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Abstract 

Preferential activation to faces in the brain’s fusiform gyrus has 
led to the proposed existence of a face module termed the 
Fusiform Face Area (FFA) (Kanwisher et. al, 1997). However, 
arguments for distributed, topographical object-form 
representations in FFA and across visual cortex have been 
proposed to explain data showing that FFA activation patterns 
contain decodable information about non-face categories 
(Haxby et. al, 2001; Hanson & Schmidt, 2011). Using two deep 
convolutional neural network models able to perform human-
level object and facial recognition, respectively, we 
demonstrate that both localized category representations 
(LCRs) and high-level face-specific representations allow for 
similar decoding accuracy between non-preferred visual 
categories as between a preferred and non-preferred category. 
Our results suggest that neuroimaging of a cortical “module” 
optimized for face processing should yield significant 
decodable information for non-face categories so long as 
representations within the module are activated by non-face 
stimuli. 

Keywords: module, localized categorical representation, 
distributed object-form topography, deep convolutional neural 
network, virtual electrophysiology 

Introduction 
 How are mental representations organized in the 

brain? Do certain brain regions contain functional modules, 
dedicated to representing and processing a very specific type 
of information? Or is neural real estate more generally 
involved in the processing of many different types of stimuli? 
Evidence from fMRI has been used to propose the existence 
of functional modules for the processing of certain classes of 
visual information within the brain. Cortical modularity was 
proposed first for the visual processing of faces in the so-
called Fusiform Face Area (FFA) (Kanwisher et. al, 1997), 
then for the visual processing of scenes/places in the so-called 
Parahippocampal Place Area (PPA) (Epstein & Kanwisher, 
1998), and then for the visual processing of body parts in the 
so-called Extrastriate Body Area (EBA) (Downing et. al, 
2001). In each of these studies, preferential activation of a 
certain class of visual stimuli (e.g. faces) in a certain region 
of the brain (e.g. fusiform gyrus) was used as evidence for 

modular processing within that region, leading to the authors 
renaming the region in terms of the modular processing (e.g. 
Fusiform Face Area). Not all authors agreed that preferential 
activation of a cortical region by a certain stimulus class was 
convincing evidence of underlying modular processing. 
Haxby et. al (2001) used multi-variate pattern analysis 
(MVPA) to demonstrate that putative functional modules for 
processing of scenes in the PPA and faces in the FFA contain 
patterns of activation useful for decoding whether a subject 
is viewing one of two categories not thought to be processed 
within the module. These authors interpreted their findings in 
the context of an “object-form topography” model, in which 
the ventral temporal cortex possesses a distributed, 
topographical representation of object-form features which 
underlie all forms of visual recognition. In their account, the 
large responses found in proposed functional modules are 
complemented by small responses throughout ventral 
temporal cortex in computations underlying visual 
categorization and other aspects of visual cognition.  

Later, Spiridon & Kanwisher (2002) ran a similar fMRI 
study incorporating greater variability across images within a 
category (e.g. different viewpoints, exemplars, and image 
formats) in order to determine whether decodable abstract 
category information was truly distributed equally 
throughout ventral temporal cortex, as was argued by Haxby 
et. al (2001), or whether there might be localized decoding 
advantages corresponding to the locations of proposed 
functional modules. This study demonstrated that some 
abstract categorical information was present for certain 
categories outside their region of maximal activation (i.e. the 
location of a proposed module), replicating a main finding of 
Haxby et. al (2001). However, controlling for the number of 
voxels used in decoding analysis, this study demonstrated 
strong advantages in decodable information relating to 
discrimination between a preferred category (e.g. faces) and 
a non-preferred category (e.g. houses) in the region of 
proposed modularity (e.g. FFA). Additionally, in PPA and 
FFA, distinct disadvantages were found for the decoding of 
two non-preferred categories (e.g. faces vs. objects and 
objects vs. houses, respectively). Thus, while abstract 
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categorical information of certain categories may exist 
outside the region where modular processing is proposed, 
such abstract categorical information is by no means equally 
distributed throughout ventral temporal cortex. The authors 
thus argued for a more modular account of PPA and FFA, 
whereby these regions are primarily involved in the 
processing of a single category of information (scenes/houses 
and faces, respectively).  

To account for both sets of findings, Cowell & Cottrell 
(2013) performed multi-variate pattern analysis (MVPA) on 
a neurocomputational model capable of discriminating 
between the 6 visual categories used in the analyses of Haxby 
et. al (2001). The neurocomputational model first applies 
Gabor filtering of input images to obtain a perceptual 
representation; it then feeds the activations of many Gabor 
filters into a self-organizing Kohonen map, which utilizes 
unsupervised learning to cluster its inputs into a two-
dimensional representation. While the neurocomputational 
model contained no modular mechanisms, through 
unsupervised learning it developed the types of functionally 
localized stimulus representations used to argue in favor of 
modular processing, whereby certain patches of the Kohonen 
grid contained both preferential activation and enhanced 
decodable information about some categories. The effects 
were greatest for faces. Because they were able to simulate 
the data used to argue both for localized and distributed 
topographical representation with a neurocomputational 
model of distributed topographical representations that is 
more parsimonious than one postulating the existence of 
functional modules, the authors rejected the interpretation of 
a functional module for face processing based on the data of 
Spiridon & Kanwisher (2002).  

The result of Cowell & Cottrell (2013) demonstrates that 
the evidence used to postulate functional modules may be 
accounted for by a model employing a distributed 
representation. However, the model is unable to account for 
human-level behavioral performance, and rather was 
constrained only to perform 6-way visual categorization. In 
the age of biologically-inspired computational systems 
capable of human-level object categorization (e.g. 
Krizhevsky et. al, 2012) and face individuation (e.g. Parki, 
Vedaldi, and Zimmerman, 2015), such behavioral constraints 
should become standard practice for models of neural 
representation. The decision not to constrain the 
computational model to perform human level face 
individuation, for example, belies the need for a functional 
module for face processing. Thus, we examine two deep, 
convolutional neural networks (DCNNs), one trained for 
large-scale object categorization and one trained for expert 
face individuation. In these networks, we focus on two types 
of category-specific representations for analysis. The first 
type of representation is the localized categorical 
representation (LCR), found in the final hidden layer of 
AlexNet (Krizhevsky et. al, 2012), whereby a single unit 
represents the likelihood of a given category in an image 
shown to the network. Such a localized categorical 
representation differs from the topographical object-form 

representations proposed by Haxby et. al (2001), in that a 
single value represents the abstract category information. 
However, localized category representations receive input 
from a processing layer which is well-described as a 
topographical object-form representation; thus, they are not 
true “modules”. The second type of representation is taken as 
a deep layer of face-specific representations within the face-
individuation network of Parki, Vedaldi, and Zimmerman 
(2015), VGG-Face, which is optimized for facial recognition 
only. In our view, VGG-Face in toto is a face-dedicated 
module; that is, a system optimized on and dedicated to to the 
processing of faces, only. The deep layer was chosen as a 
layer with high-level, complex face-specific features useful 
for recognition, but not explicitly representing individuals. 
We think that such representations are a reasonable model for 
what is proposed to be encoded in FFA (see Kanwisher & 
Yovel, 2006). We perform “virtual electrophysiology,” 
(Yamins & DiCarlo, 2016) on both systems in order to 
determine whether these two types of category-specific 
representations produce the characteristic signal used to 
argue for distributed category-general representations: 
decodable information for non-preferred categories. 

Method 
Model simulations were run in the MATLAB 

programming environment, using the MatConvNet toolbox 
(Vedaldi & Lenc, 2015). Both models used in this study are 
examples of deep convolutional neural networks (DCNNs). 
Such networks were developed by computer vision 
researchers as engineering solutions for problems of visual 
recognition (e.g. LeCun et. al, 1998; Krizhevsky et. al, 2012). 
DCNNs contain several layers of processing, each of which 
contains a set of mathematical filtering operations (units or 
filters) which are convolved across the input, usually 
followed by a set of fully-connected layers which contain 
units which apply simple weighted summations of the units 
at the layer before. In all DCNNs for visual categorization, 
there exists a final layer of processing containing a set of units 
whose size is equal to the number of categories to be tested 
from, where each unit’s activation corresponds to the 
likelihood that a certain category is present in the image; this 
vector of information is typically transformed via a softmax 
operation into explicit probabilities that the image may be 
categorized into each possible category.  

The first DCNN model used is AlexNet (Krizhevsky et. al, 
2012), pre-trained and uploaded to MatConvNet by Vedaldi 
& Lenc (2015). AlexNet was trained to perform 1000-way 
categorization of visual images on the 2011 ImageNet 
training set, which contains 1.2 million images evenly 
distributed across 1000 categories. For simulations, a 
different set of images not used in training, the 2011 
ImageNet validation set, was used as stimuli, containing 50 
images for each of 1000 categories. First, we recorded the 
activation patterns of each unit within AlexNet to each image 
of the validation set. While the network is said to contain 5 
convolutional layers and 3 fully-connected layers, additional 
intermediate operations (rectification, pooling, 
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normalization) result in 22 stages of processing with 
activation values, where the first stage is defined by the RGB 
coordinates of the image. Full details on AlexNet can be 
found in the original paper (Krizhevsky et. al, 2012).  

In our initial analyses, we consider four representative 
layers within AlexNet (Conv1, Conv5, FC6, and FC8) to 
demonstrate how informational content changes with depth 
in the network (Figure 1). The activation patterns of Conv1 
are those which are input directly to Conv2, thus occurring 
after rectification, max-pooling, and response normalization. 
The activation patterns of Conv5 are taken after the fifth 
convolution and rectification, and are the inputs to FC6. The 
patterns of fully-connected layers FC6 and FC8 are taken 
after rectification. For each unit of each layer considered, we 
compute a set of “categorical signal-to-noise ratios” (cSNRs), 
for each category of ImageNet. For a given unit and category, 
the cSNR is computed as the signal-to-noise ratio of the unit’s 
activation across all exemplars of the category. To create 
populations of units sorted by their cSNR for a given 
discrimination task on a subset of categories, we first create 
a vector containing the maximum unit cSNRs across all 
categories in the subset. This vector is then sorted in three 
ways, keeping the indices of units available: increasing 
cSNR, decreasing cSNR, and random. For each layer and 
discrimination task, three populations of size n are created by 
selecting the first n units from each of these vectors, for 
several values of n, and bootstrapping is performed across 
random samples of categories. The activation patterns of each 
population serve as the set of predictors for the classification 
of the ImageNet validation set images for each category in 
the discrimination task. Multi-class classification is achieved 
with a classification-tree based system, using the fitctree 
function in the MATLAB Statistics and Machine-Learning 
toolbox. The classifier is cross-validated using 10-folds of 
80% training, 20% testing samples (crossval function). 
Finally, the loss is computed across the several folds of the 
cross-validated model (kfoldLoss function). Across 
bootrsapped camples of category, accuracy is reported as 1 – 
mean loss, and error bars are the standard error of accuracy. 

Next, AlexNet FC8 is examined in more detail (Figure 2). 
In analyses similar to those conducted by Haxby et. al (2001), 
we compare the 2-way classification of preferred and non-
preferred categories. For a given unit, the preferred category 
is the category which is explicitly represented; all other 
categories are potential non-preferred categories. Starting 
with 20 randomly-drawn ImageNet categories, we generate 
100 pairs of preferred/non-preferred categories, and 100 pairs 
of non-preferred/non-preferred categories, with 5 pairs of 
each type for every category. For 2-way classification, we use 
a support-vector machine classifier (fitcsvm function, 
MATLAB Statistics and Machine-Learning toolbox). The 
same cross-validation and bootstrapping methods described 
in preceding analyses are used to generate an estimate of 
mean and standard error of classification accuracy for each 
pair type.   

We perform similar analyses on VGG-Face, a DCNN 
trained for face-individuation on over 2000 faces (Parki, 

Vedaldi, and Zimmerman, 2015). To achieve a representation 
to serve as a model of FFA representations, we examine the 
activations in layer 35, the final layer before activations are 
condensed to individual face-specific representations. Layer 
35 contains 4096 nodes representing high-level, complex 
information optimized for face individuation. In performing 
virtual electrophysiology on VGG-Face, we use as stimuli the 
fMRI localizer stimulus sets for faces, body-parts, objects, 
and scenes, in addition to the 2011 ImageNet validation set. 
These localizer sets are used by TarrLab and many other 
laboratories in the Center for the Neural Basis of Cognition, 
Pittsburgh PA, for fMRI research in order to localize 
functionally-defined regions such as the Fusiform Face Area 
(FFA), Extrastriate Body Area (EBA), Lateral Occipital area 
(LO), and Parahippocampal Place Area (PPA). Each localizer 
set contains 80 images of the category used to localize a 
corresponding functional brain area. 2-way classification 
tasks are created using pairs of the categories defining each 
localizer set. Additionally, a sample of 45 pairs taken from 
10 randomly drawn ImageNet categories are used to 
bootstrap an estimate of the ability to predict all pairs of 
ImageNet categories. All units in VGG-Face layer 35 are 
used as predictors in a 2-way SVM classification system akin 
to that used in Figure 2 and the results are shown in Figure 3.  

Results 
The results of initial system-wide analyses of 

AlexNet representations are shown in Figure 1. In nearly all 
cases, decoding accuracy increases with the number of units 
used as predictors in the classifier, and decreases with the 
number of categories required for discrimination. In Conv1, 
Conv5, and FC6, for all discrimination tasks, sorting units by 
their categorical signal-to-noise ratio (cSNR; see methods) 
allows for improvements in decoding accuracy given the 
same number of units. However, in FC8, for all 
discrimination tasks, sorting units by cSNR has no effect on 
decoding accuracy, suggesting that localized categorical 
representations in FC8 possess information relevant to 
decoding between non-preferred categories. 

The results of detailed analyses of AlexNet fully-connected 
layer 8 (FC8) are shown in Figure 2, where categories are 
organized by whether they are preferred (explicitly 
represented) or non-preferred (not represented) by a given 
unit in FC8. The decoding accuracy between the preferred 
category and a randomly chosen non-preferred category (see 
Methods) is not significantly greater than the decoding 
accuracy between randomly-generated pairs of non-preferred 
categories (p=0.57); both values are significantly greater than 
chance (p<0.001).  

The results of all analyses of VGG-Face are shown in 
Figure 3. All discriminations involving face as one of two 
categories yield perfect discrimination accuracy. 2 out of 4 
discriminations involving pairs of non-face categories (scene 
vs. body part; scene vs. object) yield perfect discrimination 
accuracy. The remaining 2 discrimination tasks (body part vs. 
object; pairs of ImageNet categories) yield non-perfect but 
greater than chance discrimination accuracy (p<0.001).
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Figures 

 
Figure 1: Population decoding from specified layers of the DCNN. Populations are selected in three ordering schemes, 

choosing the units with the highest cSNR (blue), the lowest cSNR (red), or at random (yellow). A large separation between 
curves indicates a local code, whereas a small separation indicates a distributed code. 

 
Figure 2: Single-unit decoding of FC8 in AlexNet. Each 

unit has a “preferred” category – the category it represents. 
All other categories are non-preferred categories. 
Bootstrapping was performed as described in Methods. Mean 
accuracies and standard errors across bootstrapping are 
shown. Accuracy for preferred/non-preferred is not 
significantly greater than accuracy for non-preferred only 
(p=0.57). Both values are significantly greater than chance 
(p<0.001).  
 

 
Figure 3: Support-vector machine (SVM) classification of 

layer 35 activations of VGG-Face network, shown for 
different pairs of categories. Each SVM is cross-validated 
with 10 folds of 80% training/20% test data, and the accuracy 
is reported as 1 – mean loss across folds. Error bars are shown 
as 1 – standard error of loss across folds. For ImageNet, 
standard error is computed across 45 bootstrapped pairs of 10 
randomly chosen categories. All accuracies are significantly 
greater than chance (p < 0.001). 
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Discussion 
First, using AlexNet, an arbitrary deep 

convolutional neural network (DCNN) for visual object 
categorization, we demonstrated that units explicitly 
representing a single visual category, what we deem localized 
categorical representations (LCRs), provide information 
allowing for the decoding of non-preferred categories, at a 
level equal to that for decoding between the represented 
category and a non-preferred category. Demonstrating that 
these localized categorical representations contain distributed 
information related to non-preferred categories suggests that 
the presence of domain-general decodable information in a 
putative domain-specific cortical region is not grounds to 
reject domain-specificity, as was done by Haxby et. al (2001), 
and Hanson & Schmidt (2011), in favor of distributed object-
form topographical representations. While LCRs differ from 
distributed object-form topographical representations in that 
they represent abstract category information in a single value, 
the LCRs in AlexNet receive their input from a distributed 
object-form representation of the sort proposed by Haxby et. 
al (2001), and are by no means well-described as the sort of 
functional modules rejected by this study and proposed by the 
likes of Kanwisher et. al, (1997) for visual face processing, 
Epstein & Kanwisher (1998) for visual place/scene 
processing, or Downing et. al (2001), for visual body-part 
processing, whereby functional modules likely contain 
several processing stages for fine-grained analysis of 
exemplars of the preferred category. To ask whether such 
functional modules might also give rise to decodable 
information about stimuli outside the domain of modularity, 
we relied on a second DCNN specialized for face 
individuation, VGG-Face. 

To acquire a representation of maximal similarity to the 
high-level face-optimized representations thought to be 
housed in the Fusiform Face Area, we took the layer 35 
activations of VGG-Face, a set of 4096 nodes which project 
to the individual face probability nodes one layer later. We 
model these layer 35 nodes as a face module akin to the 
domain-specific interpretation of the Fusiform Face Area 
(e.g. Kanwisher et. al, 1997; Kanwisher et. al, 2006). We 
demonstrated that this “face module” contains patterns of 
activation capable of perfect discrimination between pairs of 
categories containing a face, and two of four pairs of 
categories not containing a face; the other two pairs yielded 
high discrimination significantly above chance. Thus, we 
find that domain-specific, face-optimized representations 
yield domain-general decodable information. This result 
provides support for the idea that activations within a cortical 
“module” might contain information relevant to decoding 
between categories for which that module is not specialized 
to process. This result strengthens our earlier result, 
demonstrating that it is improper to reject the possibility of a 
functional module associated with a given brain region on the 
grounds that the region’s activation patterns allow for 
decoding between stimuli unrelated to the module’s proposed 
primary function. 

An important conceptual point is that the interpretation of 
our results – that modules should not be rejected on the 
grounds of producing domain-external information – rests on 
the assumption that a cortical module would be activated by 
domain-external information. In the case of localized 
categorical representations for object categories, it seems 
likely that all categories would be processed and that some 
activation might reach LCRs not representing the category of 
viewing. However, in the case of a cortical module for face 
processing, this point is less clear. Evidence of subcortical 
face detection mechanisms (for review, see Johnson, 2005) 
suggest that the brain may be capable of filtering out non-face 
information from higher processing (i.e., in FFA), via a fast 
detection process. Though, as we sometimes perceive faces 
on trees and in other places in which there are not faces, it is 
likely that non-face information does, on occasion, pass 
through the face-detector for further processing. It is possible 
that all information that arises for domain-external stimuli in 
FFA, for example, comes from images or image parts which 
contain something that looks enough like a face to pass 
through an early detection process, into higher regions of the 
face processing network. Once the visual information is 
allowed to pass, our results demonstrate that its processing 
within a face-optimized processor should give rise to 
decodable information.  

Some authors have argued that the Fusiform Face Area 
(FFA) is better described as a mechanism for expert-level, 
fine-grained visual discriminations rather than a face-
processing module, suggesting that neural substrate within 
FFA is specialized for visual categorization requiring 
repeated subordinate-level identification, a task which 
happens to occur most frequently in the context of face 
processing, thus resulting in the large preference for faces 
(e.g. Gauthier et. al, 1999; Tarr & Gauthier, 2000). Indeed, 
our results add an interesting point to this theoretical 
framework. Regardless of whether FFA is specialized for 
faces or expertise, if it develops representations useful for 
discriminating between individual faces, these 
representations are also likely to be useful for discriminating 
other visual objects. Thus, learning a new category of 
expertise (e.g. birds) might recruit a previously face-specific 
cortical region, on the basis of that region containing the most 
useful representations for the expert task, especially if 
exemplars of these categories have sufficient visual similarity 
to faces to pass through an early face-detection gate (if one 
exists). In this sense, FFA would not be a face module, but 
rather a brain area optimized most strongly for face-
recognition, but also recruited for expert subordinate-level 
visual recognition.   

Whether cortical modules exist in the sense motivated most 
strongly by Kanwisher (2010) remains an open debate. 
However, should such cortical modules exist, if their 
representations are activated by non-preferred categories, 
these “modules” are likely to produce activation patterns 
which allow for decoding between non-preferred categories, 
the characteristic result of studies which sometimes claim 
evidence of distributed, non-modular processing. As such, it 
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behooves the field to develop more sensitive and diagnostic 
measures to assess these critical questions regarding the 
fundamental nature of representation in the brain.   
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