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Abstract Events with no charged particles produced bet-
ween the two leading jets are studied in proton-proton col-
lisions at

√
s = 7 TeV. The jets were required to have

transverse momentum pjet
T > 40 GeV and pseudorapidity

1.5 < |ηjet| < 4.7, and to have values of ηjet with oppo-
site signs. The data used for this study were collected with
the CMS detector during low-luminosity running at the LHC,
and correspond to an integrated luminosity of 8 pb−1. Events
with no charged particles with pT > 0.2 GeV in the interval
−1 < η < 1 between the jets are observed in excess of calcu-
lations that assume no color-singlet exchange. The fraction of
events with such a rapidity gap, amounting to 0.5–1% of the
selected dijet sample, is measured as a function of the pT of
the second-leading jet and of the rapidity separation between
the jets. The data are compared to previous measurements at
the Tevatron, and to perturbative quantum chromodynamics
calculations based on the Balitsky–Fadin–Kuraev–Lipatov
evolution equations, including different models of the non-
perturbative gap survival probability.

1 Introduction

In high-energy proton-proton collisions, an interaction with
large momentum transfer between two partons may lead
to the production of a pair of jets with large transverse
momenta pT. Dijet production at the LHC [1–12] is gener-
ally well described by perturbative quantum chromodynam-
ics (pQCD) calculations based on the Dokshitzer–Gribov–
Lipatov–Altarelli–Parisi (DGLAP) evolution equations [13–
15]. The DGLAP equations govern the emission of addi-
tional softer partons, ordered in transverse momentum kT

with respect to the jets axes. However, when the two jets are
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separated by a large interval in pseudorapidity (η), an alterna-
tive pQCD evolution based on the Balitsky–Fadin–Kuraev–
Lipatov (BFKL) equations [16–18] is expected to describe
the data better [19]. In the BFKL approach, the emission of
additional partons is ordered in η ∼ ln(1/x), where x is the
fractional momentum carried by the radiated parton.

The events considered in this study are pp collisions where
two jets are produced with a large rapidity gap between them.
The absence of particles between the jets is reminiscent of
a diffractive process [20], in which a color-singlet exchange
(CSE) takes place between the interacting partons. In diffrac-
tive processes, such an exchange is described in terms of the
pomeron, a combination of gluons in a color-singlet state.
However, the absolute value of the four–momentum squared
exchanged in standard diffractive events (less than a few
GeV2) is much smaller than that in the events considered
here. Such events can be understood in a BFKL-inspired
approach in terms of the exchange of a color-singlet gluon
ladder (Fig. 1), as first discussed by Mueller and Tang in
Ref. [21] and further developed in Refs. [22–24]. Jet-gap-
jet events in proton–proton collisions may be affected by
additional scatterings among the spectator partons, which
can destroy the original rapidity gap. Such a contribution is
typically described by a non-perturbative quantity, the so-
called gap survival probability, which quantifies the fraction
of events where the rapidity gap is not destroyed by interac-
tions between spectator partons [19].

Jet-gap-jet events were first observed in pp collisions
at the Tevatron by D0 [25–27] and CDF [28–30], and in
e±p collisions at HERA [31,32]. At the Tevatron, the frac-
tion of dijet events produced through CSE was found to
be ∼1% at

√
s = 1.8 TeV, a factor of 2–3 less than at√

s = 0.63 TeV. This paper presents the first observation
of jet-gap-jet events at the LHC, and the measurement of the
CSE fraction at

√
s = 7 TeV, using events with two leading

jets of pjet
T > 40 GeV and 1.5 < |ηjet| < 4.7, reconstructed

in opposite ends of the CMS detector. The CSE signal is
extracted from the distribution of the charged-particle mul-
tiplicity in the central region |η| < 1 between the jets, for
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Fig. 1 Schematic diagram of a dijet event with a rapidity gap between
the jets (jet-gap-jet event). The gap is defined as the absence of charged
particle tracks above a certain pT threshold

particles with pT > 0.2 GeV. The CSE fraction is studied as
a function of the pseudorapidity separation Δηjj between the
jets, and of the pT of the second-leading jet, as done by the
D0 experiment [27].

The data used for this measurement correspond to an
integrated luminosity of 8 pb−1 and were recorded with the
CMS detector in the year 2010, when the LHC operated at√
s = 7 TeV with low probability of overlapping pp interac-

tions (pileup).

2 The CMS detector and event reconstruction

The central feature of the CMS apparatus is a superconduct-
ing solenoid of 6 m internal diameter. Within the field volume
are the silicon pixel and strip tracker, the crystal electro-
magnetic calorimeter (ECAL), and the brass and scintillator
hadronic calorimeter (HCAL). Muons are measured in gas-
ionization detectors embedded in the steel flux-return yoke
outside the solenoid.

The silicon tracker measures charged particles within the
pseudorapidity range |η| < 2.5. It consists of 1440 silicon
pixel and 15,148 silicon strip detector modules. For noniso-
lated particles of 1 < pT < 10 GeV and |η| < 1.4, the track
resolutions are typically 1.5% in pT and 25–90 (45–150)µm
in transverse (longitudinal) impact parameter. The silicon
tracker provides the primary vertex position with ∼15µm
resolution for jet events of the type considered in this analy-
sis [33].

In the region |η| < 1.74, the HCAL cells have widths
of 0.087 in both η and azimuth (ϕ, in radians). In the η-
ϕ plane, and for |η| < 1.48, the HCAL cells map onto
5 × 5 ECAL crystal arrays to form calorimeter towers pro-
jecting radially outwards from the nominal interaction point.
At larger values of |η|, the size of the towers increases and
the matching ECAL arrays contain fewer crystals. In addi-
tion to the barrel and endcap detectors, CMS has extensive
forward calorimetry. The forward component of the hadron
calorimeter (2.9 < |η| < 5.2) consists of steel absorbers

with embedded radiation-hard quartz fibers, providing fast
collection of Cherenkov light.

A more detailed description of the CMS detector, together
with a definition of the coordinate system used and the rele-
vant kinematic variables, can be found in Ref. [34].

The first level of the CMS trigger system [35], composed
of custom hardware processors, uses information from the
calorimeters and muon detectors to select the most interesting
events in a fixed time interval of less than 3.2µs. The high-
level trigger processor farm further decreases the event rate
from around 100 kHz to around 400 Hz, before data storage.

Tracks are reconstructed with the standard iterative algo-
rithm of CMS, which is based on a combinatorial track finder
that uses information from the silicon tracker. To reduce the
misidentification rate, tracks are required to pass standard
CMS quality criteria, usually referred to as ’high-purity’ cri-
teria [33]. These place requirements on the number of hits,
the χ2 of the track fit, and the degree of compatibility with
the hypothesis that the track originates from a vertex recon-
structed with the pixel detector. The requirements are func-
tions of the track pT and η, as well as the number of layers
with a hit. A more detailed discussion on the combinatorial
track finder algorithm and the high-purity track definition can
be found in Ref. [33].

The jets are reconstructed using the infrared- and collinear-
safe anti-kT algorithm [36,37], with a distance parameter
R = 0.5, starting from the particles identified with the
particle-flow method [38]. The key feature of the anti-kT

algorithm is the resilience of the jet boundary with respect to
soft radiation. This leads to cone-shaped hard jets. Soft jets
tend to have more complicated shapes. The jet momentum is
determined as the vector sum of all particle momenta in the
jet, and is found in the simulation to be within 5 to 10% of
the true hadron-level momentum over the whole pjet

T spec-
trum and detector acceptance. When combining information
from the entire detector, the jet energy resolution for jets with
pjet

T = 40 GeV (200 GeV) is about 12% (7%) for |ηjet| < 0.5
and about 10% for 4 < |ηjet| < 4.5 [39]. Jet energy cor-
rections are derived from the simulation, and are confirmed
with in situ measurements of the energy balance in dijet and
photon+jet events [40]. No jet energy corrections related to
the removal of pileup contributions [41] are required for the
jets studied in this analysis.

3 Monte Carlo simulation

The simulation of inclusive dijet events is performed using
the pythia 6.422 Monte Carlo (MC) event generator [42].
pythia 6 is based on the leading order (LO) DGLAP evo-
lution equations combined with a leading-logarithmic (LL)
resummation of soft gluon emission in the parton shower, and
uses the Lund string fragmentation model [43] for hadroniza-
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tion. The underlying event in pythia 6 includes particles pro-
duced in the fragmentation of minijets from multiple parton
interactions (MPI), initial- and final-state radiation, as well
as proton remnants. The events were simulated using the
Z2* tune [44], which was developed to reproduce the CMS
underlying event data at center-of-mass energies up to 7 TeV.
pythia 6 models the production of diffractive dijets (lead-
ing to a final state with a gap-jet-jet topology) and of central
diffractive and exclusive dijets (leading to a gap-jet-jet-gap
final-state). However, it does not directly generate the jet-
gap-jet topology considered here unless a fluctuation in the
radiation and hadronization of the parton showers in inclu-
sive dijet production randomly leads to suppressed hadronic
activity between the jets.

Jet-gap-jet events are simulated with the default tune of
the herwig 6.520 generator [45] (switching on CSE produc-
tion, and switching off all other processes). The herwig 6
generator simulates events with hard color-singlet exchange
between two partons according to the model by Mueller and
Tang [21], which is based on simplified (LL) BFKL calcula-
tions. The hadronization process in herwig is based on clus-
ter fragmentation: at the end of the perturbative parton evo-
lution, clusters are built and then decayed into the final-state
hadrons. The herwig 6 generator does not include any mod-
eling of MPI; they are instead simulated with the jimmy pack-
age [46]. For simplicity, unless stated otherwise, by herwig
6 we herafter refer to the combination of this MC genera-
tor with jimmy. The herwig 6 generator predicts a decrease
of the CSE fraction with increasing pT of the jets, but the
Tevatron data show instead the opposite trend [25,28]. In
the present analysis, the events generated with herwig 6 are
reweighted with an exponential function, exp(b pjet2

T ) with
b = 0.01 GeV−1, to ensure that the CMS data are repro-
duced. In the following, this sample of reweighted herwig
events will be referred to as the herwig 6 sample.

Both pythia 6 and herwig 6 use the CTEQ6L1 param-
etrization of the proton parton distribution functions [47].
The simulated events are processed and reconstructed in the
same manner as the collision data. A detailed MC simulation
of the CMS detector response is performed with the Geant4
toolkit [48].

4 Data samples and dijet event selection

Three non-overlapping samples of dijet events are used, cor-
responding to the following three pjet

T ranges, defined in
terms of the pT of the second leading jet in the dijet sys-
tem, pjet2

T : 40–60, 60–100, and 100–200 GeV. The first two
samples were selected online with dijet triggers with 15 and
30 GeV thresholds on the uncorrected jet pT, respectively,
while the third sample was collected with a single jet trigger
with uncorrected jet pT threshold of 70 GeV. This selection

maximizes the amount of dijet events for the analysis and
ensures high dijet reconstruction efficiency. The triggers for
the first two samples were heavily prescaled. The three sam-
ples correspond to integrated luminosities of 48, 410, and
8320 nb−1, respectively. The mean number of inelastic pp
interactions per bunch crossing (pileup) in each of the three
samples is 1.16, 1.17, and 1.60, respectively.

The following conditions are imposed offline on all sam-
ples:

– events are required to contain at least two jets that pass
the standard CMS quality criteria [49];

– the number of primary vertices with more than zero
degrees of freedom in the event, as defined in [33], is
required to be 0 or 1;

– a primary vertex, if present, is required to be within a lon-
gitudinal distance |z| < 24 cm from the nominal interac-
tion point;

– events with long horizontal sections of the pixel tracker
traversed by charged particles parallel to the beam (beam-
scraping events) are rejected using a dedicated algorithm
[50].

In order to allow for a sufficiently wide rapidity gap
between the jets, the following conditions are further imposed
on the jets:

– the two leading jets are required to be in the range 1.5 <

|ηjet| < 4.7;
– the two leading jets are required to be in opposite hemi-

spheres: ηjet1 ηjet2 < 0.

The single- or zero-vertex requirement rejects most of the
events with pileup interactions, which can hide an existing
rapidity gap. At the same time, it may reject dijet events in
which one true primary vertex is wrongly reconstructed as
two or more; however, the probability of such badly recon-
structed vertices has been checked with the pythia 6 Z2* and
herwig 6 simulations and found to be negligible. Selecting
events with no reconstructed vertices increases the accep-
tance for signal events in which the two jets are produced
outside the tracker coverage. Such events are estimated from
the data to contribute about 10% of all CSE events. Accord-
ing to the simulations the residual fraction of pileup events
in the sample is negligible.

There are 6196, 8197, and 9591 events that satisfy the
above selection criteria in the pjet2

T = 40–60, 60–100, and
100–200 GeV jet samples, respectively.

5 Jet-gap-jet events

The charged-particle multiplicity (Ntracks) in the gap region
between the two leading jets (the shaded area in Fig. 2) is
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Fig. 2 Schematic picture of a jet-gap-jet event in the ϕ vs. η plane. The
circles indicate the two jets reconstructed on each side of the detector,
while the dots represent the remaining hadronic activity in the event.
The shaded area corresponds to the region of the potential rapidity gap,
in which the charged-particle multiplicity is measured (the so-called
gap region)

used to discriminate between CSE and non-CSE events. The
Ntracks variable is defined as the number of reconstructed
particles with pT > 0.2 GeV in the interval |η| < 1. Tracks
are required to have a measured pT with relative uncertainty
smaller than 10% (σpT/pT < 10%), which reduces the con-
tribution of tracks from secondary interactions. The chosen
η range ensures a high track reconstruction efficiency and,
at the same time, is wide enough to suppress most of the
background events with smaller gaps produced via non-CSE
fluctuations.

The separation between the jet axes corresponds to at least
three units of η (for jets with |ηjet| > 1.5 and ηjet1 ηjet2 < 0),
the minimum gap width typically used in studies of diffrac-
tive interactions. For the majority of the events the gap region
is far from the edges of jets, which reduces the contamination
of soft radiation from the jet shower evolution.

Figure 3 shows the measured Ntracks distribution in differ-
ent pjet2

T bins. In each pjet2
T bin, the pythia 6 distribution is

normalized to the integral of the number of events measured
for Ntracks > 3, and the herwig 6 predictions are normal-
ized to the number of events with Ntracks = 0 measured in
the data. The data are satisfactorily described by the pythia
6 simulation, with the exception of the lowest multiplicity
bins, in which a large excess of events is observed, consis-
tent with a contribution from CSE events. This excess is well
described by the reweighted herwig 6 generator, as seen in
the data/MC ratio plots.

The leading and the second-leading jet pT spectra for
events with no tracks reconstructed in the gap region |η| < 1
are presented in Fig. 4. The data, plotted in bins of pjet2

T , are
reproduced by the normalized herwig 6 CSE events. A very
small contribution from pythia 6 events can be explained
by fluctuations in the hadronization of (non-CSE) inclusive
dijet events, with no particles or only neutral particles pro-
duced inside the gap region. Figure 5 shows the distributions
of the azimuthal angle Δϕjet1,2 between the jets (left), and

of the ratio of the second-leading jet pT to the leading jet
pT, pjet2

T /pjet1
T (right). The data, shown separately for events

with no tracks and with more than three tracks reconstructed
in the |η| < 1 region, are well described by the normalized
simulations, which are dominated by CSE (herwig 6) and
non-CSE (pythia 6) events, respectively. The peaks in the
distributions at Δϕjet1,2 = π and pjet2

T /pjet1
T = 1 are nar-

rower for events with no tracks, reflecting the fact that the
CSE dijets are more balanced in azimuthal angle and momen-
tum than the non-CSE ones, because of the extra radiation in
the latter.

In order to quantify the contribution from CSE events, we
measure the CSE fraction, fCSE, defined as

fCSE = NF
events − NF

non-CSE

Nevents
, (1)

where NF
events is the number of events in the first bins of

the multiplicity distribution (Ntracks < 2 or 3, as explained
later in this section), NF

non-CSE is the estimated number of
events in these bins originating from non-CSE events, and
Nevents is the total number of events considered. The fCSE

fraction defined in this way is not sensitive to the trigger
efficiencies and jet reconstruction uncertainties as they cancel
in the ratio. While the extraction of NF

events and Nevents is
straightforward (event counting), the estimation of NF

non-CSE
requires modeling of the non-CSE contributions, for which
two data-driven approaches are considered.

In the first approach, the shape of the Ntracks distribution
for background events is obtained from a sample in which the
two leading jets are produced on the same side of the CMS
detector (same side, or SS, sample, with jets satisfying the
selection |ηjet| > 1.5 and ηjet1 ηjet2 > 0). For the nominal
sample defined in Sect. 4 (opposite side, or OS, sample, with
two jets produced on opposite sides of the CMS detector), the
gap region |η| < 1 mainly contains particles originating from
the hard scattering, while for the SS sample it is dominated
by particles originating from the underlying event. This dif-
ference is reflected in the Ntracks distributions: whereas the
shapes of the distributions are similar for the SS and OS
samples, the mean Ntracks value in the SS sample is slightly
lower. In order to minimize the difference between the aver-
age Ntracks values of the two samples, the gap region for the
SS sample is enlarged to |η| < 1.2, in agreement with the
range reported by the CDF Collaboration [30]. The adjusted
multiplicity distribution in the SS sample (Fig. 6 left) is nor-
malized to the one in the OS sample for Ntracks > 3, and the
number of events in the first bins is taken as an estimate of
the background.

The second method is based on the fit of the Ntracks distri-
bution with a negative binomial distribution (NBD), which
was first used to describe charged-particle multiplicity dis-
tributions by the UA5 Collaboration [51] at energies up to
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Fig. 3 Distribution, uncorrected for detector effects, of the number of
central tracks between the two leading jets in events with pjet2

T = 40–60
(top left), 60–100 (top right), and 100–200 (bottom) GeV, compared
to the predictions of pythia 6 (inclusive dijets) and herwig 6 (CSE
jet-gap-jet events). The pythia 6 and herwig 6 samples are normal-

ized to the number of events measured for Ntracks > 3 and Ntracks = 0,
respectively. Beneath each plot the ratio of the data yield to the sum
of the normalized herwig 6 and pythia 6 predictions is shown. The
vertical error bars indicate the statistical uncertainties

√
s = 546 GeV. Later, it was observed that the NBD fit

reproduces less well the tails of the particle multiplicity at
higher center-of-mass energies (deviations were reported at√
s = 900 GeV by UA5, and later at Tevatron and LHC

energies [26,52,53]). This issue is largely avoided when one
restricts the NBD fit to the region around the mean of the
distribution. The fit used in this analysis starts at Ntracks = 3,
where the CSE signal to background ratio is expected to be
negligible, and ends at Ntracks = 35, slightly above the max-
imum of the distribution. The extrapolation of the fit to the
first multiplicity bins provides an estimate of the non-CSE

background. The results of the NBD fits are shown in Fig. 6
(right). To check the performance of the method, the fit is
repeated on the SS sample in the range 3 ≤ Ntracks ≤ 35.
The extrapolation of the fit to the Ntracks < 3 region agrees
with the number of events observed in the SS sample data,
which confirms the validity of this approach.

The numbers of background events obtained with the two
methods described above agree within statistical uncertain-
ties, with the results of the NBD fit being slightly lower. Since
the SS method cannot be used to estimate the background in
bins of Δηjj between the jets (because of the smaller Δηjj

123



242 Page 6 of 27 Eur. Phys. J. C (2018) 78 :242

 (GeV)
T
jet1p

40 60 80 100 120 140 160 180 200 220

Ev
en

ts
 / 

10
 G

eV

0

5

10

15

20

25

30

 = 0)
tracks

Data (N
PYTHIA 6 (normalized)
HERWIG 6 (normalized)

CMS

 = 40-60 GeV jet2
T

p  (7 TeV)-10.05 pb

 (GeV)
T
jet2p

40 60 80 100 120 140 160 180 200

Ev
en

ts
 / 

10
 G

eV

0

5

10

15

20

25

30

 = 0)
tracks

Data (N
PYTHIA 6 (normalized)
HERWIG 6 (normalized)

CMS

 = 40-60 GeV jet2
T

p  (7 TeV)-10.05 pb

 (GeV)
T
jet1p

40 60 80 100 120 140 160 180 200 220

Ev
en

ts
 / 

10
 G

eV

0

5

10

15

20

25

30

 = 0)
tracks

Data (N
PYTHIA 6 (normalized)
HERWIG 6 (normalized)

CMS

 = 60-100 GeV jet2
T

p  (7 TeV)-10.41 pb

 (GeV)
T
jet2p

40 60 80 100 120 140 160 180 200

Ev
en

ts
 / 

10
 G

eV

0

5

10

15

20

25

30

 = 0)
tracks

Data (N
PYTHIA 6 (normalized)
HERWIG 6 (normalized)

CMS

 = 60-100 GeV jet2
T

p  (7 TeV)-10.41 pb

 (GeV)
T
jet1p

40 60 80 100 120 140 160 180 200 220

Ev
en

ts
 / 

10
 G

eV

0

5

10

15

20

25

30  = 0)
tracks

Data (N
PYTHIA 6 (normalized)
HERWIG 6 (normalized)

CMS

 = 100-200 GeV jet2
T

p  (7 TeV)-18 pb

 (GeV)
T
jet2p

40 60 80 100 120 140 160 180 200

Ev
en

ts
 / 

10
 G

eV

0

5

10

15

20

25

30
 = 0)

tracks
Data (N
PYTHIA 6 (normalized)
HERWIG 6 (normalized)

CMS

 = 100-200 GeV jet2
T

p  (7 TeV)-18 pb

Fig. 4 Transverse momentum distributions, uncorrected for detector
effects, of the leading jet (left) and the second-leading jet (right) in three
dijet samples with pjet2

T = 40–60, 60–100, and 100–200 GeV (from top
to bottom) after all selections, for events with no tracks reconstructed in

the gap region |η| < 1, compared to predictions of pythia 6 (inclusive
dijets) and herwig 6 (CSE jet-gap-jet events), normalized as in Fig. 3.
The error bars indicate the statistical uncertainties
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compared with the MC predictions. The distributions are summed over
the three pjet2

T bins used in the analysis and normalized to unity for
shape comparison

values than in the OS sample), the NBD fit is chosen as
the main background determination method in this analysis.
The method involving the SS sample is used as a systematic
check, as discussed in the next section. The non-CSE back-
ground contributes about 10–15% of the events in the 0th
bin of the multiplicity distribution, about 25–35% in the first
two multiplicity bins, and about 40–60% when the signal is
integrated over the first three multiplicity bins.

Figure 7 shows the track multiplicity distribution in the
three bins of pjet2

T after subtracting the non-CSE background.
A clear excess in the lowest bins is observed over a flat con-
tinuum, in agreement with the normalized predictions from
a herwig 6 subsample with jet-gap-jet events only (no addi-
tional MPI); the jet-gap-jet events with additional MPI pro-
ducing tracks in the rapidity gap are part of the background
subtracted from the track multiplicity distributions, and are
not included in the figure. In the region of the excess (CSE sig-
nal region), most events are in the 0th bin, with smaller con-
tributions from events with one or two tracks reconstructed
in the gap region. These tracks originate from the jets but
are reconstructed outside of the jet cone, and their contribu-
tion is larger in the highest pjet2

T bin, for which jets tend to
have a higher multiplicity and to be produced more centrally
(closer to the gap). We use the Ntracks < 2 region to extract
the CSE signal in the lowest and medium pjet2

T bins, and the
Ntracks < 3 region to extract the CSE signal in the highest
pjet2

T bin.
The CSE fractions are obtained from the data using Eq. (1),

with the different terms in this formula uncorrected for detec-
tor effects. No unfolding of the data is necessary since the

effects of resolution and migration of the dijet variables can-
cel in the fCSE ratio. In addition, the number of jet–gap–jet
events extracted in the numerator of Eq. (1) does not depend
on the track reconstruction efficiency; the latter only influ-
ences the non-CSE background count, which is subtracted
from the data. Studies with simulated events show that the
results do not change, within uncertainties, if the hadron-
level variables are used. For the latter, stable particles (with
lifetime τ such that cτ > 10 mm) are used both for the jet
reconstruction and for the extraction of the Ntracks variable.

6 Systematic uncertainties

The systematic uncertainties in the fCSE extraction are esti-
mated by modifying the selection criteria and the analysis
procedure. The following sources of systematic uncertainty
are taken into account:

– Jet energy scale (JES) The pT of each jet in an event is
varied up and down according to the formula pjet, new

T =
pjet

T ± u(pjet
T , ηjet), where u(pjet

T , ηjet) is the JES uncer-

tainty, which increases at lower (higher) values of pjet
T

(ηjet) [49]. After changing the pT of the jets, they are
reordered in pjet, new

T , and the analysis is repeated using

the two highest pjet, new
T jets. The average difference of

the results obtained for the positive and negative varia-
tions relative to the nominal result is taken as an estimate
of the uncertainty associated with the JES.
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Fig. 6 Distribution, uncorrected for detector effects, of the number of
central tracks in opposite-side (OS) dijet events (black circles) with pjet2

T
= 40–60 (top), 60–100 (middle), and 100–200 GeV (bottom), plotted

(left) together with the Ntracks distribution of same-side (SS) dijet events
(blue circles), and fitted to a NBD function (right)

– Track quality The track multiplicity distributions are
redetermined after relaxing the track quality criteria [33],
in order to study the effect of variations in the track find-
ing algorithm. The symmetrized difference between the

results obtained with the relaxed and nominal conditions
is taken as an estimate of the uncertainty.

– Background subtraction The number of background
events in the first bins of the Ntracks distribution is esti-
mated from data, based on the SS sample introduced in
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Fig. 7 Background-subtracted central track multiplicity distributions,
uncorrected for detector effects, in the three bins of pjet2

T , compared
to the herwig 6 predictions without underlying event simulation (“no
MPI”), normalized as in Fig. 3. The background is estimated from the
NBD fit to the data in the 3 ≤ Ntracks ≤ 35 range, extrapolated to the
lowest multiplicity bins

Table 1 Percent systematic (individual, and total) and statistical uncer-
tainties of the CSE fraction in the three bins of pjet2

T

Source 40–60 GeV 60–100 GeV 100–200 GeV

Jet energy scale ±5.1 ±6.7 ±2.1

Tracks quality ±0.3 ±1.3 ±0.4

Background subtraction ±14.1 ±0.9 ±1.9

Total systematic ±15.0 ±6.9 ±2.8

Statistical ±23 ±22 ±15

Sect. 5. The symmetrized difference of the results with
respect to those found with the nominal method, based on
the NBD fit, is taken as an estimate of the corresponding
uncertainty. For the measurement of fCSE as a function
of Δηjj in bins of pjet2

T , the average uncertainty in the

pjet2
T bin is used in each Δηjj bin.

The total systematic uncertainty is calculated as the
quadratic sum of the individual contributions. The effect of
each systematic source and the total systematic uncertainty
are also given in Table 1, for each of the pjet2

T bins. In this
analysis, the systematic uncertainties are smaller than the
statistical ones.

As a check of the sensitivity of the results to the definition
of the hadronic activity in the gap region, the track multiplic-
ity distributions are redetermined after increasing the lower
limit of the track pT from 0.2 to 0.25 GeV. The results agree
within a few percent with the nominal ones, implying no
strong dependence on the hadronic activity definition. This
observation is in accordance with the results of the D0 exper-
iment [27] using calorimeter towers, in which consistent val-
ues of the fCSE fraction were obtained for tower transverse
energy thresholds of 0.15, 0.2 and 0.25 GeV. Likewise, in the
CDF analysis [29] consistent results were obtained based on
track multiplicities (pT > 0.3 GeV) and calorimeter tower
multiplicities (ET > 0.2 GeV). In the present analysis, neu-
tral particles are not included in the multiplicity calculation
because of the relatively high transverse energy thresholds
required above calorimeter noise, about 0.5 GeV for photons
and 2 GeV for neutral hadrons, compared to the much lower
0.2 GeV value for charged tracks.

7 Results

The values of the fCSE fraction, measured as explained in
Sect. 5 in three bins of pjet2

T , are given in Table 2. Figure 8

presents the extracted fCSE values as a function of pjet2
T , com-

pared to the results of the D0 [27] and CDF [29,30] experi-
ments obtained in similar pp analyses at

√
s = 0.63 and 1.8

TeV. All the measurements are based on the same pseudora-
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Table 2 Measured values of fCSE as a function of pjet2
T . The first and

second uncertainties correspond to the statistical and systematic com-
ponents, respectively. The mean values of pjet2

T in the bin are also given

pjet2
T range (GeV) 〈pjet2

T 〉 (GeV) fCSE (%)

40–60 46.6 0.57 ± 0.13 ± 0.09

60–100 71.2 0.54 ± 0.12 ± 0.04

100–200 120.1 0.97 ± 0.15 ± 0.03
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Fig. 8 Fraction of dijet events with a central gap ( fCSE) as a function of
pjet2

T at
√
s = 7 TeV, compared to the D0 [27] and CDF [29,30] results

at
√
s = 0.63 and 1.8 TeV. The details of the jet selections are given in

the legend. The results are plotted at the mean value of pjet2
T in the bin.

The inner and outer error bars represent the statistical, and the statistical
and systematic uncertainties added in quadrature, respectively

pidity range for the gap region, but differ in the selection of
jets. D0 and CDF use the cone jet reconstruction algorithm
with size parameter R = 0.7, and select jets in the regions
1.9 < |ηjet| < 4.1, and 1.8 < |ηjet| < 3.5, respectively.
The latter difference only minimally affects the compari-
son with the CMS results, as the measured fCSE fractions
at 0.63 and 1.8 TeV depend only weakly on the gap size.
At all the three collision energies fCSE increases with pjet2

T .
This reflects the fact that the cross section for dijet events
with a gap decreases with pjet2

T less rapidly than the inclu-
sive dijet cross section does. In addition, a decrease of the
gap fraction with increasing

√
s is observed. The value of

fCSE measured for 40 < pjet2
T < 60 GeV at

√
s = 7 TeV

is about a factor of two lower than those measured for the
same pjet2

T at
√
s = 1.8 TeV. This behavior is in agreement

with observations by D0 and CDF, which reported that the
jet-gap-jet fraction decreases by a factor of 2.5±0.9 [27] and
3.4 ± 1.2 [30], respectively, when

√
s increases from 0.63

to 1.8 TeV. The decrease of fCSE with increasing energy can
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Fig. 9 Fraction of dijet events with a central gap ( fCSE) as a function
of pjet2

T at
√
s = 7 TeV, compared to the predictions of the Mueller

and Tang (MT) model [21], and of the Ekstedt, Enberg, and Ingelman
(EEI) model [22,23] with three different treatments of the gap survival
probability factor |S|2, as described in the text. The results are plotted
at the mean value of pjet2

T in the bin. The inner and outer error bars
represent the statistical, and the statistical and systematic uncertainties
added in quadrature, respectively

be ascribed to a stronger contribution from rescattering pro-
cesses, in which the interactions between spectator partons
destroy the rapidity gap [19,54]. As a consequence, the gap
survival probability factor |S|2 is expected to decrease with
collision energy. Although no explicit predictions for |S|2
currently exist for jet-gap-jet production at

√
s = 7 TeV, a

suppression factor of about 2, for
√
s increasing from 1.8 to

7 TeV, is predicted for central exclusive production [55,56].
Figure 9 shows the comparison of the present results with

the BFKL-based theoretical calculations of the Mueller and
Tang (MT), and Ekstedt, Enberg and Ingelman (EEI) models.
The gap fractions are plotted relative to the standard LO QCD
dijet production rates, calculated with pythia 6 (using tune
Z2* for MT, and the default settings with color reconnection
features turned off for EEI). The MT model [21] prediction
is based on the LL BFKL evolution in the asymptotic limit of
large rapidity separations between the jets, and is obtained
with herwig 6 (as described in Sect. 3, without reweight-
ing of the pjet2

T dependence) for pure jet-gap-jet events (no
simulation of MPI). The MT prediction does not reproduce
the increase of fCSE with pjet2

T , as already observed for the
1.8 TeV data [22]; it also underestimates the fCSE fractions
measured at 7 TeV. The EEI predictions [23] are based on
the model of Ref. [22] extended to the present energy. The
model includes the dominant next-to-LL corrections to the
BFKL evolution of the parton-level cross section, as well
as the effect of rescattering processes. For the latter, three
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Table 3 Measured values of the fraction of dijet events with a central
gap ( fCSE) as a function of the pseudorapidity separation between the
jets (Δηjj) in bins of pjet2

T . The columns in the table correspond to pjet2
T

bins and the rows to Δηjj bins. The first and second errors correspond
to the statistical and systematic uncertainties, respectively. The mean
values of Δηjj in the bin are also given

pjet2
T (GeV) 40–60 60–100 100–200

Δηjj range 〈Δηjj〉 fCSE (%) 〈Δηjj〉 fCSE (%) 〈Δηjj〉 fCSE (%)

3–4 3.63 0.25 ± 0.20 ± 0.04 3.62 0.47 ± 0.19 ± 0.05 3.61 0.78 ± 0.21 ± 0.06

4–5 4.46 0.41 ± 0.16 ± 0.14 4.45 0.47 ± 0.16 ± 0.08 4.41 0.99 ± 0.23 ± 0.06

5–7 5.60 1.24 ± 0.32 ± 0.10 5.49 0.91 ± 0.32 ± 0.21 5.37 1.95 ± 0.69 ± 0.44

approaches are considered, in which gap survival probabil-
ity is either assumed to be a constant factor, or is partially
or fully simulated using Monte Carlo models, to take into
account its dependence on the variables pjet2

T and Δηjj. In the
first approach, the BFKL cross section is scaled by a con-
stant factor corresponding to a gap survival probability value
of |S|2 = 0.7% (magenta long-dashed curve in Fig. 9), in
order to match the data. Alternatively, the activity originating
from perturbative gluons is modeled in terms of initial- and
final-state parton showers, MPI and hadronization processes,
as implemented in pythia 6. The remaining nonperturbative
interactions are simulated either by an additional gap sur-
vival probability factor of |S|2 = 1.5% (green dotted line in
Fig. 9), or by soft color interactions (SCI, red dashed line in
Fig. 9) where a color exchange with negligible momentum
transfer occurs between parton clusters [23].

As can be seen in Fig. 9, the EEI model with |S|2 =
0.7%, and that with MPI and |S|2 = 1.5% reproduce the
pjet2

T dependence of the fCSE fraction in the data. The EEI
model with MPI and SCI correctly predicts the amount of
jet-gap-jet events in the first two pjet2

T bins, but tends to be

lower than the data at higher pjet2
T . The dip in the prediction

around pjet2
T = 80 GeV is a result of using the SCI model in

conjunction with final state showering, and is a feature of the
model rather than a statistical fluctuation.

The dependence of the fCSE fraction on the size of Δηjj

is studied for each pjet2
T sample in three bins of Δηjj = 3–

4, 4–5, and 5–7. The measured values of the fCSE fractions
are listed in Table 3, and plotted in Fig. 10. The fraction of
jet-gap-jet events increases with Δηjj, and varies from 0.3
to 1.2%, and from 0.8 to 2%, in the lowest and the highest
pjet2

T bins, respectively. Figure 10 also shows the comparison
of the data with the predictions of the MT and EEI models.
The MT model predicts a flat dependence of fCSE with Δηjj,
and underestimates the measured jet-gap-jet fractions except
for the lowest (pjet2

T , Δηjj) bin for which the agreement is
good. The EEI model with the |S|2 = 0.7% factor, as well as
that with MPI plus |S|2 = 1.5% predict a decrease of fCSE

with Δηjj, and are at variance with the data. Conversely, the
EEI model with MPI plus soft color interactions satisfactorily
reproduces the rise of fCSE with Δηjj in all pjet2

T bins.

8 Summary

Events with a large rapidity gap between the two leading jets
have been measured for the first time at the LHC, for jets
with transverse momentum pjet

T > 40 GeV and pseudorapid-
ity 1.5 < |ηjet| < 4.7, reconstructed in opposite ends of the
detector. The number of dijet events with no particles with
pT > 0.2 GeV in the region |η| < 1 is severely underesti-
mated by pythia 6 (tune Z2*). herwig 6 predictions, which
include a contribution from color singlet exchange (CSE),
based on the leading logarithmic Balitsky–Fadin–Kuraev–
Lipatov (BFKL) evolution equations, are needed to repro-
duce the type of dijet topologies selected in our analysis.
The fraction of selected dijet events with such a rapidity gap
has been measured as a function of the second-leading jet
transverse momentum (pjet2

T ) and as a function of the size
of the pseudorapidity interval between the jets, Δηjj. The

fCSE fraction rises with pjet2
T (from 0.6 to 1%) and with Δηjj

(from 0.3 to 1.2% for 40 < pjet2
T < 60 GeV, from 0.5 to

0.9% for 60 < pjet2
T < 100 GeV, and from 0.8 to 2% for

100 < pjet2
T < 200 GeV).

The measured CSE fractions have been compared to the
results of the D0 and CDF experiments at a center-of-mass
energies of 0.63 and 1.8 TeV. A factor of two decrease of
the CSE fraction measured at

√
s = 7 TeV with respect

to that at
√
s = 1.8 TeV is observed. Such a behavior is

consistent with the decrease seen in the Tevatron data when√
s rises from 0.63 to 1.8 TeV, and with theoretical expec-

tations for the
√
s dependence of the rapidity gap survival

probability.
The data are also compared to theoretical perturbative

quantum chromodynamics calculations based on the BFKL
evolution equations complemented with different estimates
of the non-perturbative gap survival probability. The next-to-
leading-logarithmic BFKL calculations of Ekstedt, Enberg
and Ingelman, with three different implementations of the
soft rescattering processes, describe many features of the
data, but none of the implementations is able to simultane-
ously describe all the features of the measurement.
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Fig. 10 Fraction of dijet events with a central gap ( fCSE) as a function
of Δηjj at

√
s = 7 TeV in three different pjet2

T ranges, compared to
the predictions of the Mueller and Tang (MT) model [21], and of the
Ekstedt, Enberg, and Ingelman (EEI) model [22,23] with three different
treatments of the gap survival probability factor |S|2, as described in the
text. The results are plotted at the mean value of Δηjj in the bin. Inner
and outer error bars correspond to the statistical, and the statistical and
systematic uncertainties added in quadrature, respectively
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