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A hierarchical perspective on the diversity of butterfly species’
responses to weather in the Sierra Nevada Mountains
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Abstract. An important and largely unaddressed issue in studies of biotic–abiotic
relationships is the extent to which closely related species, or species living in similar habitats,
have similar responses to weather. We addressed this by applying a hierarchical, Bayesian
analytical framework to a long-term data set for butterflies which allowed us to
simultaneously investigate responses of the entire fauna and individual species. A small
number of variables had community-level effects. In particular, higher total annual snow
depth had a positive effect on butterfly occurrences, while spring minimum temperature and El
Niño-Southern Oscillation (ENSO) sea-surface variables for April–May had negative
standardized coefficients. Our most important finding was that variables with large impacts
at the community-level did not necessarily have a consistent response across all species.
Species-level responses were much more similar to each other for snow depth compared to the
other variables with strong community effects. This variation in species-level responses to
weather variables raises important complications for the prediction of biotic responses to
shifting climatic conditions. In addition, we found that clear associations with weather can be
detected when considering ecologically delimited subsets of the community. For example,
resident species and non-ruderal species had a much more unified response to weather
variables compared to non-resident species and ruderal species, which suggests local
adaptation to climate. These results highlight the complexity of biotic–abiotic interactions
and confront that complexity with methodological advances that allow ecologists to
understand communities and shifting climates while simultaneously revealing species-specific
variation in response to climate.

Key words: Bayesian hierarchical model; butterfly fauna; climate change; Donner Pass, California;
ENSO; long-term data; monitoring; weather.

INTRODUCTION

The study of organisms interacting with their envi-

ronments is central to our understanding of the natural

world. Ecologists have sought to link variation in

weather with temporal variation in densities of plants

and animals (Andrewartha and Birch 1954, Roy and

Sparks 2000, Serreze et al. 2000, Coulson et al. 2001,

Stenseth et al. 2002, Thomas et al. 2004, Dennis and

Sparks 2007). The goal of understanding the influence of

weather on organisms has gained renewed importance as

long-term changes in the climate have become apparent.

In some cases, general hypotheses have been derived

from these data sets that transcend individual species

and communities (Parmesan and Yohe 2003, Beaumont

et al. 2007, Grosbois et al. 2008). For example, high-

latitude and upper-elevational range limits are advanc-

ing with warming temperatures (Pounds et al. 1999,

Root et al. 2003, Walther et al. 2005, Wilson et al. 2005,

Parmesan 2006, Lenoir et al. 2008, Poyry et al. 2009,

Forister et al. 2010). The search for generalities linking

species to climate raises an important issue regarding the

consistency of species-specific responses. When consid-

ering closely related species or species living in similar

habitats, to what extent should we expect a common

suite of responses to fluctuations in weather? The answer

to that question is perhaps readily apparent in the

extremes: Droughts and other extreme examples of

natural climatic variation can have lethal effects across

species (Shapiro 1979, Ehrlich et al. 1980, Easterling et

al. 2000, Meehl et al. 2000). When considering more

subtle or long-term variations in weather, we have to

conclude that the question of consistency of response

across taxa is understudied. Long-term data sets are

becoming available that provide opportunities for

addressing this issue (Magurran et al. 2010). In addition,

analytical advances, such as hierarchical models (Dixon
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and Ellison 1996, Ellison 2004, Kery 2010) offer new

perspectives on the diversity of biotic responses to

climate (Pearson et al. 2004, Amano et al. 2010, Lahoz-

Monfort et al. 2013).

The use of hierarchical models addresses an important

problem in community ecology: Our most widely used

statistical tools have been well suited for either analyses

of single species (e.g., fluctuations in abundance) or

analyses of whole communities (e.g., variation in

richness or eveness), but not both simultaneously.

Analyses of single species produce richly detailed results

that can be difficult to generalize (e.g., Forister et al.

2011a), while analyses of community richness or

diversity sacrifice biological detail in exchange for results

that are easier to interpret and extrapolate (Currie et al.

2004). Hierarchical models can estimate effects at the

community and species level simultaneously, and

provide an opportunity to study full assemblages of

species without sacrificing the biological detail of

species-specific dynamics (Royle and Dorazio 2008,

Mutshinda et al. 2011, Diez et al. 2012). Bayesian

implementations of hierarchical models have been

particularly powerful for field data and ecological

applications because of their ability to handle heterog-

enous and unbalanced data (Ellison 2004, Gelman et al.

2004, McMahon and Diez 2007, Fordyce et al. 2011).

Here we took advantage of a long-term, observational

data set coupled with a hierarchical Bayesian framework

for generalized linear models. The data consist of the

presence and absence of 106 butterfly species recorded

every other week during the butterfly season for 38 years

at a single study site, Donner Pass, in the Sierra Nevada

Mountains of northern California. Donner was chosen

as the focal point for the current study because (1) the

high species richness at the site provides an interesting

opportunity to explore the diversity of biotic responses

to fluctuations in climate, and (2) the relatively short,

high-elevation flight season for most species also means

that there is great variation among taxa in the number of

days present within years, and also the number of years

a species is present across the whole data set. This kind

of variation in sample size among taxa is something that

hierarchical Bayesian models deal with efficiently.

We used the 38 years of butterfly observations at

Donner to ask the following questions. First, are there

weather variables that have detectable or strong effects

at the community level? Second, do species respond in

similar ways to patterns of interannual variation in

weather? Given the diversity of species studied, an

expectation of consistency of response to weather would

be naive (Sparks et al. 2006). Instead, we designed

analyses to ask which weather variables are associated

with a more or less consistent response across species.

For example, spring precipitation could affect host and

nectar resources and have a positive effect across a

majority of species, while another factor such as annual

variation in minimum temperature would have a more

varied effect depending on the phenologies and life

histories of particular species. Similarly, regional weath-

er variables could have a stronger effect on migratory
species relative to the effect of more localized temper-

ature and precipitation. Addressing these issues is
important for the study of biotic responses to climate

change because climate is complex and multifaceted and
ecologists need to know which elements of the climate

can be most usefully tracked and modeled. Consequent-
ly, and to further refine our understanding of consis-
tency of response to weather, we asked if differences

among species in their responses to weather can be
understood in the context of several aspects of butterfly

biology and ecology.

MATERIALS AND METHODS

Data collection

Data on the presence and absence of butterflies at

Donner Pass were collected from site visits every two
weeks as part of a long-term monitoring project. The

Donner Pass site, at 2000–2200 m elevation, is a high-
montane site that includes areas of subalpine vegetation.

The Donner Pass butterfly fauna includes a large
number of butterfly species and is one of the richest
faunas in the United States (Shapiro 2011). Further

details of data collection have been described elsewhere
(Forister and Shapiro 2003, Thorne et al. 2006, Forister

et al. 2010, 2011b, Shapiro 2011). We used the data
collected from 1973 to 2010, a total of 38 years. The

presence of a particular species during a site visit was
recorded and we used the number of ‘‘day positives’’ as

our response variable (i.e., the number of site visits for
which a particular species was observed). The list of 119

species recorded at Donner Pass from 1973 to 2010 was
trimmed by eliminating species that were present in only

one or two years. Thus, the data set we considered here
included 106 total species (Appendix B: Table B1).

These species were monitored during 601 site visits
(mean ¼ 15.8 site visits/year), and the data consist of

11 711 day positive records for these 106 species.

Climatological covariates

We examined the response of individual species and
the community as a whole to variation in climate using

data for 13 variables (Table 1). These weather variables
included measures of precipitation, maximum and

minimum temperatures, total annual snowfall, and
monthly sea-surface temperatures. Quarterly precipita-

tion and temperature records were obtained from the
Central Sierra Snow Laboratory (049998) and represent

the meteorological ‘‘water year’’ from October of the
preceding year to September of the current year. Thus,

these climate variables were chosen to include climate
factors likely to influence the butterfly flight season for

each year. Because previous studies have clearly
indicated that snow has a direct impact on insects

(Boggs and Inouye 2012), total annual snowfall (snow
depth) data were obtained from the Central Sierra Snow

Laboratory, which is located within the Donner Pass

CHRIS C. NICE ET AL.2156 Ecology, Vol. 95, No. 8



study site. We also used the monthly composite sea-

surface temperature and climate data from the El Niño-

Southern Oscillation (ENSO) data base (specifically, we

used the multivariate ENSO index, which is the first

principal component from six temperature, atmospheric

pressure, wind, and cloudiness variables; available

online;7 Wolter and Timlin 2011). These covariates were

included because of clear linkages between sea-surface

temperatures and synoptic climate and ecosystem

responses in North America (e.g., Mochizuki et al.

2010). The multivariate ENSO index values were

averaged across two-month periods (i.e., ENSO Janu-

ary–February; Table 1). Initial exploration of the

influence of weather variables indicated that variables

associated with winter and spring were most important,

while fall and summer variables did not produce strong

or interesting patterns (data not shown). Consequently,

we focused on 13 variables encompassing winter and

spring weather (Table1).

The year in which butterfly data were collected was

also included in the models (i.e., a ‘‘year’’ effect) to

account for other factors influencing species’ occurrenc-

es besides the climate covariates described above and to

assess trends over time. All covariates were standardized

using z-transformation. To examine relationships

among the weather variables, we calculated correlation

coefficients among all the variables and plotted them in

R using the corrplot package (R Development Core

Team 2012). These correlations were used in the

interpretation of patterns revealed in analyses of single

climate covariates.

Natural history categories

To explore observed differences among species in their

responses to weather, we constructed a series of

hierarchical models to examine how butterfly natural

history characteristics shaped species’ responses. Each of

these natural history groups was modeled separately.

These models grouped species into natural history

categories using the data from Shapiro (2011) (Appendix

B: Table B1). We examined four aspects of natural

history, each with species grouped by categorical

predictors: (1) Resident status; species were grouped

by whether they maintain year-round breeding popula-

tions, at least for some of the 38 years (resident), or do

not breed at the site (non-resident). (2) Diapause stage

(or overwintering mode); species were grouped by

overwintering life stage: egg, larva, pupa, or adult.

Two non-diapausing species (Brephidium exile and

Leptotes marina) were omitted from this analysis. (3)

Number of generations per year; species were grouped as

single, double, or multiple generations per year. The

semivoltine Oeneis chryxus ivallda was omitted from this

analysis. (4) Ruderal status; species were grouped by

whether they are associated with disturbed areas

(ruderal or ‘‘weedy’’ species) or undisturbed habitats

(non-ruderal or ‘‘not weedy’’ species). Ruderal species

have a higher dispersal capacity and exhibit less

localized population dynamics than non-ruderal species.

Assignment to the categories of ruderal and non-ruderal

were made prior to the analyses described here (e.g.,

Forister et al. 2010). These natural history categories

were not chosen with the aim of providing a compre-

hensive investigation. Instead, these categories serve as a

tractably short list that is sufficiently varied to shed

some light on the mechanisms that might be associated

with a diversity of biotic responses to weather. The

investigation of the diversity of biotic–abiotic relation-

ships was our primary goal.

Statistical analyses

We asked if species at Donner Pass have diversified

responses to a suite of climate variables and if these

diversified responses might be explained by features of

TABLE L. Results of hierarchical analyses of single weather variables (plus year).

Variable b coefficient (95% CI) ESS s coefficient (95% CI) ESS DDIC

Winter minT 0.044 (�0.053 to 0.148) 3 515.4 47.3 (10.2–1130.8) 2065.1 11 813
Snow depth 0.026 (0.002 to 0.050) 3 665.5 672.8 (196.6–2757.6) 1308.0 11 798
Winter precipitation 0.023 (�0.006 to 0.051) 5 137.1 314.2 (103.4–1780) 1075.0 11 782
Spring precipitation 0.010 (�0.024 to 0.044) 3 038.9 431.2 (111.5–2215.2) 1056.4 11 798
ENSO May–Jun �0.024 (�0.048 to 0.002) 4 335.5 553.5 (170.0–2479.7) 1325.3 11 804
ENSO Dec–Jan �0.024 (�0.055 to 0.009) 19 565.2 93.1 (53.6–178.6) 7522.7 11 811
ENSO Mar–Apr �0.025 (�0.055 to 0.006) 16 272.6 110.8 (61.6–239.2) 4471.1 11 879
ENSO Jan–Feb �0.025 (�0.058 to 0.007) 20 317.9 89.50 (51.90–171.9) 7457.1 11 848
ENSO Feb–Mar �0.028 (�0.060 to 0.003) 18 981 96.12 (55.16–187.8) 5983.2 11 839
ENSO Apr–May �0.040 (�0.070 to �0.012) 12 050.8 161.8 (77.70–480.7) 2034.8 11 811
Spring maxT �0.044 (�0.121 to 0.036) 1 337.2 163.2 (23.9–1723.3) 670.2 11 784
Winter maxT �0.103 (�0.225 to 0.012) 1 388.3 178.9 (19.10–1844) 2590.2 11 780
Spring minT �0.112 (�0.187 to �0.037) 860.3 298.9 (40.02–2150) 708.1 11 774

Notes: Variables are listed by magnitude and sign of their estimated standardized regression coefficient (b). Point estimates for b
and s are medians of the posterior distributions. Values of b whose 95% equal-tailed credible interval (95% CI) does not include
zero are indicated in boldface type. Effective sample sizes (ESS) are reported for b and s coefficients. The DDIC scores compare the
fit of the models where all species were constrained to have the same b (constrained model) to models in which species were allowed
to have unique b’s (unconstrained models) (i.e., DDIC was calculated as DICconstrained � DICunconstrained). Abbreviations are:
ENSO, El Niño-Southern Oscillation; maxT, maximum temperature; and minT, minimum temperature

7 http://www.esrl.noaa.gov/psd/enso/mei/table.html
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their natural history. We used generalized linear

regression models in a Bayesian, hierarchical framework

to address these questions. ‘‘Day positives’’ (DP), the

number of days during a year that a species was

detected, was modeled using the binomial distribution

with the number of trials equal to the number of visits to

the Donner site for each year. Previous analyses at other

transect sites have demonstrated that the fraction of day

positives is highly correlated with absolute count

abundance, and thus, represents a reasonable metric of

the response of species to a variety of variables (Forister

et al. 2011b, Casner et al. 2013). A generalized linear

model with a logit link function that incorporated effects

of one or more climate variables and the effect of years

was fit to these data using a hierarchical Bayesian

approach implemented in the BUGS language (Gilks et

al. 1994, Lunn et al. 2000) using JAGS (version 3.2.0;

Plummer 2003) and run in R using the rjags package (R

Development Core Team 2012). These models can be

referred to as either logistic or binomial regression

models.

Our hierarchical models consisted of species (n¼ 106)

nested within the Donner Pass community, or within

natural history groups (see previous section). We

modeled the response DPij (day positives for species i

for year j ) as:

DPij ; Binomialðpij;VisitsjÞ

where Visitsj is the number of site visits per year j, and pij
is the probability of occurrence for species i in year j

(i.e., proportion of site visits for which a species was

detected or present). The linear model was connected to

the response variable, DPij, using the inverse logit

function:

pij ¼ 1=ð1þ expð�aijÞÞ

where

aij ¼ lspeciesi
þ b1speciesi

3 covariate1ij

þ b2speciesi
3 covariate2ij

þ . . .

þ bKspeciesi
3 covariateKij

and K equals the number of covariates included in the

model. Species-specific intercepts, l (the mean logit of

probability of occurrence for species i ) and b coefficients

were modeled hierarchically as:

lKspeciesi
; Normalðll; slÞ

bKspeciesi
; NormalðlbK

; sbK
Þ

The species-level coefficients for each covariate were

assumed to be drawn from a common Normal

distribution with a mean (lbK
) and precision (sbK

), which

we equated to community-level coefficients. Thus, the

‘‘community-level response’’ is characterized by the

mean of the Normal distribution from which the

species-level responses are drawn. Similarly, the preci-

sion parameter, which is the inverse of the variance,

measures the variation among species. A high precision

(larger value of sb ) indicates greater similarity in species’

responses to the covariate. We used uninformative

hyperpriors for the community-level means and preci-

sions as follows:

ll ; Normalð0; 0:0001Þ

lbK
; Normalð0; 0:0001Þ

sl ; Gammað0:1; 0:001Þ

sbK
; Gammað0:1; 0:001Þ

Posterior probabilities for model parameters were

estimated using Markov chain Monte Carlo (MCMC)

simulations in JAGS (version 3.2.0; Plummer 2003).

Initial analyses examined the effect of each climate

covariate separately along with a year effect. These

analyses were performed to survey species responses and

to identify covariates that exhibited a strong (i.e.,

positive or negative) community-level response. These

analyses assess whether species exhibited similar or

diverse responses to each climate variable. For each

climate covariate, a second model was analyzed that

constrained all species to have the same response (i.e., all

species have the same bK). Deviance information

criterion (DIC) scores were calculated for unconstrained

and constrained models, and DDIC scores were used for

model comparison (Spiegelhalter et al. 2002). Thus, we

used two approaches to address the question of whether

species respond in similar ways to weather patterns, or

alternatively, exhibit a diversity of responses: (1) We

examined the community-level precision parameters (s),
which directly measure variability in species’ responses

(with higher values of s indicating less variation among

species); and (2) DIC scores were used to compare the

constrained and unconstrained models (i.e., strong

evidence in favor of the unconstrained model is

indicative of a diversity of responses among species).

These two approaches facilitate a thorough examination

of the diversity in species’ responses. (An example of

model specifications in the BUGS language is included

in Appendix A). To illustrate species-specific changes in

the probability of occurrence ( p) over the course of the

study, we used the binomial modeling approach

described here to estimate p with no climate covariates

and plotted these probabilities for the 38 years over

which the data were collected.

CHRIS C. NICE ET AL.2158 Ecology, Vol. 95, No. 8



We also explored a model that included all of the

climate variables and accounted for correlations among

them. For this analysis, we reduced the dimensionality

of the 13 variables using principal components analysis

(PCA). We used the scores of the first three principal

components (PC; which explained 78% of the variance,

see Results), plus year in a hierarchical model. This

approach allowed us to account for the correlational

structure among variables where the PC’s constitute

orthogonal, linearly uncorrelated variables. As with the

models incorporating single covariates, we examined the

diversity of species responses with the community-level

precision parameter (s). We also compared the fit of this

model with species allowed to vary in their responses

(unconstrained model) to the performance of an

alternative model with species responses constrained to

be identical (constrained model). DIC scores were used

for model comparison.

We then asked if differences among species can be

attributed to differences in various aspects of their

natural history. We fit models using the three covariates

with nonzero b coefficients at the community level and

three other covariates with large b coefficients (see

Results) to subsets of species grouped by natural history

categories (see Natural history categories and Appendix

B: Table B1). Each analysis examined the effect of a

single covariate plus a year effect. Each group within the

natural history categories was analyzed with a hierar-

chical model that included a group-level mean and

precision for the b coefficients. These models were

otherwise identical to the unconstrained models for the

entire fauna. Our strategy was to model each grouping

of species (categorical predictor) within a natural history

category separately. We chose to use these simple

models, rather than a more complex, multilevel model

(i.e., ‘‘pooling’’; Gelman and Hill 2007), because

numbers of species within each grouping were relatively

large and this model was computationally more efficient.

A multilevel model might be more appropriate when

sample sizes within groups or categories are small and

there is a real possibility of overfitting the data (Gelman

and Hill 2007); however, this was not the case with the

Donner data.

For each model and analysis, posterior distributions

for all parameters were estimated using MCMC in

JAGS. For all models, including single climate covari-

ates plus year (with either all 106 species or species

grouped by natural history categories), as well as the

multivariate model using three principal components

plus year, two MCMC chains with different initial

values were used, and each chain included at least 50 000

MCMC samples, with 5000 discarded as burn in. To

confirm that the MCMC algorithm sampled the

stationary distribution, diagnostic tests were performed

for each analysis, including an examination of MCMC

chain history, and calculation of effective sample size

(ESS) and the Gelman and Rubin convergence diagnos-

tic (Gelman and Rubin 1992, Brooks and Gelman 1998).

All diagnostics were performed in R using the coda

package (R Development Core Team 2012). Posterior

distributions for species-level and community-level

parameter estimates and 95% equal-tail credible inter-

vals, as well as DIC scores, were also calculated in R.

RESULTS

Thirteen weather variables were investigated for their

potential influence on the population dynamics of 106

species of butterfly. In general, hierarchical models

performed well and we were able to estimate regression

coefficients for weather affecting individual species and

for the entire community with models that achieved

reasonable sampling of stationary distributions (Table

1). Examination of the Gelman and Rubin convergence

diagnostic and plots of chain histories, and calculation

of effective sample sizes, indicated satisfactory perfor-

mance of all MCMC chains. Analyses were conducted

both for individual weather variables and for a

multivariate model containing transformed variables in

the form of the first three principal components of all 13

variables. The community-level details from analyses

with single weather variables are given in Table 1, where

variables are ranked from the most positive standard-

ized b coefficients to the most negative.

Coefficients shown in Table 1 are for the community-

level response. In other words, Table 1 presents the

standardized regression coefficients estimating the effect

of particular weather variables on all of the species

considered collectively; regression coefficients for indi-

vidual species are estimated in the same analyses

(Appendix C: Tables C1 and C2). Most weather

variables have coefficients whose credible intervals

overlap zero (Table 1). Three weather variables were

identified as important at the community level, specif-

ically: snow depth, spring minimum temperature, and

ENSO for April–May. The last two of those variables

had negative effects, while snow depth had a positive

effect, such that winters with a deeper snow pack were

followed by butterfly seasons characterized by higher

probability of occurrence, or more days with positive

observations across species. Three other variables also

had large coefficients, though their credible intervals for

the community level overlapped zero: winter minimum

temperature, spring maximum temperature, and winter

maximum temperature (Table 1).

Year was used as a covariate in all models to account

for linear change through time in the butterfly popula-

tions that might be causally unrelated to weather

variables (see Appendix C: Table C3). We also plotted

the probability of occurrence for all species across the 38

years of the study to illustrate these interannual trends

(Appendix C: Fig. C2). In general, year had a highly

consistent, negative effect in all analyses with a

standardized regression coefficient of approximately

�0.14 (�0.2 to�0.09; posterior median and 95% credible

interval), indicating an overall decline in the probability

of detection across species over time. Exploration of

August 2014 2159BUTTERFLY RESPONSES TO CLIMATE



curvilinear models with higher order polynomial func-

tions of year produced no evidence of more complicated

relationships or trends over time (data not shown). In

addition, the very low precision values for year effects in

the single variable models supports the notion that

species have strong, individualistic responses across

years (Fig. 3; Appendix C: Table C3, Fig. C2).

Beyond the estimation of community-level b coeffi-

cients, one of the advantages of the hierarchical

approach is the ability to ask if the response to a

particular predictor variable is better modeled with all

species constrained to have similar responses or with an

unconstrained, diversity of responses. We conservatively

considered DDIC scores .10 to indicate clear differenc-

es in the fit of models being compared (Spiegelhalter et

al. 2002, Fordyce et al. 2011). For all weather variables,

the unconstrained models were a better fit to the data

(Table 1).

There was extensive variation in the diversity of

species responses to the various climate variables. The

precision values or s’s (defined as the inverse of the

variance in species-level coefficients) in Table 1 summa-

rize this facet of our results, with higher values of s
corresponding to results where species tended to have a

more similar or less diverse response for a given weather

variable. Fig. 1a, b also illustrates this variation, with

the largest diversity of response to winter minimum

temperature, and a relatively constrained response to

snow depth (Table 1). It is important to note that the

diversity of individual species-level responses is not

constrained by the strength of the community-level

response. In other words, a community-level response

that is different from zero does not necessarily imply a

consistency of responses from individual species. More-

over, a simple test of correlation between standardized b
coefficients and s’s from Table 1 does not suggest any

relationship between diversity of response and strength

of community-level response (r ¼�0.143, P ¼ 0.641).

Because weather variables have some correlational

structure (Appendix C: Fig. C1, Table C6), it is useful to

consider the behavior of a model which estimated b
coefficients for principal components for all weather

variables. Results of the PCA of the 13 weather variables

are presented in Table 2. The first three PC axes

explained 78.0% of the variance. The multivariate

analysis of these three PC axes (plus year), provided a

negative and nonzero community-level response for PC2

(Table 3). As with previous analyses, the unconstrained

FIG. 1. Posterior densities for estimates of standardized b coefficients. Densities of species-level b’s are shown as gray lines.
Community-level b’s are shown as solid black lines. Boundaries of the 95% equal-tailed credible interval (i.e., a 95% credible
interval) for the community-level b are shown as dashed lines. Abbreviations are: ENSO, El Niño-Southern Oscillation; maxT,
maximum temperature; and minT, minimum temperature.
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model was a much better fit to the data (DDIC¼11 853).

Considering the loadings for PC2 (Table 2), the negative

b indicates that years with more precipitation, cooler

temperatures, and more negative ENSO patterns (espe-

cially from March to June) resulted in more days with

observations across species. In general terms, this

interpretation of the effects of weather variables from

the multivariate analysis parallels the single-variable

analyses: Precipitation variables were associated with

positive b coefficients, while ENSO and temperature

variables, especially spring minimum, spring maximum,

and winter maximum temperatures, had negative b
coefficients (Table 1). The exception is winter minimum

temperatures, with a positive b coefficient (Table 1).

Considering the diversity of responses to weather, our

final set of analyses investigated the possibility that some

of that diversity might be understood in the light of

butterfly natural history. In Fig. 2, species-level varia-

tion in response to six weather variables is illustrated

with respect to four aspects of natural history: resident

status, overwintering mode, number of generations, and

ruderal status. There are clear differences among species

in different natural history categories for certain weather

variables. For example, non-resident species have a

much wider range of responses than resident species

(Fig. 2). This pattern is also evident in the estimates of

precision (s) for the groups (Tables 4 and 5).

DISCUSSION

The study of abiotic effects on organisms is as old as

the science of ecology, and has received renewed interest

in the light of changing global climate associated with

anthropogenic influence (Burrows et al. 2011, Chen et al.

2011). Early successes in the field of global change

biology focused on a few patterns that were recurrent

across different groups of organisms in different places,

such as shifting spring phenology and poleward range

shifts (Sparks and Carey 1995, Parmesan 2006). More

recently, researchers have opened up new avenues of

complexity in biotic–abiotic interactions by investigat-

ing, for example, abiotic influence on trophic interac-

tions which might be disrupted by differential

phenological response among interacting species (Yang

and Rudolf 2009, Sheldon and Tewksbury 2011). Here,

we have focused on a different axis of complexity,

addressing the diversity of biotic responses to weather

variables among a large suite of butterfly species at a

single study site. Using hierarchical, Bayesian models

appropriate for complex ecological data, we found

considerable variation at Donner Pass in response to

weather variables. More important, we found that

certain variables were associated with a more unified

response across species relative to other variables

associated with a greater diversity of response (Fig. 1,

Table 1).

In our model comparisons, the unconstrained models

were a better fit for the data than models with all species

constrained to have the same response, clearly demon-

strating variation among species in response to weather.

The hierarchical precision parameters (s’s) in the models

describe the range of variation among species within the

whole community or within natural history categories.

For example, variation in species’ responses ranged from

very similar for the snow depth covariate (which had the

highest estimate of precision of all 13 weather variables),

to a highly diverse response to winter minimum

temperature (which showed the lowest precision among

weather variables; Fig. 1a, b, Table 1).

These differences in response to weather variables can

be at least partly understood by differences in ecology

and natural history. For example, double- and multiple-

brooded species tended to have a greater diversity of

responses (lower s) compared to species with a single

brood per year (Tables 4 and 5, Fig. 2). Resident species

as a whole showed nonzero responses to the three

TABLE 2. Results of principal components (PC) analysis of the
13 weather variables.

Variable PC1 (38.7%) PC2 (25.4%) PC3 (13.9%)

Eigenvalues 5.027 3.306 1.813
Snow depth 0.11600 �0.40916 0.35145
Spring precipitation 0.09295 �0.34382 0.32694
Spring maxT �0.10938 0.47988 0.01987
Spring minT �0.01487 0.45374 0.16943
Winter precipitation 0.10239 �0.06071 0.60807
Winter maxT �0.0622 0.36223 0.11336
Winter minT 0.06151 0.28552 0.53567
ENSO Dec–Jan 0.40427 �0.00281 �0.15627
ENSO Jan–Feb 0.41995 �0.01518 �0.11992
ENSO Feb–Mar 0.42854 0.01240 �0.08652
ENSO Mar–Apr 0.42823 0.09885 �0.10567
ENSO Apr–May 0.40037 0.15972 0.02224
ENSO May–Jun 0.28366 0.16138 0.11401

Notes: Column headings provide the proportion of variance
explained for each principal component. Loadings for each of
the weather variables are reported in each column.

TABLE 3. Results of hierarchical multivariate model with species allowed to vary in their response
to the first three principal component variables and year.

Covariate b (95% CI) ESS s (95% CI) ESS

PC1 �0.011 (�0.026 to 0.003) 19 330.0 449.4 (259.3–863.9) 7 458.6
PC2 �0.017 (�0.032 to �0.003) 4 692.8 1481.7 (553.7–4099) 2 670.7
PC3 0.012 (�0.010 to 0.034) 7 329.5 395.6 (160.6–1555) 1 739.7
Year �0.138 (�0.190 to �0.086) 24 267.9 21.7 (14.2–33.4) 19 141.5

Notes: Effective sample sizes (ESS) are reported for b and s coefficients. Values of b whose 95%
credible interval (95% CI) does not include zero are indicated in boldface type.
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weather variables with nonzero community-level coeffi-

cients (snow depth, ENSO April–May, and spring

minimum temperature). Also, non-resident species have

a considerably greater amount of variation in response

to weather than do resident species. These results are

interesting and perhaps suggestive of local adaptation to

climatic conditions (including climatic variability), with

the permanent residents at Donner Pass being charac-

terized by a more consistent relationship with weather.

This pattern parallels that observed for ruderal species,

which had substantially lower precisions than non-

ruderal species. In contrast, the different overwintering

modes did not show marked differences with respect to

diversity of responses, though they differed in their

median response (Tables 4 and 5, Fig. 2).

The idea that certain weather variables are associated

with a more or less diverse response from the species at

our study site suggests that a consideration of this

FIG. 2. Median values (points) and 95% credible intervals (lines) for species’ responses to four weather variables estimated as
standardized b coefficients. Species are grouped by natural history category. Community-level b’s and sample sizes are provided in
Tables 4 and 5.

CHRIS C. NICE ET AL.2162 Ecology, Vol. 95, No. 8



diversity could be crucial to understanding the influence

of climate on natural communities. Indeed, joint

consideration of variability among species (as estimated

by s) and the sign and magnitude of the standardized

regression coefficients (as estimated by b) might offer

insights. Consider the three weather variables that we

found to have a substantial impact at the level of the

entire community. We learned that greater snow pack

has a positive impact on butterflies with relatively little

variation among species, while warmer spring minimum

temperatures and greater values for the ENSO index for

April–May have negative and much more diverse effects

across species. In fact, spring minimum temperatures

had the largest effect of all weather variables, with an

intermediate precision (s), while ENSO April–May had

a modest and more diverse impact on species.

Greater snow pack might benefit species directly by

increasing the probability of overwinter survival (Matter

et al. 2011). Alternatively, snow pack might have an

indirect, positive effect on host plants and nectar

resources (Boggs and Inouye 2012). In the context of

long-term trends associated with climate change, the

effect of snow pack appears to be a potentially

important factor. Snow depth has been observed to be

decreasing in the Sierra Nevada in recent decades,

particularly at higher elevations, as a consequence of

lower snowfall amounts and earlier melting (Johnson et

al. 1999, Coats 2010, Kapnick and Hall 2012). In the

Donner data analyzed here, there was no relationship

between snow depth and year (i.e., no trend over time;

Appendix C: Fig. C1, Table C6), but our snow covariate

is a coarse measure of snow accumulation over the total

winter season and we do not have the temporal

resolution to distinguish changes in accumulation vs.

increasing spring warming and consequent earlier

melting over time. However, winter and spring temper-

atures, minimums and maximums, are positively corre-

lated with year. While the 38-year record analyzed from

this one site is not sufficient for definitive analyses of

regional weather patterns, the trends in these climate

variables suggest that increasing temperatures and

earlier spring melting might have significant conse-

quences for snow depth. Warmer average low (over-

night) temperatures in the spring (spring minimum

temperature) might have a negative effect through

desiccation of overwintering life history stages, or

warmer low temperatures might reduce snow cover via

melting and reduce the associated insulating effect or

have adverse effects on host or nectar resources.

One of the major contributing factors to decreasing

snowpack in the Sierra Nevada and other western North

American mountain ranges is increasing spring temper-

atures that shift the balance from snow accumulation to

melting (Kapnick and Hall 2012). For the Donner Pass

climate variables, warmer spring temperatures are

strongly, negatively correlated with snow depth (Ap-

pendix C: Table C6, Fig. C1), which might indicate that

the negative effect of warmer spring temperatures is not

a direct effect, but rather is mediated by the resulting

decrease in snow depth due to melting. As the regional

warming trend continues, lower accumulations and

earlier melting are forecast. Not only could this have

an effect on the butterfly fauna by reducing the positive

aspect of snow depth, it also has the potential for

shifting emergence phenologies. This could create

phenological mismatch, or exacerbate mismatch, be-

tween butterfly species and resources (Thomas et al.

1996, Singer and Parmesan 2010, Boggs and Inouye

2012), possibly leading to further declines.

Interestingly, winter minimum temperatures were

observed to have the opposite effect compared to spring

minimum temperature, although the variation among

species was much greater for winter minimum temper-

ature (the 95% credible interval for the community-level

b for this covariate includes zero; Table 1, Fig. 1a).

Warmer winter temperatures that are still below

freezing, especially overnight low temperatures, might

contribute to greater snow accumulation when relative

humidity is higher, although winter temperatures have

less of an impact on snow depth than temperatures in

the spring months (Kapnick and Hall 2012). It might

also be that the impact of winter temperatures on

butterfly occurrence is unrelated to effects of snow

depth. Warmer average overnight temperatures in

winter generally have a positive impact on butterfly

species. This might be directly related to adverse

physiological effects of extreme low temperatures on

overwintering stages for resident species (Matter et al.

2011).

FIG. 3. Posterior densities for estimates of standardized b
coefficient for the year effect from the single-variable plus year
model for snow depth (see Table 3). Densities of species-level
b’s are shown as gray lines. The community-level b is shown as
a solid black line. Boundaries of the 95% equal-tailed
probability interval (i.e., a 95% credible interval) for the
community-level b are shown as dashed lines.
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Our finding of a negative impact of warmer springs is

inconsistent with other studies of Lepidoptera (Dennis

and Sparks 2007). These studies have found positive

effects of warmer temperatures during the spring season.

However, this negative effect is associated specifically

with overnight low temperatures (spring minimum

temperatures) and might be more related to effects on

snow cover rather than direct effects on the physiology

of the butterflies. We speculate that the reversed

relationship might also be a function of the relatively

high elevation of our study site (Roy et al. 2001), and the

relatively short flight season there. The spring months

(March, April, and May) constitute a relatively cool

season at Donner Pass, during which snow cover is

persistent. The median adult flight interval for species at

Donner Pass is short, just 23 days (Appendix C: Fig.

C3). The persistence of snow in the spring months, and

the short flight period at Donner Pass, might explain

why we found a negative effect of warmer spring

temperatures compared to other studies. Warmer

temperatures might reduce snow by melting, and thus

make overwintering larvae and pupae more susceptible

to bacterial or fungal infection, or disrupt butterfly

phenologies (Thomas et al. 1996, Singer and Parmesan

2010, Boggs and Inouye 2012).

Examination of species grouped by natural history

categories provides more insight to the diversity of

responses to weather variables. For example, the

positive community-level response to increasing snow

pack appears to be mainly mediated by positive

responses of permanent residents, species that overwin-

ter as adults, and non-ruderal (non-weedy) species

(Tables 4 and 5, Fig. 2). The overall negative response

to increasing spring minimum temperatures seems

largely mediated by negative responses of resident

species, those overwintering as eggs and those species

with multiple generations per year. Both ruderal and

non-ruderal species responded negatively to increasing

spring minimum temperatures. For ENSO April–May,

species that overwinter as eggs and larvae have a

generally more negative association than species that

overwinter as pupae or adults. Pupae and adults might

be relatively insensitive to these early-spring conditions.

TABLE 4. Results of unconstrained hierarchical models with species grouped according to natural history categories.

Climate variable Winter minT Snow depth ENSO Apr–May

Resident status b
Resident (n ¼ 74) 0.077 (�0.028 to 0.185) 0.027 (0.002 to 0.053) �0.053 (�0.079 to �0.027)
Non-resident (n ¼ 32) �0.120 (�0.403 to 0.200) 0.024 (�0.065 to 0.115) 0.016 (�0.097 to 0.124)

Resident status s
Resident (n ¼ 74) 79.20 (13.11 to 1519) 945.1 (271.9 to 3453) 872.4 (248.0 to 3263)
Non-resident (n ¼ 32) 11.47 (2.36 to 695.4) 58.47 (16.34 to 560.8) 25.68 (10.36 to 68.54)

Diapause stage b
Egg (n ¼ 17) �0.098 (�0.320 to 0.128) 0.054 (�0.013 to 0.117) �0.104 (�0.165 to �0.043)
Larva (n ¼ 47) 0.069 (�0.070 to 0.210) 0.009 (�0.028 to 0.047) �0.066 (�0.106 to �0.027)
Pupa (n ¼ 27) 0.094 (�0.136 to 0.368) �0.011 (�0.065 to 0.042) 0.008 (�0.047 to 0.064)
Adult (n ¼ 13) 0.153 (�0.225 to 0.600) 0.084 (0.009 to 0.162) 0.022 (�0.099 to 0.146)

Diapause stage s
Egg (n ¼ 17) 194.8 (14.24 to 2030) 264 (40.57 to 2038) 526.8 (93.53 to 2742)
Larva (n ¼ 47) 274.3 (29.49 to 2205) 642.7 (148.2 to 2877) 502.4 (117.4 to 2534)
Pupa (n ¼ 27) 17.62 (2.79 to 941.0) 531.8 (101.1 to 2684) 446.9 (80.13 to 2524)
Adult (n ¼ 13) 3.13 (0.89 to 14.50) 206.5 (31.17 to 1854) 34.32 (10.65 to 112.6)

Number of broods b
Single (n ¼ 75) 0.065 (�0.044 to 0.182) 0.02 (�0.008 to 0.048) �0.055 (�0.084 to �0.025)
Double (n ¼ 7) �0.237 (�0.682 to 0.218) 0.014 (�0.187 to 0.153) �0.132 (�0.284 to 0.043)
Multiple (n ¼ 23) 0.053 (�0.228 to 0.359) 0.055 (�0.013 to 0.133) 0.033 (�0.058 to 0.125)

Number of broods s
Single (n ¼ 75) 117.7 (15.23 to 1585) 904.4 (245.8 to 3288) 688.5 (187.2 to 2892)
Double (n ¼ 7) 111.5 (3.47 to 1770) 126.3 (9.235 to 1685) 141.7 (8.559 to 1820)
Multiple (n ¼ 23) 5.92 (1.79 to 83.61) 112.8 (28.36 to 1079) 42.92 (15.60 to 135.49)

Ruderal status b
Ruderal (n ¼ 22) �0.070 (�0.325 to 0.208) 0.021 (�0.042 to 0.086) 0.002 (�0.092 to 0.094)
Non-ruderal (n ¼ 84) 0.078 (�0.024 to 0.179) 0.028 (0.001 to 0.055) �0.053 (�0.081 to �0.024)

Ruderal status s
Ruderal (n ¼ 22) 10.47 (2.22 to 624.0) 205.2 (42.53 to 1686) 44.44 (15.42 to 143.2)
Non-ruderal (n ¼ 84) 107.7 (13.95 to 1483) 816.6 (216.2 to 3219) 541.9 (152.2 to 2529)

Notes: For each natural history category, models were fit for each of the three weather variables and year. Standardized b’s
(medians of posterior distribution) and precision parameters (s’s) are reported for each weather variable. Samples sizes (n) are
indicated for each natural history group. Values of b whose 95% credible interval (95% CI) does not include zero are indicated in
boldface type. Standardized b’s and precision parameters (s’s) for the year effect in each model are reported in Appendix C: Tables
C4 and C5.
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Across weather variables, there were trends for some

variables and groups of species. For example, permanent

residents and non-ruderal (i.e., non-weedy) species

showed positive responses to increasing snow depth,

cooler spring maximum temperatures, and lower values

of the ENSO index for April–May. Non-residents,

ruderal species, and species with more than one

generation per year tended to show much less consistent

responses as captured by lower estimates of the precision

parameters (s’s; Tables 4 and 5).When considering these

results, it is important to recognize that the natural

history categories are not independent (Appendix B:

Table B1). For example, many of the resident species are

also non-ruderal species. This nonindependence is

inherent in ecological traits, but does not invalidate

inferences drawn from analyses within natural history

categories.

The ability to formulate hypotheses on the diversity of

responses to climate and explore potential underlying

mechanisms for a community with high species richness

is encouraging. However, the results from the hierarchi-

cal models suggest that considerable caution is warrant-

ed when interpreting patterns from such long-term data:

Because a variable is important at the level of an entire

community does not mean that it has an impact that is

consistent in magnitude or even sign across all species.

The community-level response to the ENSO April–May

covariate was distinctly negative, yet most species show

regression coefficients whose credible intervals overlap

zero (Fig. 1c; Appendix C: Tables C1 and C2). Similarly,

the spring minimum temperature community response

was negative, yet individual species’ b coefficient

credible intervals include zero. Thus, while there are

substantial effects at the level of the community that can

be partly explained by examination of different groups

of species based on natural history characteristics,

effects at the level of individual species are subtle and

rarely discernibly different than zero. This finding

suggests that studies of individual species responses

might fail to identify climate variables that are

important at the community level. This challenge might

be most acute at high-elevation or high-latitude sites

with narrow flight windows and relatively less informa-

tion per species, at least compared to locations with

TABLE 5. Results of unconstrained hierarchical models with species grouped according to natural history categories, continued
from Table 4.

Climate variable Spring maxT Winter maxT Spring minT

Resident status b
Resident (n ¼ 74) �0.027 (�0108 to 0.055) �0.082 (�0.217 to 0.047) �0.113 (�0.192 to �0.039)
Non-resident (n ¼ 32) �0.089 (�0.358 to 0.217) �0.227 (�0.545 to 0.117) �0.057 (�0.278 to 0.203)

Resident status s
Resident (n ¼ 74) 318.6 (41.88 to 2254) 167.66 (13.60 to 1861) 319.3 (43.18 to 2254)
Non-resident (n ¼ 32) 7.54 (1.94 to 319.5) 52.93 (3.55 to 1508) 34.4 (3.75 to 1277)

Diapause stage b
Egg (n ¼ 17) �0.104 (�0.318 to 0.118) �0.167 (�0.443 to 0.113) �0.235 (�0.417 to �0.056)
Larva (n ¼ 47) 0.030 (�0.092 to 0.152) �0.073 (�0.0248 to 0.101) �0.1 (�0.208 to 0.017)
Pupa (n ¼ 27) �0.046 (�0.212 to 0.124) 0.073 (�0.198 to 0.505) �0.034 (�0.191 to 0.126)
Adult (n ¼ 13) 0.157 (�0.255 to 0.606) �0.139 (�0.337 to 0.071) �0.137 (�0.333 to 0.068)

Diapause stage s
Egg (n ¼ 17) 189.0 (14.37 to 1923) 115.8 (5.56 to 1740) 199.7 (15.77 to 1978)
Larva (n ¼ 47) 189.7 (20.72 to 1908) 225.8 (21.60 to 1959) 233 (21.68 to 2000)
Pupa (n ¼ 27) 159.5 (12.97 to 1904) 34.38 (1.41 to 1272) 169 (15.34 to 1865)
Adult (n ¼ 13) 3.18 (0.89 to 13.66) 88.32 (6.59 to 1612) 83.98 (6.486 to 1517)

Number of broods b
Single (n ¼ 75) 0.005 (�0.082 to 0.095) �0.067 (�0.199 to 0.071) �0.087 (�0.172 to �0.001)
Double (n ¼ 7) �0.006 (�0.503 to 0.576) �0.290 (�0.872 to 0.474) �0.124 (�0.607 to 0.482)
Multiple (n ¼ 23) �0.202 (�0.391 to �0.013) �0.180 (�0.464 to 0.114) �0.183 (�0.346 to �0.014)

Number of broods s
Single (n ¼ 75) 338.5 (43.87 to 2294) 215.45 (23.55 to 1916) 301.0 (37.74 to 2262)
Double (n ¼ 7) 8.92 (0.84 to 876.2) 66.71 (0.70 to 1596) 9.99 (0.790 to 900.1)
Multiple (n ¼ 23) 36.85 (5.23 to 1208) 22.78 (2.27 to 1170) 184.5 (15.76 to 1937)

Ruderal status b
Ruderal (n ¼ 22) �0.159 (�0.605 to 0.035) �0.152 (�0.433 to 0.145) �0.174 (�0.344 to �0.003)
Non-ruderal (n ¼ 84) �0.009 (�0.090 to 0.075) �0.098 (�0.229 to 0.0320 �0.093 (�0.175 to �0.008)

Ruderal status s
Ruderal (n ¼ 22) 40.36 (5.51 to 1324) 22.38 (2.37 to 1213) 160.3 (12.62 to 1866)
Non-ruderal (n ¼ 84) 264.07 (29.64 to 2087) 214.8 (19.38 to 1974) 244.6 (31.52 to 2006)

Notes: For each natural history category, models were fit for each of the three weather variables and year. Standardized b’s
(medians of posterior distribution) and precision parameters (s’s) are reported for each weather variable. Samples sizes (n) are
indicated for each natural history group. Values of b whose 95% credible interval (95% CI) does not include zero are indicated in
bold. Standardized parameters for the year effect in each model are reported in Appendix C: Tables C4 and C5.
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longer flight windows and more observations per year

per species.

The greatest diversity of species’ responses was

observed for the year effect, describing linear trends

through time (Fig. 3). This is not attributable to a

systematic change in site visits; there is no correlation

between the number of site visits to Donner and year

(see Forister et al. 2010: Fig. S3). The magnitude of this

year effect was greater than the effects of most weather

variables, which highlights how much there is yet to be

learned and provides a baseline for future studies of

factors affecting the Donner Pass butterfly fauna. In all

analyses, the b coefficient for year was strongly negative

at the community level, indicating a relatively strong

decline in species’ abundances over the 38 years of the

study. However, at the species level, we observed

substantial variation as demonstrated by the low

precision value for year, which was the lowest of all

covariates (Fig. 3; Appendix C: Table C3). While most

species showed a negative trend over time, some species

appear to be declining rapidly. Eighty-eight species (83%

of the Donner fauna) have negative point estimates of

the standardized regression coefficient, and 35 species

(33% of the fauna) have negative b values with credible

intervals that do not contain zero. These declining

species represent an eclectic mix that includes high-

altitude endemics, such as Plebejus shasta, Thorybes

mexicana nevada, and Hesperia nevada, as well as much

more widespread species such as Nymphalis antiopa,

Vanessa annabella, Pieris rapae, and Danaus plexippus

(Appendix C: Tables C1 and C2). Thus, high montane

species and ruderal species that commonly fly up to

Donner Pass from the Central Valley of California are

declining, suggesting multiple phenomena are at work.

These results are consistent with Forister et al. (2010),

who detected sharp declines in species richness at low-

elevation sites (including species demographically con-

nected to higher elevation sites), as well as declines for a

small number of alpine-specialist species associated with

the highest elevations.

The ecological and taxonomic breadth of the species

within these groups, especially the declining species,

coupled with the rather low explanatory power of the

climate covariates, suggests that there is much left to

understand in terms of determinants for the Donner

Pass butterfly fauna. Examining these trends in the

context of natural history categories, we find that

declines are the rule for all categories except pupal

diapausers and bivoltine species, which, as groups, show

no trends (Appendix C: Fig. C4, Tables C4 and C5). It

seems likely that much of the explanation for these

patterns in various species over time might involve

specific ecological interactions (i.e., specialized natural

enemies or larval food resources), regional effects,

including declines in source populations for migrants,

or with altitudinal or latitudinal range shifts (Parmesan

1996, Parmesan and Yohe 2003).

The results of our hierarchical, Bayesian modeling of

the responses of butterfly species demonstrates the

capacity of this approach to estimate community- and

species-level effects simultaneously for a relatively rich

community where windows of detectability for individ-

ual species are relatively short. This appears to be a

powerful approach for analyses of long-term data.

Future applications might include an examination of

consistency of patterns across multiple sites, the

correlation or connectedness among sites, or even a

search for commonalities among different data sets. Do

snow depth and spring minimum temperatures exhibit

strong community-level responses in other montane sites

or at high latitudes? Are regional-level variables, such as

ENSO sea-surface variables similarly important at

different sites? These investigations might also include

dissecting patterns using other categorizations of spe-

cies. For butterflies and other invertebrates, these might

include host range (diet breadth), range size, and other

factors. Alternatively, patterns of species richness

through time in response to climate change could be

examined with hierarchical models that include natural

history and ecological species groupings within the

entire community as a means by which various

contributing factors might be parsed. While our

modeling of the Donner butterflies was a modest

beginning, our conclusions with respect to the utility

of the hierarchical approach potentially have far-

reaching consequences. In particular, researchers should

consider the possibility that community-level responses

to global change might or might not encompass the

responses of substantial numbers of organisms within

the community, and that this effect will be dependent on

the natural histories of the individual species. This study

gives strong support to a Gleasonian interpretation of

communities as aggregates of individualistic species and

their adaptations to the environment, subject to

disassembly and reassembly in the face of climate

change. It suggests that future butterfly faunas at

Donner Pass might have no analogues in the Sierra

Nevada of today (Bennett 1997).
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SUPPLEMENTARY MATERIAL

Appendix A

Example of BUGS code (Ecological Archives E095-191-A1).

Appendix B

Listing of study species and natural history categories (Ecological Archives E095-191-A2).

Appendix C

Supplementary Results: tabulation of standardized coefficients for species and year effect, analyses of correlations among
weather variables, and analyses of butterfly flight windows and probabilities of occurrence (Ecological Archives E095-191-A3).
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