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Abstract Predicting the structure of a protein from its

amino acid sequence is a long-standing unsolved problem

in computational biology. Its solution would be of both

fundamental and practical importance as the gap between

the number of known sequences and the number of

experimentally solved structures widens rapidly. Currently,

the most successful approaches are based on fragment/

template reassembly. Lacking progress in template-free

structure prediction calls for novel ideas and approaches.

This article reviews trends in the development of physical

and specific knowledge-based energy functions as well as

sampling techniques for fragment-free structure prediction.

Recent physical- and knowledge-based studies demon-

strated that it is possible to sample and predict highly

accurate protein structures without borrowing native frag-

ments from known protein structures. These emerging

approaches with fully flexible sampling have the potential

to move the field forward.

Keywords Protein structure prediction � Conformational

sampling � Knowledge-based energy function � Protein

folding � Molecular dynamics simulation � Molecular

mechanics force field

1 Introduction

One of the long-standing challenges in computational

biology is to fold proteins of given amino acid sequences

into native functional three-dimensional structures of

experimental accuracy. Such reliable protein structure

prediction method is in urgent need because it is far

cheaper to sequence the entire genome of a species

(\$10,000) [1] than to determine the structure of a single

protein (*$100,000) [2]. As a result, the number of

sequences generated from genome sequencing projects

outpaces the growth of structures solved by experimental

techniques by orders of magnitude. It is considered prac-

tically impossible to solve the structures of millions of

proteins by experimental techniques, and the fact that not

all protein structures can be solved by existing experi-

mental techniques further exacerbates the challenge. For

example, X-ray crystallography requires high-quality

crystals that are not always possible to obtain while the

Nuclear Magnetic Resonance (NMR) technique is currently

limited to small-size proteins.

The most influential event in the structure prediction

community is the biannual CASP meeting (Critical Assess-

ment of Structure Prediction techniques) [3]. At two-year
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intervals since 1994, sequences whose structures are soon to

be solved are collected from structural biologists and dis-

tributed to computational biologists for prediction. Predicted

structures are then compared to experimental solutions, and

results from this comparison are reported in the bi-annual

CASP meeting. The most effective structure prediction

techniques highlighted by CASP include fragment-based

assembly [4], profile and/or threading-based fold recognition

[5–18], consensus and meta-server methods [12, 19–22], and

template assembly [23]. While encouraging progress has

been made, the overall pace of advancement since the first

CASP remains slow [24]. The most successful techniques in

structure prediction (e.g. ROSETTA [4] and TASSER [23])

appear to converge to a unified approach of mixing and

matching known native structures either in whole (template-

based modeling) or in part (fragment assembly) [24, 25]. The

convergence of methods highlights the need for innova-

tive techniques to break the impasse in protein structure

prediction.

The CASP meeting has had a profound positive impact

on the community by promoting the winners (the best

predictors), regardless of the methods and databases

employed. However, an unintended consequence of the

performance-oriented evaluation is that it favors incre-

mental changes from existing proven techniques that have

been perfected over the years, rather than novel methods

that are potentially game changing but not yet comparable

in accuracy to the mature and proven techniques. It rewards

the methods that employ the largest database and super-

computing powers and perform a relatively easier task of

re-ranking models predicted by other methods, rather than

the challenging task of structure prediction. The purpose of

this review is to raise the attention to alternative approa-

ches in protein structure prediction with the hope of pre-

venting their premature termination. To limit our scope, we

will focus on recent trends and several emerging ‘‘ab ini-

tio’’ approaches that are not fragment based. Focusing on

fragment-free approaches in this review is not an attempt to

reduce the historical or future importance of fragment-

based approach but to stimulate new ideas to help solve this

challenging problem.

2 Physics-based approaches

Most proteins fold into unique thermodynamically stable

structures. The stability of the folded structures and the

ability of proteins to perform a wide range of functional

activities are determined by solvent-mediated physical

interactions between the amino acid residues of the proteins.

In principle, such physical interactions can be obtained

by solving quantum mechanical equations. However, suffi-

ciently accurate quantum–mechanical simulations of the

large-scale motion of proteins are not yet possible because of

the large number of complicated interactions in such systems

(protein and water molecules). As a result, these interactions

are usually approximated by empirical molecular mechanics

force fields.

2.1 Molecular mechanics force fields

Molecular mechanics force fields are typically obtained by

the combination of quantum mechanical calculations of

small peptide fragments and empirical fitting of experi-

mental data [26–28]. Earlier development of force fields

focused on dynamics and free-energy simulations of pro-

teins around their native conformations [29–31]. Direct

ab initio folding simulations from random coils are ham-

pered not only by the insufficient accuracy of molecular

mechanics force fields but also by the astronomically large

conformational space of polypeptide chains. Currently,

typical molecular dynamics simulations last for a few

hundred nanoseconds, compared to actual folding time

from microseconds to seconds. Thus, most folding studies

in explicit water molecules are limited to small peptides or

very small proteins [32, 33]. One milestone study was a

microsecond folding simulation of 36-residue villin head-

piece starting from an unfolded conformation by Duan and

Kollman [34]. Although the presence of water molecules

can smooth the free-energy landscape [35], molecular

dynamics simulations of low-resolution protein structures

with explicit solvent models have mixed outcome:

improving the structural accuracy for some but not other

proteins [36–39]. In particular, a large-scale study of 75

proteins each with 729 near-native structures [40] indicates

that molecular dynamics simulations with explicit solvent

molecules started from near-native structures move further

away from their respective native conformations. The

results underscore the need for further improvement in the

force fields and the approaches.

The performance with explicit water molecules descri-

bed above does not justify the significant increase in

computing time needed to include them. As a result, most

studies in structure prediction employed simplified implicit

solvation models (for reviews see e.g. [41–43]). While

most studies are limited to short peptides and small pro-

teins [32, 44–49], some successes for high-resolution

ab initio predictions are noteworthy. Simmerling et al. [50],

Pitera and Swope [51], and Duan et al. [52] all achieved

high-resolution prediction of a 20-residue Trp-cage peptide

with various versions of the AMBER force field and a

generalized Born (GB) solvation model [53]. Duan et al.

folded villin headpiece to less than 0.5 Å Ca-root-mean-

squared distance (RMSD) from its native structure [54, 55].

Pande et al. folded villin headpiece to about 1.7 Å of the

root-mean-squared of the inter-residue Ca–Ca distance
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matrix (dRMS) from its native structure [56] and further

developed a method for automatically constructing Markov

state models to capture the thermodynamics and kinetics of

folding [57]. Duan et al. also reached 2.0 Å RMSD for both

three-helix bundles of 47-residue albumin binding domain

and 60-residue B domain of protein A (BdpA) [58], and

1.3 Å for a 28-residue designed alpha/beta protein (FSD)

[59]. Figure 1 shows the best folded structure achieved

during folding simulation when compared to the native

structure of BdpA. The lowest sampled conformations are

less than 1.0 Å RMSD. It should point out that most

of these are small helical proteins. Ab initio folding

of proteins of mixed secondary structures and medium

size remains a challenging endeavor. Nevertheless, the

successful folding of small proteins to sub-angstrom

Ca-RMSD by ab initio approach is encouraging. It suggests

that, with improved force fields, folding proteins to their

native states with experimental accuracy should be possible

in the not-too-distant future.

Recently, Dill and his coworkers [60] made a blind

prediction of six CASP 7 targets based on AMBER 96 with

an implicit GB/SA (Solvent Accessible surface area) model

of solvation with a sampling technique called the zipping

and assembly [61]. They found that the accuracy of their

method is about the average accuracy of other knowledge-

based techniques. This is encouraging, considering that the

method does not utilize any predicted secondary structures

and fragments/templates from known protein structures.

Their study will likely re-energize the physics-based

approaches that were participants in early CASP experi-

ments (e.g. [62–64]) and currently are overshadowed by

knowledge-based or mixed approaches. However, in order

to increase the competitive edge of physics-based approach

over a knowledge-based one, it is clear that there is a need

for further optimization of physics-based force fields and/or

solvation models. For example, Jagielska et al. showed

that protein models can be refined closer to their native

structures using an AMBER force field with optimized

relative weights [65]. Krieger et al. [66] re-tuned AMBER

parameters by minimizing the deviations from 50 high-

resolution protein crystal structures. Lin et al. found that

hydrophobic potential of mean force is more useful than

commonly used solvent accessible surface area for native

structure discrimination [67]. Progress has been made in

the development of efficient PB (Poisson-Boltzmann)/SA

method that enabled MD simulations of proteins [68].

Because a force field–based approach relies on the con-

tinuum solvent models to treat the solvation effect, the

overall accuracy and effectiveness of the approach thus

requires the advancement in both. One area that may

require additional effort is an efficient approach to treat the

ionic effect including an accurate model of salt bridges in

proteins.

Most existing physics-based molecular mechanics force

fields treat electrostatic interactions between atoms as a

collection of fixed point charges. In reality, they are

anisotropic and polarizable. As a result, there is a signifi-

cant effort in the development of polarizable force fields

[69–78]. Polarizability is handled by many different

approaches including fluctuating charges, induced dipoles,

Drude oscillator and distributed multipoles. Yet, despite

the effort in development, applications of polarizable force

fields are limited to validation of the developed polarizable

force fields and a few dynamics simulations of proteins

[79]. As the development of polarizable force fields con-

tinues [79], their application to structure prediction

(structure refinement, in particular) will likely commence

soon.

2.2 Quantum mechanics and mixed QM/MM

A more fundamental approach is to treat atomic interac-

tions quantum mechanically. Most existing applications of

quantum mechanics (QM) to proteins are a hybrid

approach in which QM and molecular mechanics (MM) are

applied to treat different portions of a system (QM/MM)

[80, 81]. Typically, a small portion of a system (e.g. the

active site of an enzyme [82]) is treated quantum

mechanically and is coupled to the remaining portion that

is treated classically for efficient conformational sampling.

Applications of QM to entire proteins became possible

with the development of linear scaling techniques [83, 84]

and were found to be useful for refining experimental

structures [85–87]. In 2001, Liu et al. [88] demonstrated

Fig. 1 Comparison between simulated structures (magenta) and

NMR structure of BdpA (green). a The best folded structure with

0.8 Å RMSD (Ca only) from MD folding simulation of the truncated

BdpA. b The best folded structure with 1.3 Å RMSD from the

Replica Exchange MD of the full-length BdpA. Adopted from Fig. 2

of Ref. [58]
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that it is possible to simulate a system where the entire

protein crambin is represented on the semi-empirical

quantum–mechanical level and water molecules are mod-

eled at the MM level for 350 ps. The simulation of the

protein crambin provides a more accurate description of

structural detail than regular MM simulations, when com-

pared to the high-resolution X-ray structure. Zhu et al. [89]

further showed that the gas-phase and solution structures of

non-natural beta- and mixed alpha/beta- peptides can be

predicted by an approximate density functional method for

peptides coupled with a MM model for the solvent. Ren-

frew also found that quantum mechanics allows a more

accurate placement of side chains [90]. More recently, a

new approach was proposed where valence and core

electrons are treated at the QM and MM levels, respec-

tively [91–93]. The resulting X-Pol model has been used to

simulate the protein BPTI in water for 50 ps. These studies

highlight the potential utility of QM/MM in protein struc-

ture prediction as computing power further improves.

These ab initio physics-based approaches, however, are

several orders of magnitude slower than molecular

dynamics based on molecular mechanics force fields. They

may prevail one day when GPU (Graphics processing unit)

parallel processing [94–96] and specific hardware for

molecular dynamics simulations [97] become mature

techniques accessible to most researchers.

One of the most successful applications of quantum

calculations to protein structures is their ability to make

highly accurate structure prediction from NMR chemical

shifts [98–100]. Several groups have achieved a 2.0 Å or

better resolution for predicted protein structures by

employing fragment-based, structure prediction techniques

with NMR chemical shifts as the only experimental

restraints [101–107].

3 Knowledge-based potentials

While purely physics-based approaches may have the

potential to achieve accurate protein structure prediction

in the future, it makes practical sense to take advan-

tage of known sequence and structural information, as

appropriate for aiding protein structure prediction.

Knowledge-based information can be employed to derive

restraints in order to achieve a significant reduction in the

conformational sampling space; knowledge-based (free)

energy functions have been applied rather successfully to

discriminate the native conformations from other non-

native ones. Here, we will limit our discussion on all-

atom knowledge-based energy functions because they are

required for high-resolution structure prediction and are

usually more accurate than residue-level knowledge-

based energy functions.

3.1 All-atom distance-dependent potentials

A knowledge-based or statistical energy function is

obtained directly from statistical analysis of known

experimental protein structures [108, 109]. Unlike physics-

based energy functions, an all-atom statistical energy

function is a potential of mean force and, thus, allows

direct and efficient evaluation of the free energy involved

in folding and binding of proteins. Developing distance-

dependent statistical energy functions at the atomic level is

a relatively new, under-explored approach, compared to

distance-dependent all-atom physics-based force fields

[26–28]. Although the residue-level distance-dependent

potential was developed by Sippl in 1990 [110], the first

all-atom distance-dependent statistical potential was not

obtained until 1998 by Samudrala and Moult [111]. Only a

few more have been developed since [112–120].

Different statistical energy functions differ in the ref-

erence states employed to estimate the expected number of

atomic pairs at a given distance in the absence of any

interaction. Samudrala and Moult used a conditional

probability function [111], while Lu and Skolnick

employed a quasi-chemical approximation [113]. The

common approximation behind the two methods is the

‘‘uniform density’’ reference state [108] that statistically

averages over the observed state for the distance depen-

dence [110]. Zhou and Zhou proposed to employ uniformly

distributed points in a finite-size sphere for the reference

state (Distance-scaled Finite Ideal-gas REference state,

DFIRE) [114] that led to an approximate analytical

expression for the distance dependence. Shen et al. further

refined the analytical expression to account for varied

protein sizes and led to the DOPE (Discrete Optimized

Potential Energy) energy function [115]. Cheng employed

a free-rotating and self-avoiding chain model as the refer-

ence state to account for the effect of covalently bonded

backbone [120]. The difference between these two new

techniques and DFIRE is typically small [120–122].

The relatively slow development of all-atom knowledge-

based energy functions is largely because a statistical

energy function is not considered to be theoretically rig-

orous [123–125] and is thought to be useful for coarse-

grained models only. Moreover, an all-atom statistical

potential is often suspected to be less reliable than an all-

atom physics-based energy function. However, all-atom

statistical energy functions have been found to be compa-

rable to, or more accurate than, physics-based energy

functions in loop selections [126], restoring partially

denatured segments with secondary structures [127], and

refining near-native structures [128]. In restoring partially

denatured segments [127], both explicit and implicit sol-

vation physics-based force fields were less successful than

the DFIRE energy function [114] together with a clustering

6 Theor Chem Acc (2011) 128:3–16
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method. Moreover, specific interactions obtained from a

statistical approach are directly comparable to quantum

calculations. Morozov et al. [129] showed an excellent

agreement between a statistical hydrogen-bonding poten-

tial and quantum mechanical calculations. Gillis et al. [130]

illustrated that statistical descriptions of cation–p and

amino–p interactions have a significant correlation with

quantum calculations at the Hartree–Fock and the second-

order Möller–Plesset perturbation theory levels. The cor-

relation coefficient is 0.96. By comparison, the correlation

coefficient between quantum calculations and the results

from the physics-based energy function CHARMM [27] is

0.89. In addition, Zhou et al. showed that a DFIRE-based

statistical potential has some characteristics of a physics-

based energy function in terms of database independence

and transferability [131–134]. These studies indicate that

statistical energy functions are valuable counterpart to

physics-based energy functions, even at the detailed atomic

level. Thus, all-atom knowledge-based energy functions

will likely play increasingly active roles in structure pre-

diction beyond ranking decoy structures. For example,

Yang and Zhou employed an improved version of DFIRE

(DFIRE 2.0) based on finer grids to make an ab initio

folding of terminal segments with secondary structures

[122].

3.2 All-atom orientation-dependent potentials

Specific folding and binding of proteins rely on specific

interactions. Evidence is abundant that many interactions

are more specific and orientation dependent than what are

described by existing statistical energy functions. The most

well-studied specific interaction for protein folding is

hydrogen-bonding interaction [135]. Hydrogen-bonding

interaction is commonly described as an individual, physical

or statistical term in many empirical functions for proteins

(e.g. Refs. [23, 136–138]). However, hydrogen-bonding is

only a special case of polar–polar interaction. The interac-

tion between polar atoms that are not hydrogen-bonded

should be orientation dependent as well. There is evidence

that this orientation dependence plays an important role in

the formation of a-helices and b-sheets [139–142]. Addi-

tionally, the interaction between polar and non-polar atoms

is likely orientation dependent because the hydrophobic

effect is caused by the re-orientation of water molecules

(polar atoms) near a hydrophobic surface [143]. The ori-

entation dependence described above is part of the physics-

based approach through electrostatic interactions, but not

yet accounted for by statistical energy functions. Recent

advances in statistical orientation-dependent potentials

focused on coarse-grained models [130, 144–147], rather

than a systematic treatment of polar interactions on an

atomic level.

Recently, Yang and Zhou introduced a dipolar DFIRE

(dDFIRE) that treats polar atoms separately from non-polar

atoms [148]. In this method, each polar atom is no longer

approximated as a point but is a point with a direction. The

directions of polar atoms are defined by the covalent bond

vectors between heavy atoms. If a polar atom (e.g. main

chain oxygen) is bonded with only one heavy atom, the

direction of the polar atom is determined by the bond

vector. If a polar atom (e.g. main chain nitrogen) is bonded

with two heavy atoms, the direction of the polar atom is

determined by the sum of two bond vectors. Polar atoms

bonded with three heavy atoms (e.g. backbone nitrogen of

residue proline) are approximated as non-polar atoms.

Figure 2 displays all defined directions of polar atoms in 20

amino acid residues. Once the directions of polar atoms are

defined, orientation-dependent polar interactions can be

extracted from known protein structures based on distance

and orientation angles of physical interactions of dipoles.

Application of the DFIRE energy function to ab initio

refolding of protein terminal segments with secondary

structure elements indicates that hydrogen-bonded inter-

actions alone are not enough to make high-resolution pre-

diction of segment structures with secondary structure

elements [148]. Specific interactions between polar atoms

and between polar and non-polar atoms all contribute sig-

nificantly to the prediction accuracy of the structure of a

terminal segment. An all-atom orientation-dependent

knowledge-based energy function has also been extracted

with rigid block approximation in the absence of distance

dependence and found to be useful for side chain modeling

[149–151].

Fig. 2 Directions of all polar atoms for the main chain (top left) and

the side chains of all amino acid residues. One diagram, sometimes,

shows several residues with similar side chain structures for polar

atoms (e.g. –OH/SH group in Thr, Ser, Cys and Tyr)

Theor Chem Acc (2011) 128:3–16 7
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4 Conformational sampling

In addition to the lack of an accurate energy function,

another bottleneck facing protein structure prediction is

conformational space sampling [152]. This can be illus-

trated by the fact that from CASP 6 to CASP 8, some

reasonable predictions were made for free-modeling targets

with less than 100 residues but none for proteins with more

than 100 residues [153]. Because several review articles

provided an excellent overview on conformational sam-

pling techniques [154–159] and a comprehensive review

would require a separate article, we will only highlight a

few newly developed sampling techniques that were

implemented for protein folding and/or structure predic-

tion. In particular, we will not discuss coarse-grained

models [160–162] in this review as they have become a

commonly used tool for speeding up sampling.

4.1 Barrier crossing/flattening techniques

Efficient sampling of protein conformational space is

challenging because the energy landscape of proteins has

numerous barriers that prevent proteins from moving freely

from one conformational state to another. How to efficiently

cross these energy barriers is the aim of many sampling

techniques. They can be generally classified into methods

modifying potential energy landscape such as umbrella

sampling [163] and accelerated molecular dynamics [164,

165], methods employing a generalized ensemble of the

system (multiple copies) such as replica exchange [166] and

parallel tempering [167], and combinations of the two

techniques such as simulated tempering [168, 169]. These

three approaches have been substantially improved and/or

implemented for protein structure prediction and folding in

recent studies [154–157, 159]. A Grow-to-Fit method that

reduces energy barriers due to side chain packing has been

developed for the assignment of protein side chains using

molecular mechanics force fields [170]. Among more recent

examples, an improved accelerated molecular dynamics

[171] demonstrated fast folding of Trp-CAGE and Trpzip2

[44, 172]. In this method, the energy surface is flattened to

accelerate the barrier crossing process. Significantly faster

convergence of thermodynamics properties of Trpzip2

[173] was observed by coupling replica exchange simula-

tions to a non-Boltzmann structure reservoir generated from

a high-temperature simulation [174, 175]. Replica exchange

simulations were optimized by replica quenching [176] and

reconstructing replica flow in the temperature ladder from

first passage time [177]. Replica exchange simulations are

also combined with specific biased potential such as

hydrogen-bonding bias potential [178], repulsive and side

chain interactions [179] and backbone-biased potential

[180] for enhanced sampling. Enhanced sampling was also

achieved by adaptive sampling of networks called Markov

State Models [181]. Iteratively generating bias potentials

targeting density of states has been shown to enhance the

sampling of Go-type models [182, 183]. Similar to replica

exchange, a forced random walk in temperature space

allows a single simulation trajectory to traverse within a

predetermined range of temperature to achieve accelerated

sampling in MD simulations of small proteins with explicit

solvent [184, 185]. A method has been proposed in which

the simulation is initially performed at high temperature to

sample the conformational space that is divided into smaller

space within which subsequent room-temperature simula-

tions are performed [186, 187]. Quick convergence was also

demonstrated by coupling the replica exchange method

with a general bias potential that does not correlate with the

native protein structure [188–190] and by performing

orthogonal space random walk [191]. Applications of these

novel techniques are mostly limited to molecular mechanics

force field simulations on peptides and/or a few small

proteins, and a comprehensive comparison between differ-

ent techniques is yet to be available. Their effectiveness on

larger proteins of realistic size and knowledge-based energy

functions is not known.

4.2 Local-guided/biased sampling

Another method to increase sampling efficiency is to

restrict the conformational space to be sampled. The

fragment-based approach was introduced as a technique to

reduce the conformational space by focusing on sampling

of known native local structures only. However, it has been

found challenging to recognize structurally similar frag-

ments or templates from a prebuilt structure/fragment

library [25] because these structures are built using a preset

threshold of structural or sequence similarity. As a result,

these structures are similar but not identical to the structure

of interest. Somewhat random imperfections in these

fragments/templates make it difficult to design a universal

energy function to recognize them and to make a correct

assembly despite their imperfections. This adds more

demands to the grand challenge of developing an accurate

energy function for protein folding and structure prediction

[192]. In addition, fragment rigidity may make it difficult

to reach near-native structures for some proteins. Indeed,

Hegler et al. found that under the same energy function,

fragment-based sampling of larger proteins ([70 residues)

encounters kinetic limitation that is not seen in unrestric-

tive molecular dynamics [193]. Kim et al. further showed

that sampling is often limited by the inability to sample

rarely occurring torsion angles of a few residues [194].

One approach to conformational sampling is to guide it

by hierarchical folding pathways. Ozkan et al. predicted

structures by zipping (local folding) and assembly [61].

8 Theor Chem Acc (2011) 128:3–16
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This method involves independent folding of local struc-

tures and growth (zip) or coalescence (assemble) of these

structures with other structures and achieved encouraging

results in CASP [60]. DeBartolo et al. fixed secondary

structure iteratively during Monte Carlo folding simula-

tions [195] and further improved the technique with mul-

tiple sequence alignment for torsion angle sampling

distribution with DOPE and other empirical energy func-

tions including a collapse term [187]. For a benchmark of

12 small proteins, their method achieved higher accuracy

for secondary structure prediction than sequence-based

prediction, and the accuracy of their tertiary structure

prediction is within 6Å for 8 of 12 proteins [196]. Brunette

and Brock proposed a model-based search that guides the

sampling with partially folded models during simulations

with the Rosetta energy function [197]. The proposed

method did sample lower energy conformations than the

simple Monte Carlo technique in Rosetta. However, the

test is quite limited because in the absence of homologous

structural fragments, both the proposed method and Rosetta

performed poorly for 29 out of 32 testing proteins, perhaps

due to limited sampling in their experiments on homolog-

free structure prediction.

A similar approach employs locally biased sampling.

Hegler et al. showed improved sampling by a local energy

term that is derived from local fragment sequence align-

ment and tested their technique in CASP 8 [193]. Chen

et al. developed a move set for protein folding based on

statistical knowledge of torsion angles [198]. Their test is

limited to a native-contact biased model. Yang and Liu

improved protein sampling by genetic algorithm in discrete

backbone dihedral angle space [199]. Zhao et al. sampled

the backbone via local biases from a probabilistic, condi-

tional random/neutral fields model on the relation between

protein sequences and backbone structures [200–202].

Their application to CASP 8 targets is on a par with other

best predictors. Similarly, Boomsma et al. [203, 204]

proposed a generative, probabilistic model for local struc-

ture sampling. Testing of the technique was limited to the

ability to sample near-native conformations.

To summarize, the above studies on local-guided/biased

sampling suggested significant potential. However, large-

scale benchmark tests and optimized integration with a

suitable energy function with an all-atom model for final

packing are needed to further improve or confirm the

accuracy of protein structure prediction.

4.3 Secondary structure and torsion angle restraints

Another approach for reducing conformational space is to

employ predicted secondary structures (e.g. [4, 205–209]).

However, predicted secondary structure is often repre-

sented by coarse-grained three states of helices, coils and

strands because the accuracy of predicting more than three

states is too low to be useful [210]. Restraints based on

predicted secondary structures are limited to ideal shapes

of helical and strand residues only because coil residues do

not have a well-defined structure.

One way to avoid the limitation of predicted secondary

structures is to predict backbone torsion angles. However,

multistate torsion angles are as difficult as secondary

structure to predict [211–215]. For example, Zimmermann

and Hansmann [216] obtained a three-state prediction

accuracy of 79%, the same level of accuracy for secondary

structure prediction [217]. Recently, Zhou et al. demon-

strated that real-value backbone torsion angles could be

predicted with reasonable accuracy [218–220]. One limi-

tation of direct real-value angle prediction is that many

predicted angles are located in sterically prohibited

regions. This limitation was remedied by mixing the

advantage of multistate prediction (avoiding prohibited

regions) and that of real-value prediction (continuous rep-

resentation) [221]. This was done by making a two-state

peak prediction first and followed by predicting the devi-

ation from the predicted peak. The final method (SPINE

XI) further refines the prediction by a conditional random

field model and leads to an accurate prediction of real-

value torsion angles that is close to the accuracy of angles

derived from NMR chemical shifts with the methods

TALOS [222] and TOPOS [107]. Multistate prediction

derived from predicted real values by SPINE XI is even

more accurate than predicted states from those methods

dedicated to multistate prediction. For example, a three-

state prediction accuracy based on a five-residue block of

8 consecutive torsion angles defined by multistate predic-

tor LOCUSTRA is 81% by SPINE XI and 79% by

LOCUSTRA [216].

Predicted real values of torsion angles serve as signifi-

cantly more powerful restraints for fragment-free protein

structure prediction than predicted secondary structure.

Using a benchmark of 16 proteins and defining success as

the ability to sample a structure with less than 6 Å RMSD

from the native structure within top 15 predicted structures,

Faraggi et al. [221] showed that the success rate increases

from 6 with predicted secondary structure as restraints, 10

with predicted real-value torsion angles for helical and

strand residues only as restraints, to 12 with predicted real-

value torsion angles as restraints for all residues. The

median RMSD value for these three cases decreased to 6.3,

5.4 and 4.3 Å RMSD, respectively. Here, torsion angles are

not restrained if they are within the predicted ranges of

error, restrained harmonically if greater than predicted

ranges but within twice the predicted ranges, and subjected

to a constant penalty if above twice the predicted ranges.

This result demonstrates the importance of real-value pre-

diction (67% increase in success rate and 14% reduction in

Theor Chem Acc (2011) 128:3–16 9
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the median RMSD value), and of coil residue restraints

(another 20% increase in success rate and 20% reduction in

the median RMSD value) in structure prediction. In Fig. 3,

the case of the SH3 domain protein (PDB ID: 1shf) is given

to illustrate the importance of real-value torsion angles for

sampling of non-ideal beta strands.

5 Summary and outlook

Some progress has been made towards ab initio prediction

of protein structure by physics-based force fields. The

progress, however, is limited to a few small helical or

mixed helical and strand proteins. With intensive devel-

opment in next generation force fields and advances in

computing power, there is hope that physics-based methods

may emerge as a powerful tool for structure prediction.

Meanwhile, lack of progress in knowledge-based approa-

ches for template-free modeling calls for fresh ideas. This

review describes several trends in recent literature: devel-

opment of physical, polarizable force fields and specific

orientation-dependent all-atom, statistical energy func-

tions, and smoothing or reduction of sampling space via

improved sampling techniques and local bias or restraints.

One noticeable trend is the increased use of molecular

force fields coupled with solvation free energy for scoring

or ranking near-native conformations generated from con-

formational sampling. This approach, however, neglects the

contribution of entropy (dynamic motions) in stabilizing

native conformations of proteins because typical molecular

force fields characterize the energy rather than free-energy

surface of proteins. A more effective scoring function

would require re-training all force field parameters (van der

Waals parameters and partial charges) to mimic the free-

energy surface and allow a more accurate account of the

effect of atomic movement on solvent dielectric [223, 224].

In summary, recent studies suggest that it is possible to

reach near-native structures without borrowing native

fragments or templates from other proteins. Although fully

flexible conformational search is one or more orders of

magnitude slower than rigid fragment–based search, it has

the potential to reach more accurate, high-resolution

structure needed for function prediction and analysis. This

fully flexible, continuous sampling approach coupled with

more specific, accurate energy functions will likely lead to

the next generation methods in structure prediction.
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