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ABSTRACT OF DISSERTATION 

 

Constitutive Modeling of Peat in Dynamic Simulations 

 

by 
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Professor Scott Joseph Brandenberg, Chair 

 

Peat is a highly compressible organic material with unique properties that differ from 

inorganic mineral soils, which poses a challenge in their constitutive modeling. The main 

specific challenge addressed in this dissertation include matching dynamic properties 

(i.e., modulus reduction and damping behavior). Constitutive models used in 1D site 

response typically use modulus reduction and damping curves as input parameters, and 

usually introduce a misfit of the desired behavior, particularly at high strains. This is 

problematic for peat because large strains are expected to develop during cyclic loading 

due to the peat softness.  
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Nonlinear one dimensional ground response models generally present a compromise 

between fitting the backbone curve or the hysteretic damping curve. Fitting the damping 

curve depends on unloading and reloading rules. Most of the models use Masing rules or 

extended Masing to correct the overdamping at high strains resulting from using Masing 

rules. Frequency dependent Rayleigh damping is used to introduce damping at low 

strains. I present a new formulation of unloading and reloading rules completely departing 

from Masing rules. The main idea is to rotate the axis of the stress strain curve and 

change the point of reference to calculate the stress at the next time step. The small strain 

damping is made hysteretic by increasing the initial departure tangent modulus when 

unloading, in a way consistent with what has been observed in laboratory tests. The 

unloading-reloading rule is implemented in a nonlinear code and is able to match any 

backbone and hysteretic damping without Rayleigh damping. 

Dynamic curves are typically not used in 2D or 3D models because their inclusion in a 

plasticity framework is complicated due to their dependence on confining pressure, which 

can change during earthquake loading (e.g. when excess pore pressure develops under 

undrained loading). Hence, the damping behavior is not an input of current 3D constitutive 

models. In order to facilitate the inclusion of dynamic curves in constitutive models, I 

present a new concept that plots modulus reduction and damping curves against stress 

ratio instead of shear strain. This results in pressure-independent modulus reduction and 

damping curves for three empirical relationships commonly-used to derive modulus 

reduction and damping curves. This finding is useful for implementation in one-

dimensional effective stress ground response analysis codes for undrained loading 

conditions, and in advanced plasticity models. 
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I then extend the developed unloading-reloading rule and include it in a 3D constitutive 

model that uses modulus reduction and damping curves that are plotted against stress 

ratio by using the aforementioned concept. The formulation of the model allows to match 

dynamic properties (i.e., modulus reduction and damping curves), in 1D and 2D site 

response. At large strains the strength is controlled by a bounding surface algorithm 

following the formulation from Dafalias and Manzari (2004). The volumetric response is 

controlled by a dilation surface that introduces plastic volumetric strains based on 

deviatoric plastic strains. Most of the input parameters are well-known engineering 

properties easily measured in laboratory tests. Default values are defined for the input 

parameters that are not easily measured. I present the implementation of the model in 

FLAC and some typical predictions of the model through simulations of cyclic triaxial and 

simple shear tests. Finally, I present the calibration of the model for Sherman Island peat 

based on laboratory tests, and the performance of the model in 1D site response 

simulations.  
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1 INTRODUCTION 

1.1 Presentation of the Sacramento San-Joaquin Delta 

1.1.1 History of the Delta 

The Sacramento-San Joaquin Delta is the hub of the California water system. It is a 2800 

km2 estuary at the confluence of the Sacramento and the San Joaquin rivers. The Delta 

provides agricultural and urban water to 25 million residents, both in southern and 

northern California. It is also an agricultural center, generating about 500 millions of 

dollars every year (http://www.restorethedelta.org/), due to the appropriate climate, the 

fertile organic soil and continuous fresh water source.  

Prior to 1850’s, and the gold rush, the Delta was an inland freshwater marsh. Over 60% 

of the Delta’s area was submerged by daily tides, and spring tides could submerge the 

entire area (Lund et al, 2007). Some natural levees in the Delta have formed over the 

years from sediments deposited by repeated flooding. In the marsh, the most common 

plants were tules, able to survive in fresh and salty water. The combination of sediment 

deposits (because of the flooding) and the dead plants deposits, led to thick deposits of 

extremely compressible peat. A study from Dexler et al. (2009) concluded that the peat 

deposit started 6,700 years ago. 

During the gold rush, people started to settle in the Delta. The Delta was an attractive 

place because of the possibility of extensive farming. The nutrient-rich organic soil 

provided a perfect land for farming. The first settlers built their farms on the natural levees. 

Once the highland were full, farmers started to reclaim the low-lying areas. They began 
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placing fill on top of the natural levees, in order to protect their farm against flooding. The 

Delta became the property of the State of California in 1850, through the Swampland act. 

The state started selling the Delta lands for one dollar per acre, to encourage reclamation. 

Local reclamation districts were formed to accelerate the reclamation of the lands. With 

the creation of levees, “Islands” were created, enclosed by those levees. The levees built 

at that time were not engineered structures, but were composed of a mix of loose sand, 

clay and organic matter. A common method of reclamation of the islands was to burn the 

ground. Although this method was efficient for reclamation, it also increased the 

subsidence process, which is naturally occurring due to biodegradation. Technologies 

such as mechanized dredging, fill placement, and pumping of low-lying areas, 

accelerated the reclamation of the Delta. Between 1860 and 1930, more than 1800 km2 

were reclaimed, enclosed by more than 1700 km of levees. 

After most of the land was reclaimed, in the late 1920’s, the focus shifted on storing the 

water and delivering it to more arid areas of the state like the San Joaquin valley and 

Southern California. At that time the Los Angeles Aqueduct had been completed and 

providing water across the state was an important challenge. Many saw the Delta and the 

Sacramento and San Joaquin Rivers as good water sources. The Central Valley Project 

(CVP) funded in 1933 by the Federal government, was one of the first major projects to 

use the Delta. The main goals of the project were to deliver water and reduce salinity 

intrusion to the San Joaquin Valley, especially for agriculture. The CVP changed the Delta 

from a freshwater estuary with salinity intrusion to a freshwater area. This was achieved 

by discharging salt water off the Delta with controlled releases from the Shasta Reservoir. 

Those upstream water releases avoid the salt water to intrude the Delta. Canals were 
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constructed to deliver water to irrigators in the San Joaquin Valley. In 1960 the State of 

California enacted the State Water Project to deliver water to Southern California. This 

was achieved with the construction of the California Aqueduct and pumping stations. Both 

projects were originally considering constructing a peripheral canal in the eastern margin 

of the Delta, to avoid relying on the Delta levees when carrying water. The idea of a 

peripheral canal raised environmental concerns such as pollution and species protection. 

In 1982 the construction of the canal was rejected by a statewide referendum, and 

development of an alternative water conveyance system remains a contentious issue 

today.  

Today the Delta provides water to most Californians. Almost 50 percent of California’s 

water supply comes from the Delta. Figure 1-1 shows the distribution of water sources for 

daily urban demand. About 30% of the water consumption of the two biggest urban areas 

in California, the San Francisco Bay, and the South Coast, come directly from the Delta 

(Delta Vision 2008). The Delta is not only an important center for water supply, but it is 

also an agricultural center and the home of a rich but sensitive ecosystem, with a large 

variety of species, some unique to the Delta. It also has an important role as a drainage 

area for polluted agricultural and urban runoff.  
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Figure 1-1 Distribution of water sources for daily urban uses in California (Delta Vision 2008) 

1.1.2 Seismic Risk 

The Delta region is a zone of moderate seismic hazard, with relatively low seismic activity 

compared to the San Francisco Bay area (Torres et al 2000). However, seismic hazard 

still constitutes an important threat for the levees and the water supply sustainability. 

To evaluate the vulnerability of the levees, we need to first understand seismic hazard in 

the Delta. This seismicity has been well studied over the years, and has been formally 

defined by the California Department of Water Resources (DWR) in the section 6 of the 

DRMS (Delta risk management strategy) project. In the DRMS project, a probabilistic 

seismic hazard analysis (PSHA) was performed, to estimate the ground motion hazard. 

The study from the DRMS calculated time dependent hazard from the major Bay area 
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faults based on the study of the Working Group on California Earthquake Probabilities in 

2003 (WGCEP). Three elements are needed to characterize the seismic source: (1) the 

identification, the location and the geometry of every source, (2) the distribution of 

magnitudes produced from each source, (3) the slip rate on each fault. 

The seismic sources considered time dependent are San Andreas, Hayward/Rodger’s 

Creek, Calaveras, Concord/Green Valley, San Gregorio, Greenville, and Mt. Diablo 

referred to as the San Francisco Bay Region (SFBR) model faults. The SFBR model has 

different rupture sources, and it considers several rupture scenarios. A certain weight is 

given to each scenario and a logic tree is built. The rupture probabilities for different return 

period (50, 100 and 200 years) are then calculated, also considering 4 starting times (in 

the time dependent prediction), 2005, 2050, 2100 and 2200. 

Other smaller faults are considered, including blind faults, and they are modeled with a 

time independent probability model. The DRMS report computed hazard curves at several 

sites throughout the Delta, where the hazard generally increases from east-to-west 

(Torres 2000). The project pertaining to this dissertation focuses on the site of Sherman 

Island on the western edge of the Delta, because this is where the peat is the thickest. 

Sherman Island is one of the most problematic areas in the Delta, and this is the kind of 

site reproduced in the centrifuge tests presented hereafter. The DRMS report provides 

the disaggregation analysis for Sherman Island (Figure 1-2) and the contribution of 

seismic sources to mean peak horizontal acceleration time-dependent hazard (Figure 

1-3). The PGA of the 100 years return period, is 0.24g for Vs30 = 300m/s (1000 ft/s), which 

corresponds to the Pleistocene soil conditions underlying the peat. The peat is expected 

to amplify input motions in this range (Kishida et al. 2009). Seismic hazard for 100-year 
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ground motion at Sherman Island is mainly controlled by nearby events (<20km) and 

magnitude in the 6 to 7 range. 

 

Figure 1-2 Disaggreagation analysis for the Sherman Island site from DRMS (2009) 
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Figure 1-3 Seismic source contributions for Sherman Island (DRMS 2009) 
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1.1.3 Consequences of Levee Failures 

The DRMS study showed that anticipated peak acceleration for a return period of 500 

years would be close to 0.4g in the western part of the Delta, which is estimated to 

potentially cause between 10 to 70 levee failures. Most of these predicted failures are 

associated with liquefaction of coarse grained soils within and beneath the levees, but the 

contribution of the peat is not well understood at present, and not integrated in the 

possible modes of failure. The consequences of multiple failures would be tragic: multiple 

island floods, introduction of saline water in the islands, which will stop the water intakes 

at pumping stations. It has been forecast that the water delivery would be interrupted for 

twenty to thirty months. The worst case scenario would be that such an event could 

change permanently the regional morphology, and the Californian water system would 

have to be entirely reconfigured, and the economy and the population of California would 

be greatly affected by those changes. 

In 2004 a single levee breach caused inundation of upper and lower Jones tracts (Figure 

1-4). A single breach is easily manageable, and this was quickly repaired. But the cost 

for repairing was almost $50 million, and the event cost over $200 million in total losses. 

Several simultaneous breaches would be much more difficult to manage, and the cost 

would be much higher. 
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Figure 1-4 Upper Jones tract failure (2004) 

1.2 Overview and Scope of the Research Project 

Several studies have been lead on the vulnerability of the Delta levees. The DRMS (Delta 

Risk Management Strategy) have evaluated the potential of levee failures in case of 

earthquake, based on the liquefaction potential of the levees. The studies usually perform 

Newmark sliding block analysis and focus on liquefaction triggering to evaluate the 

vulnerability of the levees. Sand liquefaction behavior is pretty well understood, but peat 

seismic behavior is not a well-understood topic. Although levees founded on peat have 

not performed well in seismic events, little research on levees founded on peaty organic 

soils is available. 

Tests in laboratory (Shafiee et al. 2013, Shafiee 2016) have shown that peat, when 

cyclically loaded, develops excess pore water pressure. Dissipation of the pore pressure 

leads to post-cyclic volume change. This mechanism has never been considered in the 

levees vulnerability. This settlement can induce significant cracking and loss of freeboard. 
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During a seismic event the base of the levee may experience rocking, along with the base 

shear, an earthquake can impose significant seismic stress demands. Those stress 

demands, in the levee and beneath it, need to be evaluated to fully understand the 

vulnerability of the levee. To do so, failure mechanisms should be analyzed. To answer 

those questions, this project proposed to conduct centrifuge model tests, to study the 

behavior of levees resting atop peat. The research program of this project consisted in 

twelve tests in the small centrifuge (1m radius Schaevitz centrifuge) and two tests in the 

large 9m radius centrifuge. All the tests used the NEES@UCDavis equipment site. The 

models were heavily instrumented (accelerometers, pore pressure transducers, linear 

potentiometer, bender elements) to be able to fully capture all the mechanisms acting in 

the levees failure. These tests provide valuable insights on the behavior of levees under 

seismic loading and on the post cyclic reconsolidation.  

One of the objectives of this research project it to provide tools to practitioners to help 

them analyze the response of levees founded on peat. One of these tools is a constitutive 

model for peat since this has never been done before. The results of the centrifuge tests 

and previous lab tests are used to validate the constitutive model.  

1.3 Organization and Scope of this Dissertation 

This dissertation is a product of the aforementioned research project. As such, my 

doctoral work involved centrifuge testing and numerical simulations. The centrifuge tests 

are discussed in this dissertation but more details can be found in Cappa (2016). Riccardo 

Cappa was in charge of the centrifuge tests, and his dissertation covers every aspects of 

the tests, while this dissertation merely summarizes them. 
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The main focus of the present dissertation is the constitutive modeling of peaty organic 

soils. Two models are presented in this dissertation. The first model is for use in 1D 

ground response analyses, and is capable of matching any input modulus reduction and 

damping curves. This model can be used with any set of modulus reduction and damping 

curve. Previous models are typically unable to match both curves, and introduce a misfit 

of the desired behavior, especially at large strains. This is crucial for peat since large 

strains are expected because of the softness of peat. However the model can be used to 

model any material. 

The second model adapts this 1D model and extends it into a multidimensional model for 

use in a 2D finite difference program called FLAC. The model is able to match input 

modulus reduction and damping curves, and a target strength via a bounding surface 

algorithm. The model follows the concept of critical state soil mechanics, which allow to 

model the deviatoric and volumetric response of soils, whether this latter is contractive 

(e.g. for normally consolidated soils) or dilative (e.g. for overconsolidated soils). This 

model does not account for viscous effect and does not model secondary compression. 

The integration of viscous effects is part of the future work resulting from this dissertation. 

Albeit this model is originally derived and calibrated for peat, it can be used for any kind 

of material in dynamic simulations, and in particular in ground response analyses. 

This dissertation, focusing on the constitutive modeling of peaty organic soils, and on 

numerical simulations, is composed of nine chapters and two appendices.  
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Chapter 1: Introduction 

The present chapter first introduces the Sacramento – San Joaquin Delta, the importance 

of it, and the associated risks. It then explains the objectives and the scope of the research 

project that this dissertation is part of.  

Chapter 2: Review of Literature 

The chapter presents an extensive review of literature that pertains to this dissertation. It 

is composed of the three distinct parts: 

 The first part discusses the behavior of peat as observed by previous researchers. 

In particular, this section focuses on the compressibility and the shear strength of 

peat. Finally, the behavior of peat under cyclic loading as observed in laboratory 

tests is discussed. 

 The second part deals with constitutive modeling in 1D ground response analysis. 

It introduces the theory behind equivalent linear and nonlinear ground response 

analysis, and presents the input parameters needed. It then presents a few 

nonlinear constitutive models for total stress 1D ground response analysis. It is 

shown that models typically use modulus reduction and damping curves as input, 

but are unable to respect precisely these curves. 

 The last part reviews multidimensional constitutive models for soils. It first presents 

fundamental equations of plasticity and visco-plasticity theory and then presents 

some important concepts such as bounding surface plasticity and critical state soil 

mechanics. Finally, some constitutive models are presented. 
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Chapter 3: Centrifuge Tests of Levees atop Peaty Organic Soils 

As part of my doctoral work, and as part of the research project team, I was involved in 

two large centrifuge tests conducted at UC Davis. Riccardo Cappa from UC Irvine took 

the lead on centrifuge tests and his dissertation extensively presents the tests and the 

findings associated with them. This chapter presents a summary of these tests, and also 

introduces the water-pluviation device that I have developed to use in the centrifuge tests. 

Chapter 4: Modulus Reduction and Damping Curves Plotted vs. Stress Ratio 

The chapter 4 presents a new concept in which modulus reduction and damping curves 

are plotted versus stress ratio (η) rather than shear strain. The resulting relationships for 

G/Gmax and D – Dmin vs η are shown to be pressure-independent. Implications and 

potential uses of the new approach are discussed. This concept is used to integrate 

modulus reduction and damping curves in the 3D model presented in chapter 6 and can 

also be used in conjunction with the model presented in chapter 5. 

Chapter 5: One Dimensional Nonlinear Model for Matching Modulus Reduction and 

Damping Curves in Ground Response Analysis 

This chapter presents a one-dimensional nonlinear constitutive model for 1D total stress 

ground response analysis. This model is able to match any input modulus reduction and 

damping curves. The constitutive equations are presented first, and some examples of 

the model performance are presented. The derivation of the consistent tangent is 

presented in Appendix A. 
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Chapter 6: Formulation of a Nonlinear Constitutive Model for Dynamic Simulations 

This chapter presents a nonlinear constitutive model for dynamic simulations. The base 

of the model is the 1D model presented in chapter 5. The concept presented in chapter 4 

is used to adapt the constitutive equations of the 1D model in a multidimensional 

framework. This chapter provides all the constitutive equations and the input parameters 

of the model. 

Chapter 7: Implementation in a Finite Difference Program: FLAC 

The model is implemented in a finite difference program called FLAC. This chapter 

presents the theory behind FLAC, and how the model is implemented. It provides all the 

information needed to use the model in FLAC. The model response is illustrated through 

series of single element simulations. A short parametric study of some of the model’s 

variables is provided.  

Chapter 8: Calibration of Model with Laboratory Data and One-Dimensional Ground 

Response Simulations 

The calibration of the model is presented through the calibration of Sherman Island peat 

based on lab tests.  The model is then used in a 1D ground response analysis simulating 

the centrifuge tests configuration. The simulations are then compared with data and 

DEEPSOIL simulations. 
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Chapter 9: Summary and Conclusions, and Future Work 

This chapter summarizes the work presented in this dissertation, and in particular the 

chapters 4 to 8. Future work pertaining to this dissertation and ideas for improvement of 

the models are presented. 
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2 REVIEW OF LITERATURE 

2.1 Behavior of Peaty Organic Soils 

2.1.1 Definition and Structure 

The strict definition of peat is a soil with organic content (OC) higher than 75%. Organic 

content is defined as the organic mass of the solids divided by the total mass of the solids. 

It is obtained by incinerating a soil in a furnace and measuring the weight of organic matter 

burned (ASTM D2974-07a). Geotechnical engineers use the term “peat” as a generic 

term for organic soils, regardless of whether or not they comply with the ASTM 

specification. In this dissertation, I use the term “peat” to refer to organic soils.  

Formation of peaty soils comes from the deposition and the accretion of dead plants under 

water, and their fossilization. The thickness of those peat deposits vary throughout the 

Delta, from a few meters, up to eleven meters. The organic content of those materials 

typically decreases with depth and varies from 10% to 80%.The structure of peat is made 

of layers of fibrous organic remains. The cellular structure of those fibers is mostly full of 

water. Peat collected from a site on Sherman Island as part of a UCLA field-testing 

program had water content between 410% and 480% (Shafiee et al 2013), corresponding 

to an approximate void ratio (e) of 6.1 to 7.2. Peat has a low unit weight (10 – 15 kN/m3), 

due to its high void ratio and low specific gravity (1.85 for Sherman Island peat, Shafiee 

et al. 2013).   

The fibrous peat particles are also highly permeable, compressible, bendable and 

degradable. The peat constantly undergoes biochemical decomposition, leading to the 

creation of gas, and peat is therefore only partially saturated even when submerged. 
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However, the behavior of peat is less affected by the partial saturation because of its 

softness (Chaney et al. 1980). Boulanger et al. (1998) tested samples at different B-

values (0.96 and 0.81) and did not observe a different behavior. 

2.1.2 Earth Pressure at Rest  

The coefficient of earth pressure at rest (K0) for normally consolidated inorganic soils is 

estimated using Jaky’s Equation: 

K0 = 1 – sin 𝜙𝑐𝑠
′  Equation 2-1 

Where 𝜙𝑐𝑠
′  designates the critical state friction angle. Peats typically have a high friction 

angle and Jaky’s equation would result in a very low value of coefficient of earth pressure 

at rest. Hayashi et al. (2012) studied the coefficient of earth pressure for peat ground in 

the Hokkaido region and found that for normally consolidated peat, Jaky’s equation 

results in a good prediction and that the coefficient of earth pressure at rest is between 

0.2 and 0.5. The low values of coefficient of earth pressure at rest are attributed to the 

frictional resistance of fibers (Mesri and Aljouni 2007). Hayashi et al. (2012) found that K0 

decreases when the organic content, i.e. the proportion of fibrous material, increases. 

The coefficient of earth pressure at rest increases with the overconsolidation ratio, and 

can be greater than one for heavily overconsolidated peat. In the Sacramento San 

Joaquin Delta, the peat is overconsolidated beneath levees due to long-term secondary 

compression. In the free-field, a crust of overconsolidated soil has formed due to 

dessication, but the peat is essentially normally consolidated beneath the crust 

(Boulanger et al. 1998). 
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2.1.3 Permeability 

Peat is highly permeable (Mesri and Aljouni 2007) due to its high void ratio combined with 

large fibrous particles and large pore sizes. For Sherman Island peat, the permeability is 

usually between 10-6
 to 10-8 m/s, and decreases as void ratio decreases. Figure 2-1 

presents the permeability from falling head test for Sherman Island peat from Shafiee et 

al. (2013), and shows a decrease in permeability with a decrease in void ratio. We 

typically designate the slope of e versus log k curve with Ck. For Sherman Island peat, 

this value is about 2.4 (Shafiee et al. 2013), which is consistent with prior observations 

for clays (e.g. Fox 1999). 

Peat has a permeability much higher in the horizontal than in the vertical direction (Mesri 

and Aljouni 2007). This is due to the fibers being oriented in the horizontal direction, 

because of the mode of deposition. 
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Figure 2-1 Void ratio vs. permeability (Shafiee et al. 2013) 

2.1.4 Compressibility 

Peat is a highly compressible material. Its compressibility is due to its high void ratio, and 

the compressible and bendable nature of the fibers that compose the structure of the 

peat. This compressibility is seen in both primary consolidation and secondary 

compression. During both phases water is expelled simultaneously from the inside of the 

peat particles and from between the particles. 

2.1.4.1 Primary Consolidation 

Primary consolidation of soils is defined as a change of volume due to a change in 

effective stress. The peat on the Sherman Island has a coefficient of compressibility (Cc) 

of about 3.9, and a coefficient of recompression (Cr) of about 0.4. Clays that are not highly 

sensitive have typically lower values than that by roughly an order of magnitude. 
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Coefficients of compressibility and recompression typically increase with organic content. 

The coefficient of consolidation cv associated with Terzaghi’s (1925) one-dimensional 

theory of consolidation is usually between 20 to 100 m2/year for peat in the compression 

range, for clay it is usually between 0.5 to 5 m2/year. For peat this coefficient decreases 

dramatically when the consolidation pressure increases. In the recompression range cv 

can go up to 500m2/year (Mesri and Aljouni 2007). Therefore primary compression 

usually occurs quickly. 

The primary compression is described by the consolidation curve, which plots the void 

ratio at the end of primary consolidation (e) versus the logarithm of the vertical effective 

stress (’v). This consolidation curve can also be plotted with the natural logarithm of the 

mean effective stress (p’). The consolidation curve depends on the time of end of primary 

consolidation (tp) because during primary consolidation, peat will also experience 

secondary compression. A thick specimen with a longer time of end of primary 

consolidation will undergo more secondary compression than a thin specimen leading to 

a lower consolidation curve. Following this idea, a consolidation curve can be associated 

with a specific time of end of primary consolidation (Bjerrum 1967). 

2.1.4.2 Secondary Compression 

2.1.4.2.1 Mechanism of Secondary Compression 

Secondary compression describes the tendency of soils to contract under constant 

effective stress, i.e. no change in loading. In mechanics of material this phenomenon is 

called creep. The secondary compression of peat is one of its significant characteristics, 

and is due to its compressibility and the constantly undergoing biodegradation. The 
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phenomenon can usually be described by the C/Cc law of compressibility (Mesri and 

Godlewski 1977), where C designates the coefficient of secondary compression. The 

law states that for any soil there is a unique value of this ratio during the whole secondary 

compression stage. Peat is showing the highest ratio of C/Cc among the soils, around 

0.06. For granular soils, this ratio is commonly around 0.02, and for inorganic clays it is 

around 0.04. The amplitude of secondary compression of peat is important, and it is often 

hard to distinguish from primary consolidation from test value. Figure 2-2 shows the result 

of a consolidation test performed at UCLA for a traditional normally consolidated stress-

controlled consolidation test in which the vertical load increment was doubled (Shafiee et 

al. 2013). The end of primary consolidation cannot be distinguished from these curves 

because the rate of secondary compression is so similar to the rate of primary 

consolidation. 

 

Figure 2-2 Results of a consolidation test on Sherman Island peat, (a) dial reading vs. log time (b) dial 
reading vs. square root of time (after Shafiee et al. 2013) 
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The classic interpretation of secondary compression assumes that secondary 

compression starts at the end of primary consolidation. It also assumes that a “clock”, i.e. 

a timescale, starts at the application of the load and that the settlement due to secondary 

compression is calculated at any given time on this clock, using the following formula: 

𝑠𝑠 =
𝐶𝛼

1 + 𝑒0
𝐻0 log

𝑡

𝑡𝑝
 

 
Equation 2-2 

Where H0 is the thickness of the layer. In reality, secondary compression is always 

ongoing, including during primary consolidation. As a thought experiment, the previous 

equation implies that a thick layer of soil that would take a long time to consolidate would 

not undergo secondary compression. This interpretation presents a second flaw. If an 

infinitesimal load was applied on the soil, it would still reset the clock. The settlement due 

to secondary compression would drastically increase because an increase of one log of 

time would now occur much faster in the new timescale. 

2.1.4.2.2 Reset of Secondary Compression due to Cyclic 

Straining 

Shafiee et al. (2015) studied the influence of cyclic straining on secondary compression. 

They tested samples of Sherman Island peat in a direct simple shear device, at different 

cyclic strain amplitude, and measured the settlement. They first observed generation of 

pore water pressure due to cyclic loading, and settlement associated with the dissipation 

of excess pore water pressure. Following the consolidation process they measured a 

continual settlement due to secondary compression and observed that the rate of 

secondary compression increased after cyclic loading. Figure 2-3 presents the results of 
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one of their test. In this test, they cyclically sheared a sample of peat at different strain 

levels. For every strain level, they applied 15 cycles at 1 Hz. During cyclic loading excess 

pore pressure is generated, and after the end of cyclic loading, the sample consolidates 

in about a minute. The figure clearly shows an increase in rate of settlement due to cyclic 

straining. The rate of settlement starts increasing for 1% shear strain. This seems to 

indicate that there is a cyclic strain threshold for the reset of secondary compression due 

to cyclic shearing. This increase in settlement has the potential to lead to a loss of 

freeboard of levees that would not have failed during a seismic event. 

 

Figure 2-3 Settlement vs. time in a direct simple shear device (Shafiee et al. 2015) 

2.1.5 Shear Strength 

2.1.5.1 Frictional Behavior 

Due to the interlocking, and the sliding resistance of the fibers, peats are frictional 

materials usually exhibiting high values of friction angle (MacFarlane 1969). Friction 

angles for peat typically range from 35 to 60  (Mesri and Ajlouni 2007). Marachi et al. 

(1983) tested peat retrieved in the Delta and measured friction angles of 44 . The peak 

friction angle is mobilized at shear strain levels that are 5 to 10 times higher than those 
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required for soft clay deposits (Tressider 1958, Hardy and Thomson 1956, MacFarlane 

1969). 

Upon shearing the friction angle decreases to a residual value that can be as low as half 

of the peak value in fibrous peat (Ajlouni 2000, Cola and Cortellazzo 2005). Cola and 

Cortelazzo attributed the peak value to the reinforcement effect of fibers. Sherman Island 

peat is not highly fibrous, and no decrease in shear strength was observed at large strains 

(Shafiee 2016). 

2.1.5.2 Effect of Fibers 

Because of the mode of deposition, the fibers are oriented horizontally. When sheared 

the highly fibrous peats exhibit a peak strength due to the tensile strength of the fibers. 

Cola and Cortellazzo (2005) compared the stress-strain behavior of undisturbed 

specimens and reconstituted specimens (Cola and Cortellazzo 2005). Figure 2-4 

presents the results of their tests. Both specimens were isotropically consolidated to 50 

kPa. ANI-50 was the undisturbed sample and ARI-50 was the reconstituted sample. The 

figure presents the deviatoric stress (q) and the pore pressure (u) versus the axial strain. 

Disturbing the specimen rearrange the fibers, and remove the reinforcement effect of 

fibers. As a result, the undisturbed specimens reached a peak shear strength, and the 

residual strength was the same as the reconstituted sample. 
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Figure 2-4 Cola and Cortelazzo (2005) Stress-strain curve for undrained triaxial tests on reconstituted 
(ARI) and undisturbed (ANI) samples 

Undrained triaxial tests on undisturbed specimens cut in the vertical and the horizontal 

direction (parallel to the fibers) showed that the friction angle was greater for specimen 

cut in the vertical direction. In the vertical direction the friction angle was between 51 and 

55°, for horizontal specimens, it was only 35° (Mesri 2007 and Yamaguchi et al. 1985 

a,b). However in direct simple shear tests, the friction angle were almost the same in both 

directions, 40 and 41° (Yamaguchi et al. 1987). This is due to the tensile resistance of 

fibers. The friction angle being directionally dependent is a clear sign of anisotropy. 

Sherman Island peat is not a very fibrous peat, and it is expected that it is not a strongly 

anisotropic material.  

2.1.5.3 Undrained Shear Strength 

Despite this high friction angle, the undrained shear strength remains relatively low for 

peat deposit. Undrained shear strength depends on friction angle and effective stress 
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(Terzaghi et al 1996). For free-field peat deposits the effective stress is very low, due to 

a low unit weight (from 10 to 15 kN/m3). Peat consolidated beneath a levee may have 

much higher consolidation stress, and therefore much higher shear strength. Primary 

consolidation and secondary compression also increase the shear strength of peat. The 

decrease of void ratio happening during those phases lead to a higher undrained shear 

strength (Mesri and Ajlouni 2007). However, even if the shear strength is low, peat have 

an exceptionally high value of undrained shear strength to consolidation pressure ratio. 

For peat this ratio is usually over 0.6, whereas for soft clay and silt deposit, it is typically 

0.32 (Mesri and Ajlouni 2007). This observed high ratio may be caused by 

overconsolidation due to secondary compression, because it is complicated to keep a 

laboratory sample normally consolidated, because secondary compression occurs so 

quickly. 

Marachi et al. (1985) found that in the free field, the undrained shear strength of peat in 

the Delta is between 10 and 25 kPa. Under the levees where the confining pressure is 

greater, the undrained shear strength measured was between 25 and 100 kPa. 

2.1.6 Mechanical Behavior under Cyclic Loading 

2.1.6.1 Dynamic Properties of Peat 

Dynamic properties of peats are a major source of uncertainty to evaluate the seismic risk 

in the Delta. The dynamic properties of peat have been extensively studied (Kramer 2000, 

Stokoe et al. 1994) and specific studies about dynamic properties of Sherman Island peat 

are also available (Boulanger et al. 1998, Wehling et al. 2003, Kishida et al. 2009). I 

present some of their findings in this section. 
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2.1.6.1.1 Modulus Reduction and Damping Curves 

Boulanger et al. (1998) and Wehling et al. (2003) performed numerous cyclic triaxial tests 

on peat from the Delta, to study their dynamic properties and derive modulus reduction 

and damping curves. Kishida et al. (2009) summarized their test results along with those 

from other researchers (Arulnathan 2000, Stokoe et al. 1994). Kishida et al. developed 

regression equations for Modulus Reduction and Damping Curves. All the researchers 

studied the influence of the following parameters on modulus reduction and damping 

curves: 

- Effective confining pressure 

- Overconsolidation ratio (OCR) 

- Organic content 

The OCR has little effect on the modulus reduction and damping curves at high confining 

pressure. In the free field, where the confining pressures are lower, the peat is essentially 

normally consolidated. Peat is more nonlinear at lower confining pressures, and the 

damping ratio tends to be higher at lower confining pressures. This is illustrated in Figure 

2-5 that presents some of the test results from Wehling et al. (2003). 
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Figure 2-5 Modulus reduction and damping curves for peat in the delta (Wehling et al. 2003) 

Kishida et al. (2009) showed that this trend is attenuated for highly organic peats. Figure 

2-6 shows that for OC=65% the modulus reduction curve is relatively unaffected by the 

confining pressure. 
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Figure 2-6 Influence of confining pressure and organic content on Modulus reduction curves (Kishida et 
al. 2009) 

Damping ratio curves show the same trend. Figure 2-7 shows the damping ratio curves 

at different confining pressures for two different organic contents. It shows that the 

damping curve is less dependent of confining pressures for highly organic soils. 
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Figure 2-7 Influence of confining pressure and organic content on damping ratio curves (Kishida et al. 
2009) 

Kishida et al. also found that for higher organic content, the peat is more linear and exhibit 

less modulus reduction. The small strain damping is unaffected by the organic content 

and is generally higher than for clays. At higher strain levels, damping ratios increase with 

organic content. Figure 2-8 presents the modulus reduction and damping curves obtained 

from their model for different organic content and makes a comparison between their 

curves and the curves by Vucetic and Dobry (1991). 



31 
 

  

Figure 2-8 Influence of organic content on: (a) modulus reduction curves and (b) damping ratio curves 
(Kishida et al. 2009) 

2.1.6.1.2 Maximum Shear Modulus 

The same researchers have studied the maximum shear modulus of peat, based on in 

situ measurement and lab tests. In the lab the maximum shear modulus is calculated 

based on a measurement of the shear wave velocity on a small soil sample, and using 

the relationship between shear modulus and shear wave velocity: 

𝐺𝑚𝑎𝑥 = 𝜌 ∗ 𝑉𝑠
2  Equation 2-3 

Boulanger et al. (1998) measured the shear wave velocity of their samples in the lab, and 

found a shear wave velocity of about 84 m/s. Their samples were retrieved beneath a 

levee at a depth of about 13 m, and had a relatively high confining pressure (greater than 

120 kPa). Their measurement agreed reasonably well with the in situ measurement that 

were around 87 m/s. Their measured maximum shear modulus was about 10 MPa and 

they found that the maximum shear modulus increases with loading frequency. In the free 

field, the shear wave velocity was measured as 25 m/s for highly organic peat, and the 

maximum shear modulus would be closer to 1 MPa. 
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Wehling et al. (2003) retrieved samples at a wide range of effective stresses, and found 

that the log of the maximum shear modulus increases linearly with the log of the effective 

stress, for a constant OCR. The shear modulus increases with OCR. They formulated the 

following expression for the maximum shear modulus: 

𝐺𝑚𝑎𝑥

𝑝𝑎
= 𝐴 (

𝜎𝑣
′

𝑝𝑎
)

𝑛

𝑂𝐶𝑅𝑚 
 

Equation 2-4 

Where pa is the atmospheric pressure, and A, n and m are coefficients. Based on 

Equation 2-4 Kishida et al. (2006) developed regression equations for A, n and m, 

depending on the organic content (OC). This allows to calculate the maximum shear 

modulus (Gmax), the density (ρ), and the shear wave velocity (Vs), based on the vertical 

effective stress (𝜎𝑣
′), the overconsolidation ratio (OCR) and the OC. Kishida et al. found 

that the maximum shear modulus decreases when organic content increases. 

2.1.6.2 Effect of Loading Frequency 

Boulanger et al. (1998) studied the effect of loading frequency by studying the response 

of peat under two loading frequencies, 1 Hz and 0.01 Hz. They found that shear modulus 

increases and damping ratio decreases when loading frequency increases. Kramer 

(2000) studied the influence of loading frequency with strain controlled cyclic triaxial tests, 

with loading frequencies ranging from 0.006 Hz to 10 Hz. A low strains, no trend was 

discernable because of scatter. Figure 2-9 presents their results at high strains. They 

found that shear modulus increases by about 10% over a 10-fold increase in frequency. 

This observation is consistent with what Sheahan et al. (1996) found for clays. The 
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damping ratio initially decreases with frequency and then increases showing a more 

intricate behavior than what described by Boulanger et al. (1998).  

 

Figure 2-9 Influence on loading frequency on shear modulus and damping ratios (Kramer 2000) 

2.1.6.3 Effect of Number of Cycles 

Boulanger et al. (1998) and Wehling et al. (2003) studied the influence of the number of 

cycles by applying 30 cycles of constant amplitude. The cyclic degradation can be 

evaluated by the degradation parameter t. They found that the value of t is 0.017. Vucetic 
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and Dobry (1991) measured a degradation parameter of 0.06 for high plasticity clay. Thus 

the cyclic degradation is minor and negligible.  

2.1.7 Influence of Peat on Ground Response 

One dimensional site response analyses from Kramer (2000) showed that motions can 

be deamplified by peat, and that motions in peat can be characterized as having low 

accelerations, but high displacement amplitudes. Tokimatsu and Sekiguchi (2007) 

studied the acceleration recordings from three stations in Japan, one on rock, one of soft 

soil, and one on peat. They found that accelerations recorded on peat were 1.5 times 

greater than on rock and on soft soil. This suggests that peat can transmit certain kind of 

motions better than rock and soft soil. 

Kishida et al (2009), performed site response analyses for the Sacramento San Joaquin 

Delta. They found that when the shaking is small the motion is amplified for every period. 

When the amplitude of shaking increases, the motion at lower periods (i.e. high 

frequencies) is deamplified, but the motion at higher period such as 1.0s is still amplified. 

Ground response of peat therefore poses a serious threat for the levees, because of its 

capability to amplify ground motion. 

2.2 Unidimensional Modeling of Soil Behavior 

The formulation of the three dimensional constitutive model presented in this dissertation 

is based on a constitutive model derived to be used in one dimensional ground response 

analysis. The constitutive equations and the performance of the one dimensional model 

are presented in Chapter 5. This section presents a literature review on soil modeling in 
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1D ground response analysis. The theoretical background of one dimensional ground 

response analysis is shortly described, and a few models are presented. 

2.2.1 One Dimensional Ground Response Analysis 

Site-Specific ground response analysis, often referred as site response analysis, simulate 

the propagation of ground motion through layers of soil to evaluate site effects. Site effects 

are changes in intensity and frequency content of ground motion that influence the 

response of structures. Site response analysis can be performed in one, two or three 

dimensions, to study the effect of shaking in multiple directions. The most commonly used 

method is one dimensional (1D) ground response analysis, where the vertical propagation 

of horizontal shear waves through a column of soil is evaluated. In one dimensional 

ground response, the soil is essentially defined by its stiffness through its shear modulus 

(G), its ability of dissipating energy through its damping ratio (ζ), and its mass, through its 

mass density (ρ). 

There are multiple ways to perform a one dimensional ground response analysis. The 

generation, redistribution and dissipation of excess pore water pressure can be modeled 

(Effective stress analysis), or omitted (total stress analysis), the soil behavior can be 

represented by different methods, and the calculations can be performed in the Time or 

Frequency domain. 

Time domain solutions calculate the response of the soil at every time step. Frequency 

domain solution only computes the Fourier spectrum of the response of the soil based on 

the input motion. The solution is based on a closed form solution of the equation of wave 

propagation. Frequency methods are typically faster than time domain methods and 
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displacement histories can be obtained by using an inverse fast Fourier transform. An 

exact solution is calculated based on transfer functions. The solution is described in 

Roesset and Whitman (1969), Lysmer et al. (1971.) and Schnabel et al. (1972). The use 

of time or frequency domain solutions is determined by the method used to model the soil 

behavior. 

There are three different methods to model the soil behavior. A linear method can be 

used where the soil is considered linear elastic. In this case the stiffness (G) and the 

damping (ζ) are constant, and a frequency domain solution can be used. The Equivalent 

Linear (EL) method (Seed and Idriss 1969) can also be used in a frequency domain 

solution. It uses an iterative algorithm that introduces nonlinearity by performing a linear 

analysis with a shear modulus and a damping ratio adjusted for an equivalent strain. The 

EL method is described in details in the next section. The nonlinear (NL) method solves 

the equation of motion at every time step and updates the stiffness and the damping, 

based on a constitutive model.  

2.2.2 Equivalent Linear Analysis 

The equivalent linear method (EL), first described by Seed and Idriss (1969), is an 

iterative procedure usually donr in the frequency domain which requires simple input 

parameters: 

- The density of the soil (ρ) 

- The maximum shear modulus (Gmax) that can be calculated based on the shear 

wave velocity (Vs) and the soil density (ρ) according to Equation 2-3 
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- The modulus reduction curve, used to represent the decrease of stiffness of the 

soil when shear strain increases 

- The damping ratio curve that represents the capacity of the soil to dissipate energy 

when shear strain increases 

This procedure models every soil layer with a linear spring and a dashpot. The spring and 

dashpot parameters are calculated from the modulus reduction and damping curves, 

based on an equivalent level of shear strain equal to 2/3 of the maximum strain level in a 

given layer. The analysis is ran first with initial parameters and a maximum strain is 

calculated in every layer. The parameters are re-calculated from the input curves, for a 

strain level equal to 2/3 of the maximum strain. The analysis is iterated until the maximum 

strain level calculated is consistent with the strain level used to choose the parameters. 

This procedure is widely used due to its simplicity and its low computational requirements. 

In some cases the equivalent linear method does not converge or does not yield satisfying 

results. In particular when the soil is highly nonlinear, and strains larger than 0.4% are 

expected (Kaklamanos et al. 2013, Stewart et al. 2008), the equivalent linear method 

should not be used, and a nonlinear analysis is then preferred. Recent studies indicate 

that NL procedures are superior to EL even at strains as low as 0.05% (Kaklamanos et 

al. 2015). 

2.2.3 Nonlinear Analysis 

2.2.3.1 Definition of Nonlinear Analysis 

Nonlinear analysis is a time domain method where the equation of motion (Equation 2-5) 

is solved at every time step: 
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[𝑀]{𝑢̈} + [𝐶]{𝑢̇} + [𝐾]{𝑢} = −[𝑀]{𝐼}𝑢𝑔̈ Equation 2-5 

where [M] is the mass matrix, [C] is the damping matrix, [K] is the stiffness matrix, {𝑢̈} is 

the vector of nodal relative accelerations, {𝑢̇} is the vector of nodal velocities, {𝑢} is the 

vector of nodal displacements, 𝑢̈𝑔 is the acceleration at the base of the soil column and 

{I} is the unit vector.  

One dimensional nonlinear codes model the soil column either as a multiple-degree-of-

freedom lumped mass system or a continuum discretized into elements with distributed 

mass (Figure 2-10).  In a lumped mass system, every layer is represented by a mass, a 

nonlinear spring and a dashpot. In a continuum system, every layer is subdivided into 

smaller elements that have distributed mass.  

 

Figure 2-10 Representation of soil column (a) lumped mass system (b) distributed mass system (Stewart 
et al. 2004) 
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At every time step, the stiffness matrix updates to incorporate the nonlinear response of 

the soil. The equation of motion is solved using a time-stepping scheme such as the 

Newmark method (Newmark 1959). The soil response is obtained from a constitutive 

model that describes the soil behavior under cyclic loading. Recently, numerous nonlinear 

codes have been developed to model the behavior of soil under 1-D earthquake loading. 

Some material models are relatively advanced, using the framework of plasticity, with 

complex yield surfaces, hardening laws and flow rules (Prevost 1977; Dafalias and Popov 

1979). However, the cyclic behavior of the soil is most often described by a backbone 

curve (corresponding to the monotonic stress-strain curve), and a series of unloading and 

reloading rules to define the hysteretic behavior of the soil. In the most common nonlinear 

codes, Masing rules (Masing 1926) and extended Masing rules (Pyke 1979; Wang et al. 

1980; Vucetic 1990) are used as unloading and reloading rules. Masing rules are 

described extensively in section 2.2.3.4.1. Damping is introduced by the hysteretic loops, 

as the result of the unloading and reloading rules, and can be associated with frequency 

dependent Rayleigh damping matrix, to account for small strain damping. Small strain 

damping solutions are described in section 2.2.3.3. 

The inputs needed for nonlinear analysis depend on the constitutive model used. Models 

most commonly used in 1D ground response use modulus reduction and damping curves, 

along with other parameters. To evaluate a one-dimensional model, we typically analyze 

its ability to accurately match its input modulus reduction and damping curves. When a 

model is unable to match its input curves, it introduces a misfit of the desired behavior. 
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2.2.3.1 Empirical Relationships for Modulus Reduction and Damping 

Curves (MRD) 

The maximum shear modulus is generally calculated from an in situ measurement of 

shear wave velocity. Measuring modulus reduction and damping curves requires an 

extensive laboratory testing program, and the behavior of soils at small strains is only 

obtained by advanced laboratory testing devices. In practice, it is common to use 

empirical relationships to calculate modulus reduction and damping curves, rather than 

perform multiple lab tests at different strain levels and different confining pressures.  

Darendeli (2001) introduced empirical relationships to calculate modulus reduction and 

damping curves of clays based on the plasticity index (PI), the overconsolidation ratio 

(OCR), and the mean effective stress (σ’0). His curves follow the original observations 

from Vucetic and Dobry (1991) who found that soils with a greater PI behaves more 

linearly and they show lower values of damping ratios. When the confining pressure 

increases the same trend is observed, and the soil behaves more linearly. Due to its 

database (Figure 2-11), Darendeli’s equation are limited to strains lower than 0.3%. Thus, 

the model is not adapted to predict the response of soils at large strains. 



41 
 

 

Figure 2-11 Darendeli’s database (From Darendeli 2001) 

Following the work from Darendeli, Menq (2003) introduced modulus reduction and 

damping relationships for sand. The input of the model are the mean effective stress, the 

coefficient of uniformity (Cu), and the mean grain size (D50). Menq (2003) also observed 

that when the effective stress increases the behavior is also more linear. 

Empirical relationships for peat derived by Kishida et al. (2009) was presented in section 

2.1.6.1.1. That section described in details his findings and they are not discussed here. 

2.2.3.2 Hyperbolic Model for the Backbone Curve 

The modulus reduction curve can be used to calculate a backbone curve in the stress-

strain space. The backbone curve describes the behavior of the soil during initial loading. 

Most of the available nonlinear codes such as DEEPSOIL (Hashash and Park 2001), D-

MOD (Matasovic and Vucetic 1993; 1995; Matasovic 2006), and Tess (Pyke 2000), use 

a hyperbolic formulation to model the backbone curve. This formulation simply fits a 
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hyperbola to the monotonic stress-strain curve. The monotonic behavior is calculated 

based on the modulus reduction curve and the maximum shear modulus. The hyperbolic 

formulation was first introduced by Hardin and Drnevitch (1972) and later modified by 

Matasovic and Vucetic (1993) Darendeli (2001) and Phillips and Hashash (2009). This 

formulation has the advantage of being simple and easy to use with the Masing rules and 

the extended Masing rules. However, if the modulus reduction curve is only based on the 

hyperbolic model, Chiu et al (2008) have shown that the backbone curve will not capture 

the shear strength properly. 

Yee et al (2013) proposed a hybrid procedure where the modulus reduction curve is 

modified to match a shear strength at high strains and obtain a more reasonable 

backbone curve. Any model using a hyperbolic fit of the backbone curve will not be able 

to match a modified modulus reduction curve perfectly. 

2.2.3.3 Small-Strain Damping 

At very low strains, the response of most existing models is essentially linear elastic, and 

their unloading reloading rules do not introduce hysteretic damping. To introduce small 

strain damping, nonlinear codes typically use frequency dependent Rayleigh damping 

which can-over predict or under-predict damping (Park and Hashash 2004). Rayleigh 

damping uses a damping matrix in the full equation of motion which consists of a 

combination of 2 matrices, one proportional to the mass matrix and one proportional to 

the stiffness matrix. Most of the nonlinear codes have implemented the original 

expression of Rayleigh damping first formulated by Rayleigh and Lindsay (1945). This 

formulation makes the damping frequency dependent, which is inconsistent with 
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laboratory results (Lai and Rix 1998; Vucetic et al. 1998). The full Rayleigh damping used 

by most of the nonlinear codes matches only 2 frequencies, whereas the extended 

Rayleigh damping matches 4 frequencies (Park and Hashash 2004). Phillips and 

Hashash (2009) established a frequency independent Rayleigh damping, based on the 

formulation by Liu and Gorman (1995). However, this formulation is computationally 

depending. TESS (Pyke 1979, Pyke 2000) uses a different unloading-reloading rule to 

produce hysteretic damping at low strains. The procedure can result in over prediction of 

damping at large strains (Stewart et al. 2004). 

 

Figure 2-12 Effective damping for one, two and four modes frequency dependent Rayleigh damping 
(Phillips and Hashash 2009) 

2.2.3.4 One Dimensional Nonlinear Models 

This section presents some of the most widely used one-dimensional nonlinear models, 

and focuses on total stress models. 
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2.2.3.4.1 Masing Rules (Masing 1926) 

The extended Masing rules are stated as follow: 

1. The stress-strain curve follows the backbone curve during initial loading (Equation 

2-6).  

𝜏 = 𝐹𝑏𝑏(𝛾) Equation 2-6 

where 𝜏 is the shear stress and Fbb(𝛾) is the backbone function. 

2. If a strain reversal happens at point (rev;rev), the unloading or reloading curve has 

a shape that is identical to the backbone curve enlarged by a factor n. In its original 

paper, Masing used n=2, it was later modified by Pyke (1979), where n can deviate 

from 2, to provide a better match of the damping at higher strain (Equation 2-7). 

𝜏 − 𝜏𝑟𝑒𝑣

𝑛
= 𝐹𝑏𝑏 (

𝛾 − 𝛾𝑟𝑒𝑣

𝑛
) 

Equation 2-7 

3. If the unloading or reloading curve exceeds the maximum past strain and intersects 

the backbone curve, it follows the backbone curve until the next stress reversal 

4. If the unloading or reloading curve crosses an unloading or reloading curve from a 

previous cycle, it follows the curve of that previous cycle 

When Masing rules are used with n=2, the initial slope of the unloading or reloading curve 

is equal to the maximum shear modulus Gmax, and the model shows no hardening or 

softening, i.e. loops are closed; unloading and reloading from max to –max back to max 

will end up at the same stress.  
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Using the right backbone curve, any model using the Masing rules will be able to match 

a modulus reduction curve. However Masing rules are a poor way to match the damping 

behavior of a soil because they typically over predict damping at large strains (Phillips 

and Hashash 2009), and do not provide hysteretic damping at small strains. 

2.2.3.4.2 Pressure Independent Multi-Yield Model 

The OpenSees simulation platform contains a ground response module that uses 

plasticity models that are able to study problems where three directions of shaking are 

considered. One of the model implemented is the Pressure Independent Multi-Yield 

model (PIMY), implemented by Elgamal et al. (2003). The model is implemented in 

OpenSees in a fully three dimensional fashion. 

The volumetric response is considered linear elastic and is uncoupled with the deviatoric 

response. The deviatoric response of the model is insensitive to a change in confining 

pressure. During cyclic loading, the pressure independent multi-yield model follows the 

framework of plasticity. It uses the concept of multiple-surface (nested-surface) plasticity 

to model the response of the soil (Iwan 1967, Prevost 1985, Mroz). The model is 

described in Yang (2000). The yield surfaces follow the Von Mises shape (Von Mises 

1913) illustrated in Figure 2-13. 
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Figure 2-13 Nested Von Mises yield surfaces (after Prevost 1985, Lacy 1986, Parra 1996, and Yang 2000) 

The yield surfaces are defined either by the use through an input modulus reduction curve 

that defines a backbone curve, or automatically generated by the model. To generate the 

yield surfaces, the code uses an input friction angle and cohesion to define a shear 

strength that is used to create a backbone curve that follows a hyperbola. Upon unloading 

the model would essentially follow Masing rules, and as a result would over predict 

damping at large strains. 

2.2.3.4.3 Deepsoil MRDF-UIUC 

The software Deepsoil uses a finite difference algorithm with lumped mass to perform 

one dimensional ground response. It is able to perform linear, equivalent linear, and 

nonlinear analyses. It embeds several models for nonlinear analysis, and the most 

advanced model is the MRDF-UIUC model (Hashash et al. 2012).  

The MRDF-UIUC model uses a hyperbolic fit of the modulus reduction curve to model the 

backbone curve (section 2.2.3.2). The unloading-reloading response is governed by an 
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extension of the Masing rules (Phillips and Hashash 2009) in which the stress response 

is modified by a reduction factor to provide a better fit of the damping curve at large 

strains. For small-strain damping, the model uses frequency independent Rayleigh 

damping, described in Phillips and Hashash 2009. 

The model provides a better fit, yet not perfect, of the damping curve, but has the 

drawback of using a hyperbolic fit of the modulus reduction curve, which is associated 

with the problems explained in section 2.2.3.2. However, Hashash et al. (2010) presented 

a procedure to match the strength with their model by introducing a misfit of the input 

modulus reduction curve, but the procedure is tedious. Groholski et al. (2015) developed 

the GQ/H model that fits the modulus reduction curve with a general quadratic equation, 

and matches an input target strength. That model is able to match precisely an input 

modulus reduction curve at low and large strains, and is implemented in the latest version 

of Deepsoil (Hashash et al. 2015). 

2.3 Three Dimensional Constitutive Models 

The core of this dissertation is a nonlinear constitutive model for dynamic simulations, 

formulated for peat. The model and its constitutive equations are described in Chapter 6 

and implementation in a finite difference code is presented in Chapter 7. Chapter 8 

presents the calibration process through lab testing and single elements simulations, and 

presents the results of 1D ground response analyses simulating a centrifuge test. The 

model integrates different concepts of plasticity previously introduced by other 

researchers, and this literature review aims to provide the reader the required theoretical 

background to understand the model. Viscous effects are not introduced in the model 
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because of the complexity of visco-plastic formulation. Future work includes the 

integration of viscous effect, in particular to capture the secondary compression of peat. 

In this literature review, the fundamental theory and equations of elasto-plasticity and 

visco-plasticity in soil mechanics are first presented. Then, the critical state soil 

mechanics framework is introduced. Finally, a few models are described. Numerous 

models have been developed for clay and sand and every model strive to capture a 

specific feature of the soil behavior. To the writer’s best knowledge there does not exist 

a constitutive model specifically derived for peat. The models presented in this section 

are either direct references for the new model developed and presented in this 

dissertation, or models that include important features and that have introduced new 

concepts in the domain of constitutive modeling of soils. 

The Modified Cam-Clay model (Roscoe and Burland 1968) is presented first because it 

is the most fundamental model in critical state soil mechanics. A modified version of the 

Modified Cam-Clay called the bubble model is then described. This model uses a 

bounding surface algorithm and can be used in simulations involving cyclic loading to 

describe behavior of clays. A visco-plastic model for clays by Kutter and Sathialingam 

(1992) is also presented where visco-plastic strains are introduced based on the distance 

to the isotropically normally consolidated line (ICL). The model presented in chapter 6 

uses a formulation in terms of change in stress ratio to assess the potential yielding of the 

soil. This stress ratio formulation was originally derived by Dafalias and Manzari (2004) 

to describe the behavior of sand, and their model is presented in this section as well. 
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Finally, two models incorporating stress anisotropy, SANISAND and SANICLAY, are 

briefly discussed for completeness. The model presented in chapter 6 does not account 

for anisotropy. Although peat is anisotropic, the fabric anisotropy is not well understood, 

and more tests are needed to fully define the effect of anisotropy on the peat behavior.  

2.3.1 Introduction to Rate-Independent Soil Elasto-Plasticity 

2.3.1.1 Fundamental Equations 

Elasto-plastic models, combine plastic and elastic deformations. Those models make the 

assumption of an additive decomposition of the strain rate tensor (𝜀̇) into an elastic (𝜀̇𝑒) 

and a plastic (irrecoverable) part (𝜀̇𝑝): 

𝜀̇ = 𝜀̇𝑒 + 𝜀̇𝑝 Equation 2-8 

The superposed dot denotes a rate. Strains are also decomposed in purely deviatoric (𝜀𝑑̇) 

and purely volumetric strains (𝜀𝑣̇): 

𝜀𝑣̇ = tr[𝜀̇] Equation 2-9 

𝜀𝑑̇ = 𝜀̇ −
1

3
𝜀𝑣̇𝐼 Equation 2-10 

where I is the second symmetric unit tensor. This formulation is presented in general 

stress/strain space, and 𝜀𝑑̇ and 𝜀̇ are second order tensors. Stresses () are also 

separated in volumetric (p’) and deviatoric components (s): 

𝑠 = 𝜎 − 𝑝′𝐼 Equation 2-11 

𝑝′ =
1

3
𝑡𝑟[𝜎] Equation 2-12 
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Note that s is the deviatoric stress tensor, σ is the stress tensor, and p’ is a scalar called 

the mean effective stress. Equation 2-12 essentially relates p’ to the first stress invariant 

I1 (I1=tr[σ]). Note that soil plasticity often deals with saturated soils and therefore stresses 

should be considered as effective stresses that exist between particle grains. Pore 

pressures induced during undrained or partially drained may also be included in plasticity 

models. For consistency with traditional plasticity notation, the apostrophe denoting 

effective stress is dropped in the rest of this chapter. 

Plasticity models are often presented in the so-called “triaxial space p-q”. The deviatoric 

stress invariant (q) is a scalar and is calculated based on the second deviatoric stress 

invariant J2:  

𝐽2 =
1

2
(𝑠: 𝑠) Equation 2-13 

𝑞 = [3𝐽2]1/2 Equation 2-14 

In Equation 2-13 “:” indicates an inner product of tensors. In triaxial space the stress ratio 

is defined as: 

𝜂 =
𝑞

𝑝
 Equation 2-15 

The triaxial shear strain (𝜀𝑞) is defined as: 

𝜀𝑞 = [
2

3
(𝜀𝑑: 𝜀𝑑)]

1/2

 Equation 2-16 

Note that despite its name, the triaxial space can also be used to describe the response 

of the soil under different types of loading, not simply under triaxial loading. The elastic 

response is expressed as: 
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𝜀𝑣̇
𝑒 =

𝑝̇

𝐾
 Equation 2-17 

𝜀𝑑̇
𝑒 =

𝑠̇

2𝐺
 Equation 2-18 

𝜀𝑞̇
𝑒 =

𝑞̇

3𝐺
 Equation 2-19 

where K is the bulk modulus and G is the shear modulus. Different expressions can be 

used to defined K and G. For clays, K and G are often assumed to depend linearly on the 

mean effective stress p:  

𝐾 =
𝑝𝜐0

𝜅
 Equation 2-20 

𝐺 =
3(1 − 2𝜈)

2(1 + 𝜈)
𝐾 Equation 2-21 

where 𝜐0 is the initial specific volume (related to the void ratio e: 𝜐0 = 1 + 𝑒), 𝜅 is the slope 

of the recompression line in a specific volume-logarithmic mean effective stress 

compression plane, and 𝜈 is the Poisson’s ratio, assumed to be constant. For sand, 

Equation 2-20 and Equation 2-21 do not hold, in particular, G varies linearly with the 

square root of the mean effective stress. Section 2.3.5.4 provides an example of a 

constitutive model for sand and introduces expressions for bulk and shear modulus 

consistent with sand behavior. 

Combining equations Equation 2-8, Equation 2-18, Equation 2-19 and Equation 2-20 the 

constitutive relations can be rewritten: 

𝑝̇ = 𝐾(𝜀𝑣̇ − 𝜀𝑣̇
𝑝

) Equation 2-22 

𝑠̇ = 2𝐺(𝜀𝑑̇ − 𝜀𝑑̇
𝑝

) Equation 2-23 
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𝑞̇ = 3𝐺(𝜀𝑞̇ − 𝜀𝑞̇
𝑝

) Equation 2-24 

2.3.1.2 Ingredients of an Elasto-Plastic Constitutive Model 

A constitutive model provides rules to define the response of a soil, in particular the 

calculations of the plastic strains. Elasto-plastic models are defined by four governing 

equations: 

- The yield criterion, or yield surface, defining the stress state at which yielding 

occurs. 

- The flow rule that describes the evolution of plastic strains when the material is 

yielding 

- The hardening law which defines the strain hardening behavior of the material 

when plastic strain evolves 

- Kuhn-Tucker Loading-unloading conditions and consistency equation that are 

used to derive solutions 

The yield criterion or yield function (f) is used to check if the material is yielding. In the 

stress space, the yield function delimits the elastic region, where only elastic deformations 

occur. The yield function is a surface in the (p,q) plane. If f<0, the stress state is in the 

elastic region, and the soil behaves elastically. When f≥0, yielding occurs, and plastic 

strains are calculated based on the flow rule. Plastic deformations start when the stresses 

have reached the limit of the surface. The surface may then evolve so the current state 

of stress is always on the boundary of the surface. Unloading will typically result in going 

back inside the elastic region. 
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The flow rule defines the evolution of the plastic strains and is generally defined by the 

following equation: 

𝜀𝑝̇ = 𝛾̇
𝜕𝑔

𝜕𝜎
  𝑜𝑟 𝜀𝑝̇ =

𝜎̇

𝐻
 Equation 2-25 

where 𝛾̇ is the plastic consistency parameter, g is the plastic potential surface, and H is 

the plastic modulus. The normal to the plastic potential surface describes the direction of 

plastic flow. If the yield surface and the plastic potential surface coincide (i.e. f=g), the 

flow rule is called associated flow rule. 

The hardening law describes the evolution of the hardening variables (q). This notation, 

from the general theory of plasticity, must not be confused with the deviatoric stress in 

triaxial space (q). Except for the rest of this section of this dissertation, q designates the 

deviatoric stress. The hardening law is defined as: 

𝑞̇ = 𝛾̇ℎ(𝜎, 𝑞) Equation 2-26 

where h is the hardening function. If ℎ =
𝜕𝑓

𝜕𝑞
, the hardening law is called associative 

hardening law. There exists three different types of hardening law:  

- Isotropic hardening law, which changes the size of the yield surface during plastic 

loading. 

- Kinematic hardening law, which translates the center of the yield surface. 

- Rotational hardening law, which rotates the yield surface. 

Plastic consistency parameter and yield function are used to describe the Kuhn Tucker 

loading/unloading conditions: 
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𝛾̇ ≥ 0, 𝑓(𝜎, 𝑞) ≤ 0  𝑎𝑛𝑑 𝛾̇𝑓(𝜎, 𝑞) = 0 Equation 2-27 

The plastic consistency requirement can be expressed as:  

𝛾̇𝑓̇(𝜎, 𝑞) = 0 Equation 2-28 

Those equations can describe any plasticity model. The Kuhn-Tucker unloading and 

loading conditions, along with the plastic consistency requirement can be used to solve 

those equations.  

2.3.2 Bounding Surface Plasticity 

The framework presented above can model reasonably well the behavior of soils, in 

particular under monotonic loading. However, it presents several flaws: 

1. The elastic domain is often too large compared to experimental data. 

2. Isotropic hardening increases the size of the elastic domain that yields 

unrealistic stress-strain curve during unloading and cyclic loading. 

3. The abrupt change of stiffness when yielding is unrealistic, and inconsistent 

with laboratory test results showing a gradual change in stiffness. 

The theory of bounding plasticity was introduce to overcome those problems. It was first 

introduced by Dafalias and Popov (1975) for metals and later used in the development of 

constitutive models for soils by Mroz (1979) and Dafalias and Herrmann (1982). The main 

feature of bounding plasticity is a bounding surface that encloses every possible state of 

stress. The distance between the state of stress and its image on the bounding surface 

is used to calculate the plastic modulus (Dafalias 1986). The image point on the bounding 
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surface can be defined by different mapping rules such as the radial mapping (Dafalias 

and Herrmann 1982). When the distance between the image point and the stress state is 

large, the material is stiff and the plastic modulus is large. When the stress state 

approaches the bounding surface, the plastic modulus decreases and the material 

softens. The plastic modulus changes gradually, and a bounding plasticity model provides 

a smooth stress strain curve.  

2.3.3 Rate-Dependent Plasticity 

Models accounting for viscous effects (i.e. rate dependence) can be classified according 

to four criteria (Kutter and Sathialingam 1992): 

- Rate dependence of elastic response: the elastic response can be rate dependent 

or rate independent. Rate dependent elastic model (i.e. Visco-elastic models) are 

mathematically complicated (Perzyna 1966) and do not provide a significant 

improvement for soil mechanics. 

- Ways of incorporating time: in a constitutive model, time can be incorporated 

explicitly or indirectly by updating an internal variable. Assuming direct time 

dependence may be complicated because it requires a certain knowledge of the 

stress history of the soil. Therefore incorporating time dependence in internal 

variable appears more suitable in soil mechanics. 

- Fully time dependence of inelastic strains or not: plastic strains can have time 

dependent and time independent parts, or be only time dependent. Based on 

microscopic and macroscopic observations, Dafalias (1982) concluded that the 

behavior of the soil can be best captured by considering time dependent and time 
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independent plastic strains. Such a formulation can be tricky and lead to 

underestimation of high strain rates effect. 

- Presence or absence of an elastic nucleus: inelastic strains can be considered to 

occur at all time or only after yielding, i.e. an elastic region exists in the stress 

space, defined by a yield surface, as explained in section 2.3.1 

To introduce rate-dependence of the plasticity equations, several visco-plastic 

formulations have been defined in the past. The most common are the generalized 

Duvaut-Lion’s model (1972) and the Perzyna model (1963 and 1966). This latter uses a 

loading function which essentially acts as a yield function but which value can be greater 

than 0. Perzyna’s theory (1963), introduces a rate sensitive loading surface fd=kd 

(dynamic loading surface) and a static yield function fs=ks, kd is a parameter representing 

the effect of work hardening and strain rate and kS is a parameter representing the effect 

of work hardening only. An “excess stress function” F is defined as: 

𝐹 =
𝑓𝑑

𝑓𝑠
− 1 Equation 2-29 

Perzyna (1963) defined the (associative) flow rule as follow: 

𝜀̇𝑣𝑝 = Φ(𝐹)
𝜕𝑓𝑑

𝜕𝜎
 Equation 2-30 

Φ(𝐹) being the stress difference function, representing the difference between the current 

state of stress on the loading surface and the image stress on the reference surface. In 

Perzyna’s formulation the stress difference function is only defined when F>0, i.e. when 

fd>fs. 
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2.3.4 Critical State Soil Mechanics 

2.3.4.1 Definition of Critical State 

Critical state is an ultimate condition in which shearing does not induce changes in 

deviatoric stress, mean effective stress or volume (i.e. void ratio) anymore. This state is 

mathematically described by the following equations: 

𝜕𝑞

𝜕𝜀𝑞
=

𝜕𝑝

𝜕𝜀𝑞
=

𝜕𝜐

𝜕𝜀𝑞
= 0 Equation 2-31 

The void ratio at critical state is called the critical state void ratio (ecs). At critical state the 

stress ratio is: 

𝑞𝑐𝑠

𝑝𝑐𝑠
= 𝜂𝑐𝑠 = 𝑀 Equation 2-32 

The final deviatoric and mean effective stresses are not constant, they depend on the 

initial stress conditions and the stress path. Their ratio (M) is a material constant and 

define a line in p-q space (Figure 2-14(a)). The critical state void ratio also depends on 

the initial stresses and the stress path, but all the critical state void ratio also define a line 

in e-p space (Figure 2-14(b)). A soil is said to be at critical state if its state is on both lines. 

Those two lines are projections of the critical state line in their respective space. 
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Figure 2-14 Critical state line in (a) p-q space and (b) 𝜐-p space (Muir Wood 1990) 

2.3.4.2 Critical State Line 

The critical state line (CSL) is a unique line in the p-q-𝜐 space as illustrated by Figure 

2-15. The CSL of a soil depends on the nature of the soil and its physical properties, but 

it is independent of the stress state of the soil. 
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Figure 2-15 Three-dimensional view of the ICL and the CSL (Muir Wood 1990) 

In the p-q space the projection of the CSL has the following equation: 

𝑞𝑐𝑠 = 𝑀𝑝𝑐𝑠 Equation 2-33 

In the 𝜐-p space the shape of the projection of the CSL depends on the nature of the soil. 

For clays the CSL is linear in the υ-ln p space and is parallel to the isotropically normally 

consolidated line (iso-NCL). The iso-NCL can be described by the following equation: 

𝜐 = N − 𝜆 ln 𝑝𝑐𝑠 Equation 2-34 

In this equation N is the specific volume at unit pressure and λ is the slope of the 

isotropically normally consolidated line. The critical state line follows the following 

equation: 
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𝜐𝑐𝑠 = Γ − 𝜆 ln 𝑝𝑐𝑠 Equation 2-35 

In this equation 𝛤 is the critical state specific volume at unit pressure. A soil is at critical 

state if both Equation 2-33 and Equation 2-35 are satisfied. For sands the critical state 

line in the 𝜐-ln p space is not a straight line, but is curved down. Li and Wang (1998) 

introduced the following equation for the critical state line: 

𝑒𝑐 = 𝑒0 − 𝜆𝑐 (
𝑝𝑐𝑠

𝑝𝑎𝑡
)

𝜉

 Equation 2-36 

where 𝜆𝑐 and 𝜉 are material constants and pat is the atmospheric pressure. 

2.3.4.3 Critical State Soil Mechanics Framework 

Critical state soil mechanics is an effective stress framework that combines two concepts: 

(1) the consolidation behavior of soil and (2) the shear stress vs. normal stress behavior 

of soils. In this framework, the models’ response tend to a critical state that satisfies both 

concepts for any stress path. This framework was validated against a wide body of 

available data (Muir Wood 1990), and proved to be an essential feature of the soil 

behavior. The next section presents few existing models that are all formulated within the 

framework of critical state soil mechanics. 

2.3.5 Review of Existing Models 

In this review of existing models, every model is presented following the same logic. The 

main principle of the model is presented first. The yield function and the different surfaces 

used by the models are then presented. The flow rule and hardening law are briefly 

described, and the performance of the model is discussed. 
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The list of constitutive equations of each model is not intended to be exhaustive, and this 

section does not list every input parameter for each model. For completeness the reader 

is referred to the paper associated with each model. 

2.3.5.1 Modified Cam-Clay 

2.3.5.1.1 Principles and History 

One of the most fundamental constitutive models is the Cam-Clay model, derived for 

clays, and first formulated by Roscoe and Schofield in 1963. Since then, it has been 

modified several times until the current model formulated in 1968 by Roscoe and Burland. 

The 1968’s formulation has been named Modified Cam-Clay to distinguish it from the 

original. In this section the phrase “Cam-Clay model” refers to the Modified Cam-Clay 

model. The Cam-Clay is an elasto-plastic model with an elliptic yield surface, which has 

served as a basis for various models for clays. The model considers an associative flow 

rule, and does not account for any viscous effect or anisotropy. 

2.3.5.1.2 Input Parameters 

The Cam-Clay model requires 5 material parameters: 

- 𝑀 =
6 sin 𝜙′

3−sin 𝜙′
 where 𝜙′ is the friction angle  measured under a triaxial 

compression stress path. M is the slope of the critical state line in the p-q plane 

- , slope of the isotropic normal compression line of the soil in e-ln p’ plane 

- e0 or N, respectively initial void ratio, or specific volume at unit pressure 

-  slope of the recompression line of the soil in e-ln p’ plane 

- Poisson’s ratio  
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Those material parameters are used in almost all the models for clays. Some models add 

some new parameters to introduce additional features. Although not a material 

parameter, to use this model one must know the current state of stress (p and q) and the 

maximum past pressure named p0. Note that the maximum past pressure is related to the 

overconsolidation ratio (OCR), in particular if the soil is isotropically consolidated: 

p0=OCR.p. 

2.3.5.1.3 Yield Surface 

The yield surface is an ellipse in the triaxial space (Figure 2-16) and has the following 

equation: 

𝑓 =  
𝑞2

𝑀2
+ (𝑝 −

𝑝0

2
)

2

− (
𝑝0

2
)

2

= 0   𝑜𝑟  𝑓 =  
𝑞2

𝑀2
+ 𝑝2 − 𝑝0𝑝 = 0 Equation 2-37 

In the multiaxial space, the yield surface has the following equation: 

𝑓 =  
3

2𝑀2 𝑠: 𝑠 + (𝑝 −
𝑝0

2
)

2
− (

𝑝0

2
)

2
  Equation 2-38 

The critical stress ratio is considered to be the same in compression and in extension. 

The yield surface always has its apex on the critical state line.  



63 
 

 

Figure 2-16 Modified Cam-Clay yield surface in p-q space 

2.3.5.1.4 Flow Rule and Hardening Law 

The Cam-Clay model follows an associative flow rule, which means that the plastic 

potential surface is equivalent to the yield surface: 

𝜖𝑞
𝑝

= 𝛾̇
𝜕𝑓

𝜕𝑞
 Equation 2-39 

and 

𝜖𝑣
𝑝

= 𝛾̇
𝜕𝑓

𝜕𝑝
 Equation 2-40 

The plastic consistency parameter can easily be calculated using the consistency 

condition (Equation 2-28). The plastic strain-stress relationship can be summarized by 

the following matrix equation (Muir Wood 1990): 



64 
 

[
𝛿𝜀𝑣

𝑝

𝛿𝜀𝑞
𝑝] =

𝜆 − 𝜅

𝜐𝑝(𝑀2 + 𝜂2)
[

(𝑀2 − 𝜂2) 2𝜂

2𝜂
4𝜂2

(𝑀2 − 𝜂2)

] [
𝛿𝑝
𝛿𝑞

] Equation 2-41 

The yield surface exhibits isotropic hardening, which means that the size of the yield 

surface changes as internal variables evolve. It also experiences kinematic hardening 

which means the center (
𝑝0

2
) of the yield surface is moving when the soil is yielding. The 

position of the center and the size of the yield surface are controlled by the maximum past 

pressure. The change in maximum past pressure depends on the increment of plastic 

volumetric strains and is calculated by the following equation: 

𝑝0̇ =
𝜐𝑝0𝜖𝑣̇

𝑝

𝜆 − 𝜅
 Equation 2-42 

Note that in (p,q) plane the surface always goes through the origin, and that the center is 

only moving only along the p-axis.  

2.3.5.1.5 Performance of the Modified Cam-Clay 

Clay is known to exhibit nonlinearity at deviatoric strains as small as 0.001%, which is 

much smaller than the yield strain for overconsolidated soil using the traditional Cam-Clay 

model. A fundamental problem with the Cam-Clay model is that the elastic range is too 

big for overconsolidated clays. Consider the example problem shown in Figure 2-17 in 

which undrained loading is imposed in triaxial compression for various OCR values 

(model parameters specified in Figure 2-17). The stress paths are vertical until they touch 

the yield surface, and then evolve to eventually reach the critical state line. The yield 

surface also evolves during plastic loading, but only the yield surface at the start of loading 

is shown for simplicity. The shape of the stress-strain curves is not reasonable because 
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the linear elastic range is too big. In fact, for the case with OCR=2.0, the stress-strain 

curve becomes elastic-perfectly plastic because the stress path intersects the yield 

surface at the critical state. This is not acceptable for many earthquake problems where 

cyclic loading at stress amplitudes far smaller than the shear strength may occur. 

However, the influence of consolidation stress on shear strength is properly modeled 

using the modified Cam-Clay model because, for a given maximum past pressure, the 

higher OCR values have lower undrained shear strength. The shear strength in this case 

conforms to SHANSEP (Ladd 1991) concepts with (su/pc’) = 0.24OCR0.9. Therefore, this 

model is very useful for certain stability problems in which shear strength is the primary 

consideration.  



66 
 

 

Figure 2-17 Numerical simulations for undrained stress path for a clay with different values of OCR using 
the modified Cam-Clay 

2.3.5.2 Bubble Model 

2.3.5.2.1 Principles 

One approach to better capture small-strain nonlinearity is a “bubble model” in which the 

elastic region is enclosed within a small bubble (i.e. a yield surface) that moves within the 

modified Cam-Clay yield surface (Al Tabbaa and Muir Wood (1989)) and Rouainia and 

Muir wood (2001)). In this model, the modified Cam-Clay yield surface is treated as a 
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bounding surface, and the plastic modulus is a function of the distance between the 

current stress state on the small bubble and the bounding surface in stress space (Muir 

Wood 1990).  

2.3.5.2.2 Input Parameters 

The model requires seven material parameters. Four of them are essentially the input 

parameters of the Cam-Clay model: 

- *, slope of the isotropic normal compression line of the soil in εv-ln p’ plane 

- * slope of the recompression line of the soil in εv-ln p’ plane 

- M slope of the critical state line in p-q space 

- Poisson’s ratio  

Note that * and * are respectively equal to /(1+e0) and /(1+e0), where e0 is the initial 

void ratio. The model introduces three additional input parameters: 

- R, which represents the ratio of the sizes of the elastic bubble and the outer 

surface 

- B, the stiffness interpolation parameter 

- , the stiffness interpolation exponent 

Those two last parameters would presumably be selected to match laboratory test data. 
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2.3.5.2.3 Yield and Bounding Surfaces 

The equation of the bounding surface is the same as the equation of the Cam-Clay yield 

surface. In the multiaxial domain, the surface has the following equation: 

𝐹 =  
3

2𝑀2
𝑠: 𝑠 + (𝑝 −

𝑝0

2
)

2

− (
𝑝0

2
)

2

 Equation 2-43 

The bubble surface is a scaled down version of the bounding surface. The ratio of the 

sizes of the bubble surface and the bounding surface is R. The bubble surface has the 

following equation: 

𝑓 =  
3

2𝑀2
(𝑠 − 𝑠𝛼̅): (𝑠 − 𝑠𝛼̅) + (𝑝 − 𝑝𝛼̅)2 − (𝑅𝑝0)2 Equation 2-44 

In this equation, 𝛼̅ = {𝑝𝛼̅I, 𝑠𝛼̅} is the center of the bubble in the stress space. The two 

surfaces are shown in Figure 2-18. 

 

Figure 2-18 Kinematic hardening bubble model: outer (bounding) surface and bubble (yield) surface in the 
p-q plane (Rouainia and Muir Wood 2001) 

p0/2 

p0 
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2.3.5.2.4 Flow Rule and Hardening Law  

The plastic flow follows an associative rule as described by Equation 2-25, and the plastic 

hardening is driven only by volumetric strain. The plastic consistency parameter is derived 

using the consistency condition and the Kuhn-Tucker conditions.  

The outer surface follows an isotropic, and a kinematic hardening rule, identical to the 

modified Cam-Clay model when the inner surface and outer surface are in contact with 

each other. Note that the kinematic hardening of the outer surface results in translation 

of the center of the surface along the p-axis. Evolution of the outer surface also occurs 

when the bubble moves within the outer surface, in accordance with a relation derived 

from the consistency condition. The size of the bubble is always proportional to the outer 

surface. Therefore the bubble exhibits an isotropic hardening rule. The bubble also 

follows a kinematic hardening rule defining the movement of its center relative to the 

center of the outer surface. As the bubble is getting closer to the outer surface, the model 

tends to respond like the Cam-Clay model.  

The plastic modulus depends on the distance between the current stress and the 

conjugate stress. The conjugate stress on the bounding surface and the current stress on 

the yield surface have the same direction of the outward normal as shown in Figure 2-19.  
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Figure 2-19 Conjugate stress and translation rule (Rouainia and Muir Wood 2001) 

The conjugate plastic modulus Hc is given by the following expression: 

𝐻𝑐 =
4𝑅𝑝𝑝0𝑝

𝜆∗ − 𝜅∗
(𝑝 − 𝑝𝛼̅) Equation 2-45 

When R is 1 the Modified Cam-Clay formulation is retrieved. The hardening modulus H 

can be calculated with the following equation: 

𝐻 = 𝐻𝑐 +
𝐵𝑝0

3

𝜆∗ − 𝜅∗
(

𝑏

𝑏𝑚𝑎𝑥
)

𝜓

 Equation 2-46 

In the previous equation, b is the distance between the current state of stress (on the 

bubble) and the conjugated stress on the outer surface. bmax is the maximum value of b 

obtained when the bubble is touching the outer surface at a point diametrically opposite 

to the conjugate stress, but the current state of stress is diametrically opposite to the point 

of tangency. When the bubble and the outer surface are in contact, the plastic modulus 

is equal to the conjugate plastic modulus Hc. Note that this general expression of the 

hardening modulus can be modified to better the simulate the soil behavior. 
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2.3.5.2.5 Summary 

Table 2-1 Summary of the bubble model (Rouainia and Muir Wood 2001) 

 

2.3.5.2.6 Performance of the Bubble Model 

Figure 2-20 shows simulations utilizing the bubble model originally formulated by Al 

Tabaa and Muir Wood (1989) and refined by Rouainia and Muir Wood (2001). The bubble 

model simulations exhibit much more reasonable small-strain nonlinear behavior 

because yielding begins when the stress path touches the inner bubble rather than the 

outer surface. This yields smoother stress-strain curves. The size of the bubble was set 
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to 10% the size of the outer surface in Figure 2-20 for the purpose of visually representing 

the bubble. To adequately capture the small strain nonlinearity, the size of the bubble 

would need to be very small; too small to see in Figure 2-20. 

 

Figure 2-20 Numerical simulations for undrained stress path for a clay with different values of OCR using 
the bubble model 
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2.3.5.2.7 Drawbacks of the model 

The Bubble model is an innovative modification of the Cam-Clay model. The model is 

attractive because it is able to capture the decrease of stiffness even at low strains. 

However, the model presents several drawbacks explained in this section. 

First, the damping response of the model is not adequate. The hysteretic damping is 

controlled by the response of the model. When unloading and reloading inside the bubble, 

the model behaves as a linear elastic material, thus the hysteretic damping would be zero. 

At large strains, the hysteretic loops are too wide, and result in an over-prediction of the 

damping. 

The response of the model can also be overly contractive or overly dilative under specific 

stress paths. If the soil is unloaded along the hydrostatic axis and then subjected to pure 

shear, the volumetric response would be highly dilative. This problem can also arise when 

the initial position of the bubble is not correctly specified. 

Finally, the selection of the parameters B and  can be problematic. The two parameters 

are the most important to introduce early non-linearity (Rouainia and Muir Wood 2001). 

However, they are not physically meaningful and are selected to fit the laboratory tests. 

Using parameters that are not physically meaningful does not affect the model’s 

performance, but can dissuade practitioners from using the model. 
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2.3.5.3 Kutter and Sathialingam 

2.3.5.3.1 Principles 

The model presented is an elastic-visco-plastic model capable of predicting primary 

consolidation, secondary compression, and strain rate effect. The equations for the rate 

of visco-plastic strains are based on a generalization of the visco-plastic theory of Perzyna 

(1963).  

The assumptions of Kutter and Sathialingam are: (1) the elastic response is time 

independent, (2) time is incorporated in the model by updating the void ratio, (3) plastic 

strains are only time dependent, (4) plastic strains occur at all stress states, there is no 

elastic surface nor yield surface, only a reference surface and a loading surface. This 

does not mean that there is no elastic strains, but just that plastic strains develop at every 

strain level. 

One of the hypothesis of the model is that plastic strains occur over time and that there 

is no instant plastic strains. To simulate primary consolidation visco-plastic strains occur 

rapidly at first. The strain rate is controlled by hydrodynamic lag. When the strain rates 

become very slow the secondary compression begins to dominate the volumetric strain, 

and the hydrodynamic lag does not control the phenomenon anymore. 

The model has seven parameters: , ,  (Poisson’s ratio), M, as described previously, 

eN, void ratio at unit mean normal pressure after 𝑡̅ days of normal consolidation (typically 

one day), C0 initial coefficient of secondary compression, and R, which is a shape 

parameter for the surface, and it represents the ratio of the mean normal stresses for the 

surfaces at q=0 and q=Mp. In the modified Cam-Clay model this ratio was assumed to be 
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equal to 2. Not that this ratio also defines the position of the CSL relative to the ISO-NCL. 

The model rate dependence is entirely introduced by C0. In the subsequent equations 

α=C0/ln10. To predict pore pressure dissipation, another parameter should be 

introduced, the permeability k. All those parameters have been well defined in soil 

mechanics literature, and this kind of formulation is attractive to practicing engineers.  

2.3.5.3.2 Surfaces of the Model 

The model uses three surfaces. The reference surface ( f =0) is the surface on which the 

soil is normally consolidated for the reference time. This is the equivalent of the static 

yield surface. The second surface is the loading surface, which has the same shape of 

the static surface, but it contains the current state of stress. This is equivalent to the 

dynamic loading surface. Although not useful in the model described in the paper, a 

potential surface ( f̂ =0) is also defined. This surface determines the direction of plastic 

flow. In the model, associative visco-plasticity is considered so the potential surface is the 

same as the reference surface. By changing the potential surface the model could use a 

non-associative flow rule. 

As seen in Figure 2-21 all the surfaces have the same shape. They are composed of 2 

different ellipses, but the surface is smooth, i.e. at the junction of the surfaces, they both 

have the same normal vector. The intersection of the reference surface with the p-axis is 

0p  and the intersection of the loading surface with the p-axis is pL. Those two variables 

determine the size of the surfaces. pL is found from the current state of stress, because 
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the current state of stress is always on the surface. For the reference surface, ellipses 1 

and 2 have the following equations respectively: 

𝑓̅ = (𝑝̅ − 𝑝̅0) [𝑝̅ + (
𝑅 − 2

𝑅
) 𝑝̅0] + (𝑅 − 1)2 (

𝑞̅

𝑀
)

2

 Equation 2-47 

𝑓̅ = 𝑝̅ [𝑝̅ − 2
𝑝̅0

𝑅
] + (

𝑞̅

𝑀
)

2

 Equation 2-48 

For the loading and the potential surface, 𝑓,̅  𝑝̅,  𝑞̅ and 𝑝̅0 are replaced by f, p, q, and pL 

and 𝑓,  𝑝̂,  𝑞̂ and 𝑝̂0 respectively. 

A radial mapping rule is used to map the current state of stress (σ) to the reference surface 

and to the potential surface. The image stress on the reference surface is 𝜎̅, and the 

image stress on the potential surface is 𝜎̂. As shown in Figure 2-21 the projection center 

is at the origin of the stress space. 

 

Figure 2-21 Loading, reference and potential surfaces in p, q plane (Kutter and Sathialingam 1992) 
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2.3.5.3.3 Introduction of Visco-plasticity (Flow Rule and 

Hardening Law) 

Section 2.3.3 introduces Perzyna’s theory of rate-dependent plasticity (1963). In 

Perzyna’s formulation the stress difference function is only defined when F>0, i.e. when 

fd>fs. In the present model, the stress difference function is defined for any value of fd and 

fs, which means the current state of stress can be larger or smaller than the corresponding 

stress on the reference surface. 

The stress difference function is derived based on Bjerrum’s concept (1967). In the classic 

interpretation of consolidation problems, viscous strains (i.e. secondary compression) 

start after the completion of primary consolidation, i.e. when the pore pressure has 

dissipated. Bjerrum interprets the volume change as having two components. One ‘instant 

compression’ that occurs simultaneously with a change in effective stress, and a ‘delayed 

compression’ that is a change of volume at unchanged effective stress. There is a fine 

difference between those new terms and the terms ‘primary and secondary compression’. 

In Figure 2-22 the dotted line corresponds to the settlement curve if the pore water 

pressure was not retarding the compression and if the compression due to a change in 

effective stress was instantaneous. This instant compression is different from the 

settlement at the end of primary consolidation because delayed compression, i.e. the 

viscous deformation, happens during primary consolidation. 

 To summarize, the concept essentially states that visco-plastic strains occur at all time 

during the consolidation process, and not only after the completion of the primary 

compression.  
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Figure 2-22 Bjerrum's concept of instant and delayed compression (Bjerrum 1967) 

Bjerrum also states that the position of the compression curve depends on the time of 

consolidation under constant effective stress. When the secondary compression occurs, 

the void ratio decreases under constant effective stress. During a longer time of 

consolidation secondary compression will result in greater deformations, and it will results 

in a lower compression curve (Figure 2-23). 
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Figure 2-23 Effect of secondary compression on the location of the compression curve (Bjerrum 1967) 

An increase in secondary compression is associated with an increase in apparent 

preconsolidation pressure. In Figure 2-24, the state of soil is initially at point a, the 

reference and the loading surfaces are the same (i.e. 𝑝̅0 = 𝑝𝐿). As the sample undergoes 

creep, the void ratio decreases from a to b. The apparent preconsolidation pressure now 

increases from c to d. If the stresses remain unchanged, pL remains at point c. 
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Figure 2-24 Evolution of the reference and the loading surface during secondary compression 

Based on the concept of delayed compression the size of the reference surface (static 

surface) will increase with time, due to secondary compression, i.e. 0p  moves with time. 

The new position can be calculated with the following formula (Murakami 1979): 

𝑝̅0

𝑝0
= [

𝑡

𝑡0
]

𝛼/(𝜆−𝜅)

 Equation 2-49 

where p0 is the effective vertical consolidation pressure, and t0 is the reference age of the 

clay (equivalent to tp). In the model void ratio evolves with time. 

The size of the loading surface will remain the same, i.e. pL remains the same. The strain 

rate is assumed to be dependent of the distance from the current stress state to the 
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reference. Kutter and Sathialingam showed that visco-plastic volumetric strains depends 

on the evolution of those 2 surfaces and can be formulated: 

𝜀𝑣̇
𝑣𝑝

=
𝛼

𝑡̅𝜐0
(

𝑝𝐿

𝑝̅0
)

(𝜆−𝜅)/𝛼

 Equation 2-50 

where 𝑡̅ is the time reference which is an arbitrary quantity. It is taken as the number of 

days of normal consolidation. This is a hard quantity to define and it has an important 

influence on the behavior of the model. In laboratory results its value can be estimated 

easily, but for field simulations it may be more complicated.  is simply C/ln10, 𝜐0 is the 

initial specific volume (1+e0). In their model, the secondary compression parameter C0 

is considered constant. Combining Equation 2-30 and Equation 2-50, we obtain the 

following expression for : 

𝜙 =
𝛼0

𝑡̅𝜐0 (
𝜕𝑓
𝜕𝑝̂

)
0

(
𝑝𝐿

𝑝̅0
)

𝜆−𝜅
𝛼

 
Equation 2-51 

2.3.5.3.4 Performance of the Model 

Figure 2-25 presents a comparison between a simulation and the test results of a 

consolidation test on New Haven clay. The data for this test comes from Mesri and 

Godlewski (1977). The model is able to match the behavior of the clay during primary 

consolidation, and after the excess pore pressure is dissipated. That includes the 

evolution of secondary compression. 
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Figure 2-25 Simulation of a one dimensional compression test on New Haven clay (Kutter and 
Sathialingam 1992) 

Figure 2-26 presents the results of simulations of undrained triaxial compression tests at 

four different OCRs: 1, 1.3, 2 and 6. The lab data comes from Herrmann et al. 1981. The 

model behaves well for the normally consolidated and slightly overconsolidated samples. 

For highly overconsolidated clay (OCR=6), the model tends to overestimate shear 

stresses for undrained stress path of dilative soils. Those predictions are close to what 

could be predicted by the Modified Cam-Clay model. 
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Figure 2-26 Simulations of undrained triaxial compression tests at different OCR’s (Kutter and 
Sathialingam 1992) 

2.3.5.3.5 Drawback of the Model 

This model is proved to match the viscous behavior of clay very well. However the 

formulation of the model is in contradiction with the concept of the reset of the secondary 

compression clock, explained in section 2.1.4.2.2. Upon cyclic loading under undrained 

conditions, the model would predict a decrease of mean effective stress due to an 

increase in pore pressure. When cyclic loading ceases, drained conditions develop, the 

mean effective stress increases and the void ratio decreases. This would lead to a 

decrease of the rate of secondary compression, which is inconsistent with the observed 

behavior of peat by Shafiee et al. (2015). 
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2.3.5.4 Simple Plasticity Sand Model Accounting for Fabric Change 

Effects (Dafalias and Manzari 2004) 

2.3.5.4.1 Principles 

This simple sand model is a modification of a model initially derived by Dafalias and 

Manzari (1997). The basic assumption of the model is that only a change in stress ratio 

causes enough shearing to create plastic strains. Under this assumption an increase in 

stress under a constant stress ratio causes only elastic strains. To calculate plastic 

strains, the model uses a non-associative flow rule. In the model the deviatoric plastic 

strains are calculated based on the change in stress ratio and the plastic modulus. This 

latter depends on the difference between the current stress ratio and a bounding stress 

ratio that depends on the critical state parameter.  

The amplitude of plastic volumetric strains depend on the amplitude of plastic deviatoric 

strains and a dilatancy variable (d). The dilatancy variable also depends on the difference 

between the current stress ratio and a dilatancy stress ratio that also depends on the 

critical state parameter. 

The model also includes a so-called “fabric change effect”, to better model the behavior 

of sand, and the change of fabric that happens upon shearing. For the sake of brevity, 

the effect of fabric change on dilatancy is not discussed here. This effect is important to 

model the behavior of sand, but this section focuses on the stress-ratio formulation, more 

pertinent to model the behavior of peat.  
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In this section, the elastic response of the model is described first, then, the different 

surfaces, the flow rule and hardening laws of the model are presented. Finally, a 

monotonic and a cyclic example are presented to illustrate the performance of the model. 

2.3.5.4.2 Elastic Response 

The elastic response is governed by Equation 2-17 and Equation 2-19. This model is 

formulated for sand and the bulk and shear modulus depend on the void ratio e and the 

mean effective stress p following the definition of Richart et al. (1970) and Li and Dafalias 

(2000): 

𝐺 = 𝐺0𝑝𝑎𝑡

(2.97 − 𝑒)2

1 + 𝑒
(

𝑝

𝑝𝑎𝑡
)

1/2

 Equation 2-52 

𝐾 =
2(1 + 𝜈)

3(1 − 2𝜈)
𝐺 Equation 2-53 

where G0 is a constant. 

2.3.5.4.3 Yield, Bounding and Dilatancy Surfaces 

The model uses four surfaces that are lines in the triaxial (p-q) space. The surfaces are 

represented in Figure 2-27. The yield surface that delimits the elastic region is defined 

as: 

𝑓 = |𝜂 − 𝛼| − 𝑚 = 0 Equation 2-54 

This equation represents a wedge (Figure 2-27) where 𝛼 is the slope of the bisecting line 

(i.e. the center of the yield surface), and m is the size of the yield surface. The wedge 
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opening is 2mp. If the current stress ratio is inside the wedge, the model behaves 

elastically. 

The critical state line is defined by its slope M. The critical state line is used to define the 

bounding and dilatancy lines, that depend on the state parameter 𝜓. The state parameter 

is defined as the distance in the e-p space between the current point and the critical state 

line: 

𝜓 = 𝑒 − 𝑒𝑐𝑠 Equation 2-55 

This state parameter is considered in this model as a state variable. The state parameter 

can change as a result of a change in void ratio or a change in mean effective stress. A 

change of mean effective stress induces a change in critical state void ratio. The 

equations for the bounding and the dilatancy stress ratios are: 

𝑀𝑏 = 𝑀𝑒−𝑛𝑏𝜓 Equation 2-56 

𝑀𝑑 = 𝑀𝑒𝑛𝑑𝜓 Equation 2-57 

In those equations, nb and nd are positive material constants. When the material reaches 

critical state, the state variable is zero and the dilatancy and bounding lines collapse onto 

the critical state line. 
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Figure 2-27 Schematic of the Yield, Critical, Dilatancy, and Bounding Lines in p-q space(Dafalias and 
Manzari 2004) 

2.3.5.4.4 Flow Rule and Hardening Law 

As mentioned in the introduction of this section, the model uses a non-associative flow 

rule. The plastic deviatoric strains depend on the increment of stress ratio and the plastic 

modulus (H): 

𝑑𝜀𝑞
𝑝

=
𝑑𝜂

𝐻
 Equation 2-58 

The plastic modulus depends on the distance between the current stress ratio and the 

bounding surface: 

𝐻 = ℎ(𝑀𝑏 − 𝜂) Equation 2-59 
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In this equation, h is positive and depends on state variables. The value of h can be 

defined by different expressions. The simplest assumption is to use a constant h. 

However the behavior of the model can be improved by using a value of h that depends 

on e, p and 𝜂. In their model, Dafalias and Manzari present the following equation for h: 

ℎ =
𝑏0

|𝜂 − 𝜂𝑖𝑛|
 where 𝑏0 = 𝐺0ℎ0(1 − 𝑐ℎ𝑒) (

𝑝

𝑝𝑎𝑡
)

−1/2

 Equation 2-60 

In this equation G0, h0 and ch are material constants. 𝜂𝑖𝑛 is the stress ratio at the beginning 

of the plastic loading phase. Hence h and H go to infinity when plastic loading begins. 

The plastic volumetric strains depend on the amplitude of plastic deviatoric strains, and 

on the dilatancy: 

𝑑𝜀𝑣
𝑝

= 𝑑|𝑑𝜀𝑞
𝑝

| Equation 2-61 

The dilatancy is calculated based on the difference between the current stress ratio and 

the dilatancy stress ratio:  

𝑑 = 𝐴𝑑(𝑀𝑑 − 𝜂) Equation 2-62 

Where Ad is a material parameter that can be a constant of that can evolve with the state, 

to be made dependent of fabric. In their paper, Dafalias and Manzari provides a definition 

of Ad that accounts for fabric change. This definition is not presented here. Note that the 

previous equation implies that if 𝜂<Md then d>0 and the soil is contractive. If 𝜂>Md then 

d<0 and the soil is dilative. If 𝜂=Md, for example at critical state, then d=0 and the plastic 

volumetric strains are then equal to zero. 
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2.3.5.4.5 Summary of the Model 

Table 2-2 Summary of the Dafalias and Manzari model (Dafalias and Manzari 2004) 

 

2.3.5.4.6 Performance of the Model 

This section presents the simulations of four monotonic undrained triaxial compression 

tests and an undrained cyclic triaxial test on Toyoura sand. This section provides a 

discussion on the results and on the model’s prediction capability. For more details on the 

simulation and the selection of the model’s variables, the reader is invited to read Dafalias 

and Manzari (2004). 

Figure 2-28 presents a comparison between lab results and model predictions for four 

triaxial tests on the Toyoura Sand. The lab data comes from Verdugo and Ishihara (1996). 

The four samples have the same void ratio (e=0.833), and the same relative density 
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(37.9%), but are consolidated at different effective stresses: 100, 1000, 2000 and 3000 

kPa. The set of variables used is the same in all four simulations, the only difference 

arises from the initial stress conditions. 

 

Figure 2-28 Comparison of test results and numerical simulations of undrained triaxial compression tests 
on Toyoura sand: (a) stress path in p-q space (b) stress-strain behavior (Dafalias and Manzari 2004) 
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The model proves to match the observed behavior very closely, being able to correctly 

predict the dilative and contractive behavior of the sand. The model also predicts a peak 

shear strength, although it somewhat underestimates it. The unloading is also correctly 

captured by the model. 

Figure 2-29 presents the results of a simulation of a cyclic undrained triaxial test. The lab 

data comes from Ishihara et al. (1975). The initial void ratio is 0.808, and the sample is 

consolidated at a mean effective stress of 294 kPa.  

 

Figure 2-29Comparison of test results ((b) and (d)) and numerical simulations ((a) and (c)) of a cyclic 
triaxial undrained tests on sand (Dafalias and Manzari 2004). (a) and (b) shear stress vs. effective mean 

principal stress, (c) and (d) stress-strain curves 

The model does not match the behavior observed in this test. However the shape of the 

loops are realistic and representative of the dilative behavior of the soil. The stress path 
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in the lab test is not what is commonly observed for sand. Dafalias and Manzari attributes 

this difference to the fact that the test was done in 1975, about twenty years earlier than 

the monotonic tests, and that the instruments and preparation methods were different. 

2.3.5.5 SANISAND: Simple Anisotropic Sand Plasticity Model (Taiebat 

and Dafalias 2008) 

2.3.5.5.1 Principles 

This SANISAND model is based on the model derived by Dafalias and Manzari (2004). 

The main improvement is the introduction of a cap to the yield surface. This allows the 

model to generate plastic strains without a change of stress ratio. The yield surface is 

governed by a rotational hardening law and an isotropic hardening law. 

The plastic strain rate is decomposed in two parts. One part of the plastic strain is due to 

a change in stress ratio, and the second part is generated under constant stress ratio. 

The isotropic hardening is governed by the volumetric plastic strain generated under 

constant stress ratio. The rotational hardening governs the anisotropic response of the 

model. It has been modified from the Dafalias and Manzari (2004) model because of the 

introduction of the closed yield surface. The stress ratio α is the rotational hardening 

variable and is called the back ratio. The back ratio is the bisector of the yield surface. 

2.3.5.5.2 Yield, Bounding and Dilatancy Surfaces 

The bounding and dilatancy surfaces of the model are not modified from Dafalias and 

Manzari (2004). The closed yield surface has the following equation: 
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𝑓 = (𝑞 − 𝑝𝛼)2 − 𝑚2𝑝2[1 − (𝑝/𝑝0)𝑛] Equation 2-63 

In this equation p0 is the tip of the yield surface, m is the size of the yield surface, and n 

is an exponent governing the shape of the yield surface (Figure 2-30). Note that when p0 

goes to infinity the yield surface is equivalent to the yield surface derived by Dafalias and 

Manzari (2004). 

 

Figure 2-30 Influence of parameter n on the shape of the yield surface (Taiebat and Dafalias 2008) 

2.3.5.5.3 Performance of the Model 

Figure 2-31 presents the results of lab tests and simulation of isotropic compression tests 

performed on Sacramento River Sand. The original data comes from Lee and Seed 

(1967). In this test the stress ratio remains constant, and the model is able to match the 

nonlinear behavior of the sand well. The nonlinear behavior is captured because of the 
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introduction of the cap and the generation of plastic volumetric strains under constant 

stress ratio. 

 

Figure 2-31 Comparison between data and simulations for isotropic compression on Sacramento River 
sand (Taiebat and Dafalias 2008) 
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2.3.5.5.4 Summary of the Model 

Table 2-3 Summary of the SANISAND model (Taiebat and Dafalias 2008) 

 

2.3.5.6 SANICLAY: Simple Anisotropic Clay Plasticity Model (Dafalias 

et al. 2006) 

2.3.5.6.1 Principles 
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The SANICLAY model is a plasticity model derived to account for stress anisotropy and 

softening response of clays under undrained compression after K0 consolidation. The 

stress-anisotropy is taken into account through a rotational hardening variable that rotates 

the yield surface upon loading and also by the introduction of an anisotropic critical state 

line in e-p’ space.  

The model uses a non-associative flow rule by introducing a plastic potential surface that 

is different from the yield surface. This non-associative flow rule is introduced to simulate 

the softening response of the soil under undrained compression after K0 consolidation.  

The model also uses a bounding surface principle, where the response of the model 

depends on the distance between the current stress ratio and a bounding stress ratio. In 

a triaxial setting the bounding surfaces are the critical state stress ratio in compression 

and extension, respectively Mc and Me. 

2.3.5.6.2 Yield and Plastic Potential Surfaces 

Figure 2-32 shows the yield and plastic potential surfaces. The yield surface has the 

following equation: 

𝑓 = (𝑞 − 𝑝𝛽)2 − (𝑁2 − 𝛽2)𝑝(𝑝0 − 𝑝) = 0 Equation 2-64 

where 𝛽 is the rotational hardening variable, p0 is the isotropic hardening variable and the 

value of p at 𝜂 = 𝛽, and N is a constant that is similar to M but it is the same in extension 

or in compression. For evolution laws of the rotational and isotropic hardening variables, 

the reader is invited to read Dafalias et al. (2006). The plastic potential surface has the 

following equation: 
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𝑔 = (𝑞 − 𝑝𝛼)2 − (𝑀2 − 𝛼2)𝑝(𝑝𝛼 − 𝑝) = 0 Equation 2-65 

where 𝛼 is a non-dimensional anisotropic variable, and 𝑝𝛼 is the value p at 𝑞 = 𝑝𝛼. Note 

that 𝛼 evolves during loading, and for the sake of brevity its evolution law is not described 

here. 

 

Figure 2-32 Yield and plastic potential surfaces for the SANICLAY model Dafalias et al. (2006) 
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2.3.5.6.3 Performance of the Model 

This section presents the simulations of lab tests performed on low plasticity clays by 

Gens (1982). Figure 2-33 presents the results of a simulation of undrained triaxial 

compression and extension tests. The samples where isotropically consolidated at 

various OCRs. In this configuration the response of the model is close to the Modified 

Cam Clay because the model surfaces are not rotated. 

 

Figure 2-33 Comparison of lab results and simulations of undrained triaxial compression and rxtension 
tests on isotropically consolidated samples of clays with different OCRs (Dafalias et al. 2006) 

Figure 2-33 presents the results of a similar simulation of undrained triaxial compression 

and extension tests. In this test the samples where anisotropically consolidated at various 

OCRs. In this simulation the model is able to reproduce the softening response observed 

after K0-consolidation. The best fit is obtained for K0=0.5. This is because the model was 

calibrated based on test results done at K0=0.5.  
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Figure 2-34 Comparison of lab results and simulations of undrained triaxial compression and extension 
tests on anisotropically consolidated samples of clays with different OCRs (Dafalias et al. 2006) 
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3 CENTRIFUGE TESTS OF LEVEES ATOP PEATY ORGANIC SOILS 

This chapter presents the centrifuge tests of model levees atop peaty organic soils 

performed at the University of California Davis (UCD). These tests are part of a large 

research effort including the work presented in this dissertation, and involving the 

University of California Los Angeles (UCLA) and the University of California Irvine (UCI). 

Riccardo Cappa from UCI, was in charge of the centrifuge tests and spent a significant 

amount of time working on the preparation of the tests and the analysis of the test results. 

My doctoral work focuses on the development of the constitutive model presented in 

chapter 6 and its validation through numerical simulations of the tests, which is presented 

in chapter 8. As part of my doctoral work, I was also involved in the centrifuge testing 

especially in the construction of the models, and part of my doctorate was spent at the 

UCD Center for Geotechnical Modeling (CGM). 

This chapter combines text and figures from three publications authored by the research 

group, Cappa et al. (2014a), Lemnitzer et al. (2015) and Yniesta et al. (2015). The chapter 

first presents the objectives of the tests, and discusses the preliminary work done as part 

of the preparation of the centrifuge tests. The testing program is then described, and the 

core of the chapter focuses on the construction of the models, and the testing process. 

Some preliminary results are presented as a sample of data collection, but they do not 

intend to present the main important findings. For more information on the findings of the 

centrifuge tests, the reader is invited to read Riccardo Cappa’s dissertation (Cappa 2016). 

His dissertation discusses extensively the test results and also includes more details 

about the tests, while this chapter is merely a summary. For more details on the 
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preparation of the tests, the reader is also invited to read the data reports (Cappa et al. 

2014b and Cappa et al. 2014c). 

3.1 Centrifuge Principles 

Centrifuge tests are used in geotechnical engineering because centrifuging a model 

increases its weight and increases the stresses in the model. The stresses in a small 

centrifuge model are comparable to the stresses of a larger prototype. Because the soil 

behavior is stress dependent, this allows to model with accuracy the behavior or large 

prototype. In particular, stiffness, strength and dilatancy, are stress-dependent (Kutter 

1992). Centrifuge tests present the advantage of being easily repeatable and this allows 

to study the variation of important parameters.  

In a centrifuge test, length, mass and time are scaled from model to prototype. Table 3-1 

presents the scaling factors to consider during centrifuge testing. For example the ratio 

of the model length to the prototype length is 1/N. In a centrifuge test N is the centrifugal 

acceleration. Note that the scale factor of the diffusion time depends on whether the 

coefficient of diffusion is scaled or not. If the same soil is used in the model and in the 

prototype, then the coefficient of diffusion is the same and tdif=1/N2. 
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Table 3-1 Scaling factors for centrifuge model tests (from Kutter 1992) 

Quantity Symbol Unit Scale Factor 

Length L L 1/N 

Volume v L3 1/N3 

Mass M M 1/N3 

Gravity g LT-2 N 

Force F MLT-2 1/N2 

Stress  ML-1T-2 1 

Moduli E ML-1T-2 1 

Strength s ML-1T-2 1 

Acceleration a LT-2 N 

Time 

(dynamic) 
tdyn T 1/N 

Frequency f T-1 N 

Time 

(Diffusion) 
tdif T 1/N or 1/N2 

 

3.2 Objectives and Preliminary Work. 

The objective of the project is to understand the contribution of peaty soil to the seismic 

response of levees in the Delta using centrifuge tests. In this project, different 

mechanisms are investigated, such as the post cyclic settlement of peat, the liquefaction 

potential of the levee, and the interaction between the peat and the levee. 

Non-liquefiable clay levees were tested to study the post-cyclic volumetric strain behavior 

of the peat, and to study the deformation modes of the comparatively stiffer levee using 

concepts from soil-structure interaction theories. Levees composed of loose liquefiable 

sand were also tested to mimic a condition that characterizes some levees in the 

Sacramento / San Joaquin Delta, and to study the influence of the peat on the liquefaction 

behavior of the sand. 
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The preliminary testing phase consisted in laboratory testing and small centrifuge tests. 

Eleven preliminary small scale tests on the 1-m radius Schaevitz centrifuge helped 

establish the most suitable model construction techniques, which was complicated by (1) 

the very high compressibility of the peat material and associated geometry changes 

during spin-up, and (2) the need to maintain a water channel on one side of the liquefiable 

levee. Two investigations were then performed on the 9m-radius centrifuge at 57g, 

implementing lessons learned from small scale testing and preliminary analytical studies. 

Table 3-2 reports a summary of all centrifuge experiments performed as part of this 

project. A comprehensive set of detailed reports and drawings (Cappa et al. 2014 b,c) 

along with test data for all experiments listed in Table 3-2 are available at the NEES 

project warehouse under project #1161: http://nees.org/warehouse/project/1161. 

Hereafter, and in consistency with the NEES data repository, investigation 1 will be 

labeled RCK01 and investigation 2 is named RCK02 accordingly following the 

NEES@UCDavis convention of identifying each investigation by the lead investigator's 

initials. The primary difference between the two investigations is the peat layer thickness 

and its impact on the seismic response of the levee peat system. The two investigations 

were divided in two phases, one with a clayey levee (experiment 12 and 14) and one with 

a sandy levee (experiments 13 and 15).  
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Table 3-2 Testing program (Lemnitzer et al. 2015) 

 

3.3 Model Construction 

3.3.1 Configuration of the Tests 

The general test setup of the levee systems is depicted in Figure 3-1. Each configuration 

consisted of a drainage layer of coarse sand with thickness D at the bottom of the model, 

followed by a peat layer with varying thicknesses (H) and a model levee consisting of (a) 

modeling clay or (b) saturated sand, with geometries as indicated in Figure 3-1. The levee 

system was constructed inside a rigid wall container with dimensions of 175.8 cm in 

length, 90.9 cm in width and 53.7 cm in height (Figure 3-2a). The rigid container has 

transparent side walls to enable the acquisition of videos during testing, which was 

important for this project and outweighed the undesired boundary conditions imposed at 

the rigid soil/container contact. Figure 3-2b shows the placement of the container on the 

centrifuge arm with its respective global coordinate system. Each of the two large scale 

investigations (RCK01 and RCK02) consisted of two Experiments: (1) a levee composed 
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of non-liquefiable modeling clay rests on soft peat and several ground motions and 

sinusoidal sweeps are applied in flight to observe the seismic performance of the peat 

and the levee-peat interaction (Experiments 12 & 14 in Table 3-2); (2) the clayey levee is 

removed and substituted with a saturated sandy levee, and subsequently subjected to 

the target ground motion to investigate the system behavior (interaction & liquefaction) 

(Experiments 13 & 15 in Table 3-2).  
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Figure 3-1 General setup of the tests (a) clayey levee (b) sandy levee (Lemnitzer et al. 2015) 
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Figure 3-2 Photos of the 9m radius centrifuge at UC Davis a) container b) centrifuge (Lemnitzer et al. 
2015) 

The prototype system consists of a 5 m tall levee resting atop a 9.5 m and 6 m thick layer 

of soft peat for RCK01 and RCK02, respectively. The models were spun to a centrifugal 

acceleration of 57g, therefore the model scale dimensions were a 9 cm tall levee resting 

atop 16.5 cm and 10.5 cm of peat for RCK01 and RCK02, respectively. The peat 

thickness during RCK01 was selected to match conditions at a site on Sherman Island 

where a previous field testing program was conducted on a non-liquefiable model levee 

using the UCLA eccentric shaker (Reinert et al. 2014). Figure 3-3 shows photographs of 

the clayey levee resting atop the peat for RCK01 and RCK02 before the container was 

installed on the centrifuge arm. 
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Figure 3-3 Photos of the models before going on the arm (a) RCK01 (b) RCK02 (Lemnitzer et al. 2015) 

Model configurations and sensor positions for the four experiments are shown in Figure 

3-4 through Figure 3-7. The high compressibility of the peat resulted in significant 

settlement of the levee during spin-up, and the figures depict the models in their 

configurations during testing, with dashed-lines indicating the pre-spin-up model 

geometry. In the second test a thin layer of a mix of dense sand and yolo loam was added 

on top of the levee to protect it against erosion. 
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Figure 3-4 Experiment 12: configuration during testing (Lemnitzer et al. 2015) 

 

Figure 3-5 Experiment 13: configuration during testing (Lemnitzer et al. 2015) 
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Figure 3-6 Experiment 14: configuration during testing (Lemnitzer et al. 2015) 

 

Figure 3-7 Experiment 15: configuration during testing (Lemnitzer et al. 2015) 

3.3.2 Material 

3.3.2.1 Sherman Island Peat 

Bulk samples of peat were recovered from depths of 2-3 m at the field test site on 

Sherman Island in the Sacramento-San Joaquin Delta documented by Reinert et al. 

(2014). The samples were stored in plastic-lined metal barrels filled with water at UC 

Davis. Prior to placement in the model container, the material was hand processed to 

remove coarse particles and long fibers that are unsuitable for use in relatively small 
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centrifuge models. Careful handling was important to avoid the loss of water in the fibers 

due to squeezing and to obtain a homogeneous and soft soil matrix. The peat was 

maintained submerged during model construction. Important material characteristics of 

the processed peat were determined via laboratory studies (Cappa et al., 2015). 

Additional in-situ test results of the peat from geophysical testing, hand augering and cone 

penetration testing (CPT) are available in Reinert et al. (2014). 

The peat had a specific gravity Gs of 1.79 and an average organic content, OC, of 64%. 

Across an overburden pressure range of 5-150 kPa, the virgin compression index Cc and 

the recompression index Cr were determined to be 3.9 and 0.4, respectively. Two sets of 

bender elements recorded shear wave velocities at accelerations of 1, 5, 10, 20, 40, and 

57g during spin-up, thereby enabling characterization of the shear wave velocity as a 

function of confining pressure. Figure 3-8 presents a sample measurement of shear wave 

velocities during RCK02 at 57g. The bender elements exhibited capacitive coupling with 

the conductive peat soil, and the desired elastic wave signal is superposed on an 

undesired portion of the signal corresponding to capacitive decay. The travel time 

corresponding to first arrival of the shear wave can nevertheless be measured from the 

two receivers, enabling calculation of the shear wave velocity. Equation 3-1 is a general 

form for characterizing shear wave velocity as a function of vertical effective stress, σv'. 

𝑉𝑠 = 𝑉𝑠1 (
𝜎𝑣

′

𝑝𝑎
)

𝑛

 Equation 3-1 
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By plotting shear wave velocities measured across a range of centrifugal accelerations, 

the parameters Vs1 and n can be determined via least squares regression, as shown in 

Figure 3-9. In the peat, Vs1 and n were found to be 33 m/s and 0.31, respectively. 

 

Figure 3-8 Sample shear wave velocity (Vs) measurements in the peat layer at 57g during RCK02 
(Lemnitzer et al. 2015). 
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Figure 3-9 Parabolic data fitting to estimate Vs1 and n for the various materials during RCK02. (Lemnitzer 
et al. 2015) 

P-wave velocity was measured by gently striking the top of the modeling clay levee and 

measuring the downward-propagating compressive wave using vertical accelerometers. 

The p-wave velocity of the peat was found to be approximately 419 m/s in RCK01 and 

approximately 172 m/s in RCK02. Both measurements indicate that the peat was 

unsaturated. This is consistent with field conditions, in which the peat holds a significant 

amount of entrapped gasses due to its past and ongoing decomposition. A miniature CPT 
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test was performed in-flight during RCK02, measuring tip resistance over a depth range 

of 27 cm. The CPT apparatus was placed in the free field region during Experiment 14 

and was pushed through the mid-point of the upstream levee slope during Experiment 

15. The free-field peat exhibited a very low tip resistance that increased slightly with 

depth, reaching a maximum near 0.24 MPa at the bottom of the peat layer. The relatively 

low tip resistance is due to low consolidation stresses in the free field. By contrast, the 

resistance in the peat beneath the sandy levee was significantly higher, increasing from 

about 0.5 MPa at the top of the peat to 1.0 MPa at the bottom of the peat. Consolidation 

stresses from the overlying levee clearly increased the peat strength. Tip resistance 

increased dramatically below the peat as the CPT probe pushed into the dense coarse 

sand. 

3.3.2.2 Modeling Clay 

Impermeable, oil based modeling clay with a unit weight  of 18 kN/m3 was formed into a 

clayey levee by pouring molten clay into a mold. The clay levee was moderately 

deformable, allowing for small differential settlements in flight. Shear wave velocity of the 

modelling clay measured at 1g was about 400 m/s, and this is anticipated to be the same 

as the shear wave velocity in-flight since the modelling clay does not consolidate during 

spin-up. 

3.3.2.3 Nevada Sand (Levee Fill) 

The liquefiable levee fill (Experiments 13 and 15, Table 3-2) consisted of saturated 

Nevada sand with a mean grain size D50 of 0.14 mm, a specific gravity Gs of 2.66, a 

maximum and minimum void ratio emax/emin of 0.78 and 0.51 respectively, a coefficient of 
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uniformity Cu of 2, and a hydraulic conductivity k of approximately 10-3 cm/s in non-viscous 

water (Dashti 2009). The fines content passing # 200 sieve was removed from the sand. 

Shear wave velocity measurements of the material obtained during the second 

investigation (RCK02) suggested shear wave velocity parameters Vs1 and n of 151 m/s 

and 0.23, respectively. 

3.3.2.4 Monterey Sand (Coarse Dense Sand) 

A coarse sand layer consisting of #0/30 Monterey Sand was placed at the bottom of the 

container to represent the natural geologic strata typical for the Delta, and to provide 

drainage at the bottom of the peat layer during consolidation. The granular material was 

dry pluviated to a relative density of 90%, thereby preventing liquefaction during shaking. 

A chimney drain constructed of the same coarse sand material was placed along the 

south wall of the container (Figure 3-1). Dashti (2009) determined this particular material 

to have a grain size D50 = 0.40 mm, a coefficient of uniformity Cu = 1.3, a specific gravity 

Gs of 2.64, and a maximum/minimum void ratio emax/min of 0.843 and 0.510, 

respectively. The hydraulic conductivity (k) is approximately 10-2 cm/s. Shear wave 

velocity parameters Vs1 and n were 195 m/s and 0.26, respectively. 

3.3.2.5 Yolo Loam 

To provide erosion protection, and to better visualize the crack and deformation patterns 

of the sandy levee during testing, the liquefiable levee fill was covered with a dry-

pluviated, 1.5cm thick mixture of 75% Yolo loam and 25% Monterey sand (by mass). This 

particular loam is frequently found in the Sacramento region and was excavated from an 

open area at the centrifuge facility. 
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3.3.2.6 Viscous Pore Fluid 

The liquefiable sandy levees were saturated with a viscous pore fluid to provide undrained 

loading conditions during shaking. The viscosity of the methylcellulose/water mixtures 

was 14 cSt and 18 cSt (1 centistokes = 1 mm2/s) for RCK01 and RCK02, respectively. 

Measurements were taken at 20°C prior to testing. Water expelled during consolidation 

of the peat mixed with the viscous fluid, resulting in a post-test viscosity of about 4 cSt in 

the free fluid in the channel. However, the fluid inside the levee fill was not prone to this 

mixing, and therefore the viscosity remained high. 

3.3.3 Pumping System 

The pumping system was crucial for maintaining a steady state water table during 

Experiment 15M, and its performance was tested during Experiment 14M. A diaphragm 

pump (model Coleparmer 75320-60) was mounted on the outside of the container and 

connected to hoses inside the model (Figure 3-1). A computer-controlled valve was 

connected to the pump so that the viscous fluid collected from the "dry" (ditch) side of the 

model could be pumped back into the slough at any time. Another computer-controlled 

valve permitted to discharge water out of the model container by collecting the fluid in the 

sandy drainage chimney. This was important to lower the water table of the slough while 

the model was settling during consolidation in order to prevent overtopping. 

The pump was mounted outside of the model on the load frame of the centrifuge arm. 

The inlets of the pump ran through holes drilled at the end of container at mid-height of 

the peat layer, and the hoses ran down the container wall to the lower part of the peat 

layer to avoid movement due to large anticipated peat settlement. The intakes were fixed 
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inside the ditch. The outlets were run on top of the lid back to the other side of the model. 

The ends of the outlets were enclosed in a sponge to avoid erosion of the soil resting 

beneath (coarse sand or peat). The discharging line ran through the bottom of the 

container. 

3.3.4 Vacuum Pluviation Device for Achieving Saturated Sand 

For the purpose of the tests, a new saturation device was created in order to obtain well 

saturated sand capable of simulating undrained shearing behavior during liquefaction. 

Traditional vacuum saturation techniques normally used in centrifuge modeling were not 

suitable for application with peat because the gas bubbles in the peat would expand under 

vacuum, thereby resulting in model disturbance. The text presented in this section comes 

from Yniesta et al. (2015) and summarizes the development of the device. 

3.3.4.1 Introduction 

Obtaining a high degree of saturation in sandy soil is crucial for reproducing liquefaction 

potential in laboratory specimens or specimens in centrifuge modeling. Sands below the 

water table in the field are often saturated because any gasses present during deposition 

have had adequate time to dissolve or migrate out of the sand. Achieving a high degree 

of saturation in an experiment, where time scales are too limited to wait for dissolution or 

migration, often involves some combination of (1) the application of backpressure, (2) use 

of de-aired water, (3) flushing the sand with carbon dioxide (which is much more soluble 

than air) prior to saturation, and (4) application of vacuum to the sand during saturation 

(e.g., Lowe and Johnson 1960; Takahashi et al. 2006; Poncelet 2012). Many traditional 
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methods, however, are limited in that their application is only suitable for initially dry, 

remolded soil specimens (Rad and Clough 1984). Common saturation methods utilized 

in centrifuge testing adapted laboratory procedures to comply with the needs for testing 

at high accelerations (Miura and Toki 1982; Garnier and Cottineau 1988; Stuit 1995; 

Takahashi et al. 2006; Zhao et al. 2006). Rietdijk et al. 2010 suggested the use of the 

“drizzle method” in which saturated sand is wet pluviated via showerheads into de-aired 

water and compaction was achieved by shockwave compaction. Other researchers, such 

as Okamura and Inoue (2012), placed the model in a hermetic box and saturated the 

model via vacuum in flight. In this study, a centrifuge model consisting of a saturated 

sandy levee resting atop submerged peaty organic soil was constructed at the Network 

for Earthquake Engineering Simulation (NEES@UCDavis) experimental facility to model 

a common condition encountered in the Sacramento/San Joaquin delta (Cappa et al. 

2014). A channel was maintained on one side of the levee, creating a steady-state 

seepage condition that was maintained by pumping water collected on the dry side of the 

levee back into the channel. The traditional saturation procedure at the centrifuge facility 

involves subjecting the model to nearly full vacuum to de-air the model, slowly releasing 

the vacuum as CO2 is allowed to percolate into the model and displace any air in the pore 

space of the sand, again subjecting the model to nearly full vacuum, and subsequently 

percolating de-aired water or a viscous solution of water and methylcellulose through 

saturation tubes that extend to the base of the model while maintaining vacuum. As the 

water level slowly rises to the top, the sand becomes gradually submerged. The vacuum 

is then released and the hermetic lid is removed. Furthermore, the increased gravity 

during centrifuge spinning increases pore pressures, which improves saturation in a 



119 
 

manner similar to backpressure saturation employed in laboratory strength tests. 

Although this method has given satisfying results by producing highly saturated sand 

deposits with P-wave velocity, Vp, higher than 1500 m/s, it could not be used in the 

present study because of the presence of peat in the model. The peat is partially saturated 

because of entrapped gasses that form as a result of biodegradation of the organic 

material. Applying vacuum to model would cause gas bubbles inside the peat to expand 

and potentially disrupt the fabric of the peat or possibly even rupture the fibers and cells, 

thereby altering its physical behavior. Furthermore, pore pressures within the levee fill 

ranged from 0 to 30 kPa (gauge pressure) because of steady-state seepage during 

spinning, which is significantly lower than backpressures commonly used to saturate 

laboratory specimens in strength testing devices. This paper presents an alternative 

procedure that produces highly saturated sand at atmospheric pressure without applying 

vacuum to the model container. 

3.3.4.2 Relation Between B-Value and P-Wave Velocity 

Degree of saturation is typically represented by Skempton’s (1954) B-value in laboratory 

strength-testing devices. For this reason, studying the relation between B and Vp is 

insightful. Analytical expressions for computing B and Vp are provided in Equation 3-2 

and Equation 3-3 for a soil with pore fluid consisting of water and air: 
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where: 

M = constrained modulus, 

= the soil total mass density, 

Vp = √𝑀/𝜌, 

n = porosity, 

Vs = shear wave velocity, 

S = degree of saturation, 

  = soil skeleton Poisson ratio, 
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 = the pore fluid bulk modulus assuming perfect mixing of the water and 

air phases (reasonable when the wavelength is long relative to the size of the air bubbles). 

Note that Equation 3-2 assumes Bsk<<Bg, which is reasonable for uncemented soils at 

confining pressures of engineering interest. For a given Vs, n, , Bg, Ba, and Bw, a unique 

relation exists between Vp and B, as implied by Equation 3-2 and Equation 3-3, and shown 

in Figure 3-10. The curves show that, when Vp is higher than about 1500 m/s, the degree 

of saturation is higher than 0.9999, and the B-value is high. Furthermore, for a given 



121 
 

degree of saturation near unity, Vp is nearly constant, whereas B-value is more sensitive 

to Vs. Hence, measuring a Vp higher than 1500 m/s is a clear indication of a high degree 

of saturation in uncemented soils with small air bubbles entrapped in the pore fluid. 

Naesgaard et al. (2007) showed that an erroneously high Vp can be measured when sand 

is saturated with viscous pore fluids often used in geotechnical centrifuges because 

waves may travel around fairly large pockets of entrapped air. 

 

Figure 3-10 Relation between P-wave velocity (Vp) and Skempton's B-value (Yniesta et al. 2015) 

3.3.4.3 Ultrasonic Measurement of P-Wave Velocity 

For this study, a 500-kHz ultrasonic testing system originally described by Lee and 

Santamarina (2005) was used to measure Vp of sand deposits constructed by various 

techniques. The experimental configuration consists of a submerged layer of sand of 

known thickness with ultrasonic transducers slightly submerged (Figure 3-11, right). The 

source transducer generates a compressive wave that propagates through the water to 
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the surface of the sand, and the wave is partially reflected and partially transmitted in 

accordance with the interface impedance contrast (solid arrows). The reflected wave 

travels back through the water to the receiver (first receiver signal), and the transmitted 

wave propagates downward to the bottom of the bucket where it is reflected back upward 

and reaches the sand/water interface. At this interface, some of the wave energy is 

transmitted into the water and some is reflected back into the sand (dotted arrows). The 

time difference between these two reflections recorded by the receiver corresponds to 

the travel time, tt, needed for the P-wave to travel through the sand layer (dashed arrows 

in Figure 3-11). By knowing the thickness of the sand, the P-wave velocity can be 

calculated as Vp = 2H/tt. A benefit of using such high-frequency ultrasonic measurements 

is the resolution provided by the extremely short wavelength (i.e., λ = 3mm in water with 

Vp =1500m/s), which permits very accurate travel time determination. Furthermore, the 

short wavelengths would reflect from or be scattered by gas bubbles similar in size to the 

wavelength, thereby prohibiting measurements in such heterogeneous systems (e.g., 

Santamarina et al. 2001), and avoiding the problem discussed by Naesgaard et al. (2007). 
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Figure 3-11 Sample ultrasonic P-wave velocity measurement for water-pluviated sand (left) and 
schematic measurement of ultrasonic P-wave velocity (right) (Yniesta et al. 2015) 

3.3.4.4 P-Wave Velocity of Water Pluviated Sand 

A preliminary study of water-pluviated sand was conducted to ascertain whether this 

simple preparation technique would result in adequate saturation. Dry sand was slowly 

pluviated through a sieve into a bucket of water. The sand had a median particle size D50 

of 0.12 mm, a uniformity coefficient Cu of 1.73, a coefficient of curvature Cc of 0.95, and 

a minimum and maximum void ratio emin and emax of 0.557 and 0.936, respectively. The 

grains briefly rested atop the water, supported by surface tension, before breaking 

through the surface and falling to the bottom of the bucket. Because of the low 

depositional energy, the sand tended to be very loose, with a relative density near 0. A 

sample measurement for a 0.011-m thick sand layer yielded a wave travel time tt of 

3.48*10-5 s (Figure 3-11) resulting in a P-wave velocity Vp=632 m/s, which indicates that 

the sand is not fully saturated. Small air bubbles adhere to the sand particles as they 



124 
 

break through the water surface tension. With adequate time, these bubbles would 

dissolve, or with adequate backpressure they would become small enough to achieve 

adequate saturation, but immediate saturation with no backpressure was needed in this 

project. 

3.3.4.5 Device for Saturating the Sandy Levee Material 

Considering that simple water pluviation does not provide an adequate degree of 

saturation, and vacuum cannot be applied to the model because of the presence of the 

peat, a new device was developed for the purpose of constructing highly saturated sand 

deposits by water pluviation. The device permits the sand to be vacuum saturated in a 

chamber, and subsequently water pluviated into the model without contacting air. The 

goals for the device were to (1) create a sandy fill that is adequately saturated at low 

backpressure, and (2) mimic the density of the loose saturated sand encountered in some 

levees in the delta (DR ≈ 30 % to 50 %). The device, shown in Figure 3-12, consists of an 

acrylic de-airing chamber with a hose attached at the bottom. Dry sand is placed in the 

chamber, and a full vacuum is applied. Carbon dioxide (CO2) is then introduced from the 

bottom of the chamber via a coil of perforated tubing. Once the chamber is filled with CO2, 

vacuum is again applied to the chamber, and de-aired water is slowly introduced into the 

system, and the vacuum is removed when the water surface rises above the sand surface. 

This procedure mimics the approach commonly used for dry models on the centrifuge. 

High-pressure de-aired water is then injected into the coil of tubing at the bottom of the 

acrylic chamber, so that the sand inside the chamber begins to “boil” under the upward 

hydraulic gradient. Simultaneously, the valve on the bottom hose is opened and the sand 

is water pluviated through the hose at the bottom into the model. The hose must be 
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saturated before opening the valve to avoid contact with air. The device was initially 

constructed without the coiled tubing at the bottom, and arching of the sand prevented it 

from flowing through the bottom hose. A similar device was developed by Poncelet (2012) 

to prepare saturated specimens of mine tailings and sands for triaxial tests without 

backpressure [high backpressure was found to increase the liquefaction potential of the 

tailings (M. Aubertin, personal communication)]. They achieved B values well above 0.95 

with no backpressure, which is further evidence that this procedure produces saturated 

specimens. The saturated silt tested by Poncelet would flow through a relatively small 

tube, whereas the sands tested herein would not. The high pressure coil for boiling the 

sand is, therefore, an improvement that permits the technique to be applied to sand. 
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Figure 3-12 Schematic of device for preparing saturated sand (Yniesta et al. 2015) 
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3.3.4.6 P-Wave Velocity of Sand Pluviated by a New Device 

A sample ultrasonic measurement of the P-wave velocity of sand prepared using the new 

device is shown in Figure 3-13. The measured P-wave velocity is now 1564 m/s, which 

is far higher than for the water-pluviated sand, and indicates that the new device produced 

sand with a high degree of saturation. Two additional specimens were prepared to 

indicate repeatability of the device, and the measured P-wave velocities were 1610 m/s 

and 1640 m/s (average Vp=1590 m/s) (Table 3-3). 

 

Figure 3-13 Sample ultrasonic P-wave velocity measurement for sand pluviated using a new device 
(Yniesta et al. 2015) 
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Table 3-3 Results of P-wave velocity measurements in the laboratory using the pluviation device (Yniesta 
et al. 2015) 

Test  1 2 3  4 5 6 

Sample Preparation  Traditional Water Pluviation  Vacuum Pluviation Device 

P-wave Velocity (m/s)  750 790 632  1640 1610 1564 

A sequence of 20 experiments was performed to measure the relative density of the sand 

prepared in this manner and to investigate the repeatability of the results. Saturated sand 

was pluviated into a container of known volume, and the mass of the dry sand was 

measured. The relative density ranged from 27 % to 58 %, with an average of 42 %, and 

a standard deviation of 8.3 %. The achieved densities were well within the range desired 

for the levee fill, which have an in situ density range of 30 % ─ 50 %. The relative density 

is higher than zero because the sand exits the hose at high velocity, thereby resulting in 

higher depositional energy compared with simple water pluviation. Furthermore, 

variability in the relative density of the sand fill was desired in this case to mimic the 

natural variability in the levees. A more uniform relative density near 0 % could be 

achieved by running the sand through an underwater mesh to reduce its depositional 

velocity, or by increasing the drop height to allow the sand particles to slow down and 

reach a terminal velocity prior to deposition. Such experiments are beyond the scope of 

this study. The device is poorly suited to producing uniform medium dense or dense sand 

specimens because of spatial variations in depositional energy that will inevitably exist. 



129 
 

3.3.5 Construction Sequence 

The coarse dense sand stratum at the bottom of the model was dry pluviated in two lifts 

to accommodate placement of sensors after the first lift. The sand was water saturated 

by pouring water on a sponge resting on the sand surface.  

Peat slurry was then poured from buckets onto the sand and smoothed with trowels at 

elevations where sensors would be placed (Figure 3-14). The amount of peat slurry 

required to achieve the target peat thickness after consolidation in-flight was based on 

observations from the Schaevitz centrifuge test program (Cappa et al. 2015), laboratory 

consolidation studies (Shafiee et al. 2013), and settlement predictions using Settle 3D 

(Rocscience 2014). The peat slurry was too weak to support the clay levee, so a layer of 

Nevada sand (γdry = 17 kN/m3) was placed on top of the peat to pre-consolidate the 

material over the course of three days (Figure 3-15). The thickness of the Nevada sand 

was 3.5 cm for RCK01 and 9 cm for RCK02. Following the pre-consolidation at 1g, the 

Nevada sand layer along with the expelled water was removed and the clayey levee was 

placed on a thin geotextile atop the peat (Figure 3-16 and Figure 3-17). Based on 

anticipated settlement of the peat beneath the levee, peat was removed from the free-

field to achieve an approximately horizontal peat surface after consolidation at 57g 

(Cappa et al. 2014 b&c). Figure 3-17 shows the model before installing the lid. Final 

construction steps included the installation of lights, attachment of racks for sensor 

instrumentation, placement of all external sensors and CPT, installation of video cameras 

and connection of all instrumentation to the data acquisition system. 
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Figure 3-14 Configuration of the model before consolidation (Cappa et al. 2014b) 

 

Figure 3-15 Configuration after consolidation under a layer of Nevada sand (Cappa et al. 2014b) 

 

Figure 3-16 Configuration after consolidation under the clayey levee (Cappa et al. 2014b) 
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Figure 3-17 Picture of the levee before going on the arm (Cappa et al. 2014b) 

Centrifuge spin-up proceeded incrementally to avoid undrained bearing failure of the peat. 

Pore pressures in the peat beneath the levee were monitored to guide the spin-up rate. 

This procedure is similar to staged construction techniques commonly utilized to construct 

embankments on soft foundations (e.g., Ladd 1991), except that the gravity load is staged 

rather than the fill height. The clayey levee was tested for two consecutive days in RCK01, 

dedicated to consolidating the peat for several hours at various g-levels (day 1) and 

applying a series of ground motions with different peak base accelerations at 57-g (day 

2). During investigation RCK02 the clayey levee test required only one day because the 

peat thickness was less and consolidation therefore required less time. 

During spin-up, the levees settled significantly and became submerged in water expelled 

from the peat. The original plan was to pump the expelled water out of the models to bring 

the water table near the surface of the peat. However, the pumping system failed during 

RCK01, and it was decided to test RCK02 with the free water in place to facilitate 
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comparison with RCK01. Furthermore, during spin-down the peat swelled back to near 

its initial position, re-absorbing the expelled water. If this water were pumped out, the peat 

could have become desiccated during spin-down and saturation of the peat for the sandy 

levee experiments was a key issue. 

Upon test completion, the clayey levee was removed and replaced with a sandy levee. A 

10 cm wide drainage blanket consisting of coarse sand wrapped with filter paper was 

placed beneath the downstream toe of the levee to prevent piping erosion and maintain 

the phreatic surface within the levee prism. The container was filled with viscous fluid and 

the sandy levee was pluviated into the model using the new device described previously.  

Vertical sheet metal barriers constrained the pluviated sand within the desired footprint 

area, and the levee was then manually re-shaped to the desired geometry. The sandy 

levee was constructed with a 3:1 slope on the dry side to reduce the amount of erosion 

due to seepage during flight and to represent typical levee conditions in the field. The 

upstream slope was constructed with a 2:1 angle. After water pluviation, the fluid was 

slowly siphoned from the dry-side of the levee. 

During spinning, viscous water that seeped through the levee was collected in a U-shaped 

ditch installed in the downstream peat, and collected fluid was pumped back to the 

channel to maintain a steady-state seepage condition. Furthermore, a spillway was 

installed in the levee to regulate the elevation of the channel relative to the levee crest 

and prevent over-topping during spin up as the levee settled. For RCK01, the spillway 

was formed of a stiff metal U-channel that settled less than the levee during consolidation, 

resulting in erosion of the sand from beneath the channel. As a result, the water table was 
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hydrostatic. A more flexible spillway was implemented in RCK02, enabling a channel to 

be maintained on one side of the levee.  

3.4 Data Collection 

3.4.1 Sensors 

Sensors used to characterize model response include accelerometers [PCB Piezotronics, 

models 352B68, 352C68, 352M54, 355M69, 353B18 & 353B31; range: 50g, 100g and 

500g], pore pressure transducers [Keller, model 2Mi-281 100-81840 range: 0 - 689.5kPa], 

linear potentiometers (L) [BEI Duncan, models: 606R6KL.12 & 604R4KL.15, stroke: 10cm 

and 15cm], and bender elements [Piezo Systems Inc., 2 layer transducer with PSI-5A4E 

piezoceramic (nickel electrodes) and brass center reinforcement]. The general 

instrumentation layout for each experiment is shown in Figure 3-4 to Figure 3-7. 

Accelerometers and bender elements were coated with a waterproofing layer prior to 

being placed into the model. Linear potentiometers were attached to a rack mounted to 

the top of the container. Vertical linear potentiometer rods rested on small footing plates 

to prevent penetration into the soft soil. Horizontal linear potentiometer rods were 

attached to a metal frame cantilevered from the soil. These horizontal linear 

potentiometers provide accurate low frequency response for measuring permanent 

ground deformations, but the metal frame alters the high frequency response. The high 

frequency response is typically obtained from an accelerometer embedded in the soil near 

the anchor frame. Some of the accelerometers were fastened to a right-angle connector 

to maintain a 90° angle between sensors, which sometimes tend to shift during model 

construction and/or testing on the centrifuge. The position of each sensor was measured 

during installation and again during excavation following testing. Tables containing sensor 
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positions, orientations, serial numbers, calibrations and measurements are available at 

the NEES project warehouse. Some of the sensors ceased to function properly during 

experimental activities, and a list of such sensors is available in the NEEShub repository. 

Loss of sensor functionality is a natural part of experimental testing, and only a small 

fraction of the sensors failed to function properly. A total of eight cameras supported the 

surveillance of the specimen behavior during flight. Two high speed cameras captured 

the behavior of the levee from the east and west side of the container during the 

application of the ground motions. The models were also documented by photographs 

taken during construction and testing, and a time-lapse video of the model construction 

sequence was constructed from automated photos recorded at set time intervals. All 

videos, photos, and construction time lapses are available on the NEEShub repository. 

3.4.2 Data Processing 

Experimental data are categorized as "Unprocessed Data", "Converted Data", and 

"Corrected Data" in accordance with NEES standards. Experimental data is further 

categorized as "slow data" sampled at 1 Hz during spin-up, spin-down and between 

ground motion applications, and "fast data" sampled at 4167 Hz during the application of 

ground motions. Slow data helped observe the low frequency response of the model and 

time dependent consolidation settlement of the peat, while fast data captured the dynamic 

response of the model during base excitation. For each experiment, Trial 1 contains the 

slow data while Trials 2 and higher contain fast data. 
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3.4.2.1 Unprocessed Data 

Unprocessed data are in engineering units in binary format. Prior to testing, a calibration 

file is uploaded to the data acquisition system, and the recorded voltage signals are then 

automatically converted to engineering units. All recordings are in model scale. A 

LabView virtual instrument (vi) file is required to view the binary data files, and it is unlikely 

that users will download and utilize this data. It is archived for completeness, and 

compliance with NEES standards. 

3.4.2.2 Converted Data 

The Unprocessed Data are then converted from binary to ASCII format and saved as text 

files in the "Converted Data" folder in the NEES repository. Generally, zero voltage does 

not correspond to a value of zero for the engineering quantity being measured. For 

example, the rod of the vertical linear potentiometers measuring settlement of the levee 

were initially retracted as far into the housing as possible to facilitate the maximum 

possible useful range for these sensors during consolidation. A fully retracted linear 

potentiometer returns a non-zero voltage. Therefore the reference condition 

corresponding to zero settlement does not correspond to zero voltage. In accordance with 

NEES standards, offsets are not applied to Converted Data. For this reason, users are 

not expected to utilize the Converted Data as the primary data source, and it is archived 

for completeness and compliance with NEES standards. 
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3.4.2.3 Corrected Data 

Corrected Data are the data files that will be most useful to users of the curated dataset. 

The following operations are applied to the Converted Data to obtain Corrected Data: 

(i) Offsets were applied such that zero corresponds to a desired reference condition. 

Specifically, the mean value was subtracted from all acceleration records, and the initial 

value prior to spin-up was subtracted from all displacement and load cell records. Offsets 

to pore pressure transducers were set such that zero corresponds to atmospheric 

pressure. During testing, some of the linear potentiometer rods fell off the bearing pads, 

resulting in an abrupt offset in the settlement record. These offsets were removed from 

the corrected linear potentiometer data. 

(ii) The data were sorted such that they are grouped by sensor type in ascending 

numerical order (e.g., A1, A2, A3, …, L1, L2, L3, …). The unprocessed and converted 

data files are ordered in accordance with the data acquisition channel used to collect the 

data, but this order is inconvenient for interpreting the data. 

(iii) The data files were truncated to remove excess data collected before and after 

shaking to reduce file size. Typically, 15 seconds of data are collected for each fast data 

file, but only approximately 1 second corresponds to the shaking event. Enough pre- and 

post-event data are left in the signals to facilitate proper interpretation of the dynamic 

processes. However, the data files are too short to monitor pore pressure dissipation 

following long shaking events, and the slow data should be used for this purpose. 
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(iv) Sign conventions were assigned to the data quantities to maintain consistency with 

the global coordinate system. Furthermore, centrifuge scaling factors are applied to the 

data to produce prototype units. The centrifugal acceleration was 57g for all experiments, 

and appropriate scale factors followed Kutter (1992). 

3.5 Results 

3.5.1 Loading 

Table 3-4 summarizes the base excitations applied to the models for both investigations. 

The organization of data into trials and repetition follows NEES requirements. Applied 

ground motions include: (1) scaled versions of ground motions recorded during the 1989 

Loma Prieta Earthquake at the USCS/Lick Lab, Ch. 1 – 90°, and the 1995 Kobe 

Earthquake recorded at a depth of 83 m at the Port Island downhole array, (2) low-

amplitude step waves imposed primarily to verify sensor function, and (3) sine sweeps 

intended to characterize the dynamic response of the model. The magnitudes of the Loma 

Prieta and Kobe earthquakes are in the range that contributes the most to seismic hazard 

in the Delta (DRMS 2009). Scaled versions of these motions with amplitudes ranging from 

0.006g to 0.52g in prototype scale were imposed on the base of the model container. 
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Table 3-4 Base excitation summary (Lemnitzer et al. 2015) 
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3.5.2 Preliminary Results of Centrifuge Tests 

This section presents a sample of preliminary results through two examples of data 

interpretation. The first example focuses on the analysis of the rocking motion of the 

levee. For more details, the reader is invited to read Cappa et al. (2014a). The second 

example focuses on the liquefaction of the sandy levee, and is detailed in Lemnitzer et 

al. (2015). 

3.5.2.1 Rocking of the Levee 

The fundamental frequency of a structure is commonly estimated by applying a sweep 

function and finding the frequency producing the peak response. In the centrifuge tests a 

prototype-scale sine sweep over a frequency range of 0.12 to 5.84 Hz was applied. The 

motion had a constant amplitude in velocity (to maintain similar strain levels), which 

produces variable acceleration and displacement amplitudes. The target peak 

acceleration amplitude was set at 0.025g at the centrifuge base. The sine sweep 

produced max strains in the FF and CL arrays of about 0.05 to 0.1% for both RCK01 and 

RCK02, which resides essentially within the linear elastic range of peat behavior (Kishida 

et al. 2009). Figure 3-18 shows an example of the acceleration histories recorded for 

RCK01 and RCK02 at the peat base, free field peat ground surface and levee crest. 
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Figure 3-18 Acceleration records during sine sweep at different locations (Cappa et al. 2014a) 

To further interpret the recorded responses, transfer functions were computed from the 

data by taking ratios of the Fourier amplitude spectra. Observed transfer functions in 

RCK01 are compared in Figure 3-19 to predictions from 1-D ground response analyses 

(using material properties Figure 3-20). The 1-D ground response analyses were 

performed with the intent of identifying features in the data that differ from the 1-D model 

predictions. Such differences may be interpreted in part as being associated with 2-D 

responses not captured by the analysis. To facilitate these analyses, shear wave 

velocities were measured using bender elements. Results of these measurements from 

specimen RCK02 were used to define a relationship between effective stresses and shear 

wave velocity (Equation 3-1). 
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Figure 3-19 Transfer function for the free field (a) and the base of the levee (b) for RCK01 (Cappa et al. 
2014a) 

 

Figure 3-20 Free-field (FF) and crest of levee (CL) soil profiles for RCK01 and RCK02 (Cappa et al. 
2014a) 

Damping values were not measured directly. Initially, the recommendations of Kishida et 

al. (2009a) were utilized, but predicted significantly higher amplification than was 
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measured. A damping ratio of 20% was found to produce reasonable agreement with the 

measured free-field amplification functions for both RCK01 and RCK02. Damping curves 

in centrifuge experiments have been found higher than in literature (Conti and Viggiani 

2012; Elgamal et al. 2005). According to Brennan et al. (2005) this is due to the increased 

loading frequencies in centrifuge testing, and for normally consolidated clay they 

observed an increase by 50 % in the dynamic damping when frequency is scaled from 1 

to 50 Hz. 

The transfer function in Figure 3-19a shows a FF first mode at 0.36 Hz (2.77 sec). This 

peak is well captured by the 1-D ground response analysis. The transfer function ordinate 

at resonance is approximately 5. No clear second mode of vibration can be identified in 

the FF data, but is predicted by ground response analyses to be 0.87 Hz. The lack of a 

measured peak may be caused by higher damping at higher frequency, sensor resolution, 

or other unknown factors. 

For the CL array (Figure 3-19b) the maximum transfer function ordinate is 3.7 at a 

frequency of 0.63 Hz (1.59 sec). There are three additional local peaks at 1.65 Hz, 2.41 

Hz and 3.83 Hz. The 1-D ground response analysis slightly overestimates the first mode 

frequency (0.68 Hz) and over predicts the peak amplification by about 50%. These 

features could be attributed to 2-D effects not captured by the 1-D analysis. A second 

mode is predicted in the 1-D analysis for the CL array at 2.31 Hz, which is lower than the 

observed second mode of 1.65 Hz. 

We hypothesize that the local peak near 1.65 Hz in the data is associated with a rocking 

mode, which naturally is not present in the 1-D analysis results. This hypothesis is tested 
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by computing levee rotation using (1) a pair of vertical acceleration histories (divided by 

their horizontal separation distance to produce angular acceleration) from accelerometers 

at the peat-levee interface beneath the two edges of the embankment and (2) a pair of 

horizontal acceleration histories (divided by their vertical separation distance) from 

accelerometers at the levee base and crest in the CL array. Figure 3-21a shows the 

Fourier spectra of the levee rotational accelerations, which peak at 1.65 Hz, confirming 

that this mode from the transfer function in Figure 3-19b is from rotation. Figure 3-21b 

shows the transfer function of horizontal acceleration at the levee crest to that at the base, 

and again a peak occurs around 1.68 Hz, reinforcing the existence of a rocking mode. 

 

Figure 3-21 FFT of the vertical and horizontal rotations (a) and transfer function of the horizontal 
accelerometers at the bottom and the crest of the levee (b) for RCK01 (Cappa et al. 2014a) 

Figure 3-22 shows a similar comparison between 1-D ground response analysis results 

and recorded data for RCK02. The recorded FF transfer function has a peak ordinate of 

3.6 at 0.37 Hz (2.7 sec), which is well captured by 1-D analysis. The CL array transfer 

function has a peak ordinate of 5.4 (levee crest/peat bottom) at 0.69 Hz (1.45 sec). Two 

additional local peaks occur at 2.66 Hz and 3.91 Hz, which are comparable to the 3rd and 

4th peaks observed in the recorded data for the same array in RCK01. The 1-D simulation 
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overestimates the resonant frequency (0.88 Hz) but slightly under predicts amplification 

at resonance. The 1-D analysis also predicts a second mode peak near the 3.14 Hz that 

is again lower than the observed second mode of 2.68 Hz. Similar analyses of levee 

rocking are shown in Figure 3-23 and confirm that this peak in the transfer function is due 

to rotation. 

We attribute the variable fundamental mode resonant frequencies from RCK01 and 

RCK02 of 0.63 and 0.69 Hz for the CL array to the varying peat thicknesses. However, 

proximity to the rigid wall of the container may also have played a role in the observed 

response. Further analysis of the data will be required to characterize these effects. 

 

Figure 3-22 Transfer function for the free field (a) and the base of the levee (b) for RCK02 
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Figure 3-23 FFT of the vertical and horizontal rotations (a) and transfer function of the horizontal 
accelerometers at the bottom and the crest of the levee (b) for RCK02 (Cappa et al. 2014a) 

3.5.2.2 Liquefaction of the sandy Levee. 

In the second phase of both investigations a sandy levee replaces the clayey levee and 

the liquefaction potential of the levee fill is studied. In RCK02 the sandy levee is shaken 

with a moderate Kobe motion. Under the motion, the levee fill liquefied and slumped, 

resulting in a breach with water from the channel pouring over the levee and eroding it 

away until the water elevation equalized on both sides of the levee (Figure 3-24). Two 

more ground motions with smaller amplitude were applied after the moderate Kobe 

motion to observe the threshold for liquefaction triggering in the levee fill and to simulate 

aftershocks. These motions induced a measurable pore pressure and settlement 

response. Fast data recorded during the moderate Kobe motion are shown in Figure 3-25, 

including acceleration, pore pressure, and settlement, all in prototype units. The peak 

base acceleration of the moderate Kobe was 0.38g and the peak acceleration of the levee 

crest was 0.28g, indicating that the soil profile de-amplified the input motion. The pore 

pressure in the center of the sandy levee increased by approximately 30 kPa, which is 

equal to the initial vertical effective stress at the levee center, indicating the levee fill 



146 
 

liquefied. The excess pore pressure within the levee fill recorded by P9 abruptly rises 

during application of the Kobe motion and quickly dissipates due to the high permeability 

of the sand, whereas the excess pore pressure in the peat beneath the levee decreases 

slowly after the ground motion. Pore pressure in the free-field on the landward-side of the 

levee abruptly increases and remains elevated. This is due to the water in the channel 

being released, thereby permanently elevating the groundwater table on the landward 

free-field side of the levee. Settlement records exhibit significant high frequency noise, 

but a dynamic response is evident, superposed on the noise, and the permanent 

component is clear. The levee crest settled 0.7 m at the position of LP 14, which is near 

the center of the levee. The breach occurred where settlement was highest, between the 

center of the levee and the container wall. Videos capturing the liquefaction process and 

sandy levee failure are available on the NEES project warehouse. 
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Figure 3-24 Photos of the sandy levee before (a) and after the earthquake (b) (Lemnitzer et al. 2015) 
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Figure 3-25 RCK02 recordings during ground motion (a) accelerometers, (b) pore pressure transducers, 
(c) linear potentiometers  (Lemnitzer et al. 2015) 
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4 MODULUS REDUCTION AND DAMPING CURVES PLOTTED VS. 

STRESS RATIO 

This chapter is issued from Yniesta and Brandenberg (2016) and presents a new concept 

in which modulus reduction and damping curves are plotted versus stress ratio (η) rather 

than shear strain. First, the motivations are discussed. Second, the procedure for 

computing the G/Gmax vs η curve is presented. The procedure is then applied to 

relationships formulated by Darendeli (2001) for clay, Menq (2003) for sand, and Kishida 

et al. (2009) for peat. The resulting relationships for G/Gmax and D – Dmin vs η are shown 

to be pressure-independent. Finally, implications and potential uses of the new approach 

are discussed. This concept is used in the model presented in chapter 6, but can also be 

used for the model presented in chapter 5. 

4.1 Motivations 

The cyclic stress-strain behavior of soil is commonly characterized using modulus 

reduction and damping (MRD) curves in which secant shear modulus and percent 

damping are expressed as functions of cyclic shear strain amplitude (c). Curves have 

been derived from cyclic laboratory testing equipment capable of measuring small-strain 

behavior, including specialized simple shear devices (e.g., Vucetic and Dobry 1991, 

Doroudian and Vucetic 1995), specialized triaxial compression devices (e.g., Wehling et 

al. 2003, Kishida et al. 2009), and resonant column / torsional shear devices (e.g., Menq 

2003, Darendeli 2001). Research studies have found that modulus reduction and 

damping curves depend on the following factors: soil type, effective stress (e.g., Darendeli 

2001, Menq 2003, Kishida et al. 2009, EPRI 1993), plasticity index (e.g., Vucetic and 
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Dobry 1991, Darendeli 2001), number of loading cycles (e.g., Matasovic and Vucetic 

1995), and strain rate (e.g., Matesic and Vucetic 2003). 

Pressure-dependence of MRD curves is often evaluated in the laboratory by consolidating 

soils to different pressures, and shearing them either in drained or undrained loading. 

When sheared in undrained loading, specimens may develop excess pore pressure that 

reduces the effective stress. Effective stress ground response analysis codes often 

explicitly model excess pore pressures, in which case the MRD curves evolve during 

loading due to their pressure-dependence [e.g., Deepsoil (Hashash et al. 2015) and D-

MOD (Matasovic 2006)]. Formulating modulus reduction and damping curves in a manner 

that does not depend on effective stress would therefore be beneficial for implementation 

in effective stress ground response analysis codes, and potentially for plasticity 

formulations. 

4.2 Calculation of Modulus Reduction and Damping Curves as Functions of 

Stress Ratio 

The approach to computing G/Gmax and D versus η for a particular soil type follows these 

steps: (1) select a soil type and an associated MRD relationship, (2) select a mean 

effective stress value p’, (3) compute the small-strain shear modulus, Gmax, (4) compute 

the stress-strain backbone curve using Equation 4-1, (5) compute η =  / p’, and (6) repeat 

steps (2) through (5) for various p’ values in the range of engineering interest for the 

selected soil type. Values of G/Gmax and D (or alternatively D-Dmin) are then plotted versus 

η. Note that the mean effective stress is usually calculated as a third of the trace of the 

stress tensor. In the absence of knowledge of the coefficient of earth pressure at rest K0, 
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the mean effective stress is taken as equal to the vertical effective stress i.e. p’=’v. In the 

empirical relationships used to calculate the MRD curves, the use of vertical effective 

stress is preferred. 

𝜏(𝛾) = 𝐺𝑚𝑎𝑥 . (
𝐺

𝐺𝑚𝑎𝑥

(𝛾)) . 𝛾 
Equation 4-1 

4.3 G/Gmax and D-Dmin vs η for Commonly Used Relations 

Equations defining the modulus reduction and damping behavior of sand, clay, and peat 

are utilized to demonstrate the proposed concept. The models were selected because 

they are widely used in practice and cover a wide range of material types. The equations 

are too lengthy to reproduce herein, but the input parameters are provided so that readers 

can reproduce the results after consulting relevant sections of the references associated 

with each model. This section presents the input parameters selected to generate the 

modulus reduction and damping curves for each soil type selected for the example. In 

each case, the input parameters are consistent with the database from which the relations 

were derived. 

4.3.1 Relationship for Sand 

Menq (2003) constructed a large-scale, multi-mode, free-free resonant column device 

and studied the dynamic properties of non-plastic sandy and gravelly soils. Based on his 

tests, Menq developed regression equations for Gmax and modulus reduction and 

damping curves. The modulus reduction and damping curves depend on the mean 

effective stress (p'), the coefficient of uniformity (Cu), the mean grain size (D50), and the 
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number of cycles (Nc). Gmax also depends on the void ratio (e). Input properties utilized 

herein are provided in Table 4-1. 

Table 4-1Soil properties for the Menq (2003) relationship for sand 

Property Value 

Cu 3 

D50 0.5 mm 

e 0.7 

Nc 1000 

p’ 20, 50, 100, 200 kPa 

4.3.2 Relationship for Clay 

Darendeli (2001) developed regression equations defining the modulus reduction and 

damping behavior measured in resonant column / torsional shear tests of clayey soils. 

The equations depend on the plasticity index (PI), the overconsolidation ratio (OCR), the 

number of cycles, and frequency. Darendeli did not provide recommendations for 

computing Gmax, so we adopt Equation 4-2 developed by Hardin and Drnevich (1972b) 

and normalized by Schneider et al. (1999), e is void ratio, OCR is overconsolidation ratio, 

M and N depend on soil type, and pa is atmospheric pressure. M and N were selected 

based on the recommendations of Hardin and Drnevich (1972b) and Schneider et al. 

(1999). Other models exist for computing Gmax, but this relationship was selected because 

of its simplicity. The important aspect of such equations is the exponent on the effective 

stress term. The pressure-dependence of Gmax counterbalances the pressure-

dependence of G/Gmax versus c to render a pressure-independent G/Gmax versus η 

relationship.  
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𝐺𝑚𝑎𝑥

𝑝𝑎
= 321

(2.973 − 𝑒)2

1 + 𝑒
𝑂𝐶𝑅𝑀 (

𝑝′

𝑝𝑎
)

𝑁

 
Equation 4-2 

Equation 4-2 depends on e, which is a function of consolidation condition for clays 

according to Equation 4-3: 

𝑒 = 𝑒𝑁 − 𝜆 ln (
𝑝′𝑐

𝑝1
) + 𝜅 ln (

𝑝′𝑐

𝑝′
) 

Equation 4-3 

where eN is the void ratio at reference pressure p1,  is the slope of the virgin compression 

line and  is the slope of the recompression line in e-ln p’ space, and pc is the maximum 

past pressure computed as p’c=OCR·p’. Input parameters utilized herein are provided in 

Table 4-2. The modulus reduction and damping curves were computed using the 

regression constants from Table 8-12 in Darendeli (2001).  
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Table 4-2 Soil properties input to the Darendeli (2001) relationship for clay 

Property Value 

PI 20 

OCR 1 

eN 1.515 

P1 1 

 0.151 

 0.018 

M 0.18 

N 0.5 

Nc 1000 

Freq 1 Hz 

p’ 30, 75, 125, 200 kPa 

4.3.3 Relationship for Peat 

Kishida et al. (2006, 2009) developed a regression model for MRD curves and Gmax for 

peat based on p’, organic content (OC), and the laboratory consolidation ratio (LCR). The 

LCR is defined as the laboratory consolidation stress divided by the in-situ vertical 

effective stress. Soil properties input to the Kishida et al. (2009) model are summarized 

in Table 4-3. 
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Table 4-3 Soil properties input to the Kishida et al. (2009) relationship for peat. 

Property Value 

OC 45% 

LCR 1.0 

p’ 10, 30, 75, 125 kPa 

4.4 Example of Modulus Reduction and Damping Curves Plotted against η 

Modulus reduction curves computed for sand, clay, and peat are plotted in Figure 4-1a,b,c 

versus c and in Figure 4-1d,e,f versus η . Different MRD curves arise for different values 

of p’ when G/Gmax is plotted versus c. The influence of p’ on MRD is significant for all 

three soil types, and is highest for sand, and lower for clay and peat. However, the G/Gmax 

and D-Dmin curves are essentially pressure-independent when plotted versus η for each 

soil type. The reason why this occurs is that the overburden scaling for Gmax combines 

with the overburden scaling for G/Gmax versus c in a manner that renders G/Gmax versus 

η insensitive to p’.  

The small-strain damping value, Dmin, is subtracted from the strain-dependent damping 

relationship when plotting versus η. This procedure was adopted because D – Dmin versus 

η is pressure-independent for each soil type, whereas D versus η is not. Hysteretic 

damping formulations typically do not capture small-strain damping, relying instead on 

Rayleigh damping formulations. Subtracting Dmin is therefore reasonable and convenient 

for typical implementations. 

This approach was repeated for the three relationships presented here with different sets 

of input parameters in order to verify the concept. The results are not presented here for 
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the sake of brevity, but the concept proved to be true for any set of input parameters 

consistent with the model’s database. 

 

Figure 4-1 Modulus reduction and damping curves vs. γc and η for sand (a and d), clay (b and e) and peat 
(c and f). 

4.5 Benefits of Proposed Approach 

The proposed approach provides four distinct benefits compared with the traditional 

approach. First, the MRD curves studied herein are independent of p’ when plotted versus 

η. Effective stress ground response analysis for undrained loading conditions is much 

simpler when the soil behavior is independent of p’ because excess pore pressure 

development does not necessitate changes to the backbone curve or damping 



157 
 

relationship. Different models have been proposed to include the effect of change in 

confining pressure on MRD curves. For example, Hardin and Drnevich (1972a and b) 

proposed a modified hyperbolic model that normalizes the curves by a reference shear 

strain and renders a pressure independent curve. However, the reference shear strain is 

itself pressure-dependent and the modulus reduction curves are still a function of effective 

stress, and would need to be adjusted as effective stress changes during an effective 

stress ground response analysis.  

Second, modulus reduction and damping curves are often extrapolated to large strains 

beyond the range of empirical validation, which can result in significant errors in the 

implied shear strength (e.g., Yee et al. 2013, Afacan et al. 2014). The relationships 

presented herein were constrained within the range of experimental validation, but ground 

response analysis often exceeds this range, requiring extrapolation. Very small 

differences in the large-strain tail of the G/Gmax vs. c curve can result in significant 

differences in the implied shear strength. By contrast, representing G/Gmax as a function 

of η instead of c provides direct control over the mobilized shear strength because a 

single peak stress ratio can easily be specified.  

Third, advanced constitutive models are often formulated such that the plastic modulus 

is defined in stress-ratio space. For example, Dafalias and Manzari (2004) and Boulanger 

and Ziotopoulou (2015) developed stress-ratio based bounding surface plasticity models 

in which the plastic modulus is a function of the distance in stress space between the 

current stress ratio and the stress ratio at an image point on the bounding surface. 

Adjusting bounding surface model parameters to provide desired G/Gmax versus c 
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behavior is a complex and difficult task. The proposed approach could conceivably be 

utilized to simplify this task, or possibly to directly define plastic modulus based on position 

in stress-ratio space.  

Fourth, the proposed framework provides a new approach for interpreting laboratory test 

data in a manner that may eliminate p’ as an influential variable, which can reduce 

uncertainties when developing regression models. 

4.6 Discussion 

The G/Gmax and D-Dmin versus η curves are independent of p’ for the particular 

relationships utilized here, which is valuable because these relationships are commonly 

utilized in engineering practice. However, independence may not be achieved for other 

relationships. Readers are encouraged to verify pressure independence of the G/Gmax 

and D-Dmin relationships for equations that are not presented herein. 

Furthermore the effect of OCR is not included in this formulation. G/Gmax versus η curves 

are independent of p’ but not OCR. Since OCR can change during loading as effective 

stress changes, this is a limitation of the concept. However, G/Gmax versus c curves 

present the same limitation. 
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5 ONE DIMENSIONAL NONLINEAR MODEL FOR MATCHING 

MODULUS REDUCTION AND DAMPING CURVES IN GROUND 

RESPONSE ANALYSIS 

This chapter presents a one dimensional model capable of matching both input modulus 

reduction and input damping curves. All the damping introduced by the model is hysteretic 

and therefore the model does not need to be associated with a viscous damping scheme. 

Most of the text of this chapter comes from Yniesta et al. (2016). Some of the notations 

and the terminology have been modified to preserve consistency between the different 

chapters. This model constitutes the basis of the multidimensional model presented in 

chapter 6, and it is advised that the reader gets familiar with the 1D model before moving 

to the multidimensional model. 

5.1 Motivations for One-Dimensional Model 

Earthquake ground motions are influenced by source, path, and site effects. Site effects 

are most commonly considered using either (1) nonlinear site amplification functions that 

depend on the average shear wave velocity in the upper 30m (Vs30), or (2) site-specific 

one-dimensional ground response analysis. Ground response analyses are performed 

using equivalent linear (EL) procedures, in which the shear modulus and damping are 

taken as time-invariant values set to be consistent with mobilized shear strains, or 

nonlinear (NL) procedures, in which a plasticity model is utilized to match desired modulus 

reduction and damping behavior. Recent studies indicate that NL procedures are superior 

to EL when mobilized shear strains exceed about 0.4% (Kaklamanos et al. 2013, Stewart 
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et al. 2008) or even as low as 0.05% (Kaklamanos et al. 2015). These strain levels are 

exceeded at many sites where strong ground motions are imposed on soft soil profiles. 

Nonlinear site response models focus on matching small-strain behavior measured in 

laboratory devices at shear strains lower than about 0.1 to 0.3%, but these models are 

often extrapolated beyond their range of experimental validation to larger strains. This 

extrapolation can cause an under- or over-prediction of shear strength depending on the 

ratio of shear strength to small strain shear modulus, Gmax. These shear strength errors 

can translate to under- or over-prediction of ground surface motion (Groholski et al. 2015, 

Afacan et al. 2014, Zalachoris and Rathje 2015). Developing models that accurately 

capture small strain behavior and shear strength is obviously important for nonlinear site 

response simulations. 

This chapter presents a one-dimensional nonlinear stress-strain model capable of 

reproducing any user-input modulus reduction and damping curve. Existing models 

commonly used in site response modeling are discussed first to illustrate the need for 

improved models. This is followed by presentation of the proposed modeling equations, 

which are shown to precisely match any user-input modulus reduction and damping 

curve. The proposed model is then compared with simple shear laboratory experiments 

conducted on sand and peat soils to illustrate key features of behavior and compare with 

existing model formulations. 

5.2 Modulus Reduction Behavior of Existing Models 

User inputs to a one-dimensional ground response analysis required to define the 

dynamic properties of each soil layer include: (1) maximum shear modulus, (2) modulus 
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reduction curve, and (3) damping ratio curve. Existing nonlinear models vary in their ability 

to capture the desired modulus reduction and damping behavior. Models are categorized 

as either one-dimensional, consisting of a backbone curve and unload-reload relations, 

or multi-dimensional plasticity formulations consisting of a yield surface, hardening law, 

and flow rule. 

Many nonlinear codes use a hyperbolic equation to model the backbone curve (e.g., 

Deepsoil: Hashash and Park 2001; D-MOD: Matasovic and Vucetic 1993; and Tess: Pyke 

2000). The hyperbolic formulation was first introduced by Kondner and Zelasko (1963) 

and later modified by Hardin and Drnevich (1972) and Darendeli (2001). In the special 

case where the desired modulus reduction curve happens to be hyperbolic, then these 

models are capable of precisely matching the desired modulus reduction curve. However, 

the desired modulus reduction curve generally does not correspond to a hyperbolic 

backbone function, resulting in a misfit between the user-input modulus reduction curve 

and the hyperbolic curve.  

Small misfits in the modulus reduction curve can translate to significant misfits in the 

stress-strain curve at high strain, resulting in errors in the desired shear strength (e.g., 

Chiu et al. 2008, Groholski et al. 2015, Afacan et al. 2014, Zalachoris and Rathje 2015). 

To address this problem Hashash et al. (2010) suggests that the high strain portion of the 

user-specified modulus reduction curve should be adjusted so that the resulting fitted 

curve provides the correct shear strength. However, this increases the misfit at low strain. 

Furthermore, Matasovic and Vucetic (1993) introduced a modified version of the 

hyperbolic Kondner and Zelasko model where the introduction of two curve-fitting 

constants improves matching the modulus reduction curve. Yee et al (2013) proposed a 
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hybrid procedure where the modulus reduction curve is modified to match the shear 

strength at high strains and obtain a more reasonable backbone curve. The procedure 

utilizes the prescribed modulus reduction curve below a transition strain, t, and a 

hyperbolic model above t. The stress and tangent modulus values are continuous at t. 

However, the Yee et al. model cannot be perfectly fit by a hyperbolic model, often resulting 

in a mismatch between the desired shear strength and that achieved in the nonlinear site 

response code. 

Multi-dimensional plasticity models incorporate nonlinear behavior using either multiple 

nested yield surfaces or bounding surface formulations. In multiple yield surface models 

(e.g., Prevost 1985, Elgamal et al. 2003), the backbone curve is controlled by setting the 

plastic modulus associated with each yield surface. The resulting backbone curve is 

piecewise linear when a constant plastic modulus is assigned to each yield surface. The 

PressureDependMultiYield and PressureIndependMutliYield (Elgamal et al. 2003) 

material models implemented in OpenSees can be configured to match a user-specified 

modulus reduction curve. In bounding surface plasticity models, the plastic modulus is 

defined based on the distance in stress space between a current point and an “image” 

point on a bounding surface (e.g., Assimaki et al. 2000, Dafalias and Manzari 2004, 

Boulanger and Ziotopoulou 2015). The hardening function that controls the evolution of 

the plastic modulus may be adjusted to match a desired modulus reduction curve. For 

example, Boulanger and Ziotopoulou (2015) adjusted the PM4Sand model to match the 

modulus reduction and damping curves for sand by EPRI (1993). However, the modulus-

reduction curve is not an input to the PM4Sand model, though users could conceivably 

alter the modeling constants to provide a fit (a significant effort). 
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5.3 Damping Behavior of Existing Models 

Soil damping can arise from hysteretic cyclic loading behavior of the soil skeleton, relative 

displacement between the solid and fluid phases, or other sources of energy loss. 

Damping is commonly divided into “small-strain” damping, which is often modeled using 

numerical procedures such as Rayleigh damping, or “large-strain” damping, which is 

modeled by the unload-reload behavior of the stress-strain model. Masing (1926) rules 

and extended Masing rules (e.g., Pyke 1979, Wang et al. 1980, Vucetic 1990) are most 

common in nonlinear site response codes (Stewart et al. 2008).  

The extended Masing rules are stated as follow: 

5. The stress-strain curve follows the backbone curve during initial loading.  

6. If a strain reversal happens at point (rev;rev), the unloading or reloading curve has a 

shape that is identical to the backbone curve enlarged by a factor n. In its original 

paper, Masing used n=2, it was later modified by Pyke (1979), where n can deviate 

from 2, to provide a better match of the damping at higher strain. 

7. If the unloading or reloading curve exceeds the maximum past strain and intersects 

the backbone curve, it follows the backbone curve until the next stress reversal. 

8. If the unloading or reloading curve crosses an unloading or reloading curve from a 

previous cycle, it follows the curve of that previous cycle. 

When Masing rules are used with n=2, the initial slope of the unloading or reloading curve 

is equal to the maximum shear modulus Gmax, and the model shows no hardening or 

softening (i.e. loops are closed).  
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Masing rules tend to over predict damping at large strains (Phillips and Hashash 2009), 

and do not provide hysteretic damping at small strains (i.e., in the range where G/Gmax = 

1). Several solutions have focused on modifying the second Masing rule to obtain 

reasonable hysteretic damping at high strains. The Cundall-Pyke hypothesis (Pyke 1979) 

evaluates n based on the shear strength. This formulation improves damping at high 

strain and creates some degradation. To match the damping curve, Darendeli introduced 

a damping reduction factor now used in several codes (Darendeli 2001). This formulation 

does not create degradation, and only acts on the area of the stress-strain loops. Based 

on Darendeli’s work, Phillips and Hashash (2009), introduced a damping reduction factor 

that provides a better fit or the curve at large strains.  

Small-strain damping is commonly modeled using frequency-dependent Rayleigh 

damping, which introduces mass- and stiffness-proportional viscous damping terms to 

the equation of motion. Most nonlinear codes utilize the formulation by Rayleigh and 

Lindsay (1945), which enables matching a desired damping value at either 2 frequencies 

(full Rayleigh damping) or 4 frequencies (extended Rayleigh damping). At other 

frequencies, damping is either too low or too high, making the damping frequency-

dependent in a manner that is inconsistent with laboratory results (Lai and Rix 1998; 

Vucetic et al. 1998). Phillips and Hashash (2009) established a frequency-independent 

Rayleigh damping formulation, based on the work of Liu and Gorman (1995). TESS (Pyke 

1979, Pyke 2000) uses an unload/reload rule to produce hysteretic damping at low 

strains. The procedure however can result in over prediction of damping at large strains 

(Stewart et al. 2008).  
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An important consideration for NL methods is that the author is not aware of any published 

models that permit exact simultaneous matching of any user-input modulus reduction and 

damping curve. Desired modulus reduction and damping curves often deviate from 

hyperbolic behavior, forcing users to choose to fit certain behaviors while accepting 

misfits in others (Kwok et al. 2008). The model formulation in the next section provides a 

precise fit to a discrete user-input modulus reduction and damping curve.  

5.4 Formulation of the Model 

5.4.1 Backbone Curve 

During initial/virgin loading, a backbone curve is derived from the desired modulus 

reduction curve, and is fit with cubic splines (Figure 5-1). Cubic spline interpolation is a 

mathematical method that has been extensively described in numerous textbooks (e.g. 

De Boor 1978). The cubic splines pass through all of the user-input data points, resulting 

in a smooth continuous modulus reduction curve and stress-strain backbone curve. For 

comparison with the cubic spline fit, Figure 5-1 also shows a hyperbolic fit performed 

using two different approaches. In the first approach, the hyperbola is fit by least squares 

regression to the G/Gmax and log() values. This fitting results in a misfit at high strain that 

causes an under-prediction of shear strength in this case. The second approach fits the 

hyperbola to the stress-strain data, which provides a better fit of shear strength, but 

significant misfit to the modulus reduction curve at small strains. The cubic spline method 

is more flexible than fitting a single hyperbola because the cubic spline interpolation 

passes through all of the data points, precisely fitting the user-input data. 
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Figure 5-1Evaluation of the curve fitting method on (a) the modulus reduction curve and (b) the backbone 
curve 

5.4.2 Unload/Reload Rule 

The unload-reload rule is formulated to satisfy the following criteria: 

(i) The secant modulus of the stress-strain loops matches a user-defined modulus-

reduction curve, 

(ii) When subject to uniform cyclic strain amplitude input, the stress-strain loops close 

and repeat, exhibiting no cyclic degradation or stiffening, 

(iii) The area inside the stress-strain loops matches a user-defined damping curve, 

even at small strains where the modulus-reduction value is zero, 

(iv) The stress-strain loops are concave about the secant modulus line. 

5.4.2.1 Rotation of the Coordinate System 

Upon the first unloading a coordinate transformation is introduced to control the modulus 

reduction and damping behavior. The values of strain and stress at the first unloading 

point are (L, L), and a target reversal point is defined as (R, R) = (-L, -L), as shown in 
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Figure 5-2. If unloading progresses, the curve will pass through the reversal point. A new 

coordinate system is defined such that the ' axis lies along a line that runs through (L, 

L) and (R, R), at an angle  from the  axis, and the ' axis is orthogonal to '. The origin 

of the rotated coordinate system, (o,o), lies at the center of (L, L) and (R, R), which 

happens to be (0,0) for the first unload cycle, but (o,o) may translate upon asymmetric 

loading, following rules described in the next section. 

 

Figure 5-2: Stress-strain loops during (a) unloading and (b) reloading 

The definition of  depends on the loading direction, defined by Equation 5-1 for loading 

in the + direction and Equation 5-2 for loading in the – direction. 

The coordinate transformation rules relating values in one coordinate system to those in 

another are given by Equation 5-3 and Equation 5-4. Note that the units of ' and ' are 

meaningless because the coordinate transformation is performed on axes with differing 

 

𝜃 = 𝑡𝑎𝑛−1
𝜏𝑅 − 𝜏𝐿

𝛾𝑅 − 𝛾𝐿
  Equation 5-1 

𝜃 = 𝑡𝑎𝑛−1
𝜏𝑅 − 𝜏𝐿

𝛾𝑅 − 𝛾𝐿
− 𝜋  Equation 5-2 
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units. However, this is inconsequential because the transformation is utilized merely as a 

means to satisfy the desired criteria, and an inverse transformation recovers the values 

of  and .  

(
𝛾

𝜏
) = (

𝛾′ cos 𝜃 − 𝜏′ sin 𝜃 + 𝛾0

𝛾′ sin 𝜃 + 𝜏′ cos 𝜃 + 𝜏0
) 

Equation 5-3 

(
𝛾′

𝜏′
) = (

(𝛾 − 𝛾0) cos 𝜃 + (𝜏 − 𝜏0) sin 𝜃

−(𝛾 − 𝛾0 )sin 𝜃 + (𝜏 − 𝜏0 )cos 𝜃
) 

Equation 5-4 

To satisfy criterion (i), the value of  must be selected to be compatible with a modulus 

reduction curve based on the cyclic shear strain amplitude. In this case,  = atan(Gsec), 

and Gsec is interpolated from the modulus reduction curve at a cyclic strain amplitude, c, 

defined as half of the peak-to-peak strain amplitude (Equation 5-5). 

𝛾𝑐 =
|𝛾𝑅 − 𝛾𝐿|

2
 

Equation 5-5 

5.4.2.2 Stress-Strain Curve in Rotated Coordinate Space 

Having defined the coordinate transformation, a function is now selected to define the 

unload-reload behavior in the transformed coordinate space. A biquadratic equation 

(Equation 5-6) is selected because it is the simplest possible form that is symmetric about 

the ' axis and contains three constants (a, b, and c) that can be solved to satisfy the three 

remaining criteria. 
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𝜏′ = 𝑎 𝛾′4
+ 𝑏 𝛾′2

+ 𝑐 Equation 5-6 

The shape of the function describing a half loop in the transformed coordinate system is 

shown in Figure 5-3a, where the target reversal strain in the transformed system, 'in, is 

defined by Equation 5-7. Note that the stress-strain loop is symmetric about the ’ and ' 

axis in ’-’space, but do not appear symmetric about the ’ axis in the - space. The lack 

of symmetry is due to stretching of the axes upon coordinate transformation due to the 

stress and strain axes having different units. The stress-strain curves in - space 

nevertheless exhibit a reasonable shape. 

𝛾′
𝑖𝑛 =

𝛾𝑅 − 𝛾0

𝑐𝑜𝑠𝜃
 

Equation 5-7 

 

Figure 5-3 a) Half loop in the transformed coordinate system, and b) definition of damping 

Criterion (ii), (iii), and (iv) are satisfied by Equation 5-8, Equation 5-9 and Equation 5-10, 

respectively.  
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Criterion (ii), requiring that the unload-reload loops close with no cyclic degradation or 

hardening, is satisfied by setting ' = 0 at ' = ±'in (Equation 5-8). Criterion (iii), requiring 

the area inside the loop to match a target damping value, is satisfied by Equation 5-9. 

The equivalent viscous damping ratio D is selected from the input damping ratio curve 

based on the cyclic strain amplitude (Equation 5-5). The damping ratio is defined by 

D=2A/(4B), where A is the area beneath half of the loop as shown in Figure 5-3a, and B 

is the area of the triangle shown on Figure 5-3b and is equal to: 

Criterion (iv), requiring that the stress-strain curve be concave about the secant shear 

modulus line is equivalent to requiring that d2(’)/d(’)2 must be negative (Equation 5-10). 

A bi-quadratic equation has two inflexion points that are symmetrical with respect to the 

apex. Forcing the inflexion points to lie at ’in automatically satisfies Equation 5-10.  

Substituting Equation 5-6 into Equation 5-8, Equation 5-9, and Equation 5-10 and solving 

the linear system of equations for a, b, and c results in EquationsEquation 5-12, Equation 

5-13, and Equation 5-14: 

𝜏′(𝛾′𝑖𝑛) = 0 Equation 5-8 

∫ 𝜏′(𝛾′)𝑑𝛾′

𝛾′
𝑖𝑛

−𝛾′
𝑖𝑛

= 𝐴 = 𝛾′
𝑖𝑛𝐷𝜋(𝜏𝑅 − 𝜏0)𝑐𝑜𝑠𝜃 Equation 5-9 

 

𝑑2(𝜏′)

𝑑(𝛾′)2
≤ 0 𝑓𝑜𝑟 𝛾′ ∈ −𝛾′

𝑖𝑛. . 𝛾′
𝑖𝑛 

Equation 5-10 

𝐵 =
(𝜏𝑅 − 𝜏0) ∗ (𝛾𝑅 − 𝛾0)

2
 

Equation 5-11 
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Applying an inverse coordinate transformation to Equation 5-6 using Equation 5-3 and 

Equation 5-4, an implicit relationship between strain and stress can be derived in - 

space (Equation 5-15): 

𝜏 = [(𝛾 − 𝛾0) cos 𝜃 + (𝜏 − 𝜏0) sin 𝜃] sin 𝜃 + [𝑎((𝛾 − 𝛾0) cos 𝜃 + (𝜏 − 𝜏0) sin 𝜃)4 + 𝑏((𝛾 −

𝛾0) cos 𝜃 + (𝜏 − 𝜏0) sin 𝜃)2 + 𝑐] cos 𝜃 + 𝜏0  
Equation 
5-15 

In Equation 5-15 the only unknown is , reducing the problem to a simple root-finding 

exercise. For the example problems presented herein, the root is solved using Ridders’ 

Method (Ridders 1979), an algorithm based on the false position method which is 

unconditionally stable as long as the two initial guesses lie on each side of the root. The 

root is automatically bracketed when the initial guesses are set equal to the stress at the 

previous time step and the target stress point. Other methods converge more rapidly (e.g., 

Newton-Raphson), but are not always able to converge upon the desired root. Ridders' 

method converges more quickly than other unconditionally stable methods, such as the 

bisection method. 

𝑎 =
5𝜋𝐷𝑐𝑜𝑠𝜃(𝜏𝑅 − 𝜏0)

32𝛾′
𝑖𝑛

4  
Equation 5-12 

𝑏 = −
15𝜋𝐷𝑐𝑜𝑠𝜃(𝜏𝑅 − 𝜏0)

16𝛾′
𝑖𝑛

2  
Equation 5-13 

𝑐 =
25𝜋𝐷𝑐𝑜𝑠𝜃(𝜏𝑅 − 𝜏0)

32
 Equation 5-14 
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5.4.2.3 Asymmetrical Loading 

Thus far, focus has been on symmetric loading, where (R, R) = (-L, -L), and (o, o) lies 

at (0,0). Asymmetrical loading conditions occur when (R, R) ≠ (-L, -L), meaning that the 

center of the unload-reload loop shifts away from the - origin, as illustrated in Figure 5-4 

Asymmetrical loading (a) positive loading (b) negative loading and defined in Equation 

5-16a and Equation 5-17b. 

𝛾0 =
𝛾𝑅 + 𝛾𝐿

2
 

Equation 5-16a 

𝜏0 =
𝜏𝑅 + 𝜏𝐿

2
 

Equation 5-17b 

 

 

Figure 5-4 Asymmetrical loading (a) positive loading (b) negative loading 
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Defining the values of L and L is straightforward; these values are simply the strain and 

stress at which the current reverse loading cycle began. Defining the values of R and R 

(i.e., the target value of strain and stress) involves three unload/reload rules, 

demonstrated through an example problem in Figure 5-5 Evolution of the reversal strain 

vectors. For brevity, the example problem is formulated in terms of strains (i.e., L and R), 

and the stress updating is omitted but follows the same logic. In Figure 5-5a, monotonic 

loading progresses to the first reversal at 1 and begins unloading such that L = 1. The 

size of the unloading loop is not known at the onset of unloading, so the simplest 

assumption is that the target reversal point is R = -1. The first unload / reload rule is:  

Rule 1: When an unloading cycle initiates from the monotonic backbone 

curve, R = -L.  

Having defined R, the shape of the unload curve is defined by Equation 5-15, and 

unloading progresses along this curve to a value 2 where a new reverse loading cycle 

begins. The value of L is now updated to be equal to 2, while R is updated to be equal 

to 1. The second unload / reload rule is: 

Rule 2: When an unloading cycle initiates from a point that is not on the 

monotonic backbone curve, L is updated to be the strain value at the start 

of the unloading cycle, and the previous value of L becomes the current 

value of R.  

Loading then progresses to a new unloading point at 3 (Figure 5-5c) which is less than 

1. At this point, L = 3, and R = 2 in accordance with Rule 2. Unloading then occurs to 



174 
 

a new reloading point at 4 (Figure 5-5d) where L = 4 and R = 3 in accordance with Rule 

2. A reload cycle then loads beyond 3 (Figure 5-5e) which brings us to the final unload / 

reload rule: 

Rule 3: When a reloading cycle exceeds R, the current values of L and R 

are erased as internal variables, and the previous values of L and R are 

reinstated. 

Rule 3 requires that all previous values of L and R must be stored in computer memory 

as internal variables until they are erased by a cycle that exceeds R. In Figure 5-5e, the 

loading cycle continues back to the monotonic backbone curve at 1, at which point L = 

1 and R = -1 in accordance with Rule 1, and all previous values of L and R are erased 

from computer memory. 

Upon unloading and reloading, these rules can produce stresses lower than the backbone 

curve as illustrated in Figure 5-5e. This departs from Masing rules, and is driven by the 

damping requirement. 
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Figure 5-5 Evolution of the reversal strain vectors 

5.5 Example Problems 

An example problem is utilized to illustrate the following features of the model: (1) small-

strain damping is explicitly modeled in the hysteretic formulation, (2) desired modulus 

reduction and damping curves can be perfectly matched, which differs from other 

commonly-used models, and (3) the solution does not depend on the size of strain 

increments utilized in a simulation. The target damping and modulus reduction curves for 

the example problem are calculated from Darendeli (2001) for a soft clay with the following 

characteristics: PI=40, ’v=47.5 kPa, =15 kN/m3, Vs=80 m/s, OCR=1.15, and K0=0.5. 

The procedure presented by Yee et al. (2013) was applied to the computed modulus 
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reduction curve to match a target undrained strength Su = 17kPa and the transition strain 

was picked as t = 0.03%. The target modulus reduction and damping curves are 

presented in Figure 5-6. The modulus reduction curve is adjusted at high-strain to match 

a desired shear strength using the Yee et al. procedure, but the damping curve was simply 

extrapolated from Darendeli’s functional form due to absence of recommendations for 

high-strain damping. 

  

Figure 5-6. Modulus reduction (a), hysteretic damping ratio (b) and backbone (c) curves predictions of 

different models for a clay PI=40, ’v=47.5 kPa, =15 kN, Vs=80 m/s, OCR=1.15 K0=0.5.  

5.5.1 Comparison with Existing Models 

Figure 5-6 compares the proposed model with two commonly used models: MRDF UIUC 

used in Deepsoil 5.1 (Phillips and Hashash 2009), and the PressureIndependMultiYield 

(PIMY) model in OpenSees (Elgamal et al., 2003). Response curves from the different 

models were back-calculated from the results of numerical simulations of a single element 

subjected to sinusoidal loading at different strain amplitudes, and comparisons with the 

desired modulus reduction and damping curves are presented in Figure 5-6. The 

proposed model and the PIMY both perfectly fit the target modulus reduction curve, while 
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the MRDF UIUC model results in a very slight misfit. The misfit appears very small when 

plotted as modulus reduction versus logarithm of shear strain, but is more significant 

when plotted as a stress-strain curve.  

Figure 5-6c compares the hysteretic damping curves obtained with the different models. 

The proposed model explicitly includes small-strain hysteretic damping, whereas both the 

PIMY and MRDF UIUC models do not include small-strain hysteretic damping, relying 

instead on other formulations such as Rayleigh damping. OpenSees uses a two-point 

approach to Rayleigh damping (i.e., damping is specified at two frequencies, under-

damping occurs between these frequencies, and over-damping occurs outside these 

frequencies). Frequency-dependent Rayleigh damping is not realistic, and care must be 

taken to ensure significant errors do not arise from this formulation. Deepsoil implements 

a frequency-independent Rayleigh damping formulation developed by Phillips and 

Hashash (2009) which solves this problem, but is computationally demanding. 

At large strains the PIMY model over predicts damping, which is a well-known aspect of 

Masing’s rules (Kwok et al. 2007). Deepsoil uses damping reduction factors at large 

strains, based on the formulation by Darendeli (2001). This results in a reasonable, but 

imperfect match of the damping curve. The proposed coordinate transformation model 

perfectly matches the damping curve at all strain levels, eliminating the need for Rayleigh 

damping, and avoiding over-damping at high strain. An outcome of including small-strain 

damping in the hysteretic formulation of the proposed model is that the initial unload-

reload tangent modulus must be larger than the secant shear modulus to accommodate 

non-zero area inside the stress-strain loop. This behavior is consistent with experimental 

observations (e.g., Doroudian and Vucetic 1995). 
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5.5.2 Influence of Strain Increment 

Many plasticity models utilize an explicit integration scheme that requires very small strain 

increments to achieve numerical stability, or an implicit integration scheme in which 

iterations are performed at each time step to ensure numerical stability. Both solutions 

are sensitive to the size of the strain increments in that different solutions will arise from 

different strain increment sizes because the tangent modulus for the increment is 

evaluated either the beginning (explicit) or end (implicit) of the increment. The algorithm 

presented herein is formulated differently in that the stress is computed as the physically 

meaningful root of Equation 15 rather than by assuming a constant tangent modulus for 

a particular increment. The solution therefore does not depend on strain increment size, 

provided that the peak strain values are captured in the discretization (for accurate 

representation of the L and R internal variables). Figure 5-7 presents the prediction of 

the model for a sample of clay subject to sinusoidal loading at different strain levels. 

Figure 5-7 shows that predictions for a cycle defined by 4 or 40 points lie exactly on the 

curves described by 400 points at every strain level. Thus the response of the model is 

independent of the amplitude of the strain increment. Figure 5-7a presents a cycle at very 

low amplitude, at which current models rely on frequency dependent damping to introduce 

damping. The present formulation is entirely hysteretic, and avoid the need for Rayleigh 

damping. However, viscous effects are not taken into account and therefore the tip of the 

loops is always sharp which is not realistic for clay and peat under sinusoidal loading 

(Vucetic 1990). 
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Figure 5-7 Comparison of the predictions of the model for cycles defined by 4, 40 and 400 points at 

strain level of (a) 0.001%, (b) 0.1%, (c) 10%. 

5.6 Consistent Tangent during Unloading/Reloading 

Although the Ridder’s method is a robust method, which converges independently of the 

size of the strain increment, the method is computationally demanding and can be slow if 

the number of increments is large. Deriving a consistent tangent allows the model to be 

implemented in an explicit or implicit numerical scheme, without requiring the use of 

Ridder’s method. The derivation of the consistent tangent is detailed in appendix A, and 

yields: 

𝑑𝜏

𝑑𝛾
=

sin 𝜃 + 4𝑎 cos 𝜃 [(𝛾 − 𝛾0) cos 𝜃 + (𝜏 − 𝜏0) sin 𝜃]3 +  2𝑏 cos 𝜃 [(𝛾 − 𝛾0) cos 𝜃 + (𝜏 − 𝜏0) sin 𝜃]

cos 𝜃 − 4𝑎 sin 𝜃 [(𝛾 − 𝛾0) cos 𝜃 + (𝜏 − 𝜏0) sin 𝜃]3 − 2𝑏 sin 𝜃 [(𝛾 − 𝛾0) cos 𝜃 + (𝜏 − 𝜏0) sin 𝜃]
 

Equation 5-18 

Figure 5-8 compares the results of simulations using Ridder’s method and an explicit 

integration scheme using the consistent tangent upon unloading/reloading. At every time 

step the explicit integration calculates the consistent tangent based on the previous stress 
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and strain values. The consistent tangent is then used in conjunction with the strain 

increment to calculate the stress increment. The performance of the integration schemes 

is studied through a convergence study where a single element of clay is subjected to 

1.25 cycles of 1% strain amplitude. Modulus reduction and damping curves of the clay 

(Figure 5-9) are calculated based on Darendeli’s equation (Darendeli 2001) for the 

properties listed in Table 5-1. The maximum shear modulus was calculated based on the 

assumption of a shear wave velocity of 120 m/s and a density of 1.5 g/cm3. To study the 

performance of the explicit integration scheme, three different simulations are performed, 

where the loading is described with 100, 1000, and 10000 increments. Except when the 

loading is described by 100 increments, the explicit scheme is equivalent to the Ridder’s 

method which corresponds to the exact solution. 

Table 5-1 Soil properties for the example 

Plasticity Index (PI) 200 

Overconsolidation Ratio (OCR) 1 

Confining Pressure (σv’) 101.325 kPa 

Maximum Shear Modulus (Gmax) 21600 kPa 
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Figure 5-8 Convergence study: comparison between Ridder's method and the explicit method 
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Figure 5-9 Modulus reduction and damping curves for the example 

5.7 Comparison with Simple Shear Laboratory Tests 

The University of California, Los Angeles (UCLA) bi-directional broadband direct simple 

shear device (Duku et al. 2007) was used to apply strain-controlled shear demands on 

Silica No. 2 dry sand and nearly saturated Sherman Island peat specimens with height 

and diameter of 25.4 and 72.6 mm respectively. The strain histories were deliberately 

irregular, involving local unloading and reloading cycles of small amplitudes. The results 

of the tests are compared with the predictions of our model, MRDF-UIUC in Deepsoil and 

the PressureIndependMultiYield (PIMY) Model in OpenSees. 

5.7.1 Direct Simple Shear Tests 

Silica No. 2 is a uniform sand with a median particle size D50=1.60 mm, a coefficient of 

uniformity Cu=1.29 (Duku et al 2008) and maximum and minimum dry densities of 1.61 

and 1.35 gr/cm3, respectively. The dry pluviated specimen of Silica No.2 was prepared at 
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a relative density of 42%, and then consolidated to a vertical pressure of 100kPa. The 

vertical pressure was kept constant during shear to simulate drained condition. The 

loading path consisted of strain-controlled triangular functions in which three cycles of 

constant strain amplitude of 0.03% were followed by three cycles at 0.08%, and so on for 

0.44% and 0.9%. An irregular loading path was then applied in which small unloading and 

reloading cycles were superposed on the 0.9% amplitude triangular function. 

A peat specimen retrieved from a depth of 1.7 m from Sherman Island in the Sacramento-

San Joaquin Delta, California was tested under undrained conditions using a similar 

irregular triangular loading path, but with shear strain amplitudes of 1.3%, 6.8%, and 

13.6%. Details of the peat properties are provided by Shafiee (2015). The specimen was 

consolidated to vc’ = 60.4 kPa, and then unloaded to 31.3kPa to achieve an 

overconsolidation ratio (OCR) of 1.93. The organic content of the sample was 75%. The 

vertical stress was varied during shearing to maintain constant specimen height using a 

servohydraulic actuator and feedback control loop. Constant height testing achieves 

undrained loading conditions. 

5.7.2 Model Input Parameters 

The input modulus reduction curves were derived using the cyclic testing on the simple 

shear device supplemented by inferred shear modulus at strains lower than the device 

capabilities. The maximum shear modulus was calculated by dividing the shear modulus 

measured at the lowest strain level, by the G/Gmax ratio calculated from the empirical 

relationship at the same strain level, to ensure the curves are continuous. The inferred 

maximum shear modulus for sand and peat was 23504 kPa and 877 kPa, respectively, 
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which correspond to shear wave velocities of 128 m/s and 28 m/s. The inferred modulus 

values were then calculated by multiplying the normalized modulus reduction (G/Gmax) 

calculated from Menq (2003) and Kishida et al. (2009), for sand and peat respectively, by 

the maximum shear modulus. The modulus reduction curves obtained and the associated 

hyperbolic fits are plotted in Figure 5-10. 

The damping curves were derived by fitting cubic splines to the lab data and inferred 

points. For sand, the inferred points were calculated from Menq (2003). For peat, the 

inferred values were calculated from Kishida et al. (2009), adjusted to match the damping 

measured in the lab (1.9%) at the lowest strain level (1.3%) (Figure 5-10).  

 

Figure 5-10 Input modulus reduction and damping curves a) test on sand b) test on peat 

5.7.3 Simulations of Direct Simple Shear Tests 

Figure 9 and 10 present the stress-strain loops measured in the lab and predicted by the 

present model (Figure 5-11a and Figure 5-12a), Deepsoil (Figure 5-11b and Figure 

5-12b), and OpenSees (Figure 5-11c and Figure 5-12c), for the tests on sand and peat 

respectively. During shearing the sand sample exhibits hardening, and the secant shear 

modulus increases with the number of cycles. This behavior of dry cohesionless soils has 
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been reported previously by Silver and Seed (1971), and is related to densification of the 

sand during cyclic loading. Our model does not predict hardening because it utilizes a 

single modulus reduction curve (and hence monotonic backbone curve), but the 

qualitative nature of the loops are in close agreement with the test results. For both tests, 

the areas of the predicted stress strain loops agree with the damping curve, and plot very 

close to the test results. Furthermore, when a small unload-reload cycle moves back on 

to the monotonic backbone curve, a sharp change in slope is observed in both the test 

data and the model predictions. 

The MRDF-UIUC model in Deepsoil under-predicts the stresses during initial loading for 

the test on sand (Figure 5-11b) but slightly over-predict the stresses for the test on peat. 

It also slightly under-predicts damping for both tests, which is expected since small strain 

damping is not captured in the hysteretic formulation in Deepsoil, and would be included 

using Rayleigh damping. The PIMY in Opensees follows the backbone curve, and is able 

to capture the initial loading of the soil properly for both the peat and sand (Figure 5-11c 

and Figure 5-12c). However, the PIMY model under-damps the sand response and over-

damps the peat response at high strain. Furthermore, the stress-strain behavior exhibits 

piecewise linear behavior due to the nature of the nested yield surfaces, whereas the 

laboratory data exhibits a smooth stress-strain curve. 
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Figure 5-11 Stress-strain loops measured in simple shear test on Silica No. 2 dry sand and predicted by: 

a) proposed model, b) Deepsoil, c) OpenSees 

 

Figure 5-12 Stress-strain loops measured in simple shear test on Sherman Island peat and predicted by: 

a) our model, b) MRDF-UIUC in Deepsoil, c) PIMY in OpenSees 

5.8 Conclusions 

In this chapter I presented a one dimensional nonlinear model for site response analysis 

that departs from two concepts commonly used by site response models. Initial loading 

is not controlled by the widely used hyperbolic model, but instead uses a cubic spline fit 

of the backbone curve to match any modulus reduction curve. The hysteretic behavior of 

the soil is not controlled by the original or the extended Masing’s rules, but is controlled 

by a new unloading and reloading rule that uses a coordinate transformation approach to 
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calculate the shear stress, regardless of the amplitude of the strain increment. This 

unloading reloading rule easily controls the damping in the transformed coordinate 

system and provides a perfect fit of any damping curve. 

The model captures small-strain hysteretic damping, thereby eliminating the need for 

Rayleigh damping, and it does not over-damp at high strain, which is a well-known 

problem associated with Masing's rules. The model is well suited for total stress 1D site 

response analysis, though implementation in a site response code is beyond the scope 

of this paper and is reserved for future publications.  

The model could be adapted for effective stress 1D ground response analysis by using 

the concept presented in chapter 4 and a pore pressure generation model such as 

Matasovic and Vucetic (1995). The initial loading would then be a function of pore 

pressure by using a modulus reduction curve that depends on the stress ratio. Upon 

unloading and reloading, the reversal stress ratios would be stored, and the target and 

previous reversal shear stress would be defined as the target and previous reversal stress 

ratios multiplied by the current effective stress.  

The one-dimensional kinematic hardening framework developed herein is implemented 

in chapter 6 in a multi-dimensional plasticity formulation which can be used for more 

advanced numerical simulations. This formulation tracks reversal stress ratios as 

explained in the previous paragraph. Such formulation could potentially capture the cyclic 

stiffening behavior exhibited by the sand as it densified during shearing, and the cyclic 

degradation behavior exhibited by the peat in constant volume shearing.  
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6 FORMULATION OF A NONLINEAR CONSTITUTIVE MODEL FOR 

DYNAMIC SIMULATIONS 

This chapter presents a multidimensional generalization of the nonlinear constitutive 

model presented in the previous section. The equations are presented in q-p’ space for 

implementation in a 2D finite differences program (FLAC), where q is the second 

deviatoric stress invariant (q=√
1

2
((𝜎1 − 𝜎2)2 + (𝜎2 − 𝜎3)2 + (𝜎1 − 𝜎3)2)) and p’ is the mean 

effective stress (p’=(1’+3’+3’)/3). The model is formulated in terms of stress ratios (𝜂 =

𝑞

𝑝′
) and is presented here using relationships appropriate for peat, but can in principle be 

extended to model any soil type with only modest modification. The principles and input 

parameters are presented first. The rest of the chapter presents the equations governing 

initial loading, the volumetric response, and the inclusion of the unloading-reloading rule 

presented in chapter 5 in a multi-dimensional framework. 

6.1 Motivations 

In a 1D ground response analysis problem, the dynamic behavior of the soil profile is 

most often characterized by a set of modulus reduction and damping (MRD) curves. The 

analyses are performed using equivalent linear (EL) procedures, in which the shear 

modulus and damping are taken as time-invariant values set to be consistent with 

mobilized shear strains, or nonlinear (NL) procedures, in which a plasticity model is 

utilized to match desired modulus reduction and damping behavior. The current plasticity 

models are unable to perfectly match a set of target modulus reduction and damping 

curves, often leading to a mismatch of the desired soil behavior, especially at large 
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strains. The limitations of the existing plasticity models for 1D ground response analysis 

problem have been extensively discussed in the previous chapter. 

Similarly, 2D site response analysis can be performed using the equivalent-linear method 

(for example using the software Quad4M (Hudson et al. 1994)) or the nonlinear method 

with a constitutive model. However, only a small number of constitutive models 

incorporate the modulus reduction and damping curve concept in their formulation. The 

pressure independent and pressure dependent multi-yield models (Elgamal et al. 2003, 

Yang et al. 2003) offer the capability to use a modulus reduction (MR) curve as an input 

parameter to define the backbone curve. A set of nested yield surfaces provides a piece-

wise linear backbone curve that is set to match that implied by the modulus reduction 

curve. The input modulus reduction curve is not modified as a function of confining 

pressure, though the small-strain shear modulus does depend on effective stress in this 

model. The model also offers an alternative formulation in which the shear strength is 

specified, and the plastic modulus of the yield surfaces is set to match a hyperbolic shape 

that is consistent with the maximum shear modulus and the input shear strength. The 

hyperbola does not permit matching small-strain modulus-reduction behavior. The 

PM4Sand model (Boulanger and Ziotopoulou 2015) was configured to match modulus 

reduction curves from the Electric Power Research Institute (EPRI 1993), but does not 

permit users to input a desired curve. Furthermore, matching the EPRI curve required a 

complex and difficult calibration of the modeling constants. 

In addition to modulus reduction behavior, configuring the unload-reload behavior to 

match a target damping curve is rather difficult. The nested yield surface formulation by 

Elgamal et al. (2003) produces unloading and reloading curves with the same shape as 
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the backbone curve enlarged by a factor of 2, which is equivalent to the Masing Rules 

(Masing 1926). The Masing rules typically overpredict damping at strains larger than 

0.01% (Phillips and Hashash 2009).The overprediction of damping increases with strain 

amplitude and is a recurring problem with constitutive models, and is observed for 

example in the UBC sand (Beaty and Byrne 2011) and the bubble model (Al Tabbaa and 

Muir Wood 1989). The PM4Sand model does not utilize Masing’s rules, and the unload-

reload behavior was carefully configured to provide a good match to the EPRI damping 

curve. Most models use a finite elastic region within which hysteretic damping is zero, 

therefore small strain damping relies on an alternative damping formulation such as 

Rayleigh damping (Rayleigh and Lindsay 1945).  

Therefore, a model having a damping curve as input parameter would be beneficial. Such 

a model should be able to capture the behavior of the soil at small and large strain, and 

be able to capture a desired shear strength. A model formulated in accordance with the 

principals of critical state soil mechanics is able to capture the salient features of the soil 

behavior, such as the strength, the dilative or contractive behavior of the soil under 

deviatoric loading, and the consolidation behavior. The present models aims to answer 

this need, and uses the concept of modulus reduction and damping curves as functions 

of stress ratio, as developed in chapter 4, to integrate the dynamic curves, and their 

dependence on effective stress in a plasticity model. This model does not intend to 

capture any viscous effect, and is therefore unable to model secondary compression. 

Future iterations of the model may incorporate viscous effects. 
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6.2 Principles and Input Parameters 

The constitutive model presented here extends the unload-reload rule presented in 

Chapter 5 to a multi-dimensional plasticity stress-ratio-based model that is implemented 

in FLAC. The model includes the following features, which are illustrated in Fig. 6-1: 

1. A stress ratio region, MSS, within which the shape of the backbone curve is 

controlled by the input modulus reduction curve, and beyond which the backbone 

curve is controlled by a bounding surface plasticity formulation. The transition 

between these two regions is set based on the range of experimental validation of 

the modulus reduction curve, and in general will correspond to mobilized shear 

strains near 0.3% for typical MR curves. The transition region grows when loading 

exceeds the previous value of MSS such that the current stress ratio may never 

exceed MSS, which means that the unload-reload rules from Chapter 5 are utilized 

for all unloading cases. 

2. A set of unloading-reloading rules based on the formulation described in Chapter 

5 that controls the damping behavior of the model based on the input damping 

curve. That formulation is modified to be compatible with a stress ratio formulation, 

and integrated into a multidimensional framework. The model is also adapted from 

shear strain/stress relationships to deviatoric strain/stress relationships. 

3. A critical state implementation of bounding and dilatancy surfaces following the 

formulation of Manzari and Dafalias (2004). The bounding surface and dilatancy 

stress ratios, Mb and Md, respectively, become equal to the critical state stress 

ratio, M, when the state parameter is equal to zero. This results in mobilization of 
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a critical state condition in which plastic deviatoric strains produce zero plastic 

volumetric strain (i.e., dilatancy is zero). 

4. A stress ratio region, Mpp, within which zero plastic volumetric strains occur, even 

when plastic deviatoric strains occur. This is consistent with observations by 

Vucetic (1994) that the threshold shear strain required to mobilize excess pore 

pressure is higher than the threshold shear strain for nonlinear stress-strain 

behavior. The value of Mpp can be set such that the correct threshold shear strain 

is achieved. 

5. A volumetric cap intended to provide plastic volumetric strains upon constant 

stress-ratio loading. The cap is selected as the surface defined by Kutter and 

Sathialingam (1992) that is an adaptation of the modified Cam Clay model. 
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Figure 6-1Illustration of the model’s surfaces for the lightly overconsolidated case (a and b) and a heavily 
overconsolidated sample (c and d) 

The model uses 17 input parameters presented here. Their selection is described in 

chapter 7. The input parameters are: 

- M, the slope of the critical state line in p’-q space 

- , the slope of the recompression line 

a) b) 

c) d) 
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- , the slope of the virgin compression line 

- e1 and p1 which specify a point on the isotropically normally consolidated line (ICL) 

in the void ratio vs. mean effective stress space (e-p’). 

- R which defines the position of the critical state line (CSL) with respect to the ICL, 

and controls the shape of the plastic volumetric surface. 

- Dmin, the small strain damping 

- G/Gmax vs. η curve, modulus reduction vs. stress ratio curve, as explained in 

chapter 4. 

- D-Dmin vs. η curve, damping ratio vs. stress ratio curve, as explained in chapter 4 

- A0, variable defining the amplitude of the pore pressure response 

- nd, variable defining the dilation surface 

- nb, variable defining the bounding (peak) surface 

- γSS, the strain at which the model transitions from small strain to large strain 

response. 

- γPP, the strain at which pore pressure is generated. 

- n, m and A, that defines the maximum shear modulus depending on the confining 

pressure and the overconsolidation ratio. 

6.3 Elastic Response 

The elastic volumetric and deviatoric strain increments are defined in Equation 6-1 and 

Equation 6-2, where K is bulk modulus and Gmax is the elastic shear modulus: 

𝜀𝑣̇
𝑒 =

𝑝̇′

𝐾
 Equation 6-1 
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𝜀𝑞̇
𝑒 =

𝑞̇

3𝐺𝑚𝑎𝑥
 

Equation 6-2 

The stress increments are calculated based on total and plastic strain increments: 

𝑝̇ = 𝐾(𝜀𝑣̇ − 𝜀𝑣̇
𝑝

) 
Equation 6-3 

𝑞̇ = 3𝐺𝑚𝑎𝑥(𝜀𝑞̇ − 𝜀𝑞̇
𝑝

) 
Equation 6-4 

The bulk modulus K is defined as a function of the mean effective stress p’: 

𝐾 =
𝑝′𝜐0

𝜅
 Equation 6-5 

where 0 is the initial specific volume. The elastic shear modulus Gmax is defined by the 

following equation: 

𝐺𝑚𝑎𝑥

𝑝𝑎
= A ∙ 𝑂𝐶𝑅𝑚 (

𝑝′

𝑝𝑎𝑡
)

n

 
Equation 6-6 

Note that the elastic shear modulus Gmax is typically called G. In order to avoid confusion 

between the secant shear modulus from modulus reduction curve (G/Gmax) and the elastic 

shear modulus, Gmax is used. 

6.4 Backbone Curve at Small Strains (i.e. <SS) 

During initial loading at small strains, the backbone curve is defined from the input 

modulus reduction curve and Gmax. The value of G/Gmax is found by linear interpolation at 

the value 𝜂 − 𝜂0. The new deviatoric stress is calculated directly from the following 

equation: 
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𝑞 =
𝐺

𝐺𝑚𝑎𝑥
∙ 3 ∙ 𝐺𝑚𝑎𝑥 ∙ 𝜀𝑞 + 𝜂0 ∙ 𝑝’ 

Equation 6-7 

From the new deviatoric stress, the plastic volumetric strain can be calculated based on 

the stress increment: 

𝜀𝑞̇
𝑝

= 𝜀𝑞̇ −
𝑞̇

3 ∙ 𝐺𝑚𝑎𝑥
 

Equation 6-8 

6.5 Unloading/Reloading Rule 

Upon Unloading/Reloading, the model uses a modification of the unloading/reloading 

rules presented in chapter 5 to account for multidimensional loading, and pore pressure 

generation. The model presented in chapter 5 uses a coordinate transformation to match 

an input modulus reduction and damping curves formulated in terms of shear strain. In 

the 1D model the changes in loading direction are tracked, and the stress/strain points at 

which they happen are stored. In the present chapter, the coordinate transformation is 

utilized to match input modulus reduction and damping curves vs. stress ratios. The 

unload/reload rules are formulated in terms of deviatoric strain/stress rather than shear 

strain/stress like in the 1D model and the changes in loading direction are tracked by 

storing stress ratio/strain points at which the change in direction happens. The 

unload/reload rules are used as long as the maximum target reversal point is not reached 

6.5.1 From Shear to Deviatoric Stress/Strain 

The 1D model in chapter 5 is formulated in terms of shear stress () and shear strain () 

because it makes sense in a 1D framework since pure shear is the only mode of 
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deformation considered. In 2 and 3D, deviatoric stress invariant (q) and deviatoric strain 

(εq), calculated from the full deviatoric stress and strain tensors respectively (Equations 

2-7 and 2-9), are used to account for more complicated stress paths. Based on the case 

of a simple shear stress path, the following relationships are derived to create an 

equivalence between the formulation of the 1D model and a formulation with invariants 

that can be used in a multidimensional framework: 

𝜏 =
𝑞 ∙ 𝑠𝑖𝑔𝑛𝑞

√3
 

Equation 6-9 

𝛾 = √3 ∙ 𝜀𝑞 ∙ 𝑠𝑖𝑔𝑛𝜀𝑞 
Equation 6-10 

Stress and strain invariants εq and q are always positive by definition (following equations 

2-7 and 2-9), by contrast with  and , which may change sign. Tracking the loading 

direction in the 1-D model is as simple as tracking when either the increments of  or  

change sign. However, increments of q and q might change sign at points that do not 

correspond to a change in loading direction, as illustrated in Fig. 6-2. To remedy this 

problem, 3 variables are introduce to keep track of the direction of loading, load, and the 

“artificial” signs of εq and q, signεq and signq respectively. All the variables are initially 

equal to 1. The direction of loading changes sign when both 𝑞̇ and 𝜀𝑞̇ change sign 

simultaneously. When only 𝑞̇ or 𝜀𝑞̇ changes sign, only signq or signεq changes sign. 

Figure 6-2 shows two equivalent hysteretic loops for εq and q, and  and . On both figures, 

the direction of loading is changing at point A because 𝑞̇ and 𝜀𝑞̇ change signs at the same 

time. At point B, the loop crosses the  axis, and  becomes negative. At this point 𝑞̇ 

changes sign and signq becomes -1, even though q is still positive. At point C, the loop 
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crosses the  axis and  now becomes negative. Since only 𝜀𝑞̇ changes sign, signεq 

becomes -1, and signq does not change. 

 

Figure 6-2 Hysteretic loops in terms of a) deviatoric stress/strain b) shear stress/strain 

6.5.2 From Shear Stress to Stress Ratios 

The 1D model keeps track of the reversal points at which unloading happens, and defines 

rules to select the target (R and R) and previous (L and L) stress/strain points. In the 

multidimensional model, the reversal points are tracked in terms of stress ratio vs strain 

points. The equations are formulated in terms of deviatoric stress and strain, but remain 

essentially the same. The deviatoric stresses are calculated from the previous and target 

stress ratios (ηL and ηR) multiplied by mean effective stress (p’). The selection of qL, qR, 

ηL and ηR is based on four rules similar to the 1D case.  

When unloading begins qL and ηL are the strain and stress ratios at which the current 

reverse loading cycle begins. qL and ηL have the signs of signεq and signq respectively.  

When unloading starts right after initial loading, the size of the unloading loop is not known 

at the onset of unloading. The same assumption as the 1D model is made, which is that 
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qR = -qL. For stress ratios however, the initial stress ratio has an influence, and the target 

stress ratio is R = -L+2η0. Therefore the first rule is: 

Rule 1: When an unloading cycle initiates from the monotonic backbone 

curve, qR = -qL and R = -L+2η0.  

During unloading/reloading, Mb and Md change as a result of development of plastic 

volumetric strains. If unloading happens at a stress ratio equal to Mb, the absolute values 

of R and L can become larger than Mb upon unloading/reloading. Since this is not 

desirable, R and L are adjusted in order to be always equal or lower than Mb. The second 

rule is: 

Rule 2: If during unloading/reloading the absolute values of R and L 

become larger than Mb, they are adjusted to be equal to Mb. 

When the reversal of loading happens during an unloading or reloading cycle, the 

previous point qL becomes the target point qR, and the point of reversal becomes the 

previous point. qL and ηL have the signs of signεq and signq respectively. The third unload 

/ reload rule is: 

Rule 3: When an unloading cycle initiates from a point that is not on the 

monotonic backbone curve, qL is updated to be the strain value at the start 

of the unloading cycle, and the previous value of qL becomes the current 

value of qR. Previous and target stress ratios follow the same logic and the 

signs are conserved as well. 
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In the 1D model, under cyclic loading at constant strain amplitude, the loops are all the 

same, there is no softening or hardening. In the model this translates into reaching τR 

when reaching R. When R is exceeded, the current values of L and R are erased as 

internal variables, and the previous values of L and R are reinstated. In the 

multidimensional loading, R is reached when qR is reached. The fourth rule is: 

Rule 4: When a reloading cycle exceeds qR, the current values of 

ηLηRqL and qR are erased as internal variables, and the previous values 

of ηLηRqL and qR are reinstated. 

Rule 4 requires that all previous values of qL and qR must be stored in computer memory 

as internal variables until they are erased by a cycle that exceeds qR. Upon loading at 

constant peak strain amplitude, the peak stress ratio does not change. However, since p’ 

evolves with loading, the peak deviatoric stress changes as a function of p’ and can exhibit 

softening or hardening, depending if p’ decreases or increases respectively. 

6.5.3 Constitutive Equations during Unloading/Reloading 

To find the new stress during unloading and reloading, the model uses a coordinate 

transformation much like the 1D model of chapter 5, but uses deviatoric strains and 

deviatoric stresses calculated from the previous and target stress ratios multiplied by the 

mean effective stress. The center of the new coordinate system, illustrated in Figure 6-3, 

follows the same definition: 
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𝜀𝑞0
=

𝜀𝑞.𝑅 + 𝜀𝑞.𝐿

2
 

Equation 6-11 

𝑞0 =
𝜂𝑅 ∙ 𝑝′ + 𝜂𝐿 ∙ 𝑝′

2
 Equation 6-12 

The rotation of the coordinate system θ, as illustrated in Figure 6-3, depends on the 

loading direction. 

𝜃 = tan−1
𝜂𝑅 ∙ 𝑝′ − 𝜂𝐿 ∙ 𝑝′

(𝜀𝑞.𝑅 − 𝜀𝑞.𝐿)
  𝑖𝑓 𝑙𝑜𝑎𝑑 = 1 

Equation 6-13 

𝜃 = tan−1
𝜂𝑅 ∙ 𝑝′ − 𝜂𝐿 ∙ 𝑝′

(𝜀𝑞.𝑅 − 𝜀𝑞.𝐿)
− 𝜋  𝑖𝑓 𝑙𝑜𝑎𝑑 = −1 

Equation 6-14 

 

 

Figure 6-3 (a) Positive loading (b) negative loading 

The equations to go from one coordinate system to another are similar to the 1D model: 
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(
𝜀𝑞

𝑞
) = (

𝜀𝑞′ cos 𝜃 − 𝑞′ sin 𝜃 + 𝜀𝑞0

𝜀𝑞′ sin 𝜃 + 𝑞′ cos 𝜃 + 𝑞0

) 
Equation 6-15 

(
𝜀𝑞′

𝑞′
) = (

(𝜀𝑞 − 𝜀𝑞0
) cos 𝜃 + (𝑞 − 𝑞0) sin 𝜃

−(𝜀𝑞 − 𝜀𝑞0
)sin 𝜃 + (𝑞 − 𝑞0 )cos 𝜃

) 
Equation 6-16 

The unload-reload rule is formulated to satisfy the following criteria: 

(i) When subject to uniform cyclic strain amplitude input, if the target and previous 

stresses do not change, the stress ratio-strain loops close and repeat, exhibiting no 

cyclic degradation or stiffening, 

(ii) The area inside the stress-strain loops matches a user-defined damping curve, 

even at small strains where the modulus-reduction value is zero, 

(iii) The stress-strain loops are concave about the secant modulus line. 

The function describing the shape of the loop in the transformed coordinate system is the 

same as the 1D model: 

𝑞′ = 𝑎 𝜀𝑞
′4

+ 𝑏 𝜀𝑞
′2

+ 𝑐 
Equation 6-17 

Where a, b and c are three constants that satisfy the three conditions. The shape of the 

loop in the transformed system is shown on Figure 6-4. In the figure 𝜀𝑞
′
𝑖𝑛

 is the target 

reversal strain in the transformed system: 

𝜀𝑞
′
𝑖𝑛

=
𝜀𝑞.𝑅 − 𝜀𝑞0

𝑐𝑜𝑠𝜃
 

Equation 6-18 
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Figure 6-4 Half loop in the transformed coordinate system 

The three criteria (i), (ii) and (iii) translate to the followin three equations, respectively: 

where D is the hysteretic damping of the considered loop. In the 1D model, the cyclic 

strain amplitude (equation 5-5) is used to define amplitude of loading, and interpolate the 

hysteretic damping of the considered loop. In the multidimensional loading, the equivalent 

stress ratio amplitude is used:  

𝜂𝑒𝑞 =
|𝜂𝑅 − 𝜂𝐿|

2
 

Equation 6-22 

𝑞′(𝜀𝑞′𝑖𝑛) = 0 Equation 6-19 

∫ 𝑞′(𝜀𝑞
′)𝑑𝜀𝑞′

𝜀𝑞
′

𝑖𝑛

−𝜀𝑞
′

𝑖𝑛

= 𝜀𝑞
′
𝑖𝑛

𝐷𝜋(𝜂𝑅 ∙ 𝑝′ − 𝑞0)𝑐𝑜𝑠𝜃 Equation 6-20 

𝑑2(𝑞′)

𝑑(𝜀𝑞′)
2 ≤ 0 𝑓𝑜𝑟 𝜀𝑞′ ∈ −𝜀𝑞

′
𝑖𝑛

. . 𝜀𝑞
′
𝑖𝑛

 
Equation 6-21 
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This equivalent stress ratio is used to calculate D-Dmin from linear interpolation on the 

input damping curve. The damping ratio for the loop is then simply calculated by adding 

Dmin. 

The constants a, b and c, are found by solving the previous system of equations (Equation 

6-19, Equation 6-20 and Equation 6-21): 

𝑎 =
5𝜋𝐷𝑐𝑜𝑠𝜃(𝑝′ ∙ 𝜂𝑅 − 𝑞0)

32𝜀𝑞′𝑖𝑛
4  

Equation 6-23 

𝑏 =
−15𝜋𝐷𝑐𝑜𝑠𝜃(𝑝′ ∙ 𝜂𝑅 − 𝑞0)

16𝜀𝑞′𝑖𝑛
2  

Equation 6-24 

𝑐 =
25𝜋𝐷𝑐𝑜𝑠𝜃(𝑝′ ∙ 𝜂𝑅 − 𝑞0)

32
 Equation 6-25 

The new stress is found by solving the following equation: 

𝑞 = [(𝜀𝑞 − 𝜀𝑞0
) cos 𝜃 + (𝑞 − 𝑞0) sin 𝜃] sin 𝜃

+ [𝑎 ((𝜀𝑞 − 𝜀𝑞0
) cos 𝜃 + (𝑞 − 𝑞0) sin 𝜃)

4

+ 𝑏 ((𝜀𝑞 − 𝜀𝑞0
) cos 𝜃 + (𝑞 − 𝑞0) sin 𝜃)

2
+ 𝑐] cos 𝜃 + 𝑞0 

Equation 6-26 

This equation can be solved using Ridder’s method (Ridder’s 1979), or by calculating the 

consistent tangent. The consistent tangent differs from the 1D rule because of the 

influence of p’ which adds an extra term. The derivation of the consistent tangent is too 

lengthy to be repeated here, and is presented in appendix B. The tangent calculated is 

𝜕𝑞

𝜕𝜀𝑞
 and the stress increment is: 
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𝑞̇ =
𝜕𝑞

𝜕𝜀𝑞
∙ |𝜀𝑞̇| ∙ 𝑠𝑖𝑔𝑛𝑞    𝐎𝐑   𝑞̇ =

𝜕𝑞

𝜕𝜀𝑞
∙ 𝜀𝑞̇ ∙ 𝑠𝑖𝑔𝑛𝜀𝑞  ∙ 𝑙𝑜𝑎𝑑 ∙ 𝑠𝑖𝑔𝑛𝑞   

Equation 6-27 

Once the new stress is calculated, 𝜀𝑞̇
𝑝
 can be calculated based on Equation 6-8. 

6.6 Critical State Compatibility 

The model integrates the formulation of Dafalias and Manzari (2004) in order to have the 

deviatoric and volumetric responses of the model compatible with the concept of critical 

state soil mechanics. 

Upon initial loading, the model transitions from small strain loading defined by the input 

modulus reduction curve to a bounding surface algorithm where the response of the 

model depends of the distance between the current stress ratio and the bounding surface. 

The bounding surface is defined by Mb which follows the definition from Dafalias and 

Manzari (2004): 

𝑀𝑏 = 𝑀𝑒−n𝑏𝜓 Equation 6-28 

is the state parameter and is defined as the distance between the current stress ratio 

and the void ratio at critical state at constant mean effective stress: 

𝜓 = 𝑒 − 𝑒𝑐𝑠 Equation 6-29 

For peat, the CSL can be taken as parallel to the isotropic normal consolidated line (ICL). 

In the void ratio-mean effective stress (e-p’) space, the ICL is defined as a straight line: 
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𝑒 = 𝑒1 − 𝜆 ln
𝑝′

𝑝1
 

Equation 6-30 

Therefore the CSL in the e-p’ space is also defined as a straight line parallel to the ICL: 

𝑒𝑐𝑠 = Γ − 𝜆 ln
𝑝′

𝑝1
 

Equation 6-31 

where Γ is the specific volume at critical state at p1: 

Γ = 𝜐1 − (𝜆 − 𝜅) ln R 
Equation 6-32 

The variable R controls the distance between the ICL and the CSL. The general 

definitions of the ICL and the CSL can be modified in order to model the behavior of sand 

better. 

At critical state, the bounding surface collapses onto the critical state line. The two 

surfaces are illustrated in Figure 6-1. Depending on the initial stress state, and whether 

the state parameter is negative or positive, Mb can be greater or lower than M. If Mb is 

greater than M, the response of the model will exhibit a peak stress ratio greater than M. 

Depending on nb, the model can exhibit a peak shear stress greater than the ultimate 

shear strength or not. A discussion on the typical predictions of the model is presented in 

chapter 7. 

When the model transitions from small to large strain response, the departure stress ratio 

ηin is defined as the stress ratio at which the transition occurs. The departure stress ratio 

can be modified upon unloading and reloading if the current stress ratio gets lower than 
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the departure stress ratio. When ηin is modified, an initial plastic ratio H0 is defined, so that 

the slope of the stress ratio vs εq is continuous at the transition strain (Figure 6-5): 

𝐻0 =
𝜂̇

𝜀𝑞̇
𝑝 

Equation 6-33 

 

Figure 6-5 Continuity of the stress/strain curve during initial loading 

During initial loading at large strains, the plastic deviatoric strains follow the definition of 

Dafalias and Manzari (2004): 

𝜀𝑞̇
𝑝

=
𝜂̇

𝐻
 

Equation 6-34 

The plastic modulus H is defined so that the two following conditions are satisfied: (1) H 

is equal to H0 when the stress ratio is ηin, and (2) H approaches zero at critical state, i.e. 

when Mb and η approach M. The following equation is proposed: 

𝐻 = 𝐻0

M𝑏 − 𝜂

M𝑏 − 𝜂𝑖𝑛
 Equation 6-35 
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Any equation satisfying the two aforementioned conditions can be used, but this equation 

was chosen because of its simplicity. 

Upon shearing, if the stress ratio is changing, plastic deviatoric strains develop, and 

plastic volumetric strains are coupled with deviatoric strains according to the following 

equation:  

𝑑𝜀𝑣
𝑝

= 𝑑|𝑑𝜀𝑞
𝑝

| Equation 6-36 

Where d is the dilatancy defined as: 

𝑑 = 𝐴0(𝑀𝑑 − 𝜂) Equation 6-37 

Where Md is the dilatancy surface defined as: 

𝑀𝑑 = 𝑀𝑒n𝑑𝜓 Equation 6-38 

This dilatancy surface collapses onto the critical state line at critical state. When the soil 

is on the contractive side of the critical state line, Md is greater than M, and the model’s 

response is contractive. When the soil is on the dilatant side of the critical state line, Md 

is lower than M, the soil behavior is initially contractive, and becomes dilative when 

crossing Md. 

6.7 Plastic Volumetric Wedge 

Previous researchers have studied the existence of the cyclic volumetric threshold tv, 

that separates cyclic shear strains that do and do not cause pore pressure generation 

under undrained cyclic loading (Vucetic 1994). This concept is used here to introduce a 
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wedge in which no plastic volumetric strain is created upon shearing, i.e. d=0. The wedge 

is illustrated in Figure 6-1. The wedge is centered on 𝛼𝑃𝑃 and the pore pressure slope 

MPP is defined as: 

𝑀𝑃𝑃 =
1

𝑝
∙

𝐺

𝐺𝑚𝑎𝑥
∙ √3 ∙ 𝐺𝑚𝑎𝑥 ∙ 𝛾𝑃𝑃 

Equation 6-39 

G/Gmax is calculated based on the input modulus reduction curve and therefore MPP 

evolves during initial loading. Once 𝛾𝑃𝑃 is exceeded during initial loading, the value of MPP 

does not evolve anymore. The pore pressure wedge is defined by the following equation: 

𝑓 = |𝜂 − 𝛼𝑃𝑃| − 𝑀𝑃𝑃 = 0 
Equation 6-40 

𝛼𝑃𝑃 is set up initially as η0 and evolves with loading so that f≤0. 

6.8 Volumetric Cap 

Upon constant stress ratio loading, such as in a consolidation problem, the deviatoric 

stress formulation only exhibits elastic deviatoric strains, and therefore no plastic 

volumetric strains are introduced from the coupling of plastic volumetric and deviatoric 

strains. To introduce plastic volumetric strains induced by constant stress ratio loading, a 

volumetric cap is introduced. This volumetric cap models the behavior of soils during 

consolidation by introducing another component of plastic volumetric strains. This surface 

shown in Figure 6-1, follows the formulation from Kutter and Sathialingam (1993), that 

modifies the Modified Cam Clay surface, based on the position of the critical state line. 

The surface is composed of two ellipses (Figure 2-8) with the following equations for 

ellipse 1 and 2 respectively: 
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𝑓 = (𝑝′ − 𝑝′0) [𝑝′ + (
𝑅 − 2

𝑅
) 𝑝′0] + (𝑅 − 1)2 (

𝑞

𝑀
)

2

 Equation 6-41 

𝑓 = 𝑝′ [𝑝′ − 2
𝑝′0

𝑅
] + (

𝑞

𝑀
)

2

 Equation 6-42 

Where p0 is the preconsolidation pressure on the ICL, i.e. the intersection of the volumetric 

cap with the hydrostatic axis. In the modified Cam Clay the plastic strains are defined as: 

𝜀𝑞̇
𝑝

= 𝛾̇
𝜕𝑓

𝜕𝑞
 

Equation 6-43 

𝜀𝑣̇
𝑝

= 𝛾̇
𝜕𝑓

𝜕𝑝
 

Equation 6-44 

In the present model, 𝜀𝑞̇
𝑝
 is calculated based on the equations for initial loading. Using the 

consistency condition (𝛾̇𝑓̇(𝜎, 𝑞) = 0), the following expression can be defined for 𝛾̇: 

𝛾̇ =

𝜕𝑓
𝜕𝑝

𝐾𝜀𝑣̇ +
𝜕𝑓
𝜕𝑞

3𝐺𝜀𝑞̇

𝐾 (
𝜕𝑓
𝜕𝑝

)
2

+ 3𝐺 (
𝜕𝑓
𝜕𝑞

)
2

−
𝜕𝑓
𝜕𝑝0

𝜕𝑓
𝜕𝑝

𝜐𝑝0

𝜆 − 𝜅

 
Equation 6-45 

The extra component of plastic volumetric strain introduced is: 

𝜀𝑣̇
𝑝𝑐

= 𝛾̇
𝜕𝑓

𝜕𝑝
 

Equation 6-46 

The plastic volumetric strains combine the plastic strains induced by shearing and by 

constant stress ratio loading. The stress increment is then calculated as: 

ṗ = K(𝜀𝑣̇ − 𝜀𝑣̇
𝑝

− 𝜀𝑣̇
𝑝𝑐

) 
Equation 6-47 
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The preconsolidation pressure evolves with the plastic volumetric strain following the 

equation: 

𝑝0̇ =
𝜐𝑝0(𝜀𝑣̇

𝑝
+ 𝜀𝑣̇

𝑝𝑐
)

𝜆 − 𝜅
 Equation 6-48 

The preconsolidation pressure evolves with plastic volumetric strains, whether they are 

due to shearing or constant stress ratio loading. 
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7 IMPLEMENTATION IN A FINITE DIFFERENCE PROGRAM: FLAC 

The model presented in chapter 6 is implemented in a finite difference program called 

FLAC (Fast Lagrangian Analysis of Continua), in order to be used in numerical 

simulations presented in chapter 8. This chapter presents the implementation and some 

examples. The chapter first discusses how FLAC works, and how users can implement 

their own constitutive models. I then present the implementation of the model and how it 

interacts with FLAC. Monotonic and cyclic single elements simulations are presented to 

provide examples of typical predictions. The chapter also analyses the effect of the three 

variables A0, nb, and nd, through single element simulations as well.  

7.1 Introduction to FLAC 

FLAC is a two dimensional explicit finite difference program for numerical simulations. 

This section presents a short introduction of the software. It first summarizes the theory 

behind it and explain how the calculations are performed. A short explanation on the 

creation of user-defined constitutive models is provided. For more information, the reader 

is invited to read the FLAC manual. 

7.1.1 Explicit Finite Difference Method 

The finite difference method is a numerical technique used to solve a set of governing 

differential equations, given boundary conditions. The governing equations are either the 

equation of motion, Fourier’s law for conductive heat transfer, or Darcy’s law for fluid flow 

in a porous solid, depending on the type of problems being solved. 
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The finite difference method approximates every derivative in the equations by finite 

differences formulated in terms of field variables at discrete points. Field variables are 

undefined within the elements. In comparison, in the finite element method, the field 

variables vary throughout the elements according to shape functions. Both methods 

would essentially yield the same equations that can then be solved using different solution 

schemes. FLAC uses an explicit solution, which is represented schematically in Figure 

7-1. One loop in the Figure 7-1 represents one time step. In a calculation cycle, the new 

velocities and displacements are calculated from the equation of motion. These new 

velocities and displacements are used to derive a strain rate and a constitutive model 

would return the associated stresses and forces based on the state of the internal 

variables at the beginning of the time step. The equation of motion is then solved based 

on these new stresses and forces. In Figure 7-1, each box represents an update of every 

grid variables (e.g. stresses or velocities) based on initial values that are assumed to be 

constant within the box. For example, in the lower box the velocities are assumed to be 

constant and unaffected by the new stresses. This assumption requires a small time step 

in order to be stable. In an implicit scheme solution, the velocities are adjusted based on 

these new stresses, and iteration is required to reach a solution. For a mathematical 

description of the calculation process in FLAC, the reader is invited to read the FLAC 

Manual “1 Background- the Explicit Finite Difference Method” (Itasca Consulting Group 

2011). 
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Figure 7-1 Calculation cycle in FLAC (Itasca Consulting Group 2011) 

7.1.2 Grid, Zones and Subzones in FLAC 

In FLAC, the user-defined mesh is composed of quadrilateral elements. Each element 

(i.e. zone) is subdivided in two overlaying sets of triangular elements, as shown in Figure 

7-2. This subdivision was adopted in order to avoid the phenomenon of mesh locking. 

The stress and strain tensors are decomposed into their isotropic (i.e., on diagonal) and 

deviatoric (i.e., off diagonal) components. The isotropic components are averaged over 

each pair of triangles but the deviatoric components are different for every triangular 

subzone. To ensure that the isotropic stress and strain components are constant 

throughout the quadrilateral element, the diagonal elements of the strain and stress 

tensor are adjusted (see section 1.3.3.2 of the FLAC manual). As a result of this 

decomposition, sixteen stress components are stored for each zone, σxx, σyy, σzz, and σxy 

being stored for each subzone. If a set of triangles becomes unusable, for example when 
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one of the triangle becomes much smaller than the other, this pair of triangles is not used 

anymore, and only one set is used. If the two sets are badly deformed, FLAC returns an 

error message. 

 

 

Figure 7-2 Sets of triangles in a quadrilateral element (Itasca Consulting Group 2011) 

During a time step, a constitutive model is called 4 times, once per subzone. For each 

subzone, the model takes the strain increment tensor and the stress tensor as an input 

and returns the updated stress tensor. Material variables are constant throughout the 

element, and do not vary from one subzone to another. Material variables are updated at 

the end of the time step, once all the subzones have been processed. 

7.1.3 User-Defined Constitutive Models in FLAC 

In FLAC, users have the possibility to write their own constitutive models either in FISH 

(the programming language embedded in FLAC), or in C++. When written in C++, the 

code must be compiled in a DLL (Dynamic Link Library) and loaded in the FLAC directory. 



216 
 

This latter approach is more computationally efficient, and also easier to share than a 

FISH code, as other users can simply load the DLL in the FLAC directory and then use it 

just like a built-in model. This section summarizes the general approach when creating a 

DLL, and for more information the reader is referred to the section 2 of the FLAC manual 

on constitutive models: “Writing New Constitutive Models” (Itasca Consulting Group 

2011). 

User-defined models (UDM) are defined within a base class called ConstitutiveModel. 

This base class provides a framework for UDM and is constituted of several pure virtual 

member functions. The list of all the functions is provided in the manual. The functions 

are defined in a .cpp file, while the variables are defined in the header file. Most of the 

functions are not fundamentally modified from one model to another, and this section is 

only discussing the most important functions in the following list: 

- getProperties() defines a list of string that defines the name of the model’s 

variables that can be accessed by a user in FLAC. 

- getProperty() associates a variable’s name to every element of the list defined by 

getProperties(). 

- getStates() lists the state indicators of the zone accessible from FLAC. State 

indicators are used to denote if a zone is yielding or has yielded in the past. 

Different modes of failure are available such as shear, tension or volume. 

- initialize() is called at the beginning of every time step and is used to initialize local 

variables. 

- run() is the most important function, and contains the algorithm of the model. The 

function run() is called four times per time step, once per subzone, and returns the 
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new stress tensor, based on the strain increment tensor and the previous stress 

tensor. At the end of the fourth zone, the model’s variables are updated. 

The strain increment tensor and the current stress tensor are accessed through the 

structure State defined in state.h. The structure is used to pass information between 

the model and FLAC. Information available through the structure State include: 

- The zone and subzone volume, 

- The rotation, 

- The density, 

- The temperature, 

- The number of subzones, 

- The identifier of the subzone being processed, 

- The strain increment tensor 

- The stress tensor 

Once all the functions have been defined in the .cpp file, and the variables have been 

defined in the header file, a DLL can be compiled. Details on how to build the DLL are 

included in the manual. Once compiled, the DLL can be loaded in FLAC in two different 

ways. First the DLL can be copied in the directory of the current project, and called directly 

in the project by the command Model load <model.dll>. The second option is to copy the 

DLL directly in the following FLAC directory: 

C:\...\Itasca\FLAC700\Exe32\plugins\models 
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When the DLL is copied directly in the FLAC directory, the UDM can be called like any 

built in model. 

7.2 Implementation of the Model in FLAC 

This section summarizes the implementation of the model and explains the fundamental 

algorithm of the model. In particular, the input parameters are listed, the initialization of 

the model is thoroughly described, and the algorithm of the function run() is explained. 

7.2.1 Input Parameters in FLAC 

As mentioned in chapter 6, the model has 17 parameters. However, when using the model 

in FLAC, not all parameters need to be defined as some have predefined values. This 

section summarizes the input parameters and the options offered to the user when using 

the model. The following input parameters always need to be defined by the user, and 

the first word of each line is the keyword used in FLAC for the property: 

- kappa which defines , the slope of the recompression line in the e-ln p’ space 

- lambda which defines , the slope of the critical state line in the e-ln p’ space 

- mm, defining M, the slope of the critical state line in p’-q space 

- me1, the specific volume at unit pressure p1 

- DTable is the table identifier containing the damping vs. η curve 

- redTable is the table identifier containing the modulus reduction vs. η curve 

The following input parameters can be adjusted by the user, or left as their default value, 

presented in Table 7-1: 
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- A0 which defines the variable A0 that controls the pore pressure response. 

- nb which defines nb governing the size of the bounding surface. 

- nd which defines nd governing the size of the dilation surface. 

- strainSS which defines SS the strain at which the model transitions from small 

strain response to a bounding surface algorithm 

- strainPP which defines γPP the strain at which pore pressure start to generate. 

- mp1, the mean unit pressure p1. 

- OCR, the overconsolidation ratio 

- Dmin, the small strain damping. 

- Flag, which is initially set to 0. If this flag is set to 0, the model is initialized at the 

beginning of the function run() (See next section). If the model is set to 1, the model 

does not initialize. The Flag is automatically set to 1 at the end of initialization, and 

the user can decide to reinitialize the model at any time, by setting Flag to be 0.  

- MPC, the preconsolidation pressure. Rather than setting directly the OCR, the user 

can decide to set up the preconsolidation pressure instead. 

- RHO is the density of the soil, and only needed if VS is used too. 

- RR defines R the shape of the volumetric yield surface, which also defines the 

position of the critical state line relative to the normally consolidated line. The 

default value is 2 which renders a volumetric yield surface that is equivalent to the 

Modified Cam Clay yield surface 

- gn defining n which controls the effect of the confining pressure on the maximum 

shear modulus  
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- gm defining m, which controls the effect of overconsolidation on the maximum 

shear modulus. 

- gA defining A, which defines the value of the maximum shear modulus 

Table 7-1Default values of model parameter 

Property Default Value 

A0 0.2 

nb 0.75 

nd 0.3 

gSS 0.03% 

gPP 0.7% 

p1 1 

OCR 1 

FLAG 0 

Dmin 2% 

R 2 

m 0.5 

n 0.5 

A 174 

Regarding the definition of the maximum shear modulus the user has two options, either 

defining A or defining directly the initial shear wave velocity Vs: 

- VS is the initial shear wave velocity, which defines the initial maximum shear 

modulus. 

If this latter approach is used, the initial shear modulus is calculated based on the density 

of the soil. Since the initial shear modulus, overconsolidation ratio, mean effective stress 

and the parameters m and n are known, the initial value of A is backcalculated by 

rearranging equation 6-6 and replacing Gmax by Vs
2/: 
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𝐴 =
𝑉𝑠

2

𝜌
∙

1

𝑝𝑎𝑡 ∙ 𝑂𝐶𝑅𝑖𝑛𝑖
𝑚 (

𝑝𝑖𝑛𝑖′
𝑝𝑎𝑡

)
n 

Equation 7-1 

If the user is modeling peat, he has the option of giving the organic content as an input. 

- MOC, the organic content OC 

In this case, m, n, and A, if Vs is not specified, follow the definition from Kishida et al. 

(2006) based on the following equations: 

𝑋3 =
2

1 + exp (𝑂𝐶/23)
 

Equation 7-2 

𝑛 = 1 − 0.37𝑋3 
Equation 7-3 

𝑚 = 0.8 − 0.4𝑋3 
Equation 7-4 

𝐴 = 𝑒
5.2+0.48𝑋3+0.74{

3𝑋3−1.5

ln(1+3𝑒1+3𝑋3)
−1}

 Equation 7-5 

If the minimum damping is not defined by the user, but the user is defining the organic 

content, then the definition of the small strain damping follow the definition from Kishida 

(2009): 

𝐷𝑚𝑖𝑛 = 𝑒𝑐0+𝑐1𝑋1+𝑐2𝑋2+𝑐3𝑋3+𝑐4(𝑋1−𝑋1̅̅ ̅̅ ̅̅ )(𝑋2−𝑋2̅̅̅̅ )+𝑐5(𝑋2−𝑋2̅̅̅̅ )(𝑋3−𝑋3̅̅̅̅ ) 
Equation 7-6 

where: 

𝑋2 = ln 𝑝’ 
Equation 7-7 
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and 

c0= 2.86; c1=0.571; c2=-0.103; c3= -0.141; c4= 0.0419; c5= -0.240 ;  

X1= ln(0.103); 𝑋1
̅̅ ̅ = −1 ; 𝑋2

̅̅ ̅ = 4.0; 𝑋3
̅̅ ̅ = 0.5 ;  

The command z_prop(zp, p_name) is used to access the variable p_name in the zone 

zp. In addition to the input parameter previously mentioned, the following information can 

be accessed: 

- Bulk, the bulk modulus 

- Shear, the shear modulus 

- cv, the specific volume 

- MeanP, the mean effective stress p 

- DevQ, the deviatoric stress q 

- epsQ, the deviatoric strain εq 

- EV, the volumetric strain εv 

7.2.2 Initialization of the Model 

The initialization of the model is performed at the beginning of the function run(), the first 

time that the function is called, if Flag is set to 0. The function initialize() is called every 

time the function run() is called, and therefore serves a different purpose. When the 

function run() is called, a check on Flag is instantly performed, and if it is set to 0, the 

initialization is performed. First, the initial values of mean confining pressure, and 

deviatoric stresses are set based on the current stress tensor. The initial stress ratio is 

also calculated at the same time. If the OCR is specified but not the preconsolidation 
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pressure, this latter is initialized. If none of them is specified, OCR is set equal to 1. The 

initial specific volume, bulk modulus, and maximum shear modulus are then initialized as 

well. The limit strains γSS and γPP are also set to their default values if they are not 

specified. The pore pressure slope, calculated from equation 6-39 is initialized. The 

following variables are set equal to 0: εq, the deviatoric strain, εqlim, the maximum 

deviatoric strain ever reached, IN, a variable tracking the transition between small strain 

and large strain initial loading (see Chapter 6 section 6-6). Finally, the initial plastic 

modulus H0 is defined by the modulus reduction curve at small strain. Upon transitioning 

from small strain to large strain loading, H0 is reevaluated to provide a smooth curve. The 

variables L, R, ηL and ηR, that track the different unloading and reloading strain/stress 

ratios, are defined as FILO (First-In Last-Out) stacks. These stacks are emptied upon 

initialization. The variables tracking the signs of q and εq, respectively signq and signεq 

are set equal to 1. The variable tracking the loading direction, load, is set equal to the 

sign of qtrial-q, where qtrial is calculated based on the previous stress and the strain 

increment tensor, if the material was elastic. If the sign of qtrial-q is 0, i.e. if the first 

deviatoric strain increment is 0, Flag is set equal to 2, otherwise Flag is set to 1. In both 

cases, initialization will not happen again. If the Flag is set to 2, the sign of qtrial-q is 

checked at every time step until it is different than 0, but the model does not initialize. 

Once this happens, load is set, and Flag is set equal to 1, and does not change until the 

user decides to reinitialize the model. 

The function initialize(), called every time run() is called, reads the tables containing the 

curves D-Dmin and G/Gmax vs. η, and ensures that certain variables have realistic values. 
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For example, if the mean unit pressure or the preconsolidation pressure are negative, 

then an error message is issued.  

7.2.3 Function run() 

The function run() is the most important function of a UDM. As explained in the previous 

section, it initializes the model the first time the function is called, but is then used to 

calculate the new stress tensor of every subzone based on the previous stress tensor 

and strain increment tensor. Once the last subzone has been processed, the variables of 

the entire zone are updated. 

When the function is called, the volumetric strain increment, the deviatoric strain 

increment and the total deviatoric strain are calculated based on the strain increment 

tensor and the previous strain tensor. This latter is not provided directly by the state 

structure, and is instead kept track of with internal variables that accumulate all the strain 

components. The deviatoric stress and the mean confining pressure of the zone are also 

calculated based on the stress tensor provided by the state structure. A trial value of the 

deviatoric stress is then calculated based on the assumption that the soil behaves 

elastically. This value is then used to verify if the direction of loading is changing, or if the 

sign of the deviatoric stress is changing (see section 6-5 in chapter 6). The sign of the 

deviatoric strain also evolves if the sign of 𝜀𝑞̇ changes but the sign of qtrial-q is the same 

as signq. The subzone values of L, R, ηL and ηR are updated according to the rules 

presented in chapter 6, e.g. when the direction of loading changes. 

The model then checks if it is loading or unloading/reloading. When the model is in the 

initial loading case, a check on the deviatoric strain is done to see if it corresponds to the 
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small or large strains case. When the model transition from one to the other, a subzone 

variable ηin, the departing stress ratio, is used for the subzone, and the zone variable ηin 

is updated at the end of the time step. The equations provided in Chapter 6 are then used 

to calculate the new deviatoric stress and mean confining pressure. The new subzone 

stress tensor is updated based on the following equation: 

𝜎𝑖𝑗 =
𝜎𝑡𝑟𝑖𝑎𝑙𝑖𝑗

𝑞𝑡𝑟𝑖𝑎𝑙
∙ 𝑞 − 𝛿𝑖𝑗 ∙ 𝑝 

Equation 7-8 

Where 𝛿𝑖𝑗 is the Kronecker delta. If qtrial is equal to zero, then only the diagonal of the 

stress tensor is updated by adding to the trial stress value the difference ptrial-p. 

When the forth subzone has been processed, the deviatoric strain, volumetric strain, 

mean pressure, and deviatoric stress are averaged over the zone. To average these 

quantities over the zone, stacks are used. The following stacks are used, tracking the 

associated variable: 

- Pav: the mean confining pressure 

- Qav: the deviatoric stress 

- Evav: the volumetric strain increment 

- EvdPav: the plastic deviatoric strain increment 

- EQav: the deviatoric strain increment 

- Qtrav: the previous deviatoric stress 

- E11, E22, E33, E12, E13, E23: every component of the strain increment tensor. 

- Qtrial: the trial value of the deviatoric stress 

- MPCav: the preconsolidation pressure 
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These stacks are different from the FILO stacks mentioned in the previous section, and 

are initialized at the beginning of the first subzone being processed by the command s-

>working_[stack]=0.0. When a subzone has been processed, the stack is updated by 

adding the relevant quantity (e.g. the deviatoric stress or the volumetric strain) to the 

stack, multiplied by the subzone volume. When all the subzones have been processed, 

the stack is divided by the volume of the zone, and by the number of sets of triangles that 

were processed. 

Some other variables are also updated for the entire zone such as εqlim, the specific 

volume, the bulk modulus and the shear modulus. The departure stress ratio ηin, and H0, 

are also updated if the initial loading is transitioning from small to large strains. The 

direction of loading, the signs of q and εq are also updated, along with the stacks L, R, 

ηL and ηR. Finally the preconsolidation pressure and the overconsolidation ratio are 

updated. 

7.3 Example of Predictions 

This section presents some example single element simulations. Simulations of 

monotonic undrained and drained triaxial tests, monotonic undrained simple shear tests, 

and cyclic undrained triaxial tests are presented. The input parameters of the model are 

the same for all the tests and are presented in Table 7-2. These parameters are loosely 

based on Sherman Island peat but this section does not intend to simulate precisely the 

behavior of peat, rather to illustrate the typical predictions of the model. The D-Dmin and 

G/Gmax vs. η curves used for the simulations were derived based on the equations from 

Kishida et al. (2009) for peat, and are presented in Figure 7-3. The tests are presented 
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under different stress conditions, with varying OCRs, consolidation pressures, 

preconsolidation pressures, and K0 coefficients. 

Table 7-2 Input properties 

Property Value 

λ 1.65 

κ 0.175 

M 1.1 

ρ 1.1 

γPP 0.01% 

γSS 0.3% 

OC 70 

VS 53 

p1 1 

ν1 14.2 

A0 0.2 

nb 0.25 

nd 1 
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Figure 7-3 Input modulus reduction and damping curves 

7.3.1 Monotonic Tests 

7.3.1.1 Undrained Triaxial Tests 

Undrained triaxial tests were simulated with the model presented in Figure 7-4. The 

bottom left corner was constrained in both directions, and the top left and bottom right 

nodes were allowed to slide in one direction. Vertical (σyy) and lateral stresses (σxx) were 

applied to consolidate the sample, and the two top nodes were displaced toward the 

bottom to load the sample. The groundwater module was turned on with flow turned off 

to create undrained loading conditions and allow development of excess pore water 

pressure. 
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Figure 7-4 Triaxial test model 

In the first simulation, four different cases are simulated. The samples are isotropically 

consolidated (σxx=σyy) at different confining pressure, 10, 25, 40 and 50 kPa, but with the 

same initial preconsolidation pressure, 50 kPa. The overconsolidation ratio of the four 

different samples are 5, 2, 1.25, and 1, respectively. The top nodes are displaced until 

reaching 20% strain, at which point the four samples are nearly at critical state. The 

results of the first simulation are presented in Figure 7-5. 

The normally consolidated and slightly overconsolidated cases (OCR=1 and 1.25 

respectively) exhibit a peak shear stress but not a peak stress ratio (Stress ratio only 

increases). The most overconsolidated sample (OCR=5) exhibits a peak stress ratio but 

not a peak shear stress. The sample with OCR=2 has a nearly vertical stress path in p-q 

space. With the modified Cam-clay model, when OCR=2 the stress path is perfectly 

vertical and the model’s response is elastic perfectly plastic, which is not the case for the 

model presented here. In fact the present model would never exhibit an elastic perfectly 

plastic behavior unless the input modulus reduction curve was selected to display this 

behavior. All the samples are initially contractive and the pore water pressure is positive, 
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but the sample with OCR=5 becomes dilative and the pore pressure decreases until 

becoming negative. The shear strength exhibited is higher for samples at higher confining 

pressure, though the sample with OCR = 5 mobilizes the highest stress ratio. 

 

Figure 7-5 Undrained triaxial tests at different OCR and confining pressure but same initial 
preconsolidation pressure a) deviatoric stress vs. deviatoric strain, b) deviatoric stress vs. mean effective 

stress, c) pore pressure vs. deviatoric stress and d) void ratio vs. mean effective stress. 

In the second example, the samples are consolidated at the same confining pressure, but 

with different OCR. The results are presented in Figure 7-6. The contractive/dilative 

a) b) 

d) 
c) 
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behavior of the different samples is similar to the previous example, all the samples exhibit 

a contractive response, but the most overconsolidated sample becomes dilative upon 

shearing and ends up with negative pore pressure. The shear strength exhibited is higher 

for higher OCR.  

 

Figure 7-6Undrained triaxial tests at same initial confining pressure but different OCR a) deviatoric stress 
vs. deviatoric strain, b) deviatoric stress vs. mean effective stress, c) pore pressure vs. deviatoric stress 

and d) void ratio vs. mean effective stress 

a) b) 

c) 

 

d) 
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Figure 7-7 shows the Skempton’s pore pressure parameter at failure (Af=(u-3)/(1-

3))  from the simulations and a comparison with laboratory test results compiled by 

Mayne and Stewart (1988). The model is in excellent agreement with previous 

observations. Note that in the model, Af only depends on , , R, M, and OCR. 

 

Figure 7-7 Comparison of the Skempton’s pore pressure parameter at failure from Mayne and Stewart 
(1988) and simulations 

In the third undrained triaxial test simulation, all the samples are K0-consolidated: 

σxx=K0*σyy. As a result the initial stress ratio is non-zero if K0 is not 1. All the samples are 

consolidated under the same vertical effective stress (σyy) and therefore they are all 

normally consolidated at different mean pressure. The results are presented in Figure 

7-8. The behavior of all the samples is contractive and the samples with a lower K0 exhibit 

a lower shear strength since they are consolidated under a lower mean pressure. 
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Figure 7-8Undrained triaxial tests K0 consolidated a) deviatoric stress vs. deviatoric strain, b) deviatoric 
stress vs. mean effective stress, c) pore pressure vs. deviatoric stress and d) stress ratio vs. deviatoric 

strain 

7.3.1.2 Drained Triaxial Tests 

Two simulations were performed to simulate drained triaxial tests, similar to the first two 

undrained triaxial simulations presented. Drained triaxial tests are simulated with the 

same model shown in Figure 7-4, but the groundwater module of FLAC is turned off. The 

a) b) 

c) d) 
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first simulation shows four different samples isotropically consolidated at different 

confining pressure, with the same preconsolidation pressure. In the second simulation, 

all the samples are isotropically consolidated at the same confining pressure, but at 

different OCRs.  

In drained triaxial tests the stress path in q-p space is a straight line with 3 to 1 slope, as 

can be seen in Figure 7-9 and Figure 7-10. In both simulations, only overconsolidated 

samples are exhibiting a peak response. All the samples are initially contractive with a 

void ratio decreasing, but the most overconsolidated sample becomes dilative and void 

ratio increases. The normally consolidated sample goes slightly above the normally 

consolidated line, which is not a desired feature, but does not affect the overall behavior 

of the model.  
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Figure 7-9 Drained triaxial tests at different initial confining pressure but same preconsolidation pressure 
a) deviatoric stress vs. deviatoric strain, b) deviatoric stress vs. mean effective stress, c) void ratio vs. 

deviatoric stress and d) void ratio vs. mean effective stress 

a) b) 

c) d) 
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Figure 7-10 Drained triaxial tests at same initial confining pressure but different OCR a) deviatoric stress 
vs. deviatoric strain, b) deviatoric stress vs. mean effective stress, c) void ratio vs. deviatoric stress and d) 

void ratio vs. mean effective stress 

7.3.1.3 Undrained Simple Shear Tests 

Two simulations of undrained simple shear tests were performed, with the same initial 

conditions as the first two undrained triaxial tests. In the first simulation, the four samples 

are isotropically consolidated at different confining pressure, but with the same 

preconsolidation pressure, and in the second simulation, all the samples are consolidated 

a) b) 

c) d) 
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at the same confining pressure, but with different OCRs. The model used to model simple 

shear tests is presented in Figure 7-11. A vertical stress is applied and the same stress 

is applied laterally. This is not representative of a real simple shear test, since in reality 

no lateral stress is applied, and the soil is K0 consolidated under the vertical stress, due 

to the resistance of the membrane. However, this would be representative of a simple 

shear test where K0 is equal to 1. The bottom nodes are both constrained in both direction, 

and shear is simulated by deplacing the top nodes in the horizontal direction. In order to 

simulate a simple shear test, the top nodes are linked to each other by a cable with 

essentially 0 resistance, in order to make sure the two nodes are moving together, but 

without affecting the response of the model. 

 

Figure 7-11 Simple shear model 

The results of the two simulations, presented in Figure 7-12 and Figure 7-13 respectively, 

are essentially similar to the results of the undrained triaxial tests, which is expected. The 

normally consolidated and slightly overconsolidated samples exhibit peak stress, but no 

peak stress ratio, while the most overconsolidated sample exhibit a peak stress ratio, but 

no peak stress. All the samples are initially contractive and exhibit a positive pore 
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pressure response. The pore pressure response is slightly different from the undrained 

triaxial tests. The overconsolidated sample that starts on the CSL is exhibiting almost no 

pore pressure response. The most overconsolidated sample is exhibiting a very slight 

contractive response at the beginning and then becomes dilative and shows a large 

negative pore water pressure. 

 

Figure 7-12Undrained simple shear tests at same different confining pressure but same preconsolidation 
pressure a) deviatoric stress vs. deviatoric strain, b) deviatoric stress vs. mean effective stress, c) pore 

pressure vs. deviatoric stress and d) void ratio vs. mean effective stress 

a) b) 

c) 
d) 



239 
 

 

Figure 7-13 Undrained simple shear tests at same initial confining pressure but different OCR a) 
deviatoric stress vs. deviatoric strain, b) deviatoric stress vs. mean effective stress, c) pore pressure vs. 

deviatoric stress and d) void ratio vs. mean effective stress 

7.3.2 Undrained Cyclic Triaxial Tests 

Two simulations of undrained cyclic triaxial tests on isotropically consolidated samples 

were performed with the same model presented in Figure 7-4. Instead of pushing the top 

two nodes only downward, the nodes are pushed alternatively up and down. Three 

different samples are used in both simulations. In the first simulations, all the samples 

a) b) 

c) d) 
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have the same preconsolidation pressure (50 kPa) but three different initial mean 

pressure (10, 25 and 50 kPa) which renders three different OCRs (5, 2 and 1 

respectively). In the second simulation, the three samples are consolidated at the same 

pressure (20kPa) but at different OCRs: 1, 2 and 5. In both sets of simulations, the 

samples are loaded with 4 cycles of deviatoric strain amplitude of 1%. The loading is 

applied triangularly, and the loading frequency is 0.25Hz.  

The results of the two simulations are presented in Figure 7-14 and Figure 7-15. In the 

figure the change of vertical stress v and the axial strain a are plotted instead of the 

deviatoric stress and strain. From the first simulation, it can be seen clearly that the 

normally consolidated sample exhibit more cyclic degradation and higher pore pressure 

response. The most overconsolidated sample exhibits negative pore pressure, and the 

sample stiffens a little bit. In the second simulation, the same trends are observed. The 

negative pore pressure shown by the overconsolidated sample is a result of the relatively 

high value of nd. Since the state variable is negative for overconsolidated soil samples, 

the dilatancy line is low Md is small and the response is dilative. 
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Figure 7-14Cyclic undrained simple shear tests at different initial confining pressure but same 
preconsolidation pressure a) deviatoric stress vs. deviatoric strain, b) deviatoric stress vs. mean effective 

stress, c) pore pressure vs. deviatoric stress and d) pore pressure vs. time 

a) b) 

c) d) 
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Figure 7-15 Cyclic undrained simple shear tests at same initial confining pressure but different OCRs a) 
deviatoric stress vs. deviatoric strain, b) deviatoric stress vs. mean effective stress, c) pore pressure vs. 

deviatoric stress and d) pore pressure vs. time 

7.4 Sensitivity Analysis: Effect of A0, nb, and nd in Undrained Triaxial Tests 

This section presents a sensitivity analysis of the variables A0, nb, and nd, through 

monotonic and cyclic undrained triaxial tests. For every variable, three sets of simulations 

are presented: monotonic on normally consolidated sample, monotonic on 

overconsolidated sample, and cyclic loading on slightly overconsolidated sample. Within 

a) b) 

c) d) 
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each sets the results are presented for different values of the variable studied. This 

section intends to give the reader a sense of how the three variables influence the 

response of the model, and how they can be modify to adjust the response of the model.  

7.4.1 Summary of the Tests 

The three different tests mentioned above (monotonic on normally and overconsolidated 

samples and the cyclic test on slightly overconsolidated samples) were all performed 

using the model described in Figure 7-4. In each tests the samples are isotropically 

consolidated to 20kPa. The tests on overconsolidated samples have an overconsolidation 

ratio of 4. The monotonic tests all reach a maximum deviatoric strain of 20%. The input 

parameters are listed in Table 7-3. The table lists values of A0, nb, and nd, that are used 

when they are not the studied parameter. 



244 
 

Table 7-3 Input properties for the sensitivity study 

Property Value 

λ 1.65 

κ 0.175 

M 1.1 

ρ 1.1 

γPP 0.01% 

γSS 0.3% 

OC 70 

VS 53 

p1 1 

ν1 14.2 

A0 0.5 

nb 0.75 

nd 1 

The cyclic tests were strain controlled undrained triaxial tests on slightly over consolidated 

samples (OCR=1.5) isotropically consolidated to 20 kPa. During the cyclic tests the 

samples were loaded with four cycles of deviatoric strain amplitude 1%. The loading is 

applied triangularly, and the loading frequency is 0.25Hz. 

7.4.2 A0 

A0 is the variable controlling the amplitude of the volumetric strains associated with 

deviatoric strains. Recall equations 7-9 and 7-10: 

𝑑 = 𝐴0(𝑀𝑑 − 𝜂) Equation 7-9 

𝑑𝜀𝑣
𝑝

= 𝑑|𝑑𝜀𝑞
𝑝

| Equation 7-10 
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7.4.2.1 Monotonic Loading 

During monotonic loading, A0 controls the volumetric response which governs the 

evolution of p’. As a result, larger values of A0 yield faster pore pressure response both 

in the normally consolidated case (Figure 7-16), and overconsolidated case (Figure 7-17). 

As a result of the pore pressure increasing faster, p’ decreases faster, and critical state 

is reached faster. For lower values, critical state is reached so slowly that the response 

exhibits a peak stress for the normally consolidated case. The higher values of A0 yield 

higher peak stress values. This does not happen in the overconsolidated case, where 

only a peak stress ratio can be observed. The amplitude of the peak stress ratio is not 

dramatically influenced by A0 which mostly controls the rate at which the peak stress ratio 

and critical state are reached. 
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Figure 7-16 Effect of A0 on monotonic undrained triaxial tests on normally consolidated samples a) 
deviatoric stress vs. deviatoric strain, b) deviatoric stress vs. mean effective stress, c) pore pressure vs. 

deviatoric stress and d) stress ratio vs. deviatoric strain 

 

a) b) 

c) d) 
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Figure 7-17 Effect of A0 on monotonic undrained triaxial tests on overconsolidated samples a) deviatoric 
stress vs. deviatoric strain, b) deviatoric stress vs. mean effective stress, c) pore pressure vs. deviatoric 

stress and d) stress ratio vs. deviatoric strain 

7.4.2.2 Cyclic Loading 

Results of cyclic undrained triaxial tests are presented in Figure 7-18. Only three different 

values of A0 are used here to make the plots clearer. As expected, higher values of A0 

generate more pore pressure, and p decreases faster but the difference between A0=0.5 

a) b) 

c) d) 
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and 1 is not that important. Higher values of A0 are also creating more cyclic degradation, 

which is due to pore pressure generation. 

 

Figure 7-18Effect of A0 on cyclic undrained triaxial tests on normally consolidated samples a) deviatoric 
stress vs. deviatoric strain, b) deviatoric stress vs. mean effective stress, c) pore pressure vs. deviatoric 

stress and d) pore pressure vs. time 

7.4.3 nb 

The variable nb controls the size of the bounding surface according to the following 

equation: 

a) b) 

c) d) 
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𝑀𝑏 = 𝑀𝑒−n𝑏𝜓 Equation 7-11 

This latter is then used to calculate the plastic modulus which is proportional to the 

difference Mb-η. 

7.4.3.1 Monotonic Loading 

On normally consolidated sample nb has no influence on the pore pressure response 

(Figure 7-19), and only affects the deviatoric response. Normally consolidated samples 

never exhibit a peak stress ratio but exhibit a peak deviatoric stress for low values of nb. 

For lower values of nb, critical state is reached slower, at a higher deviatoric strain. 

For the overconsolidated case (Figure 7-20), higher nb yield higher peak stress ratios. For 

the higher values of nb, the samples exhibit a peak stress, which is not the case for lower 

values. For overconsolidated case, nb has also an influence on the pore pressure 

response. Initially, the behavior is contractive, and exhibit positive pore pressure 

response. It then becomes dilative and negative pore pressure develops. The final pore 

pressure is the same for all the sample, but the initial contractive response is greater for 

higher values of nb and the final value of negative pore pressure is also reached faster. 

Overall, the response of the model is stiffer for higher values of nb. 
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Figure 7-19 Effect of nb on monotonic undrained triaxial tests on normally consolidated samples a) 
deviatoric stress vs. deviatoric strain, b) deviatoric stress vs. mean effective stress, c) pore pressure vs. 

deviatoric stress and d) stress ratio vs. deviatoric strain 

a) b) 

c) d) 
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Figure 7-20 Effect of nb on monotonic undrained triaxial tests on overconsolidated samples a) deviatoric 
stress vs. deviatoric strain, b) deviatoric stress vs. mean effective stress, c) pore pressure vs. deviatoric 

stress and d) stress ratio vs. deviatoric strain 

a) b) 

c) d) 
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7.4.3.2 Cyclic Loading 

Since nb defines the position of the bounding surface, it has very little influence on the 

cyclic behavior of the model (Figure 7-21), since the bounding surface is not used during 

cyclic loading. The simulations differ only because the initial loading is different, and 

unloading happens at different deviatoric stresses and different stress ratios. Once 

unloading begins, nb has no influence on the pore pressure response, and on the overall 

cyclic behavior. 
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Figure 7-21 Effect of nb on cyclic undrained triaxial tests on normally consolidated samples a) deviatoric 
stress vs. deviatoric strain, b) deviatoric stress vs. mean effective stress, c) pore pressure vs. deviatoric 

stress and d) pore pressure vs. time 

7.4.4 nd 

The variable nd is used to define the position of the dilation surface based on the state 

variable, with the following equation: 

𝑀𝑑 = 𝑀𝑒n𝑑𝜓 Equation 7-12 

a) b) 

c) d) 
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This dilation surface is used to calculate the plastic volumetric strains with the equations 

Equation 7-9 and Equation 7-10.  

7.4.4.1 Monotonic Loading 

During monotonic loading nd controls the pore pressure response. For higher values of 

nd, pore water pressure is generated faster and the critical state is reached faster. Since 

pore pressure develops faster, the stress path is less vertical for higher values of nd. The 

same trends are observed for normally consolidated (Figure 7-22) and over consolidated 

(Figure 7-23). For overconsolidated soils, the peak stress is about the same for any value 

of nd but the peak stress ratio is lower for higher values of nd. The peak of positive pore 

water pressure is lower for higher nd but the final pore pressure is reached faster. 
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Figure 7-22 Effect of nd on monotonic undrained triaxial tests on normally consolidated samples a) 
deviatoric stress vs. deviatoric strain, b) deviatoric stress vs. mean effective stress, c) pore pressure vs. 

deviatoric stress and d) stress ratio vs. deviatoric strain 

a) b) 

c) d) 
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Figure 7-23 Effect of nd on monotonic undrained triaxial tests on over consolidated samples a) deviatoric 
stress vs. deviatoric strain, b) deviatoric stress vs. mean effective stress, c) pore pressure vs. deviatoric 

stress and d) stress ratio vs. deviatoric strain 

7.4.4.2 Cyclic Loading 

In cyclic simulations (Figure 7-24), the initial part of the curve yields the same stress-

strain curve, and only exhibits more pore water pressure. During unloading/reloading 

higher pore pressure response develops for lower values of nd, and therefore there is 

a) b) 

c) d) 
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more cyclic degradation. The behavior becomes dilative for higher values of nd at large 

strains. 

 

Figure 7-24 Effect of nd on cyclic undrained triaxial tests on normally consolidated samples a) deviatoric 
stress vs. deviatoric strain, b) deviatoric stress vs. mean effective stress, c) pore pressure vs. deviatoric 

stress and d) pore pressure vs. time 

7.5 Selection of Material Properties 

This section explains how to select the different material properties for any material, 

except A0, nd, and nb. For these three variables, the next chapter explains their calibration 

a) b) 

c) d) 
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process for peat, based on lab tests done by Ali Shafiee (2016). When using the model 

for another material than peat, the reader is advised to follow the same calibration 

process, but also to modify the definitions of the critical state line, maximum shear 

modulus, bulk modulus, and minimum damping. 

7.5.1 Critical State Parameters 

The model uses different parameters related to critical state soil mechanics, that are 

similar to the input parameters used in the modified cam-clay. The following parameters 

can be obtained through oedometer tests: 

- , the slope of the recompression line, which can also be calculated from the 

recompression index: =Cr/ln(10) 

- , the slope of the virgin compression line, also related to the compression index: 

= Cc/ln(10) 

- e1 and p1 which specify any point on the isotropically normally consolidated line 

(ICL) in the void vs. mean effective stress space (e-p’) 

Numerous empirical relationships have been published to determine the compression 

index based on soil characteristics such as Terzaghi and Peck (1967) and Azzouz et al. 

(1976). These relationships are better suited for clays, and for peat, the following 

relationship (Moran et al. 1958, Keene and Zawodniak 1968) can be used: 

Cc=w0/100 
Equation 7-13 
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Where w0 is the initial water content. Cr is typically assumed to be 5 to 10% of Cc. Specific 

correlations for Sherman Island peat can be found in Shafiee (2016) 

A triaxial or simple shear test, performed until critical state is reached, is used to 

determine M, the slope of the critical state line in p-q space. For a triaxial compression 

stress path, M is also correlated to the friction angle through the following equation: 

𝑀 =
6 sin 𝜙′

3 − sin 𝜙′
 

Equation 7-14 

Mesri and Ajlouni (2007) lists typical values of 𝜙′ of different peaty soils, and this can be 

used to set M, if no strength tests are available. M can also be set by measuring the 

strength stress ratio, and published relationships (e.g. Ladd 1991) can be used. 

7.5.2 Shape Ratio R 

The shape ratio R as originally defined by Kutter and Sathialingam (1992), defines the 

shape of the yield surface. The intersection of the yield surface with the p-axis is the 

preconsolidation pressure, and corresponds to a point on the NCL. The ratio of the 

preconsolidation pressure at critical state to the mean effective stress at critical state is 

equal to R. Therefore, R also defines the position of the CSL relative to the NCL. In the 

e-p space the CSL has the following equation: 

𝑒𝑐𝑠 = Γ − 𝜆 ln
𝑝

𝑝1
 

Equation 7-15 

Where: 
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Γ = 𝑒1 − (𝜆 − 𝜅) ln R 
Equation 7-16 

Different values of R yield different CSL (Figure 7-25). If the CSL and NCL are the same 

line, R=1. In the Cam-Clay model, R=2. If no information about the critical state line is 

available, R can be set to 2. More information about the position of R can be obtained 

with a triaxial or a simple shear test, if this latter reaches critical state. 

 

Figure 7-25 Effect of R on the position of the CSL 

The shape ratio can also be defined with based on a normally consolidated strength ratio 

S (/’v), following the concept developed by Ladd (1991). Based on the position on the 

critical state line in q-p’ and e-p’ space, the following equation can be derived: 
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R = 𝑒
−𝜆 ln

2∙𝑆
𝑀

𝜆−𝜅  Equation 7-17 

7.5.3 Input Curves 

The input curves G/Gmax and D-Dmin vs. η, can be derived from modulus reduction and 

damping (MRD) curves plotted vs. shear strain following the procedure described in 

chapter 4. This can be done by calculating MRD curves plotted vs. shear strain from 

published empirical relationships. In chapter 4, three models were discussed, Darendeli 

(2001) for clay, Menq (2003) for sand, and Kishida et al (2009) for peat. The curves can 

also be derived from lab tests, using resonant columns tests to obtain the behavior at 

small strains, and using cyclic simple shear or triaxial tests at larger strains. 

7.5.4 Selection of Fundamental Shear Strains: γSS and γPP 

The model uses two so-called “fundamental” shear strains γSS and γPP. γSS is the shear 

strain at which the model transitions from the “small strain” to the “large strain” algorithm 

during initial loading. At small strain, initial loading is controlled by the input modulus 

reduction curve, and at large strain the response of the model is controlled by a bounding 

surface algorithm. The strain γSS has no physical meaning, and cannot be observed or 

measured in a lab test. It represents the range of empirical validation of the modulus 

reduction curve. Empirical relationships typically use database that are limited to tests up 

to 0.3% shear strain. This limit is set as a default value but a user can modify it. If the user 

does not think the curve models the soil well at large strain, he can decrease this limiting 

strain. On the contrary, if the user believes the curve represents the soil behavior well at 
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larger strains, the user can decide to increase this limit. However, it is advised to set 

γSS<3%. 

The strain γPP represents the threshold at which pore pressure starts to be generated, i.e. 

plastic volumetric strains develop under shear. In essence this is equivalent to the 

concept of volumetric cyclic threshold shear strain (γtv) described in Vucetic (1994). The 

volumetric cyclic threshold shear strain is described as the threshold separating cyclic 

strains that cause or do not cause significant permanent changes of soil microstructure. 

In the model these permanent changes of soil microstructure are modeled with the plastic 

volumetric strains. This threshold is defined by default as 0.01%, and can be modified by 

the user, following the recommendations of Vucetic (1994). 

7.5.5 Other Material Properties 

Besides critical state parameters, and dynamic curves, the model needs to know the 

overconsolidation ratio and the shear wave velocity. The overconsolidation ratio of the 

soil is most commonly obtained from an oedometer test (ASTM 2435). However, 

correlations between cone tip resistance and OCR can also be used such as Robertson 

and Cabal (2015). 

Shear wave velocity can be calculated from empirical relationships (Kishida et al. 2006), 

field tests, or lab tests. For example, in the lab, the shear wave velocity can be calculated 

with bender elements in a triaxial cell. The maximum shear modulus can also be 

measured in resonant columns tests and the shear wave velocity can be calculated 

directly from it. In the field, geophysical methods such as spectral-analysis-of-surface-

waves (SASW) can be used to obtain a profile of shear wave velocities. 
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Finally, if the model is used for peat, the organic content of the peat is needed. Organic 

Content is determine with a furnace (ASTM D2974) by burning the organic matter and 

weighing what remains. For peat the organic content is one of the most important 

parameter since numerous empirical relationships use it (Shafiee 2016). 
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8 CALIBRATION OF MODEL WITH LABORATORY DATA AND ONE-

DIMENSIONAL GROUND RESPONSE SIMULATIONS 

8.1 Introduction 

This chapter presents the calibration of the model for the highly organic Sherman Island 

peat used in the centrifuge tests. The calibration is based on lab tests, and on 

measurements of shear wave velocity done during the centrifuge tests. The lab tests 

include index tests done on peat retrieved from the centrifuge experiments, and 

consolidation and strength laboratory tests done by Shafiee (2016) on Sherman Island 

peat with similar organic content. A list of the different tests performed is listed, and the 

selection of all the different model’s input parameters is explained. 

In order to present an example of the performance of the model, a comparison of one-

dimensional ground response analyses performed in FLAC and in Deepsoil is presented. 

The simulations aim to represent the first phase of the test RCK02 where a 6.1 m thick 

clayey levee atop a 5.1 m thick peat layer was shaken with a recording from Kobe 

Earthquake. The displacement, acceleration and strain time series are compared, along 

with the response spectra of the output motions. The section does not intend to provide 

a thorough comparison among Deepsoil, FLAC, and the centrifuge measurements, but 

rather provides an example simulation for a single case.  
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8.2 Calibration of the Model for Sherman Island Peat 

8.2.1 Peat Properties in the Centrifuge Test 

The peat used in the centrifuge test was described in section 3.3.2.1, this section is 

summarized here. The peat was retrieved from Sherman Island in the Sacramento-San 

Joaquin Delta at depths of 2-3 m at the field test site documented by Reinert et al. (2014). 

During the test, two sets of bender elements recorded shear wave velocities at 

accelerations of 1, 5, 10, 20, 40, and 57g during spin-up, thereby enabling 

characterization of the shear wave velocity as a function of confining pressure. The 

following equation is used to characterize shear wave velocity as a function of vertical 

effective stress, σv': 

𝑉𝑠 = 𝑉𝑠1 (
𝜎𝑣

′

𝑝𝑎
)

𝑏

 
Equation 8-1 

 Vs1 and n are determined via least squares regression of the measurement from the 

centrifuge tests, and are found to be 33 m/s and 0.31, respectively. However, because of 

scatter at large confining pressure, and uncertainty at low confining pressure, this 

regression must be considered with caution. This regression also does not consider the 

effect of over consolidation on the shear wave velocity. 

After the centrifuge tests, 14 samples of Sherman Island peat were retrieved from the 

models at different locations and different depths. The organic content was measured 

following the procedure described in ASTM D2974 and the average organic content was 

68.8%, with a standard deviation of 3.3%. These measurements are consistent with 
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Shafiee’s findings (2016) that found that organic content of peat is the highest at a depth 

of around 2m, and is between 60 to 80%. 

8.2.2 Description of the Lab Tests and of the Calibration Process 

Shafiee (2016) performed multiple tests on Sherman Island peat from 22 Shelby tube 

samples retrieved at depths ranging from 1 to 6 m. The samples tested cover a wide 

range of organic content, but only the tests on peat with organic content from 60 to 85% 

are used for the calibration of the model because their behavior is expected to be closer 

to the behavior of the peat used in the centrifuge tests. 

Besides organic content, specific gravity was also measured following the procedure 

described in ASTM D 854-06 (ASTM 2010). At the range of organic content of interest, 

specific gravity is typically comprised between 1.7 and 1.9. For the sake of simplicity, 1.8 

was selected. 

Consolidation tests in an oedometer cell were conducted to measure the compression 

index (Cc), the recompression index (Cr), and the coefficient of secondary compression 

(Cα). The compression index and the recompression index are equal to ·ln(10) and 

·ln(10), respectively. A summary of the tests used to calibrate the model is presented in 

Table 8-1. One of the tests was done on a peat sample retrieved from the centrifuge tests, 

and the results presented in Figure 8-1 are comparable to the average values obtained 

from the other tests. Therefore, this test was used to pick Cc and Cr and to determine the 

position of the NCL: p1=10 kPa and e1=9.6. 
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Table 8-1 Table of consolidation tests 

Specimen ID 
State of the 

sample 
Depth (m) OC Cc Cr Cα 

BH3S1_1.65 Undisturbed 1.65 64 6.70 0.57 0.32 

BH6S2_2.10 Undisturbed 2.10 67 2.96 0.17 0.24 

BH8S1_1.75 Undisturbed 1.75 66 5.59 0.47 0.28 

BH8S2_2.20 Undisturbed 2.20 69 3.16 0.13 0.21 

BH9S3_1.90 Undisturbed 1.90 78 5.90 0.82 0.35 

BH8S1_R Reconstituted 1.70-2.15 66 4.20 0.42 0.25 

Centrifuge Reconstituted - - 3.90 0.40 - 

Average 68.33 4.63 0.43 0.28 

Standard Deviation 4.87 1.52 0.26 0.05 

 

Figure 8-1 Consolidation test on peat retrieved from the centrifuge tests 

A single monotonic undrained triaxial compression test was used in the calibration, and 

multiple cyclic and monotonic constant volume direct simple shear tests were also carried 

out. The cyclic direct simple shear tests were first used to derive the dynamic curves 

G/Gmax and D-Dmin vs . Every sample was cyclic loaded in stages of different strain 

amplitudes. The loading was applied at the loading frequency of 1 Hz and for each stage 
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N sinusoidal cycles were applied. The list of all the tests used is presented in Table 8-2. 

More details on those tests is provided in Shafiee (2016). 

Table 8-2 Summary of cyclic direct simple shear tests 

Test ID Borehole Sample Stage Depth N c % v OCR OC 

CSS1 BH3 2 stage 1 1.7 15 0.91 39 1.14 65 

CSS2 BH3 2 stage 2 1.7 15 2.74 39 1.14 65 

CSS3 BH3 2 stage 3 1.7 15 9.10 39 1.14 65 

CSS4 BH6 4 stage 1 2.25 15 1.34 12.1 4.83 67 

CSS5 BH6 4 stage 2 2.25 15 4.02 12.1 4.83 67 

CSS6 BH6 4 stage 3 2.25 15 13.38 12.1 4.83 67 

CSS7 BH8 1 stage 1 2.2 15 0.04 100 1.75 70 

CSS8 BH8 1 stage 2 2.2 15 0.14 100 1.75 70 

CSS9 BH8 1 stage 3 2.2 15 0.38 100 1.75 70 

CSS10 BH8 1 stage 4 2.2 15 1.30 100 1.75 70 

CSS11 BH8 1 stage 5 2.2 15 3.97 100 1.75 70 

CSS12 BH8 1 stage 6 2.2 15 13.18 100 1.75 70 

CSS13 BH8 3 stage 1 2.25 5 1.09 32.7 2.04 70 

CSS14 BH8 3 stage 2 2.25 5 3.24 32.7 2.04 70 

CSS15 BH8 3 stage 3 2.25 5 10.78 32.7 2.04 70 

CSS16 BH9 8 stage 1 2.45 15 0.04 34 1.18 60 

CSS17 BH9 8 stage 2 2.45 15 0.12 34 1.18 60 

CSS18 BH9 8 stage 3 2.45 15 0.36 34 1.18 60 

CSS19 BH9 8 stage 4 2.45 15 1.14 34 1.18 60 

CSS20 BH9 8 stage 5 2.45 15 3.48 34 1.18 60 

CSS21 BH9 8 stage 6 2.45 15 11.51 34 1.18 60 

CSS22 BH9 8 stage 1 2.45 30 1.28 26.7 2.15 60 

CSS23 BH9 8 stage 2 2.45 30 3.40 26.7 2.15 60 

CSS24 BH9 8 stage 3 2.45 30 10.69 26.7 2.15 60 

The single monotonic undrained triaxial compression test was used to get strength 

parameters such as the critical state ratio M and the shape ratio R. A few cyclic direct 

simple shear tests were then used to calibrate nd, nb and A0. Once the model was 

calibrated, it was used to simulate all the cyclic tests presented in Table 8-2. Finally, the 

calibration was validated against simulations of the monotonic tests. The monotonic tests 
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were also used to verify the strength parameter and the associated critical state ratio R. 

All the monotonic tests are summarized in Table 8-3. 

Table 8-3 Summary of monotonic tests 

Test ID Specimen ID Type of test 
Depth 

(m) 
OC OCR v 

Trx1 BH8_8_5 Triaxial - 70 1.02 41.13 

SS1 BH9S2_1.95 Direct Simple Shear 1.95 85 1.2 82.1 

SS2 BH8S7_2.05 Direct Simple Shear 2.05 80 1.4 54.92 

SS3 BH9S2_2.00 Direct Simple Shear 2 85 3.4 48.6 

SS4 BH9S2_1.85 Direct Simple Shear 1.85 85 3.4 26.3 

SS5 BH8S6_2.00 Direct Simple Shear 2 80 4.3 15.4 

8.2.3 Modulus Reduction and Damping Curves 

Input modulus reduction (G/Gmax) and damping (D-Dmin) vs. stress ratio () curves were 

derived from cyclic constant volume direct simple shear tests. For each stage, the secant 

shear modulus, damping ratio and stress ratio were calculated. The stress ratio was 

calculated by dividing the shear stress () by the vertical effective stress (’v). Since the 

results of the direct simple shear test at low strains do not permit precise measurement 

of the maximum shear modulus, Equation 8-1 was used to calculate the maximum shear 

modulus, with the relationship Gmax=Vs
2.. In the centrifuge, Vs1 was found to be 38.6 m/s 

and b was found to be 0.486, when only the measurements at confining pressure greater 

than 10 kPa were considered. When calculating the normalized modulus reduction 

G/Gmax with this relationship, values much greater than one were found at small strains, 

which is impossible. A possible explanation is that the relationship was derived for peat 

with high organic content (68.8% on average), but relatively normally consolidated. The 

peat tested in the direct simple shear device had a slightly lower organic content on 

average and some of the tests were ran on overconsolidated samples. Those two effects 
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would increase the maximum shear modulus. In order to account for that, Vs1 was picked 

as 50 m/s. This value yields normalized modulus reduction values very close to 1 (Figure 

8-2a) at small strains, and is therefore considered reasonable.  

In order to plot a damping curve independent of the confining pressure (see chapter 4), a 

minimum damping value is needed. However, the simple shear device cannot accurately 

measure small-strain damping. Hence, the relationship by Kishida et al. (2006) was used 

which permits to capture the small strain damping dependence on confining pressure. 

When the D-Dmin vs. values from the lab tests are plotted, the scatter observed is small 

(Figure 8-2b). 

In order to obtain a single modulus reduction and damping curve, a curve is fitted to the 

data with a least square regression. For the modulus reduction, a hyperbola is selected 

(Equation 8-2), because of its simplicity. The least square regression analysis yields 

a=0.285 and r=1.032. On Figure 8-2 are also plotted MSS, the stress ratio at which the 

model stops using the modulus reduction curve, and M, the critical state stress ratio. 

Between the two lines defined by MSS and M the model uses a bounding surface algorithm 

to control the strength, to eventually reach M. For the damping curve, Equation 8-3 was 

selected, and a and b were found to be 15.064 and 1.169 respectively. That equation 

forces D-Dmin to be zero at small stress ratios, and provides a good fit of the data (Figure 

8-2b). The extrapolation at large stress ratios (greater than 2) seems to over predict 

damping ratio but this is not problematic since the stress ratio for peat would not exceed 

1.5. For a stress ratio of 1.5, the damping ratio is predicted to be 24.2%, which is 

reasonable. Since the cyclic tests were performed at high cyclic strains, the derived 
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modulus reduction is believed to represent accurately the soil behavior up to large strains, 

and SS is therefore selected as 3%. 

𝐺/𝐺𝑚𝑎𝑥 =
1

1 + (
𝜂
𝜂𝑟

)
𝑎 

Equation 8-2 

𝐷 − 𝐷𝑚𝑖𝑛 = 𝑎 ∙ 𝜂𝑏 
Equation 8-3 

  \

 

Figure 8-2 Input modulus reduction (a) and damping curves (b) derived from lab data 

8.2.4 Monotonic Triaxial Tests 

The results of a monotonic undrained triaxial compression test were used to obtain the 

critical state stress ratio M, and the shape ratio R. The triaxial test was used rather than 

a direct simple shear test because in a triaxial test, the full stress and strain tensors are 

known at any time. In a classic direct simple shear device, the lateral pressure is not 

 a) b) 
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measured, therefore the stress tensor is not known and the critical state stress ratio is not 

directly measured. 

The results of the triaxial test are presented in Figure 8-3. M was calculated directly from 

the data, by dividing the maximum deviatoric stress (q) by the mean effective stress (p’). 

The critical state stress ratio was found to be 1.9, which is equivalent to a friction angle 

of 46.2°. The friction angle measured is in the range of the observations of previous 

researchers that measured the friction angle of peat (Mesri and Ajlouni 2007). In particular 

Marachi et al. (1983) tested peat from the Sacramento San Joaquin Delta, and found a 

friction angle of 44°. 

 

Figure 8-3 Triaxial test on peat, stress strain curve (a) and stress path (b) 

The shape ratio R was calculated from the consolidation constants and, the position 

of the ICL and the mean effective stress at critical state (pcs) according to Equation 8-4. 

The ICL has a slope  of 1.69 and the recompression line has a slope  of 0.17. The 

position of the ICL was defined by p1=10 kPa and e1=9.6, according to the section 8.2.2. 
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The mean effective stress at critical state was determined from the lab test and was 20.8 

kPa. The shape ratio R was calculated as 2.17 which is close to the common assumption 

made by the Modified Cam-Clay of the shape ratio being equal to 2. 

𝑅 = 𝑒

𝑒1−𝑒0−𝜆∙ln(
𝑝𝑐𝑠
𝑝1

)

𝜆−𝜅  Equation 8-4 

8.2.5 Cyclic Simple Shear Tests 

The tests presented in Table 8-2 are simulated in order to calibrate the following 

parameters A0, nd and nb. A few simulations were ran to manually tune the different 

parameters and find a set that simulates accurately the behavior of peat. Once a set was 

selected, all the tests were simulated to analyze the accuracy of the prediction. In 

particular the residual pore water pressure ratios obtained from the simulations were 

compared with the results of the lab tests. Shafiee (2016) developed a model to predict 

the residual pore water pressure due to cyclic loading, and considered that for high 

organic content, no pore water pressure is generated for strain levels up to 0.7%. This 

value was therefore selected as the pore pressure strain PP. 

8.2.5.1 Simulations of Cyclic Tests 

At this point, the only missing parameters are A0, nd, and nb. These parameters are 

manually adjusted on a few tests to provide the best fit possible, and their final values are 

presented in Table 8-4.The selection of the other parameters is described in the previous 

sections and two parameters are function of the confining pressure, and therefore 

different for every test. The density is calculated based on the initial void ratio and the 
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specific gravity, and the shear wave velocity is calculated based on Equation 8-1, with 

Vs1=50 m/s. All the tests were simulated with this set of input parameters, and some of 

the results are presented here, to illustrate the predictive capability of the model. 

Table 8-4 Input properties for the cyclic simulations 

Property Value 

λ 1.65 

κ 0.175 

M 1.9 

R 2.17 

γPP 0.70% 

γSS 3.00% 

p1 10 kPa 

e1 9.6 

A0 0.002 

nb 0.75 

nd 0.3 

Figure 8-4 presents the results of a test at small strains, the test CSS9. The strain 

amplitude for this test is lower than PP, and as a result, no excess pore water pressure is 

generated, which is in agreement with the test results. This simulation also illustrates that 

the model is capable of producing realistic hysteretic loops even at small strains. 

However, the test results show a rounded tip, while the model has a sharp tip. The 

difference is explained by the viscous behavior of the soil, and therefore cannot be 

captured by the current formulation of the model. 
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Figure 8-4 Simulation of CSS9 

The simulation of the test CSS5 is shown in Figure 8-5. The simulation illustrates the 

capability of the model to produce hysteretic loops that are reasonable, and to match the 

damping behavior of the soil. In this example, the initial loading does not introduce too 

much excess pore water pressure, and the pore water pressure response of the model is 

realistic.  

a) b) 

c) d) 
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Figure 8-5 Simulation of CSS5 

Figure 8-6 presents the simulation of the test CSS3. The test CSS3 is done on a slightly 

overconsolidated sample, and at an initial vertical stress of about 40 kPa. During initial 

loading, the model introduces too much pore pressure due to the formulation of the 

volumetric cap. Therefore the overall pore pressure response is slightly too contractive, 

but the stress-strain curve matches closely the test results. The stress ratio vs. strain 

curve shows an excellent match to the soil behavior, and confirms the inherent 

a) b) 

c) d) 
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assumption of the model that at upon constant cyclic strain amplitude, the peak stress 

ratio does not change. As a result, the stress ratio vs. strain does not exhibit degradation. 

 

Figure 8-6 Simulation of CSS3 

The simulation presented in Figure 8-7 confirms the excellent agreement of the stress 

ratio/strain loops (Figure 8-7d), and that stress ratio vs. strain curves do not exhibit 

degradation, contrarily to the stress strain curve. In this simulation, the soil is slightly more 

overconsolidated than the previous simulation (OCR=1.75), and therefore the pore 

a) b) 

c) d) 
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pressure response does not show an excessive pore water pressure generation upon 

initial loading. As a result, the overall pore pressure response matches more closely the 

test results. 

 

Figure 8-7 Simulation of CSS12 

a) 

c) 

b) 

d) 
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8.2.5.2 Residual Pore Water Pressure 

The residual pore water pressure ratio resulting from the simulations of the cyclic direct 

simple shear tests are compared with measurements. The comparison is shown in Figure 

8-8. The simulations and the lab tests are in good agreement overall. Some dispersion is 

observed, and appears to be increasing with the amplitude of the residual pore water 

pressure ratio. 

 

Figure 8-8 Comparison of residual pore water pressure obtained from the simulations and measured in 
the lab 

8.2.6 Monotonic Simple Shear Tests 

The five monotonic tests presented in section 8.2.2 are simulated with the set of input 

parameters presented in the previous section. The monotonic tests are simulated in order 

to verify that the parameters developed for cyclic loading provide a reasonable behavior 

upon monotonic loading. 
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8.2.6.1 Normally Consolidated Tests 

The simulations of the monotonic tests are presented in Figure 8-9 and Figure 8-10. In 

both tests the strength is relatively well captured, but the initial response is stiffer than the 

real soil behavior. The stress path is reasonable, and the overall behavior is satisfactory. 

 

Figure 8-9 Simulation of SS1 

 

Figure 8-10 Simulation of SS2 
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8.2.6.2 Over-consolidated Tests 

The simulations of the three over-consolidated tests are presented in Figure 8-11, Figure 

8-12, and Figure 8-13. The strength is correctly captured in the three tests, although the 

strength is slightly over-predicted for the test SS5. Since A0 is small in order to give a 

reasonable pore pressure response upon cyclic loading, the stress path is essentially 

vertical.  

 

Figure 8-11 Simulation of SS3 



282 
 

 

Figure 8-12 Simulation of SS4 

 

Figure 8-13 Simulation of SS5 

The calibration process presented here yields satisfying input parameters to use in the 

site response simulations presented in the next section. 
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8.3 One Dimensional Ground Response Analysis of the Centrifuge Tests 

8.3.1 Centrifuge Model 

The model used in the centrifuge tests is presented in Figure 8-14. The one-dimensional 

simulations aim to represent the center of the model, indicated with a black line, where 

the peat layer is 5.1 m thick and the levee is 6.1 m thick in prototype scale. The 8.5 m 

thick layer of coarse sand situated beneath the peat layer is also modeled. The one-

dimensional simulation is an approximation that fails to capture two-dimensional effects 

such as levee rocking. Nevertheless, one-dimensional simulations are often used for 

levee problems, with topographic amplification factors applied to account for two-

dimensional effects (e.g., Kishida et al. 2009b). 

 

Figure 8-14 Centrifuge model in RCK02: a) instrumentation b) close-up 

a) 

b) 
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8.3.2 Numerical Models 

The mesh used for the FLAC simulation consists of a single column of 74 elements 

(Figure 8-15 Numerical models used in FLAC and Deepsoil, and stress, shear wave 

velocity and unit weight profiles). The size of the elements was selected based on the 

work from Kuhlemeyer and Lysmer (1973), which states that to represent accurately the 

transmission of the motion the element size must be a tenth of the wavelength of the 

highest frequency component of the input wave that contains appreciable energy. In the 

centrifuge recordings, the motion does not show a significant Fourier amplitude for 

frequencies higher than 15 Hz. Based on a shear wave velocity of 39m/s, 0.2 m thick 

elements would be able to propagate signals up to 19 Hz, which is satisfying. Note that 

this assumption is only valid for elastic material, but provides a first approximation when 

defining a numerical mesh. The thickness of the bottom element of the levee and of the 

peat layer was only 0.1 m in order to model the prototype dimensions. The elements at 

the bottom of the mesh that model the layer of dense sand were 0.5 m thick. The width 

of all the elements was set to 0.5 m.  

The bottom of the mesh was fixed in both directions, and all the nodes were constrained 

in the vertical direction. In order to model a one dimensional site response, nodes at the 

same elevation were forced to have the same horizontal displacements by using the 

“cable/slave” option in FLAC. Figure 8-16 Detail of the FLAC modelpresents a close-up 

of the bottom of the model, and shows the cables, along with the boundary conditions. 

The input acceleration record is applied at the bottom of the mesh. 
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The model simulates a total ground response analysis by not turning on the ground water 

module so that no pore pressure develops. In the absence of any knowledge of the K0 

coefficient, the soil was isotropically consolidated with total stresses calculated from the 

soil unit weight. 
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Figure 8-15 Numerical models used in FLAC and Deepsoil, and stress, shear wave velocity and unit 
weight profiles 
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Figure 8-16 Detail of the FLAC model 

A nonlinear total stress ground response analysis was performed in Deepsoil. The 

thickness of the layers modeling the peat layer were 0.2 m thick to be consistent with the 

FLAC model. Since the levee is more rigid than the peat, it was modeled with only 2 

layers. The layer of dense sand at the bottom of the model was modeled, using 1.7m thick 

elements and the groundwater table was set to be at the top of the first layer. The model 

is presented in Figure 8-16. The maximum frequency which can be propagated through 

the profile is about 40 Hz. A rigid half-space was selected at the base of the model, 

following the recommendations from Hashash et al. (2015) for a within motion. 
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8.3.3 Input Parameters 

For the sake of simplicity, the unit weight, the shear wave velocity were considered 

constant over depth for the clay, the peat and the sand (Figure 8-15 and Table 8-5). In 

the centrifuge test, the peat is initially normally consolidated and becomes 

overconsolidated as a result of secondary compression. Based on the overconsolidation 

ratio observed in samples tested in the lab, resulting from the secondary compression, 

the overconsolidation ratio was picked as 1.2 for the entire peat layer. Because of the low 

unit weight of the peat, the effective stress does not vary significantly in the peat layer 

(from 41.9 to 49.3 kPa), and the theoretical unit weight, using the parameters derived 

previously, shows little variation (from 10.84 to 11.06 kN/m3), and was set to 10.95 kN/ 

m3. The shear wave velocity was picked as 39 m/s based on the previously established 

relationship (Table 8-5 Material properties). 

Table 8-5 Material properties 

Material Unit Weight (kN/m3) Shear Wave Velocity (m/s) 

Clayey Levee 18 400 

Peat 10.95 39 

Dense Sand 20.3 250 

The levee was simulated with an elastic material. The shear wave velocity of the modeling 

clay used for the levee was measured with bender elements and found to be 400 m/s. 

The unit weight of the clay was measured in the lab as 18 kN/m3. Hence the modeling 

clay has a shear modulus of about 294000 kPa. Assuming that the clay is roughly 

incompressible, a Poisson’s ratio of 0.49 yields a bulk modulus of 14602 MPa. The levee 

is much stiffer than the peat, and behaves essentially as a rigid body. Hence, I do not 
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anticipate that the simulations are sensitive to the material properties of the levee in this 

case.  

The sand layer at the bottom is also modeled as an elastic material. Based on the 

properties of the Monterrey Sand described in Cappa et al. (2014b), the unit weight was 

20.3 kN/m3, and the shear modulus was 128700 kPa, based on a shear wave velocity of 

250m/s. A Poisson’s ratio of 0.49 was used to calculate the bulk modulus (6391900 kPa). 

In FLAC the model presented in chapter 6 was used with the input parameters presented 

in Table 8-4. The modulus reduction and damping curves vs. stress ratios presented in 

Figure 8-2 were used. In Deepsoil, the input modulus reduction and damping curves for 

the peat layers were based on the same curves, but plotted in terms of shear strain. To 

do so, the inverse of the procedure presented in chapter 4 was used to obtain a different 

set of modulus reduction and damping curves for every layer, depending on the confining 

pressure.  

In Deepsoil, all the layers were modeled using the MRDF-UIUC model. The levee and the 

dense sand were modeled with no modulus reduction and a constant damping ratio to 

model an elastic material. The MRDF-UIUC does not have the capability of fitting a 

straight line and render an elastic behavior, but the modulus reduction curve fit obtained 

from the clay layer was stiff enough to avoid introducing deformations in the clayey levee. 

The MRDF-UIUC does not provide a perfect fit of the input modulus reduction and 

damping curves, especially at large strains. However, the fit proved to be reasonable for 

all the peat layers. The simulations in Deepsoil could be further refined by using the latest 

GQ/H model, which would provide a better fit of the modulus reduction curves. 
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8.3.4 Viscous Damping 

The model presented in this dissertation is introducing hysteretic damping even at low 

strains and therefore Rayleigh damping is not necessary to introduce small-strain 

damping. Therefore, no Rayleigh damping was used for the peat layer. However, if the 

damping is believed to be frequency dependent, a user can decide to use viscous 

Rayleigh damping in addition to the hysteretic damping provided by the model. 

The input motion at the bottom of the sand layer is the motion recorded in the centrifuge 

at the bottom of the peat layer, i.e. at the top of the sand layer. The damping 

characteristics of the bottom sand layer were defined in order to retrieve the measured 

input motion at the top of the sand layer, so that the sand layer does not amplify or 

deamplify the motion. To do so, Rayleigh damping was used with a damping ratio of 25%, 

and a center frequency of 15 Hz. This was found by trial and error, and is not expected 

to introduce error in the simulation since the motion recorded at the bottom of the peat is 

retrieved. Rayleigh damping was also used to model the damping behavior of the clayey 

levee. The clayey levee being stiff, it is not anticipated to damp much energy. The 

damping ratio was set to 1.7%, with a center frequency of 6 Hz. The center frequency 

was determined based on a modal analysis from Deepsoil. 

In the Deepsoil simulations, the frequency-independent Rayleigh damping matrix scheme 

implemented was used. This latter uses a modification of the Rayleigh formulation to 

match the target small strain damping at every frequency. 
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8.3.5 Input Motion 

The sand at the bottom of the model was not tested in the lab, and its dynamic properties 

are unknown. To reduce the uncertainty, the motion recorded by the sensor A20 was 

used as input motion at the base of the model, and the sand was modeled as a relatively 

stiff elastic material that does not amplify nor deamplify the motion, as explained in the 

previous sections. In the simulations, the motion obtained at the bottom of the peat layer 

is similar to what was recorded by A20 during the centrifuge test. The recording from the 

centrifuge was filtered with a third order high pass filter with a corner frequency of 0.2 Hz. 

The corner frequency was selected based on the Fourier spectrum of the motion. The 

obtained acceleration record and response spectrum are presented in Figure 8-17. 

 

Figure 8-17 Input motion a) acceleration time series b) response spectrum 
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8.3.6 Preliminary Results of the Simulations 

8.3.6.1 Displacements and Strains 

The displacements at the top of the peat layer predicted by FLAC and Deepsoil are 

compared with displacements calculated from the centrifuge. The accelerations recorded 

by the sensors A18, A19, A20, A21, A28, A29, A30, and A31 (Figure 8-14) are double 

integrated to obtain displacements, which are then used to calculate the shear strain at 

the middle of the peat layer (Cappa et al. 2016). 

The displacement time series recorded at the top of the layer are presented in Figure 

8-18. The three recordings are in relatively good agreement, especially at the beginning 

of the record. Later the simulations become slightly out of phase with the recording.  

 

 

Figure 8-18 Comparison of displacement records 
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The strains from the simulations and the centrifuge are compared in Figure 8-19. The 

maximum strain is slightly overestimated by the Deepsoil simulations but well matched 

by FLAC. The simulations and the centrifuge results tend to become out of phase after a 

few cycles. The simulations tend to overpredict the strains and the overall match is not 

very good.  

 

 

Figure 8-19 Strain time series 

The maximum relative displacement and maximum shear strain profiles are presented in 

Figure 8-20. The simulations agree well with each other and with the centrifuge tests. The 

strain profile obtained in Deepsoil shows oscillations because of the misfit of the different 

modulus reduction curves induced by the MRDF model. The model yields modulus 

reduction curve that are either too stiff or too soft compared to the desired soil behavior. 

However, the general trend of those two profiles is satisfying. 
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Figure 8-20 Relative displacement (a) and maximum strain (b) profiles 

8.3.6.2 Acceleration Time Series 

Acceleration time series at the top of the peat layer presented in Figure 8-21 show that 

the maximum acceleration at the top of the layer is well captured by both models. The 

two models are in good agreement, and both show a high frequency noise that does not 

appear in the recordings.  
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Figure 8-21 Acceleration time series at the top of the peat layer 

8.3.6.3 Response Spectra 

Response spectra from the accelerations recorded at the top of the peat layer are 

presented in Figure 8-22. The amplitude of the Fourier spectra is overestimated by 

Deepsoil and FLAC. At around 0.2s a peak is observed in the response spectra obtained 

from the centrifuge test that is not present in the simulations, which might be indicating a 

solicitation coming from 2D effects such as rocking. The response spectrum obtained in 

FLAC is satisfying and in excellent agreement with Deepsoil.  
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Figure 8-22 Response spectra of the motions at the top of the peat layer 

8.3.7 Conclusions 

The model was used in a 1D ground response analysis and is in good agreement with a 

similar simulation performed in Deepsoil. Although the two software cannot be compared 

because of the differences in their formulations, it should be noted that the computational 

time for both simulations was roughly the same. The simulations are not in perfect 

agreement with the recordings from the centrifuge which is expected since the centrifuge 

problem is a 2D problem. The simple example presented here shows that the model 

presented in this dissertation is well suited for ground response analysis. 
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9 SUMMARY AND CONCLUSIONS, AND FUTURE WORK 

9.1 Summary and Conclusions 

9.1.1 Centrifuge Tests 

Two large centrifuge tests, and 12 small centrifuge tests were carried out at the UC Davis 

Center for Geotechnical Modeling. These tests provide an important body of data and 

new insights regarding the cyclic and post cyclic behavior of the levees atop peaty organic 

soils. This dissertation summarized the construction of the tests, and presented the 

device created to saturate the sand used for the levee fill. This vacuum saturation system 

presented is well suited for use in the centrifuge test where the saturation of sand in the 

centrifuge container poses problem. Examples of recordings from the centrifuge tests 

were also presented. 

Insights gained from the centrifuge tests are developed extensively in Cappa (2016). In 

particular, the development of excess pore water pressure as a result of cyclic straining 

is analyzed. The correlation from Shafiee (2016) is compared to the data, and found to 

predict the centrifuge results fairly well. The soil-structure interaction between the levee 

and foundation soil is also studied and a rocking mode is highlighted. 

9.1.2 Modulus Reduction and Damping Curves Plotted vs. Stress Ratio 

A new approach where modulus reduction and damping curves are plotted against stress 

ratio has been presented and discussed. Modulus reduction and damping curves have 

traditionally been plotted versus cyclic shear strain. However, this approach has several 

drawbacks: (1) G/Gmax and D versus c depend on p’, which can cause problems for 
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undrained loading where effective stress may change due to development of excess pore 

pressure, and (2) advanced constitutive models typically represent shear modulus as a 

function of  rather than c, requiring sometimes complex calibration procedures to 

achieve desired modulus reduction and damping behavior. Plotting G/Gmax and D-Dmin 

versus  results in pressure-independent modulus reduction and damping curves for 

three commonly-used relationships. This finding is potentially useful for implementation 

in one-dimensional effective stress codes for undrained loading conditions, and in 

advanced plasticity models. 

9.1.3 1D Nonlinear Constitutive Model 

A one dimensional nonlinear model for site response analysis that departs from two 

concepts commonly used by site response models was presented. Initial loading is 

controlled by using a cubic spline fit of the backbone curve to match any modulus 

reduction curve. A new unloading reloading rule has been derived to control the hysteretic 

behavior of the soil. The new rule uses a coordinate transformation approach to calculate 

the shear stress, regardless of the amplitude of the strain increment. This unloading-

reloading rule easily controls the damping in the transformed coordinate system and 

provides a perfect fit of any damping curve, even capturing small-strain hysteretic 

damping, thereby eliminating the need for Rayleigh damping. The model is well suited for 

total stress 1D site response analysis. 

9.1.4 3D Nonlinear Constitutive Model 

A three-dimensional constitutive model controlling the damping response of the model 

was presented. Its formulation is based on the 1D model presented earlier in the 
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dissertation and also uses the concept of plotting the modulus reduction and damping 

curves as a function of stress ratio to incorporate these curves in a 3D model. 

The model uses a bounding surface algorithm to control the shear strength, and the 

volumetric response is controlled by a pore pressure surface, a dilation surface and a 

volumetric yield surface. The model incorporates concepts developed by Dafalias and 

Manzari (2004) and Kutter and Sathialingam (1992). 

The model is implemented in FLAC and examples of typical predictions were provided. 

This document provides enough information for the reader to comprehend how the model 

works, the influence of input parameters, and how to use the model in FLAC. The 

calibration process for peat based on lab tests was also presented in order to use the 

model in simulations of the centrifuge tests. 

The preliminary results of a 1D ground response simulation using the developed model 

was presented. The simulation aim to represent the center array of the centrifuge test. 

Results from simulations using our model in FLAC are compared with simulation using 

the 1D ground response analysis software Deepsoil and the results from the centrifuge. 

The simulation captures the main trend shown in the data, and agrees well with the 

Deepsoil simulations. 

9.2 Future Work 

9.2.1 Implementation of the 1D Nonlinear Model in Deepsoil 

The 1D model presented in this dissertation is well suited for 1D ground response 

analyses. In its current form, it is performing better than most of the established models. 
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However, it not yet implemented in a 1D ground response code. The new version of the 

widely used ground response code DEEPSOIL (Hashash et al. 2015), allows users to 

define their own constitutive models. Implementing the model in DEEPSOIL would 

therefore expose the model to more potential users, whether they are practitioners or 

researchers. 

Although the model performs well and is able to match any input modulus reduction and 

damping curve, it is strain-rate independent, and would therefore show no difference in 

behavior under triangular or sinusoidal loading. In reality soils exhibits a strain rate 

dependence during loading and unloading. As a result, soils, especially clays and peat, 

often exhibit rounded tip upon sinusoidal loading (Vucetic 1990). This typically increases 

the energy dissipated during cyclic loading, i.e. the damping response of the soil. 

Introducing viscous effects in the 1D model would be an important achievement since it 

has never been done before. During earthquake loading, the strain rate changes, and the 

loading is closer to a sinusoidal loading than triangular loading. The shear strength is also 

rate dependent (Afacan et al. 2014), and the introduction of viscous effects should capture 

this behavior.  

Finally, when the model is unloading/reloading, and passes a previous reversal point, it 

goes back to the previous loop. This process is usually associated with a sharp change 

in stiffness. This is observed with every model using the Masing rules or one of its 

modifications. Although it is not too detrimental, and still yields reasonable stress-strain 

curves (chapter 5), introducing a smooth transition would be better. This smooth transition 

could be introduced by shifting the center of reference (0,0) smoothly rather than 

abruptly. This formulation would depart completely from the second Masing rules. 
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9.2.2 Improvement of the 3D Nonlinear Model 

The 3D model being largely based on the 1D model, it could be improved in a similar 

manner. First, viscous effects need to be introduced in order to simulate the behavior of 

the peat better. In its current formulation, the model is best suited for ground response 

analysis, and not for consolidation problems. In order to do so, the secondary 

compression needs to be introduced through viscous effects. In particular, secondary 

compression resets upon cyclic loading (Shafiee et al. 2015), and this needs to be 

integrated in a constitutive models. These viscous effects could also help capture the 

strain rate effect and the viscous behavior described in the previous section. 

The aforementioned problem about the smoothness of the loops in the 1D model is also 

applicable for the multidimensional model. The same kind of solution can be 

implemented, and lead to a smooth transition from one cyclic loading to another. 

Finally, the variables A0, npk, and nd were calibrated for peat, but not for other materials. 

Empirical relationships for these variables based on simple soil properties such as the 

plasticity index for clay, and grain size distribution for sand, are valuable because they 

would help practitioners use the model. 

9.2.3 Future Numerical Simulations 

This dissertation presents an example of ground response simulations that can be done 

with the model developed in Chapter 6. The simulation presented in chapter 8 simulates 

the model tested in the centrifuge. More site response simulations can be performed to 

study more extensively the peat response. 
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Complete simulations of the centrifuge tests need to be performed. The peat in the 

centrifuge tests will be modeled using the aforementioned constitutive model. The clayey 

levee will be considered perfectly elastic, and the sandy levee will be modeled using the 

PM4 Sand model (Boulanger and Ziotopoulou 2015). The simulations will consist of three 

different stages. In the first stage, a steady state seepage analysis will be performed as 

the water will seep through the levee from the reservoir. In the second stage, the model 

will be loaded with different input motions of different amplitude and frequency content, in 

an undrained dynamic analysis. Finally, a coupled fluid-mechanical simulation will be 

used to study the consolidation process as shear-induced excess pore pressures 

dissipate. The simulations will validate the use of our constitutive model in real field 

conditions, and study the potential of failure of levees in the Delta, considering all the 

possible failure mechanisms. 
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Appendix A. DERIVATION OF THE CONSISTENT TANGENT FOR 

THE 1D MODEL 

Recall equation 5-15: 

𝜏 = [(𝛾 − 𝛾0) cos 𝜃 + (𝜏 − 𝜏0) sin 𝜃] sin 𝜃

+ [𝑎((𝛾 − 𝛾0) cos 𝜃 + (𝜏 − 𝜏0) sin 𝜃)4 + 𝑏((𝛾 − 𝛾0) cos 𝜃 + (𝜏 − 𝜏0) sin 𝜃)2 + 𝑐] cos 𝜃 + 𝜏0 

Let’s define: 

𝐹(𝛾, 𝜏) = 𝑎[(𝛾 − 𝛾0) cos 𝜃 + (𝜏 − 𝜏0) sin 𝜃]4 cos 𝜃 
Equation 9-1 

𝐺(𝛾, 𝜏) = 𝑏[(𝛾 − 𝛾0) cos 𝜃 + (𝜏 − 𝜏0) sin 𝜃]2 cos 𝜃 
Equation 9-2 

Equation 5-15 can be rewritten as: 

𝜏 = [(𝛾 − 𝛾0) cos 𝜃 + (𝜏 − 𝜏0) sin 𝜃] sin 𝜃 + 𝐹(𝛾, 𝜏) + 𝐺(𝛾, 𝜏) + 𝑐 . cos 𝜃 + 𝜏0 
Equation 9-3 

The derivative of equation 5-15 with respect to 𝛾 yields: 

𝑑𝜏

𝑑𝛾
= sin 𝜃 cos 𝜃 +

𝜕𝜏

𝜕𝛾
sin2 𝜃 +

𝜕𝐹(𝛾, 𝜏)

𝜕𝛾
+

𝜕𝐹(𝛾, 𝜏)

𝜕𝜏
 
𝜕𝜏

𝜕𝛾
+

𝜕𝐺(𝛾, 𝜏)

𝜕𝛾
+

𝜕𝐺(𝛾, 𝜏)

𝜕𝜏
 
𝜕𝜏

𝜕𝛾
 Equation 

9-4 

Where: 

𝜕𝐹(𝛾, 𝜏)

𝜕𝛾
=  4𝑎 cos2 𝜃 [(𝛾 − 𝛾0) cos 𝜃 + (𝜏 − 𝜏0) sin 𝜃]3 

Equation 9-5 

𝜕𝐹(𝛾, 𝜏)

𝜕𝜏
= 4𝑎 sin 𝜃 cos 𝜃 [(𝛾 − 𝛾0) cos 𝜃 + (𝜏 − 𝜏0) sin 𝜃]3 

Equation 9-6 
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𝜕𝐺(𝛾, 𝜏)

𝜕𝛾
=  2𝑏 cos2 𝜃 [(𝛾 − 𝛾0) cos 𝜃 + (𝜏 − 𝜏0) sin 𝜃] 

Equation 9-7 

𝜕𝐺(𝛾, 𝜏)

𝜕𝜏
= 2𝑏 sin 𝜃 cos 𝜃 [(𝛾 − 𝛾0) cos 𝜃 + (𝜏 − 𝜏0) sin 𝜃] 

Equation 9-8 

Equation A-4 yields: 

𝑑𝜏

𝑑𝛾
(1 − sin2𝜃 −

𝜕𝐹(𝛾, 𝜏)

𝜕𝜏
−

𝜕𝐺(𝛾, 𝜏)

𝜕𝜏
) = sin 𝜃 cos 𝜃 +

𝜕𝐹(𝛾, 𝜏)

𝜕𝛾
+

𝜕𝐺(𝛾, 𝜏)

𝜕𝛾
 

Equation 9-9 

Rearranging A-9 yields: 

𝑑𝜏

𝑑𝛾
=

sin 𝜃 cos 𝜃 +
𝜕𝐹(𝛾, 𝜏)

𝜕𝛾
+

𝜕𝐺(𝛾, 𝜏)
𝜕𝛾

cos2 𝜃 −
𝜕𝐹(𝛾, 𝜏)

𝜕𝜏
−

𝜕𝐺(𝛾, 𝜏)
𝜕𝜏

 
Equation 9-10 

Combining equations A-10, A-5, A-6, A-7 and A-8 and simplifying by cos 𝜃: 

𝑑𝜏

𝑑𝛾
=

sin 𝜃 + 4𝑎 cos 𝜃 [(𝛾 − 𝛾0) cos 𝜃 + (𝜏 − 𝜏0) sin 𝜃]3 +  2𝑏 cos 𝜃 [(𝛾 − 𝛾0) cos 𝜃 + (𝜏 − 𝜏0) sin 𝜃]

cos 𝜃 − 4𝑎 sin 𝜃 [(𝛾 − 𝛾0) cos 𝜃 + (𝜏 − 𝜏0) sin 𝜃]3 − 2𝑏 sin 𝜃 [(𝛾 − 𝛾0) cos 𝜃 + (𝜏 − 𝜏0) sin 𝜃]
 

Equation 9-11 
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Appendix B: DERIVATION OF THE CONSISTENT TANGENT FOR 

THE 3D MODEL 

Recall equation 6-35: 

𝑞 = [(𝜀𝑞 − 𝜀𝑞0
) cos 𝜃 + (𝑞 − 𝑞0) sin 𝜃] sin 𝜃

+ [𝑎 ((𝜀𝑞 − 𝜀𝑞0
) cos 𝜃 + (𝑞 − 𝑞0) sin 𝜃)

4
+ 𝑏 ((𝜀𝑞 − 𝜀𝑞0

) cos 𝜃 + (𝑞 − 𝑞0) sin 𝜃)
2

+ 𝑐] cos 𝜃 + 𝑞0 

We define: 

𝑓1 = [(𝜀𝑞 − 𝜀𝑞0
) cos 𝜃 + (𝑞 − 𝑞0) sin 𝜃] sin 𝜃 

Equation B-12 

𝑓2.1 = 𝑎 cos 𝜃 ((𝜀𝑞 − 𝜀𝑞0
) cos 𝜃 + (𝑞 − 𝑞

0
) sin 𝜃)

4

 
Equation B-13 

𝑓2.2 =  𝑏 cos 𝜃 ((𝜀𝑞 − 𝜀𝑞0
) cos 𝜃 + (𝑞 − 𝑞0) sin 𝜃)

2
 

Equation B-14 

Equation 6-35 can be rewritten: 

𝑞 = 𝑓1 + 𝑓2.1 + 𝑓2.2 + 𝑐 cos 𝜃 + 𝑞0 
Equation B-15 

There are 3 variables 𝑞, 𝜀𝑞, and 𝑝′. 

𝑞 = 𝑓(𝑞, 𝜀𝑞, 𝑝′) 
Equation B-16 

𝑑𝑞

𝑑𝜀𝑞

=
𝜕𝑓

𝜕𝑞
∙

𝜕𝑞

𝜕𝜀𝑞

+
𝜕𝑓

𝜕𝜀𝑞

+
𝜕𝑓

𝜕𝑝′
∙

𝜕𝑝′

𝜕𝜀𝑞

 
Equation B-17 

The derivatives of f with respect to q and 𝜀𝑞 are similar to the 1D case: 

𝜕𝑓

𝜕𝑞
= sin2 𝜃 + 4𝑎 sin 𝜃 cos 𝜃 [(𝜀𝑞 − 𝜀𝑞0

) cos 𝜃 + (𝑞 − 𝑞0) sin 𝜃]
3

+ 2𝑏 sin 𝜃 cos 𝜃 [(𝜀𝑞 − 𝜀𝑞0
) cos 𝜃 + (𝑞 − 𝑞0) sin 𝜃] 

Equation B-18 
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𝜕𝑓

𝜕𝜀𝑞
= sin 𝜃 cos 𝜃 + 4𝑎 cos2 𝜃 [(𝜀𝑞 − 𝜀𝑞0

) cos 𝜃 + (𝑞 − 𝑞0) sin 𝜃]
3

+ 2𝑏 cos2 𝜃 [(𝜀𝑞 − 𝜀𝑞0
) cos 𝜃 + (𝑞 − 𝑞0) sin 𝜃] 

Equation B-19 

𝜕𝑓

𝜕𝑝′
=

𝜕𝑓

𝜕𝜃
∙

𝜕𝜃

𝜕𝑝′
+

𝜕𝑓

𝜕𝑞0
∙

𝜕𝑞0

𝜕𝑝′
+

𝜕𝑓

𝜕𝑎
∙

𝜕𝑎

𝜕𝑝′
+

𝜕𝑓

𝜕𝑏
∙

𝜕𝑏

𝜕𝑝′
+

𝜕𝑓

𝜕𝑐
∙

𝜕𝑐

𝜕𝑝′
 

Equation B-20 

The derivatives of f with respect to a, b and c are: 

𝜕𝑓

𝜕𝑎
= cos 𝜃 ((𝜀𝑞 − 𝜀𝑞0

) cos 𝜃 + (𝑞 − 𝑞0) sin 𝜃)
4
 

Equation B-21 

𝜕𝑓

𝜕𝑏
= cos 𝜃 ((𝜀𝑞 − 𝜀𝑞0

) cos 𝜃 + (𝑞 − 𝑞0) sin 𝜃)
2
 

Equation B-22 

𝜕𝑓

𝜕𝑐
= cos 𝜃 

Equation B-23 

The derivatives of a, b and c with respect to p’ are: 

𝜕𝑎

𝜕𝑝′
=

−5 ∙ 𝜋 ∙ 𝐷 ∙ 𝜂𝐿 ∙ cos5 𝜃

32 ∙ (𝜀𝑞𝐿
− 𝜀𝑞0

)4
+

𝜕𝑎

𝜕𝜃
∙

𝜕𝜃

𝜕𝑝′
+

𝜕𝑎

𝜕𝑞0
∙

𝜕𝑞0

𝜕𝑝′
+

𝜕𝑎

𝜕𝐷
∙

𝜕𝐷

𝜕𝑝′
 

Equation B-24 

𝜕𝑏

𝜕𝑝′
=

15 ∙ 𝜋 ∙ 𝐷 ∙ 𝜂𝐿 ∙ cos3 𝜃

16 ∙ (𝜀𝑞𝐿
− 𝜀𝑞0

)2
+

𝜕𝑏

𝜕𝜃
∙

𝜕𝜃

𝜕𝑝′
+

𝜕𝑏

𝜕𝑞0
∙

𝜕𝑞0

𝜕𝑝′
+

𝜕𝑏

𝜕𝐷
∙

𝜕𝐷

𝜕𝑝′
 

Equation B-25 

𝜕𝑐

𝜕𝑝′
=

−25 ∙ 𝜋 ∙ 𝐷 ∙ 𝜂𝐿 ∙ cos 𝜃

32
+

𝜕𝑐

𝜕𝜃
∙

𝜕𝜃

𝜕𝑝′
+

𝜕𝑐

𝜕𝑞0
∙

𝜕𝑞0

𝜕𝑝′
+

𝜕𝑐

𝜕𝐷
∙

𝜕𝐷

𝜕𝑝′
 

Equation B-26 

D-Dmin is independent of p’ and only depends on the equivalent stress ratio eq which is a constant 

until L and R change. However, Dmin depends on p’ if the formulation from Kishida is used (see 

Chapter 7). In this case, the term 
𝜕𝐷

𝜕𝑝′
 is not zero, but follows the following equation: 

𝜕𝐷

𝜕𝑝′
= 0.01 ∙ 𝑒𝑐0+𝑋3𝑐3+𝑋5𝑐1+𝑐2 ln(𝑝′)−𝑐5(𝑋3−𝑋3𝑏)∙(𝑋2𝑏−ln(𝑝′))−𝑐4(𝑋5−𝑋5𝑏)∙(𝑋2𝑏−ln (𝑝′)) [

𝑐2

𝑝′

+
𝑐5(𝑋3 − 𝑋3𝑏)

𝑝′
+

𝑐4(𝑋5 − 𝑋5𝑏)

𝑝′
] 

Equation B-27 
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𝜕𝑎

𝜕𝐷
=

−5 ∙ 𝜋 ∙ (𝑝′ ∙ 𝜂𝐿 − 𝑞0) ∙ cos5 𝜃

32 ∙ (𝜀𝑞𝐿
− 𝜀𝑞0

)4
 

Equation B-28 

𝜕𝑏

𝜕𝐷
=

15 ∙ 𝜋 ∙ (𝑝′ ∙ 𝜂𝐿 − 𝑞0) ∙ cos3 𝜃

16 ∙ (𝜀𝑞𝐿
− 𝜀𝑞0

)2
 

Equation B-29 

𝜕𝑐

𝜕𝐷
=

−25 ∙ 𝜋 ∙ (𝑝′ ∙ 𝜂𝐿 − 𝑞0) ∙ cos 𝜃

32
 Equation B-30 

The other partial derivatives are: 

𝜕𝑎

𝜕𝜃
=

25 ∙ 𝜋 ∙ 𝐷 ∙ (𝑝′ ∙ 𝜂𝐿 − 𝑞0) ∙ sin 𝜃

32 ∙ 𝜀𝑞𝑖𝑛
′ 4  

Equation B-31 

𝜕𝑏

𝜕𝜃
=

−45 ∙ 𝜋 ∙ 𝐷 ∙ (𝑝′ ∙ 𝜂𝐿 − 𝑞0) ∙ sin 𝜃

16 ∙ 𝜀𝑞𝑖𝑛
′ 2  

Equation B-32 

𝜕𝑐

𝜕𝜃
=

25 ∙ 𝜋 ∙ 𝐷 ∙ (𝑝′ ∙ 𝜂𝐿 − 𝑞0) ∙ sin 𝜃

32
 Equation B-33 

𝜕𝑓

𝜕𝜃
= 2 sin 𝜃 cos 𝜃 (𝑞 − 𝑞0) + (cos2 𝜃 − sin2 𝜃) ∙ (𝜀𝑞 − 𝜀𝑞0

) − sin 𝜃 ∙ 𝑐

+
𝜕𝑓2.1

𝜕𝜃
+

𝜕𝑓2.2

𝜕𝜃
 

Equation B-34 

𝜕𝑓2.1

𝜕𝜃
= − sin 𝜃 𝑎 ((𝜀𝑞 − 𝜀𝑞0

) cos 𝜃 + (𝑞 − 𝑞0) sin 𝜃)
4

+ 4𝑎 cos 𝜃 [(𝑞 − 𝑞0) cos 𝜃

− (𝜀𝑞 − 𝜀𝑞0
) sin 𝜃] [(𝜀𝑞 − 𝜀𝑞0

) cos 𝜃 + (𝑞 − 𝑞0) sin 𝜃]
3
 

Equation B-35 

𝜕𝑓2.1

𝜕𝜃
= − sin 𝜃 𝑏 ((𝜀𝑞 − 𝜀𝑞0

) cos 𝜃 + (𝑞 − 𝑞0) sin 𝜃)
2

+ 2𝑏 cos 𝜃 [(𝑞 − 𝑞0) cos 𝜃

− (𝜀𝑞 − 𝜀𝑞0
) sin 𝜃] [(𝜀𝑞 − 𝜀𝑞0

) cos 𝜃 + (𝑞 − 𝑞0) sin 𝜃] 

Equation B-36 
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𝜕𝑓

𝜕𝑞0
= −sin2 𝜃 + 1 − cos 𝜃 [4𝑎 sin 𝜃 [(𝜀𝑞 − 𝜀𝑞0

) cos 𝜃 + (𝑞 − 𝑞0) sin 𝜃]
3

+ 2𝑏 sin 𝜃 [(𝜀𝑞 − 𝜀𝑞0
) cos 𝜃 + (𝑞 − 𝑞0) sin 𝜃]] 

Equation B-37 

 

𝜕𝑞
0

𝜕𝑝′
=

𝜂𝑅 + 𝜂𝐿

2
 

Equation B-38 

 

𝜕𝑎

𝜕𝑞0
=

5 ∙ 𝜋 ∙ 𝐷 ∙ cos5 𝜃

32 ∙ (𝜀𝑞𝐿
− 𝜀𝑞0

)4
 

Equation B-39 

 

𝜕𝑏

𝜕𝑞0
=

−15 ∙ 𝜋 ∙ 𝐷 ∙ cos3 𝜃

16 ∙ (𝜀𝑞𝐿
− 𝜀𝑞0

)2
 

Equation B-40 

 

𝜕𝑐

𝜕𝑞0
=

25 ∙ 𝜋 ∙ 𝐷 ∙ 𝑐𝑜𝑠 𝜃

32
 

Equation B-41 

Finally, the tangent is calculated by rearranging B-6 and substituting all the partial derivatives (B-

7 to B-30): 

𝑑𝑞

𝑑𝜀𝑞

=

𝜕𝑓
𝜕𝜀𝑞

+
𝜕𝑓
𝜕𝑝′

∙
𝜕𝑝′
𝜕𝜀𝑞

1 −
𝜕𝑓
𝜕𝑞

 
Equation B-31 
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