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APPLICATION OF THE ANNNI MODEL TO LONG-PERIOD SUPERSTRUCTURES®*
by
D. de Fontaine
University of California
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J. Kulik
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Department of Physics
ABSTRACT
Existing models of long-period superstructures are re-examined in the light of
the recently developed Axial-Next-Nearest-Neighbor-Ising (ANNNI) Model. In this
model, long-period phases are contained in a triangular shaped phase diagram
region bounded by a Lifshitz point on the uppermost transition temperature line and
a multiphase point at zero absolute temperature. Periodic antiphase structures are
produced by a square-wave modulation of the ordered ground stakte, resulting in new
types of long-period superstructures, here denoted as "Fujiwara phases.” The role
of configurational entropy in stabilizing long-period phases is emphasized. The
applicability of the ANNNI model Lo periodic antiphase structures in ordered alloys
is examined, and the striking resemblence between predicted structures and those
observed experimentally in Ag";"Mg and Au","Zn is pointed out. The difference
between “straight” and "wavy" (cmm o) antiéhase domain boundaries is discussed in

the light of the wmodel.

*This work was supported by the Director, Office of Energy Research , Office
of Basic Energy Sciences, Materials Sciences Division of the U. S. Depart-
ment of Energy under Contract No. DE-AC03-76SF00098.



1. INTRODUCTION

The stability of long -period superstructures has for years
intrigued many investigators. In particular, the fact that well-defined
ordered sequences of one or two-dimensional patterms repeat regularly over
long distances appears to require very Ilong-range interactions, the origin
of which remained a subject of some controversy.

The currently accepted explanation for the stability of ». such
" structures in ordering systems is8 the one first proposed by Sato and Toth
[1], and later modified by Tachiki and Teramoto [2]. More recently, the
problem has been considered by Vul and Krivoglaz [3]. The Sato and Toth
(ST) theory is based " upon the idea that a periodic modulation of the
structure introduces néw Brillouin 2Zone boundaries, thereby lowering the
electronic energy if these zone boundaries fall close to flat portions of
the Fermi surface. Good experimental agreement with theory was found by ST
[4] on vapor-deposited thin films of alloys of various compositions. Very
recently, Gyorffy and Stocks [5] have performed KKR-CPA computations of
the Permi surfaces in Cu-Pd alloys of different average concentrationg. The
calculated Fermi surfaces exhibited rather flat portions separated by
distances 2kp in the <110> directions which, when introduced in the ST
formalism, predicted values of 1long-period wavelengths in good agreement
with those found experimentally.

Thus, the ST Permi-surface Ltheory would appear to be well
substantiated, were it not for the fact that, since the model is based
solely on electronic energy minimization, at 1least in its original form, it

contains no in-built temperature dependence, no configurational entropy



effects. Tt might then be argued that the model should be valid only at low
temperatures; but it is precisely in those regimes that the ST theory fails
most rconspicuouslybz as will be recalled in Sect.5, long -period
superstructures are often fodnd in vintermed.iate temperature ranges,, and
tend to diséppear at low temperatures.

Recently, a radically different model has been proposed to explain
hﬁ‘e‘ phenomenon of periodically modulat.ed magnetic order in certain rare
earths, particularly in CeSb. This mode.l, already .._prop'os'ed in 1961 by
Elliott [6], now goes under the designation of ANNNI model, for Axial Next
Nearest Neighbor Ising model {7,81. 'As the name implies, the model,
recently ' reviewed " Sy Selke r.[ 9], makes use of a very' simple Ising
Hamiltonian with nearest (nn) and next-nearest neighbor (nnn) interactions
along a single "axial® direction. Mean-field theory .[7,10,11], soliton
- theory [11, 12], Monte 'Carlo simulations . [ 13], and low;tempetature
expansions [8,14] are used to find approximate solutions to the
u'u:ee _-&iménsional Ising problem. . Configurational entropy effects are
displayed promi.x_\enl:ly, but no effort is made to evaluate the fxeat-neighbor
int.e:act.ioh parameters which appear in the aéunmqnian.- It will be argued
below, however, that the Fermi—suiface and ANNNI models are by no means
mutually exclusive. |

We begin, in Sect. 2, by defining what we mean by the term
»modu‘lated structurés, which requires a slight extension of the classical
notion of phase. A phenomenological description of suct; phases is proposed
in Sect. 3, whilst a themodyna.micai tre#tment is intoduced in Sect. 4.
Possible  applications to well-known ordeﬁng systems are then discussed in

Sect. 5.



2., MODULATED PHASES

Let us congider crystals which are sufficiently anisotropic that
their ground states can be described as a stacking of perfectly ordered
layers normal to a wunique axial direction. The layers can disorder
progressively at higher témperal:utes, of course, but, below the highest
transition temperature, it must always be possible to label each layer
unambiguqusly by a single symbol: + or -, say. The ({+,-} sybols might
designate, for example, {spin-up, spin-down}, {A,B} atoms, {unshifted
ordered layer, shifted ordered layer}, etc.. Layers could - but need not -
be  individual lattice  planes, their stacking pattern  creating a
one -dimensional modulation of layer -averaged magnetization, composition,
degree of order, etc.. When the modulation is petfeci:ly periodic, a true
long-period superstructure resulls.

It is well known that electronic or elastic effects can 1lead to
long -wavelength modulations.  To develop a tractable statistical
thermodynamical model, it i8 necessary to map these actual physical
interactions onto a small set of effective near-neighbor pair interactions.
Specifically, we shall consider single nn interaction J, within the layers,
and two axfal! interactions, J; and J, for the nn and nnn neighbor
interactions, respectively, in the direction perpendicular to the layers.
Such is essentially the ANNNI Model.

It is of considerable interest to determine what long-period
superstructures may be stable under what conditions and in what temperature
ranges; in other words, one would like to determine the phase diagram for

this model. The vertical axis traditionally represents the temperature, the
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horizontal axis (axes) represé_ntiné an external magnetic field; a chemical
potential, | or some other ' physical éatameter. In the present . study, all
phase diagrams- will be plotted in a (T,x) plane, where T is the absolute
temperature . and k=J,/J, is the ratio of ax1a1 pair interactions.- Vanishing
applied field, either magnetic or "chemical" ,.. will always be .assumed.

Features common to many _ANN'Nl phase diagrams are indicated

schemat.icalny' inn Fig. 1. PFour main phase regions are represented: a

high-temf.eral:ute_ disordersd (D) phase ( more symmetric, sometimes designated

as "normal” or "paramagnetic"), an ordered phase (0;) of »gimple” structure

(less symmetric," "ferzomagnetic" or "antiferromagnetic"), ahothe"r somewhat

more complex ordered phase (O z)b, characterized by a modulation wavelength

of four times the layer spaéi’ng, and, occupying a central position between |

' those thrée phase regions, that of the modulated phases ( Mod).

Two especially interesting points are found in the phase diagram

'Iof Pig. 1 (excluding the or’;e at mﬁmty, Lg): a mul_ticﬁhiéal point called
Lifgh!ts ' point at'i' L, ‘at which a disordered, an ofdered,' and ‘a "modulated
phase® come together, and a multiphase = point of infinite degeneracy of
ground states at T=0, at a critical value ko of 'the competing interaction
parameter ratio of J, to J,. Recent theoretical studies, to be summarized
in. Sect. 4, have made systematic use of ihose two péints in elucidation vthe
nature of the transition to the modulated phases, mainly by performing (a)
'a Landau expansion about t.he‘.t.ifshits point L, and (b), -a low-temperature
expansion about the multiphase point xq. Unfortgnat.ely, there exists' no
tractable mathematical model valid for ‘the whole T and k ranges; the global
phase diagram has to be assembled in a soméwhat fragmentary fashion.

Actually, the region labeled "Mod", is composed of infintely many

commensurate and incommensurate phasé regions, but, before going further, .



it is necessary to define operationally the words commensurate and
incommensurate. To that end, consider a perfectly periodic modulation of
half -wavelength

A/2 = Md (1)
measured by the dimensionless number M in units of the interlayer
gpacing d. Mathematically, the modulation period 1is commensurate with the
one -dimensional lattice of layers if

M = P/Q (P>Q) , (2)
where P and Q are relative primes. The period is incommensurate if M cannot
be expressed as a rational number. It is seen, by Eqgs. (1) and (2), that
modulation and lattice will be in registry at multiples of the interval

A =Pd=Qr2 . (3)
The. integer P will be called the commensuration number, the commensuration
wavelength being equal _l:o A when the integer Q is even, and 2A when Q .is
odd. Examples will be given in the next Section. The set of rational
fractions 1/M has measure zero in the set of real numbers in the ([0,1]
interval, hence, if all values of M were equally probable, incommensurate
periods would be infiniltely  more densely distributed than commensurate
ones [15]. Actually, because of coupling effects between the modulation
and the lattice, there will be a tendency for the modulation period to Ilock
in ab well-defined commensurate values, particularly at low temperatures.
These points will be discussed further in Sect. 4.3.

Commensurate long-period superstructures can be considered as
crystallographic phases with very long unit cells, or polytypes. When the
modulation half-wavelength evolves from one commensurate value to the next
(as temperature, or composition or k varies), the space group of the

corresponding polytype changes, 1if for no other reason that translational
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sSymmetry elemen‘tsv are gained or lost in the process. Hence_,. a definite
phase boundary must exist .on the phase diagram between successive
commenéurate phases. Thus, at least in those regions where the lock-in
tendency is weak, .l;he. diagram of Pig. 1 in the Mod region may consist of
infinitely _manyv comme@rate vpha.se ', regions., often of extremely narrow
extent. » _ N . .

Clearly, it is not possible to determine the phase fields of all
such "commensurvatev structures: resolution, theoretical or expetimeril:al., is
'ﬁnite; fufthermore, ~ since the drivi.né force for transfoiming' : 'from_ .one
commensurate long-period sxperstméwre to the next one must become very
small as the commensuration number P becomes lafge, equilibrium will be

practically impossible to achieve for pblytypes. with very narrow phase

fields. It thus becomes imperative to adopt a more practical though less

matﬁematical definition of commensurate /incommensurate periods : a

commensurate long-perifod structure shall be that whose half-perfod can be

expressec; v as M=P/Q, P and o being : gm_al_lv, relative primes. For example, a
fixed upper limit Ppga, might be imposed on the commensuration number P.
According to this practical definition, one thus expects to find, in some
'part.s. of the phase diagram, commensurate phase fields separated from each
other by incomx_nensurate'. phase regions in which the period M cén_ apperar to
vary continuously. fhermodynamicaHy, of course, phases _wil:h modulation
period varying by finite amounts are not allowed, this possibility existing
here only as an artef#ct of the opetal:iénal definition adopted for the word
"commensurate”,

Long-périod superstructures will now be examined in more detail. -



3. CHARACTERISATION OF SUPERSTRUCTURES

The essential features of diffraction patterns obtained from long
period superstructures will be briefly | reviewed in Sect. 3.1, along with
the interpretation thereof. More direct evidence obtained by
high-resolution electron microscopy will be described in Sect., 5, A
remarkable feature of all long -period superstructures resulting from
square-wave modulations of a one-dimensional lattice will be presented in

Sect. 3.2 and in Appendix I.

3.1. Diffraction Patterns

Only the briefest diffraction treatment will be given here. PFor
details concerning, say, which superlattice reflections are associated with
periodic antiphase satellites, or concerning the way the phases of Pourier
amplitudes contribute to gatellite intensity, or concerning possible
disordering and displacement effects, the reader is referred to the work of
Perio and collaborators [16,17].

Por gimplicity, only one -dimensional modulations will be
considered. Let X be a continuous variable in the direction of the
modulation. Atomic layers - such as lattice planes, single or double - are
placed normally to the x axis at equidistant points

Xp = pd (p=0,1,2,..;N-1) s
d being the inter-layer spacing, and N being the total number of layers.
Now define a modulating function f(x) of the continuous variable x which
imparts to each p*R layer the value fp, = f(xp) for the physical parameter

considered, be it composition, degree of order, "antiphasing" or



magnetization.
In the kinematic approximation, the diffracted amplitude per layer

due to the modulation is proportional to [18]

1 N-1 -ikxp
5 L f(xp) e (3)
N p=0

Ca(RY). =
where k is a discrete variable having reciprbcal épace values
k = 22mh/d : : (4)
with Miller index
h=H/N (H=0,1,2,...). (s)

Equation (3), which is assumed to -contain implicitly the scattering power

of the modulation f, can also be written
a(k) = 1%-';: [Jp(x) o F%p dx]e'i"‘"!’ ' (6)
pt) : ‘ :

wherev F’(Kw) is-. thev Fwﬁér transform of the modulal.ingv function -f(x). In
EqQ. (6), the integrat{on is performed over an appropriate region of
conl:muous reciprocal space. The expression }:pexp[-i(k-x)xp] in Eq. (6)
yields - a set of écatterlng functions with sharp peaks of height *N at ail
 values of the argument. k-K equal to a reciprocal lattice vector gp=2wH/d of
the layeréd - structure, H indicating the vorder of the reflection. The
scauétea amplitude is then proportional to
A(k) = Ip Sf(k'g) (7)'7

where s, a factor of modulus unity, takes care of the shape and sign of the
scattering functions.

Now let the modulating function be periodic of period 2Md. Its

Fourier transform then consists of a set of 8 functions of weight C, at



K-space positions
Kn = trm/Md (n=0,1,2,....). (8)

The resulting satellite amplitude spectrum, by Egs. (7) and (8), appears as

a convolution of the Fourier harmonics of f(x) with the reciprocal lattice

of the layers:

A(k) = L L sCp 8(k-gg+Kp). (9)
B n

In general, sharp satellite reflections will thus be found at positions

2HP + n

= + =
h H n/2M 2p

(10)

where, as in Eq. (2), P and Q are relative primes. Satellite reflections
will therefore be placed 1/2P apart (in 1/d units), so that the satellite
spectrum can become infinitely dense when the commensuration period 2P
becomes very large. In practice, satellite intensity
I(k) = |A(k)I2

will decrease rather rapidly with the reflection order, so that only a few
peaks will be obéerved about each fuxidamenta.l H. An apparently uneven
satellite spacing may then result, as explained below for the case of a
square wave modulation.

Amongv the Dbetter-studied modulated structures, both by X-ray
diffraction and transmission electron microscopy, are the so called
periodic antiphase structures. These are found typically in ordered alloys
in which antiphase boundaries occur at regular intrvals, in one and two
dimensions. Here, only one-dimensional conservative periodic antiphase

structures will be considered. Evidence suggests that, in many ordered
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systems, the modulating function f(x), which fixes the 1location of the
antiphase boundaries, can be idealized as an almost perfect square wave.
H}ence,‘ f(x) must have a Fourier épecttum consisting oﬁly of odd harmonics
at t(mel)/ZM, with intensities decaying as (2m+l1)~2, (m=0,1,2...). The
decay law of the satellites themselves will be somewhat different because,
by Eq. (9), higher harmonics can con;:ribul:e to all satellite orders.

Pqt commehéutahion number P f{inite, no matter how large, the
modulation satellites can be regarded as fundamental reflections of the
correponding  polytype of long unit cell 2Pd in the direction of the
modulation. Hence, as can be also inferred from Eq. (10), it is the number
1/2P ,' rather than 1/2M, which fixes the satellite spacing, a conclusion
‘which i8 not apparent in the early work of FPujiwara (18], but which was
clearly stated in that of Perioc and Tournarie [16]. Two additional factors
must .‘be taken vinbo" account in analysing satellite spectra: systemahig
extinctions and graddal intensity decay yil:h hamonic order. For exaniple,
if Q is odd, then the numerator on the right side of Eq. (10) is also odd,
and sai:euites can only occur at odd multipie’s of 1/2P; if Q is even, then P
must be odd, and satellites will occur at all multiples ofﬁ 1/P.
Furthermore, as mentioned above, harmonic intensity decay will cause
higher-order satellites to. be practically invisible, thereby resulting vin
apparent unevenness of spacing in each reciprocal unit cell' and precluding
unamb_iguous determination of P and Q. |

This latter effect will be particularly noticeable for modulations
of large' commensuration number P. As an illustration, consider the three
following polytypes whose  structures (to be described in the next
sub-gection) are similar, and whose half-periods are:

(a) M = 25/14 = 1.7857...
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(b) M

67/14 4.7857... )

(¢) M= 9/5 =1.80 .

The correponding spectra are indicated in Pig. 2 a,b,c. In this schematic
representation, the diameter of the spots represent approximate relative
intensity, i.e. the most intense spot corresponds to the first harmonic of
the modulating square wave, the next intense to the third harmonic, etc...
It is seen that, in case (a), 23 harmonics are necessary to occupy all
satellite positions predicted by Eq. (10) - after that, intensities of
still higher orders begin Lo superimpose - wereas in case (b), after the
same number of harmonics, the spacings are still irregular: 65 harmonics
would be necessary to produce an even spacing.

The observation that satellite sequences do not "mesh" at the
Brillouin Zone boundary (h=0.5) has sometimes been taken as a cr_iterion for
"incommensurability” [19]. Prom the foregoing, however, it is ' clear that
such a criterion is, at best, a relative one: in case (a), if all 23 orders
are observed, the structure would be said to be commensurate, if only 9
orders are observed, for example, the structure would be classed as
incommensurate. Case (c), with 9 orders observed, would be a commensurate
structure.

Nevertheless, these observational considerations, far from
infirming the practical commensurability criterion proposed in Sect. 2,
actually provides a convenient estimate of Ppayx, the commensuration number
beyond which a modulation is defined operationally as being incommensurate.
Since, as can easily be shown, the satellite spectrum is "complete", in the
gsense of Eq. (10), when harmonics of up to order n=2m+1=P (or P-1) have
been used up, then Pp,, may be set equal to npax, the maximum harmonic order

which will significantly contribute to the satellite intensities, In the
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above examples, 1if nyax=23, both modulations (a) and (c) will be

commensurate, (b) i.ncommensm:ate; if Dpax=9, only (c) will be commensurate.

3.2. Squaze' wave Modulation ‘ : -

Consider the case of an observed satellite intensity séectrum
which is consistent with a perfect square wave modulation £(x) of
half-period M=P/Q. The effect of this modulation on the layer lattice is
then quite straighforward to interpret: any layer of index p can then be
assgigned ﬁnambiéuwsly the " sign + or - according to the parity of - the
integer_

ap =[(pQ/P+e] , (12)
teptesenting the lafgest integer co_nt.ain‘eci | in the bracketed expréssion. In
Eq. (11), the rational fraction e allows for ‘an arbitrary shift of the
square wave origin - with respect to that '( p=0f:) of the layer lattice.
Fujiwara’  [ 18] shéwed that the layering sequence iesﬂl:‘mg from a square
wave mgdulatioh_- of half-pericd M = 9/5 = 1.80 [example (c), above] was as

follows: -

(2222122221....) -, : (12)
‘a symbolic notation signifying: two "+" layers, followed by two "-"  layers,
... followed by a unique "+" layer, followed by two "-" layers, etc... In .
what follows, the short-hand notation of Fisher and Selke [8] will be
adopted for describing such sequences: <2‘i>, in which angle brackets
indicate a tepeatiﬁg period (or half-period).

Fujiwara gave other examples of layer arrangements, such as
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(2221221221...) , _ (13)
which also produced sharp satellites at positions h = H * (2m+l)/2M, with
intensity decreasing roughly as (2m+1)-2. Fujiwara descibed layerings such
as those given by formulas (12) and (13) in the following terms:

(i) Regular arrangements with uniform mixing.
Other arrangements were also considered by him:

(ii) Regular arrangements with non-uniform mixing

(iii) Irregular arrangements with almost uniform mixing

(iv) Irregular arrangements with non-uniform mixing.
Arrangements (ii) and (iv) were shown to produce specra not in agreement
with observation, although some degree of “irregularity®, as in (iii),
could still yield acceptable spectra.

Pujiwara's terminology can be Lranslated into the present one as

follows:

Regular arrangement - perfect commensuration period 2P

Uniform mixing - perfect modulation periodicity 2M.
Although it was not stated by Fujiwara explicitly, it is clear from the
diffraction equations recalled above that the idealized periodic antiphase
structures which produce sharp satellite intensity at the correct positions
are those which result from a modulating square wave of perfect
periodicity. It doe§ not matter in the least that the modulating wave be a
function in fictitious, continuous x-space, with period 2M totally
unrelated to that of the layers, the latter existing in real, discrete
Xp-space. Clearly, it is the “regularity" of the modulating function itself
which produces proper satellite spectra, it is the nature of f£(x) which

determines the arrangement of layers.
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It is theﬁ of interest to inquire into the structural properties

of the poiyt&pes which result from general square-wave modulations of
perfect period M. .3 1s desired to construct an algorithm for obtaining
explicitly one half-period of . the layering sequence 'given -By Eq‘(u)».

Sutérisingly , the required aléorithm is precisely the : one dézived
independently in 1978 ﬁy vHubbard f201] .fo: the case of electrons occtipying _
N l:he‘. gsites of ‘a one-dimensional lattice in.' an - organié conductor such as
TTF TCNQ, and by Pokrovsky and Uimin [21]L for the case of ad'-a.to.ms
occupying the sites of a one-dimensional substtate labtxce. In both cases,‘
electtons or ad-atoms are assumed to mberact with long-range répulsivé
conve;c iaait' interactions, such as those resulting from a Coulomb potential.

. The ratio ("<l)- ofv interacting pa:t:.cles (electrons or ad- atoms) to l:hev
number of lattice sites is fixed. The algorithm ﬁll now be described in
the ( shghtly modl.ﬁed) notation of Hubbatd {20].

Pirst, one must expand the rational half- penod M in a continued

fraction

P . o E :
M== = +_z°'_ ' 14
Q Ng n, + ) » ( )
nz_,___lz___
Yk-=1
-1 +
nkl me

Since M is a rational fraction, .the ‘continued fraction expansion must
terminate at some level, say k. At any level i, the integers nj are
determined uniquely by the remainder (r) at level i-1 :
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-1/2 < rj = +1/2
so that
vi = ri/lrgl = £1 . (16)

Now define the sequences {X} and {Y} by the recursion formulas

Xo = no (17a)
Yo = Ng + Yo (17b)
ni-1
Xj = (Xi-1) ¥ 7 Yig } (17¢)
o (i =1,2,..,k-1) .
¥y = (%317 vy (17d)
The formula for polytype of half-period M is then

<X> = Xg . (18)

A proof that this algorithm indeed yields the correct polytype structures
resulting from a square wave modulation is given in Appendix I, along with a
numerical example. A11 polytypes (X) thus generated will henceforth be called
Fujiuara (FW) phases for short. The three square-wave modulations whose spectra
are illustrated in Fig. 2 have symbolic formulas

(a) <(241)2231> ,

(b) <(5%4)2534> |,

(c) <241> .
Other examples will be found in Table I which lists all FW phases with P=73
and 1.5<M<2, and in Table IT which lists all PW phases with commensuration number
P<20, for the same range of modulating period. Table ITI also indicates the
level k at which the continued fraction terminates. The structural formulas given in
Tables I and II were calculated directly from Eq. (11) with € = 0. As explained in
Appendix I, the resulting polytype formulas may differ in appearance from those
derived from the continued fraction algorithm, but both a?e completely equivalent,

due to the translational symmetry of the long-period structures.
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It follows fron Egs. (14) to (18) that all FW phases consist of,
say, « units of type XoJ¥o, and B units of type Xod"1Y,. The total number of

both types of units is then

S=za+p , (19)
and the total number of "domains", or square-wave modulation half-periods
is

Q = j(atB) + « . (20)

Hence the 'half -period of the modulation must be equal to
M=XtsS/Q (21)

the sign bei.ng taken in accordance with that in Eq. (16)‘. ‘The fractional
-part of M thus depends only on vthe repetition numbers j, «, and B, and not
on the domain lengths X, and Y,. Examples (a) and (b), above, illustrate
the latter property. The fraction P/Q itself, of course, is equal to the
total number of layets' in tﬁe polyt.ypé’s structurel. formula divided by the
total number of Xg andA Yo units contained therein, i.e. by the sum of the

"exponents” in l:he formula.

3.3. Smooth-Profile Modulation

It is often observed experimentally that the satellite intensity
decreases faster with order m than the (2m+l1)~2 1law characteristic of
.square wave ﬁoddation. One then readily concludes that the modulating
function f(x) must have a profile smoother than that of a square wave. In
the limit, thé modulation could be purely sinusoidal.

It is not clear a priori how a smooth profile is to be interpreted

physically. The uncertainty results from the fact that (complex) satellite
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amplitudes are not observable, only . intenstites, Recently, however,
high-resolution transmission electron microscspy has helped resolve some of
the ambiguities of interpretation. In particular, it appears from the work
of Guymont et al. [19], that the periodic antiphase structure of CuAu IT
presents wavy aniphase boundaries, whereas those of Ag3Mg, for example, are
perfectly staight., The observed difference between these two fcc-based
ordered systems has led these authors to conclude that the Pujiwara (FW)
model is applicable to the Ag3Mg case, whilst the Jehanno and Perio (JP)
model [17] might be more applicable to the CuAu case.

Pormally, it is merely required to look upon the Ag3Mg long period
superstructures as resulting from a square wave modulation (giving rise to
the FW phases described in the previous section), those of CuAu then
resuiting from a modulation ®"with corners rounded off”. The representative
smooth function f(x)  must then represent an antiphasing probability,
interpreted as the projection of actual antiphase shifts along the axial
direction of the long period. Such is, of course, the JP model, but in the
present view, both PW and JP models derive from the modulating function
f(x), being merely distinguished from one another by the sharpness of the
profile.

The most likely interpretation of a smooth profile is illustrated
in Pig. 3, drawn so as to resemble schematically high-resolution TEM
micrographs of typical CuAu II samples [22]. Segments of Cu (light) and Au
(dark) (001) lattice planes are shown stacked along the vertical direction,
with antiphase shifts occurring approximately every five (100) lattice
spacings. Random errors have been inhroducéd for the positions x at which
these phase shifts take place, resulting in the projected antiphasing

modulation f(x) shown just below the schematic representation of the
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structure. Such an interpretation was already proposed by Jones (23] and by
Pocrtier and Gratias [24].

It is apparent that the "staggered domain" configurakion  depicted
in Fig. 3 leads to "wavy" _antiphase domain boundaries as observed by
Guymont et al. [22]. Indeed, it will be argued in the next section that this
"wavyness" could be the result of an Interface roughening transition. Such
va transiéion i8 quite apparent in Monte Carlo simulations carried out by
Selke and Pisher [13]. Note that, whether antiphase boundaries are straight
6: "wavy, i.e. whether the projected profiles £{(x) have sharp or diffuse
inbetfaceQ, satellite intensity shcﬁxld remain quite sharp as 1long as the

modulating function is perfectly periodic.



-19-

4. THERMODYNAMICS OF SUPERSTRUCTURES

Two regions of the schematic ANNNI model phase diagram of Fig. 1
have been investigated in some detail: that in the neighborhood of the
Lifshitz point L and that in the neighborhood of the multiphase point k.
Recent results pertaining to those two regions will be summarized in Secs.
4,1, and 4.2., respectively. A complete, albeit schematic, phase diagram

will be presented in Sect. 4.3.

4.1. Lifshitz Point

The presence of long-period modulations near a second-order
transition are intimately linked to the exisf.ence of the so-called
"Lifshitz point,” a term coined by Homreich, Luban and Shtrickman [25].
These authors defiﬁed the new type of multicritical point in the following
terms (slightly modified to conform to present notation) [26]: the Lifshitz
poimt is a multicritical point which divides a line of second-order
transitions imo two segments on one of which the equilibrium order
parameter Is characterized by a fixed wave vector k©, allowed by the
Lifshitz condition, whilst on the second, K varies continuously from K° as
a parameter, In the present case x, Is changed. The L point Is also the
terminus of a second line In the T-x plane which separates the ordered phases into
tuo regions, one with k=k® and the other with R=K*#k°-:

Let us assume that the free energy F of a cystalline solid
solution in an arbitrary state of partial order in the vicinity of a

transition has the Landau expansion [27]
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AF = F, + P4 + P, + .., ‘ (22)

‘where AP is the difference between F and its value in the disordered state
I:’and Fn, is the nth order term in the expansion, expressed as a
vconfiguratiqn-indepéndent coevfficienr.' times the product of n concentration
wave amplitudes ', taken as ofde'r parameters [28,29]. The first-order term
vanishes at. equilibrium and therefore does not appear in Eq.(22). The
second order term has a particularly simple form [29]:

P, = P"(k)IC(k)I2, | (23)

NIZ

L
k

where N, the number of lattice planes ax_-xd l;, _t.he wave vector have | been
definéd ‘earlier in EQs.(3)-(5). For simplicity, as in Sect. 3.1, only
one-dimensional concer;t?étion va;iahions will be considered, '.in the axial
direction of the modulation.  The coefficien: P= is the second derivative
pf ‘the free ~ energy with tés‘pect to concentration-wave amplitude squared,
. evaluated .in the dmérdered state. In the 'present study, F" will be

regarded as a known function of two intensive parameters
P" = &(T,xk3k) : {24)

_with T the absolute temperature and k the ratio J,/J, of two effective pair
interactions, for example.

Let us further assuxﬁe that the disordered phase (D, in Pig.l) can
transform by a second-order transition to the ordered (0,) and modulated

(Mod) phases. The case of first-order transitions is more difficult to
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handle, and has not yet been treated in Adetail. In the second-order case
then, the transition normally occurs at the vanishing of the coefficient F"
evaluated at the wave vector k© of the relevant ordering wave [27]. The
Lifshitz condition restricts k© to so-called "special points* [28,29,30] in
reciprocal space, at which two or more symmetry elements intersect at a
point [27]. At these points, any function of k having the symmetry of the
dmotdered state's crystal structure, in particular the function PFP" = &(k),
must exhibit a local maximum, minimum or saddle point [28].

Any regular function having the proper k-space symmetry can be
written as a sum of trigonometric functions times appropriate coef_ficients,

uy, say. In one dimension, the functional form is a very simple one:
® = wg - W, COS 2rh - w, cog 4nh - .. , (25)

the coefficients w, being themselves functions of T and «. In Eq.(25), h is
the Miller Index in the axial direction as defined by Eqs.(4) and (5). In a
general Bragg -Williams {mean-field) approximation, the coefficients w,,
w,... would be constants proportional to, respectively, J,,J3,..., the
effective pair interaction parameters, whilst We would be simply
proportional to temperature [(29]. According to more general free energy
models, such as the Cluster Variation Model (CVM) [31], the values of the
coefficients w must result from the minimization of the free energy at each
T and x, and must therefore depend on these variables. Generally, the CVM
free energy minimization must be performed numerically [(32]. In simple
cases, however, such as m the one -dimensional Ising chain with
nearest-neighbor interactions (T4), the (exact) result of the CVM

minimization shows that w, 1is proportional to kgT Ltimes the hyperbolic
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tangent of J;/kBT, kﬁ bemg Boltémanri's constant [32]. If both firsl: and
second neighbor interactions are i.ncluded in» the Ising chain, the éecohd
derivative P takes the form (25), limited to three terms (as shown) with
the coefficients Wo rWy yWy now being rather | complicated algebraic -
expressions involvir{g the exponentials of J, and J, divided by kgT [33].
.Exp_ressions for -m; and m; must be asymptotic to J, and J,, respectively, in
the limit of high temperatures. In the qualitative analysis }.nail’ follows,
we shall therefore regard the expansion (25) as limited - to the indicated
first three terms, with "w, and w, behaving roughly as J, and J, . in the
neighborhood of the critical temperature Tc, provided that J,/kgT or J,/kgT
aré not too large.

Since the secénd-ordevt &ansition Te occurs at the_ véﬁishing ”of'}
the second 'derivative P_",’ 1t is necessary to‘ determine vat.v which values of k
(or h) ¢ takes on its ‘mininum values.  For the sinple form of ® adopted,
‘extrema occur at

w, sin 2rh + 2 w, sin 47h = 0,

i.e. at values of h which satisfy

gin 2mh = 0 _ (26a)

cos 2nh = - £ . - (26b)

Equation (26a) yields all "Bragg peaks™ at
h=o0,1, 2, ...

and the "superlattice peaks®™’
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Such are the "gpecial-point extrema,"” the positions of which satisfy the
Lifshitz condition [27]. The corresponding wave vectors will be designated
by the symbol k© (or h9), regardless of whether the corresponding
rt;odulation is of “clustering (ferromagnetic) type™” (integral values of h)
or of "ordering (antiferromagnetic) type” (half-integral values of h).

Accidental extrema of the function & can also be found at values
of h which satisfy Eq.(26b), provided that w,/4w, be smaller than one in
magnitude, i.e. for

X = wy/w, & 1/4 (27a)
if w, and w, have same sign, and

X € -1/4 (27b)
if w, and w, have opposite sign. It is clear from Eq. (25) that special
point (SP) extrema at integral values of h correspond to actual minima if
w, is positive ("clustering™” or "ferromaghetic" case, J,>0),  whilst SP
extrema at half-integral values are minima of ¢ if w; is negative
(“ordering™” of ‘"antiferromagnetic" ase, J,<0). It is also clear from
Eq.(25) that accidental minima occur in both cases only if w, is negative,
from which one normally expects J, to be negative as well. In Sect. 4.2,.,
it will appear that l;.he condition for the existence of long period
modulations at very low temperatures is expressed by |[J,1/1J,1 2 1/2,
whereags, in the mean field (BW) approximation, l';he condition for the
existence of accidental minima, leading to long-period modulation, is
expressed by |J,1/13,1 2 1/4, accordjng to Egs.(26a,b). This discrepancy
indicates that, although the BW model may yield approximately correct
results at reasonably high temperatures, it cannot be relied upon near =zero
absolute.

In Sect., 4.2, it will also be seen that |ki=1/2 locates the
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multiphase point ko at 0°K beyond which longer-period -ground state

structures (O,) are expected. It will now be shown that

IXE= Tl =%

locates the Lifshitz point L along a line of second-order transitions (T¢).
Consider now the expansion of the second derivative F" (the
function @) in powers of the difference q = h-h® between the Miller index at

some wave vector k in the axial direction and its wvalue h® at the

appropriate special point:
® =9 + ¢, g2 + 0, q* + o5 g% + ... (28)

In Eq. (28), odd derivatives do not appear since they must vanish by
symmetry at special point k© al:b which . they are evaluated. The coefficients
¢, in EQ.(28) can be obtained by taking derivatives of the cosines in

Eq.(25) at integral or half-integral values -of h:

ano]
o

) 1 )
%(T’K) = ET [s'ﬁﬁ K (n=°92’41617°')

yielding, in the cluétering case,
¢, = 21% (w, + 4wy)
¢, = -(2/3)1%(w, + 1l6w,)
and in the ordering case,
P, = 2m3(-w,; + 4wy) : .
o, = -(2/3)m*(-w, + 16w,).

Hence, we have, for both cases,
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$, 20 for |Ixl =174 i

., =20 for x| = 1/16.
It is thus seen that the coefficient ¢, must be always positive whenever
the condition for the existence of long-period modulations

Ixt =174 ,
obtained from Egs.(27a) and (27b), is satisfied.

This is contrary to the conclusion reached by Aslanyan and
Levanyuk (34] who claimed that a negative ¢, coefficient was more likely
than a positive one. These author's conclugsion is based on the
consideration of first -neighbor pair interactions only, and therefore
cannot apply to modulated structures. Only the introduction of pair
interaction of greater range than the second axial neighbor, or the
presence of anomalous entropy effects, could possibly reconcile a negative
¢, with the condition for the existence of modulations.

Since the coefficient ¢, was shown, in all likelyhood, to be
positive for the model considered here, then, as in the usual Landau
theory, it is sufficient to terminate the expansion (28) at the
fourth-order term. We now seek the optimal wave vector which minimizes the
function # at arbitrary point T, k, i.e., we must find q° = h*-h® which
minimizes

® =%, + ¢, q2 + &, q* . (29)
Setting the derivative equal to zero yields two values

q*=o0 (30a)
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qQ* = t /0,720, (30b)
the second solution being wvalid. for ¢, < O. Inserting Eq.(30) into (29)

gives

. (¢ for ¢, >0 (31a)
®qin(T,K) = oo - for ¢, < O. (31b)

N
ol
N

4

Note that setting ®pjn equal to zero in Eq.(31b) is equivalent to
®,2 - 490, = O, (31c)

which is the céndition_ for the polynbmial (29) to have a double =zero of
vahie q=0.

Both branches of &pj, Jjoin smoothly at &, = O, so . that, in
accordance with .l:he, Lifshitz point definition, point L must have
coordinates (Tr, KL) determined by the conditions

¢°(TL,K;,§ = &,(Tg,KL) = O. , (32)
The line of _secoﬁd-order transitions in the (T,x) plane is thus given by
®min(T,k) = O | . (33)
since, by Eq”s.(23)' and (24), it is  the locus of the topmost
(highest-temperature) vanishing of the coefficient F* of the second-order
term in the Landau expansion. The locus ®pin, = O is shown as a heavy dashed

line in the schematic diagram of Pig. 4, drawn for the case of both J, and

J, < 0. The Lifshitz point L is located at the intersection of this line
and that. which represents the vanishing of ¢,. In a mean-field (BW)

treatment of the ANNNI model, the value of k, would be 1/4, as explained

above, To the "left" of «j, the disordered phase (D) will transform

-
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continuously to the ordered phase O,, of SP ordering wave vector k*=k°; to
the right, the disordered phase will Ltransform continuously to a modulated
phase (Mod) of non-SP wave vector k*#©., The value of q*, EQq.(30), will
increase continuously from its value zero as the parameter k increases from
its limit value ki,.

The locus of $5=0 to the "right" of Ky is also indicated in Pig. 4
(light dashed line). I is clear that Lhe latter line must lie below the T,
line (®pin=0), So that &,=0 must represent a "special-point instability" or
ordering spinodal [28,29] below which the amplitude of the appropriate
(clustering or ordering) SP wave can grow spontaneously if, perhaps for
kinetic reasons, the modulated phase were prevented from developing. signs
of the functions <¢npin, ¢ and P, in various regiongs are also shown in
Fig. 4, in that order.

Figure Sa . illustrates the behaviour of the second derivative F"
centered about a special point; the full curve represents the function ¢ of
Eq. (25) with Jw,!/lw,] = 0.45, and the dashed curve is its Taylor's
expansion, Eq. (28), taken to 4 order only. Figure 5b indicates
schematically the behaviour of the function & at points on the (T,x) plane
at corresponding points in Pig. 4.

FPigure 6 illustrates the formation of "domains"” by a harmonic wave
of half-period M= 98/19 = 5§.1579 , a Ltypical value- for CuAu II periodic
antiphase structures (see Sect. 5). The modulating function f(x), of
amplitude A can be written

f(xp) = A cos 2nh™p = A cos 2m(h%+q)p
= Afcos 2mqp cos 2mh®p - sin 2mgp sin 2wh©p]
where p is a space coordinate which takes on integer values at all lattice

plane positions. Since, at these positions, the sine terms in the expansion
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of l:h_‘e< .cosine' must vanish according té ‘Eq. (26a), the modulating function
can equi‘valéhtly' be considere_d as a cosine ordering wave of index hC®  (full
. curve in Fig. 6) amplitude-modulated ‘by a long-peﬁod wave of index g, i.e.
of (half) wavelength M (dotted curve). The effect on the lattice of this
amplitude -modulated wave is exactly the same as that of the original f (kp) ’
the latter shown as a dotted curve in Fig.6.

The  transition between O, and Mod - phases can be first or
- second -order, depending upon' the relative symmetries of the phases. ' The
v trénsition line is the locus of equality of F* ‘and F° evaluated at the wave
~ vectors whic;h minimize the free ‘energ_ies ink modulated and O, phases,
respectively. If the trapsition is second-order then, by continuity, the
optim;l wave vector at the. transition must be k© itself, so that the ﬁne of
critical temperaburés. Setweeri o 1 and Mod regiohs must coincj1de with the
line ¢,=0 (dot-dash curve in Figuré 4). If !:he transition is fi;ég-order,
thé locqs >of eqﬁaﬁty of_. free energies (full line) mﬁst le in the negative
®, region, but must meet the &pin=0 at the Lifshitz point where the
transition becomes second-order. |

The case ¢,>0, just described, was initially ‘treabl:'ed, by Hornreich,
et al.[25,26], but already -anticipated by Haas [35]; the case ,<0, $¢>0
was  first proposed by Aslanyan and Levanyuk [ 34]. Both cases were
summari;zed by leed_ano {361, vincluding that of expansions of ¢ ,f:ontaini;.xg
odd powers qf q. However, because the present authors consider the case
$,<0 to be hi?hly unlikely, it will not be treated here. Instead, the
low-temperature expansion. of the exa_ct free energy kvof thé ANNNI model about

the multiphase point ko will now be summarized.
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4.2 Multiphagse Point _

The low-temperature expansion of the ANNNI model's exact free
energy was performed about multiphase point ko by Fisher and Selke (FPS)
[14]. Let us summarize here the FS method and results. The model treated by
these authors is the one depicted in Pig. 7: atoms on a tetragonal lattice
interact via in-plane (square lattice) effective pair interactions J,, and
via first (J,) and second-neighbor (J,) pair interactions along the
four-fold rotational symmetry axis.

The free energy is

P =-kgT In 2 (34)

where the configurational partition function is expressed as

Z=r e‘E(U)/kBT (35)

in which the configurational energy for this model is given by

E= -

N 1

L LL [(Jo o(p,r)o(p,r+p)
Prp

+ Jy o(p,r)o(ptl,r) + J, o(p,r)o(pt2,r)], (36)

for exactly emﬁoﬁc concentration of A,B atoms (no applied magnetic
field, in the language of magnetism).

In Eq.(35), the summation is over all possible states of energy
E(c), with o designating any configuration defined by assigning to the

"gite occupation operator” the values:
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+1 if atom A is at site (p,r)
o(p,r) = v .

-1 if atom B is at site (p,r)

to each lattice site at position r in lattice plane p normal to the axial
diregtion.  The summations in Eq.(36) are over all positions r in all
planés p, and,.in giveq iayer P, over firét neighbors p of points r.

Thus fa;, tﬁé treatment is exact, bﬁt of course tﬁe summation in
EqQ.(35) cannot be carried out. At ver} low témperatureé, there are only a
few "wrong" site 6ccupancies, however, so that configurations which
contribute significantly to the free energy F are very feQ, andvcan be
enumerated explicitly. The problem treate& by .FS‘ was the' cluétering
( ferrémagnetic )' case? for which both Jo .and J,; interactiohs are- :posi‘.ti.v'e.
In ordé: for long-periodfstfucturesvto develop, the interactioﬁ.J; mnst.x
"competeQI with. J,, i.e. create frustration; hence J, must be negative
(antiferromagnetic),v With these éssignmenté for the choice of signs of Jo,
YJL, Jz; FS were able to predict the exisﬁénce of long-period polytypes of
hstructure type {233>, according téxthe notation desc:ibed in Sect. 3.2.
These authors also defived a ph;se diagram showing fegions of stability;ofv
such phases in the vicinity of a multiphase point found {:o be located at
T=0°K and kgo=1J, | /3:=1/2. |

A simple transformation allows the:applicatién of FS results to
the ordéring (antiferromagnétic) case, characterized by Jo, J4, Jé, all
negative,_as was shdwn elséwhere [371. Let us summarize those results
here. A simple’VSquare lattice with negative (antiferromégnetic)
ngarest-neighbor interactions p§ssesses a,gfound state in which each site
has fourrnearesf neighbors with the opposite value of ¢ so that there are no

"wrong bonds." The results of FS can then be directly applied to this case
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inl the following manner. Pirst, notice that each lattice gite m a simple
tetragonal structure can be labeled as "even" or "odd" such that each even
(odd) site has four in-layer nearest neighbors and two axial nearest
neighbors which are all odd (even). Now, changing the signs of Jo and J, is
equivalent to a trmfo@tion in which all the signs of the ¢ variables on
odd (or even) sites are reversed, . To see this, consider the
configurational energy given by Eq. (36). In the nearest neighbor
summation, the products of o variables always appear in even-odd pairs,
while in the axial next-nearest neighbor summation, pairs are always
even-even or odd-odd combinations. Thug, in a given configuragion, a
transformation that reverses all o's at the odd (or even) sites while
simultaneously changing the =signs of Jo and J; leaves the configurational
energy (36) invariant. The conclusion is that the equilibrium
configurations, for the case Jo, Ji» J2<0 are obtained from those for the
case Jo,J,>0, J,<0 simply by reversing the gigns of ¢ (A, B occupation) on
all odd (or even) sites.

FPigure 8 is a schematic drawing of the phase diagram in the x-T
plane for the case J,,J,,J,<0. This diagram is really the same as that
derived by PFPS [14], Dbeing obtained by applying the aforementioned
transformation to all the phases predicted by FS. An example of this
transformation applied to a one-dimensional chain is illustrated in PFig. 9
showing how a structure <2I3> is transformed to <2315,  An example of the
<2 4> phase on the full three-dimensional lattice is shown in Pig. 10,

inspired from that given in Ref. [38].
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4.3. Schematic Phase Diagram

It is instructive to combine, in é qualitative manner, the results
of expansions at both Lifshitz and Multiphase points into a global phase
-diagraﬁ incorporating, wherever poséible, information gained from mean
field [ 11] and Monte Carlo studies [13]. Only the 2zero-fleld case
(vanishing magnetic field or difference of chemical poientiais) will be
treated. The resulting schematic phase diagram shown in Fig. 11 is believed
| to be a plausible one, even thodgh the nature of the long-period phases,
which now populate the *"Mod" region shown previously in Pig. 1, 1is not
known with certainty. It will be argued here that all of these phases must
be _"Fujiwara—type", i.e. must have structures derived from the continued
. fraction algorithm described in Sect. 3.2.

The case J 1’<6', J2<0, Jn(n=3)=0 was chosen for illustration, hence
the long-period phases must _‘be (231) polytypes, as indicated in Fig. 11.
The Lifshitz point L has been placed near its BW value of 1/4, and the D-O,
and D-ﬁod transit.ions (in the notation of Pig. 1) have been assumed to be
second-order. Consequently, at and just below To, to the "fight" of L (x
inéreasing) , quasi-sinusoidal ordering waves of infinitesimal amplitude are
expected to become stable, with wave vector index h* given by Eq. (26b).
Since all possible . values of h* (or q*) are a priori equally probable, an
infinity of incommensurate phases are ekpected. In fact, incommensurate
modulations will dominate the phase diagram in those temperature ranges
since [15], from a strictly mathematical viewpoint, the set of rational
numbers p/q has measure zero in the field of real numbers.

As the temperature in the Mod region is decreased, the modulation
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wave amplitude will increase, and the profile will sharpen, approaching
that of a square wave. Although Monte Carlo simulations have shown [13]
thal: the third harmonic of the modulation function f(x) tends to persist to
temperatures close to Tqo, no evidence has been found for even harmonics,
thereby supporting our contention that only square-wave, or FW phases can
be present in an equilibrium phase diagram of this sort. At lower
temperatures, both increase in amplitude and "squaring” of profile will
enhance the tendency of the modulations ‘ to "lock in" at commensurate
wavelenths (in the sense of the definition given in Sect. 2) with
relatively small commensuration number P. Hence, well below To, phase
regions of "simple® FW polytypes will tend to broaden, or bulge out,
thereby practically squeezing out incommensurate phase fields. This bulging
out is particularly noticeable in the <21> phase region; it is already
apparent in the curvature of the <21>:<221> boundary in Fig. 8, calculated
by the low-temperature expansion, and is demonstrated in mean-field
calculations [11].

As long as the lock-in tendency is weak, the modulation wavelength
will tend to vary almost continuocusly with bemperaturé, at given value of
x, the correct q* being obtained by minimizing the free energy in k-space.
Monte Carlo studies [13] indicate that, close to T, the average wavelength
appears to vary continuously with T (or k). In these simulations,
wavelength increase is observed to take place by means of a mechanism
similar to the one that has been described elsewhere, in another context
{39], as a "local doubling of the period". The actual modulated structure
will appear to be rather irregular; indeed, two-dimensional MC simulation
{40] shows quite clearly that the boundaries between domains have the

“wavy” appearence described in Sect.3.3. Such "non-rigid soliton walls" (in
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the words of Bak and von Boehm [{11]) are associated with high
.conﬁgurational entropy, and are thus favored at high temperature.

At  lower temperatures, wavy boundaries cost too much internal
energy, so that planar domain  walls sthId be the rule below a certain
“interface roughening transition". It is not known at present whether this
I:ransi_tion is sharp or gradual, - although three-dimensiohal Monte cCarlo
st;udies [ 13'J indicate a rather shar§ ‘one, ag does a much earlier model of
Inglesfield's . [42] which treats antiphage boundary motions as” a
two-dimensional  Ising model. Below this transition, sharp or diffuse, the
modulahion. period should vary discontimxogsly, jumping as it were from one
commensurate phase to the next. As th; temperature is fu'rf;her reduced, the
ANNNI model predicts the complete disappéarence of long-period phases,
leaving only the ordered phases denoted O, and O, in Pig. 1, or <1> and <2>
in the pa?ticulaz example illustrated in PFig. 11.

The conjecture that all polytypes in the ANNNI model must be FW
phase_és was stated above. CIearly., the low-temperature expansion predicts FS
phaées, v.vhich form a subset of FW phases. Recéntl‘y, Duxbury and Selke [42]

* have shown, by mean-field calculations, that polytypes whose structure
formulas are combinations of FS units (<2J3> in this instance) appeared in
the phase .diagram through a “structure combination branching mechanism”,
i.e. the-boun&arrbetween two PS phases, such as.<23> and <223> gplits to
produce a <23223> phase, which then gives rise to <(23)2223>, etc.. These
authors have demonstrated the stability of polytypes which belong to the
set of PW phases, whose structural formulas are derived by the continued
fractioq algorithm described  in Sect.3.2, and shown in Apendix I to
correspond to a squaré wave modulation.

In Fig. 11, we have attempted to show schematically this branching
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mechanism, producing FW phases of increasing complexity, i.e. of increasing
level of continued fraction expansion. Only phases of 1level 1 and 2,
selected from Table II, have been indicated in PFig. 1l1l. Around and in
between the illustrated phase fields will presumably be found infinitely
many long-period structures of infinitely increasing commensuration number
P, with infinitely decreasing field extent, separated by phase boundaries
of progressively decreasing first-order character. Because of the very
small free energy difference between _ neighboring high-level polytypes, it
will be very difficult to calculate the domains of existence of these
phases and very difficult to observe them experimentally.

Note that, because of the bulging of the central <21> phase field
at fixed k just greater than 1/2, the long-period wavelenth will tend to
decrease as the temperature decreases in the higher temperature range,
close to To, whilst the opposite effect should be obseved in the
temperature ranges just below the bulge. At large values of k, however, the
ANNNI model ©predicts that the modulation wavelength should inrease
monotonically with decreasing temperature. All of those conclusions should
be reversed for <23>-type phases.

Such are some of the predictions of the simple ANNNI model. Let us

now see whether these results can be applied to real ordered alloy systems.
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5. APPLICATION TO PCC ORDERING

Two weli studied. alloy systems have _aniiphase structures 'which | are
strikingly similar  to those of the pélytypes described above: the
electronically similar Au,Zn and Ag,Mg ordered pﬁases “at and slightly’ off
stoichiometry. The former belongs to the <2J3> type, the latter to the
<231> type. s'trucmte’s'<233> and <241> are shown in Pigs. 12a and 12b, as
determined 'by_' high-resolution ttanémissi‘on' electron microscopy by Van
Tendeloo and Amelinckx [43] band_ by Portier et al. [38], respectively.
Pormally, the correspondence between Figs. 12 and 10 can be accomplished by
subdividing  the (disordered  phase) fcc  lattice  into two tetragonal
sublattices, one occupied 'by alternating Au (Ag) and ‘Zn (Mg) atoms, the
other by . noble metal atoms §n1y. "If one ignores the pure noblé metal
‘sub-lattice one obtains exactly the structures illustrated in Fig. 10,
‘depicting FS phases ‘predicted by the lo'w-tem;;erawren expansion of the AN&NI
modei. One ‘must of course ~ assume tha;. the true fcc neai-neig‘hbor
'intera';ctigns "in these systems vproduce the correct ground-state structures,
the asial ihteraétions J, and J, then being considered as supenmposed
effective pa:.r interactions reséonsible for the long-period tﬁodulatior;s.
These arguments can be made niore rigorous, as explained in Appendix IT.

The DO, ground state, {2> in the FPS notation, has been observed
_in both Au,Zn and Ag,Mg, and FS phases <2d1>, with j=2,3,4, and 6 have been
reported in Ag,Mg [38]. FPS phases <233> and <3> have been seen in Au,Zn
[43]. There is as yet no unambiguous evidence of higher-level FW phases,
although Portier et al. have published a Ag,Mg high-resolution mict§graph

(Pig. 7 of Ref. [38]) with both <241> and <2%1> polytypes present. The
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authors concluded that the microstructure presented ‘"stacking disorder”. 1In
fact, the micrograph in question shows no "faults”, and the whole structure
could be described as <241(241231)M5, with integer m unknown because the
imaging field was not large enough to cover the whole period. The polytype
structure just given can be easily proved to be a FW phase, an example of
which, with m=4, was given in Table I (Q=41l).

These experimental findings can be interpreted in the light of the
ANNNI model in the following way: let J, and J, be effective axfal pair
interactions; then, J; must be positive for Au,Zn, negative for Ag,Mg, and
J, musl: be negative for both. The value of kx must be greater than 1/2 since
the ground state must be the DO,, structure, represented by <2>.
Furthermore, the in-plane interaction J, must be negative to produce
two-dimensional ordering in the planes normal to the axial direction, and
the absolute value of this parameter is expected to be relatively large
since antiphase boundaries remain straight m the l:emperabure‘ ranges
investigated. Available evidence [44] indicates that the average domain
size M increases with increasing temperature in Ag.Mg, thus suggesting that
the measurements were performed in the temperature region above the <21>
bulge in the ANNNI phase diagram, with values of k just greater than 1/2,

The interpretations just given must be taken with some caution,
however, as phase equilibria in actual alloy systems may differ appreciably
from those deduced from the simple ANNNI model. Purthermore, the D-0,, or

D-Mod transitions may well turn out to be first-order, if they could be
brought about experimentally. Nevertheless, the analogy between the
observed Ag,Mg polytype structures and the PS predictions is really
striking. This can be seen most dramatically in Fig. 13, a very

high-resolution TEM micrograph gratiously provided to the present authors
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by Drs. N. Kuwano  and T. Eguchi [45]. In this figure, the bright spots
represent the péSitior_xs of projected coiumns of Mg atoms, I:he.’v Ag atoms
being out of contrast.: 'i'he- periodic antiphase sm.fts of double and single
lines of Mg atoms clearly indicate a <2 3_l> stmcture.% |

Histoﬁca]_.ly, the best‘-knéwn'» long;period superstmcwres are hhose.
of the Cu-Au system. In the phase field traditionally labeled CuAu II,
closé to ‘t.he. equiatomic c_omposit.ibn,' the aQerage - modultion half-period has
value YM -of about - 5. Récenl: TEM wbrk [22]> haé showx:x clearly thal-;‘ the .
antiphase b@@dw "have a "wavy” »appear‘ance, unlike the veryv straight
ones of Au,Zn or Agang.' To interpret these observations in the light of the
ANNNI model,‘ it is necessary to postulate long-range effective  pair
interactions at -leésh out to fourth axial’ neighbor. It is ‘indeed shown in .
Appendix IIT that, with J,>0 and VJ‘<6, and all other pair intéractions
small in magnitude, the gr§und state for "K'=-J;/J 1>1/4 should be given by
<4>, and the central "bulging" phase sh§uld vhave structufe formula <5>. The
ground state for k'<l/4 is then <>, as in ,the voriginal SF ' calculation,
‘which, with Jo<0, »represéhts the simple Llg 'fordéred structure, i.e. CuAu I.
A pbase diagram muct_m like‘ the one of Fig. 11 should- theh result, but wxl:h
phase fields 'ap.pro'priately relabeled, as indicated schematically in Fig.
14. Near -stoichiometric CuAu could then be modeled with a k' value somewhat
‘smaller than its value at the multiphagse point -xo. The fact that antiphase
_ boundaries experimentally are found to be wavy would indicate that the
range of stability of the "Mod" phases lies above the postulated '_i.nterface
roughening transiﬁon. |

‘An irxheresting effect was observed on- CﬁAQ by Guymont and
co-workers [22]: a stoichiometric alloy quenched direcl:iy' from high

temperature into the CuaAu II phase field produced the <5> structure with M
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exactly equal to 5. However, the same alloy held for a long time just above
the CuAu II transition temperature produced, upon subsequent aging in the
CuAu IT phase field, a periodic antiphase structure with M slighly larger
than 5. The authors interpreted these results in terms of "easy long-period
fluctuations” assumed to exist Jjust above the ordering Lemperature. We
suggest an alternative interpretation based on the diagram of Pig. 1l4: for
the indicated value of k', the <5> phase field is seen to be preceded in
temperature by a narrow Mod region which must cor}tain closely spaced
quasi -incommensurate PW phases with practically continuously varying
modulation period. A direct quench from the disordered phase D into <5>
would produce the expected average period of M=5, but the intermediate
aging treatment in the incommensurate phase field would result in a stable
FW phase with M#5. Because of the very small differences in free energies,
the resulting incommensutat.e structure could well remain in metastable
equilibrium after continued aging in the CuAu IT phase field proper. If the
transition from D-Mod(incomm. ) were second-order, it would be very
difficult indeed to distinguish experimentally the incommensurate stable
phase field from . a soﬁd solution phase field with "easy long-period
fluctuations” .

The characteristic difference between Ag,Mg-type and CuAu-type
long period superstructures has led Guymont and Gratias [19] to propose the
following empirical rule: those periodic antiphase structures which display
straight domain walls have Jlong-period strucures (polytypes) which persist
to low temperatures, those which display wavy boundaries have long period
structures which disappear at. low temperatures. We would prefer to regard
both types of structures as two different manifestations of the same

ANNNI-like behaviour: the "straight” systems would correspond to k values
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to the "right” of the multiphase point, the "wavy" systems to . values to
the "eft" of that point. The fad: . that, in the former case, antiphase
boundaries. appear straight may simply be due to the experimental
impossibility = of getting close to the disordering temperature, thus
precluding preparation of an ordered phase above the interface (antiphase
domain wall) roughening transition. That 1long-period phases persist to low
temperatures in the ‘"straight"” case may be explained by the very small
difference between the free energy of FW phases and that of -the <2> phase,
itself having a ' (relatively) 1long period. By contrast, thé disordering
temperature 1s readily accessible in the cCuau éase, with - Mod phase fields
lying above the roughening transition, as already mentioned. To confirm the
validity of this interpretation , it would be ﬁecessary to discover a system
for which the i.ngrface roughening transition could actually be followed

experimentally.
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6. DISCUSSION

The main theme developed here is that, with the ANNNI model, we
finally have a promising framework for coming to grips with the enigma of
long-périod superstructures. This is not to say that older theories, such
as those of Sato and Toth (ST) and later wodifications are thereby
supplanted; certainly not: the ANNNI wmodel treatment has nothing to say
about the physical origin of the effective pair interactions J, and J,, so
that, ultimately, an electronic theory will be required to justify, for
example, the value of k used to model a given alloy system. What was lacking
in earlier treatments, of course, was the all -important statistical
mechanical aspect. Not that gallant efforts had not been made to
incorporate thermodynamics into previous models; but all these attempts had
relied on mean flelqa, actually Bragge-Williams (BW) theories. Not
surprisingly then, essential aspects of long-period behaviour could not be
explained, such as: the variation of modulation wavelength with temperature
at constant interaction parameters, the tendency for the modulation to lock
in at small “"commensuration numbers”, the disappearence of long period
superstructures at low Llemperatures, the "straight to wavy" transition, and
the very nature of the structural polytypes themselves. True, the
mathematical difficulties encountered in solving even the simplest ANNNI
model has, so ‘far, precluded a completely satisfactory resolution of the
difficultiegs, but at least, as we have attempted to show, a general
coherent picture is beginning to emerge.

Recall that a low-temperature expansion of the exact free energy

(PS) has predicted unambiguously the existence of <x°fh1°> polytypes (with
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XO,Y§ differing by one integer). Although a formal thermodynamical proof is
still lacking, there are good indications [42] that the more general
poiytypes <xIr> (with X and Y representing nested PS stacking sequences, as
det_erminec‘ii by - the continued fractioni algorithm] will Dbe the actual
equilibr‘ium. phaseé. Exact treatments of the one-dimensional ANNNI chain
[33] have also shown. how, at fixed x, the SRO modulation wavelength varies
continuously with temperature, from its predicted BW value to that given by
" the exact ground state | analysxs If electronic theories (such as that of
ST). werev to yield reliable éstimates ‘of, say, J, and J,, then Eq. (26b),
with.  J's substituted for w's, would predict the modulauon wavelength
ir:eliably.l Thus,  paradoxically, the original ST theory, though actually
derived .for ‘zero  temperature, is expected to do well only at high
temperatures. As the temperature is lowered, the w's in Eq. (26b) are no
longer equal to the J's, and more accura.te statistical models than the BW are.
.essenl:ial for preéise determination of the modulation wavelength.

Hence, ghe average uiodulation (half) wavelength M is determined by
a ‘combination = of factors: the ratio J,/J,, the configurational entropy
correction to the J's, the lock-in to simple polytypes. va the mathematics
Qere tractable, it would then be possible to compute theoretically a model
phase diagram such as that of i’ig. 11, with no guesswork. It is important
to émphasize that, {f the ANNNI Hamiltonian represents the essehtial
" physics of the problem, then ' an exact statistical thermodynamical theory,
or at least a reliable approximate fomulahion' thereof, will yield all the
desired featureg: the structural formulas of stable polytypes and their
phase fields, the nature (first or second-order) of the transitions, and
the character of the antiphase boundaries, straight, wayy, sharp or

diffuse. Of course, the simple ANNNI Hamiltonian may not be adequate to -
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model an actual alloy system; it may well be necessary to -include more
elaborate schemes of effective interaction parameters, including long-range
elastic forces. The resulting phase diagram may then be substantially
modified, but not, we beleive, in an essential way.

The formal connection between the ANNNI model and the square wave
modulation idea (Fujiwara phases) has not been made yet, but we are quite
confident that a more detailed mathematical analysis of the model will
confirm our conjecture about the structure of stable polytypes to be found
in the phase diagram. It may appear unlikely that a phase such as <23%*71>,
say, should be stabilized by relatively short-range forces only: how does
the system "know" that after 37 double-plane domains the agth one should be
single-plane? Actually, the system needs to be T"aware"” only of the
modulation wavelength M=P/Q, a value which, as . just mentioned, is fixed by
effective pair interactioné whose range is of the order of M. The éolytype
structure itself is determined geometrically by the square wave modulation:
it is as if the antiphase boundaries, at fixed M, interacted with one
another through convex repulsive potentials. The commensuration number (75
in the above example) resuits simply from a sort of Vernier effect.

The continued fraction algorithm provides a criterion for
determining whether a given stacking sequence of ordered lattice planes,
observed by high resolution electron microscopy, represents an equilibrium
phase or an “intergrowth”: it sut‘ﬁc_:es to count the number of lattice
planes (P) in the period and to divide by the corresponding number of
domains (Q). The ratio M must then be expanded in continued fraction as in
Eg. (14) and the structural formula <X> of Eq. (18) compared to the
observed stacking sequence. If there is perfect match, then the obseved

microstructure is that of a single equilibrium polytype, otherwise not.
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7. SUMMARY

The most important points made in this paper are the following:

An operational - definition of commensurate  and .lncpmmensurate
modulations was f)roposed (Sect. 2).

The name_ Fﬁjiuara phases was proposed to designate the polytypes
conjectured to ,be. found m the ANNNI model phase diagram. It was
vt.:lémonstra.ted that these "PW phases" .resulted from 'av modulation of the’
lattice by a periodic function having only odd - harmonics in its Fourier
spectrum, for exé.mple a square wé.ve. |

Structural fofmulés for Fujiwara phases were shown to result from
the continued fraction expansion of the modulation (half) period (Appx. I).

The most likely assignment of signs in the Lifshitz point
expansion of the ANNNI model was discussed (Sect. 4.1).

The low -l:em.pera.l:ure .éxpansion' of the exact free energy of the
ANNNI model was summarised (Sect. 4.2), and the original résult of Pisher
and Selke  was extended" to the case of orderiné on an fcc lattice
(Appx. II). _

A_ schematic ANNNI model phase diagram was proposed based on the
results of publis_hed calculations (Sect. 4.3).

It - was shown qualitatively’ how the characteristics of both
Ag Mg-type and CuAu II-type periodic antiphase structures could be
understood in terms of the ANNNI model. The respectively "straight” and
"wavy" nature of the antiphase boundaries for those 'two types of systems

were argued to represent but two aspects of the same phenomenon: in the
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former case, the observed structures must be formed below an interface
roughening transition, in the latter case, above,.

It was shown how a different scheme of effective axial pair
interactions could lead to longer range average modulation periods, such as

those encountered in the CuAu II long-period superstructures (Appx. III).
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APPENDIX I

The proof that the continued fraction algorithm described in Sect.
3.2 generates the correct square' wave modulation polytypes (oz' FW phases)
rests on the approximation of a rational 't"racl:ion P/Q by its _sui:cessive

. approximants P;i/Qi, obtained by truncating the céritinued fraction . expansion

at levels i = 0,1,...,k. These approximants are given' by the formulas:
Py =mno + % , Q1=n1 : ' (AL,Db)
Pj = njPi-) + ¥i-1 Pi-2 . | : (A1,c)

(i =2,3,...,k)

O
fox
|

= njQj-1 + 7i-1 Qi-2
Pr/Qg = P/Q = M.

AL thé ilowesh levél (ievel.' .0) , the '_ best approximaﬁonI for M is
clearly ‘p;,/qo with Qg = 1 ana Po = ng = Xo. The "domain" of Xo identical
layersv comes closest to fitting in one nalf--périod M of mo&uia;ing squaze
wave . The 'nex’t b_esl: apbroximal:ioh of M by identical layefs. .is bthen Yo = ng
+ Yo (Yo = %1). Hence, X, will be called tfxe majority(domaln and Yo, the
minority domain at this level.

The next approximation (lével 1) consists of | fitting a composite
domain into a multiple of half-periods M: instead of using only a single
sequence of identical .layers, one tries a mixture of majority and minority
'domains according to the formula

<X1> = X Yol v (A2)
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so that exactly P; (+ and -) layers fit into exactly Q3 square wave

half -periods. We must then have, by Egs. (Al,a) and (Al,b),

Py = JXo + §'Yo = mXo + %o

and

Q1 =i+ j§ =n3.
The only possible solution is then

j=n3 -1 and j'=1 (A3)
Hence, formula (17,c) is proved for level 1, along with formulas (17,a) and
(17,b).

If the continued fraction expansion for M does not terminate at
level 1, which is the level of all PS phases, one proceeds Lo level 2 by
using as building blocks X; and Y3, the latter, consisting of just one more
or one less X, domain than X;, clearly being the minority domain
appropriate for level 1. Let P;' be the commensuration number for Y, i.e.
the number of layers contained in domain Y;, and Q3' the corresponding
number of square wave half-periods in Yj. By following the same line of
reasoning that was used for level 1, one can show by direct computation
that the polytype structure at level 2 is <X3> = (X;)3(Y1)d with j = ny-1
and j' = 1.

Let us now prove that the procedure is correct at arbitrary level

i, assuming it to be correct at the previous level i-1. We must have

Pj = jPj-1 + J'P'i-1 = njPj-1 + ¥i-1 Pi-2 (a4,a)

and

Qi = JQi-1 + 'Q'i-1 = njQj-1 + ¥ji-1 Qi-2 (A4,b)
in which Pj, Pj-1 and Pj.» are the commensuration numbers of <Xj>, <Xj-1>,
and <Xj-z>, respectively, with P'j.; and P'j., the corresponding ones for

<Yj-1> and <Yj-2>. The Q's are defined similarly for the number of square
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wave half-periods at the indicated 1evels. By dsing results assumed to be
correct at level i-1, it can then be shown l:hah both Eq. (A4,a) and (A4,b)
are satisfied by j=n -1 and j' = 1. Since Eqs. (A4) are two linear
equations in two unknowns, the solution is unique. Hence, by induction, .
the algorithm defined by Egs. (14) to (17) has been shown to be correct at
all levels, including the terminal one <X> = Xg, which is Eq. (18). AL each
level, the X; domains fit exactly in the approximant Mj = Pj/Qj, and the
sequence terminates at i = k. This completes the proof.

As an example, take M = 73/46. Repeated use of Eq. (15) produces

the following continued fraction

73 1
M=%~2"2+ _1
+
2 31- 1
3 L
The partial quotients are thus

i n§ Yi

o 2 -1

3 3 -1
4 3 o

The successive approximants are

Mo=g2=3<2

My = %:3:1.5

My = 5?22=§5' = 1.6

M3 = 5 =‘21=1.5882._..

Q3 - 17



. Xo = Ng = 2
Yo = notyo = 2-1 =1

Xy = 21

Yy =221

X2 = (21)(2%1)

Y2 = (21)3(221)

X3 = (21221)2{(21)2%221]

Y3 = (21221)[(21)2221]

<& = X4 = [(21221)2(21)2221])2(21221(21)2221] (A5)

Note that direct application of Eq. (11) will give a structural

formula identical to that derived from the continued {ration algorithm only

for particular choices of the shift parameter €. For the natural

€ = 0, these two procedures will yield apparently different structures.

However, because of translation symmetry, the structures are in

equivalent, the continued fraction formula being built up from xdy units

with the majority domain X always leading off, the direct computation with

€ = 0 being built up from the same units, but with largest commensuration

domain leading off. Hence, according to the latter method, inversions xdy

- yxJ may take place at any level, It is easy to show that such inversions,

at any level i, say, merely cause a translation of the final structure by

Yij. This is because the explicit expansion of <X> into X; and Yj symbols

always contains Y; to the "power” one only. Hence, a sequence such as
‘e .Yixij\'i. co

can be written as either
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....(i’ixij)Yi... or ... Yi(xini)....
In the above example, formula (1l1l) with € = 0 would have given, instead of
(A5):
<X> = [(22121)321]2[(22121)221],
‘as shown also on line "Q=46" in 'rable II. The latter equation can be derived
from (A5) by the transformation |
S (21)(221) - (221)(21)
(21)3(221) - (221)(21)%3,

v equivalent to a translation by domain (21).
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APPENDIX II

In this appendix we show how an ANNNI-type model might be applied to an
A4B ordered structure on an fcc lattice. To begin, consider a simple pair
interaction model with interactions out to second nearest neighbors. The

energy can be written

E = -

N

P i

L [E Jo o(i) o(itpg) + L J, o(i) o(i+p,)] - u L o(i),
i p i
o L 8

where the o's are defined in the text, i labels the lattice site, and u is
an external field (difference of chemical potential). The vectors p, are
the set of Ltwelve vectors connecting a site to its nearest neighbors at
(1/2)<110>. The p, comprise the set of six vectors <100> connecting a site
with its second nearest neighbors. Here, a represents the edge of the
standard cube of the fcc lattice. We consider the case where J,<0, J,>0,
and p falls in the appropriate range to give an L1, structure.

Alloys that exhibit long periods are known in many cases to have flat
regions of PFermi surface normal to the <110> directions, and these are
expected to give rise to long range pair potentials. With this in mind, we
introduce a third pair interaction into our model that will end up
stabilizing a periodically antiphased structure. This interaction,
characterized by a strength J, = -xJ;, < 0, couples a given site with its
twelve neighbors at the positions <220>. It is thus a relatively long
range interaction, but such effective interactions are not unexpected when
Fermi surface effects are involved.

The occurrence of a long period in one direction will break the cubic

gsymmetry of the Ll, structure. There is equal probability for the long
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period to occur along any one of the three cubic axes. In this example, let
us choose [100] as the direction of the long period. Then there are two

~types of planes normal to [100]: pure A planes and mixed A-B planes.
Denote these pléneé as p and m respectively (see Fig. 15). Notice that
eight of .I:he twe]:ve <110> directions have components aloﬁg $[100]. Thus,
eight of thei _vtwelve sz couplings Qiu play a role in stabilizing the long
period. These '. eight interactions céuple gites in planes whiéh are two urﬁl:
cells apart, so J, here p1a§s essentially the Same role as the intéracf.ion
J, in the original ANNNI model.

| We assume that the only effect of introducing J, is the -possible
occurrence of antiphase . boundary planes normai to [100]. with this
assumption we now determin‘e the groul.'xdvstal:es.

-~ We first note that there are several contributions to the ground state
energy which remain vuna'ffected' 'tSy the presenéé of antiphase domains.  These
- contributions are: 15 - énergy v.due to l:he external field u; 2) energy of
any atom in a p-f)lane; 3) energy due to first-neighbor couplings of an atom
in an m-plane; 4) energy of an atom in an m-plane due to the four second
in‘eighbor interac!;ions along [001],[001],[91_.'01, and [6']'.0.]; 5) energy of an
atom in an m-plane due t§ the four J, couplings along (011],[011],[011],
and [011]. One can calculate the energy per atom AE from these

contributions and one finds

&E = - :-;- p -3, (g_- 4K) (AII-1)

The interesting contribution to the ground state energy comes from the
two second neighbor interactions along $[100]° and from the eight J,

coulings mentioned above. These are the competing interactions that
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gtabilize the long periods. We §han refer to this contribution to the
energy as the "axial" part.

If we allow antiphasing, there are two possibilities for the
configuration of an m-plane. These two possibilities are the same as those
indicated on the tetragonal lattice of Pig. 10. As in that figure, we
designate the two casges as a and gB. Now, we adopt the definition given by
FS of k-bands. A k-band is a sequence of k consecutive m-planes of the same
type (i.e., no antiphasing) terminated at both ends by antiphased m-planes.
From this point, we can apply the analysis of FS. There are no l-bands (no
domains of size one) just as FS showed for the original ANNNI model.

A particular m-plane or site in an m-plane can be characterized by its
relationship (antiphased or not) with the neighboring m-planes. As in PFsS,
we must consider the following five possibilities, where the overstrike

denotes the plane or site in question.

o XX
4 axaxB
P BaGap
xa&pB
BaG&pp

The labels o,m,p,0, and T are the same as those used by PFS. If we
assume 2N atoms in the crystal, there will be N atoms in the m-planes. Then
we can use the expressions obtained by PS for the numbers of the various

types of sites. These are
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&
no

N L (k-4)2,
T
Ny = NT 28, Ny = N2, ' _ (AII-2)
k24
No' =N E Zﬁk, N—r = Zle.
k>3

Here, we have used the structural variablés 2 defined by
g = 2 L,
where Lg is the number of k-bands in a given configuration of the system,

and L is the total number of m-planes (number of unit cubes along the {100]

direction) .

We also need_' the contribution to the axial enérgy “from each of the five

types of sites, These contributions will be essentially those calculated

by FS but modified to take account of the multiplicity of the J,

interactions. Defining x = 1/8 + &, we have

AE, = - 1/2 (1-88)J,,
AEqg = - J, C AE, = - 1/2 (3+488)J,, - (AII-3)
AEs = O, AE, = - 1/2 (1+88)J,.

Combining results (AIT-1), (AII-2), and (AII-3) we find the ground state

energy per atom:

' ~ 1 s ~ '
Eolfk} = - 5 # - Jy(5 - 48) - 43,8(22, + 25 - L (k-4)%].
. k25

The expression in square brackets is identical to that obtained by PS since
the axial part of our model is essentially the same ‘as the ANNNI. model.
Thus, for k<1/8, the structure is L1, and for k>1/8, the structure is DO,,.

AL k=1/8, the ground state is infinitely degenerate.
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We next perform a low temperature expansion to first order about the
multiphase point at T = 0, k = 1/8. That is, we examine the f?ee energy at
temperatures sufficiently low that, aside from the ground state, the major
contribution to the partition function is from the first excited states,
i.e. states in which one A (or B) atom is replaced by a B (or A) atom. We
define the following expansgion parameters:

wy = e 2u/kpT | w, = e2J3o/kpT , x = e "2J,/kgT |

For the first excited states, the Boltzmann factors arising from J, and pu

are

wo™* wy for replacing A by B,

wol? wy ™t for replacing B by A.
The analysis is made simpler if one chooses u = 8|J,l. This means that
wWo t wy = wo'? wyT* = w. This value of pu is within the range for an L1,
structure. This choice of u is not necessary, but it facilitates coun‘!:ing
the excited states. With this value for u, we can apply the first order

results of PS almost directly. The reduced free energy to first order may

be written

(3)
f(n) = PNl | Eo | az,N
k} 2N kg T  kgT = 2N '

where Az(zﬁ) represents the contribution from the first excited states. This

quantity is described in PS and the reader is referred to these authors for

details. Our reduced free energy is

2L s . L 3 48
K, - 3 Ky 8+ 2 wx (2 + x3*e8)

L]
]

[

N
»
o

+

{

+
N ;

+a,(8)2, + L ax(6) k fx
k>4
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where, to leading order,

5-48
2
a,(8) = 58_ K, & - g. (2 - ax1t+ad 4 x3+°5)
and, for k = 4,
8 1 % 48
k ak(8) = - 3 K;8(k-3)- 3 wx (3 (k-3) - (k-4)x+-88

- 2x% + % kx3*+e8),

where K, = Jo/kgT and K; = J,/kgT.
The previous three expressions are the same in all important respects
to the analagous ones derived by FS. We thus conclude that there are at

least three regions of stable phases originating at T = 0, K ‘= 1/8: (&) an

L1, structure, (b) a structure with antiphase domains of size 3, ‘that is, a

(3,3) antiphasé or <3> state; and. (c) a DO,5 or <2> structure. The phase
boundariés at low T should then look like those in Piguré 1. The boundary
between L1, and. <3> 1is a. true ,phasé bocmdary at low enough temperatures,
but the <3>-<2> boundary may be unstable in higher order with respect to
the occurrence of more complex polytypes consisting of domains of size 2
and 3.

We note that if J, is sufficiently negative to stabilize a DO,,
structure for J, = 0, then a finite J,<0 will stabilize a <21> phase in the
region near x = 1/8. The <2> phase will again be stable for sufficently

large k.
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APPENDIX III

We present here a low temperature expansion to first order of the model
mentioned in Sect. S; this is a simple modification of that discussed in
Sect. 4.2, where we replace J, by J,, i.e., we consider a pair interaction
out to the fourth axial neighbor. We neglect any interactions between
second and third axial neighbors. The configurational energy for this
model 1is pgiven by Eq.(36) if we make the replacement J,~-J, and
o(pt2,r)~c(pt4,r). We choose J,<0, J,<0, and J,<O.

At low temperatures, individual layers will be ordered such that each A
atom has four B atoms as néarest neighbors and vice versa. The two
possibilities for a given plane are denoted a« and B as in Appendix II. The
configuration: of the entire system at low temperatures is then described by
specifying each plane .as ax or p. It is thus convenient to use the concept
of k-bands described in Appendix II.

Determining the ground state is essentially a one dimensional problem,
One can show, using a cluster method [46], that for [J,/J,| = Kk < 174, the
ground state is <w> (no antiphase boundaries), while for x>1/4, the
structure <4> has lowest energy. A 4-band is in fact the smallest band that
will occur, even at the multiphase point T=0, k=1/4., We shall perform a
first-order low temperature expansion about this multiphase point following
the analysis presented by FPS,.

To begin, we must express the energy in terms of the structural
variables £ described in Appendix II. We first classify each plane (or
site) by specifying its four neighboring planes on either side, keeping in

mind that there will be no k-bands for k<4. As in Appendix IT, we have the
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1. aaaa&o:aaa 7. BBaa&o:BBB
. aqaa&aa«ﬁ 8. ﬁBacx&aaBB
. acacaoass 9. chaq&aﬁﬁﬁ
4, craaac-mBBB 10. Bo«m&o:aBB
. aoacaBB8s 11. Booacaaas
6. PadaappBs
Following PS, we calculate the numbers of each of these types of site. Wwe
musi t also determine the energy of each type. Omitting the details, we give

the result for the energy, defining k = 1/4 + &:

Eo{2k} = -2J5 - (3/4)3,8 [1.- 4 L (k-6)2 + 82, + 425].
' : ka7

We have used the identity [ k fx = 1. For T = 0, minimization of E, with
' ' k24 '

respect to the 12 is consistent "with the result already cited that for
K < 1/4 (8<0) the system is in the <w> state and for k > 1/4 (6>0), the
system is in the <4> state.

We next analyze the first excited states. The reduced free energy is

= 'Pﬁ{gk} _ "Eo AZN("). -}
fle} = —mgr T kgr TN T o)
with the expansion parameter w = exp(2Jo/kpT). The quantity azy(1)/N is

the contribution to the partition function of the first excited states and
is described more fully in PS. Again, we omit the details and cite the
result. The second expansion parameter is x = exp(-2J,/kgT) and K;j=Jj/kgT

for i = 0, 1. The reduced free energy is then:
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5

- +28
3 3 1l 2
f—2K°+ZK,_+§KJ_8+§(2+3x yw*
+ a,(8) 2, + L Kk ag(s8) #,
k26
where
8 2 } +28 §+28
a4(8)=§l(,_8-§w‘(4-5x + x ),
7 8
6ag(8) = 2 a,(8) = 3 ag(8),
and, for k28,
8 1 %'28
k ag(8) = - ¢ Ky 8(k-5)+ T w[2(5-k)+5(k-8)x
E +28
+30%x2-3kx 1.

This result is similar to that obtained by FS for the original ANNNI model
and the arguments (appropriately modified) carry over. For 8 on the order
of w*, we obtain two phase boundaries in the 6&-T plane. The first is a

boundary between <w> and <5>, and its locus, &§.,(T), is given by

1 1 3
Ky8_o(T) = - %w‘(l-xz)z[(l + 2x2+ 3x) + _;. xz]
+ O(wS).
This boundary is stable in higher order as well. The second boundary is

between <5> and <4>. Its locus, 8,(T), is given by

1 5

K,6,(T) = iw‘(l. - 5x2+ xz) + O(w®).
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. We exéect this boundary to be unstable in highet order with  respect to the
occurrence of ‘longer_: polytypes consisting of antiphase domains of size 4
-and 5. |

We nol:e that one can change the sign of J, and obtain the three phases
<1>, <2111>, and <211> in pléc'e of <w>, <5>, and <4> respectively.  Such |

_ polytypes have been observed in Cu,Al [47].
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TABLE I .

All Fujinara phases with P = 73, such that 1.5 < M < 2.0

37

_Q M Structure
48 1.5208 <[221(21)10)221>
47 1.5532 <[221(21)371421>
46 1.5870 <[(22121)321)2[(22121)221]>
45 1.6222 <((221)2211522121>
| id 1.6591 <(221)1421>

43 1.6977 <[231(221)2)4221>
42, 1.7381 <;31[(z31)4221]2>
41 1.7805 <241(241231)%>

40 1.825’ - <251((251)2241)2>
v39 1.8718 <(271)4261>

3s 1.9211 <(2121)22111>

1.9730 <2361>



TABLE pu ¢ ' -
All possible Fujinara phases with 2 < P < 20 and all possible Qs such

that 1.5 < M = P/Q < 2

M P/Q Level k Structure
1.5 3/2 1 <21>
1.5454 17/11 2 <221(21)%>
1.5555 14/9 2 <221(21)3>
1.5714 11/7 2 <221(21)2>
1.5833 19/12 3 <(22121)221>
1.6 8/5 2 <22121>
1.625 13/8 2 <(221)221?
'1.6363 18/11 2 <(221)321>
1.6666 5/3 . 1 <221>
1.7 17/10 2 <231(221)2>
1.7143 12/7 2 <231221>
1.7272 19/11 2 <(231)2221>
1.75 /4 1 <231>
1.7777 16/9 2 <241231>
1.8 9/5 1 <2%1>
1.8333 11/6 1 : <251>
1.8571 13/7 1 <261>
1.875 15/8 1 <271>
1.8888 17/9 1 <281>
1.9 19/10 1 <2%1>

2.0 2/1 1 <2%1> = <2>
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FIGURE CAPTIONS

Fig. 1. Schematic phase diagram indicating Disordered (D), Simple Ordered
(0,), Complex Ordered (O,), and Modulated (Mod) pase regions. Lifshitz
point at L, Multiphase point at Kkg. Coordinates are temperature T and
interaction parameter ratio . k. Full curves represent first-order, dashed

curves second-order transitions.

Fig. 2. Simulated diffraction‘ patterns for long -petiod polytypés decribed
in text. Sizes of . filled circles indicate relative intensities. Open
circles .represenl: fundmnéntal reflections at Miller index h = 0 and 1.

- . -

Pig. 3.  Stacking of A and B-rich planes with antiphase shifts occurring
approximately every five lattice spacings in the x direction. ‘Bottom
‘portion of yﬁg.u're indicates .projected - antiphasing ‘modulation f(x),
illustrating smooth profile corresponding to wavy antiphase boundary in
upper potion of figure.

Fig. 4., T-x Phése - diagram in vicinity of Lifshitz point L. Loci -of
vanishing of various functions are indicated. .Triplets of signs denote
regions where functions ®min, 9o, and ®,, respectively, have the indicated
signs. Behaviour of function ¢ at tempetabures Ta, Tp, Tey Tq, (at k.) Ty,

Tey Tp, and T, (at x4) are shown in Fig. 5b..

Fig.5a. Second de_fivati\}é function ¢(h) about point h=1/2 (ordering case),
full curve, and its Taylor's expansion to 4R order, dashed curve; both
plotted for k = 0.45. '

‘Fig.5b. Values of function ¢ (Taylor's expansion) plotted versus modulating
wave index q at values of k (k4 and k3) and temperatures indicated in

Fig. 4. Triplets of signs have same meaning as in Fig. 4.
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Fig. 6. Antiphase domains formed by modulating wave f (xp) , dotted curve.
Effect of this wave on the lattice is the same as that of émplibude
modulated ordering wave, full curve, whose envelope is the long-period
modulation shown as dashed curve. Half-period of latter modulation is
M = 98/19 = 5.1579. |

Fig, 7. Tetragonal unit cell for ANNNI model, indicating lattice-site

notation and effective pair interaction parameters J.

Pig. 8. ANNNI model phase diagram obtained by PFS 'low-l;emperahure expansion

for "ordering” case: J,<0 and J,<O.

Fig. 9. Sign transformation procedure for deriving "ordering"” from
“clustering” phase diagram.

Fig.10. Antiphase structures <241> (a) and <233> (b) with associated
tetragonal unit cell (top portion of figure),

Pig.11. Conjectured ANNNI model phase diagram, similar to diagram of Fig. 1
but with breakup of Mod phase field indicated schematically. Only a few FW
phases are shown; infinitely many others are expected, for instance in

regions covered by light dashed lines.

Fig.12. Periodic antiphase structures observed in fcc alloys: <241> in
Ag Mg (a) and <233> in Au,Zn (b). Note similarity with Figs. 10a and 10b,
respectively.

Fig.13. High-resolution TEM micrograph taken by N. Kuwano using the
JEM-1000 Microscope at the HVEM Laboratory of Kyushu University, Japan, of
Ag,Mg exhibiting.  long-period superstructure <231>, Light dots are

projections of rows of Mg atoms, Ag atoms are not imaged.
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Fig.14. Portion of ANNNI model phase diagram assumed to be appropriate to
ChAu' IT -like 'systems. At indicéted value - of -pérameter ‘.K' , the iong -period
polytype phase field <5> is shown surmounted by a nartow phase fiéld of
"incommensurate” modulations produced from the disordered phase D by a

second -order transition.

Fig.15. Two l:ypes'of (100) planes in the L1, ordered structure: m vplanes present
“A-B ordering, p planes contain only one type of atom.
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