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- ABSTRACT
Some methods are developed for studying the singularities of collision
amplitudes in perturbation theory as functions of two of the invariant
energies, s, t, and u. It is shown that:

(i) There are no singularities other than normal thresholds in the
physical regions of the physical sheet.

(ii) - For the equal-mass case there are no singularities in the Euclidean
region of the physical sheet.

(iii) The only straight lines of singularities on the real boundafy of the
physical sheet are normal singularities in the equal-mass case, and
in the general-mass case are either normal singularities or they
intersect the Euclidean region.

(iv) The curves of singularities on the real s, t, plane in the physical
sheet do not connect to surfaces extending into the region s real

t complex except at turning points of the curves.

(v) Turning points of curves of singularities in the physical sheet may

occur either when sufficient coincident singularities become alsc
end-point sihgularities, or when there is an accidental relation
‘between thé Feynman variables at coincident singﬁlarities. The former
correspond to anomalous thresholds; the latter are called spurious

turning points.



UCRI-91%6

=D
(vi) For the equal-mass case there are no anomalous thresholds and no )
anomalous turning points in the curves of singularities. ¥

(vii) Spurious turning points do occur in negative spectral regions, but here
it appears that they may not lead to complex singularities on the
physical sheet. There are no spurious turning points in positive
spectral regions in low orders in pertufbation theory and to all
orders for some types of diagram. It is plausible that there are
none for any diagram, but this is not proved.

The relation of this work to the Mandelstam representation is
discussed. All the proven results in this paper are consistent with this
representation. Some points are noted which require further investigation_
before the validity of the representation can be established t¢ all orders

in perturbation theory.
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I. INTRCDUCTION

The following hypothesis underlies recent work on sirong interactions
of elementary particles:
(1) Collision amplitudes can be determined from the unitary condition, the
iocation df singularities of the amplitudes in the physical sheet of the
complex invarianf energies, and some parameters related to the residues at
poles of the amplitude or to its value at an arbitrary point. ‘The parameters
must be found from experiment.

For the special case of collision amplitudes involving only two
particles incident and two outgoing and with certain restrictions on the
masses of the particles that may be formed in the collision, Mandelstaml has

proposed a further hypothesis:

(2) All singularities in the physical sheet lie on its real boundary.

This work was performed under the auspices of the U.S. Atomic Energy

Commission and the National Science Foundation.
T On leave of absence from Clare College, Cambridge, England°

+ Present address.
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For practical solution of the coupled equations resulting from these
assumptions, a third hypothesis is necessary:

(3) The form of the collision amplitude is dominated by the nearest
. singulafities in the physical sheet.

In this paper, we study the location of singularities of terms in
the perturbation series for a scattering amplitude. We will be concerned in
particular with the singularities on the physical sheet or on its boundary.
The aim of such a study of perturbation terms is to see whether it is possible
to deduce a form for the analytic structure of the amplitude itself by showing
that the structure is a characteristic of-all terms in the series. The
Mandelstam representation is an example of such a structure; and in this
paper a number of results are obtained which are necessary for the validity
of the representation, and which go some way towards esﬁabiishing sufficient
conditions for its validity. In examples where the Mandelstam fepresentation
does not apply, a form‘of integral representation will still be required for
use in conjunction with the unitary condition. It is hoped that the results
of this paper will be useful in setting up metheds to determine singularities
from which more general integral representations can be obtained;

The development of integral representations for collision amplitﬁdes,
and in particular the proof of the Mandelstam representation, requires
information aSout the singularities of the physical branch of the amplitude.
The physical branch is determined by taking the three invariant energiesl
s, t, and (u) to be real, and associating a small negative imaginary part,
-ie ,'with.each mass in an internal line of a Feynman diagram. The physical
sheet of two of the varisbles s, t, and u is obtained.by considering the
physical branch wifh one of these variables. real (sometimes it must be

given a small positive or negative imaginary part), and letting the argument
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of the other vary from O to 2x. The three variables are related by a mass
condition,l so that only two can be varied independently.

The procedure for obtaining information about singularities in
complex parts of the physicael sheet is based on a succession of steps, in
which information about singularities is transferred from one part of the
sheet to another by analytic continuation. It is shown in Section 3 that
the only singularities in the physical scattering regions of the physical
sheet are at normal thresholds for produetion of extra particles., This
result foliows from the unitary condition, though some use is also made of
the perturbation series. In Section 4 a result of Mandelstam is quoted to
show that for interactions of equal-mass particles there are no singularities
in the Euclidean region,2 This result is proved again by an independent
method later in the paper in Section 8 example (f). Any straight line of
singularities in the physical sheet must intersect either the physical
scattering regions or the Euclidean region. In the former case it must
coincide with a normal threehold, in the latter it must coincide with an
anomalous threshold. 1In the equal-mass case there are no anomalous thresholds,
and hence all the straight lines of singularities are known (Section 5). In
Section 5 we discuss the manner in which curves of singularities are
obtained for s, t, (u) real and in the physicai sheet. A classification of
curves of singularities is introduced which permits us to study generalized
Feynman diagrams in which all lines are on the_mass shell on the curves of
singularities. In the Feymman integral this means that we need”consider
only coincident singﬁlarities. It is noted (Section 5) that the anomalous
thresholds in fourth order occur when the curves of singularities have
turning points.a’u At these points the coincident singularities are also

end-point singularities, and the tangents to the curves are straight lines
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of singularities. The absence of this type of turning point in the equal-mass
case is established in Section 7 to all orders in'perturbation theory. It is .
essentially due to the fact that the only lines of singularities are given
by the normal thresholds. A

In Section 6 we study the general properties of the denominator
of the Feynman integral for a general term in perturbation theory° This

5

denominator is the discriminant” of the quadratic form in the internal momenta
of the corresponding Feynman diagram. The importance of the discriminant
D{a, s, t) is that it is stationary and zero at singularities of the amplitude.
The singularities on the physical sheet are identified by the requirement
that all the Feynman parameters ¢« should be positive. The discriminant

is a linear function of s and t,
D(a, s, t) = sf(a) + tgla) - K(a) . (1.1)

In the equal-mass case, K depends on the mass only through a factor m? o

It is shown in Section T that a curve of singularities can have a turning
point only when the coefficient: of s or t wvanish on the curve. It will
be noted that on the curve all yariables are a function of a single parameter,
‘which can be s for example. Similar results hold when turning points are
considered as functions of %, u or of u, s.

The importance of determining the turning points (if any) is that
only at a turning point of the curve of singularities (s, t real), can there ‘
be an extension on to a surface of singularities which intersects the
physical sheet for s real and t complex (or t real and s complex).

The vanishing of f or of g in Eq. (1.1) may occur either when a
sufficient number of the o variables become zero (these correspond to

anomalous thresholds), or when a general factor of f or g vanishes because
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of a special relation between the « variables at a point on the curve. The
latter will be called a spurious turning point, since it does mnot correspond
to a threshold. For the equal-mass case, there are no anomalous thresholds
and no turning points of the first type. If a spurious turning point occurs
in the region s > 0, t > 0 of the real part of the physical sheet, there
will be a curve of singularities éxtending fgom that point into the complex
part of the physical sheet. This would cause a breakdown of the Mandelstam
representation. It is therefore important to prove that there are no spurious
turning points in certain parﬁs of the real s, t plane.

In Section 8 a number of examples are wdrked-out for the equélamass
case which illustrate explicitly most of the features of the generdl theory
of Sections 6 and 7. In particular, spurious turning points can;be shown to
be absent for all ladder diagrams. A spurious turning point will always occur
whén a diagram has singularities in more than one spectral region but it is
necessary only to show they are absent from the spectral region where the
relevant two variables are positive. This is proved for a ladder diagram
with two crossed rungs and for the fully symmetric crossed eight-order
diagram (reduced). As an illustration of the general theory, a proof is
given that there are no singularities in the Euclidean region for the
equal-mass case.

In Section 9 the general form of the discriminant is studied further
in an attempt to show that there are no sﬁurious turning points in any order
in perturbafion theory. A reduction formula is obtained which permits the
discriminant for any diagram to be expressed in terms of simpler diagrams
in which one or more lines have been removed. The reduction formula is

adequate to prove the absence of spurious turning points for certain classes

of diagrams. The discriminant for a general diagram is analyzed and a
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plausibility argument is given for the absence of spurious turning points
from pqsitive spectral regions. b

In Section 10 the relation between the‘results of this paper and the o
Mandelstam representation is discussed. If it is assumed that the absence of
spurious turning points of curves of singularities has been made plausible,
two' further points must be considered. These are the possibility of disconnected
complex singularities, and the double application of Cauchy's theorem when all
three spectral regions contain singularities. The former problem can also be
discussed in terms of the vanishing of the coefficients of s or of t in
D(a, s, t). The latter requires, for example, the consideration of singularities
when s and t have small positive imaginary parts. It is expected that
this will suffice to take the contour of integration along the "safe" side
of the branch poinits at u = constant, and thereby avoid the complex surfaces
of singularities that extend from the curve of singularities in the u, s spectral
region at the spurious turning points. However this point is not analyzed in
detail.

A number of general techniques for discussing singularities are used
in the paper. Those developed elsewhere are described briefly in Section 2
so that notation and nomenclature will be accessible without constant

reference to other papers.
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II. GENERAL METHODS

(A) Definition of the Physical Sheet

A tepm in the perturbation series for a collision amplitude for

scalar particles will have the form,

n

. 1

F = l s e ) °

im e f dkl- / dkﬂ ]7 ) 5 - (2.1)
€ —» O+ : i=1 (qi - m "+ ie)

The variable q9; is the l4-momentum of the line i in the corresponding

Feynman diagram, and m, is the mass of the particle in this line. The 9

i
are linear functions of the internal momenta kj and of the external momenta

Py - The term F will be a function of the scalar products of the Pys but
these are not all independent. When the collision process involves Fermions

or pseudoscalar particles there will be more complicated numerators in Eq. (2.1).
The form of amplitude for this case has been described by Chisholm.5 In this
paper we are concerned with singularities of ﬁhe amplitude, and, apart from
possible complications or cancellations due to selection rules (which can be
taken into account in special cases), it is sufficient for this purpose to

consider only scalar particles.

When F describes a reaction,

1 + 2 - 3 + L, | (2.2)

it will be a function F(s, t, u), where

2 2 2
5 = (pl + pe) ’ t = (Pl + p)-l-) » u = (pl + P5) ’ (2°3)
and
4 Ly
2 2 2
p.~ = Ep, = 0 s+t+u = I . (2.4)
k = Tk’ 1% T Tk

The physical branch of F(s, t, u) where s, t, u are real is defined
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by the choice e > 0 in Eq. (2.1). The physical sheet is obtained by analytic

continuations of F in the range

0 < args < 271 , (2.5)

keeping t real. The variable u is defined by Eq. (2.4) when s and t
are given. Similarly the physical sheet includes the region in which F is
continued analytically from its physical branch in the range of Eq. (2.5) with

u real, and

0 < argt < 21x , s or u real, (2.5a)

0 < argu < 2x, t or s real. (2.5b)

It will be noted that the term physical sheet is defined here with a view to
relating it to the Mandelstam representation. The chosen definition is more
convenient for the methods in this paper than that uséd by Ta.rsk:’ul1L The
real s, t plane is on the boundary of the physical sheeto

The transformation of Eq. (2.1) by means of Feynman parameters and
subsequent integration over the internal momenta has been investigated by
Chisholm.5 The transformation introdﬁces FPeynman parameters al,,o.,an and

gives a denominator which contains the function,
- 2
¥k, a, 5, t) = Z a(q,” -m" +1e) . (2.6)
1 1 i

The function ¥ is a quadratic form in the internal momenta kj. Let
D(a, s, t) be the discriminant of ¥ as a function of the kj’ and let
C(a) be the discriminant of the quadratic form ¥y obtained from ¢ by
putting m, = 0, s8=0, t=0, and u = 0. Then Chisholm shows thatlthe

integral (2.1) becomes

L
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. s (D)t -2 - ) } «lda §¥ -Zay)  ca) .
F(s, t) (in") (o - l)!. 5 oy é n Do, s, t) n-24
(2.7)

This integral representation of the terms in the collision amplitude
has been used by & number of authors to study analytic properties. Particularly

7 Landau (see part (D)

important developments have been made by Nambu,6 Nakanashi,
of this section),8 Bjorken,9 and, from a different representation, by

Symansik,lo and Taylor.ll For the applications in this paper; we shall frequently
use the method of coincident singularities and end-point singularities first

used by the author12 and later developed by Tarski,)+ and by Polkinghorne and
Screaton,13 These occur when the discriminant D(, s, t) in BEq. (2.7)

becomes zero for coincident roots of one of the «&,, or becomes zero when one
L

of the ai is zero.

(B) End-Point and Coincident Singularities

A function f£(z), defined by

f(z) =

O

da gla, z) , (2.8)

may become singular at z = x if either (a) g(0, z) is singular as z

- approaches x, or (b) gla, z) has two singularities, one on each side of

the path of integration, which tend to coincidence as 2z approaches x .
The first condition is called an "end-point" or E. singularity, and the
second is a "coincident" or C singularity. In practice the singularities

of the integrand are either poles or branch points, and they appear always

to cause a singularity in the integrand when condition (a) or (b) holds.
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It is evident that if
ad
D(a, s, t) = 0O, (2.9) _
.
and 3,
either 0D = 0 or a. = O i=1 n (2.10)
cLuhel mi 2 1 ’ sevey ) °

then F(s, t) given by Eq. (2.7) may be singular. If Egs. (2.9) and (2.10)

hold for values of ai satisfying
a, > 0 , Ta, = 1, (2.11)

there will be either an E singularity or a double singularity at each
stage of the integration. If the double singularities are in fact C
singularities (and not both on the same side of the contour), the integral
F(s, t) will be singular.15 We will consider later the problem of showing
that Eqs. (2.9) to (2.11) lead to C singularities.

The boundary of the physical sheet (s and t both real) is obtained
by letting € —> O in the terms (mi2 - ie) of Eg. (2.1). This
associates each frequency, for which the lines in Eq. (2.1) are on the

mass shell, with a definite side of the contour of integration:

qio = t NY/ (mi2 + ,212 - ie) . (2.12)

These relations lead to singularities in the momentum-space integration which

may be either C or E. In the physical'scatfering regions of the physical
sheeet, these singularities can be directly interpreted. The 3-momenta
give' E singulérities s0 fhat they correspond to particles at relative
rest, and the sign of ie in Eq. (2.12) ensurés that singularities are

coincident only when the particles concerned have positive energy. It will
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be shown later that these are the only singularities in physical regions.

If instead of Eq. (2.1) some of the internal masses were written
(m2 + ie), the singularities coming from momentum-space integration no
longer have a simple interpretation in general, even in physical_scatteriﬁg
regions, Clearly, some of them will correspond to some particles having
positive and some negative energy while at relative rest, but others will not
require the 3-momenta to give an E singularity. The integral expressed in
terms of Feynman variables will no longer have the form of Eg. (2.7) but will
be another branch of the same function. We will consider now how to obtain

these different branches without carrying out the integrations.

(C) Analytic Continuation of Integral Representations

An integrai representation of a function, Eq. (2.8) for example, can
be analytically continued by wvarying =z i1in the integrand provided always
that the path of intégration is suitably distorted so that no singularity
of g(a, z) crosses the path between o =0, o= 1. It is permitted that a
singularity goes round an end point of ﬁhe path of integration to the other
side of the contour; and in general this will give a different branch of the
function. A number of possibilities are shown in Fig. 1. The path of
integration is from a¢ =0 to @ = 1 on the real axis for the physical
branch of the function; this determines on which side of the integration
contour the singularities lie: if, for example, =z = x + ie gives the
physicgl branch. Figure 1 (i) shows a typical C singularity, where the
location a and b of the singularities depends on z. If 2z follows
a path which causes a and b to move as in (i1) the final position is not
& C singularity. It will be noted thet to remove the C singularity, a has

gone around @ = O vwhich is an E singularity. Figure 1 (iii) shows how
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a C singularity may disappear when it passes through an E singularify,

and (iv) shows how it may be retained by taking a around the E singularity.
Figures (v) and (vi) illustrate how a singularity c¢ , which may nevef

enter the range of integration> O0<a< 1, my still lead to a singularity

in the integral corresponding to another branch of the function. These
analytic continuations under the integral sign have been extensively usgd by

Tarski,u

(D) The Landau-Bjorken Conditions

By considering the transformation from Eq. (2.1) to Eg. (2.7),

LandauB'and Bjorkén9 have shown that the conditions (2.9) and (2.10) are

equivalent to the conditions:

. 2 2 .
either " = mo, or . @ = 0, (2.13)
and
o = 0 2,14

where qi is a lY-momentum in an internal line, and the sum in Eq. (2.12)
is taken over all closed circuits in the diagrame

It ai = 0 fof any line, the conditiqn for a singularity can be
obtained from the reduced diagram in which the line i is "short-circuited"
(or reduced to a point). It should be noted though that although the
reduced diégram will determine this singularity of the "parent" diagram
correctly, it will not determine other singularities of the parent diagram
so that it cannot be used to determine the functional dependence of the
integral except near the particular singularity concerned.

The Landau conditions determine the location of singularities of

all branches of the function associated with a given diagram. Only when

a i
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all @, for a particular solution lie inside [0, 1], (with = @, = 1),
will the singularity lie in the physical sheet. Those solutions with some

o, outside [0, 1] are analytic continuations on to nonphysical sheets

i
and are C singularities with a suitably distorted path of integration.

Landau8 and Taylorll have used conditions (2.13), and (2.14%) to
construct dual diagrams consisting of directed vecﬁors of length m, which
satisfy the "equilibrium" condition. The dual diagrams were proposed also
by Karplus, Sommerfeld, and Wichmann5 in connection with third- and fourth-
order terms. In these examples, the dual diagrams were used to investigate
the nearest singularities only. They can also be used to determine the
algebraic relations that give higher-order singularities, not necessarily

9

the nearest ones.‘ll‘L M‘athewsl5 and Bjorken~ have also investigated equations

_similar to (2.13) and (2.14) using the analogy with electric-circuit theory.
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III. SINGULARITIES IN PHYSICAL SCATTERING REGIONS
It will be shown in‘this section that the only singularities in the N
physical scattering regions are normal thresholds for real competing processes.

We will consider for definiteness the region
2
s>(ml+m2) , u < 0, t < 0. (3.1)

With 8 = 1 + R, the unitary condition has the form,

(py> P, | (" + R) 4 pﬁ, p,) = -2 (p, PEI RT’nlnem)(nlngmlR 'pyph)-
nl’ne)‘tb -

(3.2)

Total energy and momentum must be conserved in all matrix elements. The

intermediate states nlne...) include any number of particies, whose total

rest mass satisfies
2
(= mj) Z s . (3.3)

There may also be selection rules that further restrict these states but they
will not be consideréd here. It is because we are considering the physical
region (3.1) that we can make the restriction (3.3) which implies that each
intermediate particle has posifive energy greater than its rest mass.

In a perturbation solution for R, the unitary condition is satisfied
to each order in the coupling constant. Thus if RZ denctes R ’to order £,

we have

T

(=,

+ Rz) = - P‘e = RE lnlnzooo)(nl 2600 \Rz 2 (3°)+)
D ,0,eee 1 : 1

where zl < (4=2), and Pg selects those terms on the right-hahd side

which are of order /£ or lower,
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Theorem %A

A necessary and sufficient condition for the amplitude to have a
branch point at s = 8, in the physical'region (3.1) isvthat 8, is a
normal threshold for a competing production process.

If R has a branch point at s =5, let R, be the term of lowest
order in the perturbation expansion to have this branch point. Then the
left~hand side of Eq. (3.4) is nonanalytic at s = S, Fach term on the
right-hand side is apalytic there since zl < fZ. BHence the sum must change on
the right-hand side so that an extra term is included, thus giving nonanalytic
behavior to match that on the left. This exfra term can arise only when it

corresponds to a new competing process. Hence; sc_ is a normal threshold

and we have

s, = (z mi)2 s ' (3.5)

the sum being over all particles in the state which is newly allowed as s

exceeds sc o

It will be noted that this argument involves not only analyticity

of the matrix elements,

(d; ¢ RZ a, b) , (5°6)

1

but also analyticity of the production amplitude,

(d; ¢

r T
2y

n, ne...) s (3.7)

for zl < £ . If the production amplitude was not an analytic function

of -s then we could consider the equation
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(d, ¢ |rR, T + R N, D.oce)
zl zl 172
= - T U 1 t 1 ‘
= P, '2 ' (4, c R, l n', n 2,,..,)(n 1 n'peee | Ry |nynge,
1 in'.n 2 2
12
(3.8)
and deduce that the production amplitude,
(4, c | R, T| n'. n'....) , (3.9)
22 172 .

for £2 < ﬁl < £ was not analytic. By repetition of this process, the
product}on amplitude of lowest order can be obtained. It must be nonanalytic

- at a point s = S if Rﬂ is not analytic there. But the lowest=order
1

production amplitude does not have any branch points. Hence, in the physical
scattering region all the matrix elements of Rzl mist be analytic except at
production thresholds.

Conversely if a new intermediate state is allowed on the right-hand
side of Eq. (3.4) at s = 87 let £ Dbe the lowest-order term for which
this competing process can enter the sum. The right-hand side is nonanalytic;
hence, in order to make the left also nonanalytic Rz must have a branch point
at s =s_ . A branch point in fth order cannot be cancelled by a branch

c
point in higher order. Hence R must have a branch point at s=s_ .

c
These singularities in the physical regions can be interpreted in
- terms of the conditions for singularities described in Section 2. This then
permitsAan extension of theorem BA to give information about nonphysical
regions of fhe physical sheet. It is useful to introduce some definitions:

An "s-partition" of a diagram is defined as a partition along a

single dividing line intersecting only internal lines of the diagram across
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which flows the total Y-momentum (pl + pe)} where s = (pl + p2)2. Similar
definitions are made for t-partitions and uspartitions,_énd s, t partitions

are illustrated in Figs. 2(i) and 2(ii).

Theorem 3B

If a diagram corresponds to a singularity in the physical region
where s 1s the square of the energy, it is always possible toc make at.least
one s-partition in which every line cut by the partition corresponds to a
particle on its mass shell;

From the Landau conditions, if a diasgram corresponds to a singularity,’
either every line is on the mass shell, or the Feynman variables are zero for
some lines and the diagram can be reduced. The fuliy reduced diagram has
every line on the mass shell. Either an s-partition can be made of the
fully reduced diagram or the LY4-momentum (pl + ph) passes through a single
vertex., If the latter is true the position of the singularity will be a
function of + only, (or alternatively of u only), and a te-partition can
be drawn. However, from theorem 3A the only singularities are at s = sC,
s0 there cannot be any that depend only on + . Neither can a t-partition
be made of the fully reduced diagram, therefore an s-partition is possible.
The insertion of lineé at the vertices of the fully reduced diagram does

not affect the s-partition and the theorem follows.

Theorem 3C
The fully reduced diagram corresponding to a singularity in the
physical region is always a "generalized self-energy part" or a chain of

these parts. (These are illustrated in Fig. 2, diagrams (iii), (iv), and

(v).)
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This theorem follows from the fact that the fully reduced diagrams
(in which by definition all lines are on the mass shell) which give singularities <*
at normal thresholds in the physical régions mist correspond to all particles
at rest relative to each‘other and with positive energies [the latter is a
"causality" requirement following from the use in Eq. (2.1) of (m2 - ie)].
This excludes the insertion of lines on the mass shell which change the.
self-energy diagram into a vertex diagram° _?he possibility of accidental
coincidences of self-energy and vertex singulérities is not considered as it
would occur only for veryaspecial values for the masses of particles, which
do not appear to occur in nature. A chaih of self=-energy parts must for
similar reasons have identical links. This type of singularity (of chain
diagrams) is felateduﬁg the unitary Eq. (3.4), and corresponds to a value
of s for which an ;dditional state becomes allowed in the sum on the
right-hand side, the left-hand siae is nonasnalytic, and also the terms on
ﬁhe right-hand side have branch points. It was to exclude this complication
that the proof of theorem 3A made use of the léwest-order term Which has
the branch point.

To_summarize: In the physical scattering regions (a) unitarity and
thé positive energies of physical particles requires that all siﬁgularities
‘(branch points) occur at normal thresholds; (b) the use of (m? - ie),
which is related to causality, requires that all singularities correspond

to fully reduced diagrams which are generalized self-energy parts.



UCR1~9136

2]

IV. THE EUCLIDEAN REGION

This region is defined by
s = (m, +m )2 t 2 (m, +m )2 u < (m +m )2 . (h.l)
-1 27 7 — 1 ys — V1 3

The definitions of s, t, and u in Egs. (2.3) can be satisfied in this region
by taking the external 4-momenta to be Euclidean vectors satisfying Eqs. (2.4).
For the equal-mass caSe, it has been shown by Mandelstam2 that

analyticity in the Lehmann ellipses can be used to show that inside the

complex region (in the physical sheet),

st u | < 288 n (4.2)

and

s+t +u = ot 5 ' ' (4.3)

the amplitude A(s, t, u) is analytic except for the expected poles at m2

and branch points at 'hmzo This proves analyticity in the Euclidean region,
and the .result is independent of perturbation theory.

An independent perturbation-theory proof of analyticity in the
Euclidean region will be given in Sectién 8, example (f). This proof is
also restricted to the'equal—mass case, but it makes very plausible the
possibility that the amplitude will be analytic in the Euclidean region in
the general-mass case provided the fourth-order term is anélytic there.
This result is also made plausible by the work of Bjorken9 and Taylor.ll
The general mass case will be discussed in more detail in~another paper.

An'independent proof in perturbation theory is needed because .

o

Mandelstam's result does not imply that each term of the perturbation
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series has the same property of analyticity. In fact our later result shows
this to be true for all diagrams in which the masses in the internal lines
are not smaller than those of the external lines. This is sufficient for all

diagrams in the equal-mass case since reduction by short-circuiting internal

lines cannot reduce any masses.
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V., SINGULARITIES ON THE REAL BOUNDARY OF THE PHYSICAL SHEET -
We next consi@er singularities of terms in the perturbation series for
an amplitude in the nonphysical, nonEuclidean regions of the real s, t, u
plane. This is on the boundary of the physical sheet when all nasses-are

written (m2 - ie) in the Feynman integral, s, t, u being real.

(A) Lines of Singularities

These are defined as arising from singularities whose position depends
on one of s, t, u only. From the discussion of Section 3, normal thresholds
correspond to lines of singularities in the physical regions. .These are
given by reduced diagrams which are generalized self-energy parts or chains
of these parts. The original diagram will have all those lines en the mass
shell vwhich are cut by one or more independent s-partitions,' The Feynman
variables of these lines will all lead to C singularities. Those for lines
not cut by the s-partition will give E singularities since the lines are
not on the mass shell. The location in the Feynman integrand of these C
and E singularities depends (for example) on s only; hence they will
remain d and E singularities as t veries into nonphysical regions of
the physical sheet., Therefore the normal thresholds in physical regions
extend to lines of singularities for all real values of +¢; this is the
boundary region of the physical sheet. They also extend to "planes of
singularities" for t complex,_and. 8 =8, real.

There may also be lines of singularities which arise from reduced
diagrams that are generalized vertex parts (or chains of these parts). The
location of singularities in the Feynman integrand depends on one variable
only, €.ge. s , and therefore 1f these lines are in the physical sheet in

one part of the real s, t plane, they will remain in the physical sheet
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in all parts. But from Section 3 we know that the only singularities in the
physical regions are normal thresholds. Excluding accidental coincidences for
special mass values, we conclude that vertex parts cannot lead to lines of
singularities which enter the physical region. These results are summarized
in the following theorem.
Theorem 5A

The only lines of singulafities on the real boundary of the physical
sheet are (a) normal singularities meeting the physical region at normal
thresholds,’(b) anomalous singularities, which, if they are present at all,
do not intersect the physical regions but do intersect the Euclidean region.
Corollary |

In the equal mass case the only lines of singularities in the physical

sheet correspond to normal thresholds,

(B) Curves of Singularities: Preliminary Discussion

Curves of singularities are obtained when the lines cut by both an
s- and a t-partition (or more than two such partitions) give rise to C
singularities in the Feynman integration. The resulting curves of
singularities are on the physical sheet when the Feynman parameters at the
C singularities are in the range [0, 1]. The number of s-partitions and
t-partitions associated with a given singularity give a measure of the
complexity of its structure. The simplest reduced diagrams are obtained
When just one s~ and one t-partition is made. These are indicated in
Fig. 3, diagfams (a), (b), and (c). The internal lines of these diagrams
in the eqpal-mass case may be any integral multiple of the elementary-
particle mass. It is instructive to consider these diagrams further, since

they illustrate characteristics which we shall later establish more

-
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generally. Diagrams (d), (e), and (f) in Fig. 3 illustrate some of the
reduced diagrams associated with two s-partitions and one tépartition;

In the equal-mass case, Fig. 3(a) has only one branch in the physical
sheet. The fact that the in&ernal lines have masses > m while the external
lines each have mass m is sufficient to exciude the possibility of'anomalous
thresholds. The form of the curve of singularitiesris‘shown in Fig, 4
(curve (a)), though the location of its asymptotes will vary with the values
of the internal masses.

In the general-mass case, Fig. 3(a) may give a curve of singularities

1,3,k This can be tested by reducing one of lines

with anomalous form.
a, b, c, ord toa boint and considering whether the resulting vertex part
has singularities on the physical sheet. If diagram 3(a) does not have
anomalous form when its internal masses are least, it will not have ancmalous
form at all.' If only the reduction of line a gives a vertex singularity
when b, ¢, and 4 have least masses, then Fig. 3(a) will have anomalous fonm.
for all values of the mass in the lines a, those in b, ¢, and d being
fixed. This shows that some types of anomalous threshold remain to arbitrary
order in perturbation theory when they are present in lowest order.

The diagram 3(b) can lead to a singularity for an s«partition, and
a t-partition, but not for a u-partition. Its singular curve for the
equal-mass case therefore lies in the region 's.> 8,7 t > tc, where S
and tc are the singular asymptotes obtained by reducing two of the lines
&, b, ¢, and d to a point, This curve can either be evaluated explicifly,lu

or by the more general arguments given later in this paper. It is shown as

curve (b) in Fig. k4.
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For the general-mass case in diagram 3(b),7the,possibility.of
anomalous thresholds must be considered. These can be checked by considering
the vertex part in which one of &, b, ¢, or d is reduced. This vertex part
has no singularities in the physical sheet in the equal-mass case, sO0 a further
reduction must be made. It will be noted that if Fig. 3(a) does not give an
anomalous threshold, neither will Fig. 3(b) since the corresponding vertex
part of the latter has at least one internal mass larger than the former. The
same argument also applies (more strongly) to diagram 3(c) where the vertex
parts will have two lines with additional mass and cannot have any singularities
in the physical sheet if Fig. 3(a) is not anomalous (selection rules are not
considered here).

A new feature arises with Fig. 3(c), since it can give singularities
for an s-~, t-, or u~partition. The curve of singularities therefore has three
branches in the physical sheet. For a normal case, these are indicated by
curves (c) in Fig. 4. The same principle as before determines the asymptotes
for which pairs of lines (b, d), (a, c), or. (e, £f) must be reduced to points.
The indicated form of the singular curve 4(c) will be justified in more detail
later. (Section 8(d)). |

In the equal-mass case diagram 3(d) cannot give a singular curve on
the physical sheet when all internal lines are on the mass shell and correspond
to single masses. This follows from the fact that it contains an internal
vertex part which has no singularities in the physical sheet. Thus its only
singularities involve the wrong frequency condition (m? + ie) on one of its
lines, and this would impose the same requirement on 4(d) itself. This result

can also be obtained by an algebraic method given in Section 9.
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Another tyﬁe of singular curve to which special attention must be
given in considering general terms is illustrated by the anomalous-thresholds
curves from the fourth-order term, diagram 3(a). In the general-mass case,
its regular form is shown by Fig. 4(a). Other possible forms of curve along

which 1im A(s, t, m 2. ie) is singular (analytic continuation with s

€ —0 i
and t real is made before the limit is taken) are shown in Fig. 5, curves
(a) and (b).lL Curve 5(a) has a single branch which goes on to a different
Riemann sheet at each point of tangency to a line singularity. It should
however be noted that the complex-conjugate amplitude A+(s, t) will be
singular on the broken part of the curve. Therefore the continuous plus the
broken part of.the curve form the boundary of the spectral function. For
this type of singular curve, the Mandelstam representation still applies to
the fourth-order term.l’u Curve 5(b) illustrates anomalous thresholds of
type IT. It has two branches in the physical sheet and the Mandelstam
fepresentation does not apply to the fourth-order term when this type of

singularity occurs.l’4

It has been noted by Tarski in connection with the anémalous curves
shown in Fig. 5 that the slope of the curve /—7 determines the relative
sign of the imaginary parts of s and +t on the surface of singularities
Z(s, t) near its intersection with f7 .h Thus, when (d§/dt) is negative
along /~7(s, t), the imaginary parts of s and t have opposite sign on
(s, t). We shall later require a particular investigation of points where
(ds/dt) is zero (or infinite) since at these "turning points" it is possible
for t (or &) to become complex while s (or t) remains real.

At the turning points illustrated in Fig. 5, one C singularity

has moved to ai = 0 s0 that it is also an E singularity. At this point,
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therefore, the curve of singularities coincides with the relateq line of
singularities. On the broken part of the curve, the singularity in the
integrand of A(s, t) has slipped off the contour of integration [0, 1],

as illustrated in Fig. 1,(iii); For the complex-conjugate function At(s, t)

however, analytic continuation will lead to a distorted contour as in Fig. 1(iv).
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VI. PROPERTIES OF THE DISCRIMINANT, D(a, s, t) .

In this section the general form of the discriminent D of the
quadratic ¥ , Eq. (2.6), will be studied.- The information obtained will
be shown in Section 7 to be.useful in determining the absence (or existence)
of turning pbiﬁts in curves of singularities. The importance of turning
points is that sometimes they lead to complex singularities in the physical
sheet. Our main objective is therefore to prove their aBsence under certain
conditions which will be described later.

The discriminant is defined by the transformation of Eg. (2.6) to

diagonal form,

_ 2 2 _ , 2
vy = Z ozi(q_i - m "+ ie) = = ¢y k gt a, s, t) . (6.1)

The 4-momentum 9y in a typical internal line is a linear function of the
extefnal momenta Py and the internal momenta kj with coefficients O, I
The coefficients cj are functions of the « , and are positive when all

the Qa's are pdsitive. This follows from the fact that the left-hand

side of Eq. (6.1) excluding the mass terms is a positive definite form in

the internal-momentum veriables. The transformed variables - k'j on the
right-hand side of Eg. (6.1) are linear functions of the kj and the
external moments pj. The @iscriminant D can be'expressed uniquely in
terms of any pair of the invariant energies s, t, u given by Egs. (2.3)

and (2.4). Its form depends on which pair is chosen. The symbol o« will

be used to denote « Opyeees@ , collectively. The masses m, in Eq. (6.1)

ll
will not be assumed equal unless this is explicitly stated.
The main technique to be used for discussing the properties of

D(a, s, t) 1is based on its invariance under different choices for the
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paths of the external momenta through a given diagram and under different
choices of circuits for the internal momenta. A second technigue to be used
later is based on the relation between D(a, s, t) and D(a, t, u) which
can be obtained by substitution from Eq. (2.4).

The left-hand side of Eq. (6.1) has the form,

Ta,.k.k, + 2Zb. k., + ¢ . (6.2)
ij 17 i1

The coeffigients aij’ bi’ ¢ all depend linearly on <& . The aij do not
depend on other wvariables. The bi depend linearly on the external momenta.
The term ¢ depends linearly on the squares and products of external
momenta and on the squares of the internal masses. The discriminant of

Egs. (6.1) or (6.2) is

1
|
%10 %o’ i > Py
[ .
%210 fopr P2 -
D: -,l-&\‘-.§v~.<ouo
. !
17 P SR b

Expanding by the last row and last column, we have

D = -2 Aij(a) by by o+ cla) e , (6.4)
where
%117 B2 E > B
aei’ Gop | > Bay
L
Cla) = [t b (6.5)
810 B2’ : Y ° |
|
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The coefficient Aij(a)‘ in Eq. (6.4) is the co-factor of 8 in ¢(a).

i

the external momenta or the squares of the external masses. They can therefore

The products b bj in Eq. (6.4) involve either scalar products of

be expressed in terms of s, t, and the squares of external masses, giving
D(a, s, t) = sfla) + tgla) - Kla, m). (6.6)

Each term in Eqg. (6.6) is homogeneous in the « and of degree (4 + 1), where £

is the number of internal-momentum variables kj o

Lemma 6A
The discriminant D(@, s, t) is quadratic in each Qo
Choose the internal circuits for kj,.and paths for the external
momenta so that a particular ling with momentum q; say, has qi = kl s
This is always possible for diagrams with singularities depending on both

s and t, and we are not considering others here. - Then we can write

8, = Oy c = ¢ - amn s (6.7)

where c' is independent of @;, and no other term in Eq. (6.3) contains

o7 This proves D(a, s, t) is quadratié in a5 and since this line was

1°
arbitrarily chosen, lLemma 6A followso
From Eq. (6.7) we also obtain Lemma 6B.
Lemma 6B
The term in D{(a, s, t) which is independent of s and t has

the form

n I
Ko, m) = = a®n®k(a) - = a mf k() - I B ()
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in which m, denotes an internal mass, and Mj an external mass. The
coefficients Ki(a), K'i(a), and K”j(a) are sums (or differences) of
préducts of the « in which no &, ~occurs more than once. They are
homégeneous of order (4 - 1), £, and (£ + 1), respectively. Similarly
&e obtain Lemma 6C.
| | Lemma 6C

The coefficients f(a) and g(a) of s and t in D(a, s, t)
‘are each the sums (or difference) of products linear in each «a and of order
(£ + 1),

B Further information about the association of different o in f
ana,jg can be obtained by a particular choice of variables., This is
illustrated in Fig. 6. The internal variables are chosen so that the external
momenta appear only in the lines shown in the diagram. The remaining
intefnal lines are not shown, though the fact that there may be junctions with
the lines éarrying external momenta across the diagram is indicated. In
each of the lines shown the external variables are combined linearly with
the internal variables. The points of entry (or leading intersections) of
the external lines with the diagram are marked A, B, C, and D.

Using mass shell conditions and definitions [Eq. (2.3)], we obtain

(p +a)® - Maz, (p - 0)° = Mb2 , (6.9)
pPrgs = 2men®),  peaf - FZin®, (6.10)
2pg = 2 (% -n?), epg = 2% -u7), (6.11)
and {
2 2
s = Lp, t = (qg+q)", u = (g-4q)" . (6.12)
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Hence we have
1, ¢ o 1
2 qq_' = t - ( 2 M ) - -8 o (6.15)
2 o 2

This equation shows that we can identify the coefficient of t from the
coefficient of 2 qq' in formula (6.6) for D. The Y-momenta q and q'
occur only in the quantities bi in D. (q? and q'2 also occur in ¢

but can be eliminated by Eqg. (6.0) in terms of s given by Eq. (6.12).)
From Fig. 6 we see that if ai multiplies q it does not multiply gq'.
This is a comsequence of our construction in Fig. 6, where the lines carrying
g and q' do not have any internal line in common. If there was an internal
line in common, qq' would apparently involve a coefficilent a12 from that
line. However from lemme 6C, + and therefore qq' must only have
coefficients linear in al; therefore this a12 term must cancel with

another. For this reason we shall restrict the q and ¢' lines to have

no internal line in common.

Lemms, 6D

Each o, in the q 1line of Fig. 6 must be associated with an
o in the gq' 1line, in the product (q - q’)ai Uyeee o This result

holds for every independent pair of ¢, g' lines, and gives Iemma 6E.

Lemma 6F
The coefficient g(a) of t in D(x, m, s, t) is a sum of products
of @ . Each product contains one ai from each independent g 1line in
the diagram. A q 1line is one of any pair carrying the hamomentum whose
square is equal to t ..

It should be noted that there may be cancellation of some terms

so that Lemma 6E does not mean that every «a, from each independent ¢

i
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line must occur in g(a). This cancellation will be considered further after

considering the relation of the form of D +to the form of the curves of

singularities, . >
The form of - f(a) can be studied in a similar manner by interchanging

the external vectors in Fig. 6. This is necessary since, with the labeling

of Fig. 6, the quantity s occurs not only in products p2, but also in

qe, q'g, and qgq', so that there is in general a lét of cancellation.

Relabeling Fig. 6, we take now

P, = P+Q Py = P' -, (6.1ka)
. o - ¢ - - - .
P, = -P' - a4 Py P+q. (6.14p)
This gives
2 2 1 d 2
s = (p, +p)° = (p+p')" = 2pp'+ 5t + £ M° .
a b 2 a I

(6.15)

The coefficient of s in D, namely £(a), can now be identified from the
p and p' lines which connect A to D and B to C , respectively, in
Fig. 6.

We shall also require the form of ' D when expressed in terms of
u, s, or in terms of t and wu. This may be obtained in two ways and the
fact that both must give the same answer gives further information aboqt D.
The first way is obtained from Eq. (2.4),

a o , .
t = I Mj - S5 = U (6.16)

a

" Then Eq. (6.6) gives

D(a, u, 8) = u {-da) + s (f(a) - gW)}v—Kw,m)~gM)ZMfa
(6.17)
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Similarly, we obtain

D(a, t, u) = t{ﬂa)»ﬂaﬁ -+u{fﬂa) -Km,m)-fm):MjQ°
(6.18)

It should be noted that the convention of Mandelstam has been adopted in the
notation of Egs. (6.6), (6.17), and (6018)°l The form of the function D
depends on the variables in the bracket; thus D(a, u, s) has not the same
form as D(a, s, t) but is related to it by Eq. (6.16). When s, t, and u
satisfy Eq. (6.16) the numerical values of the expressions in Egs. (6.6),
(6.17), and (6.18) are the same.

The second method of obtaining Eq. (6.17) is to study the form of
D(a, u, s) in terms of a products by using diagrams similar to Fig. 6.

From Fig. 6 itself we obtain

2
Mj .

oMo

Y- 2 1 1
u = (p,+2,)" = (a-4a)"= -2qga + 38+ 3

(6.19)
Thus the coefficient of u in D(a, u, s) is given by the coefficient of
(- 2 q@'). This is simply -g(a), as we had already obtained by means of

the transformation Eq. (6.16) for Eq. (6.6) to Eq. (6.17). However new

information will be obtained if we consider the coefficient of s in

D(a, u, s) ,

no) - £a) - ga) . | (6.20)
We must now choose variables in Fig. 6 so that

P, = P+ P, = P'-4a, (6.21a)

and
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= - = D! - - .
P, = -P+a, Py P'-q (6.21b)

‘Then the coefficient of s in D(a, u, s) is the coefficient of 2 pp' in
the expression . (6.3) for: D. - bHence h(x) 1is a sum of products of the
o variables. Kach product contains éne a, from each line joining A +to C,
and one from each line Jjoining B to D. As before, not every ai from
these lines will occur as some may cancel. From Eq. (6.20) we see that every
product term in f(a) which does not contain an @, fromeach A to C
line and each B to D 1line, must also occur in g(a) with the same
coefficient and the same sign.

Examples of these general properties will be given in Section 8,
and they will be furfher utilized in Section 9. We will consider next in more
detail the term in D(d, s, t) which ié independent of s and t. It is
convenient now to restrict all external masses to have the same value M.

Then from Eq. (6.6), we have

K(a, m) = «D(@, s =0, t =0). (6.22)

This can be evaluated, in principle, with the labeling used in Fig. 6 and
p=0, g=-q', giving
P, = =P, = P, = -Bg = Q> (6.23)

and

& = . ' (6.24)

Since the internal masses occur only in the combination X Q. mi2 , and
the external momenta satisfy Eq. (6.23) and Eq. (6.24), we can write K(a, m)

in the form

Kla, m) = = o, mi2 Ke(oz) Y Kl(oz) . ' (6.25)
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This form is consistent with Eq. (6.8), and from Lemma 6B, Ki(a) and Ké(a)
afe each homogeneocus in the o and linear in each ai°
We can obtain Kl(a) by putting all internal masses m, equal to

zero; and Ké(a) by taking all external masses to be zero. Take first
m, = 0, i=1, 2,000, & (6.26)

Then M?Ki(a) is the discriminant of

v s O‘i qi2 , (6.27)

where, from Eq. (6.23),

q = &9 + 5 oe,.k, , . (6.28)

and

+
e, = 0 or -1, | 5 = 0O or =-1. (6.29)

Eéch 9y contains at least one internal momentum,.and some contain also
the external momentum q. In the discriminant MQKi(a), the 4-momentum
g will occur only in the form q? = M? . Hence in considering properties
of the discriminant rather than the quadratic form we can feplace the
h-momenta kj by scalars kj ahd the external Y-momentum g by M. This
gives, instead of Eq. (6.27),
. | 5

v, = Za )J: (&4 X, 48y M)~ . (6.30)

When the Q's are all positive{ wa is a positive definite quadratic in

- .

the xj and must therefore have a positive discriminant. Hence we have

Kl(a) > 0 vhen @, > 0, i=1, 2,..0,n0. (6.31)
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A similar condition can be obtained for Ké(a) by taking

m, £ 0, M= 0. (6.32)
Then I &, mi2 Ké(a) is the discriminant of
V. = Za (2 e k)2+2am2° : ' (6.33)
3 it %15 i ™

and Ké(a) is the discriminant of

2 |
¥, = zai(g;eij xj) o | B (6.34)

This is positive when the a's are positive, and hence we have

Kg(a) > 0 when a, > 0, i=1, 2,.00,n. (6.35)

We consider next the relative magnitude of the two terms on the
right-hand side of Eq. (6.25). The masses will ﬁow be restricted so as
to include fhe general reduced diagram arising for equal-mass interactions.
The unreduced diagrams have equal masses m in every internal line, and
the external lines each have mass m. The reduced diagrams may have larger
masses than m by a factor of an integer = 1; their external masses are

unchanged. We therefore assume that

M & omo, 1=1, 2,..0,n. (6.36)

The discriminant M2Kl(oa) of ¥, in Eq, (6.30) is a determinant of the form,

a |
ij ? b i

(6.37)

bt R c!
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in which a,. =a,,, and for all <, > 0 we have
ij i i

a

13 | = ¢la) > 0, | ' (6.38)

where C(a) is defined in Eq. (6.6). The b', in expression (6.37) is a
special value of the b, in Eq, (6.4).

Expression (6.37) gives

M2Kl(oz) = o' ola) - izj o'y by Ay (6.39)

where A, . is the co-factor of 8 5 in the determinant (aij)' The second

term in Eq. (6.39) has a discriminant
H Aij | = l n-l {C(a) }n'l > 0. (6.%0)

Hence, from Eq. (6.39), we have

aij

M2Kl(a) < e' ¢(a) when a, > d, i=1,e0.,n. (6.41)

From Eq. (6.30) and expression (6.37), we obtain

n 2
e = s a. (e, M ., . (6.42)
i=1 + %

From expression (6.5) and Eq. (6.33), we obtain

K@) = o) . | (6.43)

From the definition of e and restriction (6.36) on the masses, when all

ai are positive we have

Zoe, W? < zo ¥ £ Zom® . (6.44)
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Combining expressions (6.41), (6.43), and (6.44) and using the definition

in BEq. (6.25), we obtain

K(a, m) > 0, for a, > 0, i=1,0e0,n,. (6.45)

We state this result as a theorem.

Theorem 6A
The discriminant D(a, s, t) for any reduced or unreduced diagram in
an equal-mass system, evaluated at the point s = t = 0, is always negative
when all Q's are posiﬁive;
We consider next the values of the derivatives of K(a, m) with
respect to @, i=1,...,n. First we note that Ké(a), (or cC(a)), is
linear in each o, and it is the discriminant of Eq. (6.34). By a suitable

choice of the internal momenta, Eq. (6.34) becomes

¥, = Qa X 2 4 g a.(Z e,, x )2 . (6.46)
i 171 . it 7 ij 73
ip2 J .
The coefficient of al in Kg(a) is the discriminant of wg when
Xy = 0 and is positive when the « are positive. Hence we have
o (@) > y 6.4
E-Ei- X, o) 0, when a; > 0, J=1,0e4,n0 (6.47)

From Egs. (6.25), (6.39), (6.42), and (6.43), we can write

K(a, m)

2 2
Lo, m Kz(a) - =z ai(ei M) Ke(oz) + = Aij b, bj (6.48)

2 2 :
a(n® - e M) Kpl@) + Z A b by (6.49)
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We have shown already that the first term on the right of Eq. (6.49) is
positive [see Egs. (6.35) and (6.44)], and increases with each o, [Equation .
(6.47)]; The second term is positive [seé Eg. (6.40)]. In order to study the
derivative of this term we note that M?Kl(a) given by Eq, (6.39) is the
discriminant of WQ given by Eq. (6.30). We can choose the internal momenta
and the path of the external momenta of’vK° (6.23) through the diagram so

that we have

L e,.XxX. + e, M)2 .. (6.50)
G % B i

J
The discriminant of V¥, 1is of the form Eqg. (6.39) in which it is clear from

Hence the derivative,

Eq. (6.50) that the b, will not depend on «.
0 6
Sa B, Ayyby by (6.51)
1 i,
will be the discriminant of the quadratic form
2
z ozi.( Z ey, x.)" , (6.52)
i>2 J Jdod

in which x, is put equal to zero. This is positive definite when the

1

a's are positive, and we obtain for o positive (since al was chosen

-

arbitrarily),

d

Sa Z A by by > 0 (6.53)

Since both terms on the right-hand side of Eq. (6.49) increase with .,

we obtain Theorem 6B.

Theorem 6B
The discriminant D(a, s, t) for any reduced or unreduced diagram

in an equal-mass system, evaluated at the point s = t = 0, is a negative
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and decreasing function of each a when all the a's are positive.

In terms of K(a, m), this gives for &, > 0, J = l,ec.,n,

J

?;%Y' Kla, m) > 0, i=1,000,n. (6.54)
i

The next section will describe the detefmination of some general
characteristics of the curves of singularities from the discriminant D.
Some of the properties of D obtained in this section will be illustrated
in applications in Section 8, and used further in discussing the general term

in the perturbation series in Section 9.
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VII. SINGUIARITTIES AND THE DISCRIMINANT

(A) Turning Points in Curves of Singularities

A ﬁurning point in a curve of singularities is defined as & point
where the tangent to the curve is pa:allel to one of the coordinate axes; -
s, t,'or u. Their importance is due to their connection with complex
singularities in the physical sheet. This will be described later in this
section [Part (E)].

The curves of singularities are obtained in principle by solving

the equations

o D(a, s, t)

Jda,
1

O, i = l,ooo,n, (701)

where D(x, s, t) is the discriminant for a fully reduced diagram. Since
these equations are homogeneous in o , they lead to a condition on s, and

t which is the equation of the curve of singularities, say

t = t(s) . (7.2)

When Eq. (7.2) is satisfied, the actual values of the « at a singular

point are obtained by solving Eq. (7.1) together with

n
Z al = l . (7’5)
1
These give each ai as a function of s :
ai = ai(s)) i = l,oto’no (7oll')
Since D is homogeneous and of order £ in the «a , we have
n
£ o 2% b) _ yopq, s, ). (7.5)
1t %
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Thus Eq. (7.4) gives a function D(a(s), s, t) which is zero along the curve

of Eq. (7.2). Hence we have

6 = an(a, s, t)

ds
| n dox,
_ 93 D(a, s, t) +5Dm,&t)ﬁ_+ 0 D(a, s, t) i
- 0 s dt ds . oa ds °
. i=1 i
(7.6)

The last term in Eq. (7.6) is zero on the curve, from Eq. (7.1), and D(a, s, t)

has the form from Eq. (6.6),
D(aJ S, t) = vSf(a) + 'bg(ct)‘ = K(a: m). - (7.7)

Hence along the curve of singularities, we have

dt o , :
I - &) (7.8)

This leads to Theorem TA.

Theorem TA
If a curve of singﬁlarities has a tangent, t = constant, in the
s, t, plane, then the coefficient of s in the discriminant D(a, s, t)
must vanish at the point of tangency,

0 D(a, s, t)

32 fla) = 0. (7.9)

This theorem applies to the general-mass case.
The point of tangency will be called a "turning point". Theorem TA
has a similar form for turning points s = constant in the s, t plane,

and analogues for turning points in u.
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There are two distinct ways in wﬁich the tﬁrning-point-theorem TA may
be satisfied. These will be called "anomalous turning points", and "spurious
ﬁurning points". The former are so called because they are always associated
with anomalous thresholds. The latter are not associated with any thresholds at

all. It is important to distinguish between these two types of turning point.

(B) Anomalous Turning Points

These will occur if, along a curve of singularities /-?(s, t) in
the real s, t plane in the physical sheet, f(a) becomes zero because
sufficient C singularities become also E singularities. From Lemma 6E
this requires at least that all the @, in f(a) which are associated with
a particular p or p' line (in the sense of Lemma 6D) become zero at the
turning point. Iet us assume there is such a turning point. Then when this

set of «a, is zero (denoted by a'), we will have
D(a", a' = 0, s, t) = tgla") - Km o"), (7.10)

where " denotes those Q's whiéh are not included in «'. Since the
turning foint is on /Fj(s, t), the right-hand side of Eq. (7.10) will
satisfy the Landau conditions with all the a" giving C singuiarities.
But this expression is the discriminant for a reduced diagram that depends
only on t. Hence it gives a line of singularities which is in the physical
sheet if the turning foint is in the physical sheet. Clearly at the
turning point the line of singularities is tangent to /r7(s, t).

We know that in the general-mass case, the diagrams whose
singularities depend only on t must, when fully reduced, have the momentum
(q + q') passing through a single vertex somewhere in the diagram. It must

therefore reduce to a vertex part or chain of these parts at least (possibly
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of course to self-energy parts). This permits us to extend Lemma 6E, giving

Lemma TA.

Lemma TA

The coefficient f(a) in D(a, s, t) is a sum of products of « .
Each product contains one a, from each independent "s~path" in the
diagram. An s-path is any connected set of lines which when reduced to a
point gives a reduced diagram depending only on t.

No ai occurs more than once in any product. The sum of momenta
in all independent s paths is (pa + pb). Similar lemmas hold for g(a)
and t paths, and h(a) and u paths.

From theorem TA and Lemma TA we obtain Lemma TB. '

Lemma 7B

If a curve of singularities in the phyéical sheet has a turning point
with tangent parallel to the s axis where the « in just one s~path becomes
zero, the curve changes from the physical sheet to a nonphysicel sheet at the
point of tangency.

This lemma follows from the fact that f(a) is an odd function of
those values of « which are zero at the turning point, and f(a) changes
sign since (dg/aé) changes sign. Hence, sbme o values become negative,

which means we have a nonphysical branch on one side of the turning point.

(C) Tangency at Normal Thresholds

In the equal-mass case, there are no anomalous thresholds in the
physical sheet. Hence the only lines of singularities at which a curve
may have a turning point are the normal thresholds. At a normal threshold,

t = constant, all the «, in f(a) become zero except those (if any)

i
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which are in the self-energy part of g(a). It can be verified in any example
that this causes f(a) to go to zero faster than the right~-hand side of

Eq. (7.10) (a self;energy part now), in the neighborhood of the normal
threshold. Hence s must tend to infinity at the point of tangency. This

will also be true for normal thresholds in the general mass case.

Lemma TC

Tangency at normal thresholds occurs only asymptotically.

(D) Spurious Turning Points

When there is a sufficient degree of symmetry between s and u

paths, it will be possible to have

f(a) = O, , (7.11)

without any of the a's becoming zero. This leads to a turning point_which,
since it involves no E singularities, is not associated with a line of
singularities t = constant. An example of such a turning point is given by
curve (c) in Fig. 4 in the region u > 0, s > 0. The factor which become
zero at this point is given in Section 8, example (d). When Eq. {7.11) holds,

the expression (6.17) has the form -
. rL .
D(a, w, 8) = u {-gla) y + s -g(a) - Kla, m) - gla) = Mj .
(7.12)

Then we can write

du
= = -1. | (7.13)

Any curve of singularities of the normal form in the wu > 0, s >0,

spectral region will at some point satisfy Eq. (7.13), and will have a tangent
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line t = constant. This line does not give a threshold value. -These spurious

turning points in t for t < O occur in fourth-order perturbation theory

and do not prevent the proof of the Mandelstam representation iﬁ that order.

We will consider later their implications for higher-order terms, (Section 10).
A more dangerous possibility is the occurence of a spurious turning

point at t = constanf > 0. These will be considered in some specific

examples in Section 8 and will be proved not to occur. They will be considered

in Section 9 for the general term in the equal-mass case and an argument for

their absence will be given, but not a proof. The particular danger from

them will be indicated in Part (E) of this section.

(E) Turning Points and Complex Singularities

A general diagram has the discriminant, Eq. (6.6),
D(a, s, t) = sfla) + tgla) - kK(a, m). (7.1%)

The path of integration over the variables « in Eq. (2.7) is from O to 1
along the real axis, unless analytic continuvation forces a distortion of the
path of integration. We consider the circumstances in which s can become

complex with a small imaginary part while t remains real. Wé ‘take

(7.15)

and let s be small enough to consider first-order terms only, but large

2
compared with any imaginary parts of K coming from (m2 - i€). Then if
D remains zero, and the amplitude singular, when s becomes complex while

t and o remain real, we must have

fla) = 0. . (7.16)
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This result can also be obtained by considering the intersection of the
two-dimensional surface (s, t), in the four-dimensional space (s and t
complex) with the curve /_7(5, t) for which s and t are_realog Both

Z and /F7 satisfy the equation
t = t(s) . (7.17)
The derivative (dt/8s) is independent of the direction of differentiation,
1
and hence if % remains real on X(s, t) near / (s, t), we must have

dt |
= = 0. (7.18)

Theorem 7B

Singularities on curves in the real part of the physical sheet do
not extend into the complex part of this sheet (one variable real) except
at turning points.

It is not always the case that turning points lead to coﬁplex
- singularities in the physical sheet. For example in fourth order for
one type of anomalous threshold, the turning points do not lead to complex
singularities in the physical sheet, but for another type they do. Evidently
in the former case the C singularities, which become also E singularities,
fall off the contour of integratiqn as s goes complex. In the latter they
» drag the contour with them. |

The absence of anomalous turning points in the physical sheet excludes
the possibility of one'type of complex singularity. We have therefore to

consider those from spurious turning points, and also to consider the

possibility of complex singularities that are not connected to any singular
curve in the real part of the physical sheet. These will be discussed further

in Section 10.
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VIII. APPLICATIONS AND EXAMPLES
In this section the general theory is illustrated by examples that
are selected so as to bring out a number of features characteristic of more

general diagrams.

(A) Normal Thresholds

A generalized self-energy part, with n 1lines joining two vertices,

has an integrand giving, under transformation to Feynman variables, a

denominator
¥o= al(kl - p)2 + nz;:l ai(ki - ki+l)2 + o kn2 - %Q‘i mi2 . (8.1)
If we write p2 = s, the discriminant is
D(a, s) = Q) Opeeet 5 - .g a, mi2 .g Egég%;gﬁl . (8.2)
i=1 J=1 d

The coefficient of s gives a simple illustration of ILemma 6E.
From Eq. (8.2) we obtain

2

n
D{a, s) > Q) Gpeeed S - (g mi) (8.3)

for ai >0, i=1,.e0.n. It is clear that for

s > (= mi)2 , we have D>0. (8.4%)

When s is less than ( = mi)2 there is a region in « space in which

D 1is negative. Hence there is a singularity of the amplitude at

58 = s = ( § mi) . ' (8.5)
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This is the normal threshold above which production of particles with masses

m m » m
1’ "2’***"n

is allowed.

’(B) sSimple Ladder Diagrams

These are ledder diagrams which do not contain any crossed lines.

Label the lines as in Fig. 7(a), giving

P '  2
¥ o= al(kl +p)° + au(ke - kl) + a7(k5 - k2

)2 + aee

2 2
+ ae(kl +q)° o+ a5(k2 + )+ ees

The discriminant is

D(a, s, t) =

From Eq. (6.1%), we have

and

1l

2 2 - 2
- ' - ' ¢ -
(8.6)
- - 1
al + a2 + a3 + an, au B 0 , alp + aeq aaq
- - t
), y Q) + a5 + g + Qo ~a7 s a5d - O
O » "a,? ] a7+ se ey .o
- ! - ! - L T @ ee
(8.7)
1 1 2
1 —_— —
291"+ 3t + 5 LM (8.8)

b2 . (8.9)
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The coefficient of t in Eq. (8.7) is simply evaluated by Lemma TA, which

gives, in the notation of Eq. (6.5),

gla) = Q) Oy O eee Umel (8.10)

The coefficient of s is the coefficient of 2qq' 'in Eq. (8.7). This gives

fla) = o, a5 d25 + a5 O d56 + oeee (8.11)

where d25, d56’ .s. are positive when the Q's are positive, and

dpg = Z (4, 5, 6, T)(7, 8, 9, 10)(10, 11, 12, 13)... . (8.12)

Each term in the sum is a product ai aj ak ‘e i;( J, 1 -/k, j;lk,e.o,

with 1 taken from the first bracket, Jj from the second bracket, etc.
Since both f(a) and g(a) are positive when the a's are positive,

we obtain the result: if a fully reduced simple ladder diagram has a curve

of singularities in the physical sheet, then along the curve we have

%g < 0 when a >0, 121, 2, 3,00. . (8.13)

From this result and Theorem TA, we obtain Lemma 8A.

Lerma 8A
Curves of singularities in the physical sheet and corresponding to
simple ladder diagrams do not have turning points except possibly at end-
point singularities.

End-point singularities may occur at

o, | (8.14)

s = s , when a}j+l

for some values of j, or at
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t = t_, when g5 = 0 and(or) Ugspp = 0 (8.15)

for all values of j. These éingularities will occur only for particﬁlar
values of the masses. It is clear from Section 5 that the only singularities
in the physical sheet haﬁe 5>0 and t > 0. This could also be proved by
explicit consideration of K(a, m) given by Eq. (8.7), or by the method of
Section 9 (b). '

For equal intermal and external masses, in the original uﬁreduced
diagrams, it has been shown (see the corollary to Theorem 5A) that the only

"lines of singularities in the physical sheet are given by normal thresholds.

For these, we have either all G541 = 0 in Eq. (8.14), or all Az, gnd
Ogs4p = 0 in Eq. (8.15). These give the asymptotes
s = bmo, t = (mm)?, (8.16)

and the curve has negative slope everywhere in the physical sheet. More
generally, if the diagram has been reduced, these asymptotes will involve

higher integer multiples of m. g

(C) Partly Reduced Ladder Diagrams

For many of these diagrams there will be no curve of singularities
in the physical sheet; an example is given by diagram (d) in Fig. 3 which
was discussed in Section 5. For our present purpose we need only know that
the curves of singularities in the physical sheet have certain characteristics
if they exist. It is therefore not neéessary to consider the form of K(m, a)
in general. For the equal-mass case a fully reduced diagram whi¢h may be
expected to have a curve of singularities is shown in Fig. T(b). Like all

diagrams in this class its discriminant is derived from Eq. (8.7) by taking
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some of a53 and a53+2 to be zero. Since g(a) and f(a) rémain positive
when the other a's are positive, condition (8.13) still applies, with oy
now referring only to the nonreduced lines of the diagram. The fact that there
are'no anomalous lines of singularities means that dy/&s becomes zero or

infinite only asymptotically. The asymptotes for the curve from Fig. 7 (b)

will be

s = 9mo, £t = (1m)® . (8.17)

(D) The Symmetric Crossed Diagram

This diagram is shown in Fig. 3(c). It is obtained from an eighth-

order diagram with some reduced‘lines. It leads to a discriminant

D(a, s, t) = L @y a5(a5 a - Q ah)s + bo ah(a Q- o a3)t - K(a, m).
(8.18)

The parameters Qys QpseeesOp correspond to lines a, b,.c.,f in Fig. 3

* ' y

diagram (c) taken in the same order.

With external masses m and internal masses m, , we have

K(m, a) = - 16 n° @ oy oz + L i<j§k a; a; o z a, mf .
(8.19)

For m, > m, we have, from Eq. (8.19) or from Theorems 6A and 6B,
K(m, ) > O, and ig%é_gﬁ > 0, for @ > 0.
(8.20)

This condition is satisfied for all diagrams of type (c) in Fig. 3, which

are formed by reducing higher-order diagrams in the equal-mass case.
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Now Eq. (7.1) holds on a curve of singularities and we have

B—%E = 1!-. 055(015 % - a, %)s St o, ) Oy t - %—g—i . (8.21)
From Egs. (8.20), (8.21) and (7.1), for a@> O and

s > O and t > 0 , (8.22)
we have |

o Qe > o, Q@ - ' (8.23)

Similarly, when Eq. (8.22) holds, we have

o ag > @) ay (8.24)

Hence, along the curve of singularities in the region of the physical.sheet

given by Eq. (8.22), we have

at fla) .
& - "Ea) - 9 (8.25)

where f(a) and g(a) are the coefficients of s and t in Eq. (8.18).

The result Eq. (8.25) proves that in the region given by Eq. (8.22)
the only turning points are at E singularities. But the only E
singularitieé are given by normal thresholds for the equal—maés case, and
these are asymptotes. Applying similar arguments to the regions u > 0,
§>0 and t> 0, u> 0, we obtain the curve of singularities having the
three branches marked (c) in Fig. k4.

At the turning point (dt/ds) = O 1in the region t < 0, the curve
of singularities connects to a surface of singularities on which for +t

real s becomes complex. However, this is a feature also of the fourth-
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order diagram in which the internal lines are crossed when s and t are
positive and t negative. In this region the double-dispersion relation
is obtained by working in terms of variasbles s. and u and not s and t.

Then the diagram (c¢) of Fig. 3 has

du

T < 0 (8.26)

along the singular curve, since in this region we have

@) a5 > a5 g 5 | (8.27a)

and

a o > o, . (8.270)

For a general diagram it is still necessary to show that singularities in
all three spectral regions from one diagram do not prevent application of

Cauchy's theorem. This problem will not be considered further here.

(E) Crossed Rungs in a ladder Diagram

A simple example in which only a single pair of rungs is crossed

is shown in Fig. 7 diagram (c). The discriminant is

7 D(a, s, t) = s a, a3(au tag +ag + a7) +Qz 0 Op + 0y G 0y - Q) Oy O

+ t al(a6 a7 - Q) a5 - Kst(a, m) , (5.28)
where th(a, m) is written with the suffices s, t, to denote the form
of D with which it is associated. From Eq. (8.28) and Theorem 6B, we

see that
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BaD(g, S, t) = 0 , ' (8.29)
1
which gives
0 K.t
- s(oz,_lL ag) + tt(a6 a, - o a5.) - ad = 0, (8.20)
1

leads to the inequality

- Q > 0, . for s>0, t>0, and ¢>0.
(8.31)

Similarly, by differentiating with respect to ah , we deduce

a2 a5 + qB a6 - al a5 > 0, for s8>0, # > 0, and q > 0.

(8.32)
Inequalities (8.3%1) and (8.32) show that for s >0, +t+>0, and a> O,

we have

fla) > 0 and gla) > 0. (8.33)

Hence the only turning points in this region must occur at E singularities
if any. But from Sections IIT and IV there are no such E singularities.

Hence we have

%g < 0, for s >0 and t>0 (8.34)

in the physical sheet.
A similar result can be proved for the region s >0, u>0 in

which we have

D, = 5 {q aa(ah+a5+a6+a7) t Oy @ Op 4 a2a5‘al - ozla6a7'

+ u al(ah ay - O a7?} - Ksu(a, m). (8.35)
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However in the region t > 0, u > O, we have

D, =t ala6a7-a5aha6-a205a7-a2a5(ah+a5+a6+a7)

-

tuda o oy - 00 G- 0,0 0, - O QB(ah_+ o, + g + a7) - Kiu(a,m).

5
(8.36)
We obtain,
o D, | o Kin
—3155 = -(u+ t) Q) o + aé(ah +ag +ag a7) - o .
. S 3
(8.37)

- This is clearly negative for uw>0, +t>0, and «a > 0. Hence there are

no singularities in the physical sheet in this region.

(F) The Euclidean Region

From Theorem 6A, for a general diagram, with «a > 0, we can write
Do, s=0, t=0) = = Kst(a, n) < 0. (8.38)

A similar result holds whenwe put u=0, t =0, in

D(a, u, t) = (4 -t - u) £la) + tgla) - K (a m) .
(8.39)
Hence, we have )
b fla) - Kst(a, m) < 0. . L o (8.140) -

From Eqe (8.38) and (8.40), for 0 <u < hm?, we can write

(lum2 - u) f(o:-)- - Ks‘t(a, m) < 0. : (8.%1)
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Similarly for 0 < t < hm® , we have
tgla) - K (o, m) < 0 . _ (8.42)

Writingv s for (hm? - u) in Eq. (8.41) and combining Egs. (8.41) and (8.42),

we obtain

D(&, s, t) = sfla) + tgla) - Kst(a, m) < 0, (8.43)
provided that

0 < s + t < kn®. (8.44)

This gives an independent derivation of the result of Section 4, namely,

Terma 8B.

Lemma 8B
For the equal-mass case, there are no singularities in the Euclidean

region of the physical sheet.

(¢) The Double-Crossed ladder Diagram

This diagram is illustrated in Fig. 7 (d). It can either be
eighth-order with all masses equal or a higher-order reduced diagram with
internal masses larger than the external masses. The discriminant is guite
a lengthy expression, but in order to study it not every term is required.
Either by direct evaluation, or using the methods of Section 6, we obtain

in D(a, s, t)

f{a) (positive terms) - @, a, a9 @y - 05 0, a7 ag (8.45)

I

i

g(a) '(aB au‘ - oy c:ce)(cz9 ) - a8) s (8.,1\}6)
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and
-K(m, @) < 0, for a > 0. (8.47)
The asymptotes of the curve of singularities (assuming the curve to “

have a branch on the physical sheet--if it does not the diagram can be ignored)

will be given, in the equal-mass case, by

s = s, = ln°, (8.48)
and
2
t o= t, = 16 m° . . (8.49)
Near s = sc, only a5 and a6 are appreciably different from zero; near
t = tc only a3, Q) a5, and Qg appreciably differ from zero. Near
£ =5 f(@) will be of second order in the small Q,, g(a) will be

fourth-order, and K(m, &) will be second-order. Near t = tys fla) will
be of second order in the small «,, and g(a) and K(m, a) will be

independent of them.

i

We see that near s = s f(a) will be dominated by the positive

c 2

term containing o a6 as a factor. It is clearly positive, as indeed it

5
must be if the amplitude is to be singular on the asymptote. Near t =t ,

c
it is also clear that g(a) is positive, since it is dominated by the
terms . a3 oz,_‘L a9 alo . From the symmetry of the diagram, the two fectors'in
g(a) will be equal on the curve of singularities, and hence g(a) is - -
positive.,
Although f(a) is positive on the curve near s = 8. it is not
immediately evident that it cannot become negative elsewhere. However by

the symmetry of the diagram on the curve of singularities, we must have

a, = a2 = a7 = a8; oz3 = allL = a9 = alO; and 05 = a6 + The negative



UCRL-9136

-61-

terms in Eg. (8.45) then cancel with two of the positive terms, for example
with s 0 0 Og énq @) 0, aé>a7r..  -

We conclude that both f(a) and g(a) are positive on the curve
of singularities in the region s > O; t > 0 of the physical sheet. Hence

there are no spurious turning points in this spectral region. The other

spectral regions can be examined similarly._

18
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IX. THE GENERAL TERM FOR EQUAL-MASS INTERACTIONS

(A) A Simplification Formula
Any diagram whose singularities depend on both s and t can be

labeled so that the quadratic in the 4-momenta has the form

n
¥ o= oy k12 + I a, q.2 - = aj m.2 . (9.1)
j=2 Jd d izl J
Here: (as in Section 6), we have
n
= 1 .
qj 152 ey k, + Ze VETE (9.2)
with eji appropriately chosen as O, I for the internal circuits, and
e'jg similarly chosen for the external momenta. The discriminant from
Eq. (9.1) is
@ + I (e.l)2 a., T e85 0y eesy = e.le'.za.pz
jz2 J J Jze Ji d J jze d a4 J
z €51%50 @ s z (e.2 %, s eeey cee
D(a, s) 't) = * o o ) ¢« . o e ) es ey - oo
z etle"za'P" ’ e o o F} ey soe = Z ai m,2
J>2J dv J7d iz 1 3
(9.3) o
= sf(a) + tgla) - X(a, m) . (9.4)

Since @, occurs only in the first row, first column, and in the last term

of the last row, last column, D can readily be differentiated with respect
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to a . This gives
d Dla, s, t) ) -1 .2 ) -1 2
3 & = D(a, s, t; @, ) - @ m K(o; 0y ) - my Ké(a) .

~ (9:5)

The notation al-l indicates that the line labeled oy is to be removed
before evaluating the expression concerned. The removal may leave another
line previously internal as part of the external line; in such a case the
line plays no part in the diagram and its label is redundant. The removal
may alfernatively leave tﬁo 1inés és part of thé same internal line when

they were previously distinct.v In this case the parameters must be added

and both retained. The line «; in Eq. (9.1) can be any line in the diagram.

From Egs. (9.4) and (9.5) we see that

35@) _ a, Y, | - 98)
and :
g 2?0 = fla, ai-l) . : R 2y )

1
Expressing the discriminant as a function of t+ and u (see Section VI),

we obtain similarly

SHD - owo, a7l . (9.8)

L

Since f(a) is homogeneous in the « , of degree £ , Eq. (9.6)

gives
n n : .
1 o 9 f(a) 1 -1
1 i 1

Similar relations hold for g(a) and h(a).



UCRL-9136

-6h-

The procedure of removing a given line from a diagram will be called
"simplification" of the diagram. This is to distinguish it from "reduction"
of the diagram in which one or more lines are reduced to points. Since we -
have shown that end-point singularities do_not lead to anomalous curves in
the equal-mass case, we are concerned now only with curves of singularities

for diagrams that are fully reduced and for which all the parameters « are

positive.

(B) Singularities Not in the Physical Sheet

From Theorem 6B and Eqs. (9.6) and (9.7) we obtain

3D - - : |
a(g; 5, t) st{a, o 7) + tela, o ) - %‘%ﬂl

\
s

(9.10)
in which the last term is negative.
Since Eq. (9.10) must be zero on any curve of singularities it is

necessary that
sf(a , ai"l) + tgla, ai'l) > 0, (9.11)

on the curve. Hence in order to show that there is no curve of singularities
in the physical sheet in the region s > O, t >0, it is sufficient to

show that, for aj >0, J=1,.e.,n,

f(a , ai'l) <0 and gla, ai'l) < o, (9.11a)

for any one of the n possible simplified diagrams. This is sufficient
to show, for example, that a ladder diagram contributes to only one

?
spectral region. It will show similarly that some diagrams have no

singularities anywhere in the physical sheet (for example diagram (d) of
Fig. 3).
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(C) sSpurious Turning Points

For some diagrams, the result (9.9) is sufficient to prove that on

a curve of singularities, with a, > 0, we have
fla) > 0, and gla) > 0, (9.12)

for >0 and t> 0. We require that every term in  f(a, ai-l)' shall be
. positive for positive « . This holds for all simple ladder diagrams, and
provides an alternative method for obtaining the results of Section VIII (B).
A more general situation has béen illustrated- by the symmetric
crossed diagram in Section VIII (D). If the simplification procedure of
removing one particular line leaves the "dangerous factor! of f(a) in the

b4

term f(a , ai-l) and only the associated negative term in g(a , ai-l)

we can deduce from
-1
gla,a ™) < o, (9.13)
that for s > 0, t >0 we have
-1 ‘ ' :
r(a , o, ) > 0. (9.14)

This shows that the dangerous factor in f(a) - is positive. With a little
ingenuity this method appears to apply to all sixth- and eighth-order diagrams
and could be used to prove the absence of spurious turning points in the
"positive" spectral regions to this order. Spurious turning points will
~occur in the "negative" spectral regions. For example a turning point in

t(s) will occur for several of these diagrams in the negative spectral
region s > 0, t <0 but not in the positive spectral region s >0, t >0

(nor in u>0, t>0).
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In the remainder of this Section a "plausibility argument™ will be
given for the absence of spurious turning points in positive spectral regions
for a general term in perturbation theory. The unbelieving reader may be
able to devise a rigoroug proof along the lines indicated; he is also advised
that a counter example will invalidate the Mandelstam representation. The
basis of the argument is that the dominant terms in f(a) and g(a) in the
region s > 0, t > 0, are those associated with the asymptotes. Since these
asymptotes are normal thresholds, the Feynman parameters in the dominant -
terms must correspond to the lines in the generalized self-energy parts that
determine the asymptotes. The other Feynman parameters tend to zero near the
asymptote. The Feynman parameters can be divided into four classes‘for any
given diagram:

(a) - Those that do not tend to zero at either asymptote. These will

be denoted by Q, and they correspond to lines that are in the

generalized self-energy parts for both asymptotes. An example

is given by the pair Ois5 O of Section VIII (D).

(v) Those that do not tend to zero near the asymptote s = S, but

do tend to zero near t = tc. We denoté these as Bi. An example
1 % in Section VIII (D).

(c) Those that tend to zero near s = sc, but not near t = tc. We

is the pair «

denote these by 7, . An example is a,, @, in Section VIII (D).
(a) Those that tend to zero near both asymptotes. We denote these

as é;i. An example is' @), @ in Fig. 7 (b), example (E) of

5
Section VIII.
We seek to show that any pair of parameters giving a negative term

in £ or in g can be associated with a pair having the same coefficient
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but having a positive sign and dominating the negative term. The coefficient
of any set of four lines 1, 2, 3, 4, can be determined by repeated application
of the simplification formula (9.10). If the removal from the diagram of a
set of lines al, a2,...,az_l leaves only the lines 1, 2, 3, 4 arranged as in

Fig. 8 (a), then Eq. (9.10) shows that sf + tg will contain a term

a a a
A, O oes O oy a5‘s + oo, t . (9.15)

(Note that the @, do not yet have the meaning indicated in (a) above.) By

summing all such terms we obtain

sf + tg ) a2h15 Q) Gz s + oy Q) t . (9.16)

12

The symbol _ ) means "contains the term", and 85, is the sum of products

of parameters that have the property of the set in Eq. (9.15), namely that
removal of their lines leaves Fig. 8 (a). Similar results are obtained for

those sets of lines whose removal leads to Fig. 8 (b) or to Fig. 8 (e).

Let b5h12 and CBAIE denote the appropriate sums of products of parameters.

Then we have

,

. 1
st + tg ) b,), 5 % Q) Gz s+ (a2 o - a a3)t . (9.17)

and

st + tg ) c2415 [ag oy - o a)s - o, t ( . (9.18)

\

These expressions are best obtained by first evaluating the contributions
&
to D(a, u, t) and D(c, s, u) of diagrams (b) and (c) respectively in

Fig. 8 and then transforming to D(&, s, t) as described in Section VI.
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It should be noted that there is a lot of_freedom of choice in
pairing negative terms with positive ones in f and g. This is because
most terms are positive (as can be seen from part (B) of fhis section) if
there is a curve of singularities in the physical sheet fqr s >0, t>0.
We now use the notation o, B, 7, é; as described above in the.paragraph
preceding Eq. (9.15). An o line must be dominantly associated with
positive coefficients near each asymptote, and will occur in combinations
similar to lines 2, and 4, in Eq. (9.17), or 1 and 3 in Eq. (9.18) since
only these lines in Fig. 8 can contribute to both asymptotes. A B line
may occur in combination of lines 1 and 3 of Eqg. (9.16) or 1 and 3 in
Eq. (9.17). The former gives a positive term, so it need not be considered
in that arrangement of terms in D, The latter gives a negative cohtribution
to f and also to g, and this contribution does not tend to zero near

8 =8, In g we have the term from Eq. (9.17),

1{)%15((:42 &, - By Bs), : (9.19)

13

in which b2h is positive on the physical sheet. At the asymptote

t = tc’ the parameters Bl and P are zero; at the other asymptote

5
they tend to equality and to equality with a2 and. au . Thus near one
asymptote the expreéssion (9.19) is certainly positive, while it tends to

zero near the other asymptote. It is plausible that this change takes place
monotonically since it requires a change from perpendicular to parallel
h-momenta in the lines 2, 4 and 1, 3 in diagram (b) for Fig. 8. The
term (9.19) would then be positive. For many (but ﬁot all) diagrams this can
be proved directly by differentiating D(a, s, t) ‘as in examples 8(d) and

8(e).
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In addition to Eq. (9.19) which gives part of the coefficient of t,
we have a.term -b2413 Bl B3 s. However the diagram must contain a positive
term to balance this, otherwise ag/asl would be negative. Therefore the
discriminant D can be rearranged so that Bl B5 is paired with a different
two lines from ae ah . Since 51 and 65 contribute to the asymptote
s =8, their product mustlf&e a positive coefficient near this line. Therefore

we can find a term such that
13 13

is positive ﬁear the asymptote. Clearly the difference between the lines

15 and b5615

causes a "twisting" of the lines 1 &and 3 so
that their directions are reversed when the "b-lines" are removed, but not
when the "a-lines" are removed. This can be achieved only if the a-lines
and b-lines contain a crossed pair. By fixing our attention on this crossed
pair instead of on Bl 65, we can obtain a term similar to Eg. (9.19) but
now in f and having the lines Bl and 55 as cdefficien‘ts° Again this
term changes from a positive value to zero along the curve, and it seems
likely to be positive throughout the range.i Similar arrangements of
products appear always to be possible for any negative terms in £ and g
coming form 7y or § lines.

It should be noted that the difficulty in meking the above argument
rigorous is assoclated with the occurence of many positive terms in f
and g rather than with the negative terms. If there is a minimal number
of positive terms as in example 8(d), the method of considering the first

derivatives of D suffices to prove that the negative terms can be

adequately paired against positive terms. When there are many positive
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terms, it is very plausible that they will more easily dominate the dangerous
negative terms, but it is not possible to prove dominance in a single pairing.

Instead one has to use the multiple pairing described in the above paragraphs.
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X. FURTHER REQUIREMENTS OF THE MANDELSTAM REPRESENTATION

The Mandelstam representationl (denoted M.R.) contains Born terms,
single dispersion integrals, and double dispersion integrals. We will be
concerned only with the latter and will indicate some of the assumptions
which are implied by this form of integfal representation. We will then
consider to what extent these assumptions have been justified in perturbation
theory by the preceding sections, and will indicate some further points that
require study before the representation can be proved.

The double dispersion integrals are

A (s', t) A (%', u)
Als, t, u) = =5 12 dst av' + = 23 at' du'
x (s - s")(t - t') x (t - t")(u-~-u')
A (u s 8 )
v 21 au' ds' ,
7 (u~-u)(s ~s")
(10.1)
where
2
s + t + u = m", (10.2)

in the equal-mass case. The integrals in Eq. (10.1) are over a part of the

real s, t plane. Small positive imaginary parts of s, t, u specify how

the surface of integration passes the singularities of the integrands.
From Eq. (10.1), single dispersion relations can be derived. For

example, we have1

L P A, et N X A (s, ut)au’
A(s, t, u) = = + 3 S .
7 2 t - t! g 2 u=-u'
m im

(10.3)
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The assumption of a real domain of integration has the following
consequences:

(1) A(s, t, u) is analytic when s, t, u are real except (a) at

points of discontinuity of Al(s, t') as a funcﬁion cf s,

or Az(s, u'), and similar points with respect to t and to

u; or (b) on curves of discontinuity of Alg(S’ t) as

functions of s, t, or A25(t, u) or A51(t, s)e
(2) A(s, t, u) 1is analytic when s is real and t complex with

O<arg t < 2n , and similarly for other pairs of variables.

From these it follows that A(s, t, u) is analytic when one of
s, t, or u is real and the others are limited by cuts in their complex
planes from hmz along the real axis to infinity. This region is called
the physical sheet.

We have shown for the equal-mass case that the only singularities
of A whose location depends on one variable are given by normal thresholds.
For s, t, u real, the singularities.lie on curves having normal thresholds
as asymptotes. TFor s real, none of the singular curves for which t is
real are connected to singularities for which t is complex except possibly
at spurious turning points.

Iet us consider a spurious turning point as a function of t(s)
but with t < 0. 1In order to approach this spurious turaning point by
analytic continuation we need to pass the asymptotes s = sc and u = uc
of the curve, which themselves determine singular points and which lie on
the cuté in the s, u planes. If we keep t real, s can become complex
with a positive imaginary part at the spurious turning point. But, from

Eq. (10.2), this will cause u +to pass through the cut in its plane on

o~
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to a nonphysical sheet since it must acquire a negative imaginary part.
Similarly if u gets a positive imaginary part, s will go off the physical
sheet. This aspect of spurious turning points certainly requires more
detailed consideration, but this suggests that they will probably not give
any serious trouble to the validity of the M.R.

If however a spurious turning point was to occur in the region 8 > 0,

t >0 for a curve t = t(s); when s becomes complex above its branch cut,

 t could remain real while A(s, t, u) was singular. Now wu would acquire

a negative imaginary part, but would not go off the physical sheet since its

‘real part would be below the onset of the branch cut. This would cause

complex singularities in the physical sheet and would invalidate the M.R.
For this reason it is necessary to exténd the discussion of spurious turning
points in positive'spectral regions so as to exclude them rigorously to all
orders in perturbation theory.

The only other major point that has been consciously omitted from
this paper concerns complex singularities that are disconnected from the
real part of the s, t, u plane. Singularities are determined by the

vanishing of D(a, s, t), where
D(a, s, t) = sf(a) + tgla) - Kla, m) . (10.4)

If ¢+ and a are real and s complex, then D is not zero unless f(a)

is zero. But f(a) can be zero only on normal thresholds +t = tc, where

s can be complex without invalidating the M.R., or a at a spuriocus

turning point. This suggest that spurious turning points rmust be eliminated -
also for complex s . A second way for D(a, s, t) to become zero is

that when s 1is complex some of the a's are also complex. This requires
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that a C singularity has dragged the contour into the complex plane of one

(or more) of the « variables., It seems unlikely that this will happen s
without there being a connection with a corresponding singularity with s

real. However, although neither of these possibilities seem very likely,

they both require further investigation before the M.R. can be proved. It

is hoped that some of these points will be discussed in later papers.
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FIGURE LEGENDS

Analytic continuation by moving singularities of the integrand and
distortion of the path of integration in the complex «a plane.
Diagrams (i) and (ii) show s- and t-partitions; (iii), (iv) and (v)
show a generalized self-energy part and chains of these parts.
Examples of low-order, fully reduced diagrams. | |

Curves of singularities for diagrams (a), (b), and (c) of Fig. 3.

No scale is shown, as only the general form of the curves is

required.

Anomalous fhresholds of typé I give a curve of singularities of

form (afj those of type II (super-anomalous) give curves of ﬁype (v).
The broken lines denote curves on nonphysical sheets.

Choice of 4-momenta in studying the general form of the discriminant.
Diagrams studied in worked examples. The numbers indiéate labeling

by Feynman parameters « o

l, 2,000’ aloo

Residual diagrams obtained by repeated differentiation of the

general discriminant.
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