
Lawrence Berkeley National Laboratory
Recent Work

Title
DESIGN TOOLS FOR DATA HANDLING SYSTEMS

Permalink
https://escholarship.org/uc/item/7j4640kh

Author
Ringland, Gill.

Publication Date
1975-01-31

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7j4640kh
https://escholarship.org
http://www.cdlib.org/

• '•

Presented at the Association for
Computing Machinery Conference,
Washington, DC, February 18-20, 1975

n liD -r A 107L)
l>,fl • ..o~~ ~. , L\. ,_J 0 '-
j:ll ll \

DESIGN TOOLS FOR DATA HANDLING SYSTEMS

Gill Ringland

January 31, 1975

Prepared for the U. S. Atomic Energy Commission
under Contract W -7405-ENG·-48

\

For Reference

Not to be taken from this room

'\.

t"'
tJj

t"'
I
lN
0' ..., ~ . ~ -

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

0-. o· d 0 a

Design Tools for Data Handling Systems

Gill Ringland

CAP Ltd,
14 - 15 Gt. James St.

London WCl, England

Lawrence Berkeley Laboratory
University of California

Berkeley, California 94720

ABSTRACT

Complex data bases are now routinely accessed online. Proper

design of access procedures is vital to insuring the security of the data

and that it can be recovered if necessary. The design tools discussed in

the paper enable operator procedures to be charted in a way that identifies

the inte~relation between system recovery points and message sequences.

The paper also describes the lower level charts (flowcharts to describe in-

teractive processing) used as specification for programs to be executed

between recovery points.

Examples are given, from an order entry application; This is_ repre­

sentative of applications which are primarily data entry and without the

multi tube of branching options encmmtered in some retrieval systems.

0 0 0

-1-

1. INTRODUCTION

This paper defines a charting methodology which has been used success-

fully in the design of online systems. The difficulties in the design of

these systems are twofold: ensuring adequate performance, and data security.

It has been our experience that using graphic design tools improves the

system definition stage by showing the structure clearly. This helps de-

signers to isolate bottlenecks before they give performance problems. Even

more important it enables designeers to identify processing points at h'hi..:h

data is saved, for instance in a database. When these points have beeri

identified, the data security and system recovery strategy can be planned.

The charting methodology also has been found invaluable in describing

a proposed system to users. They, since they have existing practices and

procedures, the users may well provide input on which parts of the process-

ing may involve operator training, or which are less convenient than need

be. These comments, when they can be accommodated without altering the

security of the system, will really help in system commissioning and

acceptance.

The charting methods are thus seen, not as an end in themselves, not

as providing pretty documentation, but as design tools. It is the author's

opinion that computer systems designers have beentoo reluctant to use

graphic design tools. This paper shows one charting methodology which has

been proven in use - the aim is to provoke others to define extensions or

to refine the scheme or perhaps to implement for use as an interactive

design tool on graphic displays.

The author is not familiar with any charting schemes in general use

which have the same aims as the one described. James Martin, for instance

(2) discusses realtime system design and the man-machine interface but does not

-2-

develop a charting scheme to unify the two system aspects. Similarly,

while there are many strategies for designing programs to improve this

reliability, see for example, (2), the structure charts are related to the

static structure (e.g. formal calling parameters, subroutine levels) rather

than the execution sequence of the code.

This feature of the charting scheme described below, that of reflecting

the execution structure, is particularly important for realtime systems,

in which it is usually "socially desirable" to keep the smallest amount

of code possible in main store to process a message. By connecting the

unit of code stored at any one time to the data required for recovery, the

extent of damage from errors may be automatically assessed. This is of

particular importance for systems in which data is captured online.

A charting scheme for describing the structure of stored data is

described in a companion paper (3).

The rest of this paper is divided into two sections. ·The first de­

scribes the formalism and symbols. The second uses these in the context

of a semi-realistic example, online order entry.

2. FORMALISM

The charting methodology is used at three levels in the system: to

describe operator procedures, the system structure, and the individual

processing modules.

The operator procedure charts show the sequence of messages which

the operator expects, and the valid actions (such as data entry, cancel,

restart) which can be taken in response to each screen. The program

structure charts relate the processing and data security aspects of the

y

t
y .n

+ .n

~.n

0
y

~ 6 0
3-4

Operator actions

Start code, help sequence etc.
with operator response

Data entry by operator

Operator decision to alter
processing
.n is function key

Normal function key entry

Operator terminates with
optional function key

Program control

Message· from system

Diagnostic from system
(loops to earlier message repeated)

Set switch n (numeric)

Clear switch n

Test switch n and branch if set

XBL7411-8310

Figure 1. Operator procedure chart symbols.

0 0 <J ""' tt~
··;

0 J 6 \)

-5-

system during execution to the message written out and entered. At the

most detailed level, conventional flowcharts show the processing conse-

quent 'On a given message at data entry point. The organizational unit at

this level is referred to as.a message processor.

Operator Procedure Charts

These charts use the symbols given in Figure 1. The operator actions

are always taken in response to screen formats displayed, giving a range

of options (a menu format) or some data fields to be filled·(a questionnaire)

or the possibility of entering a function code (.n) to alter the sequence

of processing.

Start and help screens, used at the start of processing or after a

break, can be initiated either by the system or by the operator after

losing her place in the processing.

The data entry symbol on the operator protocol chart is accompanied

by a description on what data items are to be entered. The validation of

the data items may fail, in which case a diagnostic may appear. The

operator then tries again to insert the data items.

Function keys are implemented by hardware on many keyboards. The

screenful of data is transmitted and control is passedto a different

screen from that normally found in sequence. So, for instance, "end of

batch" would often be signalled by a function key depression. (For con-

venience, in the example we will show the function codes into which the

keys are mapped, rather than the function keys e.g. EB instead of .3).

The switches, which are set and tested by program, are introduced

to explain why different screen sequences may be seen by the operators,

\ _ ___,/

'(_. _)

-6-

Screen display
xxxx is map name

Dotted line between screen and
input symbol implies data
validation and correction loop

Access to backing store

Write information to a status
area in store which is used
for recovery

Diagnostic messages, requiring
operator to re-enter information
or to cancel the entry

Entry or exit point

XBL. 7411-8312

Figure 2. Block chart symbols.

0 0
;

d 0 6

-7-

depending on circumstances.

Block Charts

·. These charts use the symbols defined in Figure 2. They are used to

produce an overview of the system actions, in particular the interrelation

between operator actions and the sotrage of data on backing store.

The operator input inay be validated and corrected by a loop which

requires her to retry data entry. This may be shown explicitly by a

dotted line between the screen and input symbols, to represent operator

think time.

It is important at this level of design to define at what stages of

processing recovery procedures may use saved information and when data

must be reentered. This is the purpose of the "access to backing store

symbol" on the block chart. Further, the status area is defined as the

area which is saved when the mapping system is entered, to output a

message or request more data.

The use of diagnostic messages indicates that the item has notb~en ·

accepted, and data entry must be repeated. The symbol therefore may

appear in conjunction with the display + input symbol, giv:lng further

details of validation procedure.

The entry or exit point appears as for normal flowcharting, to in-

dicate that control is passed either ot the monitor or operating system,

or to another message processor, or to an entry point of this message pro-

cessor.

MART

-8-

Start code

Screen requesting general
order information

* end of batch

*order and customer numbers

* incorrect input (not on file)

Vi sua I check screen with
customer detai I

*reject

*accept

Set order in process switch

Screen requesting article line input

* end of order

*input article details

*incorrect input (max order lines)

*incorrect input (not on file)

Visual check screen giving article
details and possible credit or
stock alert

XBL 7411-8307

Figure 3. L Operator procedure for order entry.

--

0 0 z) 'OJ •\: ;s 0 3 6 ~-'II

v

-9-

Flowcharts

The conventional flowcharting symbols are used, to indicate the pro-

cessing between data entry, and exit back to the monitor a operating sys-

tern, within a message processor.

3. EXAMPLE - ONLINE ORDER ENTRY

To follow the example, the reader will probably find the following

list of assumptions helpful, even though they are not central to the

point of this paper:

*

*

*

*

*

all orders once keyed in and accepted are stored as
entered on the order file.

those articles which cannot be immediately supplied
are written to the pending order file in the form
of a back order.

an initial warehouse note is made for all those
articles of an order which can be supplied.

sequential files for later batch processing
are made for those articles of an order which
cannot be supplied at all and those for which
insufficient stock is on hand.

the article file is updated when the warehouse
note is issued.

* warehouse notes for back orders are issued in
batch, i.e. outside this system.

Naming Conventions

For convenience, some naming conventions have been used on the charts

to indicate the activity represented. The format is: type code, three

character identifiers, where type code refers to the type of activity, and

the three characters identifier represents a section of the processing.

-10-

* reject article- it is lost

* instructions to ignore article- reported out

AC *accept

End of order

MORD Visual check screen with order summary

*reject

AC *accept

Order is processed- clear switch
. I

Return to ask for next order

ZREC Error recovery or help

Order in process

XBL 7411-8313

Figure 3.2. Operator procedure for order entry (continued).

. ·

0 0 0 6 4

-11-

Some examples might be helpful:

*ZXXX are exit points to a system process from
a message processor, or vice versa .

e.g. ZREC for the recovery proc~dure,

ZEND to ~nd the application.

*SXXX are entries to the application by providing a start code.

e.g. SORD for start of order entry.

*LXXX are entries to or exits from a message processor, when
initialisation is not needed and transfer is via a linkage
list.

e;g. LORD for processing of order entry.

LART entry to message processing for each article line.

*MXXX are map definitions used by the message processors and
the mapping system, used to format input and output data

*PXXX is the name of a message processor.

e.g. PORD is the name of the order entry message processor.

Operator Procedures

An example of an order entry procedure is shown in Figure 3. It shows

that following a start code, to specify that the application required is

order entry, a message referred to as MICN is displayed or typed. This re-

quests information on the next order to be processed. The operator may

enter order and customer details, which may be incorrect and need the oper-

ator to key a replacement. Alternatively, the operator may, on first being

presented with the screen for order and customer details, decide that there

are no more orders to be processed. Any new application could thereafter

be started by keying a new start code.

The second point clearly shown by the operator procedure chart is that

some screen sequences follow as a normal part of processing, forming a loop.

Diagnostic
"CUSTOMER NOT
ON FILE"

MICN

MCHK

-12-

PORG

SORG,LORG

Save
Customer#,
Order#

Set order
in process
Switch

EB =end

of batch

READ KEY

WRITENXT

RJ =reject

XBL 7411-8315

Figure 4. Order header block chart.

... -

0 0 0

Figure 5.

PART

6 .5

13-14

E 0 "" end of order

RJ"' reject

MORD

READKEY with
UPDATE

WRITEUPD

READKEY with UPDATE

WRITEUPD

WRITENXT

Order article block chart.

XBL7411-8314

0 0 0 6 6

-15-

Within the loop, error paths under program control or operator decisions

may cause the sequence of messages to change. For instance, in the article

line input section, the normal path is from the article line questionnaire,

through computer validation and visual check screen, to acceptance of the

order.

The loops are used to define coherent sections of processing which

will be grouped together into a message processor.

System Design and Block Charts

When the operator procedure for an application has been established,

the inter-relation with the file architecture must be established, and the.

recovery points identified. This is done by means of block charts.

The block chart of order entry (Figures 4 and 5) shows the information

which the systems analyst provides for the programmer. He defines the

application-oriented diagnostics (such as 'article not on file' and the

stage at which this validation should be performed. He defines the data

in the status areas, which is saved each time a·newmessage is output, and

used for recovery. He defines the points in the processing at which files

are read and writ~en.

It can be seen that the loops identified on the operator procedure

chart are reflected in the block chart.

Message Processor Structure

The programmer uses the block charts to organize his work into mes-

sage processors. The order entry application divides into three message

processors, PORD, PART and PERR in a logical manner. It is anticipated

I ~ILIAL

Set up
MIAL
screen

MIAL)

MIAL

Analyse
MIAL
input

Set up
MART
screen

MART

(PART

LORD

_.... ...

Set up
MORD
screen

(MoriD)

MART

Analyse
MART
mput

Figure 6. Message processor structure chart.

MORD

Analyse
MORD
mput

(LORGJ

XBL7411-8311

.
'

I 1
,...,..
0"
I

-·

0 0 0 7

-17-

that in this type of processing, the structure of a message processor

would be as typified in Figure 6.

In this message processor, there are several legs. Each leg is sim-

ilar to a normal section of executable code in that there is a defined

point at which user data may be available as input from a keyboard, some

processing (including possibly file 1/0), an output message is set up

and the program exits. The let may be entered as a result of a message

(e.g. ~~RT), or as a result of a call from another message processor

(e.g. LORD), or as a result of a start code (which is not relevant for

this message processor).

Each leg may be conveniently represented by standard flowcharting

techniques.

4. CONCLUSION

The author does not claim this to be a perfect scheme -- however, she

hopes that it will help analysts in the field to develop a framework that

can be used for their applications and to reduce their problems.

The scheme was developed out of a predecessor defined by J. Johnson

of CAP. It was jointly formulated by a team consisting of Esmond Hart,

Pat Bailey, Bob Wustman, Andrew Patterson and the author.

REFERENCES

1. James Martin "Design of Realtime Computer Systems",
Prentice - Hall, 1969

2. J. L. Ogdin "Improving Software Reliability"
Datamation, January 1973

3. E. A. Hart and G. Ringland LBL Report 3659 (1975)

(. .. ,

0 u

r-----------------LEGALNOTICE------------------~

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Atomic Energy Commission, nor any of their employees, nor
any of their contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents
that its use would not infringe privately owned rights.

·r .,· f' ""t.

TECHNICAL INFORMATION DIVISION

LAWRENCE BERKELEY LABORATORY

UNIVERSITY OF CALIFORNIA

BERKELEY, CALIFORNIA 94720

. ''

