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ABSTRACT OF THE DISSERTATION 

 

Improving the Energy Efficiency of Modern Computing 

Platforms using High-Resolution Real-Time Energy Measurements 

 

by 

 

Digvijay Singh 

Doctor of Philosophy in Electrical Engineering 

University of California, Los Angeles, 2014 

Professor William J. Kaiser, Chair 

 

 

High-performance computing platforms have become critical in meeting the 

demands of modern computing applications. Rising performance requirements in 

a broad range of platforms from mobile devices to server systems combined with 

the proliferation of these high-performance computing platforms has increased the 

energy costs incurred and lead to an exigent need for improvement in platform 
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energy efficiency. This requires infrastructure for monitoring of energy 

consumption and methods to reduce the platform energy costs. In this dissertation, 

we present a new measurement infrastructure to provide real-time event-

synchronized platform energy measurements, demonstration of these energy 

measurement capabilities through application to network data transport and an 

operating system task scheduler that utilizes these energy measurements to greatly 

improve energy efficiency for multi-core computing platforms. 

 

The energy measurement infrastructure is integrated at the platform level and 

provides event-synchronized energy measurements for the complete platform 

along with important components such as the CPU, memory modules, secondary 

storage, peripherals and others. Furthermore, since modern secondary storage 

devices have buffering mechanisms that defer data write operations, the energy 

consumption of these operations is modeled and the model is integrated into the 

platform to characterize the impact of deferred operations. 

 

The energy measurement capabilities are demonstrated through application to 

network data transport where a data file is transported over a network link. The 
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data compression scheme is dynamically selected using real-time energy 

measurements during transport of the data file to enable adaptation to the dynamic 

system and network conditions. The energy cost of transporting the data file is 

significantly reduced through the use of this energy aware compression algorithm. 

 

A novel task scheduler is presented and is designed to improve energy efficiency 

of multiprocessing platforms. It utilizes real-time energy measurements along 

with CPU performance monitoring units to identify inefficient tasks that suffer 

from co-run degradation due to resource contention. These inefficient tasks have 

their scheduling priority modified to avoid contention. Evaluation of the scheduler 

demonstrates large energy and execution time benefits on a quad-core platform. 
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CHAPTER 1 
 

 

INTRODUCTION 

 

The energy consumption of computing and communication equipment is 

increasing at a staggering rate and the resulting costs have become critical to both 

end-users and corporations alike [Sca06]. For end-users, the introduction and 

proliferation of a number of personal computing devices, like smartphones, in the 

last decade has further accelerated the rising energy consumption due to 

computing equipment. A standard smartphone is now expected to consume the 

same amount of energy as a refrigerator and can contribute to a significant portion 

of household's electricity consumption [Phil13]. 

 

Large companies and corporations also face urgent problems with the constantly 

increasing energy costs of data center servers as illustrated in Figure 1.1 [Sca06]. 

Figure 1.2 shows that the annual worldwide energy cost of only cloud computing 

has exceeded that of countries like Germany and India in 2013 [Phil13]. 
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Figure 1.1. Rapidly increasing energy costs of data center server platforms. 

 

 

Figure 1.2. Cloud computing energy usage compared to that of various countries. 
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As illustrated in Figure 1.3, the energy costs associated with computing 

equipment encompass multiple modes of energy usage and a typical data center 

server dissipates energy due to the following [Ras09]:  

1) Heating, ventilation and air conditioning (HVAC). 

2) Computing, network and storage energy consumption. 

3) Lighting and auxiliary equipment. 

4) Power supply losses. 

 

 

Figure 1.3. The modes of energy consumption due to a typical data center 

computing platform. 
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For embedded or mobile platforms, like smartphones, the HVAC or cooling 

system itself is usually not as important. Instead, batteries and other energy 

storage techniques become vital for these platforms [PFW11]. 

 

This dissertation primarily focuses on the computing, networking and storage 

energy consumption for modern computing platforms. The design and 

implementation of a new platform architecture called DEEP (Decision-support for 

Energy Efficient Processing) to measure and enable optimization of platform 

energy consumption is detailed. Furthermore, the capabilities of the DEEP 

platforms are utilized in the important applications of network data transport and 

operating system task scheduling to improve energy efficiency. 

 

1.1. DEEP Platforms 

To provide effective decision support for improved energy efficiency in modern 

computing and networking, the DEEP platforms are presented. DEEP provides 

decision support through high-resolution time-synchronized direct energy 

measurement capabilities for standard computing platforms. Energy 

measurements for important system components, such as CPU, memory, hard 
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disk drive and others, are also provided by DEEP. DEEP is an open design that 

can be rapidly deployed using standard hardware and widely-supported software 

components. 

 

DEEP includes an innovative utility called energy calipers that utilizes time-

synchronized energy measurement and kprobes [MPK06] to estimate the energy 

consumption associated with execution of sections of software application code. 

Energy calipers have a low-overhead, scalable and non-intrusive design. They do 

not require any invasive modifications to the algorithm or software source code. 

 

An implementation of the DEEP architecture that uses commodity hardware and 

software is also presented. Evaluation reveals low processing and energy 

overheads (less than 5% in most cases) on the computing platform. To enable 

utilization of the DEEP platforms by other research and student groups, a testbed 

consisting of multiple DEEP implementations has been created. The testbed has 

been used in graduate research, collaborations with other research groups and 

student education through both graduate and undergraduate courses,. The DEEP 

platforms and the DEEP testbed are detailed in Chapter 2. 
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1.2. Hard Disk Drive Energy Estimation 

Modern hard disk drives and operating systems frequently employ buffering 

mechanisms to defer data write operations to the secondary storage device to 

enable re-scheduling and optimization of these operations. This leads to an 

important issue because the energy consumption of these devices is not 

synchronized with the actual operating system data write requests generated by 

software applications or processes. Thus, the energy consumption for these 

deferred operations must be modeled and appropriately attributed to the causative 

processes to improve the accuracy of application energy consumption 

measurement. This is especially important for applications that perform a large 

number of data write operations to secondary storage. Such an energy estimation 

system for a modern hard disk drive is presented in Chapter 3. The system 

implemented using the DEEP platforms and enables process-level accounting of 

disk drive energy consumption. 

 

1.3. Energy Efficient Adaptive Data Compression 

The capabilities of the DEEP platforms are demonstrated through their application 

to the problem of network data transport. A data file is transported over a network 
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link and the energy efficiency of the file transfer requires improvement. Data 

compression is applied as a solution to this problem to reduce the payload being 

transferred and thus reduce energy costs. Energy measurement using DEEP 

reveals the impact of changing network and system conditions on the energy 

efficiency of some widely-utilized compression schemes. 

 

An adaptive data compression algorithm is developed. This algorithm uses the 

high-resolution time-synchronized energy measurements from DEEP to 

dynamically select the most energy efficient compression schemes. The 

compression scheme selection is adapted to changing network and system 

conditions during the transfer of the data file. Evaluation of the adaptive 

compression algorithm reveals large energy savings (about 38%) for network data 

transport. The adaptive data compression algorithm and its implementation are 

detailed in Chapter 4. 

 

1.4. Energy Aware Task Scheduling 

Operating system task scheduling is a critical area of research that has a well-

known and significant effect on the energy efficiency and performance of the 
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computing platform. In addition, other important attributes such as response time, 

task deadlines, fairness in allocation of resources and interactivity are also 

impacted by the task scheduler. 

 

An energy aware task scheduler is presented in Chapter 5. DEEP's energy 

measurements and data from the CPU performance measurement unit are used to 

identify tasks that create inefficiencies due to resource contention with other 

tasks. Such tasks are prevented from being scheduled together and tasks that are 

more efficiently co-scheduled together are selected for execution. This drastically 

reduces co-run degradation among tasks and significantly improves energy 

efficiency. 

 

The energy aware task scheduler is implemented on a standard Linux kernel and 

is compared to the Linux task scheduler using a set of common benchmark 

applications. Comparison on a quad-core multiprocessing system demonstrates 

improvements in both performance by about 24% and energy efficiency by about 

30%. 
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1.5. Summary of Contributions 

The novel contributions of this dissertation are summarized as  follows:- 

1) Design of the DEEP platforms, which provide infrastructure for time-

synchronized component-level energy measurement in commodity computing 

platforms. 

2) A set of utilities called energy calipers to enable measurement of energy 

consumption during execution of sections of software or application code 

without modifications to the source. 

3) Implementation of multiple platforms based on the DEEP design to form a 

networked testbed that has been utilized for both research and student 

education. 

4) Design and implementation of a hard disk drive energy estimation system that 

complements DEEP to enable accurate process-level estimation of energy 

usage due to deferred secondary storage operations. 

5) An adaptive data compression algorithm that uses energy measurements 

provided by DEEP to dynamically select compression schemes to adapt to 

changing network conditions, such as available data transfer bandwidth, and 
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leads to significant improvement in the energy efficiency of network data 

transport. 

6) An energy aware task scheduler that leverages time-synchronized energy 

measurements along with the data from the CPU performance measurement 

unit to advance the energy efficiency of multi-core computing platforms. 
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CHAPTER 2 
 

 

DEEP PLATFORMS 

 

This chapters details the DEEP (Decision Support for Energy Efficient 

Processing) platforms. These platforms enable improvements in energy efficiency 

for computing platforms by providing system and subsystem energy 

measurements. This chapter begins with Section 2.1, which overviews previous 

work related to energy measurement for computing platforms. Section 2.2 

summarizes the objectives that have guided the design of the DEEP platforms. 

Section 2.3 presents the hardware architecture of the DEEP platforms. Section 2.4 

details the DEEP platform software architecture. Section 2.5 describes an 

implementation of the DEEP architecture, called DEEP Atom, that is based on an 

Intel Atom platform and overviews the DEEP testbed along with its applications 

in education and research. Section 2.6. presents results of characterization and 

evaluation of DEEP. Section 2.7 concludes this chapter. A portion of the material 

presented in this chapter has been published previously [SK12]. 
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2.1. Background and Related Work 

Since platform energy monitoring is required to enable effective optimization of 

energy consumption, a significant amount of the previous research exists on 

estimating the energy consumption of computing platforms. Each of these works 

can be categorized by their use of energy models, direct measurement or a 

combination of both of these methods in the design of their energy monitoring 

framework. 

 

2.1.1. Energy Models 

Model-based energy measurement refers to methods that estimate the energy 

consumption of computing systems through construction of energy models. 

Linear state-based models are widely utilized [RSR07] and assume the existence 

of a relatively small number of power consumption states for a computing 

platform. Such models have degraded accuracy compared to direct energy 

measurements, but are utilized in prior research for applications like thermal 

management [MB05] that don’t require extreme accuracy of estimation. 

Performance counter based energy models are an example where the accuracy of 

estimation is improved through the use of models based on hardware registers 
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called performance counters [IM03], [RSM09] that are part of a modern CPU's 

performance monitoring unit. Intricate non-linear models and machine learning 

techniques, like Mantis [ERK06] that learns the energy-consumption states of 

computing systems by utilizing different workloads, have also been utilized in 

prior research. They are computationally expensive and require extensive training 

[KOI10], but still demonstrate limited accuracy improvements over simpler 

models [MAC11]. 

 

Battery-based energy measurement systems have also been successfully deployed 

in prior research. They are based on queries to the ACPI interface of a device’s 

"smart battery," which can periodically report rudimentary statistics such as the 

current capacity and drain rate. These measurement systems are feasible sources 

of information for many mobile devices such as smartphones [RSI08]. 

Applications, such as PowerTOP [Gra08], have utilized the ACPI battery 

interface and other system statistics to estimate the energy consumption of 

devices. However, due to inherent limitations in the ACPI battery interface, these 

techniques suffer from degraded accuracy and extremely limited data sampling 

rate. 
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Prior systems, like Sesame [DZ11] and WattProbe [Pra03], utilize hybrid methods 

where energy measurements (such as from battery monitors) are combined with 

energy models to improve measurement accuracy. ECOSystem [ZEL02] 

augments the Linux operating system to consider energy as a first-order resource. 

PowerScope [FS99] is a hybrid system that utilizes statistical profile-based 

models for software in combination with limited sampling rate instrumentation. 

 

Simulation based energy estimation frameworks, like SimplePower [YVK00], 

Wattch [BTM00] and DRAMsim [RCJ05], are also widely utilized in prior 

research because they enable rapid and effortless deployment. Their critical 

drawback is the inability to completely capture the run-time dynamism and 

variability present in the power consumption of modern computing systems 

[MAC11], [WAB10]. 

 

2.1.2. Direct Measurement 

Direct energy measurement platforms, which have provisions for the direct 

measurement of energy consumed by a computing platforms and its subsystems, 

offers an important advantage over model-based energy estimation methods 
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because these platforms provide superior measurement accuracy. They also 

capture the run-time dynamism and variability present in the energy consumption 

characteristics of modern computing systems. They are also required in 

constructing and evaluating energy models since they provide the "ground-truth" 

about platform energy consumption. However, the need for custom-built 

hardware and the assembly expertise has inhibited their availability [MAC11]. 

 

A limited number of direct measurement studies are presented in prior work and 

they explore the energy consumption characteristics of computing systems from 

servers [RSM09] to smartphones [BBV09], [CH10]. The LEAP (Low-Power 

Energy Aware Processing) platforms are a set of direct energy measurement 

systems that have assisted energy-efficiency focused computing research 

[MHY06], [SMK08]. The LEAP systems are designed to be extremely integrated 

custom-designed platforms targeted specifically at wireless sensor network 

research. This diminishes their portability and prevents their use in decision 

support for general-purpose computing platforms and applications. Finally, 

promising new technologies integrating power measurement capabilities with the 

computing system architecture have emerged in recent years [NRA11]. 
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2.2. Design Objectives 

This section describes the important objectives that guide the design of the DEEP 

platform architecture. Foremost, the DEEP architecture includes provisions for 

component-resolved measurement of energy consumption. Thus, the platform 

measures the energy consumption for important hardware subsystems, including 

memory modules, secondary storage devices, and the CPU. The energy 

consumption data for individual subsystems of a computing system assists with 

component-resolved energy inspection, fine-grained power management through 

better guidance in control of each subsystem and opportunities for improved 

energy efficiency through utilization of component-resolved decision support 

[MAC11].  

 

Measuring energy consumption associated with the execution of software events 

on the computing system enables the inspection and improvement of energy 

efficiency of software applications. The DEEP architecture provides event-

resolved measurement that is readily applicable to the inspection of the energy 

consumption during execution of software application code or specific events in 

the operating system. 
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Platform architectures designed on custom-built hardware, such as the LEAP 

platforms [MHY06], are not widely-supported and are unable to explore the 

energy efficiency of a large space of applications that are developed for 

commodity hardware. Hence, the ability to inspect the energy consumption of a 

range of commodity computing platforms is important. Furthermore, modern IT 

equipment serves in applications beyond simple computing and networking. For 

example, smartphones are utilized in medical sensing applications through 

extension of the core computing device by addition of sensing hardware. 

Platforms designed with custom-built hardware and proprietary software result in 

diminished extensibility due to the need for a prohibitive amount of effort in 

making even simple extensions. To ensure accomplishment of this objective, 

DEEP is not designed using custom-built computing hardware, but instead is 

designed and implemented using standard commodity computing platforms. 

 

Large-scale adoption of direct energy measurement platforms has not been 

possible because most prior platforms either don’t have an open-source design, 

are tedious to assemble, or employ custom-built components [MAC11]. In 

contrast, DEEP presents an open-source design based on commodity hardware, 
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readily-available measurement instrumentation, widely-supported open-source 

software, and straight-forward assembly to create a platform that can be rapidly 

deployed by members of the research community. 

 

2.3. Hardware Architecture 

 

Figure 2.1. The hardware architecture of the DEEP platforms. 

 

The hardware architecture for the DEEP platforms is illustrated in Figure 2.1. The 

computing platform executes all software applications and networking 

subroutines, and contains important computing subsystems such as the processor, 

memory modules and secondary storage units. Rather than targeting a specific 
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platform or system architecture, an abstraction of a standard computing system is 

used in the DEEP platform architecture to support an open design, and to preserve 

portability of the platform design. The DEEP platform architecture is based on 

standard widely-supported computing hardware rather than custom computing or 

networking boards with non-standard interfaces. Thus, the platform architecture 

supports rapid extension of the core design, through addition of peripheral 

hardware, like sensors, actuators and wireless radios, to meet requirements for a 

wide range of applications. 

 

2.3.1. Energy Measurement and Data Acquisition Hardware 

Low-tolerance current sensing resistors are inserted in each of the input power 

supply lines of the subsystems of the platform. This current measurement 

instrumentation is used for component-resolved energy measurement. The 

instantaneous electric current flowing into a subsystem or component is computed 

using the voltage difference across the terminals of the respective sense resistor 

along with its resistance value. Instantaneous power consumption is computed 

using the obtained instantaneous electric current and supply voltage value for 

each subsystem.  
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The data acquisition unit (DAQ) acquires power measurements by periodically 

sampling the required voltage values from the terminals of the resistor-based 

energy measurement instrumentation added to the platform hardware. This unit 

then transfers the acquired data to the computing system for calculation of energy 

consumption. The DAQ is a separate unit and is not integrated with the rest of the 

computing hardware in the DEEP platforms. 

 

2.3.2. Timing Mechanism and Synchronization Signal 

To enable event-resolved energy measurement, the platform needs to synchronize 

the timing of software events with that of energy measurements acquired by the 

DAQ. To accomplish this, a high-resolution timing mechanism is required to 

time-stamp the occurrence of both software events and energy measurements. 

Most modern CPUs provide access to hardware timing registers that are utilized 

as the timing mechanism required for synchronization. The most commonly 

available high-resolution timing mechanism in commodity hardware is the time-

stamp counter (TSC) for modern Intel x86 and AMD K-series CPUs, and the 

clock-cycle counter for ARM platforms. 
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To complete the synchronization of energy measurements with software events, a 

synchronization signal is used in conjunction with the timing mechanism to assign 

time-stamp values to energy measurements. The synchronization signal is a 

hardware signal generated by the computing system and sampled by the DAQ 

along with the component-resolved power measurements. This enables the 

synchronization of the DAQ data samples with the time-stamps of software events 

occurring on the system. This is detailed further in the next section. 

 

2.4. Software Architecture 

The software architecture of the DEEP platforms provides, in addition to 

acquisition of the component-resolved energy measurements, an important 

advance by supporting event-resolved energy measurement. The DEEP platforms 

are based on the Linux operating system in support of an open design and the 

software architecture is implemented as a set of loadable Linux kernel modules to 

enable portability of the modules to other Linux-based computing platforms. The 

details of the software architecture are presented in the following subsections and 

are based on Linux kernel version 2.6.32. 
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2.4.1. Data Acquisition and Synchronization 

The DAQ hardware is controlled by software modules that execute on the 

computing platform. A number of parameters, such as data sampling frequency, 

are controlled by these modules. The data acquisition and control modules also 

facilitate the acquisition of data samples containing the energy measurements for 

each of the hardware subsystems. 

 

The synchronization software module, by using the synchronization signal and 

timing mechanism, performs the time-synchronization of energy measurements 

obtained from the DAQ unit. Synchronization is accomplished when the 

synchronization module changes the value asserted on the synchronization signal 

while simultaneously recording the time-stamp provided by the timing 

mechanism. The DAQ acquires the energy consumption measurements along with 

the value asserted by the synchronization signal. During processing of the 

obtained data samples when a change in the synchronization signal's value is 

detected, the corresponding recorded time-stamp value is assigned to the data 

sample at which the change is detected. This completes the synchronization of the 

obtained data samples with the corresponding TSC values. 
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2.4.2. Energy Calipers 

Energy calipers are innovative software utilities that present an advance in 

investigating the energy efficiency of software applications. They use the time-

synchronized energy measurements to estimate the energy consumption 

associated with execution of sections of program code. Energy calipers are based 

on Kprobes [MPK06] and dprobes [Bha03], which are standard run-time 

debugging mechanisms for kernel and user-space code in the Linux operating 

system. Thus, energy calipers can be inserted at any instruction in both kernel and 

user-space application code during run-time without any need for recompilation, 

modification or even availability of the application’s source code. 

 

A pair of start and end energy calipers consists of a pair of Kprobes or dprobes 

that are inserted at the beginning and concluding instructions of a section of 

kernel or user-space code that is to be monitored for energy measurement. Each of 

these Kprobes or dprobes records the process ID (PID) and time-stamp value, 

which is provided by the timing mechanism, corresponding to the instant they are 

executed on the computing system. This creates a record of the time-stamp values 

that identify the beginning and completion of execution of the target section of 
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code. Energy measurements that have time-stamps outside the recorded interval 

of execution are excluded. The remaining measurements are utilized to compute 

the energy consumed during execution of the target section of code. Energy 

calipers can be multi-instantiated and can overlap i.e. multiple pairs of calipers 

may be used to simultaneously measure the energy consumption during execution 

of different, and possibly overlapping, sections of code. 

 

 

Figure 2.2. Energy caliper usage example through insertion at target code section. 

 

Energy calipers can also be utilized in cases where the target section of code may 

be preempted before it has completed execution as illustrated in Figure 2.2. The 
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operating system scheduler’s context-switch function is instrumented, without any 

intrusive kernel modification, with an energy caliper called the preemption 

tracker. When an executing section of code is pre-empted or resumed by a call to 

the scheduler’s context-switch function, it results in the recording of time-stamp 

and PID values indicating a process’ preemption and resumption. Along with the 

target process’ PID reported by the start and end energy calipers, the time-stamps 

are utilized to compute the energy consumption that occurs during execution of 

the target code. 

 

2.5. Implementation 

The DEEP architecture can be implemented on many standard computing 

platforms and the ease of assembly enables researchers to rapidly deploy their 

own DEEP platforms without special assistance or expertise. This section presents 

an example implementation of the DEEP architecture using an Intel Atom 

computing platform along with assembly details. A detailed evaluation that 

characterizes the time synchronization and overhead of the platform 

implementation is also included in this section. An alternate offline version of the 

implementation is also detailed for applications that require reduced overhead 
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2.5.1. DEEP Atom 

The DEEP Atom implementation is based on the Intel Atom N330 CPU. The 

Atom CPU is designed for deployment in portable devices such as netbooks, 

mobile devices and tablet computer systems. This implementation of the DEEP 

platform architecture uses the standard Intel D945GCLF2 Atom board. The DEEP 

Atom was also previously referred to as Atom LEAP [SPR10], but was renamed 

in 2012 as DEEP Atom to avoid confusion with older LEAP projects [MHY06]. 

 

 

Figure 2.3. SATA hard drive with instrumented power supply cable containing a 

0.1Ω current sensing resistor. 
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Energy measurement instrumentation for the computing subsystems is constructed 

as a wiring harness that can be rapidly deployed using any off-the-shelf current 

sensing resistors of resistance values between 0.05Ω and 0.1Ω. The hard-drive is 

instrumented through insertion of a current sensing resistor into the exposed 

SATA power cable as shown in Figure 2.3. The memory module utilizes a riser-

card with a current sensing resistor and this riser-card is inserted between the 

Atom board’s memory slot and the memory module as illustrated in Figure 2.4. 

 

 

Figure 2.4. The Atom board with the memory module in the foreground. A riser 

card with a current sensing resistor attaches the memory module to the board. 
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Figure 2.5. Atom motherboard with attention to the regulator circuit’s inductor. 

 

 

Figure 2.6. Leads enabling use of the inductor’s resistance for current sensing. 
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Modern CPUs enable the CPU core to control its input supply voltage. The CPU 

accomplishes this through a voltage regulator circuit that provides the CPU with 

the requested supply voltage. Since there is no exposed power cable for the Atom 

N330 on the D945GCLF2 motherboard, the voltage regulator circuit on the board 

is utilized for energy measurements. A current sensing resistor can be placed in 

series with the supply from the regulator circuit to the CPU. This can be 

accomplished by making modifications to the terminals of the exposed inductor 

that is part of such voltage regulator circuits on commodity motherboards. This 

method requires some minor external modification to the motherboard’s circuitry 

and makes the instrumentation process slightly tedious. Thus, alternatively the 

inductor’s resistance is used directly as a current sensing element as shown in 

Figure 2.5 and Figure 2.6. 

 

Once the measurement instrumentation is assembled, the leads from the terminals 

of the current sensing elements for each instrumented subsystem are connected to 

the input channels of the Data Acquisition unit (DAQ). A National Instruments 

USB-6215 DAQ is utilized in this implementation and it interfaces to the 

computing system through one of the available USB ports. 
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The Atom N330 processor provides a 64-bit hardware register called the time-

stamp counter (TSC) that is a high-resolution clock with a resolution of a single 

processor cycle. The motherboard also provides a serial and parallel port. The 

TSC is utilized as the timing mechanism and the parallel or serial port is used to 

generate the synchronization signal needed by the DEEP architecture for 

synchronization of energy measurements with operating system events. The 

synchronization signal is connected to an input channel of the DAQ and this 

signal’s value is sampled along with the values from the energy measurement 

instrumentation. 

 

The DEEP Atom implementation is extensible through addition of peripheral 

hardware. Standard I/O ports, like USB, are used to add peripherals like wireless 

radios and sensors that enable the DEEP implementation to meet the requirements 

of different applications. An inexpensive interface cable, such as a USB cable, is 

instrumented with a current sensing resistor and used for peripherals powered by 

the I/O ports. For an externally powered peripheral the external power supply 

cable is directly instrumented with current sense resistors using a technique 

similar to the one used for the SATA hard drive previously shown in Figure 2.3. 
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The hardware for this implementation is rapidly deployed from the constituent 

components and provides decision-support for portable/netbook-class computing 

systems or networking equipment like high-end routers. The open design, use of 

commodity hardware and relatively straightforward assembly instructions 

[SPR10] encourage large-scale adoption of the DEEP platforms, and make the 

DEEP Atom implementation deployable by research groups and students. 

 

The DEEP architecture is also implemented as an offline version that is ideal for 

applications that require a reduced overhead. In contrast to the online version 

previously presented in this section, the target computing system contains only the 

measurement instrumentation, energy caliper data recording and synchronization 

signal generation while the data sampling and energy caliper computations are 

performed off-board by another system which controls the DAQ. This reduces 

both the processing and energy overhead, but requires an external device for data 

collection from the DAQ, synchronization and energy computation using the 

energy caliper reports. The delay in obtaining measurements is increased and this 

version of the implementation is not designed for online power management, but 

for post-experimental analysis of the energy measurements. 
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2.5.2. Implementation Details 

The DAQ is programmed with a number of different parameters. Among these 

parameters, the data sampling frequency is most important. High sampling 

frequencies allow accurate measurement of the power consumption for a 

subsystem, but generate an increased amount of data. Thus, the sampling 

frequency is selected such that it can capture the power supply signal for a 

subsystem without degradation in accuracy while ensuring that the amount of data 

generated is within manageable limits.  

 

 

Figure 2.7. Power spectral density of the power supply signal for the Atom board.  
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The power spectral density analysis of the power supply signals of the subsystems 

for the Atom N330 computing system reveal a very small power contribution 

(≤5%) from very high frequency (≥5kHz) components as shown in Figure 2.7. 

This leads to selection of the optimal sampling frequency as 10kHz so that the 

signal is sampled at the Nyquist rate for capturing most of the signal’s power 

(>95%). Thus, a 100µs sampling resolution or a 10kHz sampling frequency is 

sufficient for the DAQ of the DEEP Atom. 

 

To verify the accuracy of the time-stamps provided by the synchronization 

scheme for each data sample, an event workload is created by the operating 

system such that it has an immediate impact on the power consumption of a 

subsystem. The time-stamp value for this event is recorded by the operating 

system. This value is then matched to time-stamps predicted by the 

synchronization scheme. The index of the data sample with the closest match to 

the event’s time-stamp is selected as the predicted index. This value identifies the 

data sample at which the synchronization scheme predicts that the operating 

system event began. The measured index is derived as the sample index at which 

a change in the power consumption of the subsystem caused by the event is 
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observed. This value identifies the sample at which the operating system event 

began. Predicted and measured indices are compared to derive the index error. 

 

Data  # Time sequential array of acquired rows or samples of data 
TSC[] # Queue of recorded time-stamps for each ‘Sync’ toggle 
C[]  # Queue of time-stamp off-sets  
K[]  # Queue of synchronization scale factors  
k = 0 # Current scale factor 
t = 0 # Previous time-stamp off-set value  
T = 0 # Current time-stamp off-set value  
N = 0 # Sample index number of previous ‘Sync’ toggle  
S = 0 # ‘Sync’ signal toggles between positive & non-positive  
 
for each sample in Data   # SI is sample index here 

Sample = Data[SI]   # Get next data sample  
  if ( S*Sample['Sync'] <= 0 ) # Detect toggle in ‘Sync’ 
   T = TSC.pop()   # Time-stamp for the toggle  
   C.push( T )  
if ( t > 0 )    # Toggle detected before?  
  K.push( ( T-t )/( SI-N ) )  
  N = SI  
  t = T  
  S = Sample['Sync']  
 
S = 0; T = 0; N = 0;  
for each sample in Data   # SI is sample index here 
  Sample = Data[SI]   # Get next data sample  
  if ( S*Sample['Sync'] <= 0 ) # Detect toggle in ‘Sync’  
   if ( K.isEmpty() ) 
    break  
   T = C.pop()  
   k = K.pop()  
   N = SI  
 

S = Sample['Sync']  
  Sample['TSC'] = T + k*( SI-N )# Predicted time-stamp  
  Data[SI] = Sample   # Write back time-stamp 

Figure 2.8. Pseudocode for implementing time-synchronization of energy data. 
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The implementation of the synchronization algorithm is illustrated using 

pseudocode in Figure 2.8. The synchronization between the data samples and the 

time keeping mechanism can drift over time, and this can result in degraded 

accuracy. To limit this drift, the synchronization module needs to periodically 

change the value of the synchronization signal to cause re-synchronization. The 

value of the time period after which this process is repeated is called the re-

synchronization interval and is determined by the observed drift in the 

synchronization. As illustrated in Table 2.1, the synchronization is accurate to 

within one sample’s resolution (100µs) and does not drift noticeably for up to a 

few seconds. Thus, an effective value for the re-synchronization interval is one 

second and this value is used in the DEEP Atom implementation presented in this 

chapter. 

 

Table 2.1. Characterization of DEEP Atom synchronization accuracy and drift. 

Event Time 
(s) 

Event Time 
Stamp 

Measured 
Index 

Predicted 
Index 

Index 
Error 

2.2 27181544764 21769 21769 0 
7.4 35473163152 73721 73721 0 
16.6 50137785508 165604 165603 1 
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2.5.3. DEEP Testbed 

To enable rapid access to the DEEP platforms, a networked testbed consisting of 

multiple DEEP Atom implementations and a DEEP x86-64 server-class 

implementation has been created. This testbed is accessible to students and 

research groups that are interested in using the DEEP platforms, but lack the 

resources to assemble their own platforms.  

 

Multiple courses in computer science and electrical engineering (EE180D, CS188 

and EE202C) have employed the testbed for education and research. Some of the 

results pertaining to the trade-offs between energy usage and security from course 

projects have been published previously [PSK11], [FPR12]. The DEEP testbed 

has even been used by our collaborator Dr. Peter Peterson during research for his 

doctoral dissertation concerning the use of adaptive data compression [Pet13]. 

 

2.6. Results 

This section presents results of evaluation and characterization of the DEEP 

platform implementation. In particular, the DEEP Atom implementation is 

analyzed. 
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2.6.1. Evaluation of Overhead 

To evaluate the overhead of the DEEP implementations, two metrics are used: 1) 

execution time and 2) energy consumption. The execution times for a set of 

common benchmark applications are measured both with and without the DEEP 

current sensing instrumentation, synchronization and energy caliper system. The 

execution times for both cases are compared to determine the overhead introduced 

by the DEEP platform architecture. 

 

For energy overhead measurement the energy consumption by the offline 

implementation without synchronization and energy calipers is compared to the 

energy for complete online and offline implementations. The overhead for using 

multiple pairs of energy calipers to simultaneously monitor multiple sections of 

application code is evaluated to characterize the scalability of the system. 

 

We analyze both the online and offline versions of the DEEP Atom 

implementation and the results are illustrated in Figure 2.9. The DEEP Atom 

demonstrates low overhead and excellent scalability when simultaneously 

monitoring multiple code sections with energy calipers. 
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Figure 2.9. Scalability and overhead for the offline and online DEEP Atom. 

Numbers in parentheses are the number of monitored code sections. 

 

2.6.2. Power Measurement Characterization 

To characterize DEEP Atom's power measurement instrumentation's accuracy and 

precision, an oscilloscope with a current probe and two voltage probes is used. 

One voltage and current probe is attached to a terminal of the current sensing 

resistor for the memory module. Thus, both input current and voltage for the  

memory module are measured by the oscilloscope. The DEEP platform also 

measures the voltage and current using its own measurement instrumentation. 

This enables both instruments to calculate the power consumption of the memory 
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module. DEEP's measurements and the oscilloscope's measurements are 

synchronized using the synchronization signal generated by DEEP. The DAQ and 

the second voltage probe of the oscilloscope both measure the value of this signal 

to enable synchronization of measurements between the two instruments. 

 

The power consumption data for the oscilloscope is used as the baseline or ground 

truth and the data obtained using DEEP's measurement instrumentation is 

characterized using this baseline. A million data samples for power consumption 

for the DAQ are collected and compared to values obtained using the 

oscilloscope. The results of this comparison are presented in Table 2.2. 

 

Table 2.2. Characterization of DEEP Atom power measurement instrumentation. 

Metric Value 
Average Error 0.18 % 

Worst-Case Error 0.21 % 
Uncertainty Interval 0.01 W 

 

2.7. Conclusions 

The DEEP platforms presented in this chapter provide component-resolved direct 

energy measurements that can be utilized for decision support in important areas 



40 
 

of computing and networking energy efficiency. The rapidly deployed 

implementation of the platforms using commodity hardware and standard open-

source software enables their large-scale adoption by members of the community 

for their research. DEEP can also measure the energy consumption associated 

with the execution of software code through utilization of an innovative software 

utility called energy calipers. This makes the platform ideal for investigating and 

improving the energy efficiency of software applications.  

 

An implementation of the DEEP platform architecture called DEEP Atom is 

described. Evaluation of the implementation reveals low processing and energy 

overhead while demonstrating excellent scalability when using energy calipers to 

monitor multiple sections of software code for energy consumption. Furthermore, 

the DEEP Atom's energy measurement instrumentation displays excellent 

accuracy and precision of measurement.  

 

A networked testbed consisting of multiple DEEP platforms has been created. 

This enables rapid access to the DEEP platforms for research groups or students 
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that do not have the resources to implement their own platforms, but still need to 

measure energy consumption for their applications. 
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CHAPTER 3 
 

 

HARD DISK DRIVE ENERGY ESTIMATION 

 

This chapter details the design, implementation and evaluation of the process-

level hard disk drive (HDD) energy estimation system for the DEEP platforms 

presented in the previous chapter. HDD energy estimation is important for 

applications that perform large amounts of I/O to secondary storage. The chapter 

begins with an overview of previous work related to energy modeling for modern 

secondary storage devices in Section 3.1. Section 3.2 presents the architectural 

design of the HDD energy estimation system. Section 3.2 describes the energy 

measurement infrastructure used for obtaining HDD energy consumption data. 

Section 3.4 details the HDD I/O monitoring in the operating system kernel. 

Section 3.5 presents the HDD energy model created using HDD I/O monitoring. 

Section 3.6 summarizes the implementation and integration of the HDD 

estimation system. Section 3.7 demonstrates the effectiveness of HDD energy 
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estimation system with evaluation results. Section 3.8 concludes this chapter. 

Some of these results have been published previously [YLV13]. 

 

3.1. Background and Related Work 

Data storage devices like hard drives create a large portion of the energy 

consumption in these computing systems. The amount of storage required by 

modern IT services continues to increase and I/O along with disk storage could 

account for 30% of the energy consumption in a modern computing platform 

[RLG08]. By underestimating the storage energy demands due to software, an 

application developer could considerably negate the efforts of optimized power 

management algorithms and energy efficient file systems. Thus, accurately 

determining energy consumed because of an application's processes due to disk 

I/O operations can lead to improved system energy efficiency. 

 

Measuring and characterizing the energy consumed by modern secondary storage 

devices and attributing it to the causative processes in the operating system is not 

a trivial task. This is due to the buffering, rescheduling and optimization of I/O 

write operations that exist in most modern computing systems. Therefore, actual 
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write operation of data into the physical sectors of the hard drive and the 

consequent energy consumption does not occur immediately after the issuing of 

corresponding write requests in software. Unlike CPU or memory operations that 

usually occur in tight temporal synchronization with execution of software 

instructions, the disk drive I/O operations can occur after a non-deterministic 

delay. 

 

The work presented in this dissertation is based on the GNU/Linux operating 

system that maintains a page cache in the main memory for fast data access. After 

issuing a data write request to the HDD, the data resides in the page cache before 

being divided into multiple I/O requests. The I/O requests are then processed by 

an I/O scheduler, which reorders and merges the requests to optimize disk 

operations before dispatching the requests via DMA to the disk drive. In addition, 

the disk controller also has a disk cache where transferred data resides before 

finally being written into the physical sectors of the disk drive. Figure 3.1 

illustrates the issuing of a write request to the physical sectors of the hard disk and 

the rise in power consumption indicates when the hard disk drive is active. In this 

case, the write operations to the disk didn’t start until the application's execution 
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was close to completion and continued for a significant time interval after the 

causative program had finished issuing I/O requests and even completed its own 

execution. 

 

 

Figure 3.1. The HDD power measurements during execution of an application 

that issued a data write request. 

 

Previous research on HDD energy modeling has divided the energy consumption 

of hard disks into various activities [HSR08]. Although the custom built 

measurement system presented could enable separate measuring of energy for the 

electrical and mechanical parts of a hard disk drive, it does not attribute the 

energy measurements to the causative application's processes.  Other approaches 

have focused on modeling the hard drive power consumption [AAF09], [ZSG03] 

through methods that translate the disk workload to the primitive activities of the 



46 
 

hard disk drive [AAF09] along with simulation-based methods [ZSG03] that use 

disk energy simulators such as Dempsey to simulate disk I/O operations and 

power simulators such as DiskSim to read I/O traces to estimate the power 

consumed by each operation. While these methods were able to achieve superior 

granularity in their energy models, they still did not attempt to relate the modeled 

hardware power consumption to causative processes in the operating system.   

 

Power management is also an area of focus in some methodologies [NDR08], 

[ZDD04] with techniques such as write off-loading, which redirects write requests 

to active hard disks in a datacenter, and energy aware cache management 

algorithms that prioritize energy efficiency. A significant amount of work on 

energy efficient file systems also exists [NF04], [KS92]. Distributed file systems 

have been employed with the primary goal of achieving superior energy 

efficiency [NF04]. The Coda file system discusses the feasibility of disconnected 

operations for portable computers whereby a client can access critical data even 

during temporary unavailability of shared data repositories via caching to improve 

performance and possibly energy efficiency [KS92]. These approaches focus on 

improving energy efficiency in the storage hardware through intelligent power 
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management, caching and file system design, but do not provide capabilities to 

determine energy consumption in the disk drive due to a an application's 

processes. 

 

3.2. Architecture 

The HDD energy estimation system's design is based on two critical objectives:- 

1) Construction of a HDD Energy Model: this has been explored in previous 

work, but it needs to adapted to the disk drive being used in this DEEP 

implementation. Furthermore, the model must provide high prediction 

accuracy while having low overhead.  

2) Mapping of Process ID (PID) to I/O Requests: the HDD energy model itself 

can only estimate HDD energy consumption values for given I/O requests, but 

this energy consumption needs to be attributed to the causative processes in 

the operating system. The operating system does not maintain the concept of 

processes at the block device layer of the kernel as shown in Figure 3.2. This 

leads to obfuscation of the PID and so the PID must be explicitly mapped 

from the higher Virtual File System (VFS) layer to the lower block device 

layer's I/O requests. 
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Figure 3.2. The different file system layers that each data I/O request must 

traverse in Linux (kernel 2.6.31-14) before being issued to the SATA HDD for 

writing to the physical sectors of the disk. 
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Figure 3.3. The architecture of the HDD Energy Estimation System. The HDD 

energy model is used with I/O monitoring to enable per-process HDD energy 

attribution. 

 

The accomplish the previously mentioned design objectives, the HDD energy 

estimation system's architecture consists of HDD energy measurement, I/O 

monitoring and the HDD energy model. The HDD energy measurement 

infrastructure is detailed in the succeeding section and provides energy 

consumption data for construction of the HDD energy model. The I/O monitoring 
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is used to monitor the important routines in the kernel to enable both HDD model 

construction and mapping of the I/O requests to the causative processes. The 

HDD energy model estimates the energy consumption for an application's HDD 

I/O requests. The complete system architecture is illustrated in Figure 3.3. 

 

3.3. Energy Measurement 

The DEEP Atom, presented in Chapter 2, is based on a computing system with an 

N330 Intel Atom CPU, SDRAM memory, secondary storage, and network 

interfaces, which are monitored for power consumption by a high-speed data 

sampling system. By employing various event synchronization methods, the 

hardware power dissipation data received from the sampling system is 

synchronized with the operating system clock and kernel software events. Usage 

of kprobes, jprobes or dprobes [Bha03], which enable user-defined runtime 

handler execution at break-points in software code, enable fast instrumentation of 

the software systems.  

 

The DEEP platform used herein comprises of two separate disk drives: one HDD 

for the GNU/Linux operating system along with the DEEP software to collect 
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energy consumption data and the second disk drive is the test HDD for 

performing the write tests while measuring energy consumption. The test HDD 

used is a Western Digital Scorpio Blue WD1600BEVS 160GB SATA disk drive 

that operates at 5,400RPM with an 8MB cache. Isolation of the test HDD from the 

operating system and energy measurement infrastructure's I/O requests ensure 

minimal impact on the test HDD when modeling its energy consumption. 

 

DEEP provides a power log at a data sampling rate of 10kHz. Figure 3.4 presents 

a snippet of a sample power log file. The power measurements for the HDD are 

collected by the DEEP platform running Linux kernel 2.6.31-14. 

 

 

Figure 3.4. A snippet of the log of energy measurements provided by DEEP with 

component-resolved energy data, the synchronization signal values and the TSC 

values. Only the HDD energy measurements are of concern in this chapter. 
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3.4. I/O Monitoring 

Monitoring of I/O requests is performed through insertion of jprobes or kprobes 

[MPK06] in the important routines inside the Linux kernel with printk() calls 

in the kprobe handler. Thus, the kernel log is used to report data about I/O 

requests to the test HDD. This creates a low-overhead method for obtaining a 

detailed log of data about each of the I/O requests without any invasive 

modifications to the kernel source code. 

 

3.4.1. Important Kernel Routines 

As illustrated in Figure 3.3 previously, a number of important operations take 

place between a disk I/O request by a process and the actual transfer of the data to 

physical sectors of the HDD. Figure 3.5 shows a simplified sequence of kernel 

routines when a user-space process intends to write data to a SATA HDD. Each 

important step of the sequence is overviewed as follows:- 

1) Before Page Cache: system call write() is issued by a process to create an 

I/O request, the function __generic_file_aio_write_nolock() is 

invoked, which enables certain flags, performs an I/O request size check and 

then transfers control to the function generic_perform_write() to 
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update the page cache. Then, the operating system checks if the dirtied page 

exceeds the allotted limit after copying the data. If not, write() returns and 

the data is not immediately written to the disk. Otherwise, the kernel routine 

continues by calling write_page_caches() to write the pages back to 

the disk drive. It is important to note that the previous step can greatly impact 

the time required to write data to the disk drive as the page cache can create a 

buffering delay before the data is actually passed on the lower file system 

layers for writing to the HDD. 

2) After Page Cache: the generic_writepages()function checks the list of 

dirty pages and tries to write them to the block device file representing the 

disk drive. To communicate with the block device, the operating system 

kernel uses the bio structure to describe each unit of data that is to be 

written. The submit_bh() kernel function initializes these structures, and 

the generic_make_request() function inserts the structures into the 

request structure in the request_queue. Finally, the function 

blk_start_request(), which is usually invoked by interrupts, 

processes the I/O requests in the request queue by interacting with the block 

device. 
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Figure 3.5. The sequence of kernel routines and data structures required to handle 

a data write request to the HDD. 

 

3.4.2. I/O Monitoring Details 

I/O mentoring performs the following two important functions in the HDD energy 

estimation system:- 
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1) Timing of I/O Requests: determining when the I/O requests are issued is 

achieved by utilizing kprobes with printk() function calls in both the 

__generic_file_aio_write_nolock() kernel routine and the 

blk_start_request() routine to record the timestamps for each 

request. 

2) Mapping I/O Requests to Causative Processes: the PID is obtained from the 

__generic_file_aio_write_nolock() function. Mapping of a 

process to its requests is done by comparing the inode number logged using 

the printk() in both the __generic_file_aio_write_nolock() 

and blk_start_request() functions. Figure 3.6 illustrates the snippet 

an example log for the two functions and Figure 3.7 summarizes the mapping 

of a PID at the VFS layer to the corresponding I/O requests at the block 

device layer using the inode number. For the first routine, the inode number is 

obtained from the inode structure that is passed as a parameter to 

__generic_file_aio_write_nolock(). Inside the inode structure 

is the variable i_ino that contains the inode number. The size of the data to 

be written can be accessed from the structure kiocb, which is used to track 

the status of an I/O operation. It has a member variable called ki_nbytes, 



56 
 

which contains the data size in bytes. Current process information can be 

obtained using the current macro. For the second routine at the block 

device layer, the size of requests is obtained by summing the data sizes from 

each of the bio structures by accessing the segment size from the field 

bv_len in the member structure of bio called bio_vec, which is a 

pointer to the start of the data segment array of this bio structure. To access 

the inode number of the data abstracted by bio, the page field in the 

structure bio_vec, which is a pointer to the page descriptor of the segment’s 

page frame, is accessed. Then, the mapping field has the corresponding 

page cache interpretation and the hosting inode could be located using the 

host field to obtain the inode number. This process is further detailed in 

Figure 3.8.  

 

 

Figure 3.6. A sample log dump for two important kernel routines. I/O requests are 

mapped to causative processes by comparing inode numbers from the routines. 
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Figure 3.7. Mapping PIDs to block device I/O requests using inode numbers. 

 

 

Figure 3.8. Steps involved in obtaining the inode number from a bio structure. 
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3.5. HDD Energy Model 

The energy consumption of hard disk drives is influenced by several parameters. 

According to the results of previous work [HSR08], transferred data or file size, 

block size and logical block number are the important parameters that impact disk 

drive energy consumption. In this dissertation, the file system block size is fixed 

at the default value of 4kB as this is case for most Linux systems. Logical block 

number (LBN) is not taken into consideration in this work because its 

contribution to disk drive energy consumption is miniscule compared to the effect 

of the data file's size. Furthermore, ignoring the effect of LBN decreases the 

complexity of the energy model and the overhead of the kernel I/O monitoring. 

 

3.5.1. Detecting Disk Activity 

The disk drive may become active a non-deterministic time after a data write 

request is issued by an application. Thus, detecting disk activity is important as 

the energy consumption for this complete period must be used during model 

construction. This is accomplished using power log analysis, which is the analysis 

of the energy measurement log provided by DEEP for the test HDD.  A rise in 

average power consumption by the HDD after issuing a file write request 



59 
 

indicates activity. All instances of such rise in power consumption are detected 

during power log analysis and the total HDD energy consumption during these 

periods is used as the HDD energy required to complete the file write request. An 

example of such a file write with a data payload or file size of 128MB is 

illustrated in Figure 3.9. 

 

 

Figure 3.9. The energy measurement logs provided by DEEP are analyzed to 

detect the periods during which the HDD is active due to a file write request. The 

energy for these periods is the HDD energy consumed for the write request.  
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3.5.2. Model Formulation 

Since the size of the I/O request or the file size is the only parameter used for the 

HDD energy model, energy consumption data is collected for write trials for 65 

different file sizes using the power log analysis described in the previous 

subsection. One such write trail was illustrated in Figure 3.9. Each write trial is 

repeated 100 times. The histogram for HDD energy consumed for the hundred 

repetitions of the write trial for a particular file size is illustrated in Figure 3.10. 

 

 

Figure 3.10. Histogram for energy consumption during 100 repetitions of an HDD 

write trial using the same file size. 
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Histograms similar to Figure 3.10 are observed for write trials of all the 65 

different file sizes. The Anderson-Darling test [DS86] is used to test the 

goodness-of-fit of the set of hundred samples for a write trial. Each of the sets of 

samples passes the test for being normally distributed with 95% significance. The 

means for all hundred samples for each file size are plotted in Figure 3.11 (file 

sizes above 450MB also follow a linear trend and so are not shown) to determine 

the relationship between file size and HDD energy consumption for the test HDD. 

 

 

Figure 3.11. The observed relationship between file size and HDD energy 

consumed for the test HDD. 
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                         Energy = w0 + w1*(FileSize)                   (3.1) 

 

The data from the write trials, shown previously in Figure 3.11, is used to fit the 

curve in Equation 3.1 and this equation models the energy consumption of the test 

HDD to service a file write request with file size equal to FileSize. The first term 

w0 is a constant that represents the fixed energy cost due to preprocessing and 

setting up of data transfer [HSR08]. The second term is a linear term that captures 

the linear relationship between energy and file size. 

 

3.5.3. Multiple File Writes 

For simultaneous multiple write requests by one or more processes, the energy for 

each file write request is treated as an independent random variable with values 

that are normally distributed. Thus, HDD energy for multiple file writes is the 

sum of the estimated HDD energy for each individual file write. It is important to 

note that energy consumption for each file write is not strictly independent. For 

example, consecutive data writes following the first file write does not require 

disk start-up energy. However, in Section 3.7 it is demonstrated that this 
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assumption does not create large prediction errors while providing a model that is 

simple and has low overhead. 

 

3.6. Implementation and Integration 

The HDD energy estimation system is implemented on a DEEP Atom platform 

running Linux kernel 2.6.31-14 and with a SATA 5,400 rpm test HDD having an 

8MB cache.  This implementation is used for all the results presented in the next 

section. 

 

The final implementation of the HDD energy estimation system consists of an 

integration of DEEP energy measurement, I/O monitoring and the HDD energy 

model. A user-space interface called ioJoules enables access to the system. This 

interface allows users to obtain a log of predicted HDD energy consumption for 

each of the write requests along with the process ID of the processes that are 

responsible for the request. This data is available in addition to the direct energy 

measurements that DEEP provides. A snippet of an example output log created by 

the ioJoules interface is illustrated in Figure 3.12 with the inode number (Inodenr) 

and process ID (Id) shown for each data write request to the HDD.  
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Figure 3.12. Sample outputs from the ioJoules interface for the HDD energy 

estimation system. 

 

The HDD energy estimation system is integrated as part of the DEEP platform  

and a kernel module is built to create a /proc file system entry that turns the I/O 

request information logging ON or OFF by uninstalling all kprobe handlers for 

I/O monitoring in the kernel and halting data reporting through the ioJoules 

interface. This allows users to utilize the HDD energy estimation system only 

when needed while still enabling direct energy measurement from DEEP at other 

times. 

 

3.7. Results 

This section presents results from both the evaluation of the HDD energy 

estimation system and comparison to the direct energy measurements from the 

DEEP platforms. 
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3.7.1. System Evaluation 

The HDD energy estimation system is evaluated in terms of both accuracy of 

estimation and overhead created. To evaluate the accuracy of the energy 

estimation system, write tests were performed using both normal I/O and direct 

I/O (page cache disabled) using file sizes up to 1GB. From the DEEP power log, 

power log analysis is used to compute the ground truth about HDD energy 

consumption. The predicted energy is compared to the values obtained from 

power log analysis to determine prediction accuracy. Figure 3.13 illustrates the 

results of the comparison for file sizes ranging from 128MB to 768MB. 

 

 

Figure 3.13. Accuracy of HDD energy prediction compared to power log analysis. 
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The system is also evaluated for accuracy of multiple file write energy prediction 

using write tests where ten processes randomly request to write files to the HDD. 

A combined write data payload ranging from 1.28GB to 3.52GB is used. Power 

log analysis is used to obtain the ground truth for actual HDD energy required to 

complete all the file transfers to the disk drive. Accuracy is determined by 

comparing the model's prediction to the ground truth from power log analysis. 

The comparison results are shown in Figure 3.14. As observed, the HDD energy 

estimation system's predictions are accurate and assumptions in Section 3.5.3 

about independence of each of the multiple file writes does not degrade accuracy. 

 

 

Figure 3.14. Accuracy of HDD energy prediction for multiple file write requests. 
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The results from evaluation of the accuracy of the HDD energy estimation system 

are summarized in Table 3.1. The model used is quite simple and still has 

excellent prediction accuracy. Accuracy is very slightly degraded for direct I/O 

because the model was built using data for normal I/O and for multiple file I/O 

due to the assumption that each of the file writes are independent. 

 

Table 3.1. The HDD energy estimation system's prediction accuracy. 

HDD Write Method Average Prediction Accuracy (%) 
Direct I/O 92.39 

Normal I/O 94.09 
Multiple File Normal I/O 92.98 

 

The energy estimation system is also evaluated in terms of the energy overhead it 

creates on the DEEP platform. This is important because even though the I/O 

monitoring infrastructure uses low performance overhead kprobes for data 

gathering, this may still impact the energy efficiency of the DEEP platforms. Both 

the CPU and memory (RAM) power consumption are compared with and without 

kernel I/O monitoring during file writes of sizes ranging from 128 to 768MB to 

evaluate any power consumption overhead that the HDD energy estimation may 

create. Results of this comparison are illustrated in Figures 3.15 and 3.16. 
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Figure 3.15. CPU power consumption with and without kernel I/O monitoring. 

 

 

Figure 3.16. RAM power consumption with and without kernel I/O monitoring. 
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The power consumption overhead due to the HDD energy estimation system is 

summarized in Table 3.2. Miniscule power consumption overhead is observed for 

the CPU and a small average overhead of 3.61% was observed for the memory 

module (RAM). 

 

Table 3.2. The average power consumption overhead for the CPU and RAM. 

Component Power Consumption Overhead (%) 
CPU 0.95 
RAM 3.61 

 

The overhead on performance is also characterized through execution of standard 

applications with and without the HDD energy estimation system. Execution 

times for both cases are compared to derive the performance overhead. The 

performance overhead is illustrated in Table 3.3. 

 

Table 3.3. The average performance overhead for some common applications. 

Application Performance Overhead (%) 
firefox 1.15 

gcc 1.01 
grep 1.33 
bzip2 1.61 
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3.7.2. Comparison to Direct Energy Measurement 

The energy required for deferred disk write operations cannot be accurately 

estimated through direct measurements gathered during a benchmark's execution 

lifetime. To demonstrate this, the energy consumption data of DEEP direct 

measurements are compared with the values predicted by the energy estimation 

system. 

 

Spew [ber04] is an I/O performance tool to measure block device performance or 

to generate disk drive workloads. It is a flexible file system workload generator 

and is used to generate workloads in different I/O modes with various file sizes. 

For the experiments in this section, single file writes were performed with file 

sizes ranging from 32MB to 608MB in normal I/O mode. 

 

For every benchmark test the DEEP platform was used to directly measure HDD 

energy consumption. Note that this is done by DEEP’s energy calipers, where the 

energy calipers generate time stamp values during Spew execution in order to 

obtain the benchmark's execution time interval and calculate energy consumption 

during that interval. Also, the HDD energy estimation system's model is used to 
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predict the HDD energy consumption. Finally, after each benchmark test is 

completed, power log analysis is used to analyze the DEEP energy measurement 

log and obtain the ground truth for HDD energy consumption. 

 

 

Figure 3.17. Comparison of energy using direct measurement during benchmark 

execution, energy estimation system's model prediction, and power log analysis. 

 

Figure 3.17 illustrates that direct measurement cannot provide an accurate 

estimate of HDD energy due to the operating system kernel's buffer cache and 

other disk drive I/O deferring mechanisms. Due to deferring of data writes, a 

benchmark application's execution lifetime cannot provide the time interval for 



72 
 

estimating HDD energy consumption. Hence, power meter based direct 

measurement can be utilized for CPU or RAM energy estimation, but for the 

HDD this is not sufficient. However, for file sizes larger than 500MB, the errors 

due to direct energy measurements tend to become insignificant. This is because 

the memory module used in this implementation has a capacity of 512MB and the 

effect of kernel buffer cache is eliminated by page flushing that is activated by the 

Linux kernel because of larger files. 

 

 

Figure 3.18. Benchmark application execution lifetime versus disk activity period. 
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To further demonstrate the limitations of direct energy measurement, Figure 3.18 

illustrates a comparison of the benchmark application's execution lifetime for a 

file write with the actual HDD activity period. It is clearly observed that the direct 

measurements, such as ones obtained by power meters, will only aggregate the 

energy consumption during benchmark execution. However, more than half of the 

disk drive activity occurs after the benchmark has completed execution. Using the 

energy estimation system presented in this dissertation can greatly improve 

accuracy of HDD energy consumption estimates for an application. In addition, 

the ability to attribute the HDD energy consumption to individual processes can 

guide optimization of software energy efficiency. 

 

3.8. Conclusions 

There is an urgent and largely unmet need for guidance tools that assist 

application developers to accurately estimate the energy consumed due to their 

applications. Thus, systems that predict secondary storage I/O energy assist in the 

development of energy efficient software because modern storage hardware can 

be complex due to the presence of I/O rescheduling and buffering mechanisms. 
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The HDD energy estimation system presented is novel because of unique features 

such as the capability of mapping estimated HDD energy to specific causative 

processes while using a relatively simple energy model. Also, the energy 

estimation system creates very low overhead on the computing platform and 

requires minimal modification to the operating system kernel while providing 

accurate estimates of HDD energy consumption for write workloads of various 

payload sizes. 
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CHAPTER 4 
 

 

ENERGY EFFICIENT ADAPTIVE DATA COMPRESSION 

 

This chapter presents a direct application of the DEEP platforms. Direct energy 

measurements from DEEP are applied to create an energy efficient data 

compression algorithm that adapts to changing network and system conditions. 

This energy efficient adaptive compression algorithm is applied to the upload to 

data over a network link and significant energy savings are observed. The chapter 

begins with Section 4.1, which provides background and overviews work related 

to energy-aware adaptive data compression. Section 4.2 demonstrates the large 

impact that data compression can create on the uploading of data over a network 

link under different network and system conditions. Section 4.3 presents the 

energy efficient adaptive compression algorithm, which is called DEEPcompress. 

Section 4.4 details the results obtained from application of DEEPcompress to 

upload of data files. Section 4.5 concludes this chapter. Some of the results 

described in this chapter have been published previously [SK12]. 
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4.1. Background and Related Work 

While many applications are important for modern computing platforms and 

mobile devices, network data transport emerges as central to many of the 

important applications since the advent of cloud computing, proliferation of 

mobile devices and rapid increase in the number of networked systems. 

 

Data compression has been explored and demonstrated as an effective method  for 

improving the performance and energy efficiency of transporting data over a 

network link [Pet13]. Data compression is already used when downloading data 

files and has been shown to be beneficial even when uploading data [WM09]. A 

large number of previous studies show that dynamically varying the compression 

schemes can be beneficial in adapting to changing network or system conditions 

[MS06], [KC01], [PS05], [KS05], [KB99].  

 

4.1.1. Computation versus Communication 

The dynamic selection of compression schemes to form an adaptive compression 

algorithm confronts a major challenge because benefits from data compression in 

network data transport derive primarily from the trade-off between computation 
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and communication [BA06]. Thus, the resources invested in compression scheme 

selection and compressing the data (computation) should be surpassed by savings 

created due to a reduced payload being transported over the network 

(communication). This implies that an adaptive compression algorithm should be 

able to measure or estimate the resources required for both computation and 

communication to perform an effective selection of optimal compression 

schemes. 

 

For a dynamic environment with system and network conditions varying at run-

time, the estimation or measurement of required computation and communication 

resources becomes a difficult task. This is further compounded by the fact that the 

data being transported is also an important parameter that affects the computation 

and communication resources required. Thus, previous work on adaptive 

compression, in summary, attempts to find heuristics or measures that can 

estimate or measure both communication and computation costs to create an 

algorithm that dynamically selects efficient compression schemes. This 

dissertation presents a new adaptive compression algorithm called DEEPcompress 

that directly measures energy costs using DEEP's direct energy measurements 
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during run-time as a means to dynamically select energy efficient compression 

schemes. The DEEPcompress algorithm is detailed further in Section 4.3. 

 

4.1.2. Datacomp 

Even though this dissertation has summarized the basic concepts behind adaptive 

data compression algorithms, there are a number of issues beyond the scope of the 

work presented herein, such as data decompression and innovations in creating 

more effective compression schemes, that have not been discussed. Datacomp 

[Pet13] discusses such issues about data compression in much greater detail and 

attempts to create a comprehensive adaptive compression framework that is 

independent of assumptions or conditions specific to a certain type of data, 

network or computing platform.  

 

4.2. Impact of Data Compression on Energy 

This investigation characterizes the impact of compression on network data 

transport energy efficiency using the online version of the DEEP Atom platform. 

Energy consumption is measured during compression and then transmission of a 

file over a network link while varying three parameters: network data throughput, 
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data file type and compression scheme. The data files used are a subset of 

common files: 1) an English text document, 2) a Portable Document Format 

(PDF) document, and 3) an MP4 encoded media file. Three network interface 

types are used with energy measurement for each: a 10/100 Ethernet device, a 

local area wireless IEEE 802.11g device and a wide area wireless 3G CDMA 

2000 1X EV-DO modem. 

 

The compression schemes used in the investigations are Gzip, bzip2, and XZ 

[Pet13].  Gzip is based on a combination of the Lempel-Ziv algorithm [WZ91] 

with Huffman encoding [MP85], XZ employs a Lempel-Ziv-Markov-chain 

Algorithm (LZMA), and bzip2 utilizes run-length, delta and Huffman encoding 

with the Burrows-Wheeler Transform [FM08]. The energy cost for data transport 

without compression is also measured. For each parameter combination, a file is 

compressed and transmitted with data throughput limitation for the network 

interface enabled at each of four levels: 10kB/s, 100kB/s, 1MB/s, and 10MB/s. 

Network interface energy consumption is included in the system energy 

measurement. Energy calipers are utilized to monitor energy consumption during 

compression and transmission of the data files for each parameter combination. 
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The 3G interface consumed the most energy (10 percent of the total system 

energy) followed by IEEE 802.11g (4 percent) and then the Ethernet interface. 

Prior work has clearly demonstrated that the network interface forms a significant 

fraction of energy consumption in mobile devices [CH10]. In the Atom N330 

system this fraction is not large enough to change the optimal compression 

choice.  

 

Table 4.1. Impact of data compression on energy consumption for file upload. 

Rate 
(B/s) 

XZ 
(J/MB) 

bzip2 
(J/MB) 

Gzip  
(J/MB) 

None  
(J/MB) 

Energy  
Ratio 

10k 196.8 739.4 994.3 3397.1 17.3 
100k 101.9 97.2 107.3 338.7 3.5 
1M 92.5 33.1 18.9 33.9 4.9 
10M 91.6 26.8 10.1 3.4 26.9 

 

It also is observed that the content of the data file is an important factor in 

selecting the optimal compression scheme due to variation in compressibility. 

Network conditions like data throughput (rate) have a very large impact on the 

selection of energy efficient compression schemes. This is illustrated using the 

energy ratio in Table 4.1 with measurements for the text file. None of the 

compression schemes are optimal in all cases and the penalty for selecting sub-
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optimal schemes is very large (up to 17.3x) in certain cases. This can further be 

impacted by the influence of the platform’s computing environment, such as CPU 

load, on the energy required for compression. Thus, to conserve energy the 

selection of the optimal compression scheme should be made dynamically at run-

time during the transmission of the data file based on the contents of the data file, 

network conditions and the computing environment. 

 

4.3. DEEPcompress 

Preceding sections demonstrate that data compression can lead to large energy 

savings in uploading certain types of files over a network link. Since the 

characteristics of the computing system (like CPU load) and network (like the 

energy required to transmit or compress a byte of data) can change during file 

transmission, the compression scheme must be dynamically selected. This section 

presents the DEEPcompress algorithm detailed in Figure 4.1. The file being 

uploaded is divided into constant-size blocks, and both the transmission energy 

per byte and the compression energy per byte is measured for a block. The 

DEEPcompress algorithm selects the most energy efficient compression scheme 

for a data block by utilizing both the communication and computation energy.  
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# Values of energy per byte for bzip2, Gzip, XZ and transmission 
ebz = egz = exz = etrans = 0 
 
# Compress 1st block for estimate of compression energy 
block = GetNextBlock ( file ) 
bz = bzip2Compress ( block ) 
gz = GzipCompress ( block ) 
xz = XZCompress ( block ) 
 
repeat 
 # Energy = Computation + Communication 
 Ebz = ebz * Size ( block ) + etrans * Size ( bz ) 
 Egz = egz * Size ( block ) + etrans * Size ( gz ) 
 Exz = exz * Size ( block ) + etrans * Size ( xz ) 
 Eno = etrans * Size ( block ) 
 
 # Objective - select scheme with least energy for block. 
 if ( Ebz ≤ Egz and Ebz ≤ Exz and Ebz < Eno ) 
 # Use bzip2 compression. 
  bz = bzip2Compress ( block ) 
  Transmit ( bz ) 
 else if ( Egz < Ebz and Egz ≤ Exz and Egz < Eno ) 
  # Use Gzip compression. 
  gz = GzipCompress ( block ) 
  Transmit ( gz ) 
 else if ( Exz < Egz and Exz < Ebz and Exz < Eno ) 
  # Use XZ compression. 
  xz = XZCompress ( block ) 
  Transmit ( xz ) 
 else 
  # Don't use compression - none. 
  Transmit ( block ) 
 
 # Energy per byte of latest transmit and compress. 
 UpdateEnergyValues ( ) 
 
 # Get next block from file to be uploaded. 
 block = GetNextBlock ( file ) 
 
# Repeat until all blocks of the file have been transmitted. 
until ( block = 0 ) 

Figure 4.1. Pseudocode for implementation of the DEEPcompress algorithm. 
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The transmission and compression functions in the DEEPcompress algorithm are 

monitored using energy calipers that record the energy consumption during their 

execution. The algorithm uses these measurements to dynamically select energy 

efficient compression schemes.. The algorithm can thus adapt to changes in the 

energy consumption characteristics due to variation in network conditions that can 

affect transmission energy required per byte, or availability of computing 

resources that can change the energy requirement by each of the compression 

schemes. 

 

4.4. Results 

The DEEPcompress adaptive compression and transport algorithm is deployed on 

the online version of the DEEP Atom implementation with an added IEEE 

802.11g device that is the wireless network interface used for data file 

transmission. A measurement delay is possible between execution of the 

transmission or compression functions and the availability of the latest energy 

caliper measurements corresponding to these functions. If the latest energy values 

are not available, the preceding data are used without waiting for the updated 

values. 
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4.4.1. Platform Energy Efficiency 

To characterize the benefits of DEEPcompress over other static compression 

schemes, DEEPcompress, XZ, bzip2, Gzip and no compression (none) are all 

compared for data compression and transmission during the upload of the 

following files: 1) tarball of Linux- 2.6.31 kernel sources, 2) tarball of twenty 

plain English texts, 3) tarball of twenty PDF e-books and 4) an MP4 encoded 

commercial film trailer. The transmission is performed using a TCP/IP socket 

connection to another system on the UCLA wireless network. A block size of 

16kB is used in this deployment of DEEPcompress and each of the files is 

transmitted thirty times using each compression choice. 

 

The energy consumption by the system is averaged over all the transmissions and 

includes the wireless device’s energy. This value is normalized to each file’s size 

and is reported in Figure 4.2. DEEPcompress consistently demonstrates superior 

energy efficiency for the English texts, Linux sources and PDF ebooks. Energy 

savings as large as 38% are observed compared to the next best compression 

scheme. Miniscule degradation in energy efficiency compared to none (1.2%) is 

observed for the MP4 file because of the inherent compression present in the MP4 
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format. DEEPcompress is still more energy efficient than the other static 

compression schemes as it dynamically determines that no compression is the best 

choice in this case and selects it. 

 

 

Figure 4.2. The DEEPcompress algorithm creates significant energy savings 

during upload of various types of data files. 

 

DEEPcompress achieves superior energy efficiency by adapting the compression 

scheme selection to changing network and system conditions. This is illustrated in 

Figure 4.3 using a one minute interval during a randomly selected transmission of 

the Linux sources. The variation in energy for transmission along with the 

compression scheme selected by the DEEPcompress algorithm is shown. The 
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algorithm’s use of the DEEP platform for direct energy measurement of the 

compression and transmission tasks enable it to adapt to change in energy 

consumption due to network and system conditions. 

 

 

Figure 4.3. DEEPcompress adapts its compression choice as it detects variations 

in the wireless network and system energy consumption characteristics. 

 

4.4.2. Component Energy Efficiency 

The DEEPcompress algorithm can be extended to include a wider range of 

compression choices like LZO. Also, instead of total system energy, applications 

like thermal management may require subsystem-level power management 

objectives like reduction in CPU or network interface energy. As demonstrated in 
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Figure 4.4, attempting to reduce the IEEE 802.11g network interface’s energy 

using DEEPcompress creates energy savings as large as 44% for the interface 

instead of the 37% when using total system energy as the objective. However, the 

total system energy savings decrease from 38% to 33%. This demonstrates the 

utility of component-resolved measurement capabilities while showing that 

subsystem energy reduction objective is not always optimal for system energy 

efficiency and vice-versa.  

 

 

Figure 4.4. DEEPcompress can also be used for reducing energy consumption of 

subsystems, such as for the IEEE 802.11g (WiFi) interface here. Instead of total 

system energy, the WiFi interface's energy is used as the DEEPcompress 

algorithm's optimization objective. 
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DEEPcompress also supports joint objectives. A combination of power, energy 

consumption and processing parameters like execution time for the system or 

subsystems can be used as the objective for compression scheme selection. 

 

4.5. Conclusions 

The DEEP Atom is utilized for an investigation of compression in transport of 

data over a network link. As confirmed in previous work, it is observed that 

dynamically selecting compression schemes to adapt to changing network and 

system conditions can significantly improve the energy efficiency of network data 

transport. 

 

The DEEP platform’s capabilities assist in development of an energy efficient 

data compression and transport algorithm called DEEPcompress. The algorithm 

provides large energy savings (38%) for upload of data files over a wireless 

network link through dynamic selection of compression schemes to adapt to 

system and wireless network conditions. Also, DEEPcompress can be adapted to 

optimize for component energy savings instead of complete platform energy 

savings during compression and transmission of data. Furthermore, joint 
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optimization objectives such as a combination of peak power, energy or execution 

time may also be used. 
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CHAPTER 5 
 

 

ENERGY AWARE TASK SCHEDULING 

 

This chapter presents the Energy Aware Scheduler (EAS), which is a novel 

operating system task scheduler designed for multi-core computing platforms. 

EAS utilizes the high-resolution time-synchronized direct energy measurements 

provided by the DEEP platforms along with data from the CPU performance 

monitoring unit to improve platform energy efficiency and performance by 

reducing resource contention between tasks. The chapter begins with an overview 

of the relevant background material and related work in Section 5.1. Section 5.2 

describes the EAS architecture and the concepts that have culminated in the 

design of EAS. Section 5.3 presents the implementation of the task scheduler 

using extensions to a standard Linux kernel operating on a commodity computing 

platform. Section 5.4 presents the results of comparison between EAS and the 

task scheduler adopted by Linux using a range of standard benchmark 

applications. Section 5.5 concludes this chapter. 
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5.1. Background and Related Work 

The operating system's task scheduling policy has a well-known and significant 

impact on the performance and energy efficiency of computing platforms 

[ZSB13]. Development of task schedulers confront the challenges of ensuring low 

latency, meeting task deadlines, improving fairness in distribution of computing 

resources to tasks and load balancing among processors [DB11], [Shi05].  

However, the introduction and large-scale deployment of multiprocessor 

platforms now also requires that resource contention be minimized to ensure 

efficient usage of resources. The demands for reducing resource contention and 

increasing energy efficiency add new constraints to scheduler system 

development. This requires a task scheduling system that responds to real-time 

energy and performance monitoring to optimize selection of tasks and assignment 

to processors to avoid degradation in energy efficiency and performance. 

 

5.1.1. Resource Contention in Multiprocessing Computing Platforms 

Multiprocessing CPU architectures are critical in the delivery of computing 

performance for a broad range of platforms from mobile embedded devices to 
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server systems. Symmetric multiprocessing (SMP) CPU architectures are widely 

deployed to enable advances in both energy efficiency and performance through 

parallel execution [Shi05]. In the case of the most widely deployed mobile 

systems using the Linux operating system, parallel task execution is enabled by 

the scheduling of task threads by the operating system on each core with the 

objective of maintaining fairness in support across all tasks, low latency in task 

execution, and load balancing across CPUs.  This can lead to well-known 

increases in computational throughput and platform energy efficiency [WL08].  

However, the potential for these benefits is not reached if multiple tasks 

frequently contend for resources, such as shared CPU cache, on a multi-core CPU 

and this causes a degradation in performance known as co-run degradation 

[BZF10].  Current operating system task schedulers do not detect the energy 

efficiency or performance penalties due to resource contention. 

 

The impact of co-run degradation is illustrated in Figure 5.1 using four 

benchmarks from the UnixBench suite [SGY11] that execute in parallel on a 

quad-core x86 platform with the Linux 2.6.32 kernel. Execution time required 

during parallel execution is compared with the time required when the same four 



93 
 

applications are executed individually. The worst and best cases in the figure 

correspond to different task schedules that were observed over a thousand 

different repetitions of the experiment. The results of the experiment clearly 

demonstrate that co-run degradation can be very significant and different task 

schedules can influence the extent of co-run degradation. 

 

 

Figure 5.1. The co-run degradation problem is illustrated with four benchmark 

applications from the UnixBench suite on a quad-core CPU. Execution times 

when the four applications execute in parallel are compared to when each is 

executed individually. 
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EAS is a novel task scheduler that is broadly applicable across platforms and is 

directly implemented in Linux.  EAS actively seeks and detects the effects of co-

run degradation through a new task observation method. Then, it exploits an 

efficient task selection architecture to seek a task selection that reduces co-run 

degradation. It is important to note that co-run degradation is determined at run-

time because of run-time changes in task behavior that may lead to variability in 

the characteristics of resource contention. EAS exploits direct real-time energy 

measurements along with standard CPU performance counters to identify 

inefficient processes suffering from resource contention. The tasks corresponding 

to these inefficient processes have their scheduling priority adjusted to reduce co-

run degradation. 

 

5.1.2. Completely Fair Scheduler 

The Completely Fair Scheduler (CFS) has been adopted as the task scheduler in 

Linux since the 2.6.23 kernel [WTK08]. CFS constantly attempts to maintain 

fairness among tasks in terms of allotted CPU time [WCJ09]. Thus, if a task has 

used the least amount of CPU time then CFS will assign highest scheduling 

priority to this particular task.  
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In order to efficiently perform priority assignment and to maintain a list of 

executable tasks, CFS constructs a balanced binary search tree called the red-

black tree [Hin99]. Each node of the red-black tree data structure represents an 

executable task along with the key being the CPU time used by the corresponding 

task. Since the tree is balanced, the scheduler can efficiently perform scheduling 

operations such as insertion/removal of a task and selection of the highest priority 

task in O(log n) time complexity for a tree with n tasks. 

 

In multiprocessing platforms, CFS maintains a red-black tree structure for each 

CPU core present on the platform. Tasks are divided among the cores via the 

mechanism of load-balancing and tasks can be moved from one core to another 

through the use of task migration [WCJ09]. Thus, CFS provides each CPU core 

with its own set of tasks and the corresponding red-black tree is used in the 

scheduling of these tasks. 

 

5.1.3. Performance Measurement Unit 

Modern CPU architectures support detailed monitoring of computing platform 

events through the performance monitoring unit. Performance monitoring units 
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provide access to special-purpose CPU registers called performance counters that 

can count important events such as cache misses. They have been recognized as 

an important resource for performance monitoring and improvement [ZDF07]. 

Statistics obtained from performance counters have been used in a wide range of 

applications from power/energy modeling [SBM09] to virtualization [XJJ12] and 

even security [SZD08]. EAS utilizes two types of performance counters: 1) the 

time-stamp counter (TSC) is used as a clock for high-resolution timing of 

platform events, and 2) performance counters are used to measure the number of 

CPU operations performed during execution of a task. 

 

5.2. Architecture 

The EAS architecture is based on CFS to enable both rapid adoption of EAS into 

standard platforms and to also harness important CFS features. Primary features 

of CFS, such as load-balancing and task migration, are included without 

modification. EAS also uses a red-black tree, similar to CFS, to maintain the task 

list for each CPU core. The primary distinction between CFS and EAS is that 

EAS utilizes a run-time indicator of a task's energy efficiency computed directly 

and termed as Operations per Joule (OPJ).  
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OPJ values for each task are used to assign scheduling priority to the 

corresponding task. This provides EAS with the ability to detect tasks that induce 

inefficiency due to co-run degradation caused by resource contention. 

Furthermore, EAS does not perform complicated dynamic time slice calculations 

for a task, but instead uses a fixed value. Thus, this time slice decides the 

scheduling quantum for a task in EAS while the OPJ value for a task determines 

its scheduling priority. 

 

5.2.1. OPJ 

EAS uses OPJ as a run-time indicator of a task's energy efficiency. OPJ represents 

the number of CPU micro-operations (µops) [SCF03] executed by the task per 

joule of energy consumed by the platform. A performance counter is used for 

each CPU core to count the number of µops executed by a task each time it is 

scheduled. Time-synchronized energy measurements are then used to determine 

energy consumption of the platform during the time quantum that the task was 

scheduled. The number of µops is divided by the platform energy consumption to 

obtain the latest task OPJ value, which is then used by EAS for priority 

assignment to that task. 
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5.2.2. Priority Assignment for Efficient Co-Scheduling 

EAS applies an approach for selecting tasks that may operate together without the 

inefficiencies introduced by resource contention. This is accomplished by 

establishing a scheduling priority assignment that favors co-scheduling of these 

tasks. and also reduces the probability of co-scheduling tasks exhibiting co-run 

degradation. 

 

 

Figure 5.2. The Energy Aware Scheduler (EAS) uses the red-black tree data 

structure where each node represents a task. The OPJ value for a task is used as 

the key for its node. 
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Similar to CFS, EAS uses the red-black tree to maintain a list of tasks. Each node 

of the red-black represents a task and uses the OPJ value of the task as its key. 

Larger OPJ values represent a higher priority as this ensures that tasks that exhibit 

higher efficiency when co-scheduled are scheduled together while tasks that 

exhibit inefficiency when co-scheduled, are demoted in priority and are less likely 

to be scheduled together. Figure 5.2 illustrates an example red-black tree that is 

used by EAS with the OPJ of each task being used as the key. A red-black tree is 

maintained for each CPU core on the platform and the mechanisms of load-

balancing along with task-migration, borrowed from CFS, are used to distribute 

tasks among the CPU cores. 

 

5.2.3. Task Promotion 

The priority assignment scheme used by EAS has the advantage of efficient task 

co-scheduling, but inefficient tasks with reduced OPJ values also need to be 

provided with opportunities for being rescheduled since task behavior varies at 

run-time and contention from other tasks may not be present anymore. 

Furthermore, complete starvation of inefficient tasks also needs to be addressed. 

This is accomplished in EAS through task promotion. 
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Figure 5.3. EAS uses a modified red-black tree where each node has an additional 

value attached to it. This value represents the size of the tree if the corresponding 

node was the root. 

 

For a red-black tree with n tasks, task promotion randomly selects a natural 

number k ≤ n every n scheduler time quanta so that the kth lowest priority task's 

OPJ value is set to one greater than the largest OPJ value in the tree. This causes 

the task to be promoted to highest priority for the succeeding scheduling quantum. 

To preserve the algorithmic efficiency of red-black tree operations, the time 

complexity of performing task promotion must be limited to O(log n). Hence, 
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EAS uses a modified red-black where each node has an additional value, called 

Size, attached to it that represents the size of the tree if that node was the root of 

the tree. An example of such a tree is illustrated in Figure 5.3. This enables 

selection and promotion of the kth lowest priority task in O(log n) time.  

 

5.2.4. Scheduling Details 

At the end of a scheduler time quantum due to a timer/interrupt event or the 

voluntary yielding of control by a task, EAS performs several important steps on a 

CPU core before scheduling the next task:-  

1) The time-stamp counter (TSC) value denoting the end of the time quantum is 

recorded. 

2) The number of CPU micro-operations performed during the previous time 

quantum is read from a performance counter and stored. 

3) The latest energy measurements are synchronized with TSC values and 

recorded. 

4) The latest OPJ values are calculated from data obtained in previous steps.  

5) The OPJ value of the previously scheduled task is updated to the latest 

available value. 
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6) The task is inserted back into the red-black tree with appropriate updates to 

Size values.  

7) Task promotion is performed if n time quanta have passed since the last task 

promotion. 

8) The TSC value marking the beginning of the next time quantum is recorded.  

9) The highest priority task is selected from tree and scheduled to execute on the 

CPU core till the time next quantum expires or the task voluntarily yields.  

 

 

Figure 5.4. EAS performs a number of important steps between the scheduling of 

tasks. These steps are in addition to features borrowed from CFS. 
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The aforementioned scheduling steps are illustrated in Figure 5.4. Steps involving 

features borrowed directly from the Linux kernel or CFS infrastructure, such as 

timer handling, context switching logic, load balancing and task migration, are not 

included to preserve clarity. 

 

5.3. Implementation 

EAS is implemented on a multi-core x86 computing platform with changes to the 

task scheduling infrastructure of Linux kernel 2.6.32. 

 

5.3.1. Modifications to CFS 

EAS is implemented in the Linux kernel based on CFS code with important 

modifications:- 

1) The vruntime for a task, which is used for recording the CPU time used by a 

task, is replaced with an OPJ variable with a default initial value of infinity. 

2) An additional entry is maintained at each red-black tree node called Size to 

enable efficient task promotion. 

3) Red-black tree task insertion and removal functions are modified to correctly 

update Size value at nodes. 
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4) While this parameter might be changed as required, this implementation 

applies a fixed scheduling time quantum of 4ms 

5) The scheduler functions and control-flow are modified to conform to the steps 

in Figure 5.4. 

 

5.3.2. Scheduling Classes 

 

 

Figure 5.5. EAS creates its own scheduling class in addition to the standard 

scheduling classes provided by the Linux kernel. 

 

The concept of modular schedulers, which is part of modern Linux kernels 

[Mol07], is utilized in the implementation of EAS. Thus, EAS co-exists with 
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other task schedulers in the Linux kernel where each scheduler has their important 

scheduling functions exposed to the kernel using standard scheduling classes that 

abstract away the tedious details of their implementation. EAS creates its own 

scheduling class as illustrated in Figure 5.5. The scheduling class based 

implementation enables EAS to be used for executing tasks that need to improve 

their energy efficiency by assigning them to the SCHED_EAS policy while still 

allowing a scheduler like CFS to co-exist and continue scheduling other tasks on 

the platform. 

 

5.3.3. Platform Support 

The implementation of EAS in this dissertation is based on modern x86 platforms 

and some of the features they provide [Ban04]. EAS relies on standard platform 

features in addition to the energy monitoring infrastructure provided by DEEP. 

The standard CPU performance monitoring unit is required along with the 

standard TSC. The performance monitoring unit provides performance counters 

that are needed for counting the number of µops that each CPU core executes 

during a task's scheduled time quantum while excluding PAUSE and NOP 

instructions as these don't represent actual work performed by a task. The TSC is 
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required for high resolution timing of platform events and for time 

synchronization of energy measurements. 

 

5.4. Results 

The primary objective for determining the effectiveness of EAS is to determine 

both energy efficiency benefits and to detect any possible degradation in 

performance due to introduction of EAS. Therefore, EAS is evaluated in terms of 

both energy efficiency and execution time compared to CFS for standard 

benchmarks. The investigations reported here utilize Linux kernel version 2.6.32 

on an Intel x86 quad-core DEEP platform. Energy measurement infrastructure is 

added to the platform as described in Chapter 2. When measuring the energy 

consumption for CFS, measurements are not performed by the computing 

platform under observation. Instead, an offline version of DEEP is used with 

another identical platform with a DAQ to used collect energy measurements from 

the instrumentation of the platform under observation so that data acquisition 

overhead does not create errors in the data. For EAS this overhead is part of the 

data because the measurement infrastructure is an integral component of this 

scheduler. 
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5.4.1. Benchmark Selection 

Eight applications have been selected to create a compact, but comprehensive 

suite of benchmarks that represent a wide range of important workloads on 

modern computing platforms:- 

1) Apache is the most widely-deployed web server and is used in this dissertation 

with the TPC-W commercial multi-threaded benchmark for characterizing 

web servers [ACC02]. 

2) AES-256 is a modern federal government security standard that is used for 

data encryption [DR10]. 

3) Tpcc-mysql is a benchmark for MySQL databases based on TPC-C, which is 

a standard commercial benchmark for database transactions [CRF07]. 

4) Java LINPACK is the Java version of the standard supercomputing linear 

algebra benchmark called LINPACK [CRF07]. 

5) Bzip2 is an open-source data compression tool based on the widely-utilized 

Burrows-Wheeler transform [BK00]. 

6) BlogBench is a modern file system benchmark based on emulation of real-

world file servers [ZYC13]. 
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7) VirtualBox is the most commonly used open-source virtualization product and 

this dissertation utilizes it to run another instance of Linux kernel 2.6.32 on 

the platform as a virtual machine [Wat08]. 

8) Transaction Processing over XML (TPoX) is finance application based XML 

database benchmark based on real transactions and XML schema [NKS07]. 

 

The eight benchmarks' input workload is normalized such that each benchmark 

has an average execution time of 100s using CFS on the platform when no other 

benchmarks execute in parallel. 

 

5.4.2. Energy and Performance Benefits 

In Figures 5.6 through 5.9, SOLO‐RUNS represent the case where each of the eight 

benchmarks is executed individually using CFS on the platform so that resource 

contention among benchmarks is absent. EAS represents the case where 

benchmarks begin execution in parallel and EAS is used to schedule them. CFS 

represents the case where CFS is used to schedule the benchmarks. Experiments 

for each case are repeated a thousand times and the mean values are reported in 

the figures. BEST‐OBSERVED represents the minimum values for energy 
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consumption and execution time observed over all thousand repetitions of the 

CFS and EAS experiments. This value indicates the best possible schedule that is 

achieved in presence of resource contention among tasks. TOTAL represents the 

values for execution of all benchmarks while the individual values represent the 

decomposition of TOTAL among each benchmark.  

 

It is important to note that the energy data for individual benchmarks may not 

represent the energy consumption due to that benchmark, but the energy 

consumption that occurs during execution of the benchmark. This is because there 

can be multiple benchmarks executing in parallel and each of these impact the 

energy consumption at an instant. 

 

Figures 5.6 and 5.7 illustrate the results of the comparisons between EAS and 

CFS. EAS demonstrates a large benefit over CFS with an execution time 

improvement of 24.7% and energy efficiency improvement of 30.2% averaged 

over all benchmarks. Furthermore, energy consumption and execution time with 

EAS are much closer to BEST‐OBSERVED values than the values obtained when 

using CFS with benefits being observed for each and every benchmark. 
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Figure 5.6. Execution time and platform energy consumption for all benchmarks. 
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Figure 5.7. CPU and memory energy consumption for each of the benchmarks. 
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5.4.3. Impact of Resource Contention 

The Intel quad-core platform used in this evaluation offers an additional 

experiment capability. Specifically, the four CPU cores are arranged in two pairs 

with each pair sharing a level-2 (L2) cache. Therefore, two tasks scheduled on 

both of the cores of a pair contend for the shared L2 cache. However, if the two 

tasks are scheduled on cores from different pairs then L2 cache contention is 

absent. This enables an evaluation where the eight benchmarks are executed using 

only two of the four cores on the platform. In one case the benchmarks are 

allowed to execute on a pair of cores sharing an L2 cache and in the other case the 

benchmarks are executed on only one core of each pair with separate L2 cache. 

Both CFS and EAS were used in the experiments and the results are illustrated in 

Figures 5.8 and 5.9. The execution time and platform energy consumption are 

larger in the case where L2 cache is shared when using CFS, but EAS effectively 

reduces the impact of L2 cache contention because both the energy consumption 

and execution time approach the values when L2 cache is not shared. This further 

demonstrates the co-run degradation that can occur because of resource 

contention and the effectiveness of EAS in mitigating this degradation in 

performance and energy efficiency. 



113 
 

 

Figure 5.8. Execution time and energy consumption without L2 cache contention. 
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Figure 5.9. Execution time and energy consumption with L2 cache contention. 
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5.5. Conclusions 

This chapter presented the Energy Aware Scheduler (EAS) that exploits event-

synchronized energy measurements to advance the energy efficiency and 

performance of multi-core computing platforms through efficient co-scheduling 

of tasks. The DEEP platform's real-time energy measurements and CPU 

performance counters are used by EAS to detect and avoid resource contention 

among tasks at run-time. This alleviates the inefficiencies caused by co-run 

degradation between tasks. 

 

EAS is implemented by extensions to existing Linux kernel and task scheduling 

infrastructure through the use of scheduling classes to allow EAS to co-exist with 

other task schedulers in the operating system. Energy measurement infrastructure 

for the implementation is integrated directly at the platform-level.  

 

Evaluation of EAS on a quad-core x86 system over a wide range of commonly 

used benchmark applications demonstrates significant improvement in energy 

efficiency (30.2%) and execution time (24.7%) compared to the standard Linux 

task scheduler (CFS). Furthermore, both execution time and energy efficiency 
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benefits were observed for each and every benchmark application that was 

investigated. 
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CHAPTER 6 
 

 

CONCLUSION 

 

This chapter concludes the dissertation. The chapter begins with an overview of 

limitations of the work described herein and details possible solutions to these 

limitations as promising directions for future work in Section 6.1. Section 6.2 

summarizes the dissertation’s results and presents conclusions. 

 

6.1. Limitations and Future Work 

The following limitations of the work presented herein have been indentified and 

possible future solutions are also listed:- 

1) The 100µs sampling resolution of the DEEP platforms, while sufficient for 

characterizing the energy consumption of most software applications and a 

large advance over previous work, cannot monitor the energy usage of 

extremely brief events such as interrupt handling. This is a fundamental limit 

imposed by the measurement instrumentation and synchronization signal 
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latency in the DEEP platforms. A possible solution is the integration of high 

frequency power metering as part of the computing platform’s architecture 

itself and this is now being explored [NRA11]. Leading computing platform 

manufacturers, such as Intel and Qualcomm, have realized the importance of 

direct energy measurement in optimizing computing platform energy 

efficiency. Recently a limited amount of power metering is being provided 

using machine specific registers (MSRs) in the latest CPU architectures 

[NRA11]. Extending the use of these MSRs and including them in the next 

generation DEEP platform architecture would be a very promising direction 

for future work as it would reduce measurement overhead, eliminate external 

instrumentation and enable very low latency energy measurement while 

allowing DEEP's software utilities, such as energy calipers, to still be applied. 

Furthermore, DEEP provides a vast amount of untapped potential for 

measurement and optimization of software energy efficiency in multiple 

computing domains, such as networking protocols, operating system internals, 

security/privacy frameworks and other user applications. 

2) The HDD energy estimation system's per-process energy attribution system is 

limited to cases where a single process has ownership or a file. Thus, cases 
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where multiple processes write to the same file or same data block would 

require a different mechanism of attribution as the inode number is unique for 

the data block and not for each of the writing processes. Hence, the energy 

consumption for the data block must be distributed between each of the 

processes using a different attribution scheme. However, such shared block 

writes are rare and don't create a large impact on the accuracy of the 

estimation system. Also, the HDD used in our investigation only supports idle 

and active states, but certain HDDs also have a standby mode that is activated 

during long periods of inactivity. This requires a more complex model that 

accounts for transitions to and from the standby mode of the HDD. 

3) The adaptive compression algorithm DEEPcompress is suited to upload to 

data files when direct energy measurements are available. For platforms 

without power measurement capabilities, different metrics for estimating 

computation and communication energy costs need to be utilized. This 

requires a comprehensive characterization of system and network conditions. 

Such a framework for adaptive compression has been studied recently [Pet13] 

and confronts a number challenges compared to direct measurement of 

energy. 
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4) The energy aware task scheduler EAS is designed to improve the energy 

efficiency of applications on multiprocessing computing platforms. However, 

certain applications have requirements beyond performance and energy 

efficiency that are of primary concern, such as interactivity, response times, 

deadlines and fairness [WCJ09]. Extending EAS with mechanisms that can 

limit unfairness and loss of interactivity for processes while sacrificing some 

energy efficiency or performance would the task scheduler applicable to wider 

range of applications. An example of such a mechanism was provided in the 

previous chapter using task promotion, wherein starvation of inefficient 

processes was alleviated through a scheme for promoting lower priority tasks. 

Furthermore, investigation of metrics that use performance measures (such as 

cache misses) instead of OPJ to detect resource contention would be valuable 

since these can be deployed without energy measurement capabilities. 

 

6.2. Dissertation Conclusions 

This dissertation presented the architecture and implementation of the DEEP 

platforms. These platforms provide accurate and low-overhead time-synchronized 

energy measurements for commodity computing systems and important 
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components like the CPU, memory modules and secondary storage. With a design 

that enables rapid assembly using standard computing hardware and software, 

multiple DEEP platforms have been implemented as a networked tested that is 

remotely accessible to research groups and students. In addition to direct energy 

measurement capabilities, DEEP includes a set of innovative software utilities 

called energy calipers that enable the measurement of energy associated with 

execution of sections of software code. This makes DEEP ideal for investigation 

of the energy efficiency of both application and operating system code.  

Furthermore, DEEP provides an accurate and low overhead energy estimation 

system for modern secondary storage hardware to enable estimation of energy 

associated with deferred file system and storage operations. The energy for these 

deferred events is attributed directly to the causative processes making the 

estimation system applicable to exploration of the energy consumption by 

applications that perform a large amount of activity on the secondary storage 

device. 

 

The DEEP platforms were also applied to the problem of network transport. An 

adaptive compression algorithm called DEEPcompress is developed. The 
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algorithm adapts to changing network and system conditions to select energy 

efficient compression schemes during the upload of data file over a network link. 

The DEEP platform’s direct real-time energy measurements guide the 

compression scheme choice. Significant energy savings (up to 38%) are observed 

when using the DEEPcompress algorithm compared to other commonly utilized 

static compression schemes such as Gzip, bzip2 and XZ. 

 

An energy aware task scheduler is developed using the capabilities provided by 

the DEEP platforms. This task scheduler uses data from the CPU’s performance 

monitoring unit and energy measurements from DEEP to improve the energy 

efficiency of multi-core computing platforms. This is done through the use of a 

metric called OPJ for run-time detection and avoidance of the co-run degradation 

that takes place due to resource contention among tasks. The scheduler is 

implemented on a standard Linux distribution on a quad-core computing platform. 

Comparison of the scheduler to the standard task scheduler adopted by the Linux 

operating system demonstrates large energy (about 30%) and execution time 

(about 24%) benefits over a broad range of common benchmark applications. 

 



123 
 

BIBLIOGRAPHY 
 

 

[AAF09]  M. Allalouf, Y. Arbitman, and M. Factor, "Storage modeling for 

power estimation." ACM International Systems & Storage 

Conference, 2009. 

[ACC02] C. Amza, A. Chanda, A. Cox, S. Elnikety, R. Gil, K. Rajamani, W. 

Zwaenepoel, E. Cecchet, and J. Marguerite, "Specification and 

implementation of dynamic web site benchmarks." IEEE 

International Workshop on Workload Characterization, 2002. 

[BA06] K. Barr and K. Asanovic, "Energy-aware lossless data 

compression."ACM Transactions on Computer Systems, 2006. 

[Ban04] S. Bandyopadhyay, "A study on performance monitoring counters 

in x86-architecture." Indian Statistical Institute, 2004. 

[BBV09] N. Balasubramanian, A. Balasubramanian, and A. Venkatramani, 

"Energy consumption in mobile phones: a measurement study and 

implications for network applications." ACM SIGCOMM Internet 

Measurement Conference, 2009. 

[ber04] berliOS, "Spew: An I/O performance measurement and load 

generating tool." http://spew.berlios.de 



124 
 

[Bha03] S. Bhattacharya, "Dynamic probes – debugging by stealth." Linux 

Conference Australia, 2003. 

[BK00] B. Balkenhol and S. Kurtz, "Universal data compression based on 

the burrows-wheeler transformation: theory and practice." IEEE 

Transactions on Computers, 2000. 

[BTM00] D. Brooks, V. Tiwari, and M. Martonosi, "Wattch: a framework 

for architectural-level power analysis and optimizations." 

International Symposium on Computer Architecture, 2000. 

[BZF10] S. Blagodurov, S. Zhuravlev, and A. Fedorova, "Contention-aware 

scheduling on multicore systems." ACM Transactions on 

Computer Systems, 2010.  

[CH10] A. Carroll and G. Heiser, "An analysis of power consumption in a 

smartphone." USENIX Annual Technical Conference, 2010.  

[CRF07] R. Cheveresan, M. Ramsay, C. Feucht, and I. Sharapov, 

"Characteristics of workloads used in high performance and 

technical computing." ACM International conference on 

Supercomputing, 2007. 

[DB11] R. Davis and A. Burns, "A survey of hard real-time scheduling for 

multiprocessor systems." ACM Computing Surveys, 2011. 



125 
 

[DR10] J. Daemen and V. Rijmen, "The first 10 years of advanced 

encryption." IEEE Security and Privacy, 2010. 

[DS86] R. D'Agostino, and M. Stephens, "Goodness-of-fit techniques." 

New York: Marcel Dekker, 1986. 

[DZ11] M. Dong and L. Zhong, "Self-constructive high-rate system energy 

modeling for battery-powered mobile systems." International 

Conference on Mobile Systems, Applications, and Services, 2011. 

[ERK06]  D. Economou, S. Rivoire, and C. Kozyrakis, "Full-system power 

analysis and modeling for server environments." Workshop on 

Modeling, Benchmarking, and Simulation, 2006. 

[FM08] P. Ferragina and G. Manzini, "Burrows–Wheeler transform." 

Encyclopedia of Algorithms, Springer US, 2008. 

[FPR12] A. Fujimoto, P. Peterson, and P. Reiher, "Comparing the power of 

full disk encryption alternatives." International Green Computing 

Conference, 2012. 

[FS99] J. Flinn and M. Satyanarayanan, "PowerScope: a tool for profiling 

the energy usage of mobile applications." IEEE Workshop on 

Mobile Computing Systems and Applications, 1999. 



126 
 

[Gra08] J. Gray, "Go green, save green with Linux." Linux Journal, 2008. 

[Hin99] R. Hinze, "Constructing red-black trees." Workshop on 

Algorithmic Aspects of Advanced Programming Languages, 1999. 

[HSR08]  A. Hylick, R. Sohan, A. Rice, and B. Jones, "An analysis of hard 

drive energy consumption." IEEE International Symposium on 

Modeling, Analysis and Simulation of Computer and 

Telecommunication Systems, 2008. 

[IM03] C. Isci and M. Martonosi, "Runtime power monitoring in high-end 

processors: methodology and empirical data." IEEE International 

Symposium on Microarchitecture, 2003. 

[KB99] B. Knutsson and M. Bjorkman, "Adaptive end-to-end 

communication for variable-bandwidth communication." 

Computer Networks, 1999. 

[KC01] C. Krintz and B. Calder, "Reducing delay with dynamic selection 

of compression formats." International Symposium on High 

Performance Distributed Computing, 2001. 

[KOI10] Y. Kaneda, T. Okuhira, T. Ishihara, K. Hisazumi, T. Kamiyama, 

and M. Katagiri, "A run-time power analysis method using OS-

observable parameters for mobile terminals." International 



127 
 

Conference on Embedded Systems and Intelligent Technology, 

2010. 

[KS05] C. Krintz and S. Sucu, "Adaptive on-the-fly compression." IEEE 

Transactions on Parallel and Distributed Systems, 2005. 

[KS92]  J. Kistler and M. Satyanarayanan, "Disconnected operation in the 

coda file system." ACM Transactions on Computer Systems, 1992. 

[MAC11] J. McCullough, Y. Agarwal, J. Chandrashekhar, S. Kuppuswamy, 

A. Snoeren, and R. Gupta, "Evaluating the effectiveness of model-

based power characterization." USENIX Annual Technical 

Conference, 2011. 

[MB05] A. Merkel and F. Bellosa, "Event-driven thermal management in 

SMP systems." Workshop on Temperature-Aware Computing, 

2005. 

[MHY06] D. McIntire, K. Ho, B. Yip, A. Singh, W. Wu, and W. Kaiser, "The 

low power energy aware processing (LEAP) system." International 

Conference on Information Processing in Sensor Networks, 2006. 

[Mol07] I. Molnar, "Modular scheduler core and completely fair scheduler 

(cfs)." Linux Kernel Mailing List, 2007.  



128 
 

[MP85] D. McIntyre and M. Pechura, "Data compression using static 

Huffman code-decode tables." Communications of the ACM, 

1985.  

[MPK06] A. Mavinakayanahalli, P. Panchmukhi, J. Keniston, A. 

Keshavamurthy, and M. Hiramatsu, "Probing the guts of Kprobes." 

Linux Symposium, 2006. 

[MS06] R. Maddah and S. Sharafeddine, "Energy-aware adaptive 

compression for mobile-to-mobile communications." IEEE 

Symposium on Spread Spectrum and Applications, 2006. 

[NDR08]  D. Narayanan, A. Donnelly, and A. Rowstron, "Write off-loading: 

practical power management for enterprise storage." USENIX 

Conference on File and Storage Technologies, 2008. 

[NF04]  E. Nightingale and J. Flinn, "Energy-efficiency and storage 

flexibility in the blue file system." USENIX Symposium on 

Operating Systems Design and Implementation, 2004. 

[NKS07] M. Nicola, I. Kogan, and B. Schiefer, "An XML transaction 

processing benchmark." ACM SIGMOD International Conference 

on Management of Data, 2007. 



129 
 

[NRA11] A. Naveh, D. Rajwan, A. Ananthakrishnan, and E. Weissmann, 

"Power management architecture of the 2nd generation Intel® 

Core™ microarchitecture, formerly codenamed Sandy Bridge." 

Hot Chips, 2011. 

[Pet13]  P. Peterson, "Datacomp: locally-independent adaptive compression 

for real-world systems." Doctoral Dissertation, University of 

California, Los Angeles, 2013. 

[PFW11]  G. Perrucci, F. Fitzek, and J. Widmer. "Survey on energy 

consumption entities on the smartphone platform." IEEE Vehicular 

Technology Conference, 2011. 

[Phi13] M. Philips, "The cloud begins with coal. Big data, big networks, 

big infrastructure and big power: An overview of the electricity 

used by the global digital ecosystem." Digital Power Group, 2013.  

[PMW09] S. Pelley, D. Meisner, T. Wenisch, and J. VanGilder. 

"Understanding and abstracting total data center power." 

Workshop on Energy-Efficient Design, 2009. 

[Pra03] M. Prasad, "WattProbe software-based empirical extraction of 

hardware energy models." Master’s Thesis, Computer Science 

Dept., Stony Brook University, 2003. 



130 
 

[PS05] C. Pu and L. Singaravelu, "Fine-grain adaptive compression in 

dynamically variable networks." IEEE International Conference on 

Distributed Computing Systems, 2005. 

[PSK11] P. Peterson, D. Singh, W. Kaiser, and P. Reiher, "Investigating 

energy and security trade-offs in the classroom with the Atom 

LEAP testbed." USENIX Cyber Security Experimentation and 

Test, 2011. 

[Ras09] N. Rasmussen, "Allocating data center energy costs and carbon to 

IT users." APC White Paper, 2009. 

[RCJ05] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, "DRAMsim2: a cycle 

accurate memory system simulator." IEEE Computer Architecture 

Letters, 2005. 

[RLG08] K. Rajamani, C. Lefurgy, S. Ghiasi, J. Rubio, H. Hanson, and T. 

Keller, "Power management for computer systems and 

datacenters." International Symposium on Low Power Electronics 

and Design, 2008. 

[RSI08] N. Ravi, J. Scott, and L. Iftode, "Context-aware battery 

management for mobile phones." IEEE International Conference 

on Pervasive Computing and Communications, 2008. 



131 
 

[RSM09] S. Ryffel, T. Stathopoulos, D. McIntire, W. Kaiser, and L. Thiele, 

"Accurate energy attribution and accounting for multi-core 

systems." Technical Report, Center for Embedded Network 

Sensing, University of California, Los Angeles, 2009. 

[RSR07]  S. Riviore, M. Shah, P. Ranganathan, and C. Kozyrakis, 

"JouleSort: a balanced energy-efficiency benchmark." ACM 

International Conference on Management of Data, 2007. 

[SBM09] K. Singh, M. Bhadauria, and S. McKee, "Real time power 

estimation and thread scheduling via performance counters." ACM 

SIGARCH Computer Architecture News, 2009. 

[Sca06]  J. Scaramella, "Worldwide server power and cooling expense 

2006-2010 forecast." International Data Corporation, 2006. 

[SCF03] B. Slechta, D. Crowe, B. Fahs, M. Fertig, G. Muthler, J. Quek, F. 

Spadini, S. Patel, and S. Lumetta, "Dynamic optimization of 

micro-operations." IEEE International Symposium on High-

Performance Computer Architecture, 2003. 

[SGY11] B. Smith, R. Grehan, T. Yager, and D. Niemi, "Byte-unixbench: a 

unix benchmark suite." 2011. 

[Shi05] S. Shiva, Advanced Computer Architectures. CRC Press, 2005. 



132 
 

[SK12] D. Singh and W. Kaiser. "Energy efficient network data transport 

through adaptive compression using the DEEP platforms." IEEE 

International Conference on Wireless and Mobile Computing, 

Networking and Communications, 2012. 

[SMK08] T. Stathoupoulos, D. McIntire, and W. Kaiser, "The energy 

endoscope: real-time detailed energy accounting for wireless 

sensor nodes." International Conference on Information Processing 

in Sensor Networks, 2008. 

[SPR10] D. Singh, P. Peterson, P. Reiher, and W. Kaiser, "The Atom LEAP 

platform for energy-efficient embedded computing: architecture, 

operation, and system implementation." Technical Report, 

University of California, Los Angeles, 2010.  

[SZD08] K. Shen, M. Zhong, S. Dwarkadas, C. Li, C. Stewart, and X. 

Zhang, "Hardware counter driven on-the-fly request signatures." 

ACM SIGARCH Computer Architecture News, 2008. 

[WAB10] L. Wanner, C. Apte, R. Balani, P. Gupta, and M. Srivastava, "A 

case for opportunistic embedded sensing in the presence of 

hardware power variability." International Conference on Power 

Aware Computing and Systems, 2010. 



133 
 

[Wat08] J. Watson, "Virtualbox: bits and bytes masquerading as machines." 

Linux Journal, 2008. 

[WCJ09] S. Wang, Y. Chen, W. Jiang, P. Li, T. Dai, and Y. Cui, "Fairness 

and interactivity of three CPU schedulers in Linux."  IEEE 

International Conference on Embedded and Real-Time Computing 

Systems and Applications, 2009. 

[WL08] D. Woo and H. Lee, "Extending Amdahl's law for energy-efficient 

computing in the many-core era." IEEE Computer, 2008. 

[WM09] L. Wang and J. Manner, "Evaluation of data compression for 

energy-aware communication in mobile networks." International 

Conference on Cyber-Enabled Distributed Computing and 

Knowledge Discovery, 2009. 

[WTK08] C. Wong, I. Tan, R. Kumari, J. Lam, and W. Fun, "Fairness and 

interactive performance of o (1) and cfs linux kernel schedulers." 

IEEE International Symposium on Information Technology, 2008. 

[WZ91] A. Wyner and J. Ziv, "Fixed data base version of the Lempel-Ziv 

data compression algorithm." IEEE Transactions on Information 

Theory, 1991. 



134 
 

[XJJ12] X. Xie, H. Jiang, H. Jin, W. Cao, P. Yuan, and L. Yang, "Metis: a 

profiling toolkit based on the virtualization of hardware 

performance counters." Human-centric Computing and 

Information Sciences, 2012. 

[YKJ12] C. Yoon, D. Kim, W. Jung, C. Kang, and H. Cha, "Appscope: 

application energy metering framework for android smartphone 

using kernel activity monitoring." USENIX Annual Technical 

Conference, 2012. 

[YLV13] J. Yan, C. Lonappan, A. Vajid, D. Singh, and W. Kaiser, "Accurate 

and low-overhead process-level energy estimation for modern hard 

disk drives." IEEE International Conference on Green Computing 

and Communications, 2013. 

[YVK00] W. Ye, N. Vijaykrishnan, M. Kandemir, and M. Irwin, "The design 

and use of SimplePower: a cycle-accurate energy estimation tool." 

Design Automation Conference, 2000. 

[ZDD04]  Q. Zhu, F. David, C. Devaraj, Z. Li, Y. Zhou, and P. Cao, 

"Reducing energy consumption of disk storage using power-aware 

cache management." IEEE International Symposium on High-

Performance Computer Architecture, 2004. 



135 
 

[ZDF07] X. Zhang, S. Dwarkadas, G. Folkmanis, and K. Shen, "Processor 

hardware counter statistics as a first-class system resource." 

HotOS, 2007. 

[ZEL02]  H. Zeng, C. Ellis, A. Lebeck, and A. Vahdat, "ECOSystem: 

managing energy as a first class operating system resource." ACM 

International Conference on Architectural Support for 

Programming Languages and Operating Systems, 2002. 

[ZSB13] S. Zhuravlev, J. Saez, S. Blagodurov, A. Fedorova, and M. Prieto, 

"Survey of energy-cognizant scheduling techniques." IEEE 

Transactions on Parallel and Distributed Systems, 2013. 

[ZSG03]  J. Zedlewski, S. Sobti, N. Garg, F. Zheng, A. Krishnamurthy, and 

R. Wang., "Modeling hard-disk power consumption." USENIX 

Conference on File and Storage Technologies, 2003. 

[ZYC13] X. Zhao, J. Yin, Z. Chen, and S. He, "Workload classification 

model for specializing virtual machine operating system." IEEE 

International Conference on Cloud Computing, 2013. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




