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P elements were first discovered in the fruit fly Drosophila melanogaster as the
causative agents of a syndrome of aberrant genetic traits called hybrid dys-
genesis. This occurs when P element-carrying males mate with females that
lack P elements and results in progeny displaying sterility, mutations and
chromosomal rearrangements. Since then numerous genetic, developmental,
biochemical and structural studies have culminated in a deep understanding
of P element transposition: from the cellular regulation and repression of
transposition to the mechanistic details of the transposase nucleoprotein
complex. Recent studies have revealed how piwi-interacting small RNA
pathways can act to control splicing of the P element pre-mRNA to modulate
transposase production in the germline. A recent cryo-electron microscopy
structure of the P element transpososome reveals an unusual DNA architec-
ture at the transposon termini and shows that the bound GTP cofactor
functions to position the transposon ends within the transposase active
site. Genome sequencing efforts have shown that there are P element trans-
posase-homologous genes (called THAP9) in other animal genomes,
including humans. This review highlights recent and previous studies,
which together have led to new insights, and surveys our current under-
standing of the biology, biochemistry, mechanism and regulation of P
element transposition.
1. Hybrid dysgenesis, horizontal gene transfer and a
natural gene drive

P elements were discovered in the mid-1970s by population geneticists when
wild Drosophila melanogaster strains were brought into captivity and mated to
laboratory strains that had been in captivity since the early 1900s [1,2]. Surpris-
ingly, when male flies from wild strains (termed P or paternally contributing)
were mated to female flies from laboratory strains (termed M or maternally
contributing) a number of abnormalities were observed, including sterility
due to rudimentary gonad development, high rates of mutation and chromoso-
mal rearrangements. By contrast, the resulting progeny from the reciprocal
cross (lab male (M) by wild female (P)) were normal and fertile (figure 1).
Collectively, this syndrome of traits was termed hybrid dysgenesis [4–6].

It is believed that P elements were introduced into D. melanogaster from
another Drosophila species by horizontal gene transfer via a parasitic mite,
early in the part of the twentieth century [7,8]. Because the progeny of dysgenic
crosses are sterile [5,6], there is a strong biological selection for the ability to
repress P element mobility in the wild. Despite this, P elements spread through-
out wild populations in about 30 years. In fact, all D. melanogaster isolated from
the wild since the 1980s have P elements [9]. This invasion constitutes a natural
gene drive [10–12] and population analyses indicate that a similar invasion is
currently under way in D. simulans wild populations [13–15].
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Figure 1. Genetics of hybrid dysgenesis. The reciprocal crosses of hybrid dysgenesis are indicated. The dysgenic cross involves mating wild P strain males to lab M
strain females resulting in dysgenic ovaries. This results in high levels of P element transposition, induction of mutations, chromosomal breaks and rearrangements
and germ cell death. By contrast, when lab M strain males are mated to wild P strain females, normal ovaries are produced because the P strain females have the
repressive state known as ‘P cytotype’. Adapted from [3].
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The first clue that hybrid dysgenesis was caused by trans-
posable elements came from the fact that some of the resulting
mutations were notably unstable and could revert [2,16]. As a
direct test of this idea, a series of dysgenic crosses were carried
out with the goal of isolating eye colour mutants, since
the Drosophila white locus had been cloned and was a good
target for identifying the nature of hybrid dysgenesis-induced
mutations [17,18]. This analysis led to the identification of
DNA insertions into the white locus and the reversion of
these mutations resulted in the loss of those DNA elements.
These DNA insertionswere subsequentlymolecularly isolated
and termed P elements [18,19].
2. Maternal effect of P cytotype and the
involvement of the PIWI-interacting
RNA pathway

The dissection of the maternal effect observed on reciprocal
crosses betweenD.melanogasterwild and lab strains ultimately
led to the description of one of the best-characterized examples
of transgenerational epigenetic inheritance in animals. Despite
initial difficulties in identifying the molecular basis of the
factor conferring transgenerational protection, a series of ele-
gant genetic analyses were used to definitively demonstrate
that the epigenetic information was provided by determinants
found in the oocyte cytoplasm rather than the maternal DNA
itself [17–20]. One of the clearest examples was provided by
the genetic experiments relying on the naturally occurring
and genetically traceable P element insertion Lk-P1A, which
is located within the telomeric associated sequence on the X-
chromosome (X-TAS) and that is individually able to suppress
dysgenesis (figure 2a) [20,21,23]. Such experiments provided
genetic proof that the transgenerational protection relied on
the presence of the maternally provided Lk-P1A-derived
cytoplasm rather than the maternally provided Lk-P1A
chromosome [21,24–26]. From there, a series of genetic, geno-
mic, biochemical and developmental studies culminated with
the identification of an evolutionarily conserved small RNA
interference (RNAi) pathway in animals [27,28]. These studies
revealed that the transgenerational epigenetic information is
provided by maternally deposited piwi-interacting small
RNAs (piRNAs) [29,30] and relies on the function of the
respective piRNA biogenesis pathway [31–33].

piRNAs are small RNA molecules (23–29 nt in Drosophila)
generated through the processing of larger RNA transcripts
and are eventually loaded into Argonaute effector protein
complexes of the PIWI family (Piwi, Aub and Ago3 in Droso-
phila; reviewed in [34]). Similar to other RNAi systems,
piRNAs endow PIWI proteins with sequence-specificity by
complementary Watson–Crick base pairing with their tar-
gets, which are mostly derived from transposable elements
and other genomic repeats [28,32]. In flies and in mammals,
the expression of piRNAs, as well as of the PIWI proteins,
is mostly restricted to the gonads, and Aub and Piwi had
been initially identified for their role in germline specification
and development rather than their role in the piRNA path-
way [35–38]. Most importantly, from a transgenerational
perspective, Aub and Piwi proteins—likely loaded with
piRNAs produced during oogenesis—are maternally depos-
ited at the posterior pole of the oocyte in a specialized
cytoplasm known as the germ plasm, which is then incorpor-
ated into the developing germ cells during embryogenesis in
the next generation (figure 2b) [30,37,39]. This process is
thought to account for the epigenetic nature of the P cytotype,
through a series of genetic and molecular studies revealing
that maternally provided piRNAs are sufficient to trigger
homology-dependent RNAi silencing in trans, promote chro-
matin changes at target loci, regulate P element expression,
and kick-start piRNA production in the germline of the
next generation [23,26,30,33,40–42].

Over the last 40 years, the studyof the P cytotype protection
has provided the paradigm of epigenetic transgeneratio-
nal phenomena that culminated with the description of
piRNAs as the source of epigenetically inherited information
[25,29,30]. While much progress has been made, some aspects
of the transgenerational model have not yet been directly
dissected, largely due to technical and developmental chal-
lenges. Notably, the fact that PIWI proteins are required for
germline development and germ plasm assembly has imposed
constrains to experimental design [34–38]. In this context, itwill
require the development of new strategies and methods to
approach some of these key questions, including the molecular
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Figure 2. Maternal effect genetics of P cytotype during hybrid dysgenesis and the maternally inheritance of PIWI proteins. (a) The repressive P strain, Lk-P(1A), can
transmit P cytotype across multiple generations in a maternal effect pattern, independently of the inheritance of the maternally derived Lk-P(1A) chromosome. That
is (left) if mothers (G0) carry Lk-P(1A), then the G1 females carrying either the maternally inherited or the paternally inherited Lk-P(1A) can propagate the ability to
repress hybrid dysgenic sterility to the next generation. In the reciprocal test cross (right), females not carrying Lk-P(1A) are mated to Lk-P(1A) males, and the G1
progeny females carrying the paternally inherited Lk-P(1A) chromosome but lacking the maternally deposited Lk-P(1A)-derived cytotype cannot provide G2 females
with strong repression of GD sterility [21]. The idea is that the oocytes from the Lk-P(1A) grandmothers deposit maternal components that create P cytotype. This is
due to transmission of piRNAs in the oocytes derived from Lk-P(1A) mothers. (b) Confocal images of Drosophila embryos expressing the germline marker nos-
moeGFP [22], approximately 1.5–2 h after egg laying—during primordial germ cells (PGCs) formation at the posterior pole of the embryo and before zygotic
genome activation. Bottom images show the incorporation of the maternally inherited AUB (cytoplasmic) and PIWI (nuclear) proteins—but not AGO3—into
the budding PGCs. Embryos were stained for GFP (germ cells, green); DAPI (DNA, blue), Lamin Dm0 (nuclear envelope, white) and PIWI family proteins (magenta)
AUB (bottom left), PIWI (bottom centre) and AGO3 (bottom right). Scale bars: 100 µm (top) and 20 µm (bottom).
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mechanisms by which transgenerationally inherited piRNAs
act on their targets in developing germ cells and how
maternally provided PIWI-piRNA complexes perpetuate
their production through multiple generations.
3. Temperature sensitivity and the
development of dysgenic germ cells

An intriguing feature of hybrid dysgenesis that readily
captivated the attention of researchers was its temperature-
sensitivity [4]. This feature was characterized early on by
Kidwell & Novy [5] and by Engels & Preston [43]: the
narrow temperature range between 24 and 26°C defines a
dramatic threshold for change in phenotype. F1 hybrid
progeny raised at temperatures below this range show no
clear dysgenic phenotype, while sterility is observed in indi-
viduals kept in temperatures at or higher than 27°C; with
female sterility tending to exceed male sterility. For individ-
uals grown at 25°C, variable gonadal dystrophy penetrance
is observed, with a fraction of individuals maintaining low
fertility, which can be progressively but modestly improved
in an age-dependent manner [12]. While the basis of the
temperature sensitivity is not currently known, in vitro bio-
chemical analyses revealed that P element transposase is
less active at lower temperatures [44].

The characterization of the developmental defects associ-
ated with hybrid dysgenesis, which was initially restricted
to macroscopic analyses [43,45], revealed that dysgenic
individuals present rudimentary adult gonads characterized
by near-complete to complete loss of germ cells. Microscopy
analysis carried out with progeny raised at restrictive temp-
eratures (29°C) revealed that dysgenic germ cells have a
relatively normal embryonic development, with primordial
germ cells (PGCs) being formed in the posterior pole of the
embryo at similar numbers in comparison to non-dysgenic
progeny [33,46]. Mid- and late-embryonic development,
encompassing germ cell migration and gonad coalescence,
are also mostly unaltered in dysgenic progeny. During
larval stages however, dysgenic germ cells sharply decrease
in number, with female larvae being completely devoid of
germ cells by late-larval development (figure 3) [33,46].
Developmental analyses corroborated results obtained early
on from temperature shift experiments, which narrowed the
temperature-sensitive window leading to complete sterility
to the period between 10 h after egg laying and 4 days of
development—a period that spans from mid-embryogenesis
until late-larval development [5,43]. At one end, the delayed
beginning of the temperature-sensitive window may reflect
the fact that PGCs are transcriptionally quiescent until mid-
embryogenesis, with the zygotic genome being activated
while germ cells are reaching the somatic gonad [47]. At the
other end, it is likely that the germ cell fate transition from
PGCs to germline stem cells (GSCs), which occurs during
late-larval stages when the somatic niche is formed and
becomes active, delineates the end of the temperature-
sensitivewindow that leads to complete sterility. In agreement
with the idea of adult GSCs being less sensitive to dys-
genesis than embryonic PGCs, female progeny raised at the
permissive temperature (18°C) and shifted to restrictive temp-
eratures (29°C) during adulthood do not become fully sterile.
Instead, following a temporary halt in GSC differentiation,
fertility is restored to wild-type levels a few days after the
beginning of the exposure to restrictive temperatures [5,48].
In this case, as well as what was observed in individuals
grown at 25°C, halt in germline development in response to
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dysgenesis involves the activity of the chk2 DNA damage
checkpoint kinase [48,49].
4. Organization and molecular biology of
P elements

Molecular biology analysis of P elements isolated from P
strain genomic DNA libraries showed that there were two
types of P elements: full-length 2.9 kb elements and smaller,
non-autonomous internally deleted elements ranging from
0.5–2.8 kb [19,50]. The 2.9 kb full-length P element DNA pos-
sesses 31 bp perfect terminal inverted repeats, 10 bp internal
transposase binding sites and internal 11 bp subterminal
inverted repeats (figure 4) [50]. The left 50 and right 30 ends
differ in the spacing between the terminal inverted repeat
and the 10 bp transposase binding site, 9 bp and 21 bp,
respectively. This spacing is reminiscent of the 12 and 23 bp
recombination signal sequences (RSS) that is recognized by
V(D)J recombinases during the somatic DNA rearrangements
resulting in the maturation of the immunoglobin genes in
developing lymphocytes in vertebrates [51–53]. Moreover,
a recent structural study proposed that the P element
transposase pairs the target DNA by an induced asymmetry
mechanism [53] that is analogous to that observed for V(D)J
recombinases [54–56].

DNA sequencing of the full-length P element indicated
that there were four protein-coding open reading frames
(ORF 0, 1, 2 and 3; figure 5). Biochemical and molecular bio-
logical experiments showed that these ORF could be linked
by alternative RNA splicing to encode two proteins: the
87 kDa active transposase protein (TNP) and a shorter
66 kDa protein produced by an intron retention event of
the third intron (intervening sequence 3, IVS3) [57–59]. The
87 kDa transposase protein is a complexmulti-domain protein
that catalyzes the excision and integration of P element DNA
[44,50]. Retention of the third intron in somatic cells and in
the germline produces an mRNA encoding the 66 kDa protein
that acts as a transpositional repressor [60,61]. Importantly,
alternative pre-mRNA splicing of the third intron specifically
in dysgenic germ cells leads to the production of full-length P
element mRNAs encoding for the 87 kDa transposase protein.
This restricts the deleterious effects of rampant P element
transposition and hybrid dysgenesis to germline cells of dys-
genic progeny [59]. This finding was one of the first bona
fide examples of functional tissue-specific alternative RNA
pre-mRNA splicing.
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5. P element transposase: domain
organization and transposition
mechanism

Like other autonomous DNA-based transposons, P elements
encode an enzyme, a transposase that is responsible for
mobilizing the P element DNA. The P element transposase
protein is a complex multi-domain DNA-binding protein,
now understood to contain six domains: an N-terminal
THAP DNA-binding domain, an adjacent coiled coil, a helix-
turn-helix (HTH) DNA-binding domain, an RNase H
domain containing a guanosine triphosphate (GTP)-binding
domain insertion and an acidic C-terminal domain (CTD;
figure 6). This information comes from sequence comparisons,
structural and functional studies [62–67].

Much effort has gone into uncovering the mechanism of P
element transposition through the biochemical characteriz-
ation of the 87 kDa transposase protein. Like other cut-and-
paste DNA transposases, P element transposition proceeds
in a defined, stepwise manner to ensure accurate DNA clea-
vage and joining during transposition (figure 7). While the
finer details of transposition are specific to each DNA trans-
poson family, the process is generally described by six
fundamental steps: transposase-transposon DNA binding,
pairing of the transposon ends (synaptic complex formation),
donor DNA cleavage, target DNA capture, strand transfer
(integration) and disassembly/DNA repair [68–70].

As is the case for other DNA transposons, the P element
transposase first assembles with sites on the transposon.
Purification and characterization of the transposase protein
from Drosophila S2 cell nuclear extracts showed that the trans-
posase binds to internal 10 bp sites found at each end of the
transposon [71]. Following the initial recognition of a single
transposon end, P element transposase captures and pairs
the second end in a GTP-dependent manner to form the
paired-end complex (PEC; figure 7) [65]. Reconstitution of
in vitro transposition reactions demonstrated that guanosine
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triphosphate (GTP) was a required cofactor [44]. Atomic force
microscopy volume measurements suggest that a tetrameric
form of transposase may be involved in initial synaptic com-
plex assembly [65]. Sequential cleavage at each P element end
liberates the transposon from the flanking host genome form-
ing the cleaved donor complex (CDC; figure 7) [65,66]. Like
other DNA cut-and-paste transposable elements, DNA clea-
vage occurs at the 30 end of the transposon, but on the
other strand, 50 DNA cleavage occurs 17 bp within the P
element 31 bp inverted repeats, generating unusual and
atypically long 17 nucleotide 30-single-stranded extensions
at the transposon termini (figure 7) [52]. The order and mech-
anism of strand cleavage are not currently known.

After donor DNA cleavage, the excised transposon-
transposase nucleoprotein complex will capture a target
DNA (target capture complex; figure 7) and integrate P
element (strand transfer complex (STC); figure 7). The sites of
transposition are separated by 8 bp, which gives rise to the
8 bp target site duplications (TSDs), after transpososomedisas-
sembly and DNA repair. Although P element transposition
is not site-specific, a target sequence consensus motif was
derived from over 23 000 accurately mapped P element inser-
tions from the Drosophila genome project [72]. Transposition
preferentially occurs into nearby target sites on the same
chromosome (approx. 50–150 kb away) in a phenomenon
termed ‘local hopping’ [73]. In addition, P element insertions
are highly prevalent at regions around gene promoters and
at regions overlapping origins of DNA replication [74,75],
which may indicate that the P element transposase has a
target preference for regionswith an open chromatin topology.
The disassembly and DNA repair mechanisms at the target
site have not been investigated, but it is understood that
the double-strand break generated at the donor site can
be repaired through both the homologous recombination-
dependent (HR) or non-homologous end joining (NHEJ)
DNA repair pathways involving IRBP18/Xrp1, Ku70/80 and
theDrosophila Bloom’s syndrome helicase homologue [76–79].
6. Insights from the structure of the
P element transposase STC

Several mechanistic features distinguish P element trans-
position from the other characterized ‘cut-and-paste’ DNA
transposons. Namely, the requirement of the GTP cofactor
for the pairing, donor cleavage and strand transfer reactions
[44,65,80], and the unusually long 17 nt staggered cleavage at
each P element end [52]. To understand the mechanisms
underlying the unique features of the P element transposase
superfamily, protein-DNA transposition complexes assembled
in vitrowere used for cryo-electron microscopy (cryo-EM) that
allowed determination of the structure of the P element trans-
posase STC at 3.6 Å resolution [53]. This post-transposition
product complex contains transposase and cleaved P element
ends covalently joined to the target DNA. The reconstruction
revealed that P element transposase can be divided into six
structural domains: the N-terminal THAP DNA-binding
domain, a leucine zipper-dimerization domain, a helix-turn-
helix DNA-binding domain (HTH), a split catalytic RNase H
domain interrupted by a GTP-binding insertion domain
(GBD) and lastly a carboxy-terminal domain (CTD; figure 8).
Although the THAP domain and the majority of the
dimerization domain were not resolved in the reconstruction
(presumably due to flexibility), their ability to move provides
a rationale for how pairing of the 50 and 30 P element ends
each with distinct spacing of the inverted repeats and transpo-
sase binding sites might occur during initial transpososome
assembly [53].

The helix-turn-helix motif constitutes a major structural
element capable of binding DNA. The helix-turn-helix
domain of P element transposase makes contacts with the
inner half of the 31 bp TIRs, engaging through a loop in
the minor groove and an HTH α-helix inserted into the
major groove (figure 8) [53].

Like other ‘cut-and-paste’ DNA transposases, the catalytic
domain of P element transposase adopts a canonical RNase
H-like fold, in which a central 5-stranded β-sheet is buttressed
above and below by α-helixes [53]. The RNase H-like domain
organizes three acidic amino acid residues (D230, D303 and
E531), together responsible for the coordination of two diva-
lent metals and for catalyzing the nucleophilic cleavage and
joining of DNA phosphodiester bonds [53]. Within the P
element STC structure, the RNase H domain is positioned
over the target-transposon DNA junction.

Of particular interest in the transposase, RNase H fold is the
region connecting β5 and α4. In some transposases and related
retroviral integrases, the β5 and α4 structural elements are con-
nected by a short, often disordered, loop [81,82]. By contrast,
P element transposase has an entire GTP-binding domain
inserted between β5 and α4 (figure 8c). Domains found at this
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position are called ‘insertion domains’ and are present in other
transposases and transposase-related proteins, such as Hermes,
Tn5 and RAG1 [83,84]. Despite structural similarities observed
among the insertion domains of all characterizedDNA transpo-
sases, the one found within P element transposase is the only
known GTP-binding insertion domain [53]. Furthermore, P
element transposase is unique among the transposase/inte-
grase superfamily in binding GTP as a cofactor for both the
cleavage and integration steps of transposition [50].

The GTP-binding insertion domain (GBD) packs against
the RNase H domain and the target-transposon DNA junc-
tion within the P element STC structure (figure 8) [53]. The



donor-target
junction

D528

GTP

V401

K385

S409

N447

F443
D444

G–1

–20

–10

A
T
T

T

A
T

T
T

G

CC

b
ase  s

di
so

rd
er

ed

displa

OH3¢

5¢

–30

T

T
A
T
G–1

C

A
T

C

AC A

A

G
G
G

G

C

C

C
3¢

Ap5¢

T

G
G

G

T

T

G

G

G

C
C

C

C

joined to 
target DNA

transferred
non-transferred

B
-form

A
-form

G
pp

p

tacking

ced

target DNA

donor DNA
dimerization

RNaseH

GDB

(b)

(a)

CTD

CTD

GBD

Figure 9. Interactions of the GTP cofactor and unusual structure of the transposon termini in the P element strand transfer complex. (a) Close-up of the interaction
between GTP, the GBD residues (light blue) and donor DNA (G-1, light green). Inferred hydrogen-bonding and electrostatic interactions are shown as grey dashed
lines. (b) Inset: Schematic of the donor DNA structure. GTP is in red lettering. Watson–Crick base pairings are indicated by solid lines. Non-canonical base pairings are
indicated by dots or dotted lines. Nucleotides of the transferred strand are numbered −1 to −31, starting at the 30 terminal guanosine. Main: structure of the donor
DNA within the STC. The transposase protein is faded out for clarity, with relevant domains labelled. The opposing RNase H domain was omitted for clarity. The
disordered nucleotides of the transferred strand (−14 to −18) are marked by a dashed green line. Adapted from [53].

royalsocietypublishing.org/journal/rsob
Open

Biol.10:200244

8

GBD is almost entirely α-helical and is unlike other GTPases,
such as ras, dynamin or EF-Tu. A bound GTP cofactor is
observed within the GBD and interacts via hydrogen bond-
ing with the terminal base of the transposon DNA,
apparently to position the P element DNA for catalysis
(figure 9a). The mode of GTP binding appears to be unique
and is mediated by several residues conserved within mem-
bers of the P element family (D528, K385, K400, V401, S409,
F443, D444 and N447) [53,84]. There is no biochemical evi-
dence for GTP hydrolysis during the cleavage and strand
transfer steps of transposition [44,65,66]. Accordingly, resi-
dues that could support GTP hydrolysis are either absent or
are too far away from the GTP. In addition to binding GTP,
the GBD makes numerous contacts with the transposon
and target DNAs [53].

The CTD is connected to the RNase H domain by a flex-
ible and disordered linker. The CTD is entirely α-helical and
is positioned between the RNase H domain and the GBD of
another subunit (figure 8) [53]. Like the GBD, the CTD makes
numerous contacts with the transposon and target DNAs.
The single-stranded region of the transposon DNA loops
out and across the CTD and GBD to make numerous
protein-phosphate, and aromatic base stacking interactions
all along this path. The CTD extends a basic helix towards
the centre of the target DNA. Although the final 17 amino
acid residues of the CTD could not be confidently modelled,
the region contains many basic residues and is ideally posi-
tioned to interact with the target DNA (figure 8) [53].

Two unanticipated observations arose from the P element
STC structure, both regarding the transposon DNA. First is
the unusual configuration of the transposon DNAs, which
adopts a structure more akin to RNA than DNA. A large
region of the transferred strand loops out at the CTD, travel-
ling along the C-terminal and GTP-binding domains, then
doubles back to base pair with the 50 portion of non-trans-
ferred strand (figure 9b) [53]. This base-paired region
adopts an A-form helical geometry, typical of RNA–RNA
helices, and is required for transposition as supported by
mutational analysis [53]. The second unanticipated obser-
vation is that the terminal nucleotide appears to interact
with the bound GTP cofactor, apparently to position the
transposon DNA for catalysis (see above). How the P element
DNAs arrive at their observed arrangement within the STC
is unclear and undoubtedly involves large conformation
changes of both the DNA and protein. Although the order
and mechanism of strand cleavage are not currently known,
it is possible that like in V(D)J recombination [85,86], there
are DNA distortions at the initial donor DNA cleavage
stage that lead to the unusual DNA structure found in the
STC. The P element STC structure shows GTP positioned
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Figure 10. Structure of the P element N-terminal THAP DNA-binding domain complexed with the 30 P element end binding site. (a) THAP domain indicated as a
ribbon diagram with the DNA shown in detail. Note the two β-strands in the major groove and C-terminal basic loop in the adjacent minor groove. (b) THAP
domain indicated as a ribbon diagram with the DNA shown as a space-filling model. Adapted from [67].
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up against the transposon DNA near the transposon-target
DNA junction, within hydrogen-bonding distance of the
terminal transposon DNA nucleotide (between GTP C6 car-
bonyl and G-1 N1). Biochemical experiments with purine
nucleoside triphosphate analogues demonstrate that the
purine C6 carbonyl group is critical for strand transfer
activity [53]. The interaction with GTP appears to alter the
trajectory of the transposon DNA strand and positions the
attacking 30OH in the active site, explaining why GTP is
required for strand transfer. To our knowledge, this role for
GTP has not been observed in other known transposase
nucleoprotein complexes that have been studied.

The P element transposase STC structure provided the first
view of the P element superfamily of eukaryotic transposases.
The unusual nature and high resolution of the structure offered
new insights into P element transposition and indicates a trans-
position pathway mechanistically and fundamentally distinct
from other known cut-and-paste DNA transposases.
7. THAP DNA-binding domains and the
THAP9 genes in vertebrates

With the accumulation of sequenced animal genomes, it was
noted that many vertebrate genes shared homology with the
N-terminal region of the P element transposase protein [87].
The human genome contains 12 such genes (THAP0-11)
that share this N-terminal homology, termed the THAP
domain, with human THAP1 the first to be identified.
Previous studies of the P element transposase protein had
defined the N-terminal region as a C2CH zinc-coordinating
DNA-binding domain that binds specifically to internal
sites adjacent to the 31 bp terminal inverted repeats to
tether transposase to the P element DNA during the initial
stages of transposition [62]. Subsequent studies using X-ray
crystallography showed that the Drosophila P element THAP
domain bound to the P element DNA using a bipartite
major–minor groove mode, unlike other site-specific DNA--
binding proteins (figure 10) [67]. Although prevalent,
THAP domains are restricted to animal genomes and are
not found in plants, fungi or bacteria.

In the human, and other animal genomes, there are genes
that not only have an N-terminal THAP domain but have
homology along the entire length of the gene to Drosophila P
element transposase. These genes are designated as THAP9
[87]. THAP9 genes are found in human, primate, zebrafish,
other vertebrates and Ciona genomes but are partially deleted
and inactive in rodents [88–90]. Previous functional studies
have shown that the human THAP9 protein is an enzymati-
cally active transposase that can both excise and transpose
Drosophila P elements in either Drosophila or human cells [91].
However, human THAP9 lacks the hallmarks of a mobile
element, such as flanking terminal inverted repeats or the
existence of multiple internally deleted copies [89]. Where in
the human genome, the THAP9 protein binds and if it may
cleave the genome at specific sites is under investigation.

Interestingly, the zebrafish genome has one full-length
THAP9 gene flanked by 13 bp terminal inverted repeats,
12 bp internal inverted repeats and 8 bp TSDs [89]. Zebrafish
also have multiple copies of internally deleted P-like elements
carrying the inverted repeats and 8 bp TSDs, suggesting
that these elements were recently mobile (figure 11). Thus,
P element-like transposons and THAP9 genes have expanded
their presence among animal genomes outside of Drosophila
and other insects.
8. Tissue-specificity of P element
transposition: a paradigm of alternative
pre-mRNA splicing regulation

The analysis of the full-length 2.9 kb P element indicated
that four ORF could be linked by alternative splicing to
encode two proteins: the full-length active 87 kDa
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transposase (by expression of all four ORF) and a truncated
66 kDa protein lacking the C-terminal one-third of the trans-
posase, but carrying the N-terminal THAP DNA-binding
domain. While only the 87 kDa product can catalyze P
element transposition, the truncated transposase protein can
bind to P-element DNA and act as a transpositional repressor
[60,61]. Importantly, removal of the germline restriction and
expression of active transposase in somatic cells could
be brought about by genetically engineering a P element lack-
ing the P element third intron (IVS3) [59]. Interestingly,
expression of P element transposase in somatic tissues,
which can be achieved using the stable P[Δ2-3] 99B transgene,
caused pupal lethality when in the presence of 17 non-auton-
omous P elements from the Birmingham strain second
chromosome (BIRM2) [92]. This stable source of active
P element transposase has been used extensively in P element
mutagenesis screens [93].

A series of both in vitro and in vivo experiments led to
the identification of a negative RNA regulatory site
upstream of IVS3 that interacted with RNA-binding proteins
and U1 snRNP to inhibit IVS3 splicing [94–96]. Analysis of
splicing reporter transgenes and in vitro biochemical studies
indicated that a short splicing regulatory element, now
called an exonic splicing silencer (ESS) element, is located
upstream of the third intron (figure 12a) [94,96]. This
sequence element, that when mutated can activate P element
third intron splicing in somatic cells [94], contains two 50

splice site-like sequences termed pseudo-50 splice sites that
can act as an ESS in in vitro splicing assays [95,96]. Using
biochemical purification methods and Drosophila molecular
genetics, two sequence-specific RNA-binding proteins, PSI
(P element somatic inhibitor, a Drosophila counterpart of
human FBP1, KSRP and FBP3) and hrp48 (a Drosophila
counterpart of human hnRNPA1) were identified as func-
tionally important for P element splicing repression
(figure 12b) [97,98]. Biochemical analyses of the P element
splicing silencer indicated that the ribonucleoprotein (RNP)
complex that assembled on the silencer RNA contained U1
snRNP bound to one of the two pseudo-50 splice sites
[96,99]. The PSI protein, which has two protein repeat
motifs A and B, can directly interact with the U1 snRNP
70 K protein [99], and it is believed to block the bound U1
snRNP from assembling active spliceosomes. In turn, the
assembly of this inactive splicing silencer complex sterically
blocks U1 snRNP from binding to the accurate IVS3 50 splice
site [96,99].

More recent studies using in vitro assembly of P element
splicing silencer complexes on biotinylated RNA, affinity
purification, mass spectrometry and splicing reporter assays
identified three new proteins that functionally assemble
on the P element silencer element: hrp36, hrp38 and cyto-
plasmic poly-A binding protein [100]. Most interestingly,
the sequence-specific RNA-binding protein hrp48 that
binds tightly to the P element silencer RNA [97] can recruit
hrp36 and hrp38 to the P element silencer RNA through
their C-terminal low complexity RGG domains [100]. The
RGG domains, as well as other low complexity sequences
on RNA-binding proteins, can lead to sequence-dependent
condensates or liquid–liquid phase separation (LLPS), both
in vitro and in vivo [101,102]. The specificity of LLPS/conden-
sates often determines many aspects of protein–protein
assembly in cells and in the nucleus.
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9. A role for the piwi-interacting RNA
(piRNA) and repressive histone marks in
the control of transposon pre-mRNA
splicing in the soma and germline

In somatic tissues, sequence-specific RNA-binding proteins
PSI and hrp48 bind to the P element pre-mRNAs, blocking
IVS3 intron splicing and serve to prevent fully spliced, and
thereby full length, transposase expression [97,98]. However,
PSI is not expressed in the female germline [98], and transpo-
sase expression in this tissue is thought to be primarily
regulated by the piRNA pathway [33]. Typically, piRNAs
control transposable element activity by inducing transcrip-
tional silencing or post-transcriptional decay of mRNAs
[34], ultimately leading to a decrease in the accumulation
of target transcripts. However, expression analyses using
FACS-sorted PGCs or adult ovaries show no or very limited
changes in P element transcript accumulation in dysgenic
germ cells when compared non-dysgenic controls, indicating
that piRNAs do not primarily act to suppress P element tran-
script accumulation [33,48,103,104]. Instead, piRNAs were
shown to regulate P element splicing by promoting the reten-
tion of third intron that is reminiscent of the regulation
observed in somatic tissues [33,104]. Indeed, IVS3 splicing
is only detected in the germline of dysgenic progeny or of
mutants affecting the piRNA pathway [33,61]. Interestingly,
even in this case, only a fraction of the P element transcripts
seems to be fully spliced, suggesting that IVS3 splicing is
either a generally inefficient process, likely to limit high
levels of transposase expression [33,61]. Indeed, hrp48 is
expressed in both the germline and soma [97]. Regardless,
the qualitative effect of piRNAs on IVS3 splicing has been
observed for endogenous P elements and recapitulated
using reporter transgenes, with limited changes on transcript
levels in both cases [33,48,104].

Despite being involved in the regulation of IVS3 splicing,
the mechanisms by which somatically expressed RNA-bind-
ing proteins and germline-expressed piRNAs regulate
intron retention seem to be mechanistically distinct. The
somatically expressed RNA-binding protein, PSI, interacts
specifically with the ESS element located just upstream of
the third intron. By contrast, piRNA-mediated regulation
relies on the binding of PIWI-piRNA complexes to target
transcripts and evidence suggests that this process does not
necessarily require the targeting to a specific sequence.
Indeed, hybrid dysgenesis can be equally suppressed by
Drosophila lines producing piRNAs throughout the entire
element or against small P element segments distal to the
IVS3 intron [30,104].

Genetic analyses have revealed that IVS3 germline regu-
lation is achieved indirectly by piRNA-mediated alterations
of chromatin states. First, it relies on Piwi-interacting proteins
such as Asterix/Gtsf1 and Panoramix/Silencio [33], which
are dispensable for piRNA biogenesis but are essential for
imposing chromatin changes on PIWI targets [34,105–108].
Second, P elements, as well as the genomic regions flanking
transcriptionally active P element insertions, are enriched
for the classic heterochromatic histone mark H3 lysine 9
trimethylation (H3K9me3) in non-dysgenic germ cells, com-
pared to dysgenic progeny (figure 13) [33,48]. Indeed, Piwi-
complexes are known to mediate the deposition of
H3K9me3 [108]. Surprisingly, P element mRNA steady-state
levels under dysgenic conditions or in piRNA pathway
mutants display limited change despite the loss H3K9me3
[33,48]. This suggests that RNA polymerase II (Pol II) activity
is not strongly influenced by the chromatin state of the P
elements and that IVS3 alternative splicing may be regulated
independently of changes in Pol II speed [109,110].

Interestingly, piRNA-mediated regulation of transposon
alternative splicing does not seem to be exclusive to P
elements, as a similar splicing regulation was also shown to
modulate the expression of the Gypsy retrovirus-like element
[33]. In this case however, the regulation is restricted to the
ovarian somatic cells and Gypsy mRNA splicing favours
the production of the Envelope protein mRNA [111], leading
to the production of infectious particles that can spread into
the surrounding tissues, most notably the germline [112,113].
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