Shiva Khoobyari1, Jan Nolta2, Mark A. Zern1, Jian Wu1,2,3,⇑

1Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of California, Davis Medical Center, Sacramento, CA
95817, United States; 2Stem Cell Program, University of California, Davis Medical Center, Sacramento, CA 95817, United States; 3Cancer Center,

University of California, Davis Medical Center, Sacramento, CA 95817, United States

Background & Aims: Our previous studies showed that CD133,
EpCAM, and aldehyde dehydrogenase (ALDH) are useful markers
to identify cancer stem cells (CSCs) in hepatocellular carcinoma
(HCC) tissues. The present study aims to evaluate chemosensitiv-
ity and invasion capability of HCC based on CSC marker profiles,
and to explore the underlying molecular mechanisms.
Methods: Hepatoma cell lines were separated into subpopula-
tions according to CD133, EpCAM, and ALDH expression profiles.
Epithelial mesenchymal transition (EMT) and hedgehog (Hh) sig-
naling were examined to identify their links with chemoresis-
tance and aggressive invasion.
Results: Well-differentiated cell lines were positive for CD133+/
ALDHhigh and CD133+/EpCAM+ at 1.5–15% and 2.3–8.3%; whereas,
poorly-differentiated cells were almost all negative for these
markers. FACS-enriched CD133+/ALDHhigh and CD133+/EpCAM+

Hep3B and Huh-7 cells formed more spheroids in vitro.
CD133�/ALDHlow HLE cells were more resistant to cisplatin,
doxorubicin or sorafenib than their positive counterparts.
CD133�/EpCAM� Huh-7 cells or CD133�/ALDH� HLE cells exhib-
ited a higher invasion rate than their positive counterparts. HLE
and HLF cells acquired EMT in double negative subpopulations.
Hh activity in Huh-7 CD133�/EpCAM� cells was higher than in
their positive counterparts, and the inhibition of Hh activity by
cyclopamine resulted in reduced cell proliferation.
Conclusions: Well-differentiated CD133+/ALDHhigh or CD133+/
EpCAM+ cells appear to be a CSC/initiating subpopulation;
whereas, in poorly-differentiated hepatoma cells, EMT and
enhanced hedgehog signaling activity may be responsible for

their chemoresistance and invasion. These findings underscore
the significance of EMT and enhanced Hh signaling in liver cancer
stem or initiating cells.
� 2011 European Association for the Study of the Liver. Published
by Elsevier B.V. All rights reserved.

Introduction

Hepatocellular carcinoma (HCC) is the third most deadly and the
fifth most common malignancy worldwide, with an estimation of
600,000 new cases per year [1]. Surgical removal and liver trans-
plantation remain the most effective therapy for HCC. Although
various adjuvant approaches to treat non-resectable HCC are
available, the efficacy and three-year survival rate (30–40%) are
not promising [2].

Cancer stem cells (CSCs) are a newly identified subpopulation
that possesses stem cell properties, and may differentiate into
heterogeneous progenies of malignant cells [3]. CSCs are thought
to be the cells that are least sensitive to chemotherapy or radio-
therapy, and develop resistance to pharmacologic, biologic ther-
apy, or radiotherapy [4]. These cells are probably the source for
tumor metastasis and relapse. A single CD133+ cell from a colon
cancer was able to form a tumor in the renal capsule of immuno-
deficient mice [5]. High aldehyde dehydrogenase (ALDH) activity
is a common feature of stem cells, and bone marrow-derived pro-
genitor cells with high ALDH activity displayed great engrafting
potential in the mouse liver [6]. EpCAM-positive cells have been
implicated as initiating/stem cells in pancreatic cancer [7]. In a
recent study, we have identified a cluster of CD133+/ALDHhigh

cells in human HCC tissue, especially in invaded vessels, and it
was demonstrated that combined staining of CD133, ALDH,
EpCAM, as well as CD44 and CD90 could identify CSCs in HCC [8].

In order to further investigate the relationship between phe-
notypic characteristics of CSCs and tumorigenicity, chemosensi-
tivity, or invasion capability, we separated subpopulations of
hepatoma cells according to their CSC marker expression profile.
It was found that CD133+/ALDHhigh and CD133+/EpCAM+ cells
were more tumorigenic, whereas, CD133�/ALDHlow cells were
more chemoresistant and metastatic as compared to their
positive counterparts. We further investigated the markers of
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epithelial mesenchymal transition (EMT) and hedgehog (Hh)
signaling activity, and found that the occurrence of EMT and
enhanced Hh signaling activity appear to be responsible for the
chemoresistance, aggressive invasion, and proliferation seen in
CD133�/ALDHlow hepatoma cell lines. Our study underscores
the significance of EMT and the Hh signaling pathway in liver
cancer stem or initiating cells.

Materials and methods

Cell culture

HepG2, Hep3B, Huh-7, and SKHep1 hepatoma cell lines were obtained from the
American Type Culture Collection (ATCC, Manassas, VA, USA). HLE and HLF cells
were kindly provided by Health Science Research Resources Bank, Tokyo, Japan.
HepG2 and Hep3B cells were cultured as reported previously [9].

Fluorescence-activated cell sorting (FACS)

CD133+/ALDHhigh and CD133�/ALDHlow subpopulations in HepG2, Hep3B, Huh-7,
SKHep-1, HLE, and HLF cell lines were enriched by FACS using allophycocyanin
(APC)-conjugated monoclonal antibodies against human CD133 (Miltenyi Biotec
Inc., Auburn, CA, USA) and an Aldefluor kit (STEMCELL Technologies, Vancouver,
BC, Canada), which labels ALDH-positive cells in green fluorescence, as we have
described [6]. CD133+/EpCAM+ and CD133�/EpCAM� subpopulations in Hep3B,
Huh-7, HLE, and HLF cell lines were enriched using APC-conjugated monoclonal
antibodies against human CD133 and FITC-conjugated monoclonal antibodies
against human EpCAM (Dako North America, Inc., Carpinteria, CA, USA). The
staining protocol followed a report [6] with modifications. Briefly, detached cells
were blocked with 20% rabbit serum, and incubated with monoclonal antibodies
(CD133/EpCAM). Then, cells were suspended in phosphate-buffered saline (PBS)
containing 1% bovine serum albumin (BSA) until sorting. For CD133/ALDH stain-
ing, after being labeled with APC-conjugated antibodies against CD133, cells were
further incubated with Aldefluor substrate. All labeled cells were sorted in a high
speed Cytopeia Influx Cell Sorter (BD Biosciences, San Jose, CA, USA). After sorting,
hepatoma subpopulations were cultured in regular medium for the assays
described below (see the Supplemental information for Methods not included
in this part).

Formation of spheroid cores and immunofluorescent staining

FACS-enriched subpopulations of 2 � 103 cells were seeded in 24-well low
attachment culture plates, and cultured for 3 weeks. Then spheroid cores were
counted, fixed in 4% PBS-buffered paraformaldehyde, and incubated with the pri-
mary antibodies against CD133, a-fetal protein (AFP), and proliferating cell
nuclear antigen (PCNA) in combinations for double staining as described by us
[8]. Stained spheroids were visualized under a Zeiss LSM510 laser scanning con-
focal microscope (Oberkochen, Germany).

Western blotting analysis

Total protein and the subcellular fractions of the membrane, cytosolic, and nuclear
soluble proteins were extracted from FACS-isolated cell subpopulations using cor-
responding Extraction kits (Pierce Biotech, Rockford, IL, USA). Protein content was
measured with a BCA protein assay (Pierce Biotech, Rockford IL, USA). The Western
blotting assay was performed as reported previously [10] and the membranes
were blotted separately with primary antibodies: monoclonal anti-E-cadherin,
anti-vimentin and anti-Zeb1 (Santa Cruz Biotechnologies, Santa Cruz, CA, USA),
polyclonal rabbit anti-GLI2 (Abcam), monoclonal anti-snail (Sigma), monoclonal
anti-Patched/PTCH1 (Abcam). Monoclonal anti-b-actin (Sigma), anti-integrin b1
(Santa Cruz), and anti-TATA box binding protein (Abcam) were used as loading
controls for cytosolic, membrane, and nuclear fractions.

Hh signaling activity by a GLI-lux reporter system

In order to determine Hh signaling activity in FACS-enriched hepatoma subpop-
ulations, we used a GLI-lux reporter system, in which the firefly luciferase gene
expression is driven by the GLI promoter [11]. FACS-purified Huh-7 CD133+/

EpCAM+ or CD133�/EpCAM� subpopulations were transfected with the GLI-Lux
reporter gene plasmid using FuGENE 6 (Roche Applied Science, Indianapolis, IN,
USA). The medium was replaced with medium containing cyclopamine (CPM)
(Sigma), a Hh signaling pathway inhibitor, 12 h after transfection. Transfected
cells were lysed 48 h after transfection using reporter lysis buffer. Luciferase
activity was determined as we have previously reported [12].

Xenograft formation in immunodeficient mice

All animal experiments were performed in compliance with the NIH Guidelines
for experimental animals, and the animal protocol was approved by the UC Davis
Institutional Animal Care and Use Committee (IACUC). Immediately following
FACS enrichment, 2000 cells from the CD133+/EpCAM+ and CD133�/EpCAM�

Hep3B and Huh-7 subpopulations were implanted in the left renal capsule of
immunodeficient NOD-SCID-IL2Rc�/� mice with an aseptic surgical procedure
under an anesthetic cocktail consisting of xylazine (5–10 mg/kg) and ketamine
(50–100 mg/kg, i.p.). The implanted mice were observed for up to 4 months,
and xenograft formation was recorded.

Statistical analysis

All the experiments were performed three times with a minimum of triplicates.
The data were expressed as means ± standard error of the mean (SEM), and ana-
lyzed by Student t test for difference between two groups or variance analysis,
and further Newman–Keuls tests for multiple comparisons among groups. The
occurrence of xenograft tumors in NOD-SCID mice in different groups was ana-
lyzed by the Chi-square test. p <0.05 was considered as statistically significant.

Results

FACS enrichment of hepatoma subpopulations

We employed well-characterized hepatoma cell lines, HepG2,
Hep3B, Huh-7, HLE, HLF, and SKHep1, in which HepG2, Hep3B,
and Huh-7 hepatoma cells are well-differentiated with a high
level hepatic-specific gene expression. In contrast, the remaining
three were poorly-differentiated with low levels of hepatic gene
expression. We first separated CD133+/ALDHhigh and CD133�/
ALDHlow subpopulations by FACS enrichment. It is clear in
Fig. 1A that well-differentiated hepatoma cell lines displayed a
relatively higher CD133 expression than poorly-differentiated
lines. As a result, the CD133+/ALDHhigh subpopulation in Hep3B,
HepG2, and Huh-7 cells was 13.4, 1.1, and 15.6%, respectively;
whereas poorly differentiated HLE, HLF, and SKHep1 cells were
almost all negative for these two markers. EpCAM has been sug-
gested to be a CSC marker in epithelial-derived malignancies. We
further separated CD133+/EpCAM+ or CD133�/EpCAM� subpopu-
lations in these cell lines. As shown in Fig. 1B, CD133+/EpCAM+

subpopulations in Hep3B, HepG2, and Huh-7 were 10.3%, 2.3%,
and 18.3% positive; in contrast, HLE, HLF, and SKHep1 cells were
almost all negative for these two markers. We were not able to
obtain a CD133+/EpCAM+ subpopulation from these poorly-dif-
ferentiated cell lines. Instead, we obtained CD133�/EpCAM+ and
CD133�/EpCAM� subpopulations for HLE and HLF. Thus, the sep-
aration of hepatoma cells according to their CSC marker profile
provided subpopulations unique for the further determination
of tumorigenicity, chemoresistance, and invasive capability, as
well as signaling pathways affecting these critical aspects of
oncogenesis and progression.

Tumorigenicity of FACS-enriched subpopulations

As shown in Fig. 2D, CD133+/ALDHhigh Huh-7 and Hep3B cells
formed a higher number of spheroids than their double
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negative counterparts (p <0.001). Immunohistochemical staining
showed that Huh-7 spheroids were CD133 and AFP-positive,
as well as PCNA-positive, a marker of cell proliferation
(Fig. 2A, and B). HLF spheroids were CD133 (not shown) and
AFP-negative, but PCNA positive (Fig. 2C). They were able to
form large spheroids. In separate experiments, after FACS
enrichment, 2000 cells of the Huh-7 and Hep3B subpopulations
were injected under the renal capsule of immunodeficient
NOD-SCID-IL-2Rc�/� mice for xenograft formation. After
3–4 months, there was a trend toward more xenografts having
formed in NOD-SCID mice injected with CD133+/EpCAM+ Huh-7
and Hep3B cells than in the double negative subpopulation-
injected mice (p >0.05) (Table 1). Flow cytometric analysis of
cells isolated from a xenograft tumor derived from CD133+/
EpCAM+ Huh-7 cells showed that 90.4% of cells were still
CD133+/EpCAM+, indicating that these cells maintained their
phenotypes in vivo. Thus, it appeared that in well-differentiated
hepatoma cell lines, CD133 expression is associated with higher
levels of spheroid formation; however, in poorly-differentiated
cell lines, CD133 expression is not essential for spheroid
formation.

Enhanced chemoresistance in HLE CD133�/ALDHlow subpopulation

Viable cell numbers were determined spectrophotometrically
using a WST-1 reagent after exposure to cisplatin and doxoru-
bicin, both of which are included in transarterial chemoemb-
olization (TACE) as one of the adjuvant therapies, or sorafenib,
a newly proven multikinase inhibitor targeting vascular endo-
thelial growth factor (VEGF)-mediated angiogenesis. As shown
in Fig. 3, more CD133�/ALDHlow HLE cells survived in a 24 h-
exposure to cisplatin, doxorubicin, or sorafenib in comparison
to the CD133+/ALDHhigh subpopulation. As the major subpop-
ulation of poorly-differentiated hepatoma cell lines, the
chemoresistance of CD133�/ALDHlow HLE cells may be compa-
rable in insensitivity to chemotherapy of poorly-differentiated
HCC.

Enhanced invasive capability and wound healing in CD133-negative
subpopulations

FACS-enriched Huh-7 and HLE subpopulations were subjected to
in vitro Matrigel invasion and wound healing assays. As shown in
Fig. 4A, both CD133�/EpCAM� Huh-7 cells and CD133�/ALDHlow

HLE cells repaired the wounds quicker than their counterparts.
Moreover, the in vitro Matrigel invasion assay demonstrated that
more Huh-7 CD133�/EpCAM� cells crossed the separation mem-
brane in the transwells than CD133+/EpCAM+ cells (p <0.05)
(Fig. 4B). These results indicate that CD133� cells are not only
chemoresistant, but also are more invasive in comparison with
CD133+ cells, especially in poorly-differentiated HLE
subpopulations.

Acquisition of EMT in CD133� and poorly-differentiated
subpopulations

Having established that the CD133�/ALDHlow HLE subpopulation
is chemoresistant, and possesses an enhanced invasive capability,
we explored the underlying molecular mechanisms. We first
stained subpopulations with E-cadherin, a cell surface adhering
molecule, and vimentin, a cytoskeleton protein, and found that
Hep3B CD133+/ALDHhigh cells were E-cadherin-positive, and
vimentin-negative. Whereas, Hep3B CD133�/ALDHlow cells
exhibited the opposite E-cadherin and vimentin expression pro-
file, similar to CD133�/ALDHlow HLE and HLF cells (Fig. 5). They
lost E-cadherin expression, but vimentin staining was obviously
positive. This staining profile verified the acquisition of EMT in
the Hep3B CD133�/ALDHlow subpopulation and in HLE and HLF
cells, and was consistent with more TGF-b1 and procollagen type
I (a1) expression in the CD133�/ALDHlow HLE subpopulation
(Fig. 4C). Snail is a transcription factor which modulates the
acquisition of EMT in many epithelial cells. Higher snail protein
levels were found in the CD133�/ALDHlow HLE and Huh-7 sub-
populations than their double-positive counterparts as deter-
mined by Western blotting (Fig. 6A). The HLE double-negative
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subpopulation was almost completely negative for E-cadherin.
CD133�/ALDHlow Huh-7 and Hep3B subpopulations appeared to
express more Zeb1, another transcription factor modulating
EMT occurrence in a nuclear fraction, than their double-positive
counterparts. Zeb1 nuclear expression was clearly positive in
both poorly-differentiated HLE and HLF subpopulations when
the TATA box binding protein was used as a loading control of
the nuclear fraction in Western blot analysis (Fig. 6B). In sum-
mary, both immunohistochemical staining and Western blot
analysis of E-cadherin and two transcription factors, snail and
Zeb1, demonstrated that in well-differentiated hepatoma cell
lines, CD133�/ALDHlow subpopulations underwent EMT acquisi-
tion, whereas, poorly-differentiated hepatoma cell lines had

already undergone EMT, especially in the CD133�/ALDHlow

subpopulations.
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Table 1. Xenograft formation from FACS-enriched hepatoma subpopulations
in NOD-SCID mice.
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Enhanced Hh signaling activity in CD133-negative hepatoma
populations

Hh signaling activation has been shown to lead to EMT. After
defining the association of EMT acquisition with chemoresistance
and enhanced invasion capability in poorly-differentiated HLE

subpopulations, we investigated whether the Hh signaling activa-
tion contributes to EMT and down-stream effects in hepatoma
cells. We first determined that more Patched/PTCH1, the receptor
for Hh ligand, was expressed in Huh-7 CD133�/EpCAM� than in
CD133+/EpCAM+ cells, and more in CD133�/EpCAM� than
CD133�/EpCAM+ HLE cells in the membrane fraction by Western
blot analysis (Fig. 6C). Then, we found that GLI2, a transcription
factor in the Hh signaling pathway, was increased in the nuclear
fraction of HLE CD133�/EpCAM� cells compared to CD133�/
EpCAM+ cells (Fig. 6D). After that, we transfected the Huh-7 sub-
populations with a GLI-lux reporter system, and determined
luciferase activity one day after transfection. It was found that
luciferase activity was much higher in the Huh-7 CD133�/
EpCAM� cells than their double-positive counterparts, while cells
transfected with mutated GLI-Lux did not show any luciferase
activity (Fig. 6E). Moreover, when transfected cells were treated
with a Hh signaling inhibitor, cyclopamine (CPM), both cell pro-
liferation, as determined by SWT-1 reagent, and luciferase activ-
ity were markedly inhibited by the treatment (Fig. 6E and F).
These findings demonstrated that the Hh signaling activity in
either CD133�/EpCAM� Huh-7 or HLE cells was higher than
CD133+/EpCAM+ or CD133�/EpCAM+ cells, and that enhanced
Hh signaling activity may be responsible for the acquisition of
EMT, as well as cell proliferation, chemoresistance, and aggres-
sive invasion capability in these cells.

Discussion

The concept of CSCs is a new paradigm of cancer biology explain-
ing many existing basic and clinical challenges. However, contro-
versies exist in terms of which cell markers are specific for CSCs,
whether CSCs are prominent in cancer tissues, and even whether
CSCs are the origin for cancer development. These controversies
make the identification of CSCs in HCC more complicated. It is
generally accepted that CSCs are probably the progenitor cells
that undergo unknown genetic mutations, lose potential for tis-
sue repair, but retain stem cell characteristics, such as self
renewal and plasticity to differentiate into different cell types
during various stages of oncogenicity and treatment [3,13]. In
this regard, it is our goal to search for CSCs in HCC tissues and
to define which subpopulations in heterogeneous malignant cells
represent the characteristics of CSCs in HCC.
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In our previous studies, we were able to co-localize CD133+

and ALDH+ cells in HCC tissue, especially in the areas of connective
tissues and in vessels with HCC invasion [8]. These cells were also
positive for CD44 and CD90. Thus, we believe that these markers
are useful in identifying CSCs in HCC tissues. However, these
markers are not specific for CSCs; they are also positive for stem
or progenitor cells in chronic liver injury with fibrosis/cirrhosis
[8,14]. In the present study, we separated each of the six hepa-
toma cell lines into subpopulations according to their CSC marker
expression profile, and defined their phenotypic characteristics,
such as tumorigenicity, chemoresistance, and invasive capability.
More CD133+/ALDHhigh or CD133+/EpCAM+ cells were separated
from well-differentiated Hep3B, HepG2, and Huh-7 lines than
from poorly-differentiated HLE, HLF, and SKHep1 lines. In fact,
HLE, HLF, and SKHep1 cells had very low levels of CD133 positivity
(Fig. 1A and B). We also found that CD133+/ALDHhigh Hep3B and
Huh-7 cells formed more spheroids than their CD133�/ALDHlow

counterparts, whereas, CD133�/ALDHlow HLE, HLF, and SKHep1
subpopulations formed large spheroids (Fig. 2). Implantation of
2000 freshly FACS-enriched CD133+/EpCAM+ Hep3B and Huh-7
cells under the renal capsules of immunodeficient NOD-SCID-
IL2Rc�/� mice for 3–4 months resulted in 4 out 5 Hep3B and 2
out of 5 Huh-7 CD133+/EpCAM+-injected mice forming xeno-
grafts, whereas, one xenograft was formed in mice after implanta-
tion of CD133�/EpCAM� Hep3B, and no xenograft was seen in
mice receiving implantation of CD133�/EpCAM� Huh-7 cells.
These data are consistent with recent reports showing [15,16] that
CD133+/ALDHhigh or CD133+/EpCAM+ subpopulations were more
tumorigenic both in vitro and in vivo. These hepatoma cells are
characterized as well-differentiated with high levels of hepatic
gene expression levels, and most are AFP-positive. Thus, concern-
ing tumorigenicity, this subpopulation has been considered as
CSCs or initiating cells (TICs) with high Wnt/b-catenin signaling
activity [16].

We further evaluated the chemoresistance of FACS-enriched
subpopulations, and found that CD133�/ALDHlow HLE cells were
less sensitive to cisplatin, doxorubicin, and sorafenib than their
CD133+/ALDHhigh subpopulation during 24 h treatments. The

in vitro Matrigel invasion assay showed that Huh-7 CD133�/
EpCAM� cells were more invasive than their positive counter-
parts, and CD133�/ALDHlow HLE cells were able to repair scraping
wounds faster than their double positive counterparts. Thus,
these findings indicate that CD133�/ALDHlow or CD133�/EpCAM�

cells were more chemoresistant and invasive, which is in accor-
dance with clinical observations that poorly-differentiated HCC
is more refractory to chemotherapy and has a poor prognosis
[17] and that the development of insensitivity to epithelial
growth factor receptor inhibitors (erlotinib, gefitinib, and cetux-
imab) was a result of EMT acquisition [18]. Therefore, we hypoth-
esized that the insensitivity to chemotherapy and more invasive
capability in CD133�/ALDHlow or CD133�/EpCAM� cells could be
attributed to EMT acquisition, and further investigated the occur-
rence of EMT and its regulations through the Hh signaling
pathways.

We performed immunocytochemical staining, and found that
well-differentiated CD133+/ALDHhigh cells are E-cadherin-posi-
tive and vimentin-negative, whereas their CD133�/ALDHlow

counterparts had an opposite E-cadherin and vimentin expres-
sion profile. In contrast, poorly-differentiated CD133�/ALDHlow

cells were E-cadherin-negative and vimentin-positive (Fig. 5).
These findings were supported by more TGF-b1 and procollagen
type I (a1) expression in the HLE CD133�/ALDHlow subpopula-
tion. The fact that no E-cadherin was found in CD133�/ALDHlow

HLE and HLF subpopulations by Western blot analysis, more
GLI2 in the nuclear fraction of cell lysates, more Zeb1 expression
in CD133�/EpCAM� Hep3B and Huh-7 cells than their double
positive counterparts, and that Zeb1 was positive for both
CD133�/EpCAM+ or CD133�/EpCAM� HLE and HLF subpopula-
tions also confirms the findings (Fig. 6). These findings support
the concept that there was EMT acquisition in poorly-differenti-
ated hepatoma cell lines, especially in CD133�/ALDHlow or
CD133�/EpCAM� subpopulations, and that the EMT acquisition
may be responsible for their chemoresistance and aggressive
invasion. The loss of epithelial characteristics and the acquisition
of the mesenchymal phenotype are the typical phenotypic
changes in EMT, which may enhance mobility and the invasive
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Fig. 5. Acquisition of EMT in CD133�/ALDHlow Hep3B, HLE, and HLF cells. FACS-enriched CD133+/ALDHhigh or CD133�/ALDHlow subpopulations were stained with either
Cy5-conjugated monoclonal antibodies against E-cadherin or vimentin in red. Cy5-stained images were overlaid with DAPI nuclear counter-staining in blue. Hep3B and HLF
(20�), HLE (10�).
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predisposition of cancer cells. The increased migratory activity is
mediated by repression of cell to cell adhesion proteins, such as
E-cadherin, and the induction of invasion-associated matrix
metalloproteinase (MMP) production [19]. Currently, it is known
that EMT can be induced by TGF-b1 via activation of a transcrip-
tion factor, snail, by forming a complex with smad3 and smad4
[20]. Zeb1 is a zinc finger E-box transcription factor that nega-
tively modulates the E-cadherin expression in epithelial cells
through inhibition of the miRNA200 family. Zeb1 appears to be
a critical factor for the initiation and dissemination of pancreatic
and colorectal cancer cells [21].

The Hh signaling pathway regulates body patterning and
organ development during embryo development. In adults, the
Hh pathway is mainly quiescent with the exception of roles in tis-
sue maintenance and repair, and its inappropriate reactivation
has been linked to several human cancers, such as breast cancer
[22]. The activation of the Hh signaling pathway occurs when Hh
binds to its receptor (PTCH1), and when GLI2/3A is translocated
into the nucleus to activate target genes, such as snail, bcl2, cyclin
D, etc. leading to proliferation, EMT, and cell survival [23]. The
activation of the Hh signaling pathway has been found in cholan-
giocytes and hepatocytes in models of primary biliary cirrhosis
(PBC) and non-alcoholic steatohepatitis (NASH) in which the
acquisition of EMT in hepatocytes and cholangiocytes contributes
to the development of hepatic fibrosis [24]. To our knowledge, no
previous study has explored Hh signaling involvement in poorly-
differentiated hepatoma cells, and its link with EMT in CD133�/
ALDHlow or CD133�/EpCAM� hepatoma cells. Hence, we hypoth-
esized that the activation of the Hh signaling pathway may be
responsible for the acquisition of EMT and chemoresistance seen
in poorly-differentiated hepatoma cells. To test this hypothesis,
we first determined Hh signaling activation by the identification
of PTCH1 in the membrane fraction and GLI2 translocation in
nuclear extracts in the HLE CD133�/ALDHlow subpopulation.
Then, we transfected a GLI-lux reporter system in FACS-enriched
hepatoma subpopulations, and found that CD133�/EpCAM� Huh-
7 cells displayed much higher luciferase activity than CD133+/
EpCAM+. Mutated GLI-Lux plasmid transfection did not cause
any elevation in luciferase activity in either subpopulation. More-
over, a specific Hh inhibitor, cyclopamine (CPM) not only signifi-
cantly blocked Hh signaling activity, but also inhibited cell
proliferation of CD133+/EpCAM+ Huh-7 cells. These data for the
first time demonstrated that Hh signaling is critical for tumori-
genesis of CSC subpopulations. Blocking Hh signaling with a small
molecule, such as HhAntag (Cur-691), which has been used to
eliminate medulloblastoma in mice [25], would be a new
approach in identifying molecular target of therapy to eradicate
chemoresistant subpopulations of HCC; in vivo experiments are
needed to further prove this therapeutic strategy. In summary,
these findings establish a new basis for reclassification of HCC
specimens based on the acquisition of the EMT and Hh signaling
activity levels, and aid in the development of individual treat-
ment strategies based on HCC molecular classification [26].

In conclusion, in well-differentiated hepatoma cells, CD133+/
ALDHhigh or CD133+/EpCAM+ cells appear to be a CSC/initiating
subpopulation; whereas, in poorly-differentiated hepatoma cell
lines, EMT, and enhanced hedgehog signaling activity may be
responsible for their chemoresistance and invasion. Our data sug-
gest that novel molecular therapy targeting transcription factors of
EMT and Hh signaling pathways could be promising in eradicating
chemoresistant poorly-differentiated subpopulations in HCC.
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Fig. 6. Western blot analysis of the EMT markers and Hh signaling activity in
the Huh-7 and HLE subpopulations. (A) Western blot image of E-cadherin and
snail in the Huh-7 and HLE subpopulations. b-actin was used as a loading control.
(B) Zeb1 levels in various hepatoma subpopulations. TATA box binding protein was
used as a nuclear protein loading control. (C) PTCH1 levels in the membrane
fraction of the Huh-7 subpopulations were determined by Western blot analysis
with integrin b1 as a loading control. (D) GLI2 levels in nuclear fractions of the Huh-
7 and HLE subpopulations. (E) Hh signaling activity after transfection with GLI-lux
plasmid and mutated plasmid (GLI-Lux-M) in the presence or absence of
cyclopamine (5 lM CPM). Luciferase activity was determined one day after
transfection of the plasmids. ⁄⁄p <0.01 compared to the Huh-7 CD133+/EpCAM+

subpopulation. D, DD p <0.05 and 0.01 compared to GLI2-Lux + DMSO. DMSO was
used to dissolve CPM, and included in transfection controls. (F) Inhibition of cell
proliferation by cyclopamine in the Huh-7 CD133+/EpCAM+ subpopulation. Cell
proliferation was determined after transfection with the GLI-Lux plasmid using the
WST-1 reagent and expressed by optical density per 100 lg protein. Fugene-6 was
included as a transfection reagent control.
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