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March 25, 1960 

ABSTRACT 

Some methods are developed for studying the singularities of collision 

amplitudes in perturbation theory as functions of two of the invariant 

energies, s, t, and u. It is shown that: 

(i) There are no singularities other than normal thresholds in the 

physical regions of the physical sheet. 

(ii) For the equal-mass case there are no singularities in the Euclidean 

region of the physical sheet. 

(iii) The only straight lines of singularities on the real boundary of the 

physical sheet are normal singularities in the equal-mass case, and 

in the general-mass case are either normal singularities or they 

intersect the Euclidean region. 

(iv) The curves of singularities on the real s, t, plane in the physical 

sheet do not connect to surfaces extending into the region s real 

t complex except at turning points of the curves. 

(v) Turning points of curves of singularities in the physical sheet may 

occur either when sufficient coincident singularities become also 

end-point singularities, or when there is an accidental relation 

between the Feynman variables at coincident singularities. The former 

correspond to anomalous thresholds; the latter are called spurious 

turning points. 
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(vi) For the equal-mass case there are no anomalous thresholds and no 

anomalous turning points in the curves of singularities. 

(vii) Spurious turning points do occur in negative spectral regions, but here 

it appears that they may not lead to complex singularities on the 

physical sheet. There are no spuri.ous turning points in positive 

spectral regions in low orders in perturbation theory and to all 

orders for some types of diagram. It is plausible that there are 

none for any diagram, but this is not proved. 

The relation of this work to the Mandelstam representation is 

discussed. All the proven results in this paper are consistent with this 

representation. Some points are noted which require fUrther investigation 

before the validity of the representation can be established to all orders 

in perturbation theory. 

. .. :'i 
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Lawrence Radiation Laboratory,~ 
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March 25, 1960 

I. INTRODUCTION 

The following hypothesis underlies recent work on strong interactions 

of elementary particles: 

(1) Collision amplitudes can be determined from the unitary condition, the 

location of singularitie~ of the amplitudes in the physical. sheet of the 

complex invariant energies, and some parameters related to the residues at 

poles of the amplitude or to its value at an arbitrary point. The parameters 

must be found from experiment. 

For the special case of collision amplitudes involving only two 

particles incident and two outgoing and with certain restrictions on the 

1 masses of the particles that may be formed in the collision, Mandelstam has 

proposed a further hypothesis: 

(2) All singularities in the physical sheet lie on its real boundary. 

* This work was performed under the auspices of the u.s. Atomic Energy 

Commission and the National Science Foundation. 

t On leave of absence from Clare College, Cambridge, England. 

t Present address. 
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For practical solution of the coupled equations resulting from these 

assumptions, a third hypothesis is necessary: 

(3) The form of the collision amplitude is dominated by the nearest 

singularities in the physical sheet. 

In this paper, we study the location of singularities of terms in 

the perturbation series for a scattering amplitude. We will be concerned in 

particular with the singularities on the physical sheet or on its boundary. 

The aim of such a study of perturbation terms is to see whether it is possible 

to deduce a form for the analytic structure of the amplitude itself by showing 

that the structure is a characteristic of all terms in the series. The 

Mandelstam representation is an example of such a structure, and in this 

paper a number of results are obtained which are necessary for the validity 

of the representation, and which go some way towards establishing sufficient 

conditions for its validity. In examples where the Mandelstam representation 

does ~ot apply, a form of integral representation will still be required for 

use in conjunction with the unitary condition. It is hoped that the results 

of this paper will be useful in setting up methods to determine singularities 

from which more general integral representations can be obtained. 

The development of integral representations for collision amplitudes, 

and in particular the proof of the Mandelstam representation, requires 

information about the singularities of the physical branch of the amplitude. 

The physical branch is determined by taking the three invariant energies1 

s, t, and (u) to be real, and associating a small negative imaginary part3 

-i€ , with each mass in an internal line of a Feynma.n diagram. The physical 

sheet of two of the variables s, t, and u is obtained by considering the 

physical branch with one of these variables. real (sometimes it must be 

given a small positive or negative imaginary part), and letting the argument 
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of the other vary from 0 to 2~. The three variables are related by a mass 

1 condition, so that only two can be varied independently. 

The procedure for obtaining information about singularities in 

complex parts of the physical sheet is based on a succession of steps, in 

which information about singularities is transferred from one part of the 

sheet to another by analytic continuation. It is shown in Section 3 that 

the only singularities in the physical scattering regions of the physical 

sheet are at normal thresholds for production of extra particles. This 

result follows from the unitary condition, though some use is also made of 

the perturbation series. In Section 4 a result of Mandelstam is quoted to 

show that for interactions of equal-mass particles there are no singularities 

in the Euclidean region.
2 

This result is proved again by an independent 

method later in the paper in Section 8 example (f). Any straight line of 

singularities in the physical sheet must intersect either the physical 

scattering regions or the Euclidean region. In the former case it must 

coincide with a normal threshold, in the latter it must coincide with an 

anomalous threshold. In the equal-mass case there are no anomalous thresholds, 

and hence all the straight lines of singularities are known (Section 5). In 

Section 5 we discuss the manner in which curves of singularities are 

obtained for s, t, (u) real and in the physical sheet. A classification of 

curves of singularities is introduced which permits us to study generalized 

Feynman diagrams in which all lines are on the mass shell on the curves of 

singularities. In the Feynman integral this means that we need consider 

only coincident singularities. It is noted (Section 5) that the anomalous 

thresholds in fourth order occur when the curves of singularities have 

turning points. 3' 4 At these points the coincident singularities are also 

end-point singularities, and the tangents to the curves are straight lines 
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of singularities. The absence of this type of turning point in the equal=mass 

case is established in Section 7 to all orders in perturbation theory. It is 

essentially due to the fact that the only lines of singularities are given 

by the normal thresholds. 

In Section 6 we study the general properties of the denominator 

of the Feynman integral for a general term in perturbation theory. This 

denominator is the discriminant5 of the quadratic form in the internal momenta 

of the corresponding Feynman diagram. The importance of the discriminant 

D(a, s, t) is that it is stationary and zero at singularities of the amplitude. 

The singularities on the physical sheet are identified by the requirement 

that all the Feynman parameters a should be positive. The discriminant 

is a linear function of s and t, 

D(a, s, t) = sf(a) + tg(a) - K(a) ( 1.1) 

2 In the equal-mass case, K depends on the mass only through a factor m 

It is shown in Section 7 that a curve of singularities can have a turning 

point only when the coefficient of s or t vanish on the curve. It will 

be noted that on the curve all variables are a function of a single parameter, 

which can be s for example. Similar results hold when turning points are 

considered as functions of t, u or of u, s. 

The importance of determining the turning points (if any) is that 

' ..... 

only at a turning point of the curve of singularities ( s, t real), can there _._ ~ 

be an extension on to a surface of singularities which intersects the · 
... ..,. 

physical sheet for s real and t complex (or t real and s complex). 

The vanishing of f or of g in Eq. (1.1) may occur either when a 

sufficient number of the· a variables become zero (these correspond to 

anomalous thresholds), or when a general factor of f or g vanishes because 
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of a special relation between the a variables at a point on the curve. The 

latter will be called a spurious turning point, since it does ·not correspond 

to a threshold. For the equal-mass case, there are no anomalous thresholds 

and no turning points of the first type. If a spurious turning point occurs 

in the region s > o, t > 0 of the real part of the physical sheet, there 

will be a curve of singularities extending from that point into the complex 

part of the physical sheet. This would cause a breakdown of the Mandelstam 

representation. It is therefore important to prove that there are no spurious 

turning points in certain parts of the real s, t plane. 

In Section 8 a number of examples are worked out for the equal-mass 

case which illustrate explicitly most of the features of the general theory 

of Sections 6 and 7. In particular, spurious turning points can be shown to 

be absent for all ladder diagrams. A spurious turning point will always occur 

when a diagram has singularities in more than one spectral region but it is 

necessary only to show they are absent from the spectral region where the 

relevant two variables are positive. This is proved for a ladder diagram 

with two crossed rungs and for the fully symmetric crossed eight-order 

diagram (reduced). As an illustration of the general theorf, a proof is 

given that there are no singularities in the Euclidean region for the 

equal-mass case. 

In Section 9 the general form of the discriminant is studied further 

in an attempt to show that there are no spurious turning points in any order 

in perturbation theory. A reduction formula is obtained which permits the 

discriminant for any diagram to be expressed in terms of simpler diagrams 

in which one or more lines have been removed. The reduction formula is 

adequate to prove the absence of spurious turning points for certain classes 

of diagrams. The discriminant for a general diagram is analyzed and a 
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plausibility argument is given for the absence of spurious turning points 

from positive spectral regions. 

In Section 10 the relation between the results of this paper and the 

Mandelstam representation is discussed. If it is assumed that the absence of 

spurious turning points of curves of singularities has been made plausible, 

two further points must be considered. These are the possibility of disconnected 

complex singularities, and the double application of Cauchy's theorem when all 

three spectral regions contain singularities. The former problem can also be 

discussed in terms of the vanishing of the coefficients of s or of t in 

D(a, s, t). The latter requires, for example, the consideration of singularities 

when s and t have small positive imaginary parts. It is expected that 

this will suffice to take the contour of integration along the "safe" side 

of the branch points at u = constant, and thereby avoid the complex surfaces 

of singularities that extend from the curve of singularities in the u, s spectral 

region at the spurious turning points. However this point is not analyzed in 

detail. 

A number of general techniques for discussing singularities are used 

in the paper. Those developed elsewhere are described briefly in Section 2 

so that notation and nomenclature will be accessible without constant 

reference to other papers. 

~· -

\f ··i 
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II. GENERAL METHODS 

(A) Definition of the Physical Sheet 

A term in the perturbation series for a collision amplitude for 

scalar particles will have the form, 

F = lim 
€-+ 0+ 

n 

rr 
i=l 

The variable is the 4-momentum of the line i 

1 ( 2.1) 

in the corresponding 

Feynman diagram, and mi is the mass of the particle in this line. The 

are linear functions of the internal momenta k. and of the external momenta 
J 

pk. The term F will be a function of the scalar products of the pk, but 

these are not all independent. When the collision process involves Fermions 

or pseudoscalar particles there will be more complicated numerators in Eq. (2.1). 

The form of amplitude for this case has been described by Chisholm. 5 In this 

paper we are concerned with singularities of the amplitude, and, apart from 

possible complications or cancellations due to selection rules (which can be 

taken into account in special cases), it is sufficient for this purpose to 

consider only scalar particles. 

When F describes a reaction, 

1 + 2 -+ 3 + 4 (2.2) 

it will be a function F(s, t, u)' where 

2 2 2 
( 2. 3) s = (pl + p2) ' t = (pl + p4) ' u = (pl + p3) ' 

and 

2 2 4 4 2 
pk = ~' !: pk = o, s + t + u = !:, ~ (2.4) 

1 1 

The physical branch of F(s, t.)' u) where s, t, u are real is defined 
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by the choice € > 0 in Eq. (2.1). The physical sheet is obtained by analytic 

continuations of F in the range 

0 < arg s < 2 ~ 
' 

(2.5) 

keeping t real. The variable u is defined by Eq. (2.4) when s and t 

are given. Similarly the physical sheet includes the region in which F is 

continued analytically from its physical branch in the range of Eq. (2s5) with 

u real, and 

0 < arg t < 2 ~ , s or u real, 

0 < arg u < 2 ~ ,. t or s real. 

It will be noted that the term physical sheet is defined here with a view to 

relating it to the Mandelstam representation. The chosen definition is more 

convenient for the methods in this paper than that used by Tarski.4 The 

real s, t plane is on the boundary of the physical sheet. 

The transformation of Eq. (2.1) by means of Feynman parameters and 

subsequent integration over the internal momenta has been investigated by 

Chisholm. 5 The transformation introduces Feynman parameters a
1

, ••• ,an and 

gives a denominator which contains the function, 

"ljr(k, a, s, t) == 
n 2 
I: a.(o. 
1 ~ ""1. 

2 . ) - m. + ~€ • 
~ 

(2.6) 

The function "ljr is a quadratic form in the internal momenta k.. Let 
J 

D(a, s, t) be the discriminant of t as a function of the k., and let 
J 

C(a) be the discriminant of the quadratic form w
0 

obtained from t by 

putting mi = 0, s = 0, t = 0, and u == 0. Then Chisholm shows that the 

integral (2.1) becomes 
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1 1 
(n - 2£ - 1)! J dal•fda 

(n - 1)! 0 0 n 

(1 
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E a.) c(a) 
1 

n-2£-1 

D(a, s, t) n-2£ 

( 2. 7) 

This integral representation of the terms in the collision amplitude 

has been used by a number of authors to study analytic propertiesG Particularly 

important developments have been made by Nambu, 6 Nakanashi, 7 Landau (see part (D) 

of this section),
8 

Bjorken, 9 and, from a different representation, by 

Symansik, 10 and Taylor. 11 For the applications in this paper, we shall frequently 

use the method of coincident singularities and end-point singularities first 

used by the author12 and later developed by Tarski, 4 and by Polkinghorne and 

Screaton.13 These occur when the discriminant D(a, s, t) in Eq. (2.7) 

becomes zero for coincident roots of one of the a~, or becomes zero when one 
..l. 

of the a. is zero. 
1 

(B) End-Point and Coincident Singularities 

A function f(z), defined by 

1 
f(z) = J da g(a, z) , 

0 
( 2.8) 

may become singular at z = x if either (a) g(O, z) is singular as z 

approaches x, or (b) g(a, z) has two singularities, one on each side of 

the path of integration, which tend to coincidence as z approaches x • 

The first condition is called an "end-point" or E singularity, and the 

second is a "coincident" or C singularity. In practice the singularities 

of the integrand are either poles or branch points, and they appear always 

to cause a singularity in the integrand when condition (a) or (b) holds • ., 
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It is evident that if 

D(a, s, t) = 0 , ( 2.9) 

and 

either = o, or = o, i = l, ••• ,n (2.10) 

then F(s, t) given by Eq. (2.7) may be singular. If Eqs. (2.9) and (2.10) 

hold for values of a. satisfying 
l. 

a. > o 
l. ' 

Ea. = 1 , 
l. 

(2.11) 

there will be either an E singularity or a double singularity at each 

stage of the integration. If the double singularities are in fact C 

singularities (and not both on the same side of the contour), the integral 

F(s, t) will be singular. 13 We will consider later the problem of showing 

that Eqs. (2.9) to (2.11) lead to C singularities. 

The boundary of the physical sheet (s and t both real) is obtained 

2 by letting € ~ 0 in the terms (mi i€) of Eq. (2ol). This 

associates each frequency, for which the lines in Eq. (2.1) are on the 

mass shell, with a definite side of the contour of integration: 

= 
0 

~ i€) ( 2.12) 

These relations lead to singularities in the momentum-space integration which 

may be either C or E. In the physical scattering regions of the physical 

sheeet, these singularities can be directly interpreted. The 3-momenta 

give E singularities so that they correspond to particles at relative 

rest, and the sign of i€ in Eq. (2.12) ensures that singularities are 

coincident only when the particles concerned have positive energy. It will 

I. 

"··' 
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be shown later that these are the only singularities in physical regions. 

If instead of E~. (2.1) some of the internal masses were written 

(m2 + ie), the singularities coming from momentum-space integration no 

longer have a simple interpretation in general, even in physical scattering 

regions. Clearly~ some of them will correspond to some particles having 

positive and some negative energy while at relative rest, but others will not 

re~uire the 3-momenta to give an E singularity. The integral expressed in 

terms of Feynman variables will no longer have the form of Eq. (2.7) but will 

be another branch of the same function. We will consider now how to obtain 

these different branches without carrying out the integrations. 

(C) Analytic Continuation of Integral Representations 

An integral representation of a function~ E~. (2.8) for exampl~ can 

be analytically continued by varying z in the integrand provided always 

that the path of integration is suitably distorted so that no singularity 

of g(a, z) crosses the path between a = Oj a = 1. It is permitted that a 

singularity goes round an end point of the path of integration to the other 

side of the contour, and in general this will give a different branch of the 

function. A number of possibilities are shown in Fig. 1. The path of 

integration is from a = 0 to a = 1 on the real axis for the physical 

branch of the function; this determines on which side of the integration 

contour the singularities lie: if, for example, z = x + ie gives the 

physical branch. Figure 1 ( i) shm.,rs a typical C singularity} where the 

location a and b of the singularities depends on z. If z follows 

a path which causes a and b to move as in (ii) the final position is not 

a C singularity. It will be noted tmtto remove the C singularity, a has 

gone around a = 0 which is an E singularity. Figure 1 (iii) shows how 
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a C singularity may disappear when it passes through an E singularity, 

and (iv) shows how it may be retained by taking ~ around the E singularity. 

Figures (v) and (vi) illustrate how a singularity c , which may never 

enter the range of integration 0 < a< 1, may still lead to a singularity 

in the integral corresponding to another branch of the function. These 

analytic continuations under the integral sign have been extensively used by 

Tarski. 4 

(D) The Landau-Bjorken Conditions 

By considering the transformation from Eq. (2.1) to Eq. (2.7), 

Landau
8 

and Bjorken9 have shown that the conditions (2.9) and (2.10) are 

equivalent to the conditions: 

either 2 2 
0 ' qi mi ' 

or a. = 
].• 

(2.13) 

and 

E aj qj = 0 ' (2.14) 

where ~ is a 4-momentum in an internal line, and the sum in Eq. (2.12) 

is taken over all closed circuits in the diagram. 

= 0 for any line, the condition for a singularity can be 

obtained from the reduced diagram in which the line i is "short-circuited" 

(or reduced to a point). It should be noted though that although the 

reduced diagram will determine this singularity of the "parent11 diagram 

correctly, it will not determine other singularities of the parent diagram 

so that it cannot be used to determine the functional dependence of the 

integral except near the particular singularity concerned. 

The Landau conditions determine the location of singularities of 

all branches of the function associated with a given diagram. Only when 

... -



UCRL-9136 

-15-

all ai for a particular solution lie inside [0, 1] 1 (with E ai = 1), 

will the singularity lie in the physical sheet. Those solutions with some 

outside [0, 1] are analytic continuations on to nonphysical sheets 

and are C singularities with a suitably distorted path of integration. 

8 11 Landau and Taylor have used conditions (2.13), and (2.14) to 

construct dual diagrams consisting of directed vectors of length m. which 
]. 

satisfy the "equilibrium" condition. The dual diagrams were proposed also 

by Karplus, Sommerfeld, and Wichmann3 in connection with third- and fourth-

order terms. In these examples, the dual diagrams were used to investigate 

the nearest singularities only. They can also be used to determine the 

algebraic relations that give higher•order singularities, not necessarily 

the nearest ones.14 Mathews15 and Bjorken9 have also investigated equations 

similar to (2.13) and (2.14) using the analogy with electric-circuit theory. 
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III. SINGULARITIES IN PHYSICAL SCATTERING REGIONS 

It will be shown in this section that the only singularities in the 

physical scattering regions are normal thresholds for real competing processes. 

We will consider for definiteness the region 

s > u < 0 ' t < 0 • ( 3.1) 

With S = 1 + R, the unitary condition has the form, 

= 

( 3.2) 

Total energy and momentum must be conserved in all matrix elements. The 

intermediate states j n
1 

n2 ••• ) include any number of particles, whose total 

rest mass satisfies 

s 0 ( 3.3) 

There may also be selection rules that further restrict these states but they 

will not be considered here. It is because we are considering the physical 

region (3.1) that we can make the restriction (3.~ which implies that each 

intermediate particle has positive energy greater than its rest mass. 

In a perturbation solution for R, the unitary condition is satisfied 

to each order in the coupling constant. Thus if R£ denotes R to order £, 

we have 

=- P£ { E R£ t I n1n2 ••• )(n1n2 ••• I R£ } , (3.4) 
n1,n2,... 1 1 

(£-2), and P£ selects those terms on the right~hand side 

which are of order £ or lower. 
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Theorem 3A 

A necessary and sufficient condition for the amplitude to have a 

branch point at s = s c in the physical region (3.1) is that s c is a 

normal threshold for a competing production processo 

If R has a branch point at s = s , let Rn be the term of lowest c Jll 

order in the perturbation expansion to have this branch point. Then the 

left-hand side of Eq. (3.4) is nonanalytic at s = s c Each term on the 

right-hand side is analytic there since t 1 < t. Hence the sum must change on 

the right-hand side so that an extra term is included, thus giving nonanalytic 

behavior to match that on the left. This extra term can arise only when it 

corresponds to a new competing process. Hence, 

and we have 

s = c 
2 

( Em.) 
l. ' 

s is a normal threshold 
c 

the sum being over all particles in the state which is newly allowed as s 

exceeds s c 

It will be noted that this argument involves not only analyticity 

of the matrix elements, 

( 3.6) 

but also analyticity of the production amplitude, 

( 3· 7) 

for t 1 < t • If the production amplitude was not an analytic function 

of s then we could consider the equation 
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and deduce that the production amplitude, 

( 3.9) 

for £2 < £1 < £ was no~ analytic. By repetition of this process, the 

productfon amplitude of lowest order can be obtained. It must be nonanalytic 

at a point s = s if Rn is not analytic there. But the lowest-order 
c Ail 

production amplitude does not have any branch points. Hence, in the physical 

scattering region all the matrix elements of R£ must be analytic except at 
1 

production thresholds. 

Conversely if a new intermediate state is allowed on the right-hand 

side of Eq. (3.4) at s = s ' c let l be the lowest-order term for which 

this competing process can enter the sum. The right-hand side is nonanalytic; 

hence, in order to make the left also nonanalytic R£ must have a branch point 

at s = s c 
A branch point in £th order cannot be cancelled by a branch 

point in higher order. Hence R must have a branch point at s ·= s 
c 

These singularities in the physical regions can be interpreted in 

terms of the conditions for singularities described in Section 2. This then 

permits an extension of theorem 3A to give information about nonphysical 

regions of the physical sheet. It is useful to introduce some definitions: 

An "a-partition" of a diagram is defined as a partition along a 

single dividing line intersecting only internal lines of the diagram across 
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which flows the total 4-momentum (p1 + p2), where Similar 

definitions are made for t-partitions and u-partitions, and s, t partitions 

are illustrated in Figs. 2(i) and 2(ii). 

Theorem 3B 

If a diagram corresponds to a singularity in the physical region 

where s is the square of the energy, it is always possible to make at least 

one a-partition in which every line cut by the partition corresponds to a 

particle on its mass shell. 

From the Landau conditions, if a diagram corresponds to a singularity, 

either every line is on the mass shel~ or the Feynman variables are zero for 

some lines and the diagram can be reduced. The fully reduced diagram has 

every line on the mass shello Either an a-partition can be made of the 

fully reduced diagram or the 4-momentum (p1 + p4) passes through a single 

vertex. If the latter is true the position of the singularity will be a 

function of t only, (or alternatively of u only), and a t-partition can 

be drawn. However, from theorem 3A the only singularities are at s = s ' c 

so there cannot be any that depend only on t • Neither can a t-partition 

be made of the fully reduced diagram, therefore an a-partition is possible • . 
The insertion of lines at the vertices of the fully reduced diagram does 

not affect the a-partition and the theorem follows. 

Theorem 3C 

The fully reduced diagram corresponding to a singularity in the 

physical region is always a "generalized self-energy part" or a chain of 

these parts. (These are illustrated in Fig. 2, diagrams (iii), (iv), and 

( v) •) 
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This theorem follows from the fa~t that the fully reduced diagrams 

(in which by definition all lines are on the mass shell) which give singularities~, ... 

at normal thresholds in the physical regions must correspond to all particles 

at rest relative to each other and with positive energies [the latter is a 

"causality" requirement following from the use in Eq. (2.1) of (m
2

- iE)]. 

This excludes the insertion of lines on the mass shell which change the 

self-energy diagram into a vertex diagram. The possibility of accidental 
<~ 

coincidences of self-energy and vertex singularities is not considered as it 

would occur only for very special values for the masses of particles, which 

do not appear to occur_in nature. A chain of self-energy parts must for 

similar reasons have identical links. This type of singularity (of chain 

diagrams) is related __ t9 the unitary,Eq. (3.4), and corresponds to a value 

of s for which an additional state becomes allowed in the sum on the 

right-hand side, the left-hand side is nonanalytic, and also the terms on 

the right-hand side have branch points. It was to exclude this complication 

that the proof of theorem 3A made use of the lowest-order term which has 

the branch point. 

To summarize: In the physical scattering regions (a) unitarity and 

the positive energies of physical particles requires that all singularities 

(branch points) occur at normal thresholds; (b) the use of (m
2 

- iE), 

which is related to causality, requires that all singularities correspond 

to fully reduced diagrams which are generalized self-energy parts. 

• .-· 
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IV. THE EUCLIDEAN REGION 

This region is defined by 

( 4.1) 

The definitions of s, t, and u in Eqs. (2.3) can be satisfied in this region 

by t~ing the external 4-momenta to be Euclidean vectors satisfying Eqs. (2.4). 

For the equal-mass case, it has been shown by Mandelstam2 that 

analyticity in the Lehmann ellipses can be used to show that inside the 

complex region (in the physical sheet), 

1 s t u 1 

and 

s+t+u = 

6 < 288 m , 

2 4m , 

(4.2) 

( 4.3) 

the amplitude A(s, t, u) is analytic except for the expected poles at m2 

and branch points at 4m2• This proves analyticity in the Euclidean region, 

and the result is independent of perturbation theory. 

An independent perturbation-theory proof of analyticity in the 

Euclidean region will be given in Section 8, example (f). This proof is 

also restricted to the equal-mass case, but it makes very plausible the 

possibility that the amplitude will be analytic in the Euclidean region in 

the general-mass case provided the fourth-order term is analytic there. 

This result is also made plausible by the work of Bjorken9 and Taylor. 11 

The general mass case'will be discussed in more detail in another paper. 

An independent proof in perturbation theory is needed because . 

Mandelstam's result does not imply that each term of the perturbation 
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series has the same property of analyticity. In fact our later result shows 
,- . 

this to be true for all diagrams in which the masses in the internal lines 

are not smaller than those of the external lines. This is sufficient for all f 

diagrams in the equal-mass case since reduction by short-circuiting internal 

lines cannot reduce any masses. 

.... 
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SINGULARITIES ON THE REAL BOUNDARY OF THE PHYSICAL SHEET 

We next consider singularities of terms in the perturbationseries for 

an amplitude in the nonphysical, nonEuclidean regions of the real s, t, u 

plane. This is on the boundary of the physical sheet when all masses are 

written 2 (m - i€) in the Feynman integral, s, t, u being real6 

(A) Lines of Singularities 

These are defined as arising from singularities whose position depends 

on one of s, t, u only. From the discussion of Section 3, normal thresholds 

correspond to lines of singularities in the physical regions. These are 

given by reduced diagrams which are generalized self-energy parts or chains 

of these parts. The original diagram will have all those lines on the mass 

shell which are cut by one or more independent a-partitions. The Feynman 

variables of these lines will all lead to C singularities. Those for lines 

not cut by the s-partition will give E singularities since the lines are 

not on the mass shell. The location in the Feynman integrand of these C 

and E singularities depends (for example) on s only; hence they will 

remain C and E singularities as t varies into nonphysical regions of 

the physical sheet. Therefore the normal thresholds in physical regions 

extend to lines of singularities for all real values of t; this is the 

boundary region of the physical sheet. They also extend to "planes of 

singularities" for t complex, and s = s , real. c 

There may also be lines of singularities which arise from reduced 

diagrams that are generalized vertex parts (or chains of these parts). The 

location,of singularities in the Feynman integrand depends on one variable 

'"" only, e.g. s , and therefore if these lines are in the physical sheet in 

one part of the real s, t plane, they will remain in the physical sheet 



UCRL-9136 

-24-

in all parts. But from Section 3 ~e know that the only singularities in the 

physical regions are.normal thresholds. Excluding accidental coincidences for 

special mass values, we conclude that vertex parts cannot lead to lines of 

singularities which enter the physical region. These results are summarized 

in the following theorem. 

Theorem 5A 

The only lines of singularities on the real boundary of the physical 

sheet are (a) normal singularities meeting the physical region at normal 

thresholds, (b) anomalous singularities, which, if they are present at all, 

do not intersect the physical regions but do intersect the Euclidean region. 

Corollary 

In the equal mass case the only lines of singularities in the physical 

sheet correspond to normal thresholds. 

(B) Curves of Singularities: Preliminary Discussion 

Curves of singularities are obtained when the lines cut by both an 

s- and a t-partition (or more than two such partitions) give rise to C 

singularities in the Feynman integration. The resulting curves of 

singularities are on the physical sheet when the Feynman parameters at the 

C singularities are in the range [0, 1]. The number of s-partitions and 

t-partitions associated with a given singularity give a measure of the 

complexity of its structure. The simplest reduced diagrams are obtained 

when just one s- and one t-partition is made. These are indicated in 

Fig. 3, diagrams (a), (b), and (c). The internal lines of these diagrams 

in the equal-mass case may be any integral multiple of the elementary­

particle mass. It is instructive to consider these diagrams further, since 

they illustrate characteristics which we shall later establish more 

, .. 
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generally. Diagrams (d), (e), and (f) in Fig. 3 illustrate some of the 

reduced diagrams associated with two a-partitions and one t-partition. 

In the equal-mass case, Fig. 3(a) has only one branch in the physical 

sheet. The fact that the internal lines have masses ~ m while the external 

lines each have mass m is sufficient to exclude the possibility of anomalous 

thresholds. The form of the curve of singularities is shown in Fig. 4 

(curve (a)), though the location of its asymptotes will vary with the values 

of the internal masses. 

In the general-mass case, Fig. 3(a) may give a curve of singularities 

with anomalous form.l,3, 4 This can be tested by reducing one of lines 

~' £, ~' or ~ to a point and considering whether the resulting vertex part 

has singularities on the physical sheet. If diagram 3(a) does not have 

anomalous form when its internal masses are least, it will not have anomalous 

form at all. If only the reduction of line a gives a vertex singularity 

when £, ~' and ~ have least masses, then Fig. 3(a) will have ·anomalous form 

for all values of the mass in the lines ~' those in £, ~' and ~ being 

fixed. This shows that some types of anomalous threshold remain to arbitrary 

order in perturbation theory when they are present in lowest ordero 

The diagram 3(b) can lead to a singularity for an s..:partition, and 

a t-partition, but not for a u-partition. Its singular curve for the 

equal-mass case therefore lies in the region s > s ' c 
t > t , where c 

s c 

and t are the singular asymptotes obtained by reducing two of the lines 
c 

. . 14 
~' £, ~' and~ to a point. This curve can either be evaluated explicitly, 

or by the more general arguments given later in this paper. It is shown as 

curve (b) in Fig. 4. 
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For the general-mass case in diagram 3(b),.the possibility.of 

anomalous thresholds must be considered. These can be checked by considering 

the vertex part in which one of ~' ~' ~' or d is reduced. This vertex part 

has no singularities in the physical sheet in the equal-mass case, so ~ further 

reduction must be made. It will be noted that i~ Fig. 3(a) does not give an 

anomalous threshold, neither will Fig. 3(b) since the corresponding vertex 

part of the latter has at least one internal mass larger than the former. The 

same argument also applies (more strongly) to diagram 3(c) where the vertex 

parts will have two lines with additional mass and cannot have any singularities 

in the physical sheet if Fig. 3(a) is not anomalous (selection rules are not 

considered here). 

A new feature arises with Fig. 3(c), since it can give .singularities 

for an s-, t-, or u-partition. The curve of singularities therefore has three 

branches in the physical sheet. For a normal case, these are indicated by 

curves (c) in Fig. 4. The same principle as before determines the asymptotes 

for which pairs of lines (b, d), (a, c), or, (e, f) must be reduced to points. 

The indicated form of the singular curve 4(c) will be justified in more detail 

later (Section 8(d)). 

In the equal-mass case diagram 3(d) cannot give a singular curve on 

the physical sheet when all internal lines are on the mass shell and correspond 

to single masses. This follows from the fact that it contains an internal 

vertex part which has no singularities in the physical sheet. Thus its only 

# 

singularities involve the wrong frequency condition (m2 + i€) on one of its ~ 

lines, and this would impose the same requirement on 4(d) itselfo This result 

can also be obtained by an algebraic method given in Section 9. 
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Another type of singular curve to which special attention must be 

given in considering general terms is illustrated by the anomalous-thresholds 

curves from the fourth-order term, diagram: 3(a). In the general-mass case, 

its regular form is shown by Fig. 4(a). Other possible forms of curve along 

2 which lim A(s, t, mi - i€) is singular (analytic continuation with s 
€--')0 

and t real is made before the limit is taken) are shown in Fig. 5, curves 

(a) and (b). 4 Curve 5(a) has a single branch which goes on to a different 

Riemann sheet at each point of tangency to a line singularity. It should 

however be noted that the complex-conjugate amplitude A+(s, t) will be 

singular on the .broken part of the curve. Therefore the continuous plus the 

broken part of the curve form the boundary of the spectral functione For 

this type of singular curve, the Mandelstam representation still applies to 

the fourth-order term. 1' 4 Curve 5(b) illustrates anomalous thresholds of 

type II. It has two branches in the physical sheet and the Mandelstam 

representation does not apply to the fourth-order term when this type of 

singularity occurs.1' 4 

It has been noted by Tarski in connection with the anomalous curves 

shown in Fig. 5 that the slope of the curve r determines the relative 

sign of the imaginary parts of s and t on the surface of singularities 

Z(s, t) near its intersection with (' •4 Thus, when (d~dt) is negative 

along r (s, t), the imaginary parts of s and t have opposite sign on 

~(s, t). We shall later require a particular investigation of points where 

(ds/dt) is zero (or infinite) since at these "turning points" it is possible 

for t (or s) to become complex while s (or t) remains real. 

At the turning points illustrated in Fig. 5, one C singularity 

has moved to ai = 0 so that it is also an E singularity. At this point, 
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therefore, the curve of singularities coincides with the related line of 

singularities. On the broken part of the curve, the singularity in the 

integrand of A(s, t) has slipped off the contour of integration [0, 1], 

as illustrated in Fig. 1 (iii). For the complex-conjugate function A+(s, t) 

however, analytic continuation will lead to a distorted contour,as in Fig. l(iv). 

.. 
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VI. PROPERTIES OF THE DISCRIMINANT, D(o:, s, t)_ , 

In this section the general form of the discriminant D of the 

quadratic w , Eq. (2.6), will be studied. The information obtained will 

be shown in Section 7 to be useful in determining the absence (or existence) 

of turning points in curves of singularities. The importance of turning 

points is that sometimes they lead to complex singularities in the physical 

sheet. Our main objective is therefore to prove their absence under certain 

conditions which will be described later. 

The discriminant is defined by the transformation of Eq. (2.6) to 

diagonal form, 

( 6.1) 

The 4-momentum ~ in a typical internal line is a linear function of the 

external momenta pk and the internal momenta kj with coefficients 0, ~ 1. 

The coefficients cj are functions of the o: , and are positive when all 

the o:'s are positive. This follows from the fact that the left-hand 

side of Eq. (6.1) excluding the mass terms is a positive definite form in 

the internal-momentum variables. The transformed variables k'. on the 
J 

right-hand side of Eq. (6.1) are linear functions of the k. and the 
J 

external momenta pj. The discriminant D can be expressed uniquely in 

terms of any pair of the invariant energies s, t, u given by Eqs. (2.3) 

and (2.4). Its form depends on which pair is chosen. The symbol o: will 

be used to denote o:1, o:2, ••• ,o:n' collectively. The masses mi in Eq. (6.1) 

will not be assumed equal unless this is explicitly stated. 

The main technique to be used for discussing the properties of 

D(o:, s, t) is based on its invariance under different choices for the 
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paths of the external momenta through a given diagram and under different 

choices of circuits for the internal momenta. A second technique to be used 

later is based on the relation between D(a, s, t) and D(a, t, u) which 

can be obtained by substitution from Eq. (2.4). 

The left-hand side of Eq. (6.1) has the form, 

~ ai. k. k. + 2 ~b. k. + c 
J ~ J ~ ~ 

The coefficients aij' bi' c all depend linearly on a . The a .. 
~J 

(6.2) 

do not 

depend on other variables. The bi depend linearly on the external momenta. 

The term c depends linearly on the squares and products of external 

momenta and on the squares of the internal masses. The discriminant of 

Eqs. (6.1) or (6.2) is 

all' a12' ' bl 

a21' a22' ' b2 (6.3) 

D . . . ' . . . . . . 
bl ' b2 ' ' 

c 

Expanding by the last row and last column, we have 

D = - ~ A . • (a) b. b. + C(a) c 
' 

( 6.4) 
~J ~ J 

where 

all' al2' ' al.e 

a21' a22' ' a2.e 

c(a) • . = . l (6.5) 

a.el' a £2' ' a.e.e 

... 
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The coefficient A1j(a) 

The products bi 

in Eq. (6.4) is the co-factor of aij in C(a). 

b. in Eq. (6.4) involve either scalar products of 
J 

the external momenta or the squares of the external masses. They can therefore 

be expressed in terms of s, t, and the squares of external masses, giving 

D(a, s, t) = sf(a) + tg(a) - K(a, m). (6.6) 

Each term in Eq. (6.6) is homogeneous in the a and of degree (£ + 1), where £ 

is the number of internal-momentum variables k .• 
J 

Lennna 6A 

The discriminant D(a, s, t) is quadratic in each a .• 
~ 

Choose the internal circuits for k j ,. and paths for the external 

momenta so that a particular lin~ with momentum q1 say, has q1 = k1 • 

This is always possible for diagramS with singularities depending on both 

s and t, and we are not considering others here. Then we can write 

c = c' (6.7) 

where c' is independent of a 1, and no other term in Eq. (6.3) contains 

a 1• This proves D(a, s, t) is quadratic in a
1

, and since this line was 

arbitrarily chosen, Lemma 6A follows. 

From Eq. (6.7) we also obtain Lemma 6B. 

Lemma 6B 

The term in D(a, s, t) which is independent of s and t has 

the form 

K(a, m) = 
n 2 2 
I: a. mi K. (a) 

i=l ~ ~ 

n 2 
!: ai m. K'. (a) 

i=l ~ ~ 

4 2 
!: K'' . (a) M. 

. 1 J J J= 

(6.8) 
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in which mi denotes an internal mass, and M. an external mass. The 
J 

coefficients K. (a), K' . (a) , and K" . (a) are sums (or differences) of 
l l J 

products of the a in which no ak occurs more than once. They are 

homogeneous of order (£ - 1), £ , and (£ + 1), respectively. Similarly 

we obtain Lemma 6c. 

Lemma 6c 

The coefficients f(a) and g(a) of s and t in D(a, s, t) 

are each the sums (or difference) of products linear in each a and of order 

(£ + 1). 

Further information about the association of different ai in f 

and g can be obtained by a particular choice of variables. This is 

illustrated in Fig. 6. The internal variables are chosen so that the external 

momenta appear only in the lines shown in the diagram. The remaining 

internal lines are not shown, though the fact that there may be junctions with 

the lines carrying external momenta across the diagram is indicated. In 

each of the lines shown the external variables are combined linearly with 

the internal variables. The points of entry (or leading intersections) of 

the external lines with the diagram are marked A, B, C, and D. 

Using mass shell conditions and definitions [Eq. (2.3)], we obtain 

and 

s = 4 p2 ' 

M2 
a ' 

t 

'2. 
(p - q) = ~ 2 ' 

2 pq' 

2 (q+q')' 

= ]: (M 2 - M 2) 
2 c d ' 

u = 

( 6.9) 

( 6.10) 

( 6.12) 
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Hence we have 

2 qq' = 
1 
- s 
2 

(6.13) 

This equation shows that we can identify the coefficient of t from the 

coefficient of 2 qq' in formula (6.6) for D. The 4-momenta q and q' 

occur only in the quantities bi in D. ( q2 and q ,2 also occur in c 

but can be eliminated by Eq. (6JO) in terms of s given by Eq. (6.12).) 

From Fig. 6 we see that if a. multiplies q it does not multiply q'. 
J. 

This is a consequence of our construction in Fig. 6, where the lines carrying 

q and q' do not have any internal line in common. If there was an internal 

line in common, qq' would apparently involve a coefficient a 1
2 

from that 

line. However from Lemma 6c, t and therefore qq 1 nrv.st only have 

coefficients linear in a
1

; therefore this term must cancel with 

another. For this reason we shall restrict the q and q' lines to have 

no internal line in common. 

Lemma 6D 

Each ai in the q line of Fig. 6 must be associated with an 

aj in the q' line, in the product (q • q')ai aj••• • This result 

holds for every independent pair of q, q' lines, and gives Lemma 6E. 

Lemma 6E 

The coefficient g(a) of t in D(a, m, s, t) is a sum of products 

of a • Each product contains one a. from each independent q line in 
J. 

the diagram. A q line is one of any pair carrying the 4-momentum whose 

square is equal to t • , 

It should be noted that there may be cancellation of some terms 

so that Lemma 6E does not mean that every ai from each independent q 
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line must occur in g(a). This cancellation will be considered further after 

considering the relation of the form of D to the form of the curves of 

singularitieso 

The form of · f(a) can be studied in a similar manner by interchanging 

the external vectors in Figo 6. This is necessary since, with the labeling 

of Fig. 6, the quantity s occurs not only in products p2
, but also in 

2 2 
q, q' , and qq', so that there is in general a lot of' cancellation. 

Relabeling Fig. 6, we take now 

Pa = P + q, = p' - q ' (6.14a) 

= -p' - q, - p + q • (6.14b) 

This gives 

2 1 
(p + p') = 2 pp' + 2 t + 

( 6.15) 

The coefficient of' s in D, namely f(a), can now be identified from the 

p and p' lines which connect A to D and B to C , respectively, in 

Fig. 6. 

We shall also require the form of' · D when expressed in terms of 

u, s, or in terms of t and u. This may be obtained in two ways and the 

fact that both must give the same answer gives further information about D. 

The first way is obtained from Eq. (2.4), 

t = 
d 
E M 

2 
j a 

Then Eq. (6.6) gives 

s - u • 

D(a, u, s) = u {- g(a)} + s {r(a) g(a) } - K(a, m) -

( 6.16) 

2 g(a) E M .• 
J 

(6.17) 



... 

UCRL-9136 

-35-

Similarly, we obtain 

D(a, t, u) = t {g(a)- ~(a)} . 2 
- K(a, m) - f(a) ~ Mj o 

It should be noted that the convention of Mandelstam has been adopted in the 

notation of Eq_s. (6.6), (6.17), and (6.18).1 
The form of the function D 

depends on the variables in the bracket; thus D(a, u, s) has not the same 

form as D(a, s, t) but is related to it by Eq_. (6.16). When s, t, and u 

satisfy Eq_. (6.16) the numerical values of the expressions in Eq_s. (6.6), 

(6.17), and (6.18) are the same. 

The second method of obtaining Eq_. (6.17) is to study the form of 

D(a, u, s) in terms of a products by using diagrams similar to Fig. 6. 

From Fig. 6 itself we obtain 

u 
2 

(p + p ) = a c - 2 q_q_' + l 
2 s + 

d 
l .E M 2 
2 j a 

( 6.19) 
Thus the coefficient of u in D(a, u, s) is given by the coefficient of 

(- 2 q_q_'). This is simply -g(a), as we had already obtained by means of 

the transformation Eq_. (6.16) for Eq_. (6.6) to Eq_. (6.17). However new 

information will be obtained if we consider the coefficient of s in 

D(a, u, s) , 

h(a) f(a) g(a) (6.20) 

We must now choose variables in Fig. 6 so that 

p = p + q_, a p' - q_ ' (6.2la) 

and 
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= -p + q_, = -pI - q_ • (6.2lb) 

Then the coefficient of s in D(a, u, s) is the coefficient of 2 pp' in 

the expression . (~. 3) for:;: D. Hence h(a) is a sum of products of the 

a variables. Each product contains one a. from each line joining A to c, 
J_ 

and one from each line joining B to D. As before, not every a. 
J_ 

from 

these iines will occur as some may cancel. From Eq_. (6.20) we see that every 

product term in f(a) which does not contain an a. from each A to C 
J_ 

line and each B to D line, must also occur in g(a) with the same 

coefficient and the same sign. 

Examples of these general properties will be given in Section 8, 

and they will be further utilized in Section 9. We will cons~der next in more 

detail the term in D(a, s; t) which is independent of s and t. It is 

convenient now to restrict all external masses to have the same value M. 

Then from Eq_. (6.6), we have 

K(a, m) = -D(a, s = o, t = 0). ( 6.22) 

This can be evaluated, in principle, with the labeling used in Fig. 6 and 

p = 0, q_ = -q_', giving 

= = = q_ ' ( 6.23) 

and 

2 2 q_ = ~ • (6.24) 

2 Since the internal masses occur only in the combination E a. m. , and 
J_ J_ 

the external momenta satisfy Eq_. (6.23) and Eq_. (6.24), we can write K(a, m) 

in the form 

K(a, m) 2 = E a. m. K
2
(a) 

J_ J_ 
(6.25) 
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This form is consistent with Eq. (6.8), and from Lemma 6B, Kl(a) and K
2

(a) 

are each homogeneous in the a and linear in each a .• 
l. 

We can obtain K1(a) by putting all internal masses mi equal to 

zero; and K
2
(a) by taking all external masses to be zero. Take first 

m. = 0 , 
l. 

Then MFK
1
(a) is the discriminant of 

"' = 1 

where, from Eq. (6.23), 

and 

e.q + 
l. 

e. = 0 
l. 

or 

I: e .. k. 
l.J J j 

+ ... 1, 

' 

e .. 
l.J 

(6.26) 

( 6.27) 

(6.28) 

0 or + 
- 1 • (6.29) 

Each ~ contains at least one internal momentum, and some contain also 

the external momentum q. In the discriminant MFK1 (a), the 4-momentum 

q will occur only in the form q2 = NF • Hence in considering properties 

of the discriminant rather than the quadratic form we can replace the 

4-momenta kj by scalars xj and the external 4-momentum q by M. This 

gives, instead of Eq. (6.27), 

v2 = I: ai I: (e .. x. 
j l.J J 

0 (6.)0) 

When the a•s are all positive, v2 is a positive definite quadratic in ,. 

the x. and must therefore have a positive discriminant. Hence we have 
J 

when a. > o, 
l. 

(6.31) 
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A similar condition can be obtained for K2(a) by taking 

*3 = 

K
2

(a) is 

*4 = 

m. I o, 
~ 

M = 0 • 

is the discriminant of 

I: ai ( I: k.)2 I: a. e .. + m. 
j -~J J ~ ~ 

the discriminant of 

I: ai ( 
2 

I: e .. x.) 0 

j ~J J 

2 
0 

This is positive when the a's are positive, and hence we have 

when i=l,2, ••• ,n. 

(6.32) 

(6.33) 

(6.34) 

(6.35) 

We consider next the relative magnitude of the two terms on the 

right-hand side of Eq. (6.25). The masses will now be restricted so as 

to include the general reduced diagram arising for equal-mass interactions. 

Tre unreduced diagrams have equal masses m in every internal line, and 

the external lines each have mass m. The reduced diagrams may have larger 

masses than m by a factor of an integer ~ l; their external masses are 

unchanged. We therefore assume that 

The 

M L m., 
~ 

discriminant ~K1 (a) 

a .. 
' ~J 

b t • 

' J 

of "'2 in Eq. ( 6.30) 

b'. 
~ 

c' 

(6.36) 

is a determinant of the form, 

(6.37) 
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in which a .. = a .. , and for all a. > 0 we have 
1J J1 1 

ll aij II = c(a) > o (6.)8) 

where C(a) is defined in Eq. (6.6). The b'i in expression (6.37) is a 

special value of the b. in Eq. (6.4). 
1 

Expression (6.37) gives 

1: b ' .. b' j A . . , 
1 1J i,j 

(6.39) 

where A. . is the co-factor of a. . in the determinant (a .. ) • The second 
1J 1J 1J 

term in Eq. (6.39) has a discriminant 

= 

Hence, from Eq. (6.39), ~e have 

when 

c(a) > o· • 
{ } 

n-1 

a. > o, 
1 

i= l, ••• ,n. 

From Eq. (6.30) and expression (6.37), we obtain 

c' = 
n 2 
1: a. (e. M) 

i=l 1 1 

From expression (6.5) and Eq. (6.33), we obtain 

(6.40) 

( 6.42) 

(6.43) 

From the definition of e., and restriction (6.36) on the masses, when all 
1 

a. are positive we have 
1 

1: ai(e 4 M)
2 < 1: a. if- L I: a. m. 

2 
• 1 1 1 

( 6.44) 
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Combining expressions (6.41), (6.43), and (6.44) and using the definition 

in Eq. (6.25), we obtain 

K(a, m) > o, for a. > o , 
1 

We state this result as a theorem. 

Theorem 6A 

(6.45) 

The discriminant D(a, s, t) for any reduced or unreduced diagram in 

an equal•mass system, evaluated at the point s = t = 0, is always negative 

when all a's are positive. 

We consider next the values of the derivatives of K(a, m) with 

respect to ai, i = l, ••• ,n. First we note that K2(a), (or C(a)), is 

linear in each a., and it is the discriminant of Eq. (6.34). By a suitable 
1 

choice of the internal momenta, Eq. (6.34) becomes 

n 2 
+ I: a.( .E e .. x.) 

. 2 1 J' 1J J 1? 

The coefficient of a 1 in K2(a) is the discriminant of *2 when 

x1 = 0 and is positive when the a are positive. Hence we have 

d 
~ K2(a) > 0, when a. > o, 
o ai J 

j = 1, ••• ,n. 

From Eqs. (6.25), (6.39), (6.42), and (6.43), we can write 

K(a, m) 2 
= I: a. m. K

2
(a) 

1 1 

= 

2 
- I: a.(e. M) K2(a) 

1 1 
+ I:A .. b. b. 

1J 1 J 

+ I: A .. b. b. 
1J 1 J 

(6.46) 

(6.47) 

(6.48) 
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We have shown already that the first term on the right of Eq. (6.49) is 

positive [see Eqs. (6.35) and (6.44)], and increases with each ai [Equation 

(6.47)]. The second term is positive [see Eq. (6.40)]. In order to study the 

derivative of this term we note that ~K1(a) given by Eq. (6.39) is the 

discriminant of w2 given by Eq. (6.30). We can choose the internal momenta 

and the path of the external momenta of Eq. (6.23) through the diagram so 

that we have 

l: e .. x. 
lJ J j 

2 
+ e. M) 

J. 
o· 

The discriminant of w2 is of the form Eq. (6.39) in which it is clear from 

Eq. (6.50) that the bi will not depend on a1• Hence the derivative, 

.E 
i,j 

A .. b. b. , 
lJ l J 

will be the discriminant of the quadratic form 

2 
l: a.( .E ei. x.) , 

...... 2 J. • J J 
J.? J 

(6.52) 

in which x1 is put equal to zero. This is positive definite when the 

~'s are positive, and we obtain for a positive (since a 1 was chosen 

arbitrarily), 

(6.53) 

Since both terms on the right-hand side of Eq. (6.49) increase with ai, 

we obtain Theorem 6B. 

Theorem 6B 

The discriminant D(a, s, t) for any reduced or unreduced diagram 

in an equal-mass system, evaluated at the point s = t = o, is a negative 
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and decreasing function of each a. , when all the a's are positive. 
l. -

In terms of K(a, m), this gives for aj > O, j = l, u.,n, 

k K(a, m) > 0 , 
ai 

i=l, ••• ,n. 

The next section will describe the determination of some general 

characteristics of the curves of singularities from the discriminant D. 

Some of the properties of D obtained in this section will be illustrated 

in applications in Section 8, and used further in discussing the general term 

in the perturbation series in Section 9· 
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VII. SINGULARITIES AND THE DISCRIMINANT 

(A) Turning Points in Curves of Singularities 

A turning point in a curve of singularities is defined as a point 

where the tangent to the curve is parallel to one of the coordinate axes;. 

s, t, or u. Their importance is due to their connection with complex 

singularities in the physical sheet. This will be described later in this 

section [Part (E)]. 

The curves of singularities are obtained in principle by solving 

the equations 

() D(a, s, t) 
d ai 

= o, i=l, ••• ,n, (7 .1) 

where D(a, s, t) is the discriminant for a fully reduced diagram. Since 

these equations are homogeneous in a , they lead to a condition on s, and 

t which is the equation of the curve of singularities, say 

t = t( s) • ( 7 .2) 

When Eq. (7.2) is satisfied, the actual values of the a at a singular 

point are obtained by solving Eq. (7.1) together with 

n 
E a = 1 • 
1 1 

These give each a. as a function of s 
~ 

= a.(s), 
~ 

i = 1, o •• , no 

Since D is homogeneous and of order £ in the a , we have 

n 
E a. 
1 ~ 

o D(a, s, t) 
a ai 

= £ D(a, s, t) o 

(7 .3) 

(7-5) 
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Thus Eq. (7.4) gives a fUnction D(a(s), s, t) which is zero along the curve 

ofEq. (7.2). 

0 = 

Hence we have 

dD(a, s, t) 
ds 

= 
d D(a, s, t) 

a s 
+ d D(a, s, t) dt + ~ d D~a, s, t) 

a t ds i=l ai 

da. 
~ 

ds 

The last term in Eq. (7.6) is zero on the curve, from Eq. (7.1), and D(a, s, t) 

has the form from Eq. (6.6), 

D(a, s, t) = sf(a) + tg(a) K(a, m). ( 7. 7) 

Hence along the curve of singularities, we have 

dt _ fta~ 
ga • ds = 

This leads to Theorem 7A. 

Theorem 7A 

If a curve of singularities has a tangent, t = constant, in the 

s, t, plane, then the coefficient of s in the discriminant D(a, s, t) 

must vanish at the point of tangency, 

d D(a, s, t) a s f(a) = o • 

This theorem applies to the general-mass case. 

The point of tangency will be called a "turning point". 

( 7 ·9) 

Theorem 7A 

has a similar form for turning points s = constant in the s, t plane, 

and analogues for turning points in Uo 
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There are two distinct ways in which the turning-point theorem 7A may 

be satisfied. These will be called "anomalous turning points", and "spurious 

turning points". The former are so called because they are always associated 

with anomalous thresholds. The latter are not associated with any thresholds at 

all. It is important to distinguish between these two types of turning point. 

(B) Anomalous Turning Points 

These will occur if, along a curve of singularities fl(s, t) in 

the real s, t plane in the physical sheet, f(a) becomes zero because 

sufficient C singularities become also E singularities. From Lemma 6E 

this requires at least that all the ai in f(a) which are associated with 

a particular p or p' line (in the sense of Lemma 6D) become zero at the 

turning point. Let us assume there is such a turning point. Then when this 

set of a. is zero (denoted by a'), we will have 
~ " 

D(a", a' = o, s, t) tg(a") K(m, a") , (7 .10) 

where a" denotes those a's which are not included in a'. Since the 

turning point is on ;-'(s, t), the right-hand side of Eq. (7.10) will 

satisfy the Landau conditions with all the a" giving C singularities. 

But this expression is the discriminant for a reduced diagram that depends 

only on t. Hence it gives a line of singularities which is in the physical 

sheet if the turning point is in the physical sheet. Clearly at the 

turning point the line of singularities is tangent to /"(s, t). 

We know that in the general-mass case, the diagrams whose 

singularities depend only on t must, when fully reduced, have the momentum 

(q + q') passing through a single vertex somewhere in the diagram. It must 

therefore reduce to a vertex part or chain of these parts at least (possibly 
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of course to self-energy parts). This permits us to extend Lemma 6E, giving 

Lemma 7A. 

Lemma 7A 

The coefficient f(a) in D(a, s, t) is a sum of products of a • 

Each product contains one a. from each independent "s-path" in the 
~ 

diagram. An s-path is any connected set of lines which when reduced to a 

point gives a reduced diagram depending only on t. 

No ai occurs more than once in any product. The sum of momenta 

in all independent s paths is (pa + pb). Similar lemmas hold for g(a) 

and t paths, and h(a) and u paths. 

From theorem 7A and Lemma 7A we obtain Lemma 7B. 

Lemma 7B 

If a curve of singularities in the physical sheet has a turning point 

with tangent parallel to the s axis where the a in just one s-path becomes 

zero, the curve changes from the physical sheet to a nonphysical sheet at the 

point of tangency. 

This lemma follows from the fact that f(a) is an odd function of 

those values of a which are zero at the turning point, and f(a) changes 

sign since (dt~ds) changes sign. Hence, some a values become negative, 

which means we have a nonphysical branch on one side of the turning point. 

(C) Tangency at Normal Thresholds 

In the equal-mass case, there are no anomalous thresholds in the 

physical sheet. Hence the only lines of singularities at which a curve 

may have a turning point are the normal thresholds. At a normal threshold, 

t = constant, all the ai in f(a) become zero except those (if any) 
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which are in the self-energy part of g(a). It can be verified in any example 

that this causes f(a) to go to zero faster than the right-hand side of 

Eq. (7.10) (a self-energy part now), in the neighborhood of the normal 

threshold. Hence s must tend to infinity at the point of tangency. This 

will also be true for normal thresholds in the general mass case. 

Lemma 7C 

Tangency at normal thresholds occurs only asymptotically. 

(D) Spurious Turning Points 

When there is a sufficient degree of symmetry between s and u 

paths, it will be possible to have 

f(a) = o, 

without any of the a's becoming zero. This leads to a turning point which, 

since it involves no E singularities, is not associated with a line of 

singularities t = constant. An exampl~ of such a turning point is given by 

curve (c) in Fig. 4 in the region u > 0, s > 0. The factor which become 

zero at this point is given in Section 8, example (d). When Eq. (7.11) holds, 

the expression (6.17~ has the form 

D(a, u, s) u {-g(a) } + s { -g(a) } K(a, m) 

Then we can write 

du 
ds = - 1 • 

Any curve of singularities of the normal form in the u > 0, 

2 g(a) E M. • 
J 

(7.12) 

( 7 .13) 

s > o, 

spectral region will at some point satisfy Eq. (7.13), and will.have a tangent 
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line t = constant. This line does not give a threshold value. These spurious 

turning points in t for t < 0 occur in fourth-order perturbation theory 

and do not prevent the proof of the Mandelstam representation in that order. 

We will consider later their implications for higher-order terms, (Section 10). 

A more dangerous possibility is the occurence of a spurious turning 

point at t = constant > 0. These will be considered in some specific 

examples in Section 8 and will be proved not to occur. They will be considered 

in Section 9 for the general term in the equal-mass case and an argument for 

their absence will be given, but not a proof. The particular danger from 

them will be indicated in Part (E) of this section. 

(E) Turning Points and Complex Singularities 

A general diagram has the discriminant, Eq. (6.6), 

D(a, s, t) = sf(a) + tg(a) K(a, m) o 

The path of integration over the variables a in Eqo (2.7) is from 0 to 1 

along the real axis, unless analytic continuation forces a distortion of the 

path of integration. We consider the circumstances in which s can become 

complex with a small imaginary part while t remains real. We take 

( 7.15) 

and let s2 be small enough to consider first-order terms only, but large 

compared with any imaginary parts of K coming from 2 
(m - i€). Then if 

D remains zero, and the amplitude singular, when s becomes complex while 

t and a remain real, we must have 

f(a) = o • 

.. 
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This result can also be obtained by considering the intersection of the 

two-dimensional surface ~(s, t), in the four-dimensional space (s and t 

complex) with the curve ;-' (s, t) 

~ and r satisfy the equation 

for which s and t 4 are real. Both 

t = t(s) • ( 7 .17) 

The derivative (dt~s) is independent of the direction of differentiation, 

and hence if t remains real on ~(s, t) near /-.(s, t), we must have 

dt 
ds 0 • 

Theorem 7B 

Singularities on curves in the real part of the physical sheet do 

not extend into the complex part of this sheet (one variable real) except 

at turning points. 

It is not always the case that turning points lead to complex 

singularities in the physical sheet. For example in fourth order for 

one type of anomalous threshold, the turning points do not lead to complex 

singularities in the physical sheet, but for another ·type they do. Evidently 

in the former case the C singularities, which become also E singularities, 

fall off the contour of integration as s goes complex. In the latter they 

drag the contour with them. 

The absence of anomalous turning points in the physical sheet excludes 

the possibility of one type of complex singularity. We have therefore to 

consider those from spurious turning points, and also to consider the 

possibility of complex singularities that are not connected to any singular 

curve in the real part of the physic~l sheet. These will be discussed fUrther 

in Section 10. 



UCRL-9136 

-50-

VIII. APPLICATIONS AND EXAMPLES 

In this section the general theory is illustrated by examples that 

are selected so as to bring out a number of features characteristic of more 

general diagrams. 

(A) Normal Thresholds 

A generalized self-energy part, with n lines joining two vertices, 

has an integrand giving, under transformation to Feynman variables, a 

denominator 

2 
~ = a (k - p) 1 1 

n-1 2 
+ E a.(ki - k. 1 ) 2 1 1+ 

If we write 2 p = s, the discriminant is 

D(a, s) 

2 
+ a k n n 

n 2 
- Ea. m. 

1 1 1 

The coefficient of s gives a simple illustration of Lemma 6E. 

From Eq. (8.2) we obtain 

D(a, s) ~ a1 a2 ••• an { s n 2} ( E m.) 
1 1 

for a. > 0, i = l, ••• n. It is clear that for 
1 

s > 2 
( E m.) , 

1 
we have D>O. 

0 

(8.1) 

(8.2) 

(8.3) 

(8.4) 

When s is less than 2 
(Em.) there is a region in a space in which 

1 

D is negative. Hence there is a singularity of the amplitude at 

s = s c (8.5) 
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This is the normal threshold above which production of particles with masses 

'(B) Simple Ladder Diagrams 

These are ladder diagrams which do not contain any crossed lines. 

Label the lines as in Fig. 7(a), giving 

2 
+ a:(k -q') 

3 1 

The discriminant is 

0 

' 

n - ~ 
1 

-a7 ' 

' 0:7 + ••• ' 

(8.6) 

D(a, s, t) = ••••••••••••••••••••••••••••••••••••••••••••••••••••••o•••o•o•• 

' 0 0 • ' 
., ' ... 

( 8. 7) 

From Eq. (6.14), we have 

2 qq' + ~t 1 I:M2 s = + 2 2 a (8.8) 

and 

t 4 p 2 
= ( 8.9) 
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The coefficient of t in Eq. (8.7) is simply evaluated by Lemma 7A, which 

gives, in the notation of Eq. (6.5), 

(8.10) 

The coefficient of s is the coefficient of 2qq' in Eq. (8.7). This gives 

(8.11) 

where are positive when the ~'s are positive, and 

d23 = E (4, 5, 6, 7)(7, 8, 9, 10)(10, 11, 12, 13) ••• (8.12) 

Each term in the sum is a product a:. a. a. ••• 
~ J k 

i 1 j, i 1 k, j 1 k, ••• , 

with i taken from the first bracket, j from the second bracket, etc. 

Since both f(a) and g(a:) are positive when the a's are positive, 

we obtain the result: if a fully reduced simple ladder diagram has a curve 

of singularities in the physical sheet, then along the curve we have 

dt < 0 
ds when i = 1, 2, 3, ••• 

From this result and Theorem 7A, we obtain Lemma 8A. 

Lemma 8A 

(8.13) 

CUrves of singularities in the physical sheet and corresponding to 

simple ladder diagrams do not have turning points except possibly at end-

point singularities. 

End-point singularities may occur at 

s = s ' c 
when 

for some values of j' or at 

(8.14) 
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and( or) = 0 (8.15) 

for all values of j. These singularities will occur only for particular 

values of the masses. It is clear from Section 5 that the only singularities 

in the physical sheet have s > 0 and t > 0. This could also be proved by 

explicit consideration of K(a, m) given by Eq. (8.7), or by the method of 

Section 9 (b). 

For equal internal and external masses, in the original unreduced 

diagrams, it has been shown (see the corollary to Theorem 5A) that the only 

'lines of singularities in the physical sheet are given by normal thresholds. 

For these, we have either all a3j+l = o in Eq. ( 8.14)' or all a3j and 

a3j+2 = o in Eq. (8.15). These give the asymptotes 

4 m2 2 (8.16) s = ' 
t (nm) ' 

and the curve has negative slope everywhere ~n the physical sheet. More 

generally, if the diagram has been reduced, these asymptotes will involve 

higher integer multiples of m. 

(C) Partly Reduced Ladder Diagrams 

For many of these diagrams there will be no curve of singularities 

in the physical sheet; an example is given by diagram (d) in Fig. 3 which 

was discussed in Section 5. For our present purpose we need only know that 

the curves of singularities in the physical sheet have certain characteristics 

if they exist. It is therefore not necessary to consider the form of K(m, a) 

in general. For the equal-mass case a fully reduced diagram which may be 

expected to have a curve of singularities is shown in Fig. 7(b). Like all 

diagrams in this class its discriminant is derived from Eq. (8.7) by taking 
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some of a
3

j and a
3

j+2 to be zero. Since g(a) and f(a) remain positive 

when the other a's are positive, condition (8.13) still applies, with a. 
~ 

now referring only to the nonreduced lines of the diagram. The fact that there 

are no anomalous lines of singularities means that d~ds becomes zero or 

infinite only asymptotically. The asymptotes for the curve from Fig. 7 (b) 

will be 

s = Gm2 
;l_JJJ. ' t = 2 

(7m) • 

(D) The Symmetric Crossed Diagram 

(8.17) 

This diagram is shown in Fig. 3(c). It is obtained from an eighth-

order diagram with some reduced lines. It leads to a discriminant 

D(a, s, t) = K(a, m). 

(8.18) 

The parameters a1, a
2

, ••• ,a6 correspond to lines a, b,.e~,f in Fig. 3 . 
diagram (c) taken in the same order. 

K(m, a) 

With external masses m and internal masses m£ , we have 

= 
2 

I: a-r aJ. ex. 1: an m n 
i <j<k .._ k XI XI 

For m£ ~ m, we have, from Eq. (8.19) or from Theorems 6A and 6B, 

K(m, a) > o, and o K(m, a) 
a ai > 0 ' for 

(8.19) 

(8.20) 
This condition is satisfied for all diagrams of type (c) in Fig. 3, which 

are formed by reducing higher-order diagrams in the equal-mass case. 
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Now Eq. (7.1) holds on a curve of singularities and we have 

Cl D Cl K 
~ = - ~ (8.21) 

From Eqs. (8.20), (8.21) and (7.1), for a> 0 and 

s > 0 and t > 0 
' 

(8.22) 

we have 

(8.23) 

Similarly, when Eq. (8.22) holds, we have 

(8.24) 

Hence, along the curve of singularities in the region of the physical .. sheet 

given by Eq. (8.22), we have 

dt 
ds = 

f(a) -gray< o, (8.25) 

where f(a) and g(a) are the coefficients of s and t in Eq. (8.18). 

The result Eq. (8.25) proves that in the region given by Eq. (8.22) 

the only turning points are at E singularities. But the only E 

singularities are given by normal thresholds for the equal-mass case, and 

these are asymptotes. Applying similar arguments to the regions u > 0, 

s > 0 and t > 0, u > 0, we obtain the curve of singularities having the 

three branches marked (c) in Fig. 4. 

At the turning point (dt~ds) = 0 in the region t < 0, the curve 

of singularities connects to a surface of singularities on which for t 

real s becomes complex. However, this is a feature also of the fourth-
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order diagram in which the internal lines are crossed when s and t are 

positive and t negative. In this region the double-dispersion relation 

is obtained by working in terms of variables s and u and not s and t. 

Then the diagram (c) of Fig. 3 has 

du --as- < 0 (8.26) 

along the singular curve, since in this region we have 

(8.27a) 

and 

(8.27b) 

For a general diagram it is still necessary to show that singularities in 

all three spectral regions from one diagram do not prevent application of 

Cauchy's theorem. This problem will not be considered further here. 

(E) Crossed Rungs in a Ladder Diagram 

A simple example in which only a single pair of rungs is crossed 

is shown in Fig. 7 diagram (c). The discriminant is 

n(a, s, t) = s {a2 a3(a4 + a5 + a6 + a7) + a3 a4 a6 + a2 a5 a7 - a1 a4 .a
5
} 

+ t {al(o:6 0:7 - 0:4 o:5) } Kst(a, m) ' 
(8.28) 

where Kst(o:, m) is written with the suffices s, t, to denote the form 

of D with which it is associated. From Eq. (8.28) and Theorem 6B, we 

see that 
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o D(o:, s, t) = 
a o:l 

which gives 

leads to the inequality 

0 ' 
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(8.29) 

= 0 ' (8.30) 

0:6 o:
7 

- o:4 o:
5 

> 0 , . for s > 0 , t > 0 , and o: > o • 
(8.31) 

Similarly, by differentiating with respect to o:4 , we deduce 

for s > o, t > o, and o: > 0. 

Inequalities (8.31) and (8.32) .show that for s > o, t > 0, and o: > 0, 

we have 

f(o:) > o and g(o:) > 0 • (8.33) 

Hence the only turning points in this region must occur at E singularities 

if any. But from Sections III and IV there are no such E singularities. 

Hence we have 

dt 
ds < 0 ' 

in the physical sheet. 

for s > 0 and t > 0 

A similar result can be proved for the region s > o, 

which we have 

D su = s { a2 a3( a4 + a5 + a6 + ~) + ~ a4 a6 + a2 a5 al 

+ u {a1(a4 a5 - a6 "1)} - K
6
u(a, m). 

(8.34) 

u > 0 in 
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However in the region t > o, u > 0, we have 

Dtu = t { al a6 a., -a3 a4 a6 - a2 ~ a7 - a2 a3(a4 + a5 + a6 + a.,J -

+ u { a1 a4 ~ - a 3 a4 a6 - a2 ~a., -a2 a3(a4 + ~ + a6 +a_,)} - Ktu(a,m). 

(8.36) 

(8.37) 

This is clearly negative for u > o, t > 0, and a > 0. Hence there are 

no singularities in the physical sheet in this region. 

(F) The Euclidean Region 

From Theorem 6A, for a general diagram, with a> 0, we can write 

D(a, s = o, t = 0) = - Kst(a, m) < 0 • 

A similar result holds when ~e put u = 0 t = 0 , in 

D(a, u, t) = (4m
2 

- t - u) f(a) + tg(a) - Kst(a, m) 

(8.39) 

Hence, we have 

2 4m f(a) (8.40) 
·~ . 

2 From Eqs. ( 8.38) and ( 8.40), for 0 < u < 4m , we can write 

(4m
2 

- u) f(a) - Kst(a, m) < 0 • (8.41) 
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Similarly for 0 < t < 4m2 , we have 

tg(a) - Kst(a, m) < 0 

Writing s for 2 (4m - u) in Eq. (8.41) and combining Eqs. (8.41) and (8.42), 

we obtain 

D(a, s, t) = sf(a) + tg(a) - Kst(a, m) < o , (8.43) 

provided that 

0 < s + t < 4m2 • 

This gives an independent derivation of the result of Section 4, namely, 

Lemma 8.B. 

Lemma 8B 

For the equal-mass case, there are no singularities in the Euclidean 

region of the physical sheet. 

/ 

(G) The Double-Crossed Ladder Diagram 

This diagram is illustrated in Fig. 7 (d). It can either be 

eighth-order with ail masses equal or a higher-order reduced diagram with 

internal masses larger than the external masses. The discriminant is quite 

a lengthy expression, but in order to study it not every term is required. 

Either by direct evaluation, or using the methods of Section 6, we obtain 

in D(a, s, t) 

(8.45) 

g(a) = ' 
(8.46) 
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and 

-K(m, a) < o , for a > o • (8.47) 

The asymptotes of the curve of singularities (assuming the curve to 

have a branch on the physical sheet--if it does not the diagram can be ignored) 

will be given, in the equal-mass case, by 

s = s = 4m2 

' c (8.48) 

and 

t = t = 16 m2 
• c (8.49) 

Near s = s ' only a5 and a6 are appreciably different from zeroj near 
c 

t = t only a3, a4, c a5, and a6 appreciably differ from zero. Near 

s = s ' f(a) will be of second order in the small ai, g(a) will be c 

fourth-order, and· K(m, a) will be second-order. Near t = t ' f(a:) c 

be of second order in the small a., and g(a) and K(m, a) will be 
1 

independent of them. 

will 

We see that near s = s 
c ' 

f(a) will be dominated by the positive 

term containing a
5 

a6 as a factor. It is clearly positive, as indeed it 

must be if the amplitude is to be singular on the asymptote. Near t = t , c 

it is also clear that g(a:) is positive, since it is dominated by the 

terms From the symmetry of the diagram, the two factors in 

g(a) will be equal on the curve of singularities, and hence g(a) is 

positive. 

Although f( a) is positive on the curve near s = s , it is not c 

immediately evident that it cannot become negative elsewhere. However by 

the symmetry of the diagram on the curve of singularities, we must have 
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terms in Eq. (8.45) then cancel with two of the positive terms, for example 

... with 0:3 0:9 o:l O:g and 0:4 0:10 0:2 0:7 .• 

We conclude that both f(o:) and g(o:) are positiye on the curve 

of singularities in the region s > 0, t > 0 of the physical sheet~ Hence 

there are no spurious turning points in this spectral region. The other 

spectral regions can be examined similarly. 

. .,. 

. "' 

() 
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IX. THE GENERAL TERM FOR EQUAL-MASS INTERACTIONS 

(A) A Simplification Formula 

Any diagram whose singularities depend on both s and t can be 

labeled so that the quadratic in the 4-momenta has the form 

,,, k 2 ~ 2 - 't" ,.. 2 
~ = a1 1 + ~ a q. ~ ~j m. 

j=2 j J j --3-1 J 

Here : (as in Section 6), we have 

= 
n 
I: e.i k. 

i=2 J J. 

(9.1) 

with ej:i appropriately chosen as o, ~ 1 for the internal circuits, and 

e'jt similarly chosen for the external momenta. 

Eq. (9.1) is 

The discriminant from 

2 
al + !: (e.1 ) a., I: e. 1e.2 a., ... ' 

j~2 J J j~2 
J J J 

2 
I: ejlej2 aj ' 

I: (ej2) aj ' . . . ' 
j~2 J?- 2 

... 

D(a, s, t) • • . ' . .. ' = 
• 0 • 

I: e 'le' . na .p. ' 
j ~2 J Jx. J J 

. . . 
' 0 •• ' 

. . . - I: a! m . 
j-:? 1 J 

(9.3) 

= sf(a) + tg(a) - K(a, m) • (9.4) 

Since a 1 occurs only in the first row, first column, and in the last term 

of the last row, last column, D can readily be differentiated with respect 

J 

2 

• 

.. . 
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to a
1 

• This gives 

o D(a, s, t) D( t ::), = a, .s, ; 
u a

1 

(9-5) 

-1 The notation a1 indicates that the line labeled a 1 is to be removed 

before evaluating the expression concerned. The removal may leave another 

line previously internal as part of the external line; in such a case the 

line plays no part in the diagram and its label is redundant. The removal 

may alternatively leave two lines as part of the same internal line when 

they were previously distinct. In this case the parameters must be added 

and both retained. The line a1 in Eq. (9.1) can be any line in the diagram. 

From Eqs. (9.4) and (9.5) we see that 

~ ~:a) ( -1 = f a_, a. ) , 
~ 

~ 

(9.6) 

and 

~ ~:a) = f(a , a. -l) 
~ 

~ 

' -, (9.7) 

Expressing the discriminant as a function of t and u (see Section VI), 

we obtain similarly 

o h(a) = 
~ 

~ 

( -1 
h a , a. ) • 

~ 
(9.8) 

Since f(a) is homogeneous in the a , of degree £ , Eq. (9.6) 

gives 

f(a) = 
1 n 
n I: a. 
XI 1 ~ 

o f(a) = 
~ 

Similar relations hold for g(a) and h(a). 

(9.9) 
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The procedure of removing a given line from a diagram will be called 

"simplification" of the diagram. This is to distinguish it from "reduction" 

of the diagram in which one or more lines are reduced to points. Since we 

have shown that end-point singularities do not lead to anomalous curves in 

the equal-mass case, we are concerned now only with curves of singularities 

for diagrams that are fully reduced and for which all the parameters a are 

positive. 

(B) Singularities Not in the Physical Sheet 

From Theorem 6B and Eqs. (9.6) and (9.7) we obtain 

o D(a, s, t) 
a ai 

= ( 
-1 sf a , a. ) 

~ 

in which the last term is negative. 

-1 + tg(a , a. ) 
~ 

o K(a, m) 
d ai 

(9.10) 

Since Eq. (9.10) must be zero on any curve of singularities it is 

necessary that 

( -1) sf a , ai 
-1 + tg( a , a. ) > o , 

~ 
(9.11) 

on the curve. Hence in order to show that there is no curve of singularities 

in the physical sheet in the region s > o, t > 0, it is sufficient to 

show that, for a.> 0, j = l, ••• ,n, 
J 

( -1) f a , a. 
~ 

< 0 and ( -1 
g a , a. ) 

~ < 0 ' (9.lla) 

for any one of the n possible simplified diagrams. This is sufficient 

to show, for example, that a ladder diagram contributes to only one 

spectral region. It will show similarly that some diagrams have no 

singularities anywhere in the physical sheet (for example diagram (d) of 

Fig. 3). 

. . 
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(c) Spurious Turning Points 

For some diagrams, the result (9o9) is sufficient to prove that on 

a curve of singularities, with a. > 0, we have 
~ 

f(a) > o , and g(a) > o , (9.12) 

for s > 0 and t > 0. We require that every term in f(a, ai-l)· shall be 

. positive for positive a . This holds for all simple ladder diagrams, and 

provides an alternative method for obtaining the results of Section VIII (B). 

A more general situation has been illustratedby the symmetric 

crossed diagram in Section VIII (D). If the simplification procedure of 

removing one particular line leaves the "dangerous factor~' of f(a) in the 

( -1 term f a , a. ) 
~ 

we can deduce from 

( 
-1 

g a , a. ) 
~ 

that for s > 0, 

( 
-1 

f a , a. ) 
~ 

and only the associated negative term in 

< 0 ' 

t > 0 we have 

> 0 • 

g(a , a. - 1 ); 
~ 

(9.13) 

(9.14) 

This shows that the dangerous factor in f(a) is positive. With a little 

ingenuity this method appears to apply to all sixth- and eighth-order diagrams 

and could be used to prove the absence of spurious turning points in the 

"positive" spectral regions to this order. Spurious turn:img points will 

occur in the "negative" spectral regions. For example a turning point in 

t(s) will occur for several of these diagrams in the negative spectral 

region s > 0, t < 0 but not in the positive spectral region s > 0, t > 0 

(nor in u > 0, t > 0). 
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In the remainder of this Section a "plausibility argument" will be 

given for the absence of spurious turning points in positive spectral regions 

for a general term in perturbation theory. The unbelieving reader may be 

able to devise a rigorous proof along the lines indicated; he is also advised 

that a counter example will invalidate the Mandelstam representation. The 

basis of the argument is that the dominant terms in f(a) and g(a) in the 

region s > 0, t > o, are those associated with the asymptotes. Since these 

asymptotes are normal thresholds, the Feynman parameters in the dominant · 

terms must correspond to the lines in the generalized self-energy parts that 

determine the asymptotes. The other Feynman parameters tend to zero near the 

asymptote. The Feynman parameters can be divided into four classes for any 

given diagram: 

(a) Those that do not tend to zero at either asymptote. These will 

(b) 

(c) 

be denoted by ai, and they correspond to lines that are in the 

generalized self-energy parts for both asymptotes. An example 

is given by the pair a
5
,a6 of Section VIII (D). 

Those that do not tend to zero near the asymptote s = s , but c 

do tend to zero near t = t • We denote these as t3. • An example 
c ~ 

is the pair a
1

, a
3 

in Section VIII (D). 

Those that tend to zero near s = s , but not near t = t • We c c 

denote these by ri • An example is a 2, a 4 in Section VIII (D). 

(d) Those that tend to zero near both asymptotes. We denote these 

as Si • An example is a 4, a
5 

in Fig. 7 (b), example (E) of 

Section VIII. 

We seek to show that any pair of parameters giving a negative term 

in f or in g can be associated with a pair having the same coefficient 

•• 
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but having a positive sign and dominating the negative term. The coefficient 

of any set of four lines 1, 2, 3, 4, can be determined by repeated application 

of the simplification formula (9.10). If the removal from the diagram of a 

set of lines a1, a2, ••• ,a£-l leaves only the lines 1, 2, 3, 4 arranged as in 

Fig. 8 {a), then Eq. (9.10) shows that sf + tg will contain a term 

"1a "2a ••• "t-la {"1 "3 s + "2 "4 t} (9.15) 

{Note that the a. do not yet have the meaning indicated in (a) above.) By 
~ 

summing all such terms we obtain 

sf + tg ~ a24 13 { "1 "3 s + a2 "4 t} (9.16) 

The symbol -:=) 12 means "contains the term", and a
34 

is the sum of products 

of parameters that have the property of the set in Eq. (9.15), namely that 

removal of their lines leaves Fig. 8 (a). Similar results are obtained for 

those sets of lines whose removal leads to Fig. 8 (b) or to Fig. 8 (c). 

Let b 12 and 
34 

12 c
34 

denote the appropriate sums of products of parameters. 

Then we have 

sf + tg :J b 13 
{ ~1 "3 s + (a2 a4 - a1 a

3
)t } . 24 

and 

sf + tg ~ 13 
{ (a1 a3 

- a2 a4)s -a2 a4 t}· c24 

(9.17) 

(9.18) 

These expressions are best obtained by first evaluating the contributions 
(' 

to D(a, u, t) and D(a, s, u) of diagrams (b) and (c) respectively in 

Fig. 8 and then transforming to D(a, s, 't) as described in Section VI. 



UCRL-9136 

-68-

It should be noted that there is a lot of freedom of choice in 

pairing negative terms with positive ones in f · and g. This is because 

most terms are positive (as can be seen from part (B) of this section) if 

there is a curve of singularities in the physical sheet for s > 0, · t > 0. 

We now use the notation a, ~' r, () as described above in the paragraph 

preceding Eq. (9.15). An a line must be dominantly associated with 

positive coefficients near each asymptote, and will occur in combinations 

similar to lines 2, and 4, in Eq. (9.17), or 1 and 3 in Eq. (9.18) since 

only these lines in Fig. 8 can contribute to both asymptotes. A ~ line 

may occur in combination of lines 1 and 3 of Eq. (9.16) or 1 and 3 in 

Eq. (9.17). The former gives a positive term, so it need not be considered 

in that arrangement of terms in D. The latter gives a negative contribution 

to f and also to g, and this contribution does not tend to zero near 

s = s • In g we have the term from Eq. (9.17), c 

in which b 13 
24 is positive on the physical sheet. At the asymptote 

t = tc' the parameters ~l and ~3 are zero; at the other asymptote 

( 9.19) 

they tend to equality and to equality with a2 and a
4 

• Thus near one 

asymptote the expression (9.19) is certainly positive, while it tends to 

zero near the other asymptote. It is plausible that this change takes place 

monotonically since it requires a change from perpendicular to parallel 

4-momenta in the lines 2, 4 and 1, 3 in diagram (b) _for Fig. 8. The 

term (9.19) would then be positive. For many (but not all) diagrams this can 

be proved directly by differentiating D(a, s, t) as in examples 8(d) and 

8(e). 

.'#'' .. 
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In addition to Eq. (9.19) which gives part of the coefficient of t, 

we have a term -b24
13 f31 f3

3 
s. However the diagram must contain a positive 

term to balance this, otherwise oD/of31 would be negative. Therefore the 

discriminant D can be rearranged so that f31 f3
3 

is paired with a different 

two lines from a2 a4 . Since f31 and f3
3 

contribute to the asymptote 

s = s , their product mustmve a positive coefficient near this line. Therefore c 

we can find a term such that 

(9.20) 

is positive near the asymptote. Clearly the difference between the lines 

13 13 in a
5

6 and b
56 

causes a "twisting" of the lines 1 and 3 so 

that their directions are reversed when the "b-lines" are removed, but not 

when the "a-lines" are removed. This can be achieved only if the ~-lines 

and b-lines contain a crossed pair. By fixing our attention on this crossed 

pair instead of on f31 f3
3

, we can obtain a term similar to Eq. (9.19) but 

now in f and having the lines f31 and f3
3 

as coefficients. Again this 

term changes from a positive value to zero along the curve, and it seems 

likely to be positive throughout the range. Similar arrangements of 

products appear always to be possible for any negative terms in f and g 

coming form 7 or 8 lines .• 

It should be noted that the difficulty in making the above argument 

rigorous is associated with the occurence of many positive terms in f 

and g rather than with the negative terms. If there is a minimal number 

of positive terms as in example 8(d), the method of considering the -first 

derivatives of D suffices to prove that the negative terms can be 

adequately paired against positive terms. When there are many positive 
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terms, it is very plausible that they will more easily dominate the dangerous 

negative terms, but it is not possible to prove dominance in a single pairing. 

Instead one has to use the multiple pairing described in the above paragraphso 

. . 

• • 
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X. FURTHER REQUIREMENTS OF THE MANDELSTAM REPRESENTATION 

The Mandelstam representation1 (denoted M.R.) contains Born terms, 

single dispersion integrals, and double dispersion integrals. We will be 

concerned only with the latter and will indicate some of the assumptions 

which are implied by this form of integral representation. We will then 

consider to what extent these assumptions have been justified in perturbation 

theory by the preceding sections, and will indicate some further points that 

require study before the representation can be proved. 

The double dispersion integrals are 

A(s, t, u) 

where 

= \ ( ( Al2 ( s I' t I ) 

")) ( s - s. )( t - t. ) 

s + t + u = 2 4m , 

ds' dt' + dt' du' lj~ A23(t', u') 

:n:2 (t-t')(u-u') 

+ .J du' ds' , 1 jj A.,.1(u', s') 

:n:
2 (u- u')(s- s') 

( 10.1) 

( 10.2) 

in the equal-mass case. The integrals in Eq. (10.1) are over a part of the. 

real s, t plane. Small positive imaginary parts of s, t, u specify .how 

the surface of integration passes the singularities of the integrands. 

From Eq. (10.1), single dispersion relations can be derived. For 

1 example, we have 

A(s, t, u) 1 
= 2 

:n: 

1 +-2 :n: 

co 

~2 u - u' 

( 10.3) 
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The assumption of a real domain of integration has the following 

consequences: 

(1) A(s, t, u) is analytic when s, t, u are real except (a) at 

points of discontirruity of A
1
(s, tv) as a function of s , 

or A2(s, u'), and similar points with respect to t and to 

u ; or (b) on curves of discontinuity of A12{s, t) as 

functions of s, t, or A
23

(t, u) or A31(t, s). 

(2) A(s, t, u) is analytic when s is real and t complex with 

0 < arg t < 2~ , and similarly for other pairs of variables. 

From these it follows that A( s, t, u) is anal;y-tic when one of 

s, t, or u is real and the others are limited by cuts in their complex 

planes from 4m2 along the real axis to infinity. This region is called 

the physical sheet. 

We have shown for the equal-mass case that the only singularities 

of A whose location depends on one variable are given by normal thresholds. 

For s, t, u real, the singularities lie on curves having normal thresholds 

as asymptotes. For s real, none of the singular cuFves for which t is 

real are connected to singularities for 1,rhich t is complex except possibly 

at spurious turning points. 

Let us consider a spurious turning point as a function of t(s) 

but with t < 0. In order to approach this spurious turning point by 

analytic continuation we need to pass the asymptotes s = s and u = u c c 

of the curve, which themselves determine singular points and which lie on 

the cuts in the s, u planes. If we keep t real, s can become complex 

with a positive imaginary part at the spurious turning point. But, from 

Eq. (10.2), this will cause u to pass through the cut in its plane on 

,. . 

'v • 



UCRL-9136 

-73-

to a nonphysical sheet since it must acquire a negative imaginary part. 

Similarly if u gets a positive imaginary part, s will go off the physical 

sheet. This aspect of spurious turning points certainly requires more 

detailed consideration, but this suggests that they will probably not give 

any serious trouble to the validity of the M.R. 

If however a spurious turning point was to occur in the region s > o, 

t > 0 for a curve t = t(s); when s becomes complex above its branch cut, 

t could remain real while A(s, t, u) was singular. Now u would acquire 

a negative imaginary-part, but would not go off the physical sheet since its 

real part would be below the onset of the branch cut. This would cause 

complex singularities in the physical sheet and would invalidate the M.R. 

For this reason it is. necessary to extend the discussion of spurious turning 

points in positive spectral regions so as to exclude them rigorously to all 

orders in perturbation theory. 

The only other major point that has been consciously omitted from 

this paper concerns complex singularities that are disconnected from the 

real part of the s, t, u plane. Singularities are determined by the 

vanishing of D(a, s, t), where 

D(a, s, t) sf(a) + tg(a) K(a, m) • (10.4) 

If t and a are real and s complex, then D is not zero unless f(a) 

is zero. But f(a) can be zero only on normal thresholds t = t , where c 

s can be complex without invalidating the M.R., or a at a spurious 

turning point. This suggest that spurious turning points must be eliminated 

also for complex s • A second way for D(a, s, t) to become zero is 

that when s is complex some of the a's are also complex. This requires 
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that a C singularity has dragged the contour into the complex plane of one 

(or more) of the a variableso It seems unlikely that this will happen 

without there being a connection with a corresponding singularity with s 

real. However, although neither of these possibilities seem very likely, 

they both require further investigation before the M.R. can be proved. It 

is hoped that some of these points will be discussed in later papers. 
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FIGURE LEGENDS 

Fig. 1. Analytic continuation by moving singularities of the integrand and 

distortion of the path of integration in the complex a plane. 

Fig. 2. Diagrams (i) and (ii) show s- and t-partitions; (iii), (iv) and (v) 

show a generalized self-energy part and chains of these parts. 

Fig. 3· Examples of low-order, fully reduced diagrams. 

F~.g .. 4. Curves of singularities for diagrams (a), (b), and (c) of Fig. 3. 
~ 
~ No scale is shown, as only the general form of the curves is 

required. 

Fig. 5. Anomalous thresholds of type I give a curve of singularities of 

form (a)j those of type II (super-anomalous) give curves of type (b). 

The broken lines denote curves on nonphysical sheets. 

Fig. 6. Choice of 4-momenta in studying the general form of the discriminant. 

Fig. 7. Diagrams studied in worked examples. The numbers indicate labeling 

by Feynman parameters a1, a2, ••• , a10 • 

Fig. 8. Residual diagrams obtained by repeated differentiation of the 

general discriminant. 
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