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ON THE RELATION BETWEEN THE POLYCHORIC

CORRELATION COEFFICIENT AND SPEARMAN’S RANK

CORRELATION COEFFICIENT

JOAKIM EKSTRÖM

Abstract. Spearman’s rank correlation coefficient is shown to be a deterministic

transformation of the empirical polychoric correlation coefficient. The transformation

is a homeomorphism under given marginal probabilities, and has a fixed point at zero.

Moreover, the two measures of association for ordinal variables are asymptotically

equivalent, in a certain sense. If the ordinal variables arise from discretizations, such

as groupings of values into categories, Spearman’s rank correlation coefficient has some

undesirable properties, and the empirical polychoric correlation coefficient is better

suited for statistical inference about the association of the underlying, non-discretized

variables.

Key words and phrases. Contingency table, Measure of association, Ordinal variable, Polychoric cor-

relation coefficient, Spearman’s rank correlation coefficient.
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1. Introduction

The polychoric correlation coefficient and Spearman’s rank correlation coefficient are

two measures of association for ordinal variables. Ordinal variables are variables whose

values can only be compared in terms of their ordering. Sometimes referred to as ordered

categorical variables, ordinal variables are common in many scientific fields such as the

health and social sciences. Data for a pair of ordinal variables is often presented in the

form of a contingency table.

A measure of association is, loosely, a function that maps a pair of random variables

to a subset of the real line, and its value is meant to be interpreted as the degree to

which the two random variables can be represented as monotonic functions of each other.

The first, and likely most well-known, measure of association is the linear correlation,

introduced by Francis Galton (1888).

The idea of the polychoric correlation coefficient was proposed by Galton’s protégé

Karl Pearson (1900) as a correlation coefficient for ordinal variables. The measure of

association rests on an assumption of an underlying joint bivariate normal distribution,

meaning that the contingency table of the two ordinal variables is assumed to be the

result of a discretization of a bivariate normal distribution, cf. Figure 1. Given a con-

tingency table, a bivariate normal distribution is fitted to the table, and the polychoric

correlation coefficient then corresponds to the linear correlation of the fitted bivariate

normal distribution. Implicit in the construction is that the ordinal variables, while only

observed in terms of ordered categories, are considered as fundamentally continuous in

nature.

Charles Spearman was an English psychologist who made large contributions to the

theory of multivariate statistics, notably the idea of factor analysis. Spearman’s rank

correlation coefficient is quite simply the linear correlation of the ranks of the observa-

tions, and as such it is a measure of association for ordinal variables.

Karl Pearson, who considered the polychoric correlation coefficient as one of his most

important contributions to the theory of statistics (see Camp, 1933), was never convinced

of the appropriateness of Spearman’s rank correlation coefficient. On the contrary, Pear-

son (1907) contains a comprehensive discussion on correlation of ranks and some rather

blunt criticism. For example, the article reads:

Dr Spearman has proposed that rank in a population for any variate

should be considered as in itself the quantitative measure of the character,

and he proceeds to correlate ranks as if they were quantitative measures

of character, without any reference to the true value of the variate. This

seems to me a retrograde step; hitherto we have dealt with grade or rank

as an index to the variate, and to make rank into a unit of itself cannot

fail, I believe, to lead to grave misconception.

Part of the explanation for Pearson’s dedication to contingency tables and measures

of association for ordinal variables can be found in his book The Grammar of Science
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(Pearson, 1911). In the chapter Contingency and Correlation, the contingency table is

described as a universal tool for utilizing empirical evidence for the advancement of sci-

ence. The chapter summary reads: “Whether phenomena are qualitative or quantitative

a classification leads to a contingency table, and from such a table we can measure the

degree of dependence between any two phenomena.”

In several articles, Pearson referred to the linear correlation as the true correlation,

implying that the linear correlation is more true, in some sense, than other measures of

association. However, following the axiomatic definition of Rényi (1959), measures of

association are nowadays considered merely an abstract continuous mapping of a pair of

random variables to a subset of the real line, subject to certain conditions. Consequently,

the modern point of view is that no measure of association is more true or otherwise

more valuable than any other.

Pearson’s polychoric correlation coefficient and Spearman’s rank correlation coeffi-

cient are based upon seemingly very different constructions. As an indication of this

perception, Pearson’s former student George Udny Yule (1912) claim that the poly-

choric correlation coefficient is founded upon ideas entirely different from those of which

Spearman’s rank correlation coefficient is founded upon. The sentiment is echoed by

Pearson & Heron (1913), who even claim that Spearman’s rank correlation coefficient

is not based on a reasoned theory, while arguing for the soundness of the polychoric

correlation coefficient. In the present article, though, it shall be seen that the polychoric

correlation coefficient and Spearman’s rank correlation coefficient, in spite of the per-

ceived dissimilarity and Karl Pearson’s opposition to the use of latter, are quite similar

theoretical constructs.

2. The two measures of association

2.1. Ordinal variables. Ordinal variables are variables whose values are ordered but

cannot in general be added, multiplied, or otherwise acted on by any binary operator

save projection. In spite of the common occurrence of ordinal variables, both in practice

and in scientific fields such as the health and social sciences, no algebraic framework with

the level of formalism sought for in the present article has been found in the literature.

Therefore such a formalistic framework is given as follows.

Analogously to Kolmogorov’s definition of random variables, an ordinal variable is

defined as a measurable function from a probability space Ω to a sample space, C. The
sample space C = {c1, c2, . . . } is totally ordered, i.e. for any ci and cj it holds that either

ci ≼ cj , ci ≽ cj , or both. But characteristically, the sample space is not by definition

equipped with any binary operation. The equality notation ci = cj is shorthand for

ci ≼ cj and ci ≽ cj , and the strict notation ci ≺ cj is shorthand for ci ≼ cj and ci � cj .

In the present context, the only characteristic of the elements of the sample space

that is of relevance is their ordering, and therefore all elements that have the same order

are considered equal. Let [c]C denote the equivalence class {x ∈ C : x = c}, and let ⌊c⌋C
denote the lower half-space {x ∈ C : x ≼ c}. The index C is sometimes omitted when the
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ordered set is clear from the context. Let the sets {x ∈ C : ci ≼ x ≼ cj} be closed, and

as such be a basis for a topology on C. The set B of Borel sets is the smallest σ-algebra

containing the topology, and hence the so-constructed pair (C,B) is a measurable space.

For an ordinal variable X : Ω → C it is assumed without loss of generality that the

strict inequalities c1 ≺ c2 ≺ c3 ≺ · · · hold. The fact that this can be assumed is easily

realized when considering that it is always possible to map each equivalence class to

any element of the class, relabel them if necessary, and then get a totally ordered set

for which the strict inequalities hold. The values of an ordinal variable are sometimes

referred to as categories, the ordinal variable as an ordered categorical variable, and the

cardinality of the sample space as the number of categories.

As a note of caution to the reader, other definitions of ordinal variables than the one

given above exist. For example, some authors impose the additional condition that the

sample space must not be a real ordered field. In the present definition, though, there

are no conditions on group structure, or the absence thereof. In particular, real-valued

random variables satisfy the conditions of the present definition.

Let X and Y be two ordinal variables, each with a finite number of categories, whose

association is to be studied and denote their numbers of categories r and s, respectively.

Let the cumulative marginal probabilities be denoted u0, . . . , ur for X, i.e. u0 = 0, ur = 1

and ui = P (X ≼ ci), and v0, . . . , vs for Y . The marginal probabilities are denoted ∇ui
and ∇vj , respectively, where the symbol ∇ can be interpreted as a difference operator,

yielding ∇ui = ui − ui−1 = P (X = ci).

The joint probabilities of X and Y are sometimes denoted with double index, each

referring to a value of one of the ordinal variables. In the present article, though, the

joint probabilities is denoted with single index, p1, . . . , prs, each index referring to a

specific cell of the contingency table. The way in which the cells of the contingency

table is enumerated is not of importance. For example, the cells could be enumerated

column-wise, row-wise, or via Cantor’s diagonal method.

2.2. The polychoric correlation coefficient. The fundamental idea of the polychoric

correlation coefficient construction is to assume that the two ordinal variables are, into

r and s ordered categories respectively, discretized random variables with a continuous

joint distribution belonging to some family of bivariate distributions. The discretization

cuts the domain of the bivariate density function into rectangles corresponding to the

cells of the contingency table, see Figure 1 for an illustration. For later reference, the

fundamental assumption is formalized as follows.

Assumption A1. The two ordinal variables are, into r and s ordered categories re-

spectively, discretized random variables with a continuous joint distribution belonging to

the family of bivariate distributions {Hθ}θ∈Θ.

Pearson (1900) studied the case assuming a bivariate standard normal distribution.

The definition given in this section is the generalized definition (see Ekström, 2008),
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Figure 1. Illustration of the domain of the standard normal density

function being discretized by the dotted lines into a 4 × 4 contingency

table.

which agrees with Pearson’s original definition under a joint normal distribution as-

sumption.

For a bivariate probability distribution H and a rectangle A = [a, b] × [c, d], the

volume of the rectangle equals H(A) = H(b, d) − H(b, c) − H(a, d) + H(a, c). If the

distribution function is absolutely continuous, i.e. has a density function, then the volume

H(A) equals the integral of the density function over the rectangle A. This special case

illustrates the more general fact that if Z is a bivariate random variable with distribution

function H, then P (Z ∈ A) = H(A).

For all i = 1, . . . , r and j = 1, . . . , s, create rectangles [ui−1, ui]× [vj−1, vj ], enumerate

them in the same way as the joint probabilities, p1, . . . , prs, and denote them A1, . . . , Ars.

The rectangles A1, . . . , Ars are interpreted as the result of the discretization of the do-

main of the bivariate copula distribution function, cf. Figure 1. Under Assumption A1,

it should ideally hold that the volumes of the rectangles equal the joint probabilities of

the two ordinal variables. Hence it should hold that

(Hθ(A1), . . . , Hθ(Ars)) = (p1, . . . , prs) . (1)

The equation above is often referred to as the defining relation of the polychoric corre-

lation coefficient.

For the solution θ to Equation (1), the polychoric correlation coefficient is defined as

rpc = 2sin(ρS(Hθ)π/6),

where ρS denotes the Spearman grade correlation, which is the population analogue of

Spearman’s rank correlation coefficient (see, e.g., Nelsen, 2006). If all points (ui, vj)

are elements of the boundary of the unit square, ∂I2, then any parameter θ satisfies

Equation (1). However, in this case the polychoric correlation coefficient is defined to
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be zero, in part because of a reasoning of presuming independence until evidence of

association is found.

By Sklar’s theorem, every continuous joint distribution function has a unique cor-

responding copula (see, e.g., Nelsen, 2006). In this setting, it is both mathematically

and practically convenient to use the copula corresponding to a bivariate distribution

instead of the bivariate distribution function itself. Assuming that the continuous joint

distribution H is a copula, the Spearman grade correlation of the such jointly distributed

random variables can be expressed as

ρS = 12

∫
I2
Hdλ − 3 , (2)

where I is the unit interval, [0, 1], and λ is the Lebesgue measure (see, e.g., Nelsen,

2006).

Given data, the joint probabilities on the right-hand side of Equation (1) are esti-

mated by their corresponding relative frequencies. Under Assumption A1, the relative

frequencies will in general differ from their corresponding joint probabilities due to, for

instance, fixed sample sizes and noisy observations. If the numbers of categories, r and

s, both equal 2 then a unique solution to the sample analogue of Equation (1) always

exists under some general conditions of the family of bivariate distributions. If one of r

and s is greater than 2 and the other is greater than or equal to 2, on the other hand,

then a solution to the sample analogue of Equation (1) does in general not exist. In that

case it is standard statistical procedure to look for a best fit of the parameter θ with

respect to some loss function.

In many situations, it is clear from the context whether the name polychoric corre-

lation coefficient refers to the theoretical population construct or the sample analogue.

When the sample and population variants are discussed in relation to each other, such

as in Section 3, the theoretical population polychoric correlation is denoted ρpc and the

sample polychoric correlation coefficient is denoted rpc.

Examples in Ekström (2008) indicate that the polychoric correlation coefficient is not

statistically robust to changes of distributional assumption, nor changes of loss function.

For example, the polychoric correlation coefficient can change from positive to negative

only because of a change of distributional assumption, and the same thing can occur

because of a change of loss function. The lack of robustness is a problem for the poly-

choric correlation coefficient whenever there is uncertainty about which specific family of

distributions that satisfies the statement of Assumption A1. In those commonly occur-

ring cases, the empirical polychoric correlation coefficient is an in many ways attractive

non-parametric alternative.

2.3. The empirical polychoric correlation coefficient. The empirical polychoric

correlation coefficient is a relaxed version of the polychoric correlation coefficient which

rests only on the assumption that the two ordinal variables are discretized random vari-

ables with a joint continuous distribution. In other words, for the empirical polychoric
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correlation coefficient an underlying continuous joint distribution is only assumed to

exist, not to be of any particular distributional family. Proposed by Ekström (2009),

the non-parametric empirical polychoric correlation coefficient approximates the joint

distribution by means of the empirical copula.

Let the two ordinal variables X and Y have sample spaces C = {c1, . . . , cr} and

D = {d1, . . . , ds}, respectively, and let (xk, yk)
n
k=1 be a sample of (X,Y ) of size n. The

empirical copula Ĉn of the sample (xk, yk)
n
k=1 is the function given by

Ĉn(ui, vj) =
1

n

n∑
k=1

1⌊ci⌋×⌊dj⌋(xk, yk),

where 1A is the indicator function of the set A, and ui and vj are the cumulative mar-

ginal probabilities corresponding to values ci and dj , respectively, of the two ordinal

variables. The empirical copula is only defined on the set of cumulative marginal prob-

abilities (ui, vj) for i = 0, . . . , r and j = 0, . . . , s. In practice, the cumulative marginal

probabilities, u0, . . . , ur and v0, . . . , vs, are estimated by their sample analogues, i.e.

n−1
∑n

k=1 1⌊ci⌋(xk).

For the purpose of the empirical polychoric correlation coefficient, the postulated

underlying joint distribution functionH is approximated by means of the simple function

Ên =
∑rs

k=1 ak1Ak
, where, if Ak is the rectangle [ui−1, ui)× [vj−1, vj), ak is given by the

mean of the empirical copula values of the vertices of Ak, i.e.

ak =
1

4

(
Ĉn(ui, vj) + Ĉn(ui, vj−1) + Ĉn(ui−1, vj) + Ĉn(ui−1, vj−1)

)
.

The empirical polychoric correlation coefficient is then defined analogously to the con-

ventional polychoric correlation coefficient with the copula approximated by Ên, hence

repc = 2sin(ρS(Ên)π/6), where the functional ρS(Ên) is given by Expression (2), i.e.

ρS(Ên) = 12
∫
Êndλ− 3. Since Ên is simple, the integral reduces to

∑rs
k=1 akλ(Ak).

The empirical polychoric correlation coefficient is well defined, takes values on the

interval [−1, 1], and converges almost surely to the theoretical population analogue

ρpc = 2sin(ρS(H)π/6) as the numbers of categories and the sample size go to infinity,

cf. Theorem 5. For fixed sample sizes, a simulation study in Ekström (2009) indicates

that the empirical polychoric correlation coefficient is robust in terms of the underlying

distribution, and is in terms of standard deviation more stable than conventional poly-

choric correlation coefficients. The simulation study also indicates that the empirical

polychoric correlation coefficient, while unbiased at zero, have 4 to 20 percent too small

absolute values, depending on the number of categories. In the same simulation study,

the bias is constant under different sample sizes. In conclusion, therefore, the empirical

polychoric correlation coefficient can be considered a conservative estimate of the the-

oretical population polychoric correlation, which is statistically robust and, in terms of

standard deviation, more stable than conventional polychoric correlation coefficients.

2.4. Spearman’s rank correlation coefficient. Spearman’s rank correlation coeffi-

cient, proposed by Charles Spearman (1904), is quite simply the linear correlation of the
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sample ranks. The function rank, which maps each observation to its average rank, is

defined as

rank(xi) =
1

2
+

n∑
k=1

1⌊xi⌋(xk)−
1

2

n∑
k=1

1[xi](xk).

Denoted rS , Spearman’s rank correlation coefficient is the sample correlation coeffi-

cient of the ranks of (xk, yk)
n
k=1, or more explicitly the sample correlation coefficient of

(rank(xk), rank(yk))
n
k=1.

Notice that if the ordinal variables X and Y both have sample spaces with infinite

cardinality and the maximal probability of an individual value is zero, then with prob-

ability one, no ties will be present in the sample. An example of such a case is if the

ordinal variables are real-valued continuous random variables. If no ties are present the

function rank/n reduces to the empirical distribution function, and hence the sample

correlation of (rank(xk), rank(yk))
n
k=1 equals the sample correlation of the empirical dis-

tribution function values of (xk, yk)
n
k=1. Thus, it is clear, by the Glivenko-Cantelli lemma

and the Slutsky theorem, that Spearman’s rank correlation coefficient converges to the

Spearman grade correlation with probability one as the sample size goes to infinity.

For two non-continuous random variables, Nešlehová (2007) has defined the Spearman

grade correlation as ρ̃S = ρS(C
S)/

(
(1− ||∇u⃗||33)(1− ||∇v⃗||33)

)1/2
, where ρS is given by

Expression (2) and ||x||3 denotes the L3 norm of the vector x. The function CS denotes

the Schweizer-Sklar standard extension copula defined CS =
∑rs

k=1 hk1Ak
, where hk :

Ak → [0, 1] is the linear interpolant of the copula values of the vertices of the rectangle

Ak. Clearly, if the maximal marginal probability is zero, i.e. the random variables

are continuous, the non-continuous definition agrees with the conventional definition.

Nešlehová (2007) also shows that the non-continuous Spearman grade correlation of

the empirical copula equals Spearman’s rank correlation coefficient, a result which is

used extensively in the next section. The Schweizer-Sklar standard extension of the

empirical copula is denoted ĈS
n . The graph of a Scheweizer-Sklar standard extension of

the empirical copula for a particular data set is pictured in Figure 2.

3. Relations between the two

The aim of the present section is to find an expression for the empirical polychoric cor-

relation coefficient as a function of Spearman’s rank correlation coefficient, and thereby

establishing a relation between Spearman’s rank correlation coefficient and the poly-

choric correlation coefficient.

Proposition 1. In the notation of Section 2, for any rectangle Ak it holds that
∫
hk1Ak

dλ =

akλ(Ak).

Proof. Let Ak = [ui−1, ui)×[vj−1, vj). The only non-constants of hk are the interpolation

coefficients, and these are all of the form (x−ui−1)/(ui−ui−1) and (ui−x)/(ui−ui−1).

Integration over the interval [ui−1, ui) with respect to x yields (ui − ui−1)/2. Thus, a
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factor (ui − ui−1)(vj − vj−1)/4 = λ(Ak)/4 breaks out, and the statement follows after

collecting terms and substituting for ak. �

Corollary 2. In the notation of Section 2, it holds that
∫
ĈS
n dλ =

∫
Êndλ.

A consequence of Corollary 2 is that for the purpose of computing the Spearman

grade correlation it is equivalent whether the postulated underlying continuous joint

distribution function is approximated by the simple function Ên or by the Schweizer-

Sklar standard extension ĈS
n . Therefore, the empirical polychoric correlation coefficient

can equivalently be defined as repc = 2sin(ρS(Ĉ
S
n )π/6), i.e. as a function of the Schweizer-

Sklar standard extension of the empirical copula.

The following theorem is the main result of this section.

Theorem 3. In the notation of Section 2, for any contingency table it holds that

repc = 2sin
(
rS

(
(1− ||∇u⃗||33)(1− ||∇v⃗||33)

)1/2
π/6

)
. (3)

Proof. By definition, repc = 2sin(ρS(Ên)π/6), and by Nešlehová (2007) it holds that

rS = ρS(Ĉ
S
n )/

(
(1− ||∇u⃗||33)(1− ||∇v⃗||33)

)1/2
. The statement then follows by Corollary 2

and substitution. �

Some numerical examples of Equation (3) are the following. If the maximal marginal

probability of the contingency table is one third, the relative difference between the em-

pirical polychoric correlation coefficient and Spearman’s rank correlation coefficient, i.e.

|(repc−rS)/rS |, is less than 11%. If the maximal marginal probability of the contingency

table is one quarter, the relative difference is less than 6%, and if the maximal marginal

probability is one fifth, the relative difference is less than 4%. For most applications, a

relative difference of 6% or less can be considered negligible, in the sense that it carries

no appreciable impact on the conclusions of the association analysis.

The next theorem states some properties of the relationship.

Theorem 4. The relation between Spearman’s rank correlation coefficient, rS, and the

empirical polychoric correlation coefficient, repc, has the following properties:

(a) the function f : rS 7→ repc is a homeomorphism under given marginal probabilities,

(b) Spearman’s rank correlation coefficient is zero if and only if the empirical polychoric

correlation coefficient is zero,

(c) Spearman’s rank correlation coefficient is positive (negative) if and only if the em-

pirical polychoric correlation coefficient is positive (negative).

Proof. (a). If either ||∇u⃗||33 or ||∇v⃗||33 equals one, then some value have probability one.

Then rS is zero because (rank(xk), rank(yk))
n
k=1 have sample covariance zero, and repc

is zero as well, and the function is clearly a homeomorphism. Otherwise, note that the

function g(x) = sin(xπ/6) is a homeomorphism on the domain [−1, 1], so for all c ∈ (0, 1]

the function g̃(x) = sin(cxπ/6) is also a homeomorphism on the same domain. Thus,

the function given by Equation (3) is a homeomorphism.
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(b). If either ||∇u⃗||33 or ||∇v⃗||33 equals one, then some value have probability one, so

both rS and repc are zero. Otherwise, the function f : rS 7→ repc, given by Equation (3),

clearly has a fixed point at zero, and since it is a bijection it has no other zeroes.

(c). Because the factor
(
(1− ||∇u⃗||33)(1− ||∇v⃗||33)

)1/2
is non-negative, the function

f : rS 7→ repc, given by Equation (3), is non-decreasing. The statement then follows by

(a) and (b). �

As a consequence of Theorem 4, the conclusions of association analyzes conducted

with the empirical polychoric correlation coefficient and Spearman’s rank correlation

coefficient, respectively, can differ only in terms of the strength of the association. From

Equation (3) it is clear that the absolute value of Spearman’s rank correlation coeffi-

cient in general is greater than that of the empirical polychoric correlation coefficient,

resulting in the conclusion of a stronger association when using Spearman’s rank cor-

relation coefficient versus the empirical polychoric correlation coefficient. The relative

difference is, however, generally small. The statistical reasons for the difference in values

between the empirical polychoric correlation coefficient and Spearman’s rank correlation

coefficient is discussed in Section 4.

Let r̃S be the variant of rS given by r̃S = 2sin(rSπ/6). The term variant is used

because the maximum absolute difference, sup|r̃S − rS |, is less than 0.02, and the maxi-

mum relative difference, sup|(r̃S − rS)/rS |, is less than 0.05, i.e. five percent. Therefore,

the difference between rS and the variant r̃S can for most purposes be considered negli-

gible. By the next result, the variant of Spearman’s rank correlation coefficient and the

empirical polychoric correlation coefficient are asymptotically equivalent, in a certain

sense.

Theorem 5. For a given underlying joint distribution, if the numbers of categories, r

and s, increase such that the maximal difference of cumulative marginal probabilities

goes to zero as r, s → ∞, then:

(a)

lim
n→∞

lim
r,s→∞

r̃S − repc = 0 almost surely,

(b)

lim
n→∞

lim
r,s→∞

r̃S = ρpc almost surely.

Proof. (a). By hypothesis, ||∇u⃗||33 and ||∇v⃗||33 go to zero as r, s → ∞. By the strong

law of large numbers and the Slutsky theorem, the sample analogues go to zero almost

surely. The statement then follows by Equation (3) and continuity.

(b). By Theorem 2 of Ekström (2009), limn limr,s repc = ρpc almost surely under

the present hypothesis. Therefore, the statement then follows by (a) and the Slutsky

theorem. �
Corollary 6. If the statement of Assumption A1 is true, then the polychoric correlation

coefficient and the variant of Spearman’s rank correlation coefficient are asymptotically

equivalent in the sense of Theorem 5.
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The interpretation of Theorem 5 and Corollary 6 is that the empirical polychoric

correlation coefficient, repc, and the variant of Spearman’s rank correlation coefficient, r̃S ,

approximate each other and the theoretical population polychoric correlation arbitrarily

well, if only the sample size and the numbers of categories are large enough. General

rules-of-thumb are, of course, difficult to establish. One of the main techniques for

studying the rate of convergence in situations such as the present is so-called simulation

studies, see, e.g., Ekström (2009).

4. Differences between the two

Between the empirical polychoric correlation coefficient and Spearman’s rank correla-

tion coefficient there are two distinctive differences. In terms of construction, all poly-

choric correlation coefficients rest on an assumption of a continuous underlying joint

distribution. When applied to contingency tables, Spearman’s rank correlation coeffi-

cient, being the linear correlation of the ranks, implicitly assumes an underlying joint

distribution which is discrete. In terms of value, the absolute value of Spearman’s rank

correlation coefficient is in general greater than that of the empirical polychoric correla-

tion coefficient, and Spearman’s rank correlation coefficient attains the boundary values

±1 in certain cases when the empirical polychoric correlation coefficient does not. Of

these two distinctive differences, the latter is a consequence of the former.

If the two ordinal variables have equal numbers of categories and all joint probabili-

ties off one of the main diagonals are zero, then Spearman’s rank correlation coefficient

have absolute value one, while the empirical polychoric correlation coefficient have ab-

solute value less than one. Following the axiomatic definition of Rényi (1959), and later

Schweizer & Wolff (1981), a measure of association should attain the boundary values

±1 only if the two variables are strictly monotonic functions of each other. Whether the

two variables are strictly monotonic functions of each other or not, in this case, depends

on the underlying joint distribution.

In precise mathematical terms, when applied to contingency tables Spearman’s rank

correlation coefficient being equal to one implies that the variables are strictly increasing

functions of each other if and only if the support of the underlying joint distribution is

C × D, the Cartesian product of the sample spaces of the two ordinal variables, respec-

tively. However, if at least one of the two ordinal variables is the result of some form

of discretization, such as grouping of values into categories or even numerical rounding,

the implication does not hold. For instance if the two ordinal variables have an underly-

ing continuous joint distribution, cf. Assumption A1, then Spearman’s rank correlation

coefficient does not satisfy the axiomatic definitions of Rényi (1959) and Schweizer &

Wolff (1981).

In practice, many variables are ordinal as a result of difficulties of measurement; ex-

amples include quality, design, user-friendliness, esthetics, emotions, opinions, utility,

and many more. However, subject experts often regard these mentioned variables as
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fundamentally continuous in nature; therefore the underlying continuous joint distribu-

tion assumption. The use of Spearman’s rank correlation coefficient on ordinal variables

of this kind can potentially lead the analyst into concluding that the underlying joint

distribution exhibits perfect dependence, even though empirical data cannot possibly im-

ply the conclusion. The empirical polychoric correlation coefficient, on the other hand,

attains the bounds ±1 only if the underlying distribution is perfectly dependent, which

is the desired property.

5. Illustrational example and visualizations

In this section, the use of the two measures of association, the empirical polychoric

correlation coefficient and Spearman’s rank correlation coefficient, is discussed in the

light of a data set. Moreover, the data set serves to illustrate visualization techniques

for the association of ordinal variables, under the assumption of a postulated continuous

joint distribution.

Table 1 shows an excerpt from the World Health Organization (WHO) report Alcohol,

Gender and Drinking Problems (Obot & Room, 2005). Brazilian men and women, age

17 and older, were surveyed about their alcohol consumption. Table 1 shows how 595

respondents reported their education, and their alcohol consumption during the past

twelve months.

When questioned about alcohol consumption, respondents were asked to convert num-

bers of beers, glasses of wine, et cetera, into grammes of alcohol and then choose one of

seven categories. Consequently, alcohol consumption is an inherently continuous variable

that has been grouped into ordered discrete categories. Since education is measured in

terms of time, education is also considered as being a grouped, or discretized, continu-

ous variable. Therefore, both education and alcohol consumption are considered to have

continuous underlying distributions.

For this data set, though, it is difficult to make an assertion about the distributional

family of the postulated continuous joint distribution, and therefore the conventional

polychoric correlation coefficient is not particularly suitable to use as a measure of asso-

ciation. The empirical polychoric correlation coefficient, on the other hand, is deemed

suitable since it rests only on the assumption of existence of an underlying continuous

joint distribution. Also of interest for the association analysis, Pearson’s chi-square test

for independence is rejected on all conventional significance levels.

For the data set of Table 1, the empirical polychoric correlation coefficient is 0.24. A

95% confidence interval, constructed using the percentile method under non-parametric

bootstrap, is estimated to (0.16, 0.31). Spearman’s rank correlation coefficient, for com-

parison, is 0.26 with its 95% confidence interval estimated to (0.18, 0.33). The difference

between the two, which also is given by Equation (3), is negligible in the sense that is

does not impact the conclusions of the association analysis.
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Table 1. Alcohol consumption versus education, survey data from Brazil 2005.

Education Alcohol consumption

None � - Heavy

≤ 7 years 147 36 42 10 5 4 8

8 to 11 years 80 50 48 26 12 11 10

≥ 12 years 25 32 25 9 4 6 5

Note: Figures represent numbers of respondents.

Source: Obot & Room (2005)

From a theoretical point of view, for this data set the empirical polychoric correlation

coefficient is more suitable than Spearman’s rank correlation coefficient, since the as-

sumption of a continuous joint distribution is more appropriate than an assumption of an

inherently discrete joint distribution. On the other hand, as is illustrated by this exam-

ple and discussed in Sections 3 and 4, the choice between the two generally makes little

difference for the conclusions of the association analysis. Though, if in doubt whether the

postulated joint distribution should be considered continuous or discrete, i.e. whether to

use the empirical polychoric correlation coefficient or Spearman’s rank correlation coef-

ficient, the former is the safer choice in the sense that it is a more conservative estimate

of the theoretical population polychoric correlation.

The Schweizer-Sklar standard extension of the empirical copula of the data set of

Table 1 is pictured in Figure 2. Each rectangle on the graph corresponds to a cell of

Table 1, and the vertices on the graph correspond to the values of the empirical copula.

By Corollary 2, the empirical polychoric correlation coefficient and Spearman’s rank

correlation coefficient are both functions of the integral of the Schweizer-Sklar standard

extension of the empirical copula, ĈS
n . The fact that the graph is concave implies that

there is a positive association between the two ordinal variables.

Also pictured in Figure 2 is the graph of the density function corresponding to the

Schweizer-Sklar standard extension of the empirical copula. In the density graph it is

seen that there is more probability mass on the positive diagonal than on average. Hence,

the positive association is visualized. In the graph, other aspects of the association, such

as for example possible tail dependence, can also be seen. All in all, the graph of the

density function is an informative illustration of the association between the two ordinal

variables.

6. Conclusions

By the main theorem of the present article, Spearman’s rank correlation coefficient

can be expressed as a deterministic transformation of the empirical polychoric correla-

tion coefficient, and vice versa. The transformation is a homeomorphism under given

marginal probabilities, has a fixed point at zero, and the two measures of association are
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(a) Copula
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(b) Density

Figure 2. Graph of the Schweizer-Sklar standard extension of the em-

pirical copula corresponding to Table 1, and its density function.

asymptotically equivalent in a certain sense. In general, the absolute value of Spearman’s

rank correlation coefficient is greater than that of the empirical polychoric correlation

coefficient.

If one or both of the ordinal variables is the result of some form or discretization, such

as grouping of values into categories, Spearman’s rank correlation coefficient has the

undesired property that the measure of association can equal ±1 even though empirical

data cannot possibly imply that the non-discretized variables are strictly monotonic

functions of each other. In this respect, the empirical polychoric correlation coefficient is

more conservative and better suited for statistical inference about the association of the

underlying, non-discretized variables. Furthermore, from the perspective of Theorem 5

association studies should be designed so that ordinal variables have the largest numbers

of categories feasible.

Acknowledgements

This article was prepared during a visit to UCLA Department of Statistics, and the

author is grateful for the generosity and hospitality of all department faculty and staff,

and particularly Distinguished Professor Jan de Leeuw. In the manuscript preparation,

Professor Bengt Muthén generously provided valuable comments. My thanks also to two

anonymous reviewers and an associate editor who provided valuable comments. This

work was supported by the Jan Wallander and Tom Hedelius Research Foundation,

project P2008-0102:1.

References

Camp, B. H. (1933). Karl Pearson and Mathematical Statistics. J. Amer. Statist. Assoc.,

28 , 395–401.



ON THE RELATION BETWEEN THE POLYCHORIC CORR... 15

Ekström, J. (2008). A generalized definition of the polychoric correlation coefficient. In

Contributions to the Theory of Measures of Association for Ordinal Variables. Ph.D.

thesis, Uppsala: Acta Universitatis Upsaliensis.

Ekström, J. (2009). An empirical polychoric correlation coefficient. In Contributions to

the Theory of Measures of Association for Ordinal Variables. Ph.D. thesis, Uppsala:

Acta Universitatis Upsaliensis.

Galton, F. (1888). Co-relations and their measurement, chiefly from anthropometric

data. Proc. Roy. Soc. London, 45 , 135–145.

Nelsen, R. B. (2006). An Introduction to Copulas, 2nd ed . New York: Springer.
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