
UCLA
UCLA Electronic Theses and Dissertations

Title
Improving the Energy Efficiency of Modern Computing Platforms using High-Resolution Real-
Time Energy Measurements

Permalink
https://escholarship.org/uc/item/7j3569nh

Author
Singh, Digvijay

Publication Date
2014

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7j3569nh
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Improving the Energy Efficiency of Modern Computing

Platforms using High-Resolution Real-Time Energy Measurements

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Electrical Engineering

by

Digvijay Singh

2014

ii

ABSTRACT OF THE DISSERTATION

Improving the Energy Efficiency of Modern Computing

Platforms using High-Resolution Real-Time Energy Measurements

by

Digvijay Singh

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2014

Professor William J. Kaiser, Chair

High-performance computing platforms have become critical in meeting the

demands of modern computing applications. Rising performance requirements in

a broad range of platforms from mobile devices to server systems combined with

the proliferation of these high-performance computing platforms has increased the

energy costs incurred and lead to an exigent need for improvement in platform

iii

energy efficiency. This requires infrastructure for monitoring of energy

consumption and methods to reduce the platform energy costs. In this dissertation,

we present a new measurement infrastructure to provide real-time event-

synchronized platform energy measurements, demonstration of these energy

measurement capabilities through application to network data transport and an

operating system task scheduler that utilizes these energy measurements to greatly

improve energy efficiency for multi-core computing platforms.

The energy measurement infrastructure is integrated at the platform level and

provides event-synchronized energy measurements for the complete platform

along with important components such as the CPU, memory modules, secondary

storage, peripherals and others. Furthermore, since modern secondary storage

devices have buffering mechanisms that defer data write operations, the energy

consumption of these operations is modeled and the model is integrated into the

platform to characterize the impact of deferred operations.

The energy measurement capabilities are demonstrated through application to

network data transport where a data file is transported over a network link. The

iv

data compression scheme is dynamically selected using real-time energy

measurements during transport of the data file to enable adaptation to the dynamic

system and network conditions. The energy cost of transporting the data file is

significantly reduced through the use of this energy aware compression algorithm.

A novel task scheduler is presented and is designed to improve energy efficiency

of multiprocessing platforms. It utilizes real-time energy measurements along

with CPU performance monitoring units to identify inefficient tasks that suffer

from co-run degradation due to resource contention. These inefficient tasks have

their scheduling priority modified to avoid contention. Evaluation of the scheduler

demonstrates large energy and execution time benefits on a quad-core platform.

v

The dissertation of Digvijay Singh is approved.

Gregory J. Pottie

Mani B. Srivastava

Lixia Zhang

William J. Kaiser, Committee Chair

University of California, Los Angeles

2014

vi

TABLE OF CONTENTS

1. INTRODUCTION ..1

 1.1. DEEP Platforms ...4

 1.2. Hard Disk Drive Energy Estimation ..6

 1.3. Energy Efficient Adaptive Data Compression ..6

 1.4. Energy Aware Task Scheduling ...7

 1.5. Summary of Contributions ...9

2. DEEP PLATFORMS ..11

 2.1. Background and Related Work ..12
 2.1.1. Energy Models ..12
 2.1.2. Direct Measurement ..13

 2.2. Design Objectives ..16

 2.3. Hardware Architecture ...18
 2.3.1. Energy Measurement and Data Acquisition Hardware 19
 2.3.2. Timing Mechanism and Synchronization Signal20

 2.4. Software Architecture ..21
 2.4.1. Data Acquisition and Synchronization ...22
 2.4.2. Energy Calipers ..23

 2.5. Implementation ..25
 2.5.1. DEEP Atom ...26

vii

 2.5.2. Implementation Details ...32
 2.5.3. DEEP Testbed ...36

 2.6. Results ..36
 2.6.1. Evaluation of Overhead ..37
 2.6.2. Power Measurement Characterization ...38

 2.7. Conclusions ..39

3. HARD DISK DRIVE ENERGY ESTIMATION ...42

 3.1. Background and Related Work ..43

 3.2. Architecture ..47

 3.3. Energy Measurement ...50

 3.4. I/O Monitoring ...52
 3.4.1. Important Kernel Routines ..52
 3.4.2. I/O Monitoring Details ...54

 3.5. HDD Energy Model ...58
 3.5.1. Detecting Disk Activity ...58
 3.5.2. Model Formulation ...60
 3.5.3. Multiple File Writes ..62

 3.6. Implementation and Integration ...63

 3.7. Results ..64
 3.7.1. System Evaluation ...65
 3.7.2. Comparison to Direction Energy Measurement 70

 3.8. Conclusions ..73

viii

4. ENERGY EFFICIENT ADAPTIVE DATA COMPRESSION 75

 4.1. Background and Related Work ..76
 4.1.1. Computation versus Communication ..76
 4.1.2. Datacomp ..78

 4.2. Impact of Data Compression on Energy ..78

 4.3. DEEPcompress ..81

 4.4. Results ..83
 4.4.1. Platform Energy Efficiency ...84
 4.4.2. Component Energy Efficiency ...86

 4.5. Conclusions ..88

5. ENERGY AWARE TASK SCHEDULING ..90

 5.1. Background and Related Work ..91
 5.1.1. Resource Contention in Multiprocessing Platforms 91
 5.1.2. Completely Fair Scheduler ...94
 5.1.3. Performance Monitoring Unit ..95

 5.2. Architecture ..96
 5.2.1. OPJ ...97
 5.2.2. Priority Assignment for Efficient Co-Scheduling 98
 5.2.3. Task Promotion ...99
 5.2.4. Scheduling Details ..101

 5.3. Implementation ..103
 5.3.1. Modifications to CFS ..103
 5.3.2. Scheduling Classes ..104
 5.3.3. Platform Support ...105

ix

 5.4. Results ..106
 5.4.1. Benchmark Selection ...107
 5.4.2. Energy and Performance Benefits ..108
 5.4.3. Impact of Resource Contention ...112

5.5. Conclusions ..115

6. CONCLUSION ...117

 6.1. Limitations and Future Work ...117

 6.2. Dissertation Conclusions ...120

BIBLIOGRAPHY ...123

x

LIST OF FIGURES

1.1. Rapidly increasing energy costs of data center server platforms 2

1.2. Cloud computing energy usage compared to that of various countries 2

1.3. The modes of energy consumption due to a typical data center computing

platform ...3

2.1. The hardware architecture of the DEEP platforms ..18

2.2. Energy caliper usage example through insertion at target code section 24

2.3. SATA hard drive with instrumented power supply cable containing a 0.1Ω

current sensing resistor ...26

2.4. The Atom board with the memory module in the foreground. A riser card

with a current sensing resistor attaches the memory module to the board 27

2.5. Atom motherboard with attention to the regulator circuit’s inductor 28

2.6. Leads enabling use of the inductor’s resistance for current sensing 28

2.7. Power spectral density of the power supply signal for the Atom board 32

xi

2.8. Pseudocode for implementing time-synchronization of energy data 34

2.9. Scalability and overhead for the offline and online DEEP Atom. Numbers in

parentheses are the number of monitored code sections ...38

3.1. The HDD power measurements during execution of an application that issued

a data write request ...45

3.2. The different file system layers that each data I/O request must traverse in

Linux (kernel 2.6.31-14) before being issued to the SATA HDD for writing to the

physical sectors of the disk ...48

3.3. The architecture of the HDD Energy Estimation System. The HDD energy

model is used with I/O monitoring to enable per-process HDD energy attribution ...49

3.4. A snippet of the log of energy measurements provided by DEEP with

component-resolved energy data, the synchronization signal values and the TSC

values. Only the HDD energy measurements are of concern in this chapter 51

3.5. The sequence of kernel routines and data structures required to handle a data

write request to the HDD ..54

3.6. A sample log dump for two important kernel routines. I/O requests are

mapped to causative processes by comparing inode numbers from the routines 56

xii

3.7. Mapping PIDs to block device I/O requests using inode numbers 57

3.8. Steps involved in obtaining the inode number from a bio structure 57

3.9. The energy measurement logs provided by DEEP are analyzed to detect the

periods during which the HDD is active due to a file write request. The energy for

these periods is the HDD energy consumed for the write request 59

3.10. Histogram for energy consumption during 100 repetitions of an HDD write

trial using the same file size ..60

3.11. The observed relationship between file size and HDD energy consumed for

the test HDD ...61

3.12. Sample outputs from the ioJoules interface for the HDD energy estimation

system ...64

3.13. Accuracy of HDD energy prediction compared to power log analysis 65

3.14. Accuracy of HDD energy prediction for multiple file write requests 66

3.15. CPU power consumption with and without kernel I/O monitoring 68

3.16. RAM power consumption with and without kernel I/O monitoring 68

xiii

3.17. Comparison of energy using direct measurement during benchmark

execution, energy estimation system's model prediction, and power log analysis 71

3.18. Benchmark application execution lifetime versus disk activity period 72

4.1. Pseudocode for implementation of the DEEPcompress algorithm 82

4.2. The DEEPcompress algorithm creates significant energy savings during

upload of various types of data files ...85

4.3. DEEPcompress adapts its compression choice as it detects variations in the

wireless network and system energy consumption characteristics 86

4.4. DEEPcompress can also be used for reducing energy consumption of

subsystems, such as for the IEEE 802.11g (WiFi) interface here. Instead of total

system energy, the WiFi interface's energy is used as the DEEPcompress

algorithm's optimization objective ..87

5.1. The co-run degradation problem is illustrated with four benchmark

applications from the UnixBench suite on a quad-core CPU. Execution times

when the four applications execute in parallel are compared to when each is

executed individually ..93

5.2. The Energy Aware Scheduler (EAS) uses the red-black tree data structure

where each node represents a task. The OPJ value for a task is used as the key for

xiv

its node ..98

5.3. EAS uses a modified red-black tree where each node has an additional value

attached to it. This value represents the size of the tree if the corresponding node

was the root ...100

5.4. EAS performs a number of important steps between the scheduling of tasks.

These steps are in addition to features borrowed from CFS 102

5.5. EAS creates its own scheduling class in addition to the standard scheduling

classes provided by the Linux kernel ..104

5.6. Execution time and platform energy consumption for all benchmarks 110

5.7. CPU and memory energy consumption for each of the benchmarks 111

5.8. Execution time and energy consumption without L2 cache contention 113

5.9. Execution time and energy consumption with L2 cache contention 114

xv

LIST OF TABLES

2.1. Characterization of DEEP Atom synchronization accuracy and drift 35

2.2. Characterization of DEEP Atom power measurement instrumentation 39

3.1. The HDD energy estimation system's prediction accuracy 67

3.2. The average power consumption overhead for the CPU and RAM 69

3.3. The average performance overhead for some common applications 69

4.1. Impact of data compression on energy consumption for file upload 80

xvi

ACKNOWLEDGEMENTS

Foremost, I would like to express my deepest gratitude towards Dr. William J.

Kaiser for his guidance throughout my graduate education. He has been more than

a graduate adviser by helping my developments beyond a researcher with his

constant support of all my endeavors from powerlifting to teaching and mentoring

other students.

Also, I want to thank my committee members Dr. Gregory J. Pottie, Dr. Mani B.

Srivastava and Dr. Lixia Zhang for their excellent graduate courses, which I was

fortunate enough to attend, and their feedback throughout the important phases of

my graduate research that has finally culminated in this dissertation. Furthermore,

our close collaborators, namely Dr. Peter Peterson and Dr. Peter Reiher, have

been very encouraging of this research and their inputs have been invaluable.

Finally, words cannot even begin to express the immense amount of support I

have received from my family and my lovely wife Ki Young through all the

tribulations of my doctoral research. They have made this possible.

xvii

VITA

2003 - 2007 Undergraduate study at IIT, Kharagpur

 Best Computer Science Undergraduate Thesis

2007 B. Tech. in Computer Science and Engineering

 Graduated with Honors

2007 - 2008 Graduate study at IIT, Kharagpur

 Teaching Assistant, Operating Systems and Digital Circuits

2008 M. Tech. in Information Technology

2008 - 2014 Graduate study at UCLA

 Graduate Student Researcher

2010 M.S. in Electrical Engineering

 Qualcomm Fellowship Recipient

PUBLICATIONS

D. Singh and W. Kaiser, "Energy efficient task scheduling on a multi-core

xviii

platform using real-time energy measurements." Accepted: International
Symposium on Low Power Electronics and Design (ISLPED), 2014.

B. Spiegel, M. Kaneshiro, M. Russell, A. Lin, A. Patel, V. Tashjian, V. Zegarski,
D. Singh, S.Cohen, M. Reid, C. Whitman, J. Talley, B. Martinez, and W. Kaiser,
"Validation of an acoustic gastrointestinal surveillance biosensor for
postoperative ileus." Journal of Gastrointestinal Surgery, 2014.

M. Kaneshiro, W. Kaiser, M. Russell, A. Patel, V. Tashjian, V. Zegarski, D.
Singh, S. Cohen, M. Reid, C. Whitman, J. Talley, B. Martinez, and B. Spiegel,
"Characterizing gastrointestinal (GI) motility with a computer-aided, non-invasive
acoustic sensor: proof-of-concept testing in normal controls vs. postoperative
patients." Digestive Disease Week (DDW), 2014.

J. Yan, C. Lonappan, A. Vajid, D. Singh, and W. Kaiser, "Accurate and low-
overhead process-level energy estimation for modern hard disk drives." IEEE
International Conference on Green Computing and Communications (GreenCom),
2013.

D. Singh and W. Kaiser, "Energy efficient network data transport through
adaptive compression using the DEEP platforms." IEEE International Conference
on Wireless and Mobile Computing, Networking and Communications (WiMob),
2012.

P. Peterson, D. Singh, W. Kaiser, and P. Reiher, "Investigating energy and
security trade-offs in the classroom with the Atom LEAP testbed." USENIX
Cyber Security Experimentation and Test (CSET), 2011.

X. Xu, D. Singh, M. Batalin, and W. Kaiser, "StepFit: a novel fitness evaluation
system." International Conference on Body Area Networks (BodyNets), 2011.

D. Singh and W. Kaiser, "The Atom LEAP platform for energy-efficient
embedded computing." Report, University of California, Los Angeles, 2010.

D. Singh, S. Soundararaj, S. Kundu, and A. Pal, "Low-power microcontroller for
wireless sensor networks." IEEE Region 10 Conference (TENCON), 2009.

1

CHAPTER 1

INTRODUCTION

The energy consumption of computing and communication equipment is

increasing at a staggering rate and the resulting costs have become critical to both

end-users and corporations alike [Sca06]. For end-users, the introduction and

proliferation of a number of personal computing devices, like smartphones, in the

last decade has further accelerated the rising energy consumption due to

computing equipment. A standard smartphone is now expected to consume the

same amount of energy as a refrigerator and can contribute to a significant portion

of household's electricity consumption [Phil13].

Large companies and corporations also face urgent problems with the constantly

increasing energy costs of data center servers as illustrated in Figure 1.1 [Sca06].

Figure 1.2 shows that the annual worldwide energy cost of only cloud computing

has exceeded that of countries like Germany and India in 2013 [Phil13].

2

Figure 1.1. Rapidly increasing energy costs of data center server platforms.

Figure 1.2. Cloud computing energy usage compared to that of various countries.

3

As illustrated in Figure 1.3, the energy costs associated with computing

equipment encompass multiple modes of energy usage and a typical data center

server dissipates energy due to the following [Ras09]:

1) Heating, ventilation and air conditioning (HVAC).

2) Computing, network and storage energy consumption.

3) Lighting and auxiliary equipment.

4) Power supply losses.

Figure 1.3. The modes of energy consumption due to a typical data center

computing platform.

4

For embedded or mobile platforms, like smartphones, the HVAC or cooling

system itself is usually not as important. Instead, batteries and other energy

storage techniques become vital for these platforms [PFW11].

This dissertation primarily focuses on the computing, networking and storage

energy consumption for modern computing platforms. The design and

implementation of a new platform architecture called DEEP (Decision-support for

Energy Efficient Processing) to measure and enable optimization of platform

energy consumption is detailed. Furthermore, the capabilities of the DEEP

platforms are utilized in the important applications of network data transport and

operating system task scheduling to improve energy efficiency.

1.1. DEEP Platforms

To provide effective decision support for improved energy efficiency in modern

computing and networking, the DEEP platforms are presented. DEEP provides

decision support through high-resolution time-synchronized direct energy

measurement capabilities for standard computing platforms. Energy

measurements for important system components, such as CPU, memory, hard

5

disk drive and others, are also provided by DEEP. DEEP is an open design that

can be rapidly deployed using standard hardware and widely-supported software

components.

DEEP includes an innovative utility called energy calipers that utilizes time-

synchronized energy measurement and kprobes [MPK06] to estimate the energy

consumption associated with execution of sections of software application code.

Energy calipers have a low-overhead, scalable and non-intrusive design. They do

not require any invasive modifications to the algorithm or software source code.

An implementation of the DEEP architecture that uses commodity hardware and

software is also presented. Evaluation reveals low processing and energy

overheads (less than 5% in most cases) on the computing platform. To enable

utilization of the DEEP platforms by other research and student groups, a testbed

consisting of multiple DEEP implementations has been created. The testbed has

been used in graduate research, collaborations with other research groups and

student education through both graduate and undergraduate courses,. The DEEP

platforms and the DEEP testbed are detailed in Chapter 2.

6

1.2. Hard Disk Drive Energy Estimation

Modern hard disk drives and operating systems frequently employ buffering

mechanisms to defer data write operations to the secondary storage device to

enable re-scheduling and optimization of these operations. This leads to an

important issue because the energy consumption of these devices is not

synchronized with the actual operating system data write requests generated by

software applications or processes. Thus, the energy consumption for these

deferred operations must be modeled and appropriately attributed to the causative

processes to improve the accuracy of application energy consumption

measurement. This is especially important for applications that perform a large

number of data write operations to secondary storage. Such an energy estimation

system for a modern hard disk drive is presented in Chapter 3. The system

implemented using the DEEP platforms and enables process-level accounting of

disk drive energy consumption.

1.3. Energy Efficient Adaptive Data Compression

The capabilities of the DEEP platforms are demonstrated through their application

to the problem of network data transport. A data file is transported over a network

7

link and the energy efficiency of the file transfer requires improvement. Data

compression is applied as a solution to this problem to reduce the payload being

transferred and thus reduce energy costs. Energy measurement using DEEP

reveals the impact of changing network and system conditions on the energy

efficiency of some widely-utilized compression schemes.

An adaptive data compression algorithm is developed. This algorithm uses the

high-resolution time-synchronized energy measurements from DEEP to

dynamically select the most energy efficient compression schemes. The

compression scheme selection is adapted to changing network and system

conditions during the transfer of the data file. Evaluation of the adaptive

compression algorithm reveals large energy savings (about 38%) for network data

transport. The adaptive data compression algorithm and its implementation are

detailed in Chapter 4.

1.4. Energy Aware Task Scheduling

Operating system task scheduling is a critical area of research that has a well-

known and significant effect on the energy efficiency and performance of the

8

computing platform. In addition, other important attributes such as response time,

task deadlines, fairness in allocation of resources and interactivity are also

impacted by the task scheduler.

An energy aware task scheduler is presented in Chapter 5. DEEP's energy

measurements and data from the CPU performance measurement unit are used to

identify tasks that create inefficiencies due to resource contention with other

tasks. Such tasks are prevented from being scheduled together and tasks that are

more efficiently co-scheduled together are selected for execution. This drastically

reduces co-run degradation among tasks and significantly improves energy

efficiency.

The energy aware task scheduler is implemented on a standard Linux kernel and

is compared to the Linux task scheduler using a set of common benchmark

applications. Comparison on a quad-core multiprocessing system demonstrates

improvements in both performance by about 24% and energy efficiency by about

30%.

9

1.5. Summary of Contributions

The novel contributions of this dissertation are summarized as follows:-

1) Design of the DEEP platforms, which provide infrastructure for time-

synchronized component-level energy measurement in commodity computing

platforms.

2) A set of utilities called energy calipers to enable measurement of energy

consumption during execution of sections of software or application code

without modifications to the source.

3) Implementation of multiple platforms based on the DEEP design to form a

networked testbed that has been utilized for both research and student

education.

4) Design and implementation of a hard disk drive energy estimation system that

complements DEEP to enable accurate process-level estimation of energy

usage due to deferred secondary storage operations.

5) An adaptive data compression algorithm that uses energy measurements

provided by DEEP to dynamically select compression schemes to adapt to

changing network conditions, such as available data transfer bandwidth, and

10

leads to significant improvement in the energy efficiency of network data

transport.

6) An energy aware task scheduler that leverages time-synchronized energy

measurements along with the data from the CPU performance measurement

unit to advance the energy efficiency of multi-core computing platforms.

11

CHAPTER 2

DEEP PLATFORMS

This chapters details the DEEP (Decision Support for Energy Efficient

Processing) platforms. These platforms enable improvements in energy efficiency

for computing platforms by providing system and subsystem energy

measurements. This chapter begins with Section 2.1, which overviews previous

work related to energy measurement for computing platforms. Section 2.2

summarizes the objectives that have guided the design of the DEEP platforms.

Section 2.3 presents the hardware architecture of the DEEP platforms. Section 2.4

details the DEEP platform software architecture. Section 2.5 describes an

implementation of the DEEP architecture, called DEEP Atom, that is based on an

Intel Atom platform and overviews the DEEP testbed along with its applications

in education and research. Section 2.6. presents results of characterization and

evaluation of DEEP. Section 2.7 concludes this chapter. A portion of the material

presented in this chapter has been published previously [SK12].

12

2.1. Background and Related Work

Since platform energy monitoring is required to enable effective optimization of

energy consumption, a significant amount of the previous research exists on

estimating the energy consumption of computing platforms. Each of these works

can be categorized by their use of energy models, direct measurement or a

combination of both of these methods in the design of their energy monitoring

framework.

2.1.1. Energy Models

Model-based energy measurement refers to methods that estimate the energy

consumption of computing systems through construction of energy models.

Linear state-based models are widely utilized [RSR07] and assume the existence

of a relatively small number of power consumption states for a computing

platform. Such models have degraded accuracy compared to direct energy

measurements, but are utilized in prior research for applications like thermal

management [MB05] that don’t require extreme accuracy of estimation.

Performance counter based energy models are an example where the accuracy of

estimation is improved through the use of models based on hardware registers

13

called performance counters [IM03], [RSM09] that are part of a modern CPU's

performance monitoring unit. Intricate non-linear models and machine learning

techniques, like Mantis [ERK06] that learns the energy-consumption states of

computing systems by utilizing different workloads, have also been utilized in

prior research. They are computationally expensive and require extensive training

[KOI10], but still demonstrate limited accuracy improvements over simpler

models [MAC11].

Battery-based energy measurement systems have also been successfully deployed

in prior research. They are based on queries to the ACPI interface of a device’s

"smart battery," which can periodically report rudimentary statistics such as the

current capacity and drain rate. These measurement systems are feasible sources

of information for many mobile devices such as smartphones [RSI08].

Applications, such as PowerTOP [Gra08], have utilized the ACPI battery

interface and other system statistics to estimate the energy consumption of

devices. However, due to inherent limitations in the ACPI battery interface, these

techniques suffer from degraded accuracy and extremely limited data sampling

rate.

14

Prior systems, like Sesame [DZ11] and WattProbe [Pra03], utilize hybrid methods

where energy measurements (such as from battery monitors) are combined with

energy models to improve measurement accuracy. ECOSystem [ZEL02]

augments the Linux operating system to consider energy as a first-order resource.

PowerScope [FS99] is a hybrid system that utilizes statistical profile-based

models for software in combination with limited sampling rate instrumentation.

Simulation based energy estimation frameworks, like SimplePower [YVK00],

Wattch [BTM00] and DRAMsim [RCJ05], are also widely utilized in prior

research because they enable rapid and effortless deployment. Their critical

drawback is the inability to completely capture the run-time dynamism and

variability present in the power consumption of modern computing systems

[MAC11], [WAB10].

2.1.2. Direct Measurement

Direct energy measurement platforms, which have provisions for the direct

measurement of energy consumed by a computing platforms and its subsystems,

offers an important advantage over model-based energy estimation methods

15

because these platforms provide superior measurement accuracy. They also

capture the run-time dynamism and variability present in the energy consumption

characteristics of modern computing systems. They are also required in

constructing and evaluating energy models since they provide the "ground-truth"

about platform energy consumption. However, the need for custom-built

hardware and the assembly expertise has inhibited their availability [MAC11].

A limited number of direct measurement studies are presented in prior work and

they explore the energy consumption characteristics of computing systems from

servers [RSM09] to smartphones [BBV09], [CH10]. The LEAP (Low-Power

Energy Aware Processing) platforms are a set of direct energy measurement

systems that have assisted energy-efficiency focused computing research

[MHY06], [SMK08]. The LEAP systems are designed to be extremely integrated

custom-designed platforms targeted specifically at wireless sensor network

research. This diminishes their portability and prevents their use in decision

support for general-purpose computing platforms and applications. Finally,

promising new technologies integrating power measurement capabilities with the

computing system architecture have emerged in recent years [NRA11].

16

2.2. Design Objectives

This section describes the important objectives that guide the design of the DEEP

platform architecture. Foremost, the DEEP architecture includes provisions for

component-resolved measurement of energy consumption. Thus, the platform

measures the energy consumption for important hardware subsystems, including

memory modules, secondary storage devices, and the CPU. The energy

consumption data for individual subsystems of a computing system assists with

component-resolved energy inspection, fine-grained power management through

better guidance in control of each subsystem and opportunities for improved

energy efficiency through utilization of component-resolved decision support

[MAC11].

Measuring energy consumption associated with the execution of software events

on the computing system enables the inspection and improvement of energy

efficiency of software applications. The DEEP architecture provides event-

resolved measurement that is readily applicable to the inspection of the energy

consumption during execution of software application code or specific events in

the operating system.

17

Platform architectures designed on custom-built hardware, such as the LEAP

platforms [MHY06], are not widely-supported and are unable to explore the

energy efficiency of a large space of applications that are developed for

commodity hardware. Hence, the ability to inspect the energy consumption of a

range of commodity computing platforms is important. Furthermore, modern IT

equipment serves in applications beyond simple computing and networking. For

example, smartphones are utilized in medical sensing applications through

extension of the core computing device by addition of sensing hardware.

Platforms designed with custom-built hardware and proprietary software result in

diminished extensibility due to the need for a prohibitive amount of effort in

making even simple extensions. To ensure accomplishment of this objective,

DEEP is not designed using custom-built computing hardware, but instead is

designed and implemented using standard commodity computing platforms.

Large-scale adoption of direct energy measurement platforms has not been

possible because most prior platforms either don’t have an open-source design,

are tedious to assemble, or employ custom-built components [MAC11]. In

contrast, DEEP presents an open-source design based on commodity hardware,

18

readily-available measurement instrumentation, widely-supported open-source

software, and straight-forward assembly to create a platform that can be rapidly

deployed by members of the research community.

2.3. Hardware Architecture

Figure 2.1. The hardware architecture of the DEEP platforms.

The hardware architecture for the DEEP platforms is illustrated in Figure 2.1. The

computing platform executes all software applications and networking

subroutines, and contains important computing subsystems such as the processor,

memory modules and secondary storage units. Rather than targeting a specific

19

platform or system architecture, an abstraction of a standard computing system is

used in the DEEP platform architecture to support an open design, and to preserve

portability of the platform design. The DEEP platform architecture is based on

standard widely-supported computing hardware rather than custom computing or

networking boards with non-standard interfaces. Thus, the platform architecture

supports rapid extension of the core design, through addition of peripheral

hardware, like sensors, actuators and wireless radios, to meet requirements for a

wide range of applications.

2.3.1. Energy Measurement and Data Acquisition Hardware

Low-tolerance current sensing resistors are inserted in each of the input power

supply lines of the subsystems of the platform. This current measurement

instrumentation is used for component-resolved energy measurement. The

instantaneous electric current flowing into a subsystem or component is computed

using the voltage difference across the terminals of the respective sense resistor

along with its resistance value. Instantaneous power consumption is computed

using the obtained instantaneous electric current and supply voltage value for

each subsystem.

20

The data acquisition unit (DAQ) acquires power measurements by periodically

sampling the required voltage values from the terminals of the resistor-based

energy measurement instrumentation added to the platform hardware. This unit

then transfers the acquired data to the computing system for calculation of energy

consumption. The DAQ is a separate unit and is not integrated with the rest of the

computing hardware in the DEEP platforms.

2.3.2. Timing Mechanism and Synchronization Signal

To enable event-resolved energy measurement, the platform needs to synchronize

the timing of software events with that of energy measurements acquired by the

DAQ. To accomplish this, a high-resolution timing mechanism is required to

time-stamp the occurrence of both software events and energy measurements.

Most modern CPUs provide access to hardware timing registers that are utilized

as the timing mechanism required for synchronization. The most commonly

available high-resolution timing mechanism in commodity hardware is the time-

stamp counter (TSC) for modern Intel x86 and AMD K-series CPUs, and the

clock-cycle counter for ARM platforms.

21

To complete the synchronization of energy measurements with software events, a

synchronization signal is used in conjunction with the timing mechanism to assign

time-stamp values to energy measurements. The synchronization signal is a

hardware signal generated by the computing system and sampled by the DAQ

along with the component-resolved power measurements. This enables the

synchronization of the DAQ data samples with the time-stamps of software events

occurring on the system. This is detailed further in the next section.

2.4. Software Architecture

The software architecture of the DEEP platforms provides, in addition to

acquisition of the component-resolved energy measurements, an important

advance by supporting event-resolved energy measurement. The DEEP platforms

are based on the Linux operating system in support of an open design and the

software architecture is implemented as a set of loadable Linux kernel modules to

enable portability of the modules to other Linux-based computing platforms. The

details of the software architecture are presented in the following subsections and

are based on Linux kernel version 2.6.32.

22

2.4.1. Data Acquisition and Synchronization

The DAQ hardware is controlled by software modules that execute on the

computing platform. A number of parameters, such as data sampling frequency,

are controlled by these modules. The data acquisition and control modules also

facilitate the acquisition of data samples containing the energy measurements for

each of the hardware subsystems.

The synchronization software module, by using the synchronization signal and

timing mechanism, performs the time-synchronization of energy measurements

obtained from the DAQ unit. Synchronization is accomplished when the

synchronization module changes the value asserted on the synchronization signal

while simultaneously recording the time-stamp provided by the timing

mechanism. The DAQ acquires the energy consumption measurements along with

the value asserted by the synchronization signal. During processing of the

obtained data samples when a change in the synchronization signal's value is

detected, the corresponding recorded time-stamp value is assigned to the data

sample at which the change is detected. This completes the synchronization of the

obtained data samples with the corresponding TSC values.

23

2.4.2. Energy Calipers

Energy calipers are innovative software utilities that present an advance in

investigating the energy efficiency of software applications. They use the time-

synchronized energy measurements to estimate the energy consumption

associated with execution of sections of program code. Energy calipers are based

on Kprobes [MPK06] and dprobes [Bha03], which are standard run-time

debugging mechanisms for kernel and user-space code in the Linux operating

system. Thus, energy calipers can be inserted at any instruction in both kernel and

user-space application code during run-time without any need for recompilation,

modification or even availability of the application’s source code.

A pair of start and end energy calipers consists of a pair of Kprobes or dprobes

that are inserted at the beginning and concluding instructions of a section of

kernel or user-space code that is to be monitored for energy measurement. Each of

these Kprobes or dprobes records the process ID (PID) and time-stamp value,

which is provided by the timing mechanism, corresponding to the instant they are

executed on the computing system. This creates a record of the time-stamp values

that identify the beginning and completion of execution of the target section of

24

code. Energy measurements that have time-stamps outside the recorded interval

of execution are excluded. The remaining measurements are utilized to compute

the energy consumed during execution of the target section of code. Energy

calipers can be multi-instantiated and can overlap i.e. multiple pairs of calipers

may be used to simultaneously measure the energy consumption during execution

of different, and possibly overlapping, sections of code.

Figure 2.2. Energy caliper usage example through insertion at target code section.

Energy calipers can also be utilized in cases where the target section of code may

be preempted before it has completed execution as illustrated in Figure 2.2. The

25

operating system scheduler’s context-switch function is instrumented, without any

intrusive kernel modification, with an energy caliper called the preemption

tracker. When an executing section of code is pre-empted or resumed by a call to

the scheduler’s context-switch function, it results in the recording of time-stamp

and PID values indicating a process’ preemption and resumption. Along with the

target process’ PID reported by the start and end energy calipers, the time-stamps

are utilized to compute the energy consumption that occurs during execution of

the target code.

2.5. Implementation

The DEEP architecture can be implemented on many standard computing

platforms and the ease of assembly enables researchers to rapidly deploy their

own DEEP platforms without special assistance or expertise. This section presents

an example implementation of the DEEP architecture using an Intel Atom

computing platform along with assembly details. A detailed evaluation that

characterizes the time synchronization and overhead of the platform

implementation is also included in this section. An alternate offline version of the

implementation is also detailed for applications that require reduced overhead

26

2.5.1. DEEP Atom

The DEEP Atom implementation is based on the Intel Atom N330 CPU. The

Atom CPU is designed for deployment in portable devices such as netbooks,

mobile devices and tablet computer systems. This implementation of the DEEP

platform architecture uses the standard Intel D945GCLF2 Atom board. The DEEP

Atom was also previously referred to as Atom LEAP [SPR10], but was renamed

in 2012 as DEEP Atom to avoid confusion with older LEAP projects [MHY06].

Figure 2.3. SATA hard drive with instrumented power supply cable containing a

0.1Ω current sensing resistor.

27

Energy measurement instrumentation for the computing subsystems is constructed

as a wiring harness that can be rapidly deployed using any off-the-shelf current

sensing resistors of resistance values between 0.05Ω and 0.1Ω. The hard-drive is

instrumented through insertion of a current sensing resistor into the exposed

SATA power cable as shown in Figure 2.3. The memory module utilizes a riser-

card with a current sensing resistor and this riser-card is inserted between the

Atom board’s memory slot and the memory module as illustrated in Figure 2.4.

Figure 2.4. The Atom board with the memory module in the foreground. A riser

card with a current sensing resistor attaches the memory module to the board.

28

Figure 2.5. Atom motherboard with attention to the regulator circuit’s inductor.

Figure 2.6. Leads enabling use of the inductor’s resistance for current sensing.

29

Modern CPUs enable the CPU core to control its input supply voltage. The CPU

accomplishes this through a voltage regulator circuit that provides the CPU with

the requested supply voltage. Since there is no exposed power cable for the Atom

N330 on the D945GCLF2 motherboard, the voltage regulator circuit on the board

is utilized for energy measurements. A current sensing resistor can be placed in

series with the supply from the regulator circuit to the CPU. This can be

accomplished by making modifications to the terminals of the exposed inductor

that is part of such voltage regulator circuits on commodity motherboards. This

method requires some minor external modification to the motherboard’s circuitry

and makes the instrumentation process slightly tedious. Thus, alternatively the

inductor’s resistance is used directly as a current sensing element as shown in

Figure 2.5 and Figure 2.6.

Once the measurement instrumentation is assembled, the leads from the terminals

of the current sensing elements for each instrumented subsystem are connected to

the input channels of the Data Acquisition unit (DAQ). A National Instruments

USB-6215 DAQ is utilized in this implementation and it interfaces to the

computing system through one of the available USB ports.

30

The Atom N330 processor provides a 64-bit hardware register called the time-

stamp counter (TSC) that is a high-resolution clock with a resolution of a single

processor cycle. The motherboard also provides a serial and parallel port. The

TSC is utilized as the timing mechanism and the parallel or serial port is used to

generate the synchronization signal needed by the DEEP architecture for

synchronization of energy measurements with operating system events. The

synchronization signal is connected to an input channel of the DAQ and this

signal’s value is sampled along with the values from the energy measurement

instrumentation.

The DEEP Atom implementation is extensible through addition of peripheral

hardware. Standard I/O ports, like USB, are used to add peripherals like wireless

radios and sensors that enable the DEEP implementation to meet the requirements

of different applications. An inexpensive interface cable, such as a USB cable, is

instrumented with a current sensing resistor and used for peripherals powered by

the I/O ports. For an externally powered peripheral the external power supply

cable is directly instrumented with current sense resistors using a technique

similar to the one used for the SATA hard drive previously shown in Figure 2.3.

31

The hardware for this implementation is rapidly deployed from the constituent

components and provides decision-support for portable/netbook-class computing

systems or networking equipment like high-end routers. The open design, use of

commodity hardware and relatively straightforward assembly instructions

[SPR10] encourage large-scale adoption of the DEEP platforms, and make the

DEEP Atom implementation deployable by research groups and students.

The DEEP architecture is also implemented as an offline version that is ideal for

applications that require a reduced overhead. In contrast to the online version

previously presented in this section, the target computing system contains only the

measurement instrumentation, energy caliper data recording and synchronization

signal generation while the data sampling and energy caliper computations are

performed off-board by another system which controls the DAQ. This reduces

both the processing and energy overhead, but requires an external device for data

collection from the DAQ, synchronization and energy computation using the

energy caliper reports. The delay in obtaining measurements is increased and this

version of the implementation is not designed for online power management, but

for post-experimental analysis of the energy measurements.

32

2.5.2. Implementation Details

The DAQ is programmed with a number of different parameters. Among these

parameters, the data sampling frequency is most important. High sampling

frequencies allow accurate measurement of the power consumption for a

subsystem, but generate an increased amount of data. Thus, the sampling

frequency is selected such that it can capture the power supply signal for a

subsystem without degradation in accuracy while ensuring that the amount of data

generated is within manageable limits.

Figure 2.7. Power spectral density of the power supply signal for the Atom board.

33

The power spectral density analysis of the power supply signals of the subsystems

for the Atom N330 computing system reveal a very small power contribution

(≤5%) from very high frequency (≥5kHz) components as shown in Figure 2.7.

This leads to selection of the optimal sampling frequency as 10kHz so that the

signal is sampled at the Nyquist rate for capturing most of the signal’s power

(>95%). Thus, a 100µs sampling resolution or a 10kHz sampling frequency is

sufficient for the DAQ of the DEEP Atom.

To verify the accuracy of the time-stamps provided by the synchronization

scheme for each data sample, an event workload is created by the operating

system such that it has an immediate impact on the power consumption of a

subsystem. The time-stamp value for this event is recorded by the operating

system. This value is then matched to time-stamps predicted by the

synchronization scheme. The index of the data sample with the closest match to

the event’s time-stamp is selected as the predicted index. This value identifies the

data sample at which the synchronization scheme predicts that the operating

system event began. The measured index is derived as the sample index at which

a change in the power consumption of the subsystem caused by the event is

34

observed. This value identifies the sample at which the operating system event

began. Predicted and measured indices are compared to derive the index error.

Data # Time sequential array of acquired rows or samples of data
TSC[] # Queue of recorded time-stamps for each ‘Sync’ toggle
C[] # Queue of time-stamp off-sets
K[] # Queue of synchronization scale factors
k = 0 # Current scale factor
t = 0 # Previous time-stamp off-set value
T = 0 # Current time-stamp off-set value
N = 0 # Sample index number of previous ‘Sync’ toggle
S = 0 # ‘Sync’ signal toggles between positive & non-positive

for each sample in Data # SI is sample index here

Sample = Data[SI] # Get next data sample
 if (S*Sample['Sync'] <= 0) # Detect toggle in ‘Sync’
 T = TSC.pop() # Time-stamp for the toggle
 C.push(T)
if (t > 0) # Toggle detected before?
 K.push((T-t)/(SI-N))
 N = SI
 t = T
 S = Sample['Sync']

S = 0; T = 0; N = 0;
for each sample in Data # SI is sample index here
 Sample = Data[SI] # Get next data sample
 if (S*Sample['Sync'] <= 0) # Detect toggle in ‘Sync’
 if (K.isEmpty())
 break
 T = C.pop()
 k = K.pop()
 N = SI

S = Sample['Sync']
 Sample['TSC'] = T + k*(SI-N)# Predicted time-stamp
 Data[SI] = Sample # Write back time-stamp

Figure 2.8. Pseudocode for implementing time-synchronization of energy data.

35

The implementation of the synchronization algorithm is illustrated using

pseudocode in Figure 2.8. The synchronization between the data samples and the

time keeping mechanism can drift over time, and this can result in degraded

accuracy. To limit this drift, the synchronization module needs to periodically

change the value of the synchronization signal to cause re-synchronization. The

value of the time period after which this process is repeated is called the re-

synchronization interval and is determined by the observed drift in the

synchronization. As illustrated in Table 2.1, the synchronization is accurate to

within one sample’s resolution (100µs) and does not drift noticeably for up to a

few seconds. Thus, an effective value for the re-synchronization interval is one

second and this value is used in the DEEP Atom implementation presented in this

chapter.

Table 2.1. Characterization of DEEP Atom synchronization accuracy and drift.

Event Time
(s)

Event Time
Stamp

Measured
Index

Predicted
Index

Index
Error

2.2 27181544764 21769 21769 0
7.4 35473163152 73721 73721 0
16.6 50137785508 165604 165603 1

36

2.5.3. DEEP Testbed

To enable rapid access to the DEEP platforms, a networked testbed consisting of

multiple DEEP Atom implementations and a DEEP x86-64 server-class

implementation has been created. This testbed is accessible to students and

research groups that are interested in using the DEEP platforms, but lack the

resources to assemble their own platforms.

Multiple courses in computer science and electrical engineering (EE180D, CS188

and EE202C) have employed the testbed for education and research. Some of the

results pertaining to the trade-offs between energy usage and security from course

projects have been published previously [PSK11], [FPR12]. The DEEP testbed

has even been used by our collaborator Dr. Peter Peterson during research for his

doctoral dissertation concerning the use of adaptive data compression [Pet13].

2.6. Results

This section presents results of evaluation and characterization of the DEEP

platform implementation. In particular, the DEEP Atom implementation is

analyzed.

37

2.6.1. Evaluation of Overhead

To evaluate the overhead of the DEEP implementations, two metrics are used: 1)

execution time and 2) energy consumption. The execution times for a set of

common benchmark applications are measured both with and without the DEEP

current sensing instrumentation, synchronization and energy caliper system. The

execution times for both cases are compared to determine the overhead introduced

by the DEEP platform architecture.

For energy overhead measurement the energy consumption by the offline

implementation without synchronization and energy calipers is compared to the

energy for complete online and offline implementations. The overhead for using

multiple pairs of energy calipers to simultaneously monitor multiple sections of

application code is evaluated to characterize the scalability of the system.

We analyze both the online and offline versions of the DEEP Atom

implementation and the results are illustrated in Figure 2.9. The DEEP Atom

demonstrates low overhead and excellent scalability when simultaneously

monitoring multiple code sections with energy calipers.

38

Figure 2.9. Scalability and overhead for the offline and online DEEP Atom.

Numbers in parentheses are the number of monitored code sections.

2.6.2. Power Measurement Characterization

To characterize DEEP Atom's power measurement instrumentation's accuracy and

precision, an oscilloscope with a current probe and two voltage probes is used.

One voltage and current probe is attached to a terminal of the current sensing

resistor for the memory module. Thus, both input current and voltage for the

memory module are measured by the oscilloscope. The DEEP platform also

measures the voltage and current using its own measurement instrumentation.

This enables both instruments to calculate the power consumption of the memory

39

module. DEEP's measurements and the oscilloscope's measurements are

synchronized using the synchronization signal generated by DEEP. The DAQ and

the second voltage probe of the oscilloscope both measure the value of this signal

to enable synchronization of measurements between the two instruments.

The power consumption data for the oscilloscope is used as the baseline or ground

truth and the data obtained using DEEP's measurement instrumentation is

characterized using this baseline. A million data samples for power consumption

for the DAQ are collected and compared to values obtained using the

oscilloscope. The results of this comparison are presented in Table 2.2.

Table 2.2. Characterization of DEEP Atom power measurement instrumentation.

Metric Value
Average Error 0.18 %

Worst-Case Error 0.21 %
Uncertainty Interval 0.01 W

2.7. Conclusions

The DEEP platforms presented in this chapter provide component-resolved direct

energy measurements that can be utilized for decision support in important areas

40

of computing and networking energy efficiency. The rapidly deployed

implementation of the platforms using commodity hardware and standard open-

source software enables their large-scale adoption by members of the community

for their research. DEEP can also measure the energy consumption associated

with the execution of software code through utilization of an innovative software

utility called energy calipers. This makes the platform ideal for investigating and

improving the energy efficiency of software applications.

An implementation of the DEEP platform architecture called DEEP Atom is

described. Evaluation of the implementation reveals low processing and energy

overhead while demonstrating excellent scalability when using energy calipers to

monitor multiple sections of software code for energy consumption. Furthermore,

the DEEP Atom's energy measurement instrumentation displays excellent

accuracy and precision of measurement.

A networked testbed consisting of multiple DEEP platforms has been created.

This enables rapid access to the DEEP platforms for research groups or students

41

that do not have the resources to implement their own platforms, but still need to

measure energy consumption for their applications.

42

CHAPTER 3

HARD DISK DRIVE ENERGY ESTIMATION

This chapter details the design, implementation and evaluation of the process-

level hard disk drive (HDD) energy estimation system for the DEEP platforms

presented in the previous chapter. HDD energy estimation is important for

applications that perform large amounts of I/O to secondary storage. The chapter

begins with an overview of previous work related to energy modeling for modern

secondary storage devices in Section 3.1. Section 3.2 presents the architectural

design of the HDD energy estimation system. Section 3.2 describes the energy

measurement infrastructure used for obtaining HDD energy consumption data.

Section 3.4 details the HDD I/O monitoring in the operating system kernel.

Section 3.5 presents the HDD energy model created using HDD I/O monitoring.

Section 3.6 summarizes the implementation and integration of the HDD

estimation system. Section 3.7 demonstrates the effectiveness of HDD energy

43

estimation system with evaluation results. Section 3.8 concludes this chapter.

Some of these results have been published previously [YLV13].

3.1. Background and Related Work

Data storage devices like hard drives create a large portion of the energy

consumption in these computing systems. The amount of storage required by

modern IT services continues to increase and I/O along with disk storage could

account for 30% of the energy consumption in a modern computing platform

[RLG08]. By underestimating the storage energy demands due to software, an

application developer could considerably negate the efforts of optimized power

management algorithms and energy efficient file systems. Thus, accurately

determining energy consumed because of an application's processes due to disk

I/O operations can lead to improved system energy efficiency.

Measuring and characterizing the energy consumed by modern secondary storage

devices and attributing it to the causative processes in the operating system is not

a trivial task. This is due to the buffering, rescheduling and optimization of I/O

write operations that exist in most modern computing systems. Therefore, actual

44

write operation of data into the physical sectors of the hard drive and the

consequent energy consumption does not occur immediately after the issuing of

corresponding write requests in software. Unlike CPU or memory operations that

usually occur in tight temporal synchronization with execution of software

instructions, the disk drive I/O operations can occur after a non-deterministic

delay.

The work presented in this dissertation is based on the GNU/Linux operating

system that maintains a page cache in the main memory for fast data access. After

issuing a data write request to the HDD, the data resides in the page cache before

being divided into multiple I/O requests. The I/O requests are then processed by

an I/O scheduler, which reorders and merges the requests to optimize disk

operations before dispatching the requests via DMA to the disk drive. In addition,

the disk controller also has a disk cache where transferred data resides before

finally being written into the physical sectors of the disk drive. Figure 3.1

illustrates the issuing of a write request to the physical sectors of the hard disk and

the rise in power consumption indicates when the hard disk drive is active. In this

case, the write operations to the disk didn’t start until the application's execution

45

was close to completion and continued for a significant time interval after the

causative program had finished issuing I/O requests and even completed its own

execution.

Figure 3.1. The HDD power measurements during execution of an application

that issued a data write request.

Previous research on HDD energy modeling has divided the energy consumption

of hard disks into various activities [HSR08]. Although the custom built

measurement system presented could enable separate measuring of energy for the

electrical and mechanical parts of a hard disk drive, it does not attribute the

energy measurements to the causative application's processes. Other approaches

have focused on modeling the hard drive power consumption [AAF09], [ZSG03]

through methods that translate the disk workload to the primitive activities of the

46

hard disk drive [AAF09] along with simulation-based methods [ZSG03] that use

disk energy simulators such as Dempsey to simulate disk I/O operations and

power simulators such as DiskSim to read I/O traces to estimate the power

consumed by each operation. While these methods were able to achieve superior

granularity in their energy models, they still did not attempt to relate the modeled

hardware power consumption to causative processes in the operating system.

Power management is also an area of focus in some methodologies [NDR08],

[ZDD04] with techniques such as write off-loading, which redirects write requests

to active hard disks in a datacenter, and energy aware cache management

algorithms that prioritize energy efficiency. A significant amount of work on

energy efficient file systems also exists [NF04], [KS92]. Distributed file systems

have been employed with the primary goal of achieving superior energy

efficiency [NF04]. The Coda file system discusses the feasibility of disconnected

operations for portable computers whereby a client can access critical data even

during temporary unavailability of shared data repositories via caching to improve

performance and possibly energy efficiency [KS92]. These approaches focus on

improving energy efficiency in the storage hardware through intelligent power

47

management, caching and file system design, but do not provide capabilities to

determine energy consumption in the disk drive due to a an application's

processes.

3.2. Architecture

The HDD energy estimation system's design is based on two critical objectives:-

1) Construction of a HDD Energy Model: this has been explored in previous

work, but it needs to adapted to the disk drive being used in this DEEP

implementation. Furthermore, the model must provide high prediction

accuracy while having low overhead.

2) Mapping of Process ID (PID) to I/O Requests: the HDD energy model itself

can only estimate HDD energy consumption values for given I/O requests, but

this energy consumption needs to be attributed to the causative processes in

the operating system. The operating system does not maintain the concept of

processes at the block device layer of the kernel as shown in Figure 3.2. This

leads to obfuscation of the PID and so the PID must be explicitly mapped

from the higher Virtual File System (VFS) layer to the lower block device

layer's I/O requests.

48

Figure 3.2. The different file system layers that each data I/O request must

traverse in Linux (kernel 2.6.31-14) before being issued to the SATA HDD for

writing to the physical sectors of the disk.

49

Figure 3.3. The architecture of the HDD Energy Estimation System. The HDD

energy model is used with I/O monitoring to enable per-process HDD energy

attribution.

The accomplish the previously mentioned design objectives, the HDD energy

estimation system's architecture consists of HDD energy measurement, I/O

monitoring and the HDD energy model. The HDD energy measurement

infrastructure is detailed in the succeeding section and provides energy

consumption data for construction of the HDD energy model. The I/O monitoring

50

is used to monitor the important routines in the kernel to enable both HDD model

construction and mapping of the I/O requests to the causative processes. The

HDD energy model estimates the energy consumption for an application's HDD

I/O requests. The complete system architecture is illustrated in Figure 3.3.

3.3. Energy Measurement

The DEEP Atom, presented in Chapter 2, is based on a computing system with an

N330 Intel Atom CPU, SDRAM memory, secondary storage, and network

interfaces, which are monitored for power consumption by a high-speed data

sampling system. By employing various event synchronization methods, the

hardware power dissipation data received from the sampling system is

synchronized with the operating system clock and kernel software events. Usage

of kprobes, jprobes or dprobes [Bha03], which enable user-defined runtime

handler execution at break-points in software code, enable fast instrumentation of

the software systems.

The DEEP platform used herein comprises of two separate disk drives: one HDD

for the GNU/Linux operating system along with the DEEP software to collect

51

energy consumption data and the second disk drive is the test HDD for

performing the write tests while measuring energy consumption. The test HDD

used is a Western Digital Scorpio Blue WD1600BEVS 160GB SATA disk drive

that operates at 5,400RPM with an 8MB cache. Isolation of the test HDD from the

operating system and energy measurement infrastructure's I/O requests ensure

minimal impact on the test HDD when modeling its energy consumption.

DEEP provides a power log at a data sampling rate of 10kHz. Figure 3.4 presents

a snippet of a sample power log file. The power measurements for the HDD are

collected by the DEEP platform running Linux kernel 2.6.31-14.

Figure 3.4. A snippet of the log of energy measurements provided by DEEP with

component-resolved energy data, the synchronization signal values and the TSC

values. Only the HDD energy measurements are of concern in this chapter.

52

3.4. I/O Monitoring

Monitoring of I/O requests is performed through insertion of jprobes or kprobes

[MPK06] in the important routines inside the Linux kernel with printk() calls

in the kprobe handler. Thus, the kernel log is used to report data about I/O

requests to the test HDD. This creates a low-overhead method for obtaining a

detailed log of data about each of the I/O requests without any invasive

modifications to the kernel source code.

3.4.1. Important Kernel Routines

As illustrated in Figure 3.3 previously, a number of important operations take

place between a disk I/O request by a process and the actual transfer of the data to

physical sectors of the HDD. Figure 3.5 shows a simplified sequence of kernel

routines when a user-space process intends to write data to a SATA HDD. Each

important step of the sequence is overviewed as follows:-

1) Before Page Cache: system call write() is issued by a process to create an

I/O request, the function __generic_file_aio_write_nolock() is

invoked, which enables certain flags, performs an I/O request size check and

then transfers control to the function generic_perform_write() to

53

update the page cache. Then, the operating system checks if the dirtied page

exceeds the allotted limit after copying the data. If not, write() returns and

the data is not immediately written to the disk. Otherwise, the kernel routine

continues by calling write_page_caches() to write the pages back to

the disk drive. It is important to note that the previous step can greatly impact

the time required to write data to the disk drive as the page cache can create a

buffering delay before the data is actually passed on the lower file system

layers for writing to the HDD.

2) After Page Cache: the generic_writepages()function checks the list of

dirty pages and tries to write them to the block device file representing the

disk drive. To communicate with the block device, the operating system

kernel uses the bio structure to describe each unit of data that is to be

written. The submit_bh() kernel function initializes these structures, and

the generic_make_request() function inserts the structures into the

request structure in the request_queue. Finally, the function

blk_start_request(), which is usually invoked by interrupts,

processes the I/O requests in the request queue by interacting with the block

device.

54

Figure 3.5. The sequence of kernel routines and data structures required to handle

a data write request to the HDD.

3.4.2. I/O Monitoring Details

I/O mentoring performs the following two important functions in the HDD energy

estimation system:-

55

1) Timing of I/O Requests: determining when the I/O requests are issued is

achieved by utilizing kprobes with printk() function calls in both the

__generic_file_aio_write_nolock() kernel routine and the

blk_start_request() routine to record the timestamps for each

request.

2) Mapping I/O Requests to Causative Processes: the PID is obtained from the

__generic_file_aio_write_nolock() function. Mapping of a

process to its requests is done by comparing the inode number logged using

the printk() in both the __generic_file_aio_write_nolock()

and blk_start_request() functions. Figure 3.6 illustrates the snippet

an example log for the two functions and Figure 3.7 summarizes the mapping

of a PID at the VFS layer to the corresponding I/O requests at the block

device layer using the inode number. For the first routine, the inode number is

obtained from the inode structure that is passed as a parameter to

__generic_file_aio_write_nolock(). Inside the inode structure

is the variable i_ino that contains the inode number. The size of the data to

be written can be accessed from the structure kiocb, which is used to track

the status of an I/O operation. It has a member variable called ki_nbytes,

56

which contains the data size in bytes. Current process information can be

obtained using the current macro. For the second routine at the block

device layer, the size of requests is obtained by summing the data sizes from

each of the bio structures by accessing the segment size from the field

bv_len in the member structure of bio called bio_vec, which is a

pointer to the start of the data segment array of this bio structure. To access

the inode number of the data abstracted by bio, the page field in the

structure bio_vec, which is a pointer to the page descriptor of the segment’s

page frame, is accessed. Then, the mapping field has the corresponding

page cache interpretation and the hosting inode could be located using the

host field to obtain the inode number. This process is further detailed in

Figure 3.8.

Figure 3.6. A sample log dump for two important kernel routines. I/O requests are

mapped to causative processes by comparing inode numbers from the routines.

57

Figure 3.7. Mapping PIDs to block device I/O requests using inode numbers.

Figure 3.8. Steps involved in obtaining the inode number from a bio structure.

58

3.5. HDD Energy Model

The energy consumption of hard disk drives is influenced by several parameters.

According to the results of previous work [HSR08], transferred data or file size,

block size and logical block number are the important parameters that impact disk

drive energy consumption. In this dissertation, the file system block size is fixed

at the default value of 4kB as this is case for most Linux systems. Logical block

number (LBN) is not taken into consideration in this work because its

contribution to disk drive energy consumption is miniscule compared to the effect

of the data file's size. Furthermore, ignoring the effect of LBN decreases the

complexity of the energy model and the overhead of the kernel I/O monitoring.

3.5.1. Detecting Disk Activity

The disk drive may become active a non-deterministic time after a data write

request is issued by an application. Thus, detecting disk activity is important as

the energy consumption for this complete period must be used during model

construction. This is accomplished using power log analysis, which is the analysis

of the energy measurement log provided by DEEP for the test HDD. A rise in

average power consumption by the HDD after issuing a file write request

59

indicates activity. All instances of such rise in power consumption are detected

during power log analysis and the total HDD energy consumption during these

periods is used as the HDD energy required to complete the file write request. An

example of such a file write with a data payload or file size of 128MB is

illustrated in Figure 3.9.

Figure 3.9. The energy measurement logs provided by DEEP are analyzed to

detect the periods during which the HDD is active due to a file write request. The

energy for these periods is the HDD energy consumed for the write request.

60

3.5.2. Model Formulation

Since the size of the I/O request or the file size is the only parameter used for the

HDD energy model, energy consumption data is collected for write trials for 65

different file sizes using the power log analysis described in the previous

subsection. One such write trail was illustrated in Figure 3.9. Each write trial is

repeated 100 times. The histogram for HDD energy consumed for the hundred

repetitions of the write trial for a particular file size is illustrated in Figure 3.10.

Figure 3.10. Histogram for energy consumption during 100 repetitions of an HDD

write trial using the same file size.

61

Histograms similar to Figure 3.10 are observed for write trials of all the 65

different file sizes. The Anderson-Darling test [DS86] is used to test the

goodness-of-fit of the set of hundred samples for a write trial. Each of the sets of

samples passes the test for being normally distributed with 95% significance. The

means for all hundred samples for each file size are plotted in Figure 3.11 (file

sizes above 450MB also follow a linear trend and so are not shown) to determine

the relationship between file size and HDD energy consumption for the test HDD.

Figure 3.11. The observed relationship between file size and HDD energy

consumed for the test HDD.

62

 Energy = w0 + w1*(FileSize) (3.1)

The data from the write trials, shown previously in Figure 3.11, is used to fit the

curve in Equation 3.1 and this equation models the energy consumption of the test

HDD to service a file write request with file size equal to FileSize. The first term

w0 is a constant that represents the fixed energy cost due to preprocessing and

setting up of data transfer [HSR08]. The second term is a linear term that captures

the linear relationship between energy and file size.

3.5.3. Multiple File Writes

For simultaneous multiple write requests by one or more processes, the energy for

each file write request is treated as an independent random variable with values

that are normally distributed. Thus, HDD energy for multiple file writes is the

sum of the estimated HDD energy for each individual file write. It is important to

note that energy consumption for each file write is not strictly independent. For

example, consecutive data writes following the first file write does not require

disk start-up energy. However, in Section 3.7 it is demonstrated that this

63

assumption does not create large prediction errors while providing a model that is

simple and has low overhead.

3.6. Implementation and Integration

The HDD energy estimation system is implemented on a DEEP Atom platform

running Linux kernel 2.6.31-14 and with a SATA 5,400 rpm test HDD having an

8MB cache. This implementation is used for all the results presented in the next

section.

The final implementation of the HDD energy estimation system consists of an

integration of DEEP energy measurement, I/O monitoring and the HDD energy

model. A user-space interface called ioJoules enables access to the system. This

interface allows users to obtain a log of predicted HDD energy consumption for

each of the write requests along with the process ID of the processes that are

responsible for the request. This data is available in addition to the direct energy

measurements that DEEP provides. A snippet of an example output log created by

the ioJoules interface is illustrated in Figure 3.12 with the inode number (Inodenr)

and process ID (Id) shown for each data write request to the HDD.

64

Figure 3.12. Sample outputs from the ioJoules interface for the HDD energy

estimation system.

The HDD energy estimation system is integrated as part of the DEEP platform

and a kernel module is built to create a /proc file system entry that turns the I/O

request information logging ON or OFF by uninstalling all kprobe handlers for

I/O monitoring in the kernel and halting data reporting through the ioJoules

interface. This allows users to utilize the HDD energy estimation system only

when needed while still enabling direct energy measurement from DEEP at other

times.

3.7. Results

This section presents results from both the evaluation of the HDD energy

estimation system and comparison to the direct energy measurements from the

DEEP platforms.

65

3.7.1. System Evaluation

The HDD energy estimation system is evaluated in terms of both accuracy of

estimation and overhead created. To evaluate the accuracy of the energy

estimation system, write tests were performed using both normal I/O and direct

I/O (page cache disabled) using file sizes up to 1GB. From the DEEP power log,

power log analysis is used to compute the ground truth about HDD energy

consumption. The predicted energy is compared to the values obtained from

power log analysis to determine prediction accuracy. Figure 3.13 illustrates the

results of the comparison for file sizes ranging from 128MB to 768MB.

Figure 3.13. Accuracy of HDD energy prediction compared to power log analysis.

66

The system is also evaluated for accuracy of multiple file write energy prediction

using write tests where ten processes randomly request to write files to the HDD.

A combined write data payload ranging from 1.28GB to 3.52GB is used. Power

log analysis is used to obtain the ground truth for actual HDD energy required to

complete all the file transfers to the disk drive. Accuracy is determined by

comparing the model's prediction to the ground truth from power log analysis.

The comparison results are shown in Figure 3.14. As observed, the HDD energy

estimation system's predictions are accurate and assumptions in Section 3.5.3

about independence of each of the multiple file writes does not degrade accuracy.

Figure 3.14. Accuracy of HDD energy prediction for multiple file write requests.

67

The results from evaluation of the accuracy of the HDD energy estimation system

are summarized in Table 3.1. The model used is quite simple and still has

excellent prediction accuracy. Accuracy is very slightly degraded for direct I/O

because the model was built using data for normal I/O and for multiple file I/O

due to the assumption that each of the file writes are independent.

Table 3.1. The HDD energy estimation system's prediction accuracy.

HDD Write Method Average Prediction Accuracy (%)
Direct I/O 92.39

Normal I/O 94.09
Multiple File Normal I/O 92.98

The energy estimation system is also evaluated in terms of the energy overhead it

creates on the DEEP platform. This is important because even though the I/O

monitoring infrastructure uses low performance overhead kprobes for data

gathering, this may still impact the energy efficiency of the DEEP platforms. Both

the CPU and memory (RAM) power consumption are compared with and without

kernel I/O monitoring during file writes of sizes ranging from 128 to 768MB to

evaluate any power consumption overhead that the HDD energy estimation may

create. Results of this comparison are illustrated in Figures 3.15 and 3.16.

68

Figure 3.15. CPU power consumption with and without kernel I/O monitoring.

Figure 3.16. RAM power consumption with and without kernel I/O monitoring.

69

The power consumption overhead due to the HDD energy estimation system is

summarized in Table 3.2. Miniscule power consumption overhead is observed for

the CPU and a small average overhead of 3.61% was observed for the memory

module (RAM).

Table 3.2. The average power consumption overhead for the CPU and RAM.

Component Power Consumption Overhead (%)
CPU 0.95
RAM 3.61

The overhead on performance is also characterized through execution of standard

applications with and without the HDD energy estimation system. Execution

times for both cases are compared to derive the performance overhead. The

performance overhead is illustrated in Table 3.3.

Table 3.3. The average performance overhead for some common applications.

Application Performance Overhead (%)
firefox 1.15

gcc 1.01
grep 1.33
bzip2 1.61

70

3.7.2. Comparison to Direct Energy Measurement

The energy required for deferred disk write operations cannot be accurately

estimated through direct measurements gathered during a benchmark's execution

lifetime. To demonstrate this, the energy consumption data of DEEP direct

measurements are compared with the values predicted by the energy estimation

system.

Spew [ber04] is an I/O performance tool to measure block device performance or

to generate disk drive workloads. It is a flexible file system workload generator

and is used to generate workloads in different I/O modes with various file sizes.

For the experiments in this section, single file writes were performed with file

sizes ranging from 32MB to 608MB in normal I/O mode.

For every benchmark test the DEEP platform was used to directly measure HDD

energy consumption. Note that this is done by DEEP’s energy calipers, where the

energy calipers generate time stamp values during Spew execution in order to

obtain the benchmark's execution time interval and calculate energy consumption

during that interval. Also, the HDD energy estimation system's model is used to

71

predict the HDD energy consumption. Finally, after each benchmark test is

completed, power log analysis is used to analyze the DEEP energy measurement

log and obtain the ground truth for HDD energy consumption.

Figure 3.17. Comparison of energy using direct measurement during benchmark

execution, energy estimation system's model prediction, and power log analysis.

Figure 3.17 illustrates that direct measurement cannot provide an accurate

estimate of HDD energy due to the operating system kernel's buffer cache and

other disk drive I/O deferring mechanisms. Due to deferring of data writes, a

benchmark application's execution lifetime cannot provide the time interval for

72

estimating HDD energy consumption. Hence, power meter based direct

measurement can be utilized for CPU or RAM energy estimation, but for the

HDD this is not sufficient. However, for file sizes larger than 500MB, the errors

due to direct energy measurements tend to become insignificant. This is because

the memory module used in this implementation has a capacity of 512MB and the

effect of kernel buffer cache is eliminated by page flushing that is activated by the

Linux kernel because of larger files.

Figure 3.18. Benchmark application execution lifetime versus disk activity period.

73

To further demonstrate the limitations of direct energy measurement, Figure 3.18

illustrates a comparison of the benchmark application's execution lifetime for a

file write with the actual HDD activity period. It is clearly observed that the direct

measurements, such as ones obtained by power meters, will only aggregate the

energy consumption during benchmark execution. However, more than half of the

disk drive activity occurs after the benchmark has completed execution. Using the

energy estimation system presented in this dissertation can greatly improve

accuracy of HDD energy consumption estimates for an application. In addition,

the ability to attribute the HDD energy consumption to individual processes can

guide optimization of software energy efficiency.

3.8. Conclusions

There is an urgent and largely unmet need for guidance tools that assist

application developers to accurately estimate the energy consumed due to their

applications. Thus, systems that predict secondary storage I/O energy assist in the

development of energy efficient software because modern storage hardware can

be complex due to the presence of I/O rescheduling and buffering mechanisms.

74

The HDD energy estimation system presented is novel because of unique features

such as the capability of mapping estimated HDD energy to specific causative

processes while using a relatively simple energy model. Also, the energy

estimation system creates very low overhead on the computing platform and

requires minimal modification to the operating system kernel while providing

accurate estimates of HDD energy consumption for write workloads of various

payload sizes.

75

CHAPTER 4

ENERGY EFFICIENT ADAPTIVE DATA COMPRESSION

This chapter presents a direct application of the DEEP platforms. Direct energy

measurements from DEEP are applied to create an energy efficient data

compression algorithm that adapts to changing network and system conditions.

This energy efficient adaptive compression algorithm is applied to the upload to

data over a network link and significant energy savings are observed. The chapter

begins with Section 4.1, which provides background and overviews work related

to energy-aware adaptive data compression. Section 4.2 demonstrates the large

impact that data compression can create on the uploading of data over a network

link under different network and system conditions. Section 4.3 presents the

energy efficient adaptive compression algorithm, which is called DEEPcompress.

Section 4.4 details the results obtained from application of DEEPcompress to

upload of data files. Section 4.5 concludes this chapter. Some of the results

described in this chapter have been published previously [SK12].

76

4.1. Background and Related Work

While many applications are important for modern computing platforms and

mobile devices, network data transport emerges as central to many of the

important applications since the advent of cloud computing, proliferation of

mobile devices and rapid increase in the number of networked systems.

Data compression has been explored and demonstrated as an effective method for

improving the performance and energy efficiency of transporting data over a

network link [Pet13]. Data compression is already used when downloading data

files and has been shown to be beneficial even when uploading data [WM09]. A

large number of previous studies show that dynamically varying the compression

schemes can be beneficial in adapting to changing network or system conditions

[MS06], [KC01], [PS05], [KS05], [KB99].

4.1.1. Computation versus Communication

The dynamic selection of compression schemes to form an adaptive compression

algorithm confronts a major challenge because benefits from data compression in

network data transport derive primarily from the trade-off between computation

77

and communication [BA06]. Thus, the resources invested in compression scheme

selection and compressing the data (computation) should be surpassed by savings

created due to a reduced payload being transported over the network

(communication). This implies that an adaptive compression algorithm should be

able to measure or estimate the resources required for both computation and

communication to perform an effective selection of optimal compression

schemes.

For a dynamic environment with system and network conditions varying at run-

time, the estimation or measurement of required computation and communication

resources becomes a difficult task. This is further compounded by the fact that the

data being transported is also an important parameter that affects the computation

and communication resources required. Thus, previous work on adaptive

compression, in summary, attempts to find heuristics or measures that can

estimate or measure both communication and computation costs to create an

algorithm that dynamically selects efficient compression schemes. This

dissertation presents a new adaptive compression algorithm called DEEPcompress

that directly measures energy costs using DEEP's direct energy measurements

78

during run-time as a means to dynamically select energy efficient compression

schemes. The DEEPcompress algorithm is detailed further in Section 4.3.

4.1.2. Datacomp

Even though this dissertation has summarized the basic concepts behind adaptive

data compression algorithms, there are a number of issues beyond the scope of the

work presented herein, such as data decompression and innovations in creating

more effective compression schemes, that have not been discussed. Datacomp

[Pet13] discusses such issues about data compression in much greater detail and

attempts to create a comprehensive adaptive compression framework that is

independent of assumptions or conditions specific to a certain type of data,

network or computing platform.

4.2. Impact of Data Compression on Energy

This investigation characterizes the impact of compression on network data

transport energy efficiency using the online version of the DEEP Atom platform.

Energy consumption is measured during compression and then transmission of a

file over a network link while varying three parameters: network data throughput,

79

data file type and compression scheme. The data files used are a subset of

common files: 1) an English text document, 2) a Portable Document Format

(PDF) document, and 3) an MP4 encoded media file. Three network interface

types are used with energy measurement for each: a 10/100 Ethernet device, a

local area wireless IEEE 802.11g device and a wide area wireless 3G CDMA

2000 1X EV-DO modem.

The compression schemes used in the investigations are Gzip, bzip2, and XZ

[Pet13]. Gzip is based on a combination of the Lempel-Ziv algorithm [WZ91]

with Huffman encoding [MP85], XZ employs a Lempel-Ziv-Markov-chain

Algorithm (LZMA), and bzip2 utilizes run-length, delta and Huffman encoding

with the Burrows-Wheeler Transform [FM08]. The energy cost for data transport

without compression is also measured. For each parameter combination, a file is

compressed and transmitted with data throughput limitation for the network

interface enabled at each of four levels: 10kB/s, 100kB/s, 1MB/s, and 10MB/s.

Network interface energy consumption is included in the system energy

measurement. Energy calipers are utilized to monitor energy consumption during

compression and transmission of the data files for each parameter combination.

80

The 3G interface consumed the most energy (10 percent of the total system

energy) followed by IEEE 802.11g (4 percent) and then the Ethernet interface.

Prior work has clearly demonstrated that the network interface forms a significant

fraction of energy consumption in mobile devices [CH10]. In the Atom N330

system this fraction is not large enough to change the optimal compression

choice.

Table 4.1. Impact of data compression on energy consumption for file upload.

Rate
(B/s)

XZ
(J/MB)

bzip2
(J/MB)

Gzip
(J/MB)

None
(J/MB)

Energy
Ratio

10k 196.8 739.4 994.3 3397.1 17.3
100k 101.9 97.2 107.3 338.7 3.5
1M 92.5 33.1 18.9 33.9 4.9
10M 91.6 26.8 10.1 3.4 26.9

It also is observed that the content of the data file is an important factor in

selecting the optimal compression scheme due to variation in compressibility.

Network conditions like data throughput (rate) have a very large impact on the

selection of energy efficient compression schemes. This is illustrated using the

energy ratio in Table 4.1 with measurements for the text file. None of the

compression schemes are optimal in all cases and the penalty for selecting sub-

81

optimal schemes is very large (up to 17.3x) in certain cases. This can further be

impacted by the influence of the platform’s computing environment, such as CPU

load, on the energy required for compression. Thus, to conserve energy the

selection of the optimal compression scheme should be made dynamically at run-

time during the transmission of the data file based on the contents of the data file,

network conditions and the computing environment.

4.3. DEEPcompress

Preceding sections demonstrate that data compression can lead to large energy

savings in uploading certain types of files over a network link. Since the

characteristics of the computing system (like CPU load) and network (like the

energy required to transmit or compress a byte of data) can change during file

transmission, the compression scheme must be dynamically selected. This section

presents the DEEPcompress algorithm detailed in Figure 4.1. The file being

uploaded is divided into constant-size blocks, and both the transmission energy

per byte and the compression energy per byte is measured for a block. The

DEEPcompress algorithm selects the most energy efficient compression scheme

for a data block by utilizing both the communication and computation energy.

82

Values of energy per byte for bzip2, Gzip, XZ and transmission
ebz = egz = exz = etrans = 0

Compress 1st block for estimate of compression energy
block = GetNextBlock (file)
bz = bzip2Compress (block)
gz = GzipCompress (block)
xz = XZCompress (block)

repeat
 # Energy = Computation + Communication
 Ebz = ebz * Size (block) + etrans * Size (bz)
 Egz = egz * Size (block) + etrans * Size (gz)
 Exz = exz * Size (block) + etrans * Size (xz)
 Eno = etrans * Size (block)

 # Objective - select scheme with least energy for block.
 if (Ebz ≤ Egz and Ebz ≤ Exz and Ebz < Eno)
 # Use bzip2 compression.
 bz = bzip2Compress (block)
 Transmit (bz)
 else if (Egz < Ebz and Egz ≤ Exz and Egz < Eno)
 # Use Gzip compression.
 gz = GzipCompress (block)
 Transmit (gz)
 else if (Exz < Egz and Exz < Ebz and Exz < Eno)
 # Use XZ compression.
 xz = XZCompress (block)
 Transmit (xz)
 else
 # Don't use compression - none.
 Transmit (block)

 # Energy per byte of latest transmit and compress.
 UpdateEnergyValues ()

 # Get next block from file to be uploaded.
 block = GetNextBlock (file)

Repeat until all blocks of the file have been transmitted.
until (block = 0)

Figure 4.1. Pseudocode for implementation of the DEEPcompress algorithm.

83

The transmission and compression functions in the DEEPcompress algorithm are

monitored using energy calipers that record the energy consumption during their

execution. The algorithm uses these measurements to dynamically select energy

efficient compression schemes.. The algorithm can thus adapt to changes in the

energy consumption characteristics due to variation in network conditions that can

affect transmission energy required per byte, or availability of computing

resources that can change the energy requirement by each of the compression

schemes.

4.4. Results

The DEEPcompress adaptive compression and transport algorithm is deployed on

the online version of the DEEP Atom implementation with an added IEEE

802.11g device that is the wireless network interface used for data file

transmission. A measurement delay is possible between execution of the

transmission or compression functions and the availability of the latest energy

caliper measurements corresponding to these functions. If the latest energy values

are not available, the preceding data are used without waiting for the updated

values.

84

4.4.1. Platform Energy Efficiency

To characterize the benefits of DEEPcompress over other static compression

schemes, DEEPcompress, XZ, bzip2, Gzip and no compression (none) are all

compared for data compression and transmission during the upload of the

following files: 1) tarball of Linux- 2.6.31 kernel sources, 2) tarball of twenty

plain English texts, 3) tarball of twenty PDF e-books and 4) an MP4 encoded

commercial film trailer. The transmission is performed using a TCP/IP socket

connection to another system on the UCLA wireless network. A block size of

16kB is used in this deployment of DEEPcompress and each of the files is

transmitted thirty times using each compression choice.

The energy consumption by the system is averaged over all the transmissions and

includes the wireless device’s energy. This value is normalized to each file’s size

and is reported in Figure 4.2. DEEPcompress consistently demonstrates superior

energy efficiency for the English texts, Linux sources and PDF ebooks. Energy

savings as large as 38% are observed compared to the next best compression

scheme. Miniscule degradation in energy efficiency compared to none (1.2%) is

observed for the MP4 file because of the inherent compression present in the MP4

85

format. DEEPcompress is still more energy efficient than the other static

compression schemes as it dynamically determines that no compression is the best

choice in this case and selects it.

Figure 4.2. The DEEPcompress algorithm creates significant energy savings

during upload of various types of data files.

DEEPcompress achieves superior energy efficiency by adapting the compression

scheme selection to changing network and system conditions. This is illustrated in

Figure 4.3 using a one minute interval during a randomly selected transmission of

the Linux sources. The variation in energy for transmission along with the

compression scheme selected by the DEEPcompress algorithm is shown. The

86

algorithm’s use of the DEEP platform for direct energy measurement of the

compression and transmission tasks enable it to adapt to change in energy

consumption due to network and system conditions.

Figure 4.3. DEEPcompress adapts its compression choice as it detects variations

in the wireless network and system energy consumption characteristics.

4.4.2. Component Energy Efficiency

The DEEPcompress algorithm can be extended to include a wider range of

compression choices like LZO. Also, instead of total system energy, applications

like thermal management may require subsystem-level power management

objectives like reduction in CPU or network interface energy. As demonstrated in

87

Figure 4.4, attempting to reduce the IEEE 802.11g network interface’s energy

using DEEPcompress creates energy savings as large as 44% for the interface

instead of the 37% when using total system energy as the objective. However, the

total system energy savings decrease from 38% to 33%. This demonstrates the

utility of component-resolved measurement capabilities while showing that

subsystem energy reduction objective is not always optimal for system energy

efficiency and vice-versa.

Figure 4.4. DEEPcompress can also be used for reducing energy consumption of

subsystems, such as for the IEEE 802.11g (WiFi) interface here. Instead of total

system energy, the WiFi interface's energy is used as the DEEPcompress

algorithm's optimization objective.

88

DEEPcompress also supports joint objectives. A combination of power, energy

consumption and processing parameters like execution time for the system or

subsystems can be used as the objective for compression scheme selection.

4.5. Conclusions

The DEEP Atom is utilized for an investigation of compression in transport of

data over a network link. As confirmed in previous work, it is observed that

dynamically selecting compression schemes to adapt to changing network and

system conditions can significantly improve the energy efficiency of network data

transport.

The DEEP platform’s capabilities assist in development of an energy efficient

data compression and transport algorithm called DEEPcompress. The algorithm

provides large energy savings (38%) for upload of data files over a wireless

network link through dynamic selection of compression schemes to adapt to

system and wireless network conditions. Also, DEEPcompress can be adapted to

optimize for component energy savings instead of complete platform energy

savings during compression and transmission of data. Furthermore, joint

89

optimization objectives such as a combination of peak power, energy or execution

time may also be used.

90

CHAPTER 5

ENERGY AWARE TASK SCHEDULING

This chapter presents the Energy Aware Scheduler (EAS), which is a novel

operating system task scheduler designed for multi-core computing platforms.

EAS utilizes the high-resolution time-synchronized direct energy measurements

provided by the DEEP platforms along with data from the CPU performance

monitoring unit to improve platform energy efficiency and performance by

reducing resource contention between tasks. The chapter begins with an overview

of the relevant background material and related work in Section 5.1. Section 5.2

describes the EAS architecture and the concepts that have culminated in the

design of EAS. Section 5.3 presents the implementation of the task scheduler

using extensions to a standard Linux kernel operating on a commodity computing

platform. Section 5.4 presents the results of comparison between EAS and the

task scheduler adopted by Linux using a range of standard benchmark

applications. Section 5.5 concludes this chapter.

91

5.1. Background and Related Work

The operating system's task scheduling policy has a well-known and significant

impact on the performance and energy efficiency of computing platforms

[ZSB13]. Development of task schedulers confront the challenges of ensuring low

latency, meeting task deadlines, improving fairness in distribution of computing

resources to tasks and load balancing among processors [DB11], [Shi05].

However, the introduction and large-scale deployment of multiprocessor

platforms now also requires that resource contention be minimized to ensure

efficient usage of resources. The demands for reducing resource contention and

increasing energy efficiency add new constraints to scheduler system

development. This requires a task scheduling system that responds to real-time

energy and performance monitoring to optimize selection of tasks and assignment

to processors to avoid degradation in energy efficiency and performance.

5.1.1. Resource Contention in Multiprocessing Computing Platforms

Multiprocessing CPU architectures are critical in the delivery of computing

performance for a broad range of platforms from mobile embedded devices to

92

server systems. Symmetric multiprocessing (SMP) CPU architectures are widely

deployed to enable advances in both energy efficiency and performance through

parallel execution [Shi05]. In the case of the most widely deployed mobile

systems using the Linux operating system, parallel task execution is enabled by

the scheduling of task threads by the operating system on each core with the

objective of maintaining fairness in support across all tasks, low latency in task

execution, and load balancing across CPUs. This can lead to well-known

increases in computational throughput and platform energy efficiency [WL08].

However, the potential for these benefits is not reached if multiple tasks

frequently contend for resources, such as shared CPU cache, on a multi-core CPU

and this causes a degradation in performance known as co-run degradation

[BZF10]. Current operating system task schedulers do not detect the energy

efficiency or performance penalties due to resource contention.

The impact of co-run degradation is illustrated in Figure 5.1 using four

benchmarks from the UnixBench suite [SGY11] that execute in parallel on a

quad-core x86 platform with the Linux 2.6.32 kernel. Execution time required

during parallel execution is compared with the time required when the same four

93

applications are executed individually. The worst and best cases in the figure

correspond to different task schedules that were observed over a thousand

different repetitions of the experiment. The results of the experiment clearly

demonstrate that co-run degradation can be very significant and different task

schedules can influence the extent of co-run degradation.

Figure 5.1. The co-run degradation problem is illustrated with four benchmark

applications from the UnixBench suite on a quad-core CPU. Execution times

when the four applications execute in parallel are compared to when each is

executed individually.

94

EAS is a novel task scheduler that is broadly applicable across platforms and is

directly implemented in Linux. EAS actively seeks and detects the effects of co-

run degradation through a new task observation method. Then, it exploits an

efficient task selection architecture to seek a task selection that reduces co-run

degradation. It is important to note that co-run degradation is determined at run-

time because of run-time changes in task behavior that may lead to variability in

the characteristics of resource contention. EAS exploits direct real-time energy

measurements along with standard CPU performance counters to identify

inefficient processes suffering from resource contention. The tasks corresponding

to these inefficient processes have their scheduling priority adjusted to reduce co-

run degradation.

5.1.2. Completely Fair Scheduler

The Completely Fair Scheduler (CFS) has been adopted as the task scheduler in

Linux since the 2.6.23 kernel [WTK08]. CFS constantly attempts to maintain

fairness among tasks in terms of allotted CPU time [WCJ09]. Thus, if a task has

used the least amount of CPU time then CFS will assign highest scheduling

priority to this particular task.

95

In order to efficiently perform priority assignment and to maintain a list of

executable tasks, CFS constructs a balanced binary search tree called the red-

black tree [Hin99]. Each node of the red-black tree data structure represents an

executable task along with the key being the CPU time used by the corresponding

task. Since the tree is balanced, the scheduler can efficiently perform scheduling

operations such as insertion/removal of a task and selection of the highest priority

task in O(log n) time complexity for a tree with n tasks.

In multiprocessing platforms, CFS maintains a red-black tree structure for each

CPU core present on the platform. Tasks are divided among the cores via the

mechanism of load-balancing and tasks can be moved from one core to another

through the use of task migration [WCJ09]. Thus, CFS provides each CPU core

with its own set of tasks and the corresponding red-black tree is used in the

scheduling of these tasks.

5.1.3. Performance Measurement Unit

Modern CPU architectures support detailed monitoring of computing platform

events through the performance monitoring unit. Performance monitoring units

96

provide access to special-purpose CPU registers called performance counters that

can count important events such as cache misses. They have been recognized as

an important resource for performance monitoring and improvement [ZDF07].

Statistics obtained from performance counters have been used in a wide range of

applications from power/energy modeling [SBM09] to virtualization [XJJ12] and

even security [SZD08]. EAS utilizes two types of performance counters: 1) the

time-stamp counter (TSC) is used as a clock for high-resolution timing of

platform events, and 2) performance counters are used to measure the number of

CPU operations performed during execution of a task.

5.2. Architecture

The EAS architecture is based on CFS to enable both rapid adoption of EAS into

standard platforms and to also harness important CFS features. Primary features

of CFS, such as load-balancing and task migration, are included without

modification. EAS also uses a red-black tree, similar to CFS, to maintain the task

list for each CPU core. The primary distinction between CFS and EAS is that

EAS utilizes a run-time indicator of a task's energy efficiency computed directly

and termed as Operations per Joule (OPJ).

97

OPJ values for each task are used to assign scheduling priority to the

corresponding task. This provides EAS with the ability to detect tasks that induce

inefficiency due to co-run degradation caused by resource contention.

Furthermore, EAS does not perform complicated dynamic time slice calculations

for a task, but instead uses a fixed value. Thus, this time slice decides the

scheduling quantum for a task in EAS while the OPJ value for a task determines

its scheduling priority.

5.2.1. OPJ

EAS uses OPJ as a run-time indicator of a task's energy efficiency. OPJ represents

the number of CPU micro-operations (µops) [SCF03] executed by the task per

joule of energy consumed by the platform. A performance counter is used for

each CPU core to count the number of µops executed by a task each time it is

scheduled. Time-synchronized energy measurements are then used to determine

energy consumption of the platform during the time quantum that the task was

scheduled. The number of µops is divided by the platform energy consumption to

obtain the latest task OPJ value, which is then used by EAS for priority

assignment to that task.

98

5.2.2. Priority Assignment for Efficient Co-Scheduling

EAS applies an approach for selecting tasks that may operate together without the

inefficiencies introduced by resource contention. This is accomplished by

establishing a scheduling priority assignment that favors co-scheduling of these

tasks. and also reduces the probability of co-scheduling tasks exhibiting co-run

degradation.

Figure 5.2. The Energy Aware Scheduler (EAS) uses the red-black tree data

structure where each node represents a task. The OPJ value for a task is used as

the key for its node.

99

Similar to CFS, EAS uses the red-black tree to maintain a list of tasks. Each node

of the red-black represents a task and uses the OPJ value of the task as its key.

Larger OPJ values represent a higher priority as this ensures that tasks that exhibit

higher efficiency when co-scheduled are scheduled together while tasks that

exhibit inefficiency when co-scheduled, are demoted in priority and are less likely

to be scheduled together. Figure 5.2 illustrates an example red-black tree that is

used by EAS with the OPJ of each task being used as the key. A red-black tree is

maintained for each CPU core on the platform and the mechanisms of load-

balancing along with task-migration, borrowed from CFS, are used to distribute

tasks among the CPU cores.

5.2.3. Task Promotion

The priority assignment scheme used by EAS has the advantage of efficient task

co-scheduling, but inefficient tasks with reduced OPJ values also need to be

provided with opportunities for being rescheduled since task behavior varies at

run-time and contention from other tasks may not be present anymore.

Furthermore, complete starvation of inefficient tasks also needs to be addressed.

This is accomplished in EAS through task promotion.

100

Figure 5.3. EAS uses a modified red-black tree where each node has an additional

value attached to it. This value represents the size of the tree if the corresponding

node was the root.

For a red-black tree with n tasks, task promotion randomly selects a natural

number k ≤ n every n scheduler time quanta so that the kth lowest priority task's

OPJ value is set to one greater than the largest OPJ value in the tree. This causes

the task to be promoted to highest priority for the succeeding scheduling quantum.

To preserve the algorithmic efficiency of red-black tree operations, the time

complexity of performing task promotion must be limited to O(log n). Hence,

101

EAS uses a modified red-black where each node has an additional value, called

Size, attached to it that represents the size of the tree if that node was the root of

the tree. An example of such a tree is illustrated in Figure 5.3. This enables

selection and promotion of the kth lowest priority task in O(log n) time.

5.2.4. Scheduling Details

At the end of a scheduler time quantum due to a timer/interrupt event or the

voluntary yielding of control by a task, EAS performs several important steps on a

CPU core before scheduling the next task:-

1) The time-stamp counter (TSC) value denoting the end of the time quantum is

recorded.

2) The number of CPU micro-operations performed during the previous time

quantum is read from a performance counter and stored.

3) The latest energy measurements are synchronized with TSC values and

recorded.

4) The latest OPJ values are calculated from data obtained in previous steps.

5) The OPJ value of the previously scheduled task is updated to the latest

available value.

102

6) The task is inserted back into the red-black tree with appropriate updates to

Size values.

7) Task promotion is performed if n time quanta have passed since the last task

promotion.

8) The TSC value marking the beginning of the next time quantum is recorded.

9) The highest priority task is selected from tree and scheduled to execute on the

CPU core till the time next quantum expires or the task voluntarily yields.

Figure 5.4. EAS performs a number of important steps between the scheduling of

tasks. These steps are in addition to features borrowed from CFS.

103

The aforementioned scheduling steps are illustrated in Figure 5.4. Steps involving

features borrowed directly from the Linux kernel or CFS infrastructure, such as

timer handling, context switching logic, load balancing and task migration, are not

included to preserve clarity.

5.3. Implementation

EAS is implemented on a multi-core x86 computing platform with changes to the

task scheduling infrastructure of Linux kernel 2.6.32.

5.3.1. Modifications to CFS

EAS is implemented in the Linux kernel based on CFS code with important

modifications:-

1) The vruntime for a task, which is used for recording the CPU time used by a

task, is replaced with an OPJ variable with a default initial value of infinity.

2) An additional entry is maintained at each red-black tree node called Size to

enable efficient task promotion.

3) Red-black tree task insertion and removal functions are modified to correctly

update Size value at nodes.

104

4) While this parameter might be changed as required, this implementation

applies a fixed scheduling time quantum of 4ms

5) The scheduler functions and control-flow are modified to conform to the steps

in Figure 5.4.

5.3.2. Scheduling Classes

Figure 5.5. EAS creates its own scheduling class in addition to the standard

scheduling classes provided by the Linux kernel.

The concept of modular schedulers, which is part of modern Linux kernels

[Mol07], is utilized in the implementation of EAS. Thus, EAS co-exists with

105

other task schedulers in the Linux kernel where each scheduler has their important

scheduling functions exposed to the kernel using standard scheduling classes that

abstract away the tedious details of their implementation. EAS creates its own

scheduling class as illustrated in Figure 5.5. The scheduling class based

implementation enables EAS to be used for executing tasks that need to improve

their energy efficiency by assigning them to the SCHED_EAS policy while still

allowing a scheduler like CFS to co-exist and continue scheduling other tasks on

the platform.

5.3.3. Platform Support

The implementation of EAS in this dissertation is based on modern x86 platforms

and some of the features they provide [Ban04]. EAS relies on standard platform

features in addition to the energy monitoring infrastructure provided by DEEP.

The standard CPU performance monitoring unit is required along with the

standard TSC. The performance monitoring unit provides performance counters

that are needed for counting the number of µops that each CPU core executes

during a task's scheduled time quantum while excluding PAUSE and NOP

instructions as these don't represent actual work performed by a task. The TSC is

106

required for high resolution timing of platform events and for time

synchronization of energy measurements.

5.4. Results

The primary objective for determining the effectiveness of EAS is to determine

both energy efficiency benefits and to detect any possible degradation in

performance due to introduction of EAS. Therefore, EAS is evaluated in terms of

both energy efficiency and execution time compared to CFS for standard

benchmarks. The investigations reported here utilize Linux kernel version 2.6.32

on an Intel x86 quad-core DEEP platform. Energy measurement infrastructure is

added to the platform as described in Chapter 2. When measuring the energy

consumption for CFS, measurements are not performed by the computing

platform under observation. Instead, an offline version of DEEP is used with

another identical platform with a DAQ to used collect energy measurements from

the instrumentation of the platform under observation so that data acquisition

overhead does not create errors in the data. For EAS this overhead is part of the

data because the measurement infrastructure is an integral component of this

scheduler.

107

5.4.1. Benchmark Selection

Eight applications have been selected to create a compact, but comprehensive

suite of benchmarks that represent a wide range of important workloads on

modern computing platforms:-

1) Apache is the most widely-deployed web server and is used in this dissertation

with the TPC-W commercial multi-threaded benchmark for characterizing

web servers [ACC02].

2) AES-256 is a modern federal government security standard that is used for

data encryption [DR10].

3) Tpcc-mysql is a benchmark for MySQL databases based on TPC-C, which is

a standard commercial benchmark for database transactions [CRF07].

4) Java LINPACK is the Java version of the standard supercomputing linear

algebra benchmark called LINPACK [CRF07].

5) Bzip2 is an open-source data compression tool based on the widely-utilized

Burrows-Wheeler transform [BK00].

6) BlogBench is a modern file system benchmark based on emulation of real-

world file servers [ZYC13].

108

7) VirtualBox is the most commonly used open-source virtualization product and

this dissertation utilizes it to run another instance of Linux kernel 2.6.32 on

the platform as a virtual machine [Wat08].

8) Transaction Processing over XML (TPoX) is finance application based XML

database benchmark based on real transactions and XML schema [NKS07].

The eight benchmarks' input workload is normalized such that each benchmark

has an average execution time of 100s using CFS on the platform when no other

benchmarks execute in parallel.

5.4.2. Energy and Performance Benefits

In Figures 5.6 through 5.9, SOLO‐RUNS represent the case where each of the eight

benchmarks is executed individually using CFS on the platform so that resource

contention among benchmarks is absent. EAS represents the case where

benchmarks begin execution in parallel and EAS is used to schedule them. CFS

represents the case where CFS is used to schedule the benchmarks. Experiments

for each case are repeated a thousand times and the mean values are reported in

the figures. BEST‐OBSERVED represents the minimum values for energy

109

consumption and execution time observed over all thousand repetitions of the

CFS and EAS experiments. This value indicates the best possible schedule that is

achieved in presence of resource contention among tasks. TOTAL represents the

values for execution of all benchmarks while the individual values represent the

decomposition of TOTAL among each benchmark.

It is important to note that the energy data for individual benchmarks may not

represent the energy consumption due to that benchmark, but the energy

consumption that occurs during execution of the benchmark. This is because there

can be multiple benchmarks executing in parallel and each of these impact the

energy consumption at an instant.

Figures 5.6 and 5.7 illustrate the results of the comparisons between EAS and

CFS. EAS demonstrates a large benefit over CFS with an execution time

improvement of 24.7% and energy efficiency improvement of 30.2% averaged

over all benchmarks. Furthermore, energy consumption and execution time with

EAS are much closer to BEST‐OBSERVED values than the values obtained when

using CFS with benefits being observed for each and every benchmark.

110

Figure 5.6. Execution time and platform energy consumption for all benchmarks.

111

Figure 5.7. CPU and memory energy consumption for each of the benchmarks.

112

5.4.3. Impact of Resource Contention

The Intel quad-core platform used in this evaluation offers an additional

experiment capability. Specifically, the four CPU cores are arranged in two pairs

with each pair sharing a level-2 (L2) cache. Therefore, two tasks scheduled on

both of the cores of a pair contend for the shared L2 cache. However, if the two

tasks are scheduled on cores from different pairs then L2 cache contention is

absent. This enables an evaluation where the eight benchmarks are executed using

only two of the four cores on the platform. In one case the benchmarks are

allowed to execute on a pair of cores sharing an L2 cache and in the other case the

benchmarks are executed on only one core of each pair with separate L2 cache.

Both CFS and EAS were used in the experiments and the results are illustrated in

Figures 5.8 and 5.9. The execution time and platform energy consumption are

larger in the case where L2 cache is shared when using CFS, but EAS effectively

reduces the impact of L2 cache contention because both the energy consumption

and execution time approach the values when L2 cache is not shared. This further

demonstrates the co-run degradation that can occur because of resource

contention and the effectiveness of EAS in mitigating this degradation in

performance and energy efficiency.

113

Figure 5.8. Execution time and energy consumption without L2 cache contention.

114

Figure 5.9. Execution time and energy consumption with L2 cache contention.

115

5.5. Conclusions

This chapter presented the Energy Aware Scheduler (EAS) that exploits event-

synchronized energy measurements to advance the energy efficiency and

performance of multi-core computing platforms through efficient co-scheduling

of tasks. The DEEP platform's real-time energy measurements and CPU

performance counters are used by EAS to detect and avoid resource contention

among tasks at run-time. This alleviates the inefficiencies caused by co-run

degradation between tasks.

EAS is implemented by extensions to existing Linux kernel and task scheduling

infrastructure through the use of scheduling classes to allow EAS to co-exist with

other task schedulers in the operating system. Energy measurement infrastructure

for the implementation is integrated directly at the platform-level.

Evaluation of EAS on a quad-core x86 system over a wide range of commonly

used benchmark applications demonstrates significant improvement in energy

efficiency (30.2%) and execution time (24.7%) compared to the standard Linux

task scheduler (CFS). Furthermore, both execution time and energy efficiency

116

benefits were observed for each and every benchmark application that was

investigated.

117

CHAPTER 6

CONCLUSION

This chapter concludes the dissertation. The chapter begins with an overview of

limitations of the work described herein and details possible solutions to these

limitations as promising directions for future work in Section 6.1. Section 6.2

summarizes the dissertation’s results and presents conclusions.

6.1. Limitations and Future Work

The following limitations of the work presented herein have been indentified and

possible future solutions are also listed:-

1) The 100µs sampling resolution of the DEEP platforms, while sufficient for

characterizing the energy consumption of most software applications and a

large advance over previous work, cannot monitor the energy usage of

extremely brief events such as interrupt handling. This is a fundamental limit

imposed by the measurement instrumentation and synchronization signal

118

latency in the DEEP platforms. A possible solution is the integration of high

frequency power metering as part of the computing platform’s architecture

itself and this is now being explored [NRA11]. Leading computing platform

manufacturers, such as Intel and Qualcomm, have realized the importance of

direct energy measurement in optimizing computing platform energy

efficiency. Recently a limited amount of power metering is being provided

using machine specific registers (MSRs) in the latest CPU architectures

[NRA11]. Extending the use of these MSRs and including them in the next

generation DEEP platform architecture would be a very promising direction

for future work as it would reduce measurement overhead, eliminate external

instrumentation and enable very low latency energy measurement while

allowing DEEP's software utilities, such as energy calipers, to still be applied.

Furthermore, DEEP provides a vast amount of untapped potential for

measurement and optimization of software energy efficiency in multiple

computing domains, such as networking protocols, operating system internals,

security/privacy frameworks and other user applications.

2) The HDD energy estimation system's per-process energy attribution system is

limited to cases where a single process has ownership or a file. Thus, cases

119

where multiple processes write to the same file or same data block would

require a different mechanism of attribution as the inode number is unique for

the data block and not for each of the writing processes. Hence, the energy

consumption for the data block must be distributed between each of the

processes using a different attribution scheme. However, such shared block

writes are rare and don't create a large impact on the accuracy of the

estimation system. Also, the HDD used in our investigation only supports idle

and active states, but certain HDDs also have a standby mode that is activated

during long periods of inactivity. This requires a more complex model that

accounts for transitions to and from the standby mode of the HDD.

3) The adaptive compression algorithm DEEPcompress is suited to upload to

data files when direct energy measurements are available. For platforms

without power measurement capabilities, different metrics for estimating

computation and communication energy costs need to be utilized. This

requires a comprehensive characterization of system and network conditions.

Such a framework for adaptive compression has been studied recently [Pet13]

and confronts a number challenges compared to direct measurement of

energy.

120

4) The energy aware task scheduler EAS is designed to improve the energy

efficiency of applications on multiprocessing computing platforms. However,

certain applications have requirements beyond performance and energy

efficiency that are of primary concern, such as interactivity, response times,

deadlines and fairness [WCJ09]. Extending EAS with mechanisms that can

limit unfairness and loss of interactivity for processes while sacrificing some

energy efficiency or performance would the task scheduler applicable to wider

range of applications. An example of such a mechanism was provided in the

previous chapter using task promotion, wherein starvation of inefficient

processes was alleviated through a scheme for promoting lower priority tasks.

Furthermore, investigation of metrics that use performance measures (such as

cache misses) instead of OPJ to detect resource contention would be valuable

since these can be deployed without energy measurement capabilities.

6.2. Dissertation Conclusions

This dissertation presented the architecture and implementation of the DEEP

platforms. These platforms provide accurate and low-overhead time-synchronized

energy measurements for commodity computing systems and important

121

components like the CPU, memory modules and secondary storage. With a design

that enables rapid assembly using standard computing hardware and software,

multiple DEEP platforms have been implemented as a networked tested that is

remotely accessible to research groups and students. In addition to direct energy

measurement capabilities, DEEP includes a set of innovative software utilities

called energy calipers that enable the measurement of energy associated with

execution of sections of software code. This makes DEEP ideal for investigation

of the energy efficiency of both application and operating system code.

Furthermore, DEEP provides an accurate and low overhead energy estimation

system for modern secondary storage hardware to enable estimation of energy

associated with deferred file system and storage operations. The energy for these

deferred events is attributed directly to the causative processes making the

estimation system applicable to exploration of the energy consumption by

applications that perform a large amount of activity on the secondary storage

device.

The DEEP platforms were also applied to the problem of network transport. An

adaptive compression algorithm called DEEPcompress is developed. The

122

algorithm adapts to changing network and system conditions to select energy

efficient compression schemes during the upload of data file over a network link.

The DEEP platform’s direct real-time energy measurements guide the

compression scheme choice. Significant energy savings (up to 38%) are observed

when using the DEEPcompress algorithm compared to other commonly utilized

static compression schemes such as Gzip, bzip2 and XZ.

An energy aware task scheduler is developed using the capabilities provided by

the DEEP platforms. This task scheduler uses data from the CPU’s performance

monitoring unit and energy measurements from DEEP to improve the energy

efficiency of multi-core computing platforms. This is done through the use of a

metric called OPJ for run-time detection and avoidance of the co-run degradation

that takes place due to resource contention among tasks. The scheduler is

implemented on a standard Linux distribution on a quad-core computing platform.

Comparison of the scheduler to the standard task scheduler adopted by the Linux

operating system demonstrates large energy (about 30%) and execution time

(about 24%) benefits over a broad range of common benchmark applications.

123

BIBLIOGRAPHY

[AAF09] M. Allalouf, Y. Arbitman, and M. Factor, "Storage modeling for

power estimation." ACM International Systems & Storage

Conference, 2009.

[ACC02] C. Amza, A. Chanda, A. Cox, S. Elnikety, R. Gil, K. Rajamani, W.

Zwaenepoel, E. Cecchet, and J. Marguerite, "Specification and

implementation of dynamic web site benchmarks." IEEE

International Workshop on Workload Characterization, 2002.

[BA06] K. Barr and K. Asanovic, "Energy-aware lossless data

compression."ACM Transactions on Computer Systems, 2006.

[Ban04] S. Bandyopadhyay, "A study on performance monitoring counters

in x86-architecture." Indian Statistical Institute, 2004.

[BBV09] N. Balasubramanian, A. Balasubramanian, and A. Venkatramani,

"Energy consumption in mobile phones: a measurement study and

implications for network applications." ACM SIGCOMM Internet

Measurement Conference, 2009.

[ber04] berliOS, "Spew: An I/O performance measurement and load

generating tool." http://spew.berlios.de

124

[Bha03] S. Bhattacharya, "Dynamic probes – debugging by stealth." Linux

Conference Australia, 2003.

[BK00] B. Balkenhol and S. Kurtz, "Universal data compression based on

the burrows-wheeler transformation: theory and practice." IEEE

Transactions on Computers, 2000.

[BTM00] D. Brooks, V. Tiwari, and M. Martonosi, "Wattch: a framework

for architectural-level power analysis and optimizations."

International Symposium on Computer Architecture, 2000.

[BZF10] S. Blagodurov, S. Zhuravlev, and A. Fedorova, "Contention-aware

scheduling on multicore systems." ACM Transactions on

Computer Systems, 2010.

[CH10] A. Carroll and G. Heiser, "An analysis of power consumption in a

smartphone." USENIX Annual Technical Conference, 2010.

[CRF07] R. Cheveresan, M. Ramsay, C. Feucht, and I. Sharapov,

"Characteristics of workloads used in high performance and

technical computing." ACM International conference on

Supercomputing, 2007.

[DB11] R. Davis and A. Burns, "A survey of hard real-time scheduling for

multiprocessor systems." ACM Computing Surveys, 2011.

125

[DR10] J. Daemen and V. Rijmen, "The first 10 years of advanced

encryption." IEEE Security and Privacy, 2010.

[DS86] R. D'Agostino, and M. Stephens, "Goodness-of-fit techniques."

New York: Marcel Dekker, 1986.

[DZ11] M. Dong and L. Zhong, "Self-constructive high-rate system energy

modeling for battery-powered mobile systems." International

Conference on Mobile Systems, Applications, and Services, 2011.

[ERK06] D. Economou, S. Rivoire, and C. Kozyrakis, "Full-system power

analysis and modeling for server environments." Workshop on

Modeling, Benchmarking, and Simulation, 2006.

[FM08] P. Ferragina and G. Manzini, "Burrows–Wheeler transform."

Encyclopedia of Algorithms, Springer US, 2008.

[FPR12] A. Fujimoto, P. Peterson, and P. Reiher, "Comparing the power of

full disk encryption alternatives." International Green Computing

Conference, 2012.

[FS99] J. Flinn and M. Satyanarayanan, "PowerScope: a tool for profiling

the energy usage of mobile applications." IEEE Workshop on

Mobile Computing Systems and Applications, 1999.

126

[Gra08] J. Gray, "Go green, save green with Linux." Linux Journal, 2008.

[Hin99] R. Hinze, "Constructing red-black trees." Workshop on

Algorithmic Aspects of Advanced Programming Languages, 1999.

[HSR08] A. Hylick, R. Sohan, A. Rice, and B. Jones, "An analysis of hard

drive energy consumption." IEEE International Symposium on

Modeling, Analysis and Simulation of Computer and

Telecommunication Systems, 2008.

[IM03] C. Isci and M. Martonosi, "Runtime power monitoring in high-end

processors: methodology and empirical data." IEEE International

Symposium on Microarchitecture, 2003.

[KB99] B. Knutsson and M. Bjorkman, "Adaptive end-to-end

communication for variable-bandwidth communication."

Computer Networks, 1999.

[KC01] C. Krintz and B. Calder, "Reducing delay with dynamic selection

of compression formats." International Symposium on High

Performance Distributed Computing, 2001.

[KOI10] Y. Kaneda, T. Okuhira, T. Ishihara, K. Hisazumi, T. Kamiyama,

and M. Katagiri, "A run-time power analysis method using OS-

observable parameters for mobile terminals." International

127

Conference on Embedded Systems and Intelligent Technology,

2010.

[KS05] C. Krintz and S. Sucu, "Adaptive on-the-fly compression." IEEE

Transactions on Parallel and Distributed Systems, 2005.

[KS92] J. Kistler and M. Satyanarayanan, "Disconnected operation in the

coda file system." ACM Transactions on Computer Systems, 1992.

[MAC11] J. McCullough, Y. Agarwal, J. Chandrashekhar, S. Kuppuswamy,

A. Snoeren, and R. Gupta, "Evaluating the effectiveness of model-

based power characterization." USENIX Annual Technical

Conference, 2011.

[MB05] A. Merkel and F. Bellosa, "Event-driven thermal management in

SMP systems." Workshop on Temperature-Aware Computing,

2005.

[MHY06] D. McIntire, K. Ho, B. Yip, A. Singh, W. Wu, and W. Kaiser, "The

low power energy aware processing (LEAP) system." International

Conference on Information Processing in Sensor Networks, 2006.

[Mol07] I. Molnar, "Modular scheduler core and completely fair scheduler

(cfs)." Linux Kernel Mailing List, 2007.

128

[MP85] D. McIntyre and M. Pechura, "Data compression using static

Huffman code-decode tables." Communications of the ACM,

1985.

[MPK06] A. Mavinakayanahalli, P. Panchmukhi, J. Keniston, A.

Keshavamurthy, and M. Hiramatsu, "Probing the guts of Kprobes."

Linux Symposium, 2006.

[MS06] R. Maddah and S. Sharafeddine, "Energy-aware adaptive

compression for mobile-to-mobile communications." IEEE

Symposium on Spread Spectrum and Applications, 2006.

[NDR08] D. Narayanan, A. Donnelly, and A. Rowstron, "Write off-loading:

practical power management for enterprise storage." USENIX

Conference on File and Storage Technologies, 2008.

[NF04] E. Nightingale and J. Flinn, "Energy-efficiency and storage

flexibility in the blue file system." USENIX Symposium on

Operating Systems Design and Implementation, 2004.

[NKS07] M. Nicola, I. Kogan, and B. Schiefer, "An XML transaction

processing benchmark." ACM SIGMOD International Conference

on Management of Data, 2007.

129

[NRA11] A. Naveh, D. Rajwan, A. Ananthakrishnan, and E. Weissmann,

"Power management architecture of the 2nd generation Intel®

Core™ microarchitecture, formerly codenamed Sandy Bridge."

Hot Chips, 2011.

[Pet13] P. Peterson, "Datacomp: locally-independent adaptive compression

for real-world systems." Doctoral Dissertation, University of

California, Los Angeles, 2013.

[PFW11] G. Perrucci, F. Fitzek, and J. Widmer. "Survey on energy

consumption entities on the smartphone platform." IEEE Vehicular

Technology Conference, 2011.

[Phi13] M. Philips, "The cloud begins with coal. Big data, big networks,

big infrastructure and big power: An overview of the electricity

used by the global digital ecosystem." Digital Power Group, 2013.

[PMW09] S. Pelley, D. Meisner, T. Wenisch, and J. VanGilder.

"Understanding and abstracting total data center power."

Workshop on Energy-Efficient Design, 2009.

[Pra03] M. Prasad, "WattProbe software-based empirical extraction of

hardware energy models." Master’s Thesis, Computer Science

Dept., Stony Brook University, 2003.

130

[PS05] C. Pu and L. Singaravelu, "Fine-grain adaptive compression in

dynamically variable networks." IEEE International Conference on

Distributed Computing Systems, 2005.

[PSK11] P. Peterson, D. Singh, W. Kaiser, and P. Reiher, "Investigating

energy and security trade-offs in the classroom with the Atom

LEAP testbed." USENIX Cyber Security Experimentation and

Test, 2011.

[Ras09] N. Rasmussen, "Allocating data center energy costs and carbon to

IT users." APC White Paper, 2009.

[RCJ05] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, "DRAMsim2: a cycle

accurate memory system simulator." IEEE Computer Architecture

Letters, 2005.

[RLG08] K. Rajamani, C. Lefurgy, S. Ghiasi, J. Rubio, H. Hanson, and T.

Keller, "Power management for computer systems and

datacenters." International Symposium on Low Power Electronics

and Design, 2008.

[RSI08] N. Ravi, J. Scott, and L. Iftode, "Context-aware battery

management for mobile phones." IEEE International Conference

on Pervasive Computing and Communications, 2008.

131

[RSM09] S. Ryffel, T. Stathopoulos, D. McIntire, W. Kaiser, and L. Thiele,

"Accurate energy attribution and accounting for multi-core

systems." Technical Report, Center for Embedded Network

Sensing, University of California, Los Angeles, 2009.

[RSR07] S. Riviore, M. Shah, P. Ranganathan, and C. Kozyrakis,

"JouleSort: a balanced energy-efficiency benchmark." ACM

International Conference on Management of Data, 2007.

[SBM09] K. Singh, M. Bhadauria, and S. McKee, "Real time power

estimation and thread scheduling via performance counters." ACM

SIGARCH Computer Architecture News, 2009.

[Sca06] J. Scaramella, "Worldwide server power and cooling expense

2006-2010 forecast." International Data Corporation, 2006.

[SCF03] B. Slechta, D. Crowe, B. Fahs, M. Fertig, G. Muthler, J. Quek, F.

Spadini, S. Patel, and S. Lumetta, "Dynamic optimization of

micro-operations." IEEE International Symposium on High-

Performance Computer Architecture, 2003.

[SGY11] B. Smith, R. Grehan, T. Yager, and D. Niemi, "Byte-unixbench: a

unix benchmark suite." 2011.

[Shi05] S. Shiva, Advanced Computer Architectures. CRC Press, 2005.

132

[SK12] D. Singh and W. Kaiser. "Energy efficient network data transport

through adaptive compression using the DEEP platforms." IEEE

International Conference on Wireless and Mobile Computing,

Networking and Communications, 2012.

[SMK08] T. Stathoupoulos, D. McIntire, and W. Kaiser, "The energy

endoscope: real-time detailed energy accounting for wireless

sensor nodes." International Conference on Information Processing

in Sensor Networks, 2008.

[SPR10] D. Singh, P. Peterson, P. Reiher, and W. Kaiser, "The Atom LEAP

platform for energy-efficient embedded computing: architecture,

operation, and system implementation." Technical Report,

University of California, Los Angeles, 2010.

[SZD08] K. Shen, M. Zhong, S. Dwarkadas, C. Li, C. Stewart, and X.

Zhang, "Hardware counter driven on-the-fly request signatures."

ACM SIGARCH Computer Architecture News, 2008.

[WAB10] L. Wanner, C. Apte, R. Balani, P. Gupta, and M. Srivastava, "A

case for opportunistic embedded sensing in the presence of

hardware power variability." International Conference on Power

Aware Computing and Systems, 2010.

133

[Wat08] J. Watson, "Virtualbox: bits and bytes masquerading as machines."

Linux Journal, 2008.

[WCJ09] S. Wang, Y. Chen, W. Jiang, P. Li, T. Dai, and Y. Cui, "Fairness

and interactivity of three CPU schedulers in Linux." IEEE

International Conference on Embedded and Real-Time Computing

Systems and Applications, 2009.

[WL08] D. Woo and H. Lee, "Extending Amdahl's law for energy-efficient

computing in the many-core era." IEEE Computer, 2008.

[WM09] L. Wang and J. Manner, "Evaluation of data compression for

energy-aware communication in mobile networks." International

Conference on Cyber-Enabled Distributed Computing and

Knowledge Discovery, 2009.

[WTK08] C. Wong, I. Tan, R. Kumari, J. Lam, and W. Fun, "Fairness and

interactive performance of o (1) and cfs linux kernel schedulers."

IEEE International Symposium on Information Technology, 2008.

[WZ91] A. Wyner and J. Ziv, "Fixed data base version of the Lempel-Ziv

data compression algorithm." IEEE Transactions on Information

Theory, 1991.

134

[XJJ12] X. Xie, H. Jiang, H. Jin, W. Cao, P. Yuan, and L. Yang, "Metis: a

profiling toolkit based on the virtualization of hardware

performance counters." Human-centric Computing and

Information Sciences, 2012.

[YKJ12] C. Yoon, D. Kim, W. Jung, C. Kang, and H. Cha, "Appscope:

application energy metering framework for android smartphone

using kernel activity monitoring." USENIX Annual Technical

Conference, 2012.

[YLV13] J. Yan, C. Lonappan, A. Vajid, D. Singh, and W. Kaiser, "Accurate

and low-overhead process-level energy estimation for modern hard

disk drives." IEEE International Conference on Green Computing

and Communications, 2013.

[YVK00] W. Ye, N. Vijaykrishnan, M. Kandemir, and M. Irwin, "The design

and use of SimplePower: a cycle-accurate energy estimation tool."

Design Automation Conference, 2000.

[ZDD04] Q. Zhu, F. David, C. Devaraj, Z. Li, Y. Zhou, and P. Cao,

"Reducing energy consumption of disk storage using power-aware

cache management." IEEE International Symposium on High-

Performance Computer Architecture, 2004.

135

[ZDF07] X. Zhang, S. Dwarkadas, G. Folkmanis, and K. Shen, "Processor

hardware counter statistics as a first-class system resource."

HotOS, 2007.

[ZEL02] H. Zeng, C. Ellis, A. Lebeck, and A. Vahdat, "ECOSystem:

managing energy as a first class operating system resource." ACM

International Conference on Architectural Support for

Programming Languages and Operating Systems, 2002.

[ZSB13] S. Zhuravlev, J. Saez, S. Blagodurov, A. Fedorova, and M. Prieto,

"Survey of energy-cognizant scheduling techniques." IEEE

Transactions on Parallel and Distributed Systems, 2013.

[ZSG03] J. Zedlewski, S. Sobti, N. Garg, F. Zheng, A. Krishnamurthy, and

R. Wang., "Modeling hard-disk power consumption." USENIX

Conference on File and Storage Technologies, 2003.

[ZYC13] X. Zhao, J. Yin, Z. Chen, and S. He, "Workload classification

model for specializing virtual machine operating system." IEEE

International Conference on Cloud Computing, 2013.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

