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Abstract
The greatest challenges of rigorously modeling coupled hydro-mechanical processes in fractured rocks at different scales are 
associated with computational geometry. In addition, selections of continuous or discontinuous models, physical laws, and 
coupling priorities at different scales based on different geometric features determine the applicability of a numerical model 
for a certain type of problem. In this study, we present our multi-scale modeling capabilities that have been developed based 
on the numerical manifold method for analyzing coupled hydro-mechanical processes in fractured rocks. Based on their 
geometric features, the fractures are modeled as continua—finite-thickness porous zones, and discontinua—discontinuous 
interfaces and microscale asperities and granular systems. Different governing equations, physical laws, coupling priorities, 
and approaches for addressing fracture intersections and shearing are then applied to describe these. We applied these models 
to simulate coupled processes in fractured rocks using realistic geometry obtained from rock images at different scales. We 
first calculated shearing of a single fracture with different models and demonstrated the impacts of asperities on shearing. We 
then applied the continuous and discontinuous models to simulate a network of rough fractures, demonstrating that contact 
dynamics contribute significantly to the geometric, multi-physical evolution of systems where rough fractures are not mineral 
filled. For a discrete fracture network, our coupled processes modeling demonstrates that shearing of the discrete fractures 
can have a major impact on stress and pore pressure distribution. Lastly, we applied the discontinuous granular model to 
simulate evolution of a complex granular system with a deformation band, demonstrating that the deformation band can 
dominate contact dynamics, the structural and the stress evolution of the granular system.

Keywords Coupled processes · Rock images · Discrete fracture networks · Discontinuous asperities and granular systems · 
Friction and shear · Deformation band/zone
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1 Introduction

Fractures play key roles in the geosciences. Fractures are 
dynamic results of rock failure, with sizes ranging from 
microns to kilometers. They divide intact rock into different 
parts, thus, having an important impact on the mechanical 
behavior of geological systems as well as providing perme-
ability for fluid and heat transport. Thus, fractures are the 

key that provide permeability for production in subsurface 
energy recovery applications (such as hydrocarbon and geo-
thermal energy production). In energy storage and geologic 
disposal of nuclear waste as well as geologic carbon seques-
tration, fractures and faults are the major concern for hazards 
such as leakage of fluid, erosion and seismic events (Rutqvist 
2012; 2020; Rutqvist et al. 2020). Thus, understanding cou-
pled processes in fractured geological media is essential for 
effective control of energy recovery and storage (Rutqvist 
and Stephansson 2003).

At the reservoir scale, fractures appear to be very thin 
(relative to their lengths), and they typically form net-
works. In these networks, alteration of individual frac-
tures in terms of their dimension and physical properties, 
and creation of new fractures may dynamically occur as a 
result of coupled processes. Numerical modeling of coupled 

http://crossmark.crossref.org/dialog/?doi=10.1007/s00603-021-02455-6&domain=pdf
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Highlights 

Unique capabilities to simulate coupled processes in 
fractures as continuous porous zones, discrete interface 
networks, and microscale granular systems

Realistic geometry from rock images at different scales, 
with differing physical laws, coupling priorities, and 
solutions for fracture intersections and shearing

Comparison of different models for analyzing shearing 
of single planar and non-planar fractures, and analyzes 
compaction of a network of rough fractures

Demonstration from discrete fracture network mod-
eling that stress and pore pressure evolution are majorly 
impacted by shearing in a network of discrete thin 
fractures

Demonstration from microscale modeling that contact 
dynamics, evolution of stress, and porosity loss in a 
complex granular system are dominated by a deforma-
tion band

addition, hybrid models were developed to combine finite 
element with discrete element methods for integrating con-
tinuum and discontinuum mechanical analysis. One example 
is the finite-discrete element method that has been applied to 
coupled processes in discrete fracture networks (Lisjak et al. 
2017; Lei et al. 2020).

Models that explicitly account for discrete fractures can 
be categorized depending on the geometric representation 
of the fractures in fluid flow and mechanics calculations. 
For fluid flow in fractures, three types of models can be 
identified: n-dimensional (i.e., for 2D models, fractures 
are represented by 2D elements), n-1 dimensional ((i.e., 
for 2D models, fractures are represented by 1D elements)), 
and zero-dimensional models where fractures are treated as 
boundaries of the adjacent rock matrix, thus, without addi-
tional degrees of freedom (DOFs) introduced for fractures 
(Hu et al. 2016, 2017b). For modeling mechanics of frac-
tures, there are two types of models: n-dimensional solid-
element models (Rutqvist et al. 2009), and discontinuous 
interface models where fractures are modeled as inter-
faces between discontinuous rock blocks (Park et al. 2020; 
Rutqvist et al. 2020). For both fluid flow and mechanics 
analyses, the n-dimensional solid-element models (Rutqvist 
et al. 2009) are excellent for representing fractures with 
unignorable apertures, but when fracture apertures are far 
less than their lengths, the use of n-dimensional solid ele-
ments becomes computationally too expensive. As for the 
n-1 dimensional fluid flow models where the fracture thick-
ness is neglected by definition, there are two potential issues: 
(1) the neglect of flux exchange between the n-1 dimensional 
fractures and the rock matrix, and (2) the inaccuracy intro-
duced when these flow models are coupled with mechanical 
models that have different fracture dimensions. As a result, 
n-1 dimensional fluid flow models are limited to solving 
couplings with mechanics where contact dynamics and indi-
rect coupling can be quite significant. By comparison, the 
zero-dimensional fluid model coupled with a discontinuous 
mechanical interface model for discrete fractures have been 
proven to be promising for analyzing coupled HM processes 
in fractured porous media where flow and mechanics are 
fully coupled in both fractures and rock matrix, and all the 
coupling components between fracture contact dynamics 
(dynamic changes of contact locations and contact states) 
and the fracture flow and permeability are rigorously con-
sidered (Hu et al. 2016, 2017b, 2020a).

Modeling of coupled HM processes in fractures at the 
microscale has only been attempted in recent years. For 
example, modeling coupled processes in a single fracture 
was a part of the international DECOVALEX project (Bond 
et al. 2017; Birkholzer et al. 2019). The models were cat-
egorized into 2D simplified models, statistical models, and 
homogenized models. These include a combined numeri-
cal (for flow)-analytical (for chemical–mechanical) model 

hydro-mechanical (HM) processes in fractured rock, includ-
ing equivalent continuum, dual-continuum, and discontinu-
ous models has been an ongoing research topic since the 
1980s. The network of fractures may influence the deforma-
tion and fluid distribution in the geosystems in a complex 
way that cannot be simplified as a continuum. Thus, the 
ability to explicitly consider discrete fractures in a numeri-
cal model with full coupling capability is of great impor-
tance. Inspired by the increasing demands for engineering 
solutions such as in nuclear waste disposal and geothermal 
energy, a number of computer codes for modeling HM and 
(thermal-hydro-mechanical) THM behavior of fractured 
rock at various levels of sophistication have been developed 
(Rutqvist et al. 2001). Most of the earlier models were based 
on the finite element method (Noorishad et al. 1982, 1992). 
With the development of discontinuous methods, fractures 
could be explicitly represented as displacement discontinui-
ties (i.e., interfaces between contacting individual blocks). 
These models include those based on the Distinct Element 
Method (DEM): e.g., the commercially available UDEC 
(Itasca Consulting Group 2011) and 3DEC (Itasca Consult-
ing Group 2013; Mas Ivars 2006), bonded particle model 
(BPM, Potyondy and Cundall 2004; Mas Ivars et al. 2011), 
and clumped particle models (Yoon et al. 2012). Meanwhile, 
discontinuous models based on Discontinuous Deformation 
Analysis (DDA) were developed for coupled fluid flow and 
deformation in discrete fractures where the rock matrix is 
assumed impermeable (Kim et al. 1999; Jing et al. 2001). In 



Multi-scale Coupled Processes Modeling of Fractures as Porous, Interfacial and Granular Systems…

1 3

where contacts are assumed to be only parallel edge-to-edge 
contacts for simulating coupled chemo-hydro-mechanical 
processes (McDermott et al. 2015), and an elasto-plastic 
cellular automaton model using grids with different aper-
tures to represent voids but without considering mechanics 
and contact alteration of the fracture (Pan et al. 2016). In 
these models, geometric features (such as asperities along 
fractures and grains) are either not represented explicitly, 
or they are approximated by spheres or rectangular grids. 
Thus, contacts along rough surfaces cannot be accurately 
captured. Because of these limitations, numerical modeling 
of coupled processes has to the authors’ knowledge never 
been attempted at the microscopic scale. To overcome these 
limitations so as to enable microscale understanding of frac-
ture dynamics, a microscale model has been recently devel-
oped by the authors and applied for analyzing fractures at 
the micro-asperity scale as well as in granular systems (Hu 
and Rutqvist 2020a, b).

The numerical manifold method (NMM, Shi 1992, 1996), 
based on the theory of mathematical manifolds is a promis-
ing method for analyzing both continuous and discontinuous 
media. In the past two decades, NMM has been successfully 
applied to analyze mechanical processes in geologic media 
(Ma et al. 2010) involving higher order interpolation (Chen 
et al. 1998), fracture propagation (Zheng and Xu 2014), 
wave propagation across fractured media (Fan et al. 2013), 
slope stability (Ning et al. 2011; He et al. 2013), fracturing 
of sandstone (Wu et al. 2017) and microscale mechanics 
of deformable geomaterials with dynamic contacts (Hu & 
Rutqvist, 2020b). For fluid flow analysis, NMM also has 
been successfully applied for analyzing moving interface 
problems such as free surface flow (Wang et al. 2014, 2016; 
Zheng et al. 2015). For analyzing flow and fully coupled 
processes of fractured porous media at different scales, the 
authors have previously developed a series of models (Hu 
et al. 2016, 2017a, 2017b, 2020a).

In this paper, we present multi-scale modeling capabili-
ties based on NMM that successfully overcome the limita-
tions discussed above and enable the simulation of coupled 
processes at multiple scales. In Sect. 2, we describe the mod-
eling capabilities for modeling fractures as finite-thickness 
porous zones, discontinuous interface networks, and discon-
tinuous asperities and granular systems. We summarize the 
governing equations, physical laws, coupling aspects and 
approaches that are used to address the challenges associ-
ated with intersections and shearing of fractures for models 
at different scales. In Sect. 3, we present a few simulation 
examples, including (1) a comparison of different models 
for a single fracture shearing, (2) a comparison of the con-
tinuous and discontinuous models for simulating a rough 
fracture network from an image, (3) an example of coupled 
HM analysis of a discrete fracture network from an image, 

and (4) an example to investigate the impact of a deforma-
tion band on the dynamic evolution of a granular system at 
the microscale from an image.

2  Modeling Fractures as Porous, Interfacial 
and Granular Systems

2.1  Geometric Features and Governing Equations

Depending on the scales under consideration, fractures show 
different geometric and physical features. Figure 1a–d shows 
a discrete fracture network at reservoir (m–10 km), a rough 
fracture network (mm–m), a dominant fracture at the core 
scale (mm–cm, Ajo-Franklin et al. 2018), and a damage zone 
at the micro-grain scale (μm–mm, Cheng and Wong 2018).

At the reservoir and outcrop scales (Fig. 1a), fractures 
appear to be very thin relative to their lengths, forming a 
network. Zooming into a smaller scale (Fig. 1b), the frac-
tures are no longer straight lines—they appear to be quite 
rough. In some cases when these rough fractures have min-
eral fillings, these fractures can be categorized as porous 
zones. At the core scale for a single fracture (Fig. 1c), the 
asperities of the fractures may have any type of shapes, cor-
ners, or distribution that may not be described by any type 
of statistical functions. Continuing to zoom into the micro-
grain scale, a fracture as a damage zone can be considered 
as a granular system in which grain boundaries may or may 
not be cemented. Therefore, fractures can be categorized in 
three types based on geometrical features: (1) dominant frac-
tures with unignorable widths and mineral fillings (finite-
thickness porous zones), (2) discrete thin fractures forming 
networks, and (3) rough interfaces and granular systems.

Regardless of the scales of the fractures, in a fluid-satu-
rated porous medium (e.g., rock matrix or a porous fracture 
zone), coupled HM processes should  satisfy conservation 
of momentum and mass, described by Biot’s general theory 
of 3D consolidation (Biot 1941):

where � is total stress tensor, � is body force vector, � is the 
density of the solid mass and u is the solid displacement 
vector,  � is the fluid velocity vector, � is the Biot–Willis 
coefficient (usually ranges between 0 and 1), �v is the volu-
metric strain of the porous media, M is Biot`s modulus, and 
p is the fluid pressure. The Biot–Willis coefficient as a factor 
multiplied to fluid pressure in Eq. (1) signifies a modifica-
tion and generalization of Terzaghi’s effective stress law to:

(1)∇ ⋅ � + � = �
�2�

�t2

(2)∇ ⋅ � + �
��v

�t
+

1

M

�p

�t
= 0
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where σ′ is the effective stress tensor, mT = [1, 1, 0] for 2D.
For mechanical analysis of linear elastic porous media 

with small-deformation, we have

where � is the elastic constitutive tensor, � is the strain ten-

sor, � =

[

�

�x
0

�

�y

0
�

�y

�

�x

]�

 is the strain–displacement matrix.

In porous media, we assume that the fluid flow satisfies 
Darcy`s law:

where � is the tensor of permeability coefficient, and h is 
the hydraulic head, as the sum of the pressure head p∕� and 
the elevation head.

Two types of couplings between fluid flow and mechan-
ics exist: direct and indirect couplings (Fig. 2, as a concept 
presented by Rutqvist and Stephansson in 2003). Direct cou-
plings (i.e., pore-volume coupling) refer to solid deforma-
tion impact on conservation of mass, while fluid pressure 
impacts the effective stress. Direct couplings are expressed 
in the equations of conservation of mass and momentum 
(Eqs. (1)–(3)), i.e., the Biot’s general theory. When volu-
metric strain is negligible, however, direct coupling can be 
reduced to one way. Indirect couplings including hydraulic 
or mechanical properties change as results of deformation 
and/or fluid pressure. One typical example is that the frac-
ture permeability is very sensitive to deformation, thus, it 
requires accurate calculation of this indirect coupling effect.

For different scales of fractures, different governing equa-
tions as well as fracture constitutive behavior and HM cou-
pling apply.

(3)� = �
�

−m�p

(4)�
�

= ��

(5)� = ��

(6)� = −�∇h

2.1.1  Fractures as Finite‑Thickness Porous Zones

For dominant fractures that can be modeled as finite-thick-
ness porous zones (Hu and Rutqvist 2020a; Hu et al. 2017a), 
to account for the nonlinear behavior of a fracture that may 
be partially mineral filled, a reformulation of Bandis’ (1983) 
equation (Rutqvist et al. 1998, 2000) is used to describe the 
nonlinear relationship of the fracture effective normal stress 
σ

�

n
 with the mechanical aperture bm:

where �′

n0
 is user-defined and � is a constant defined as 

follows:

The behavior of fracture shear displacement under shear 
stress satisfies:

(7)�
�

n
=

�

bm
+ �

�

n0

(8)� = bmi(�
�

ni
− �

�

n0
)

Fig. 1  Fractures at different scales: a a discrete fracture network (m–10 km), b dominant rough fractures (mm–m), c a dominant fracture at the 
core scale (mm–cm, Ajo-Franklin et al. 2018), and (d) a damage zone at micro-grain scale (μm–mm, Cheng and Wong 2018)

Fig. 2  Hydro-mechanical direct (I) and indirect (II) couplings 
(Rutqvist and Stephansson 2003)
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where � and � are constants. When � = 0 , linear relation-
ship between shear stress and shear displacement is retained.

For fluid flow in fractures, the hydraulic conductivity kf  
of a fracture is related to a hydraulic fracture aperture bh , 
which can be defined according to Witherspoon et al. (1980):

where �f  and �f  are the fluid density and dynamic viscosity, 
respectively, g is the gravitational acceleration. bh , is the 
hydraulic aperture assumed to be:

where bhr is the residual hydraulic aperture when the fracture 
is mechanically closed, and f  reflects the difference from 
the mechanical and hydraulic apertures by accounting for 
roughness of a natural fracture.

With the above concepts and equations, the deformation 
behavior of the finite-thickness porous zone is controlled 
by two effects: the linear poro-elastic deformation of the 
solid fracture fillings and adjacent host rock, and the non-
linear behavior of the fracture described in Eq. (7). Corre-
spondingly, the HM couplings include direct pore-volume 
coupling, as well as indirect coupling with changes of 
mechanical and hydraulic properties induced by flow and 
deformation, respectively.

2.1.2  Fractures as Discrete Interfaces

For discrete fracture networks where fractures are bounda-
ries of the adjacent rock matrix, we assume the following 
boundary constraints apply for fluid flow and mechanical 
fields.

Since the fractures in this case are very thin relative to 
their lengths, the hydraulic head within the fracture can be 
assumed uniform across its thickness:

where φ and φ’ denote the hydraulic head on the two sides 
of rock elements that are divided by the fracture. Thus, fluid 
flux along a very thin fracture is represented by flow along 
its two surfaces:

where � f is the permeability coefficient. Here, we assume 
parallel plate flow in fractures as given in Eq. (10).

(9)�
�

s
=

Δus

� + �Δus

(10)kf =
b2
h
�f g

12�f

(11)bh = bhr + fbm

(12)�(s) = �f (s) = ��(s)

(13)qf
s
= −�f

��

�s
= −�f

���

�s

To represent fracture–matrix interaction, i.e., flux 
exchange normal to a fracture, two Dirichlet boundaries are 
used to represent the two surfaces of a fracture:

Such a simplification is valid because the fractures are 
assumed to be thin and unfilled, the distribution of hydrau-
lic head on each surface of a fracture and within a fracture 
is uniform in the direction normal to the fracture surfaces.

Equations (12–14) include all the possibilities of fluid 
flow in a fracture, which may act as a fluid conduit or seal.

In contrast, the mechanical state of a fracture is more 
complicated. A fracture may have several segments and 
every segment from the two sides of this fracture (a contact 
pair) have three possible contact states: open, bonded, or 
sliding. When sliding or shearing occurs, contact pairs (i.e., 
the locations of where contacts occur) may be altered. Mean-
while, the contact pairs and contact states may be impacted 
by fluid flow and mechanical deformation dynamically.

Corresponding to these three contact states for each con-
tact pair, different boundary constraints are applied. When 
a fracture segment (a contact pair) is open, a linear constitu-
tive behavior is assumed:

where �′

f
 denotes a tensor of effective stress in both normal 

and tangential directions of a segment of a fracture, �f  is the 
stiffness tensor of the segment, and [�f ] is the jump of dis-
placements in both normal and tangential directions of the 
fracture segment. When �f  is set as zero, a mechanically 
open fracture can be described.

When a segment of a fracture is bonded, the distance and 
relative shear displacement between the two sides of the 
segment should be zero, satisfying:

where d is the time-dependent normal distance between 
the two surfaces of the fracture segment, and [us] is the rela-
tive displacement between the two surfaces in the direction 
along the contacting face.

When a segment of a fracture is sliding, Coulomb’s law 
of friction is satisfied in the tangential direction, while the 
normal distance between the two surfaces of the fracture 
segment should be zero:

where Fs is the contact force in the direction of the sliding 
face, F

′

n
 is the effective normal contact force by considering 

(14)
{

�0(s) = �(s) ∩ �f (s) = �
�

(s)

�0(s) = �
�

(s) ∩ �f (s) = �(s)

(15)��
′

f
= �f [�f ]

(16)d = 0 ∩ [us] = 0

(17)d = 0 ∩ Fs = F
′

n
tan�sgn([us])
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fluid pressure, � is the friction angle, and sgn
(

[us]
)

 denotes 
the direction of Fs that depends on the direction of rela-
tive shear displacement. When sliding occurs along the two 
surfaces of a fracture, the locations of contacts change with 
time, possibly leading to changes of contact pairs as well as 
contact states among several segments of this fracture (Hu 
& Rutqvist, 2020a).

Equations (15)–(17) cover all possible states of contact 
between the two surfaces on each segment of a fracture. 
Together with the governing equations and the elastic con-
stitutive law described by Eqs. (1), (3)–(5), both continuous 
and discontinuous behavior of discrete fractured rocks can 
be described.

For discrete fractured rocks, Biot’s equation can be used 
for describing fluid mass conservation and conservation 
of momentum in the rock matrix and the associated direct 
coupling. However, the discrete fractures, which may be 
oriented or intersected arbitrarily, are very thin and may be 
open, bonded or sliding dynamically. Fluid flow in these 
fractures is highly sensitive to mechanical changes such as 
changes of apertures induced by contact dynamics. Mean-
while, the contact dynamics (i.e., the changes of contact 
pairs and/or contact states) and mechanical properties (i.e., 
the shear strength) are highly sensitive to the fluid flow, thus, 
establishing a two-way indirect coupling.

2.1.3  Fractures at the Microscale: Asperities and Grains

At the microscale, Darcy’s law is not sufficient to describe 
flow in the open channels of fractures or the voids between 
pores and grains. For these cases, the Navier–Stokes equa-
tion is typically used to describe conservation of momentum 
of fluid:

For mechanics at the microscale (Hu and Rutqvist 2020b), 
the force term includes not only loading ( Fl ), but also the 
contact force, Fcontact between discontinuous interfaces 
(rough fractures) and material bodies (in granular systems):

Accordingly, displacement include the term that is con-
tributed by deformation ∫ �ds , as well as the translational 
utr and rotational ur displacements:

Using Eq. (20), continuum and discontinuum mechanics 
are integrated.

Similar to the contact force calculated for discrete frac-
tures, the contact force Fcontact between discontinuous 

(18)
��

�t
+ (� ⋅ ∇)� + ∇p = �Δ�

(19)� = Fl + Fcontact

(20)u = ∫ �ds + utr + ur

material bodies is computed based on the contact state of 
each identified contact pair. With or without considering 
motion or deformation of material bodies, there are three 
possible contact states between two material bodies: sepa-
rated (no contact), bonded, and sliding.

When the discontinuous material bodies are separated, 
in most cases, there are no contact forces between them. 
Thus, we have:

When the material bodies are bonded or sliding, Eqs. (16) 
and (17) that are used to describe discrete fractures can be 
applied here. However, a significant difference between these 
two types of calculations is that contact pairs and contact 
states can change more rapidly and significantly when the 
contact pairs are no longer straight lines as in discrete frac-
ture networks. A recently published paper by the authors (Hu 
and Rutqvist 2020b) explained the challenges of capturing 
these features in detail and developed a rigorous model with 
multi-step contact calculations that tackled these challenges.

At the microscale, direct coupling may exist in the poro-
elastic grains. However, in the voids and channels of frac-
tures, couplings between fluid flow and mechanics is mostly 
one way: mechanical deformation leads to structural changes 
of fluid channels. When the system is undrained (i.e., the 
fluid pressure cannot dissipate rapidly), fluid pressure may 
have an impact on contact pairs, contact states or shear 
strength of interfaces of discontinuous bodies.

2.2  Numerical Implementation in the Numerical 
Manifold Method

2.2.1  Numerical Manifold Method

The numerical manifold method (NMM) (Shi 1992) is 
based on the concept of a “manifold” in topology. In NMM, 
independent meshes for interpolation and integration are 
defined. A mathematical cover is a set of connected patches 
that cover the entire computation domain. The choices of 
density and shape of these mathematical patches impact the 
interpolation precision. The physical patches are mathemati-
cal patches divided by boundaries, interfaces and disconti-
nuities that determine the integration fields. The union of all 
the physical patches forms a physical cover.

Based on the dual-cover definition, the global approxima-
tion on each element is defined as the weighted average of 
the local physical cover function:

where � and ��� are the weight and physical patch func-
tions, respectively.

(21)F������� = 0

(22)� = �����
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On each physical patch, the local function ��� can be con-
stant, linear, or any function that is able to capture the behav-
ior of the solution on the patch. Using linear local functions, 
a global second-order approximation is achieved (Fig. 3a, 
Wang et al. 2016). Using a local function with a jump of the 
first derivative, material interfaces can cross-patches and ele-
ments (Fig. 3b, Hu et al. 2015a). Using discontinuous local 
functions, material interfaces can be modeled by introduc-
ing continuity constraints (Hu et al. 2015b) and fractures 
can be naturally simulated (Fig. 3c, Hu et al. 2016, 2017b). 
In this way, NMM is capable of simulating both continua 
and discontinua with flexible numerical approximation. In 
the models that are presented in this paper, constant patch 
functions and linear weight functions with triangular math-
ematical meshes are used to approximate hydraulic head and 
displacements.

NMM can be related to other numerical methods in terms 
of interpolation, as shown in Fig. 4. If the weight function 
is bilinear on rectangles and the physical patch function is a 
constant, NMM can be related to the finite element method 
(Zheng et al. 2020). If the weight function is piecewise linear 
in each direction and the physical patch function is a con-
stant, NMM can be related to the finite volume method (Hu 
and Rutqvist 2020c). If the weight function is a constant as 
1 (meaning there is no overlap between physical patches) 
and the physical patch function is a constant, NMM can be 

related to the discrete element method. If the weight function 
is a constant as 1 and the patch function is linear (or higher 
order), NMM can be related to the DDA.

2.2.2  Overview of Multi‑scale Models for Coupled Process 
Analyses

Based on NMM, we developed comprehensive model capa-
bilities to simulate coupled processes in fractured rocks 
by considering fractures as finite-thickness porous zones, 
discrete interface networks and granular systems at differ-
ent scales. The modeling capabilities involving governing 
equations, constitutive relationships, HM couplings, and 
challenges associated with intersections and shearing of 
fractures are summarized in Table 1.

For dominant fractures, which can be equivalent to finite-
thickness porous zones, Biot’s equations are used to describe 
the poro-elastic behavior. Nonlinearity of fracture normal 
stiffness as well as shear stiffness associated with shearing 
can appear. In these porous zones, both direct coupling in 
rock matrix and fractures, and indirect coupling in fractures 
are involved. We developed a finite-thickness porous zone 
model (Hu et al. 2017a; Hu and Rutqvist 2020a) to repre-
sent these fractures with solid elements. Thus, calculation of 
intersections of fractures is straightforward; and calculation 
of shearing of these fractures is conducted with the linear 

Fig. 3  Flexible choices of local 
approximation functions: a a 
linear function (Wang et al. 
2016), b a jump junction for a 
weak discontinuity (Hu et al. 
2015b), c a discontinuous 
function for a fracture (Hu et al. 
2016, 2017b)

Fig. 4  Relating NMM to other numerical methods in terms of interpolation
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and nonlinear constitutive fracture laws. To accurately repre-
sent linear and nonlinear behavior, an implicit approach that 
accounts for their strain energy was developed and verified 
(Hu et al. 2017a).

For discrete fractured rocks, Biot’s equations are used to 
describe the poro-elastic behavior in the porous rock matrix. 
These discrete fractures may be oriented or intersected arbi-
trarily. The mechanical contact state of a fracture segment 
may be open, bonded or sliding and may change dynami-
cally. In addition, fluid along the fractures may have flux 
exchange with the surrounding rock matrix. Permeability of 
these fractures, described by a reformulated cubic law as a 
function of hydraulic aperture, is highly sensitive to defor-
mation and contact dynamics of the fractures. Meanwhile, 
the contact pairs and contact states as well as shear strength 
can be highly sensitive to the fluid pressure, thus, estab-
lishing a two-way indirect coupling. To account for such 
complex behavior in discrete fractured rocks, we developed 
a zero-dimensional fracture model (Hu et al. 2017b; Hu 
and Rutqvist 2020a) by considering fractures as bounda-
ries of adjacent solid-rock matrix. Fluid flow in fractures 
and flux exchange with the rock matrix are implicitly con-
sidered. Permeability is updated each time as a function of 
mechanical aperture depending on the mechanical states. 

The mechanical states of each fracture segment are rigor-
ously considered in the three contact states: open, bonded 
and sliding with different constraints. The challenges to 
simulate these network systems are to simulate intersec-
tions and shearing of these discrete fractures. Using a tree-
cutting algorithm with discontinuous surfaces approximating 
each fracture, we are able to calculate each intersection of 
two fractures considering contacts between each two sides 
around the intersection. Shearing along a fracture segment is 
explicitly calculated by updating contact pairs (two surfaces 
of each fracture segment) while Coulomb’s law of friction 
is satisfied. Since each fracture is discretized into several 
line segments and these segments may have different contact 
states, complex behavior such as shear dilation or uneven 
opening of a fracture can be calculated.

At the microscale where the asperities of fractures are 
explicit or the fracture becomes a damaged granular sys-
tem, the challenge of modeling such microscale behavior 
is to capture when and where contacts occur between the 
discontinuous asperities and grains which are moving and 
deforming as a result of coupled processes. For an open 
channel bounded by rough fracture surfaces or the pores 
and voids in a granular system, the Navier–Stokes equa-
tion in combination with conservation of mass is needed 

Table 1  Multi-scale coupled processes models for fractured rocks
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to represent fluid flow. For a drained system, coupling in 
these channels, pores and voids majorly exists in one way: 
mechanical deformation and contact dynamics impact the 
geometry of the system (i.e., the structure of the channels, 
pores and voids where fluid flow takes place). We developed 
a rigorous model with multi-step contact calculations to sim-
ulate dynamic contacts with possible large deformation and 
large displacements with explicit geometric representation 
of the complex structures (Hu and Rutqvist 2020a, b). On 
the other hand, fluid flow in the open channels and voids in 
a drained system may have very limited impact on mechani-
cal deformation. Because of the one-way coupling feature, 
the flexible choice of decoupling is enabled. With rigorous 
detection of contact pairs, enforcement of contact constraints 
and iteration for contact state convergence within each time 
step, intersections of fractures and shearing of fractures at 
the asperities or along discontinuous grain boundaries can 
be rigorously simulated.

Note that for all the described scales, the dynamic pro-
cesses of both mechanics and fluid flow as described by 
Biot’s equations are accounted for in our numerical model. 
To account for dynamic mechanical processes, acceleration 
is represented as a function of the displacement at the cur-
rent time step and the velocity of the previous time step, 
leading to an implicit approach. By assigning different coef-
ficients related to the velocity, damping is considered (Shi 
1992). The transient changes of mass conservation caused 
by the volumetric strain and changes of pore pressure are 
calculated implicitly as well (Hu et al. 2017a).

A high-level summary of the modeling capabilities for 
simulating fractures as finite-thickness porous zones, dis-
crete fracture networks as well as microscale asperities and 
grains is shown in Fig. 5. Radiating from the direct coupling 

of conservation of solid momentum and conservation of 
fluid mass, discontinuum mechanics with calculation of 
dynamic contacts is applied for the two discontinuous scales, 
i.e., the discrete fracture networks and microscale asperi-
ties and grains. In addition, different and indirect couplings 
apply with different constitutive behavior and physical laws.

3  Examples and Applications

The models described in Sect. 2 have been verified step by 
step for each component (Hu et al. 2016, 2017a, b; Hu and 
Rutqvist 2020a, b). In this section, we present several simu-
lation examples involving realistic representation of fracture 
geometry from images of rough fractures, discrete fracture 
networks and a deformation band in a granular system at the 
microscale. We first compare different models for a single 
fracture shearing and a network of rough non-planar frac-
tures from an image. Then, we show an example of coupled 
hydro-mechanical analysis of a discrete fracture network 
from an image of an outcrop. In the last example, we extract 
an image that contains a soft cataclastic deformation zone 
and a number of grains to investigate the impact of the cata-
clastic deformation zone on the dynamic evolution of the 
granular system at the microscale.

3.1  Modeling a Single Fracture Shearing 
with Continuous and Discontinuous Models

In the first example, shearing of a single fracture in a rec-
tangular domain exposed to a differential (shear) load is 
simulated and the results are compared with the analytical 
solution by Pollard and Segall (1987). This is a part of Task 

Fig. 5  Overview of the multi-scale coupled processes models based on the NMM
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G of the international DECOVALEX1-2023 model compari-
son project where Safety ImplicAtions of Fluid Flow, Shear, 
Thermal and Reaction Processes within Crystalline Rock 
Fracture NETworks (SAFENET) is the theme. In this exam-
ple, shearing of smooth and rough fractures is simulated and 
compared with the analytical solution. The shear strength of 
the fracture is assumed to be zero, meaning that the shear 
offset deformation across the fracture will depend on the 
imposed differential (shear) load and elastic properties of 
the rock matrix surrounding the fracture.

We simulate a fracture dipping 45° in a 0.5 m × 0.5 m 
domain. The fracture is 0.17 m long. The Young’s modulus 
of the rock matrix is 49.74 GPa and the Poisson’s ratio is 
0.26. The bottom of the domain is fixed, while a vertical 
loading of 10 MPa is applied on the top. On the left and right 
boundaries, horizontal loadings of 5 MPa are applied. We 
used three different geometric representations to simulate 
the shearing of the fracture: (1) a continuous model to rep-
resent the fracture as a finite-thickness porous and deform-
able zone (Fig. 6a), (2) a discontinuous model to represent 
a smooth and planar fracture (Fig. 6b) and (3) a discontinu-
ous model to represent a rough, non-planar fracture with 
asperities (Fig. 6c). The geometry of the rough, non-planar 
fracture is defined at discrete points as shown by the focused 
view of the fracture in Fig. 6c. There are still two simpli-
fications from a real fracture: (1) the roughness at smaller 
scales is neglected, and (2) it is assumed that the upper and 
lower fracture surfaces are identical and perfectly mated. 
Nevertheless, the example is useful for showing the effect 

of non-planar fracture geometry on the shear behavior of a 
single fracture. The meshes that are used for the calculations 
are shown in Fig. 6.

In the continuous model of a planar fracture, we used 
a linear elastic model to represent the fracture mechani-
cal behavior using a finite-thickness porous and deform-
able zone with different material properties from the rock 
matrix. This assumption is valid based on the fact that the 
analytical solution considers a smooth and planar frac-
ture. The Young’s modulus is the same as that of the rock 
matrix whereas the Poisson’s ratio is set as 0.35, leading to 
a reduced shear modulus of the finite-thickness zone. As a 
result of the low shear modulus within the fracture, the shear 
deformation across the fracture is dominated by the elastic 
shear resistance in the rock matrix surrounding the fracture.

The discontinuous model is used to represent both the 
smooth, planar fracture and the rough, non-planar fracture. 
The friction angle and cohesion are both set as zero, leading 
to a shear strength of zero for the smooth, planar fracture. 
In the case of the rough and non-planar fracture, the asperi-
ties introduce certain friction that may impact the shear dis-
placements at the local contacts between the two opposing 
fracture surfaces.

We calculated the profile of shear displacements of the 
fracture and compared it with the analytical solution. The 
comparisons with analytical solution are shown in Fig. 7. 
Here we plot the shear displacements along the fracture 
with a localized 1D coordinate system of the crack. In this 
localized 1D coordinate system, the crack center is the ori-
gin. The negative and positive values denote the distances 
to the center from the upper left and lower right regions, 
respectively. In the first two models, shear displacements 
are calculated as the relative shear offset across the fracture, 
which is equal to the relative displacements on the two sides 
of the fracture in the direction along the fracture (45°). For 

Fig. 6  Modeling a single fracture slip with three different geometric 
representations: a a finite-thickness porous and deformable zone of 
a planar fracture, b discontinuous interfaces of a planar and smooth 

fracture and c discontinuous interfaces and asperities of a non-planar 
and rough fracture

1 DECOVALEX is an international research project comprising 
participants from industry, government and academia, focusing on 
development of understanding, models and codes in complex coupled 
problems in subsurface geological and engineering applications.
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the rough fracture model, we calculated the shear displace-
ments using two approaches. In the first approach, the non-
planar fracture was approximated with three straight line 
segments, which have different orientation angles. We pro-
ject the relative displacement on the two sides of the fracture 
within each segment along the direction of that segment. 
The result is shown in red (Fig. 7c). In the second approach, 
we projected the relative displacements on the two sides of 
the fracture in the 45° direction, shown in green. As we can 
see, good agreement was achieved for both the continuous 
finite-thickness model (Fig. 7a) and the discontinuous inter-
face model (Fig. 7b) of a planar fracture. For the discontinu-
ous model of the rough, non-planar fracture, some expected 
larger deviations from the analytical solution are observed 
(Fig. 7c). Considering the fixed bottom and loading from 
the top, the reduced shearing seen from the left end of the 
fracture can be attributed to the lower dip angle of that left 
section of the fracture. Comparing the results calculated by 
the two approaches, we find the relative displacements in 
45° direction cannot represent localized shear displacements 
associated with the local contacts pairs between asperities 
of the two opposing fracture surfaces.

To further study the impact of asperities on shearing, we 
compare the stress calculated for the perfectly smooth and 
planar fracture with that of the rough, non-planar fracture as 
shown in Fig. 8. In the case of the perfectly planar friction-
less fracture, the stresses are concentrated at the two ends 
of the fractures, whereas in the case of non-planar (rough) 
fracture some shear stress is transmitted across the fracture 
at asperity contact points/areas. In the case of a non-planar 
rough fracture, the stress disturbance affects a wider area 
around the crack tips and across the fracture as a result of 
local asperity contacts. Locally, the asperities introduce con-
centration of both vertical and shear stresses. In general, 
these concentrated contact stresses could cause formation 

of new cracks, fracture plasticity, or pressure solution when 
fluid chemistry condition is satisfied. If considering non-
zero friction, local highly stressed asperity contacts could 
be interpreted as a result of high frictional resistance sig-
nificantly impacting the overall fracture shear deformations.

3.2  Modeling Discrete Rough Fractures 
with Continuous and Discontinuous Models

We extracted an image of a network of discrete open frac-
tures with rough fracture surfaces (Fig. 9a) for accurate geo-
metric representation in the models. Two different models 
were applied to simulate its mechanical behavior induced by 
compaction: (1) a continuous model where the fractures are 
represented as porous and deformable zones with a softer 
material than the rock matrix (Fig. 9b), and (2) a discontinu-
ous model where the fractures are represented as discon-
tinuous rough surfaces (Fig. 9c). Since the rough fractures 
are all connected, the discrete rough fractures divide the 
domain into a blocky system. In both models, the asperi-
ties are explicitly represented. The goal of this simulation 
is to understand the relationship and differences of the two 
different models that are used to represent dominant rough 
fractures which are not filled with minerals.

The model domain for this example is 10 m × 8 m. For 
each model, a vertical loading of 0.42 MPa is applied on 
the top. The other three boundaries are fixed. In the second 
model, to prevent the blocky system from falling apart, we 
use columns outside the blocky system to apply loading on 
the top and confinement on the left, right and bottom bound-
aries. For both models, the Young’s modulus is set to 4 GPa 
and the Poisson’s ratio is 0.3. In the continuous model, the 
solid material within the fractures surfaces is assumed to 
have a Young’s modulus of 4 MPa, which is three orders 
of magnitude lower than the surrounding rock matrix. This 

Fig. 7  Calculated shear displacements and comparison with the analytical solution by three different models: a the continuous finite-thickness 
porous zone model, b the discontinuous planar interface model, and c the discontinuous rough interface model
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could either be seen as a way to represent a fracture with a 
finite-thickness porous zone with a fracture normal stiffness 
approximately by E/b, where the b is the thickness of the 
fracture zone, or it could represent a fracture filled with soft 
mineral filling. The Poisson’s ratio is the same as the rock 
matrix. In the discontinuous model, the loading and confine-
ment columns have a Young’s modulus of 4 GPa. The frac-
tures, represented as rough interfaces, have a friction angle 
of 30°. The meshes that are used for the two different models 
are shown in Fig. 10. In the first model, the rough fracture 
surfaces become material interfaces between the finite-thick-
ness thickness zones and the rock matrix (Fig. 10a). These 
material interfaces divide the mathematical patches that are 

formed by evenly distributed triangles into discontinuous 
physical patches. Across each material interface, continuity 
of stress and displacement for mechanics and continuity of 
hydraulic head and normal flux for flow should be satisfied, 
respectively. We used the penalty method for mechanics (Hu 
et al. 2017a) and the Lagrange multiplier method for fluid 
flow to realize these continuity constraints, respectively. In 
the second model, the unfilled fracture channels become 
gaps between the rock matrix, and the rock matrix is discre-
tized with triangular meshes (Fig. 10b).

The results of vertical and shear stresses that are cal-
culated by the two different models are shown in Fig. 11. 
With the fractures represented by soft solid material, high 

Fig. 8  Impact of asperities on 
shearing: comparison of vertical 
and shear stresses (Unit: Pa) 
calculated by the discontinuous 
planar interface model (a, b) 
and by the discontinuous rough 
interface model (c, d)

Fig. 9  Geometric representation of discrete rough fractures from an image (a) with porous zones (b) and with discontinuous rough interfaces (c)
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compressive and shear stresses are developed in some frac-
ture zones as well as in the matrix just above each of the 
fractures in upper right corner of the model as a result of 
vertical loading on steeply dipping fractures in this area 
(Fig. 11a, b). Because of the asperities, localized stress con-
centration can be found at those asperities with relatively 
sharper corners.

Looking at the results by the discontinuous model 
(Fig. 11c, d), we find that larger displacements occur on the 
right because of the open space available to accommodate 
these displacements. This phenomenon is consistent with the 
results shown by the continuous model. However, with these 
large displacements, the loading is gradually redistributed 
and concentrated more on the right side and on the center 
block of the sample. We see that high compressive stress is 

developed at the contacting areas between the center block 
and the outer columns, and between the center block with 
the neighboring blocks.

Comparing these results from the two different models, 
major differences of stress distribution can be found within 
the center block. The results calculated by the continuous 
model suggest that there is not much localized high stress 
within the center block (Fig. 11a, b). But based on the calcu-
lation by the discontinuous model, high compressive stress 
develops at the contacting areas after motion and deforma-
tion are maximized (Fig. 11c, d). In addition, tensile stress 
is developed in a block on the right, due to confinement on 
the right and bending toward the center block (Fig. 11c, d).

From this example, we conclude that because the discon-
tinuous model captures the dynamical changes of contacts 

Fig. 10  Meshes of (a) the 
continuous porous zone model 
and (b) the discontinuous rough 
interface model

Fig. 11  Calculated vertical and shear stresses (Unit: Pa) with the porous model (a, b) and with the discontinuous rough interface model (c, d)
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with large displacements on the right and the stress redis-
tribution as a result of the dynamic changes of contacts, the 
results appear to be quite different than those obtained by 
the continuous model. We show that when rough fractures 
are not filled with minerals and when a number of rough 
fractures form a blocky system, dynamic contacts play an 
important role for the geometric, multi-physical evolution 
of the system.

3.3  Modeling a Discrete Fracture Network

We extracted a network of discrete thin fractures from an 
outcrop image (Fig. 12a) and conducted modeling for ana-
lyzing coupled hydro-mechanical processes in this system. 
The geometric representation and the mesh that we con-
structed are shown in Fig. 12b. This domain contains 126 
thin fractures, and a number of them are well connected 
to form a major non-planar fracture running through the 
domain from the left boundary to the bottom boundary. We 
set the domain size as 10 m × 8 m.

Initially, the effective stress is 10 MPa in the horizontal 
direction and 5 MPa in the vertical direction, and the fluid 
pressure is 1.5 MPa. All boundaries are fixed mechanically 
in both directions. A constant injection pressure of 2 MPa is 
applied on the left boundary, while the pressure on the right 
boundary is kept constant at 1.5 MPa. The other boundaries 
are no-flux boundaries. The time step that we used for the 
calculation is 20 µs. The purpose of this simulation is to 
investigate how fluid and mechanics interact with a network 
of densely populated discrete thin fractures. The material 
parameters in Table 2 are selected with low values of frac-
ture stiffness and shear strength to induced complex shear 
activation response in the model with significant stress redis-
tribution and HM changes.

The calculated fluid pressure is shown in Fig. 13 (top 
row). As can be seen, from the beginning (step 3), a gradi-
ent is generated in the domain from the left to the right. At 
step 50, the fluid flows preferentially along the major frac-
ture paths where intersections are denser in the horizontal 
direction. At step 200, the fluid pressure begins to dissipate, 

indicating opening of some fractures occur. At step 500, 
the pressure increases in a preferential direction, especially 
along the long non-planar fracture formed with a number 
of fracture segments. This distribution at step 500 can be 
correlated with the stress distribution shown below the pore 
pressure distribution in Fig. 13.

In terms of mechanical changes, from Fig. 13, we can see 
that at step 3, the effective and shear stresses in the domain 
are quite uniform except for localized areas near the discrete 
fractures. At this point, shear stress has not accumulated 
yet. At step 50, a significant stress redistribution has taken 
place as a result of shear and normal displacement in frac-
tures. This fracture deformation was triggered as a result of 
an initial shear stress and zero fracture shear strength that 
induces shear activation. The fracture deformation along 
with fixed outer boundaries tends to relax stresses within the 
model, especially in areas of several intersecting fractures. 
The stress relaxation and redistribution increase with further 
steps and shear stress develops adjacent fractures undergoing 
shear, especially apparent around shallowly dipping frac-
tures. The stress relaxes to such a degree that effective stress 
becomes tensile in the matrix between intersecting fractures 

Fig. 12  A discrete fracture 
network: a original image and b 
the generated mesh

Table 2  Computation parameters

Materials Parameter Value

Fluid Mass density, ρf 1000 kg/m3

Dynamic viscosity, µf 1 ×  10–3 Ns/m2

Rock matrix Young’s modulus 4 GPa
Poisson’s ratio 0.3
Permeability coefficient 1 ×  10–11 m/s
Biot–Willis coefficient, α 1
Biot’s modulus, M ∞
Mass density 2300 kg/m3

Fractures Shear stiffness 4,000 Pa/m
Normal stiffness 104 Pa/m
Factor, f 1
Residual hydraulic aperture, bhr 0.35 µm
Friction angle 0
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especially near the center for the model. If we compare the 
pore pressure distribution with the shear stress distribution, 
we find similar patterns of distribution, suggesting shearing 
occurs with increased permeability.

3.4  Modeling a Grain Pack with a Cataclastic 
Deformation Zone

In this example, we extract an image of a sandstone with 
a cataclastic deformation band/zone (Fig. 14a) from the 
paper by Rotevatn et al. (2008) and investigate the compac-
tion of the system with our microscale model. In our model 
(Fig. 14b), the 5 mm × 8 mm domain is represented with 
three different materials: grains with a Young’s modulus of 4 
GPa and a Poisson’s ratio of 0.2 (in blue), fragmented grains 
with a Young’s modulus of 0.2 GPa and a Poisson’s ratio 
of 0.2 (in yellow), and a cataclastic deformation band/zone 
with a Young’s modulus of 0.2 GPa and a Poisson’s ratio 

of 0.2 (in grey). The mesh that is used for the calculation is 
shown in Fig. 14c. To apply boundary constraints, we use 
four columns outside the domain with a Young’s modulus 
of 4 GPa and a Poisson’s ratio of 0.3. On the left, right and 
bottom boundaries, the sample is confined. On the top, a 
vertical loading of 7.5 MPa is applied. We assume the fric-
tion angle is zero because of the fluid. The system is drained 
so that there is no sufficient fluid pressure built up rapidly to 
impact the compaction process. The time step that we use 
for the calculation is 400 µs.

Figure 15 shows the evolution of the vertical stress dur-
ing the dynamic compaction of the granular system. We can 
see that the compressive stress develops from the top to the 
bottom, including the small particles on the upper left, the 
large particle on the upper right and the deformation zone 
(Fig. 15a). When the upper left and upper right particles 
make contacts with the lower particles, the compressive 
stress in the deformation zone continues to propagate from 

Fig. 13  From top to bottom: calculated pore pressure (Unit: MPa), effective horizontal and vertical stresses and shear stress (Unit: Pa) at steps 3, 
50, 200 and 500
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the top to the bottom. Meanwhile, the soft deformation zone 
makes contacts with neighboring particles (Fig. 15b–d). 
When the compressive stress is high enough in the entire 
deformation zone, the upper left and right particles still have 
a large portion of voids to accommodate their motion. At 
this point, the deformation band starts to bend (Fig. 15e, 
f), resulting in a tensile stress area. With the deformation 
and bending of the deformation band, the compressive stress 
begins to relocate from the center deformation band to the 
left and right particles, driving these groups of particles to 
move downward (Fig. 15g). At the end (Fig. 15h), the defor-
mation band bends to maximum and all particles are in con-
tact with high stress, resulting in a system with a minimized 
porosity.

The horizontal, vertical and shear stresses when reaching 
equilibrium are shown in Fig. 16. We can see high compres-
sive horizontal and vertical stress bands are formed in both 
directions. At the bending area in the center, all stress com-
ponents reach very high values, indicating a high possibility 
of fragmentation in this region.

This example confirms a conclusion in the earlier paper 
by the authors (Hu and Rutqvist 2020b): the sequential 
evolution of geomaterials as responses to stress is motion, 
deformation and accumulation of high stress at local contact-
ing areas (especially at sharp corners). In addition, through 
this example, we find the fact that the damage zone with 
softer material can accommodate larger deformations, and 
therefore, dominate contact evolution and redistribution of 
stress of a granular system toward a system with minimized 
porosity.

4  Conclusions

In this study, we presented our multi-scale modeling capa-
bilities to simulate coupled HM processes in fractured rocks. 
Based on the geometric features, the fractures are modeled 
as continua—finite-thickness porous zones, and discon-
tinua—discontinuous interfaces and microscale discon-
tinuous asperities and granular systems. Correspondingly, 
different governing equations, physical laws, coupling pri-
orities and approaches to address intersections and shearing 
of fractures are applied. By taking advantages of the NMM 
dual-cover systems, the continuum model with linear and 
nonlinear fracture models have been implemented, and a 
rigorous multi-step contact calculation algorithm has been 
developed for the discontinuous interfaces and microscale 
asperities and granular systems. With these capabilities, 
the direct pore-volume coupling in both continuous and 
discontinuous models (rock matrix and the finite-thickness 
porous fracture zone), and indirect couplings associated with 
changes of permeability, contact pairs and contact states, 
and interfacial strength were implemented in these models.

To highlight the importance of asperities in the fracture 
contact mechanics, we simulated the same single-fracture 
shearing problem defined in the DECOVALEX Task G using 
three different models with different geometric representa-
tions where the fracture is represented as a finite-thickness 
porous zone, a smooth and planar interface, and a rough 
and non-planar interface, respectively. We compared the dis-
placement profile with the analytical solution and achieved 
good agreement with the analytical solution using all three 

Fig. 14  a An image of a sandstone with a cataclastic deformation zone (Rotevatn et al. 2008), b approximated representation of the image in 
NMM, and c the generated mesh
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models. Expected larger deviations occur with the rough 
interface model, which is explained by the fact that the ana-
lytical solution is based on a smooth fracture surface. But 
using the rough interface model, we were able to capture 
stress concentration at the local asperities that may cause 

dynamic contacts evolution such as propagation of fractures, 
fracture plasticity, or pressure solution when fluid chemistry 
conditions are satisfied.

To demonstrate the importance of choosing a reasonable 
model based on the geometric features, we used two different 

Fig. 15  Evolution of vertical stress (unit: Pa) at steps 500 (a), 1000 (b), 2000 (c), 4000 (d), 7000 (e), 10,000 (f), 20,000 (g), 30,000 (h)

Fig. 16  Calculated horizontal, vertical and shear stresses (unit: Pa) when reaching equilibrium
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models to simulate compaction of a discrete rough fracture 
network: a continuous model with a number of porous zones 
with a softer material, and a discontinuous model with a 
number of rough surfaces. Based on the simulation, we 
found that the discontinuous model was able to adequately 
capture the dynamic changes of contacts and stress redistri-
bution as a result of the contact dynamics, which resulted 
in a different stress distribution from that calculated by the 
continuous model. We conclude that accurate calculation of 
contact dynamics is important for analyzing the geometric 
and multi-physical evolution of systems when rough frac-
tures are not filled with minerals and when a number of 
rough fractures form a blocky system.

The discontinuous interface model was applied to simu-
late coupled fluid and mechanics of a discrete fracture net-
work consisting of 126 fractures from a rock image. We 
show a special case in which shearing of discrete fractures 
can have a major impact of the distribution of pore pressure 
as well as stress distribution over the domain.

Finally, we used the discontinuous microscale model to 
simulate evolution of a granular system with a deformation 
band. We were able to capture the sequential evolution of the 
system as a response to stress: large displacement, large defor-
mation and accumulation of high stress. We also found the 
fact that a deformation band with a softer material can accom-
modate larger deformations, and therefore, dominate contact 
evolution, structural changes and redistribution of stress of a 
granular system toward a system with minimized porosity.

In conclusion, using realistic geometric representation 
from rock images, by applying reasonable physical laws and 
coupling priorities, and by successfully tackling the chal-
lenges associated with calculation of dynamic contacts in 
deformable discontinuous materials, the multi-scale mod-
eling capabilities presented here have shown to be promising 
for analyses of a number of geosciences activities, including 
basic understanding of geosystems evolution, as well as effec-
tive and safe design and control of injection and production 
in the reservoirs. As 3D modeling of coupled processes in 
fractured systems is still relatively rare at discrete fracture 
or micro-grain scale, these modeling capabilities will be 
extended to 3D in the future by addressing the challenges of 
computational geometry involving geometric representation 
of discrete fractures and dynamic contacts of fracture planes 
and micro-grains.
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