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ABSTRACT OF THE DISSERTATION

Coping with Dependent Failures in Distributed Systems

by

Flavio Junqueira

Doctor of Philosophy in Computer Science

University of California, San Diego, 2006

Professor Keith Marzullo, Chair

Professor Geoffrey M. Voelker, Co-chair

Traditionally, fault-tolerant systems assume that failures are independent, of-

ten expressed as a threshold on the number of failures. This assumption, however, is in-

creasingly unrealistic for current distributed systems. This dissertation presents a model

of dependent failures based on two abstractions: cores and survivor sets. Cores are

minimal sets of processes such that at least one process is correct in every execution.

Survivor sets are minimal sets of processes such that in every execution at least one sur-

vivor set contains only correct processes. This model has both theoretical and practical

use. Theoretically, this model enables more flexible designs of distributed algorithms.

This flexibility often improves efficiency; for example, it enables systems to meet reli-

ability goals with fewer processes. Practically, I apply these replication techniques for

multi-site systems that tolerate site failures, and for cooperative backup systems that

tolerate Internet attacks.

Multi-site systems, such as grid systems, experience failures that render all the

processes in a site unavailable. These failures are often caused by failures of shared re-

xiii



sources. Under such site failures, previous availability results on replication techniques,

such as quorum systems, no longer necessarily hold. Using a failure model that explic-

itly captures dependent failures, I develop techniques for selecting replicas and forming

quorums that do have optimal availability in multi-site systems.

Internet attacks by worms and viruses can infect a large number of hosts, re-

sulting in catastrophic failures. To cope with such attacks, I propose a new approach for

designing distributed systems called informed replication. Informed replication uses a

model of correlated failures to exploit software diversity. To demonstrate this approach,

I design and evaluate a cooperative backup service called The Phoenix Recovery System.

Phoenix uses heuristics to select replicas that provide excellent reliability guarantees, re-

sult in low degree of replication, limit the storage burden on each host in the system, and

lend themselves to a distributed implementation.

Incorporating dependent failures into the design of systems and algorithms

therefore results in important advantages such as more efficient algorithms, higher avail-

ability and efficient utilization of resources. As systems increase in size and extent, these

advantages will become increasingly more effective.

xiv



Chapter 1

Introduction

Incorporating dependent failures into the design of distributed algorithms has

both theoretical and practical benefits. Theoretically, it enables algorithms that use fewer

replicas and complete executions in fewer rounds of message exchange. In practice, it

enables higher available fault tolerant systems and replicated systems that use resources

more efficiently. This dissertation presents a new model of dependent failures for the

design of fault-tolerant distributed systems and demonstrates the theoretical benefits

of this model by developing new algorithms that improve upon previous fundamental

results, as well as its practical benefits by applying it to wide-area distributed systems.

Computer systems are ubiquitous. Individually, people use computers at home

to accomplish a variety of tasks, ranging from text editing through bank account access.

Users also largely rely on computers at work to maintain and generate information,

such as e-mail messages and electronic documents. At the enterprise level, corporations

depend upon large data centers to store sensitive data and accomplish mission-critical

tasks. Banks require a secure computing infrastructure to register transactions and main-

tain customer information. Internet companies rely upon front-end servers connected to

the Internet to deliver the best user experience and on back-end servers to accomplish

business tasks, such as keeping the inventory up to date and charging customers for pur-

chases. In science, researchers rely upon distributed resources to conduct experiments

that require a vast amount of computational power, such as large-scale simulations or

1
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visualization of large data sets. Traditionally, mission-critical applications, such as air-

craft control, control of industrial processes, and control of nuclear plants, have also

depended upon computer systems as they enable faster and more reliable responses in

critical situations.

Perhaps most important is that this reliance upon computer systems has been

increasing over time. Figures from the U.S. Census Bureau show how the use of com-

puters has been increasing. First, 56% of the households in the United States had a

computer in 2001, compared to 61% in 2003 [Bura]. Second, still in 2003, 56% of the

workforce use a computer in the work environment, and approximately 42% have access

to the Internet [Bura]. Although these numbers do not show the overall use of computer

systems in companies, it is clear that a significant fraction of these users depend on a

computing infrastructure composed of servers and network interconnection to accom-

plish their job-related tasks. Third, e-commerce sales increased 24% in 2005 compared

to the previous year [Burc], and the overall number of computers manufacturers shipped

has increased by 1.5 millions between 2003 and 2004 [Burb].

Because we increasingly rely upon computer systems, a computer failure can

wreak havoc: it can cause a small disruption of our daily routines when our desktop is

not working, or it can have a more serious impact that can be either life threatening or

business threatening in the case of mission-critical systems. A survey conducted by a

market research company in 2005 shows that downtime due to failures costs millions of

dollars yearly to large companies across the United States [Res], consequently adding

to the cost of ownership [Pat02]. Building systems at all levels that are able to operate

correctly despite failures is therefore an important mission for designs of current and

future computer systems.

Fault tolerance in computer systems is a field that has been studied contin-

uously for the past three decades. Its applications, however, have been so far mostly

to mission-critical, highly-specialized systems (e.g., air traffic control and stock ex-

change [Bir99]). There are several techniques that have been used to cope with failures

in computer systems. At a high level, these techniques can be classified as building more
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robust hardware components, detecting/recovering from failures, and masking failures.

Computer systems can achieve higher reliability by using more reliable com-

ponents, i.e., components that have longer time between failures. These components can

be more robust by using more reliable parts or more suitable materials. For example,

computers can be built with more reliable disks and memory, or even be placed inside

steel cases for physical protection as well as protection against natural disasters such as

fires and floods.

When using more reliable components is not an option, it is still possible to

implement highly-reliable systems using less reliable components. At the heart of these

techniques is a common approach called replication. Replication consists of using a

set of replicas of a particular component. For example, instead of using one server for

a particular service, a system can use multiple copies of the same service. A detec-

tion/recovery approach, such as primary-backup, assumes that at most one replica at a

time has the authority to reply to client requests. For example, in a replicated file system

implemented with this technique, the primary replica handles reads and writes issued to

the file system. If the primary fails, then there is a detection mechanism responsible for

indicating this failure, and for triggering the election of a new primary replica. Once

a new replica is elected, this replica takes over the role of a primary. Transferring the

primary responsibilities from a faulty primary to a working one constitutes the recovery

step.

A different approach, called masking, consists in making failures transparent

to clients. Using the same replicated file system example, a masking technique provides

seamless access to files and directories despite failures, whereas in the primary-backup

approach there is a detection step and a recovery step when the primary fails. A typ-

ical masking technique is quorum update. Given a set of replicas, operations such as

reads and writes to the file system execute concurrently in a quorum of replicas. Thus,

a system is available as long as at least one quorum of replicas is available for a partic-

ular operation, and the overall availability of the system depends upon the choices for

quorums. There are constraints to these choices, though. Quorums, for example, must
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intersect in order to preserve the consistency of the application state.

Replication, however, is not necessary only when coping with failures of a sin-

gle computer. Several of the computing infrastructures mentioned previously are in fact

distributed. Companies have offices spread across the globe, each of these offices com-

prising a small part of the computational capacity owned by the company. Banks have

several branches in one or more countries. Grid systems used by scientists to conduct

experiments have resources such as CPUs and storage nodes spread across a number of

sites in different geographic locations [FK99]. In all these cases, it is often necessary

to coordinate the actions of two or more computers to guarantee the integrity and the

consistency of application state (collection of data objects used by the application).

There is a number of well-known, fundamental problems in distributed com-

puting related to the coordination of multiple computers: agreement upon one sin-

gle value (Consensus [Mul95a]), reliable dissemination of messages (Reliable Broad-

cast [Mul95a]), and election of one single replica to perform a particular task on behalf

of the system (Leader Election [AW98b]). Depending on the particular problem we are

trying to solve, there exists some constraint on the amount of replication of a particular

component. In distributed systems, a computing unit is modeled as a process, and a

process hence is the abstraction used for a computer. When considering process repli-

cation, there are often constraints on the number of processes of the form n > k · t,

where n is the number of processes, t is a threshold on the number of process failures

and k is a multiplying factor. There are many examples in the literature of problems

that have such requirements. One example of particular importance is the consensus

problem [Mul95a]. This problem is important, for example, in the replicated file sys-

tem example discussed before. To guarantee eventual consistency across the state of all

replicas, it is necessary and sufficient to have all correct replicas applying the same set

of operations and in the same order, assuming the replicas execute only deterministic

operations [Sch90]. Consensus has an important role in the decision of the sequence

of operations to execute on replicas. Informally, consensus consists of having a set of

processes, which communicate by exchanging messages, deciding upon the same value,
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where each process proposes one possible decision value. Assuming that processes can

fail arbitrarily, there is no solution to this problem if n ≤ 3·t. Thus, the problem requires

n > 3 · t. We discuss the consensus problem further in Chapter 3.

Modeling failures of processes using a single threshold t is attractive as it con-

denses all possibilities for subsets of faulty processes in a single value. We call this

model the threshold model. The threshold model captures well process failures that are

independent and identically distributed. That is, failures have the same probability dis-

tribution and have joint probabilities equal to the multiplication of the individual prob-

abilities. In such cases, for any group of processes of size s, the probability of having

all s processes simultaneously faulty is some constant. To determine the threshold in a

particular scenario, it is simply a matter of selecting a value, perhaps using probabilities,

that is more appropriate for a particular application.

Failures in practice, however, are often not independent. Multiple racks within

a data center fail due to shared resources (e.g., storage devices [BWWG02]), operational

errors, and physical problems such overheating [AWL05], thus bringing all of its re-

sources down and rendering them unavailable. Large-scale Internet attacks rely upon

the existence of vulnerabilities shared by a large number of hosts. Internet pathogens

that exploit such vulnerabilities may compromise a large number of hosts, perhaps caus-

ing them to behave arbitrarily [MSB02].

Reliability engineers have approached dependent failures in the past when de-

signing safety-critical systems such as the ones for nuclear plants [Mos91]. They have

used techniques such as fault trees to model the dependencies among components of

a system [DBB93]. Fault trees model in detail the components of systems and their

relationships.

In distributed systems, however, coping with dependent failures is not a well-

studied problem. There are three main reasons for this state of affairs. First, both algo-

rithm and system designers often believe that dealing with dependent failures is a daunt-

ing task, and using a threshold not only simplifies substantially the design but it is also a

conservative assumption. Although techniques such as fault trees can be used, they are
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often not sufficiently abstract when designing algorithms. We address this concern by

proposing a new model that can be used both in the design of algorithms and systems,

and show how to use it. Second, sources of failure correlation are not well abstracted,

and consequently integrating dependent failures into designs has been overlooked. We

discuss examples of real systems in which we identify the sources of failure correlation

and incorporate this information into a failure model that enables the development of

mechanisms that achieve the goals for the system. Third, there is a common belief that,

if failures are correlated, then the failure of one component implies the failure of all the

other components. This is true when, for example, all processes run the same software,

as a software fault may cause the failure of all the processes. In general, faults that affect

the whole system are not covered in our work. Although important, reducing the risk

of software faults in deployed software is a study area of software engineering, and it is

out of the scope of this work.

Outline and Summary of Contributions. When discussing fault tolerance, it is often

important to distinguish faults, errors, and failures. According to the IEEE Standard

Glossary of Software Engineering Terminology [Ins90], a fault is either a software or

a hardware defect. An error is an incorrect step, process, or data definition. A failure

is a deviation from the expected correct behavior. As an example, if a programmer

introduces an invalid set of instructions, and the execution of these instructions causes

a computer to crash, then the introduction of these instructions into the program is the

fault, executing them is the error, and crashing the computer is the failure. When testing

software, for example, it is very important to distinguish between failures and faults as

the failures are the observable events, but to fix software problems it is necessary to map

them to faults. In this work, however, we only consider the consequences of faults, i.e.,

we only consider failures.

We first introduce a new abstract model of dependent failures that enables the

design of algorithms and systems in which failures are dependent (Chapter 2). This

model is based on two abstractions that correspond to more general versions of two
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common objects found in the design of algorithms for distributed systems: subsets of

processes of size t+1 and subsets of processes of size n− t. Cores generalize subsets of

processes of size t+1, subsets in which at least one process is correct, and survivor sets

generalize subsets of processes of size n− t, subsets that contain only correct processes

in some execution. This model is simple, yet it is more expressive to describe subsets

of faulty processes, thus enabling the design of a number of interesting algorithms for

dependent failures.

Using this model, we derive a number of new results related to consensus in

Chapter 3. We consider synchronous systems as well as asynchronous systems. Syn-

chronous systems are systems in which the clocks of processes are synchronized within

some bound. This enables non-faulty processes to proceed in rounds of message ex-

change. For synchronous systems, this chapter discusses the lower bound on the number

of rounds to solve consensus, and presents properties that are necessary and sufficient

to solve consensus in our new model along with optimal algorithms with respect to pro-

cess replication. An interesting result out of the lower bound on the number of rounds

is the difference on the minimum number of rounds when different failure modes are

considered (e.g., crash vs. arbitrary) for some systems. This result is surprising as this

is not the case for the threshold model. Thus, considering dependent failures enables

the design of algorithms that are theoretically more efficient. Asynchronous systems are

systems in which message delay, processor speed, and clock drift are unbounded. These

assumptions preclude the use of synchronous rounds of message exchange as for syn-

chronous systems. For asynchronous systems, this chapter explores the difficulties of

reaching consensus and solutions. More specifically, we present properties on process

replication that are necessary and sufficient to solve consensus with dependent failures

in asynchronous systems as well as algorithms that solve this problem and are optimal

with respect to process replication.

In studying algorithms for consensus in both types of systems, we also intro-

duce new forms of requirements on process replication based on set properties: Crash

Partition, Crash Intersection, Byzantine Partition, and Byzantine Intersection. Partition
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properties express constraints on how the set of processes can be partitioned to enable

solutions. Similarly, intersection properties express constraints on the intersection of

survivor sets. These partition and intersection properties constitute more general forms

of requirements of the forms: n > t, n > 2 · t, and n > 3 · t.

In Chapter 4, we study partition and intersection properties that generalize

requirements under the threshold model of the form n > k · t, for integer k > 1.

We also study a set of unusual partition and intersection properties: (k,k − 1)-Partition

and (k,k − 1)-Intersection, k > 1. These properties have more general forms of n >

bk ·t/(k−1)c. This requirement appears, for example, in the context of primary-backup

protocols for receive-omission failures of processes, k = 3. Informally, in the primary-

backup approach to replication, it is necessary to elect a new primary every time the

current primary fails. The lower bound on process replication for this problem in the

receive-omission failure model has been known for many years to be n > b3 · t/2c.

In Chapter 4, we review this proof and we present for the first time an algorithm for

this problem that uses (3,2)-Intersection. A proof of correctness for this algorithm is in

Appendix A.

In the last two chapters of this dissertation, we present techniques that take

dependent failures into account not only to improve fault-tolerance in practical applica-

tions, but also to use resources more efficiently by:

1. Achieving higher availability with the same set of resources (Chapter 5);

2. Reducing the storage overhead when replicating data (Chapter 6).

With the proliferation of projects related to Grid Systems and large companies

relying upon distributed infrastructures, there is an increasing interest in systems com-

posed of multiple sites, or multi-site systems. In addition to process failures, multi-site

systems experience dependent failures in the form of site failures: failures that bring all

the nodes in the faulty site down. In Chapter 5, we show that in scenarios in which site

failures can happen, quorums formed of majorities are not necessarily optimal with re-

spect to availability, a result that has been known for two decades to hold when failures
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are independent and identically distributed. We then provide a few constructions that

are optimal with respect to one metric that consists in counting the number of covered

survivor sets, and present results of a small experiment consisting of running Paxos on

PlanetLab (Paxos uses quorums implicitly). The results of the PlanetLab experiment

show that our construction is more available than a majority system that uses the same

number of hosts when there are failures. This conclusion holds because there are more

cases in which no quorums are available for the majority system we considered.

In Chapter 6, we propose a technique called informed replication. Informed

replication uses attributes of processes and cores to determine how to choose replica

sets in a system. Heuristics based on this technique enable hosts to survive large-scale

attacks, such as the outbreak of a worm or a virus, with a modest amount of replication

compared to “uninformed” techniques that do not take the heterogeneity of hosts into

consideration. These heuristics are interesting because they provide excellent reliability

guarantees, result in low degree of replication, limit the storage burden on each host in

the system, and lend themselves to a fully distributed implementation. We used one of

these heuristics to build The Phoenix Recovery System, a system designed to tolerate

large-scale attacks of worms and viruses. Our evaluation on PlanetLab (a distributed

testbed) shows that our results hold in practice: hosts have a high probability of recover-

ing data after a large-scale Internet attack, using a small number of replicas (on average

less than two), and committing a modest amount of resources to the system (each host

holding replicas for at most three other hosts).

In summary, this dissertation presents several results that demonstrate the ben-

efits, both theoretical and practical, of incorporating dependent failure information into

the failure model when designing fault-tolerant systems. Chapter 7 discuss in more

detail the conclusions on results of this work.



Chapter 2

A new model of dependent failures

In this chapter, we present a new model for systems in which failures are not

necessarily independent and identically distributed. This model is useful when design-

ing algorithms for dependent failures, as we illustrate in the next chapter with algorithms

for the consensus problem. We first introduce two common abstractions in models of

distributed systems: processes and channels. Processes and channels abstract real world

components such as computers and networks. We then present the two abstractions that

compose our proposed model, which we call cores and survivor sets. Cores and survivor

sets are subsets of processes that characterize possible failures in a system. Finally, in

the last section of this chapter, we discuss related work on failure characterization.

2.1 Processes and channels

Distributed systems are often comprised of multiple computers interconnected

by a message-passing network. To abstract the details of real world computers and

networks, computers are often modeled as processes (or processors) and networks as

channels that interconnect the processes. A process models a unit capable of computing,

and it proceeds in atomic steps. Channels simply store and forward messages.

Henceforth, we assume that a system is a set Π of processes pairwise inter-

connected by channels. We consider systems in which processes can be faulty. We will

10
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leave the possible failure modes unspecified, however, as they depend on the particular

problem we want to solve and they are not required for the exposition of our model.

Throughout the following chapters, we assume that all of the channels connecting pro-

cesses are quasi-reliable [ACT97]:

• If a correct process pi sends a messagem to a correct process pj , then pj eventually

receives m;

• Messages are not duplicated;

• A process pj receives a message m from a process pi only if pi has sent m to pj .

In the remainder of this chapter, we only consider faulty processes.

2.2 Cores and survivor sets

Typically, system models use a single threshold t to characterize failure sce-

narios. Under such a failure model, the value t constitutes an upper limit on the number

of processes that can fail in any execution. That is, it makes no distinction among sub-

sets of processes, and any subset of t processes is subject to failure. We call this model

the threshold model. This model is appropriate when failures are independent and iden-

tically distributed because in such cases all subsets of processes of the same size have

the same failure probability. In practice, different subsets of processes of the same size

might have different probabilities of failure. This implies that using just a threshold may

cause algorithms either to use more processes than necessary, or perhaps to violate the

assumption on the number of faulty processes if failures are assumed to be independent

but they are not. Violating the assumption on the number of processes may cause an

algorithm to execute incorrectly.

Instead of using a simple threshold, we characterize failure scenarios with

cores and survivor sets [JM03a, JM03b, JM05a]. A core is a minimal subset of processes

such that, in every execution, there is at least one process in the core that is not faulty. A
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core generalizes the idea of a subset of processes of size t+ 1 in the threshold model. A

survivor set is a minimal set of processes such that there is an execution in which none

of the processes in the set are faulty. A survivor set generalizes the idea of a subset of

processes of size n− t in the threshold model, where n is the total number of processes.

Cores and survivor sets are duals of each other: from the set of cores, the set of survivor

sets is the set of all minimal subsets of processes that intersect every core. Similarly,

from the set of survivor sets, the set of cores is the set of all minimal sets of processes

that intersect every survivor set.

To define cores and survivor sets more formally, we first define executions.

Informally, an execution encompasses all the operations executed by a distributed algo-

rithm as well as environmental behavior such as process failures and message delays.

An execution E is a tuple 〈Init, Steps,Time,Faulty〉, where Init is a mapping from pro-

cess to initial state, Steps is a set of steps of processes, Time is a mapping from steps in

Steps to positive integers, and Faulty is a mapping from step to the subset of processes.

The initial state of a process depends upon the problem we are solving. For example,

for the consensus problem, the initial state is a single value in a set of possible initial

values. The second component Steps is a set of steps of processes. The definition of

a step includes sending one or more messages, receiving one or more messages, and

executing local operations. We refine the definition of a step throughout the following

chapters, and for now we leave it undefined. We also use StepsOf (i) to denote the subset

of Steps containing the steps of process pi. The mapping Time maps steps to integers

that represent global time generated by some external device. Although processes do

not have access to such a device, we introduce this feature to enable discussions on the

order of steps. Finally, Faulty is a mapping from step to subset of processes, where

the subset comprises the processes that are faulty in the step. That is, given a step s

of some execution E, Faulty(s) evaluates to the set of processes that are faulty in step

s. In most cases, we assume that processes do not recover, and consequently Faulty is

monotonically increasing. In Chapter 5, however, we assume that processes can recover.

We are now ready to define cores and survivor sets more formally. Consider a
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system with a set Π of processes. Let E be all executions of a distributed algorithm. We

then have that:

Definition 2.2.1 A subset C ⊆ Π is a core if and only if:

1. ∀〈Init, Steps,Time,Faulty〉 ∈ E : ∀s ∈ Steps: Π \ Faulty(s) ∩ C 6= ∅;

2. ∀pi ∈ C: ∃〈Init, Steps,Time,Faulty〉 ∈ E : ∃s ∈ Steps: C \{pi}∩Π\Faulty(s) =

∅.

Definition 2.2.2 A subset S ⊆ Π is a survivor set if and only if:

• ∃〈Init, Steps,Time,Faulty〉 ∈ E : ∀s ∈ Steps: Π \ Faulty(s) = S;

• ∀pi ∈ S: ∀〈Init, Steps,Time,Faulty〉 ∈ E : ∀s ∈ Steps: Π \ Faulty(s) 6⊆ S \ {pi}.

If Faulty is monotonically increasing in all executions, then we can define

cores and survivor sets more concisely [JM05a]. Let Correct(E) be the set of pro-

cesses that are not faulty in an execution E = 〈Init, Steps,Time,Faulty〉 ∈ E . That is,

Correct(E)=
⋃

s∈Steps Faulty(s), E = 〈Init, Steps,Time,Faulty〉 ∈ E . We then have the

following definitions:

Definition 2.2.3 A subset C ⊆ Π is a core if and only if:

1. ∀E ∈ E : Correct(E) ∩ C 6= ∅;

2. ∀pi ∈ C: ∃E ∈ E : C \ {pi} ∩ Correct(E) = ∅.

Definition 2.2.4 A subset S ⊆ Π is a survivor set if and only if:

• ∃E ∈ E : Correct(E) = S;

• ∀pi ∈ S: ∀E ∈ E : Correct(E) 6⊆ S \ {pi}.

In [JM03a, JM03b], we defined cores and survivor sets using probabilities.

The alternative definition based on executions given above is more convenient when



14

discussing algorithms. In practice, one can use failure probabilities and a target relia-

bility (or availability) to compute the sets of faulty processes that can be tolerated, and

these sets determine the possible failures of an execution. However, one does not have

to determine sets of faulty processes to be tolerated on probabilities. As our example in

Section 2.3 shows, determining sets of faulty processes can be based on a combination

of quantitative and qualitative information.

We use the term system profile to denote a description of the tolerated failure

scenarios. In the threshold model, a system profile is a pair 〈Π, t〉, and means that any

subset of t processes in Π can be faulty. In our dependent failure model, the system

profile is a triple 〈Π, CΠ,SΠ〉, where CΠ is the set of cores and SΠ is the set of survivor

sets.1 We assume that each process is a member of at least one survivor set (otherwise,

that process can be faulty in each execution, and thus may best be ignored by the other

processes), and that no process is a member of every survivor set (otherwise, that process

is never faulty, which enables trivial solutions to many problems). The threshold system

profile 〈Π, t〉 is equivalent to the profile 〈Π, CΠ,SΠ〉 where CΠ is all subsets of Π of size

t+ 1 and SΠ is all subsets of Π of size |Π| − t.

We treat the kind of failure—crash, omission, arbitrary, etc.—as a separate part

of the failure model. The kind of failure is important both in the design of algorithms

and in the derivation of lower bounds. In some situations, such as with hybrid failure

models (for example, the model in [Chr90]), separating the kind of failures from the

system profile would be complex. In general, we do not assume any particular kind of

failure, but we do so when discussing specific problems.

Determining the system profile requires one to consider the possible causes of

process failures. For example, a process running on a particular processor fails if the

processor hardware fails (crash failure). As another example, if one has as a concern

software faults (bugs), then a process can fail if there is an error in one of the software

packages it depends upon and the system executes the erroneous instructions (which can
1Since CΠ and SΠ can be computed from each other, in fact the system profile could contain only one of these

two sets. We include both for convenience.
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Figure 2.1: Sets of executions. Ei is the set of executions that have at least one faulty replica running

version vi. The executions in an intersection between two sets are executions in which a software fault

causes processes running two different versions to fail.

result in an arbitrary failure) [GS91].

2.3 Determining a system profile

We now give an example of a system profile that we derive using qualitative

information. In the work by Castro et al. [CRL03], the authors observe that independent

software development ideally produces disjoint sets of software faults. This observation

is the basic idea of n-version programming, whose goal is to render software failures

independent. Of course, there is still a marginal probability that two or more replicas

fail in the same execution, but the assumption is that this probability is small enough

that it can be ignored.

Suppose we want to implement a fault-tolerant service using the state machine

approach [CL02, Sch90], and we are concerned about arbitrary failures arising from

software faults. Moreover, we want to leverage the existence of multiple standalone

implementations of this service we are interested in, as in BASE [CRL03]. In [CRL03],

Castro et al. propose a replicated NFS server using existing standalone implementations.

Using this approach, each of our replicas has two components: a standalone

implementation and a replica coordination component that implements a distributed
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consensus algorithm. Now suppose that there are five standalone versions available

for use: v1 through v5. Looking more carefully at the history of these versions, we dis-

cover that two of them reuse code from previous versions: v2 reuses a set X of modules

from v1, and v3 reuses modules Y from v1 and Z from v2 (a module is a collection of

functions and data structures). We also assume that X , Y , and Z are disjoint sets, and

that v4 and v5 were developed independently.

Assuming that every software module potentially has software faults, we have:

1) faults in the modules in X can affect both v1 and v2; 2) faults in the modules in Y can

affect both v1 and v3; 3) faults in the modules in Z can affect both v2 and v3.

Consider a system in which there is at least one replica running each of the five

versions. Let Ei be the set of executions in which at least one replica is faulty because

of a fault in the version vi. These sets of executions are related to each other as shown

in Figure 2.1.

Assuming one replica for each version, and assuming that at most one software

fault can be exercised in an execution, we have the profile of Example 2.3.1. This system

has sufficient replication to solve the consensus problem in a synchronous system with

arbitrarily faulty processes and no digital signatures (Section 3.3), and asynchronous

consensus assuming a mute failure detector (Section 3.4). The amount of replication is

also sufficient to implement a fault-tolerant state machine for arbitrarily faulty processes

using PBFT (Practical Byzantine Fault Tolerance) [CL02].

Example 2.3.1

Π = {p1, p2, p3, p4, p5}

CΠ ={{p1, p2, p3}, {p4, p5}} ∪ {{pi, pj} : i ∈ {1, 2, 3} ∧ j ∈ {4, 5}}

SΠ ={{pi, p4, p5} : i ∈ {1, 2, 3}} ∪ {{p1, p2, p3, pi} : i ∈ {4, 5}}

PBFT is an attractive protocol because it assumes a weak failure model. It was

designed, however, assuming a threshold failure model. In the system profile above,

the smallest survivor set has three processes, which means that there are executions in

which two processes are faulty. Hence, there is not enough replication to run PBFT:

seven processes are required to tolerate two faulty processes.
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Using our model instead, we are able to have a working implementation of

PBFT by having some processes running one copy of a version and others running

simultaneously two copies of the same version, and each copy voting as a separate

process. More specifically, if we have five processes, then we distribute copies of the

versions v1 through v5 as follows: one process executes one copy of v1, one process

executes one copy of v2, one process executes one copy of v3, one process executes two

copies of v4, and one process executes two copies of v5. It is easy to check that there is

no more than two faulty copies in any execution of this configuration under the failure

assumptions we previously described for these versions.

As an alternative to having multiple copies in each process, we can implement

a replica coordination component with a modified version of PBFT that can be run in

the five-process system of Example 2.3.1. In this case, the PBFT implementation needs

to know the system profile in the same way that an unmodified PBFT (one assuming a

threshold) needs to know the maximum number of faulty processes in an execution.2

This example illustrates an important point about dependent failures. Since

IID failures can be represented as a particular system profile, lower bound proofs that

hold for IID failures also hold in our model. However, if one has a system in which

failures are not IID, then one should use an algorithm that explicitly uses a system

profile. By using such an algorithm, it is often possible to use less replication than

required when using an algorithm developed using the threshold model. Example 2.3.1

illustrates this point. Because the maximum number of failures is two (the smallest

survivor set has size three and there are five processes), an algorithm that requires n >

3 · t in the threshold model cannot be executed in such a system as it requires at least

seven processes. According to our previous discussion, the amount of replication in the

system of Example 2.3.1 is sufficient for the algorithms in Chapter 3.
2The original PBFT algorithm assumes a threshold on the number of failures, but it is possible to modify it to

work with cores and survivor sets. Although we do not show for the general case, we show for one instance of the
PBFT algorithm, which is the algorithm of Section 3.4.2.
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2.4 Survivor sets, fail-prone systems, and adversary structures

We are not the first to consider non-IID behaviors: quorum systems have ad-

dressed the issues of non-IID behavior for some time. In [MR97a], the idea of fail-prone

systems was introduced. This paper gives the following definition for a set of servers U :

A fail-prone system B ⊆ 2U is a non-empty set of subsets of U , none of
which is contained in another, such that some B ∈ B contains all the faulty
servers.

This paper then observes that a fail-prone system can be used to generalize to

less uniform assumptions than a typical threshold assumption. Their definition does not

give a name to the elements of B; we call each one a fail-prone set. As fail-prone sets are

maximal, a fail-prone set is the complement of a survivor set and B = {Π\S : S ∈ SΠ}.

Although both survivor sets and fail-prone sets characterize failure scenarios, survivor

sets have a fundamental use: if a process is collecting messages from the other processes,

it can be fruitless to wait for messages from a set larger than a survivor set. Of course,

there are times when fail-prone sets are more useful. For example, if Bmax is the largest

fail-prone set, then |Bmax| is the value of t if one wishes to use a threshold-based protocol.

Non-threshold protocols have also been considered in the context of secure

multi-party computation with adversary structures [AFM99, HM97, KF05]. Adversary

structures are similar to fail-prone systems; yet differ in two ways. First, adversary

structures can represent more than one failure mode, e.g., crash failures and arbitrary

failures. Each failure mode is described with sets of possibly faulty processes (processes

are referred to as players in this literature). Second, the sets of possibly faulty players

given in an adversary structure are not necessarily maximal; all sets of possibly faulty

players are given. Using all possible sets of players that can deviate from the correct

protocol behavior as opposed to only maximal sets (or minimal sets of correct processes,

as with survivor sets) gives one more expressiveness in modeling system failures. Using

fail-prone systems or survivor sets, however, is sufficient for establishing the properties

on process replication in the following chapters. Moreover, these bounds hold even for a

more expressive model such as adversary structures because we use properties about the
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intersections of sets of correct processes. If the intersection property holds for some sets

of processes A1, A2, ..., Am then it holds for the sets of processes A′
1 ⊃ A1, A′

2 ⊃ A2,

..., A′
m ⊃ Am. Hence, one only has to consider the minimal sets of correct processes in

these intersection properties.

2.5 Discussion

The model of this chapter enables the design of fault-tolerant algorithms for

systems in which failures are dependent. As we show in the following chapters, there

are several benefits in using a more expressive model.

The model has three limitations, however. First, there can be an exponential

number cores and survivor sets. Representing and selecting such subsets in system

profiles with an exponential number of subsets may not be practical. Our experience

with this model, however, shows that often the number of subsets is not exponential and

that it is possible to provide a compact representation for the set of survivor sets. Also,

it may not be necessary to know all the cores or all the survivor sets. As we show in the

next chapter, in the case of synchronous consensus for crash failures, processes need to

know only of a single core. Second, the model does not describe a particular technique

for extracting the cores and survivor sets of a system. That is, the model assumes these

sets are given in the same way that the threshold model assumes that there is a way of

computing a threshold t. To obtain cores and survivor sets, different techniques can be

used: we presented an example in Section 2.3, and we provide more examples in the

following chapters. Third, cores and survivor sets are in principle static sets. If these

sets change over time, then a service to update these sets and guarantees consistency

across correct processes is necessary. A potential candidate for such a mechanism is the

RAMBO memory service [LS02].

The following chapters discuss the design of algorithms using cores and sur-

vivor sets (Chapters 3 and 4), and how to obtain cores and survivor sets in real systems

(Chapters 6 and 5).



Chapter 3

Consensus for dependent process

failures

Consensus is an important primitive in fault-tolerant distributed computing

because it enables solutions for several problems that involve distributed coordination.

Using a consensus primitive, it is possible, for example, to build fault-tolerant services

using state-machine replication [Sch90]. To implement a replicated state machine, it is

necessary to guarantee that replicas agree on the commands they execute and the order

they execute these commands. The utility of consensus comes from this necessity of

agreement among the replicas. A different and useful form of the consensus problem is

atomic broadcast [CT96]. Atomically broadcasting messages consists in guaranteeing

that messages sent by correct processes are eventually delivered, that correct processes

deliver the same set of messages, and that processes deliver messages in the same order.

The consensus problem in a fault-tolerant message-passing distributed system

consists, informally, in having a set of processes reaching agreement upon a value. Each

process starts with a proposed value and the goal is to have all non-faulty processes

eventually deciding upon the same value.

In the remainder of this chapter, we first discuss related work in Section 3.1.

We then present the consensus specification (3.2). In Section 3.3, we show lower bounds

on process replication and algorithms for synchronous systems, considering both crash

20
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and arbitrary process failures. We also show in Section 3.3.2 the lower bound on the

number of rounds to solve consensus. In Section 3.4, we show lower bounds on process

replication and provide algorithms for asynchronous systems extended with unreliable

failure detectors, also considering both crash and arbitrary failures. The algorithms we

present are modified versions of existing ones, and the general goal for presenting them

is not only to obtain consensus algorithms in our model, but also to illustrate how to

design algorithms.

3.1 Background

Agreement problems such as consensus have been broadly studied since the

early 80’s. Initially, the focus was on a related problem called interactive consis-

tency [LSP82]. Different from consensus, interactive consistency assumes a single pro-

poser, and a solution to this problem guarantees that all correct processes eventually

decide upon the same value and that the decision value is the value proposed by the

proposer if the proposer is not faulty. It is straightforward to generalize an interactive

consistency solution to a consensus solution.

A system model that many algorithms assume is the one of a synchronous

system. In a synchronous system, message latency, clock drift, and process speed are

all bounded, thereby permitting executions to proceed in synchronous rounds. Lam-

port et al. showed that in synchronous systems at least 3t + 1 processes are necessary

and sufficient to solve interactive consistency without digital signatures, if processes

fail arbitrarily, and t + 1 are necessary and sufficient with digital signatures [LSP82].

In [DS83], Dolev and Strong present synchronous algorithms for interactive consistency

that improve on message complexity compared to previous algorithms. As these algo-

rithms are efficient with respect to message complexity, the techniques they introduce

are commonly used in synchronous algorithms for consensus assuming benign process

failures, such as crash failures [AW98c]. Dolev and Strong also show that even when

using authentication, the lower bound on number of rounds is t + 1. This lower bound
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was previously shown for unauthenticated channels by Fischer and Lynch [FL82].

As implementing synchronous systems is difficult in practice, a question

that followed this initial effort was how to move away from the synchronous model.

In [FLP85], Fischer et al. show the impossibility of consensus in asynchronous systems,

even if a single process can crash. This is commonly known as the FLP impossibility

result. To overcome this impossibility result, Chandra and Toueg proposed to extend

the asynchronous model with failure detectors [CT96]. The FLP impossibility result

derives from the impossibility of distinguishing slow processes from faulty processes in

asynchronous systems. Unreliable failure detectors do not enable this distinction, but

they provide weak properties that enable processes to eventually make progress. With

the failure detector approach, processes use failure detector modules that provide failure

information about other processes. Such failure detectors can make mistakes, however,

although not infinitely often. In [CHT96], Chandra et al. showed the weakest properties

that a failure detector has to satisfy to solve consensus.

Failure detectors guarantee that non-faulty processes eventually decide. In

a more recent trend, proposed asynchronous algorithms ensure safety, but not liveness.

This implies that processes may never decide, although under realistic assumptions such

executions are highly unlikely to happen. To guarantee progress all these algorithms as-

sume a leader oracle. Castro and Liskov describe such an algorithm that is practical and

tolerates Byzantine failures [CL02]. Lamport proposes the Paxos algorithm [Lam98].

An interesting characteristic of the Paxos algorithm is its division of roles. In Paxos,

processes can be proposers, acceptors, or learners, and these roles are not mutually ex-

clusive. Informally, proposers propose values that are accepted by acceptors. Once an

acceptor accepts a value, it informs the learners. Learners learn a value v once they

receive v from a quorum of acceptors. Assuming that client processes present values to

proposers, learning takes three message rounds in the best case, where a message round

corresponds to the delay for some process q to receive a message sent by some process p.

A variant of the Paxos algorithm, called Fast Paxos, enables learning in fewer message

rounds in the absence of conflicting proposals [Lam05]. Both flavors of Paxos tolerate
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crash failures. Due to the similarity between the algorithm by Castro and Liskov and

Paxos, the former is often referred to as Byzantine Paxos. Fast learning is also possible

for Byzantine failures, as illustrated with the algorithm by Martin and Alvisi [MA05].

Solutions to the consensus problem are usually developed assuming no more

than t of the n processes are faulty, where “being faulty” is specialized by a failure

model. Recall that this assumption corresponds to the threshold model, discussed in

Chapter 2. This is a convenient assumption to make. For example, bounds are easily

expressed as a function of t: if processes can fail only by crashing, then the consensus

problem is solvable when n > t if the system is synchronous [AW98c] and when n > 2t

if the system is asynchronous extended with a failure detector of the class 3W [KR01,

CT96].

3.2 Consensus specification

In this section, we present a formal specification of consensus. This speci-

fication comprises three properties that constrain the set of admissible executions of a

consensus algorithm. As we discussed before, every process proposes its initial value.

Throughout the remainder of this chapter, we use V to denote the set of possible deci-

sion values. We assume that the set V is n-ary, n ≥ 2. Considering binary decision

sets is important when showing lower bounds, as this is the strongest case: if there is an

algorithm that solves for V , |V | = k > 2, then we can use this same algorithm to solve

for V ′, 2 ≤ |V ′| < k. On the other hand, algorithms that assume a set V of arbitrary

size are more general. We state clearly when we use a binary set or an n-ary set for

some arbitrary value of n greater than one. We also assume a default value ⊥ used in

the algorithms that is not in V . When a value v is either a decision value in V or the

default, we use v ∈ V ∪ {⊥} to denote all the possibilities.

Assuming that processes only fail by crashing, consensus has the following

three properties [DS98]:

Validity: If some non-faulty process pi ∈ Π decides on value v, then some process
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pj ∈ Π proposes v;

Agreement: If two non-faulty processes pi, pj ∈ Π decide on values vi and vj , respec-

tively, then vi = vj;

Termination: Every correct process eventually decides.

When failures are arbitrary, a stronger validity property may be necessary as

algorithms satisfying the previous validity property can prevent progress. For example,

suppose that the only possible decision values are write and abort. With the above

validity property a faulty process may prevent correct processes from writing if they are

all ready to do so, and consequently from making progress.

Thus, assuming arbitrary failures for processes, a stronger version of validity,

called strong validity, is more appropriate [DS98, KMMS97]:

Strong Validity: If all non-faulty processes propose v, then all non-faulty processes

eventually decide v.

Compared to validity, strong validity restricts the case in which all non-faulty

processes have the same initial value. Intuitively, this is sufficient to prevent a Byzantine

process from disrupting the normal behavior of a system when all non-faulty processes

are able to make progress.

Doudou and Schiper propose yet another variant of the validity property, called

vector validity [DS98]. The vector validity property states that correct processes decide

upon a vector of proposed values, such that the vector has one entry for each process

in Π. Upon decision, for every correct process p, the value in the vector corresponding

to p is either the initial value of p or some default value. The vector must also contain

at least f + 1 initial values of correct processes. Observe that under these assumptions,

agreement refers to vectors, and not to a single value. A modification of agreement to

comply with this new requirement is straightforward. If the processes have to decide

upon a single value instead of a vector of values, we can use a solution to vector con-
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sensus by using a deterministic function to evaluate to some value based on the decided

vector.

Although vector consensus (consensus with the vector validity property) is

more general than strong consensus (consensus with the strong validity property), we

have chosen to use the strong version when assuming that processes can fail arbitrarily,

as often processes need to reach agreement upon a single value.

3.3 Synchronous systems

In this section, we present results for consensus in synchronous systems using

our new model. First, we constrain the set of executions to contain only executions that

can be divided into rounds. Second, we present a lower bound on the number of rounds

to solve consensus in our model of dependent failures. Surprisingly, a conclusion of

this result is that the lower bound differs for crash and arbitrary failures. Finally, we de-

scribe and prove correct two consensus algorithms: one assuming crash process failures

and another considering arbitrary failures. These algorithms are modified versions of

algorithms previously proposed in the literature.

3.3.1 Synchronous executions

In synchronous systems, there are bounds on message delay, process speed,

and clock drift. These bounds, however, are not necessarily based on absolute time. As

in the model of Dolev et al. [DDS87], steps of processes define these bounds. In a step

a process accomplishes one of the following: 1) receive a message; 2) undergo a state

transition; 3) send a message to a single process.

Following this model, the timing assumptions for a synchronous system are

given by two integer parameters corresponding to steps of processes: Φ ≥ 1 and ∆ ≥ 1.

Any execution of an algorithm α in such a system satisfies the following properties:

Process synchrony: for any finite subsequence w of consecutive steps, if some process

pi takes Φ+1 consecutive steps in w, then any process that is not faulty at the end
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of w has taken at least one step in w;

Message synchrony: for any pair of indices k, l, with l ≥ k + ∆, if message m is sent

to pi during the k-th step, then m is received by the end of the l-th step.

An execution is further organized in rounds, each round composed of steps of

processes. In a round, a process pi executes n + k steps. The first n steps are used by

pi to send real messages, whereas in the last k steps it sends null messages. These k last

steps are necessary to guarantee that all messages sent to pi in a round r are received

before pi proceeds to round r+1. The number k of steps is a function of ∆, Φ, n, and r.

We make some additional assumptions regarding the executions of the algo-

rithms we present in this section and define a few terms we use throughout this section.

First, we assume that processes do not recover. Thus, the function Faulty(s) is mono-

tonically increasing in every execution. Second, if E = 〈Init, Steps,Time,Faulty〉 ∈ E

is an execution, then we use Faulty(E) to denote the set of faulty processes in E. That

is, Faulty(E) = |
⋃

s∈Steps Faulty(s)|. Third, a process is correct in an execution if it

does not fail in this execution. Finally, we say that a process is non-faulty if either it is

correct, it has not crashed, or it has not executed any incorrect step.

3.3.2 Lower bound on the number of rounds

To show the lower bound result on the number of rounds, we use the technique

of layering proposed by Keidar and Rajsbaum [KR01]. The general idea is to show by

construction that the application of environment actions to some initial state still results

in states in which non-faulty processes cannot decide. An example of an environment

action is a process failure.

A layering is defined as a set of environment actions. The set of possible

actions depends upon the failure modes assumed. In our case, we assume that a layering

consists of crashing at most one process in a round1. Before crashing in a round, a
1Of course, there are executions in which more than one process crash in a round, but it is not necessary to consider

these to show the lower bound.
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process is allowed to send messages to a number of processes. Recall that from our

system model, a process pi sends at most one message to another process pj in each step.

We split processes into two groups: active processes and passive processes. In a round,

only active processes send messages to other processes, whereas passive processes do

not send any messages (a correct process can be passive due to the algorithm). We then

use (i, [j]) to denote a layer applicable to a round r in which process pi fails in r, and the

messages pi sent to processes {p1 · · · pj} ⊆ Π are not received. Note that layer (i, [j]) is

applicable if and only if pi is an active process.

We apply a layer to a state. If x is a state, then we denote the application of

a layer ` to x as x · `. We define a state as a string of entries, one for each process.

Each entry comprises the local state of a process at a given round. If some process pi is

crashed at round r, then the state of pi is represented by a special symbol denoting that

it has crashed. We assume that no process crashes before the first round.

For the consensus problem, every process has an initial value, and we assume

without loss of generality that the set of values is binary. Thus, for every binary string

w of length |Π| = n, there is an initial state xw, as we assume that no process crashes

before the first round, and Init is the set of all possible initial states. Note that a layer

(i, [j]) is only applicable to some state x if pi is not crashed in x.

The application of a sequence of layers to some initial state x partially defines

an execution. That is, if x is the initial state of the processes and `1`2 · · · `k is a sequence

of k distinct layers, then ((· · · ((x · `1) · `2) · · ·) · `k) partially characterizes the steps that

processes take in execution. Observe that it does not say what the steps after round k

are, and it does not say in which order the steps of a round occur.

Let sys = 〈Π, CΠ,SΠ〉 be a system profile, and Active be the set of active pro-

cesses in Π. By the system profile, we have that the maximum number of failures fa in

Active is given by:

fa = max
x
{x : x = |Active ∩ (Π \ S)| ∧ S ∈ SΠ}
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We then define the following layering for our model:

L = {(p, [q]) | p ∈ Active, [q] = {1 · · · q} ⊆ Π}

We use L(x) = {x · `|` ∈ L} to denote the application of layering L to state

x and L(X) = {L(x)|x ∈ X} to express the application of layering L to the set of

states X . In addition, we define Li as the application of L for i consecutive times. More

specifically, we define Li as follows:

L0(X) = X

Lk(X) = L(Lk−1(X))

We observe, however, that we can have no more than fa layering applications.

Recall that fa is the maximum number of failures among active processes. Thus, the

system profile constrains the number of consecutive applications of L.

Another important definition is the one of similar states. Similarity of states

captures the notion of states in which a correct process cannot make a decision because

there is not sufficient information for it to do so. We use this notion in the proofs

we present below. Similar states and similarity connected sets of states are defined as

follows:

Definition 3.3.1 States x and y are similar, denoted x ∼ y, if there is a process pj that

is not faulty in these states, such that (a) x and y are identical except in the local state

of pj , and (b) there exists pi 6= pj that is not faulty in both x and y. A set of states is

similarity connected if for every x, y ∈ X there are states x = x0, x1, · · · , xm = y such

that xi ∼ xi+1, 0 ≤ i ≤ m.

Note that a set of states for a given system 〈Π, CΠ,SΠ〉 can only be similarity

connected if the set of processes contains at least two processes, i.e., |Π| > 1. However,

recall from Chapter 2 that the system profiles we assume do not have any single process

in all the survivor sets and every process is in at least one survivor set. These two

assumptions constrains system profiles to have at least two processes.

We now show that Init is similarity connected with the following lemma.
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Lemma 3.3.2 Init is similarity connected.

Proof:

Given a state z, we denote by zj the local state of process pj in the state z. Let y, y′ be

two states in Init. For every 0 ≤ m ≤ n, define xm by setting xm
j = yj for all j > m

and xm
j = y′j for all j ≤ m. We get: x0 = y and xn = y′. Note that xm and xm+1 differ

exactly in the local state of process pm. Since all the processes are non-faulty in every

state in Init, these states are similar, that is, xm ∼ xm+1.

2

Now, we show that any k ≤ fa consecutive applications of layering L on a

similarity connected set of states generates another similarity connected set of states.

With the following lemma, we show that after fa layering applications on a similarity

set of states we still have a similarity connected set of states.

Lemma 3.3.3 Let X be a similarity connected set of states in which no process is faulty

and there are at least two correct processes. Lk(X) is similarity connected for all

k ≤ fa.

Proof:

We prove by induction. The base case is k = 0. By definition, we have that L0(X) = X .

Consequently, L0(X) is similarity connected. The induction hypothesis is that Lk−1(X)

is similarity connected and we want to show that L(Lk−1(X)) is also similarity con-

nected. To show this, we need to demonstrate that the two following properties hold:

1. if x ∈ Lk−1(X) then L(x) is similarity connected;

2. if y, y′ ∈ Lk−1(X), y ∼ y′, then L(y) ∪ L(y′) is similarity connected;

1: Suppose we apply layers (i, [0]) and (j, [0]) to x. Because no process is

faulty in these layers, we have that x · (i, [0]) and x · (j, [0]) are identical. Now let us

apply layers (i, [l−1]) and (i, [l]) to x. We have that the state of processes in x·(i, [l−1])

and x · (i, [l]) differ only in the state of pl, and therefore they are similar.
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2: y and y′ differ in the state of one process, say pi. If we apply layer (i, [n])

to both states, we get y · (i, [n]) and y′ · (i, [n]). Notice that in this round, no process

receives a message from pi. Moreover, all processes besides pi have identical state in

y and y′ and consequently the messages they send have to be the same. Therefore, we

have that y · (i, [n]) = y′ · (i, [n]). Along with Property 1, this proves our claim that

L(y) ∪ L(y′) is similarity connected.

2

Using the two previous lemmas, we show that there is no consensus algorithm

such that the size of the set of active processes is smaller than a smallest core. Recall

that a core is a minimal set of processes such that in every execution at least one of the

processes in the set is correct. First, we show a preliminary lemma.

Lemma 3.3.4 Let 〈Π, CΠ,SΠ〉 be a system profile, and Cmin be an element of {C : C ∈

CΠ ∧ ∀C ′ ∈ CΠ : |Cmin| ≤ |C ′|}. If Π′ ⊆ Π is such that |Π′| < |Cmin|, then there is an

execution in which all processes in Π′ are faulty.

Proof:

Proof by contradiction. Suppose a subset that Π′ ⊆ Π is such that |Π′| < |Cmin| and

there is no execution in which all the processes in Π′ are faulty. If Π′ contains at least

one correct process in every execution, then Π′ contains a core. Consequently, Cmin is

not in {C : C ∈ CΠ ∧ ∀C ′ ∈ CΠ : |Cmin| ≤ |C ′|}, a contradiction.

2

We are now ready to state a theorem that establishes the minimum number of

active processes.

Theorem 3.3.5 Let 〈Π, CΠ,SΠ〉 be a system profile and Cmin be a smallest core in CΠ.

There is no consensus algorithm such that |Active| < |Cmin|.

Proof:

By Lemma 3.3.4, every subset Π′ of processes with fewer than |Cmin| elements is such

that there is some execution in which all processes in Π′ are faulty. By Lemma 3.3.2,
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the set of initial values is similarity connected. By Lemma 3.3.3, assuming that

|Active| < |Cmin|, the set of states obtained after |Active| layer applications is also

similarity connected. Having a set of states that is similarity connected after x layer

applications, for some value of x, implies that there is some execution in which some

correct process cannot decide after x rounds. Consequently, there is some execution E

and some process pi correct in E such that pi cannot decide after |Active| rounds. As

all active processes fail after |Active| rounds of such execution, the state of pi does not

change in subsequent rounds, and consequently pi never decides, thus violating termina-

tion. We conclude that there cannot be a consensus algorithm such that |Active| < |Cmin|.

2

We now use the previous lemmas to show a theorem that provides the lower

bound on the number of rounds. The theorem is as follows:

Theorem 3.3.6 Let sys = 〈Π, CΠ,SΠ〉 be a system profile, A be a consensus algorithm,

and fa be the maximum number of faulty active processes. If |Π| − fa > 1, then there is

an execution of A in which f ≤ fa processes are faulty and some correct process takes

at least f + 1 rounds to decide.

Proof:

By Lemma 3.3.2, the set of initial states is similarity connected. According to

Lemma 3.3.3, the f -th application of layering L on the set of initial states Init results in

another similarity connected set of states. Thus, there is some execution in which after

f rounds there is at least one correct process that has not yet decided. We conclude that

at least f + 1 rounds are required for all correct processes to decide.

2

Now we show a theorem that determines the lower bound on the number of

rounds in the case that there are executions with a single correct process.

Theorem 3.3.7 Let 〈Π, CΠ,SΠ〉 be a system profile, A be a consensus algorithm, and

fa be the maximum number of faulty active processes. If |Π| − fa = 1, then there is an
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execution of A in which f ≤ fa processes are faulty and some correct process takes at

least min(fa, f + 1) rounds to decide.

Proof:

Suppose that 0 ≤ f ≤ |Π| − 2. By Theorem 3.3.6, if there are at least two correct

processes, then there is at least one execution in which some correct process requires at

least f + 1 ≤ fa rounds to decide.

Lemma 3.3.3 does not include the case in which f = |Π| − 1. We hence

show this case separately. After |Π| − 2 layer applications on the set of initial states,

by using a similar proof as the one of Theorem 3.3.6, we can show that we obtain a

similarity connected set of states. Consequently, there is an execution with |Π| − 1

faulty processes in which the single correct process cannot decide before fa = |Π| − 1

rounds.

For every consensus algorithm A assuming a system such that |Π| − fa = 1,

there is therefore some execution of A in which some correct process does not decide

earlier than min(f + 1, |Π| − 1).

2

3.3.3 Synchronous consensus for crash failures

The consensus problem in synchronous systems with crash process failures

is solvable for any number of failures [CBS00]. Executions in which every process is

faulty, however, are not interesting because it may not be possible to know the outcome

of the computation, unless we use recovery techniques. As faulty processes do not

recover in our model, we assume for the following algorithm that in every execution

there is at least one correct process. Using our model, this implies that, for a given a

system profile 〈Π, CΠ,SΠ〉, there is at least one core in CΠ:

Property 3.3.8 CΠ 6= ∅. 2

There is another important reason for assuming systems that have at least one

core. In doing so, we will see below that we can make the processes of a core active
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and the remaining ones passive. The main advantage is reducing the number of rounds

necessary for non-faulty processes to decide.

We now move on to discuss a consensus algorithm for synchronous systems.

This algorithm assumes a system profile 〈Π, CΠ,SΠ〉 such that Property 3.3.8 holds for

〈Π, CΠ,SΠ〉. The algorithm is based on the early-deciding ones in [CBS00] and [LF82].

Early-deciding algorithms use the actual number of failures f in an execution to deter-

mine in which round a non-faulty process decides. Algorithms that consider the actual

number of failures f are important because they reduce the latency when there are no

failures, which is often the common case. Charron-Bost and Schiper show that, for ev-

ery early-deciding algorithm, there is some execution with f failures in which no correct

process decides before f + 1 rounds [CBS00].

Our algorithm, which we call SyncCrash, differentiates the processes of a

core d-core ∈ CΠ, selected arbitrarily, and the processes in Π \ d-core. In a round, every

process in d-core broadcasts its knowledge of proposed values to all the other processes,

whereas processes in Π \ d-core listen to these messages. Note that according to our

terminology when showing the lower bound on the number of rounds in Section 3.3.2,

the processes in d-core are active and the others are passive.

Because we assume synchronous systems, if a process pi does not receive a

message in a round from some process pj ∈ d-core, then pi knows pj is faulty. We

use this observation to detect rounds in which no process in d-core crashes. A pro-

cess pi ∈ Π hence keeps track of the processes in d-core that crash in a round, and

as soon as pi detects a round with no crashes, pi decides. Once a process pi in d-core

decides, it broadcasts a decision message announcing its decision value deci. All pro-

cesses receiving this message decide on deci as well. Thus, only two types of messages

are necessary in the algorithm: messages containing the array of proposed values and

decide messages.

As every process in d-core broadcasts at most one message in every round

to all the other processes in |Π|, message complexity is O(|d-core| ∗ |Π|). Note that

the protocols in [CBS00, LF82] designed with the t of n assumption have message
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complexity O(|Π|2). If we select a smallest core for d-core, then message complexity is

the smallest possible under this strategy of using a core of active processes.

In SyncCrash, correct processes decide within f + 1 rounds in a given ex-

ecution E, where f is the number of processes in d-core that crash in E. As at most

|d-core| − 1 processes of core d-core can fail in some execution, by assumption, we

have that, by Theorem 3.3.6, there is some execution in which |d-core| rounds are nec-

essary for all the correct processes to decide. As our algorithm matches this bound, we

thus prove that the bound is tight. Note that we require at least one core of active pro-

cesses. Otherwise there are executions in which a passive correct process never decides,

thus violating the Termination property of consensus. Equally important is the observa-

tion that if there is one passive process and the set of active processes is smaller than the

one of any core, then there is no algorithm that solves the consensus problem with such

a set of active process.

The consensus service by Guerraoui and Schiper uses a similar approach of

having a set of processes reaching consensus on behalf of a group of processes [GS96].

In their model, however, processes are either clients or servers. Servers processes take

inputs from the clients and use them as their initial values. The decision is later propa-

gated back to the clients. In our algorithm, there is no such a distinction between clients

and servers, but there is a distinction between active and passive processes. Also, their

failure model is still based upon the t-out- of-n failure assumption for processes.

A consequence of having passive processes, as opposed to having all pro-

cesses active, is that correct processes cannot decide upon the initial values of passive

processes. This does not violate any of the consensus properties, however. We have

decided to use just a subset of processes in a single core for lower bound purposes, and

we can use the same algorithm having all processes active by replacing d-core with Π.

Moreover, using just a subset has the advantage of reducing message complexity, as we

discussed before.

Before presenting pseudocode for the algorithm, we show a table describing

the variables used in the protocol. Table 3.1 describes the variables, and Figure 3.1
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presents the pseudocode of SyncCrash. A specification of SyncCrash in TLA+ ap-

pears in Appendix B.

Table 3.1: Variables used in the algorithm SyncCrash

d-core ∈ CΠ Set of active processes.

pi.dec ∈ V ∪ {⊥} A non-faulty process pi decides once

it sets pi.dec to a value different than ⊥.

pi.M(r) Messages received in round r by process pi.

pi.pv, pi.pv[j] ∈ V , j ∈ d-core Vector of proposed values.

pi.e(r), pi.e(r) ⊂ d-core, Mapping from round numbers to subsets of crashed

r ∈ {1 . . . |d-core|} processes. pi.e(r) evaluates to the subset of processes

that pi detects to have crashed at round r.

We now present a proof of correctness for SyncCrash. Before proving the

theorems showing that our algorithm satisfies the three consensus properties, we show

a few preliminary lemmas that we use later to show that the algorithm satisfies the

consensus properties.

Lemma 3.3.9 Let E ∈ E be an execution of SyncCrash, pi be a process in d-core, and

pj be a process in Π. Let r be the first round in which pj receives a message m from pi

such that m.pv[l] 6=⊥, pl ∈ d-core. For every round r′ < r, pj.pv[l] =⊥, and for every

r′′ ≥ r, pj.pv[l] = vl.

Proof:

We prove the lemma by induction on the round numbers r. The base case is r = 1. If

pj receives a message m from pi such that m.pv[l] 6=⊥, then i = l, and m.pv[l] = vl by

the algorithm. Again by the algorithm, pj sets the value of pj.pv[l] to vl at round 1, and

it does not change it in future rounds.

Now we assume that the lemma is valid for r and we prove it for r+1. Suppose

that pj receives a message m from pi at round r + 1 such that m.pv[l] 6=⊥, and r + 1
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Algorithm SyncCrash for process pi:
Input: set Π of processes; set CΠ of cores; d-core ∈ CΠ; initial value vi ∈ V

Initialization:
pi.dec←⊥
pi.pv[j]←⊥, if pj ∈ d-core ∧ j 6= i. pi.pv[i]← vi

pi.e : 0 · · · (|d-core|) 7→ d-core

Round 0, ∀pi ∈ d-core:
send(i, pi.pv) to all process in d-core
send(i, pi.pv) to all process in Π− d-core

Round 1 ≤ r < |d-core|, ∀pi ∈ d-core:
if there is m ∈ pi.M(r) such that m = (Decide,dec) then pi.dec← dec
else for every m = (j, pv) do pi.e(r)← pi.e(r) \ {pj}

for k = 1 to |Π| do
if (m.pv[k] 6=⊥ ∧ pi.pv[k] =⊥) then pi.pv[k]← m.pv[k]

if (pi.e(r − 1) = pi.e(r)) then pi.dec← pi.pv[k], k = minx{x : pi.pv[x] 6=⊥}
if (pi.dec =⊥) then

send(i, pi.pv) to all process in d-core
send(i, pi.pv) to all process in Π− d-core

else
send(Decide,pi.dec) to all processes in d-core
send(Decide,pi.dec) to all processes in Π− d-core
halt

Round |d-core|, ∀pi ∈ d-core:
if there is m ∈ pi.M(r) such that m = (Decide,dec) then pi.dec← dec
else for every m = (j, pv) do pi.e(r)← pi.e(r) \ {pj}

for k = 1 to |Π| do
if (m.pv[k] 6=⊥ ∧ pi.pv[k] =⊥) then pi.pv[k]← m.pv[k]

pi.dec← pi.pv[k], k = minx{x : pi.pv[x] 6=⊥}
halt

Round 1 ≤ r ≤ |d-core|, ∀pi ∈ Π− d-core:
if there is m ∈ pi.M(r) such that m = (Decide, dec)) then

pi.dec← dec
halt

else for every m = (j, pv) do pi.e(r)← pi.e(r) ∪ {j}
for k = 1 to |Π| do

if (m.pv[k] 6=⊥) then pi.pv[k]← m.pv[k]
if ((pi.e(r − 1) = pi.e(r))) then

pi.dec← pi.pv[k], k = minx{x : pi.pv[x] 6=⊥}
halt

Figure 3.1: Algorithm SyncCrash
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is the first round in which pj receives such a message. By the induction hypothesis, we

have that pi.pv[l] = vl. By the algorithm, pj sets the value of pj.pv[l] to vl in round r+1,

and it does not change it in future rounds. This completes the proof of the lemma.

2

From Lemma 3.3.9 we can extract the following corollary.

Corollary 3.3.10 Let E ∈ E be an execution of SyncCrash. For every pi ∈ d-core \

Faulty(E), pj ∈ Π \ Faulty(E) and for every round r ∈ {1 · · · |d-core|}, we have that

pj.pv[i] = vi.

Proof:

If pi ∈ d-core is correct, then for every non-faulty process pj in round 1, we have that

pj receives a message m from pi such that m.pv[i] = vi. From Lemma 3.3.9, for every

round r, r ≥ 1, we have that pj.pv[i] = vi.

2

In the following lemmas, when we say that the vectors of proposed values of

two processes pi, pj are identical in a round r, we denote that, for every entry l, pi.pv[l] =

pj.pv[l] after all possible updates to the vector due to the reception of messages in round

r. More formally, let E = 〈Init, Steps,Time,Faulty〉 be an execution of SyncCrash.

Suppose that there are steps si
r, s

j
r ∈ Steps of round r of processes pi and pj , respectively,

such that pi.pv does not change in r after pi executes si
r and pj.pv does not change in

r after pj executes sj
r. We then have that pi.pv and pj.pv are identical in round r of E

if and only if pi.pv at T (si
r) + 1 is identical to pj.pv at T (sj

r) + 1. We also say that a

process pi is alive in round r if either pi sends at least one message or pi decides in r.

Lemma 3.3.11 Let E ∈ E be an execution of SyncCrash, r be a round of E, and pi, pj

be two alive processes in r, r > 0. If pi.e(r) = pi.e(r − 1) and pj.e(r) = pj.e(r − 1),

then pi.e(r) = pj.e(r) and pi.e(r − 1) = pj.e(r − 1).

Proof:

If r = 1, then it must be true because pi.e(r− 1) = pj.e(r− 1) = Π. Now we show for

r > 1. We prove this case by contradiction.
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First, suppose that pi.e(r) 6= pj.e(r). This implies that there is some pl such

that: ∨
pl 6∈ pi.e(r) ∧ pl ∈ pj.e(r)∨
pl 6∈ pj.e(r) ∧ pl ∈ pi.e(r)

Suppose without loss of generality that pl 6∈ pi.e(r) and pl ∈ pj.e(r). Because

pi.e(r) = pi.e(r − 1) by assumption, we have that pl is faulty in round r − 2. Con-

sequently, as a process that crashes in round r does not send more messages in future

rounds, we have that pl 6∈ pj.e(r), a contradiction.

From the previous argument and by assumption, we have that: pi.e(r) =

pi.e(r−1), pj.e(r) = pj.e(r−1), and pi.e(r) = pj.e(r). This implies that pi.e(r−1) =

pj.e(r − 1).

2

Lemma 3.3.12 Let E ∈ E be an execution of SyncCrash, r be a round of E, r > 0,

and pi, pj be two alive processes in r. If both pi and pj decide in r and none of pi, pj

receive a decide message, then pi.dec = pj.dec at the end of round r.

Proof:

By Lemma 3.3.11, both pi and pj receive the same set of messages. As none of these

messages is a decide message by assumption, we have that pi.pv is identical to pj.pv in

round r. By assumption, pi and pj decide in r. By the algorithm we have that pi.dec

must be equal to pj.dec.

2

Lemma 3.3.13 Let E ∈ E be an execution of SyncCrash, r be a round of E, r > 0,

and pi, pj be two alive processes in r. If both pi and pj decide in r, then pi decides

in r due to the reception of a decide message if and only if pj decides in r due to the

reception of a decide message.

Proof:

Proof by contradiction. Suppose without loss of generality that pi decides in r, but it
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receives no decide message. This implies that, by the algorithm, pi.e(r) = pi.e(r − 1).

Now suppose that pj receives a decide message. If pj receives a decide message from

some process pl in round r, but pi does not receive such message, then pl 6∈ pi.e(r).

Because pj receives a message from pl in round r, we have that pl must be in pi.e(r−1).

Consequently, pi.e(r) 6= pi.e(r − 1), a contradiction.

2

Lemma 3.3.14 Let E ∈ E be an execution of SyncCrash, r be a round of E, and pi, pj

be two alive processes in r. If both pi and pj send decide messages (Decide, pi.dec)

and (Decide, pj.dec), respectively, in r, then pi.dec = pj.dec.

Proof:

By the algorithm, if processes pi and pj decide in r, then, by Lemma 3.3.13, they either

both receive a decide message or both detect a round without failures. If it is the latter,

then they decide upon the same value by Lemma 3.3.12.

Suppose that both pi and pj decide due to the reception of decide messages,

(Decide, decli1
) and (Decide, declj1

) respectively. For pi, there is a sequence of processes

plik
, plik−1

, . . . , pli1
such that plix

sends at least one decide message (Decide, plix
.dec) in

round r − x, and process plix−1
decides in round r − x + 1 due to the reception of

such a decide message from plix
. Similarly for pj , there is a sequence of processes

pljk
, pljk−1

, . . . , plj1
such that pljx

sends at least one decide message (Decide, pljx
.dec) in

round r− x, and process pljx−1
decides in round r− x+ 1 due to the reception of such a

decide message from pljx
. Note that these two sequences of processes must have the same

length by Lemma 3.3.13. By the algorithm, plik
and pljk

are the first in their respective

sequences to decide by detecting a round without crashes. By Lemma 3.3.12, plik
and

pljk
must decide upon the same value. Consequently, pi.dec = pj.dec.

2

Now we show that the algorithm satisfies all three consensus properties.

Theorem 3.3.15 SyncCrash satisfies Validity.
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Proof:

By the algorithm, a process decides either when it detects a round with no crashes or

when it receives a decide message. In the first case, a non-faulty process pi decides

upon the first value in its vector of proposed values that is different than⊥. Such a value

exists by Corollary 3.3.10, and it is the initial value of some process in d-core.

In the second case, by the algorithm, a non-faulty process sends a decide

message in a round that it either receives a decide message or detects a round with

no crashes. If a non-faulty process receives a decide message in some round r, there

must be an earlier round r′ < r such that some process alive in round r′ detects a round

with no crashes, and consequently sends at least one decide message. By the same argu-

ment of the first case, such a decide message contains the initial value of some process

in d-core.

2

Theorem 3.3.16 SyncCrash satisfies Agreement.

Proof:

We have to show that in every execution, two correct processes pi, pj decide upon the

same value. There are two case to consider. First, pi and pj decide in the same round r.

We then have the following:

1. pi and pj both receive a decide message in round r. By Lemma 3.3.14, we have

that pi.dec = pj.dec;

2. pi and pj do not receive decide messages in round r. By Lemma 3.3.12, they must

decide upon the same value;

3. pi does not receive a decide message in round r and pj receives a message in round

r. By Lemma 3.3.13, this case is not possible.

The second case to consider is the one in which pi and pj decide in different

rounds. Suppose without loss of generality that pi decides in round r and pj decides in
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round r′, r′ > r. By the algorithm, pi sends a decide message to all the other processes,

and therefore r′ must be r + 1.

2

Theorem 3.3.17 SyncCrash satisfies Termination.

Proof:

By the algorithm, a correct process decides in at most |d-core| rounds.

2

The following theorem shows that SyncCrash is early deciding. Recall from

the beginning of this section that an early-deciding algorithm is one that differentiates

executions based on the number of failures, and the number of rounds for processes to

decide depends upon this number.

Theorem 3.3.18 Let E ∈ E be an execution of SyncCrash. If pi is a correct process

in E, then it decides in at most f + 1 rounds, where f = Faulty(E).

Proof:

By the algorithm, a process decides either when it detects a round without failures or

when it receives a decide message. If a non-faulty process pi does not decide by round

f , it implies that in every round 0 < r ≤ f , there is some process pl such that pl ∈

pi.e(r− 1) and pl 6∈ pi.e(r). Because an execution can have at most f failures, we have

that pi.e(f + 1) must be equal to pi.e(f). This implies that if pi does not decide before

round f + 1, it does so in round r + 1. Thus, every correct process decides at most in

f + 1 rounds.

2

Before closing this section, we present an example of the benefit of using our

model along with algorithm SyncCrash. Suppose a system with six processes, such

that two processes are very reliable and the remaining processes are less reliable. One

possibility for modeling the failures of such a system is as follows:

Π = {pr1 , pr2 , pu1 , pu2 , pu3 , pu4}
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CΠ = {{pr1 , pr2}, {pu1 , pu2 , pu3 , pu4}}

That is, in every execution, at least one of the more reliable process (pri
, i ∈

{1, 2}) is not faulty, and at least one of the less reliable processes (pui
, i ∈ {1, 2, 3, 4}) is

not faulty. Considering a threshold t on the maximum number of failures, we have that

the value of t is four as every execution has at most four failures. As an algorithm that

uses a threshold does not differentiates processes (assumes that processes are alike), the

minimum number of active processes such an algorithm must use is five. Assuming such

an algorithm selects exactly five processes, any choice of active processes will be such

that there is some execution in which five active processes are faulty. To see why this

statement holds, we just have to observe that no subset of five processes cannot include

both cores. Thus, for any algorithm that uses a threshold, there are executions with four

process failures such this algorithm requires at least five rounds. Using SyncCrash, we

can reach agreement in two rounds, if we use d-core = {pr1 , pr2}.

3.3.4 Synchronous consensus for Byzantine failures

In this section, we first present two properties that a system has to satisfy to

enable a solution of strong consensus. Then we show that these properties are in fact

equivalent. The reason for having two equivalent properties is that one is useful when

showing necessity and the other is useful when designing algorithms.

A partition of a set S is a collection of disjoint subsets of S, called blocks,

such that the union of these blocks is equal to S. Let Pb(Π) be the set of all partitions of

Π into b blocks. Given a system profile 〈Π, CΠ,SΠ〉, suppose the following properties:

Property 3.3.19 (Byzantine Partition) ∀(B1, B2, B3) ∈ P3(Π) : ∃C ∈ CΠ : (C ⊆

B1) ∨ (C ⊆ B2) ∨ (C ⊆ B3)

Property 3.3.20 (Byzantine Intersection) ∀Si1 , Si2 , Si3 ∈ SΠ : Si1 ∩ Si2 ∩ Si3 6= ∅.

We now show that these two properties are equivalent.

Claim 3.3.21 Byzantine Partition ≡ Byzantine Intersection.
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Proof:

Byzantine Partition → Byzantine Intersection Proof by contrapositive. Suppose

that Byzantine Intersection does not hold for some system 〈Π, CΠ,SΠ〉. This implies

that there are three survivor sets Si1 , Si2 , Si3 ∈ SΠ, such that Si1 ∩ Si2 ∩ Si3 = ∅. We

can then build a partition (B1, B2, B3) as follows:

B1 = Π \ Si1

B2 = Π \ (Si2 ∪B1)

B3 = Π \ (Si3 ∪B1 ∪B2)

We now show that B1 ∪B2 ∪B3 = Π, followed by a detailed explanation:⋃
i

Bi = (Π \ Si1) ∪ (Π \ (Si2 ∪B1)) ∪ (Π \ (Si3 ∪B1 ∪B2)) (3.1)

= (Π \ (Si1 ∩ (Si2 ∪B1))) ∪ (Π \ (Si3 ∪B1 ∪B2)) (3.2)

= (Π \ (Si1 ∩ Si2)) ∪ (Π \ (Si3 ∪B1 ∪B2)) (3.3)

= Π \ (Si1 ∩ Si2 ∩ (Si3 ∪B1 ∪B2)) (3.4)

= Π \ (Si1 ∩ Si2 ∩ Si3) (3.5)

= Π (3.6)

• Line 3.1 to line 3.2: For arbitrary setsX\Y andX\Z,X\Y ∪X\Z = X\(Y ∩Z);

• Line 3.2 to line 3.3: Si1 ∩B1 = ∅;

• Line 3.3 to line 3.4: For arbitrary setsX\Y andX\Z,X\Y ∪X\Z = X\(Y ∩Z);

• Line 3.4 to line 3.5: Si1 ∩ Si2 ∩B1 = Si1 ∩ Si2 ∩B2 = ∅;

• Line 3.5 to line 3.6: By assumption, Si1 ∩ Si2 ∩ Si3 = ∅.

By the construction of the partition, there is no block such that it contains

elements from every survivor set. This implies that no block contains a core.
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Byzantine Intersection→ Byzantine Partition Proof by contrapositive. Suppose a

system profile 〈Π, CΠ,SΠ〉 such that Byzantine Partition does not hold for 〈Π, CΠ,SΠ〉.

This implies that there is a partition of Π into three blocks (B1, B2, B3) such that none

of these blocks contains a core. We then have the following:

∀C ∈ CΠ : C 6⊆ B1 ⇒ ∃S1 ∈ SΠ : S1 ⊆ B2 ∪B3

∀C ∈ CΠ : C 6⊆ B2 ⇒ ∃S2 ∈ SΠ : S2 ⊆ B1 ∪B3

∀C ∈ CΠ : C 6⊆ B3 ⇒ ∃S3 ∈ SΠ : S3 ⊆ B1 ∪B2

From the statements above, we have that S1 ∩ S2 ∩ S3 = ∅, otherwise

(B1, B2, B3) is not a partition violating our previous assumption.

2

3.3.5 Lower bound on process replication

The Byzantine Intersection (Partition) property is necessary and sufficient for

solving strong consensus in a synchronous system with Byzantine failures. First, we

prove that this property is necessary. The proof we provide is based upon the one by

Lamport [LSP82, PSL80]. We show that if there is a partition of the processes in three

non-empty subsets, such that none of them contains a core, then there is at least one

run in which Agreement is violated, for any algorithm A. Figure 3.2 illustrates this

violation, where we have three executions: Eα, Eβ , and Eγ .

Suppose that we have a system profile 〈Π, CΠ,SΠ〉 and a partition of Π into

three blocks (B1, B2, B3) such that none of them contains a core. In addition, suppose

by way of contradiction that we have an algorithm A that solves strong consensus in

such a system.

In execution Eα, the initial value of every the processes is the same, say v.

Moreover, all the processes in subset B2 are faulty, and they all lie to the processes

in subset B3 about their initial values and the values received from processes in B1.

Thus, running algorithm A in such an execution results in all the processes in subset B3

deciding v, by the strong validity property. Execution Eβ is analogous to execution Eα,
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but instead of every process beginning with an initial value v, they all have initial value

v′ 6= v. Consequently, by the strong validity property, all processes in B2 decide v′ in

this execution. Lastly, in execution Eγ , the processes in subset B3 have initial value v,

whereas processes in subset B2 have initial value v′. The processes in subset B1 are all

faulty and behave for processes in B3 as in execution Eα. For processes in B3, however,

processes in B2 behave as in execution Eβ . Because processes in B3 cannot distinguish

execution Eα from execution Eγ , processes in B3 have to decide v. At the same time,

processes in B2 cannot distinguish executions Eβ from Eγ , and therefore they decide

v′. Consequently, there are correct processes that decide differently in execution Eγ ,

violating the Agreement property of strong consensus.
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Figure 3.2: Violation of strong consensus. The processes in shaded subsets are all faulty in the given

execution.

We now provide a more formal argument by proving Theorem 3.3.22. Be-

fore proceeding into the statement and proof of the theorem, we introduce some useful

notation. Let Eα be an execution. We use Eα(ω), ω = 〈i1, i2, . . . , ik〉, to denote the

value that process pi1 receives from process pi2 , which claims that this value is the ini-

tial value of pk passed by process pi to process pi−1 in this sequence of k processes.



46

For example, Eα(〈i, j, k〉) is the value that process pi receives from process pj , which

is the value that supposedly pk has sent to pj as its initial value. If the k-process chain

contains only correct process, k ≥ 1, then the value Eα(〈i1, i2, . . . , ik〉) is the initial

value of pk. Otherwise, this property is not guaranteed. In the case that k = 1, we have

that Eα(〈i〉) is the initial value of process pi. We use S-Pid(Π) to denote the set of all

possible sequences 〈i, . . . , j〉 of process ids in Π, and “◦” to denote the concatenation

of two sequences (e.g., 〈i〉 ◦ 〈j〉 = 〈i, j〉). We also use Len(ω) to denote the length of

sequence ω.

Theorem 3.3.22 Let 〈Π, CΠ,SΠ〉 be a system profile. If there is a partition (B1, B2, B3)

of Π such that none of B1, B2, or B3 contains a core, then there is no algorithm which

solves strong consensus in such a system.

Proof:

We assume without loss of generality that none of B1, B2, or B3 is empty.

Suppose there is an algorithmAwhich solves strong consensus in 〈Π, CΠ,SΠ〉.

We construct recursively an execution in which two correct processes decide differently.

Moreover, the violation of agreement in this execution is independent of the number of

rounds. Even if the algorithm runs for an infinite number of rounds, it cannot prevent a

violation of agreement.

By assumption, there is a partition (B1, B2, B3) of Π such that none ofB1, B2,

or B3 contains a core. We start by describing two preliminary executions that are used

to construct the one in which Agreement is violated. We construct executions Eα and

Eβ as follows:

Let pb1 ∈ B1, pb2 ∈ B2, pb3 ∈ B3, v ∈ V , v′ ∈ V , v′ 6= v

Eα(〈b1〉) = Eα(〈b2〉) = Eα(〈b3〉) = v

Eβ(〈b1〉) = Eβ(〈b2〉) = Eβ(〈b3〉) = v′

Let ω ∈ S-Pid(Π) and pi ∈ Π
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Eα(〈i, b1〉 ◦ ω) = Eα(〈b1〉 ◦ ω)

Eα(〈b1, b2〉 ◦ ω) = Eα(〈b2〉 ◦ ω)

Eα(〈b3, b2〉 ◦ ω) = Eβ(〈b2〉 ◦ ω)

Eα(〈i, b3〉 ◦ ω) = Eα(〈b3〉 ◦ ω)

Eβ(〈i, b1〉 ◦ ω) = Eβ(〈b1〉 ◦ ω)

Eβ(〈i, b2〉 ◦ ω) = Eβ(〈b2〉 ◦ ω)

Eβ(〈b1, b3〉 ◦ ω) = Eβ(〈b3〉 ◦ ω)

Eβ(〈b2, b3〉 ◦ ω) = Eα(〈b3〉 ◦ ω)

Based on executions Eα and Eβ , we construct execution Eγ as follows:

Let pb1 , pb2 , pb3 , v, v′, pi, and ω be as in definition of executions Eα and Eβ

Eγ(〈b1〉) = v

Eγ(〈b2〉) = v′

Eγ(〈b3〉) = v

Eγ(〈b2, b1〉 ◦ ω) = Eβ(〈b1〉 ◦ ω)

Eγ(〈b3, b1〉 ◦ ω) = Eα(〈b1〉 ◦ ω)

Eγ(〈i, b2〉 ◦ ω) = Eγ(〈b2〉 ◦ ω)

Eγ(〈i, b3〉 ◦ ω) = Eγ(〈b3〉 ◦ ω)

It remains to show that Eα(〈b3〉 ◦ ω) = Eγ(〈b3〉 ◦ ω) and Eβ(〈b2〉 ◦ ω) =

Eγ(〈b2〉 ◦ ω), for pb2 ∈ B2, pb3 ∈ B3, and ω ∈ S-Pid(Π). We prove these equivalences

with a simple induction on the length of ω.

• Base case: Len(ω) = 0

For Len(ω) = 0, we have that Eα(〈b3〉) = v = Eγ(〈b3〉) and that Eβ(〈b2〉) = v′ =
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Eγ(〈b2〉).

• Induction step: the induction hypothesis is that the proposition is valid for all ω

such that Len(ω) ≤ i. We need to prove that the proposition is true for all ω of

length i + 1. That is, we need to show that Eα(〈b3, i〉 ◦ ω) = Eγ(〈b3, i〉 ◦ ω)

and Eβ(〈b2, i〉 ◦ ω) = Eγ(〈b2, i〉 ◦ ω) for every pi ∈ Π. There are three cases

to analyze: pi ∈ B1, pi ∈ B2, and pi ∈ B3. We show below these three cases

separately:

1. pi ∈ B1: by the definitions of Eα, Eβ , and Eγ:

Eα(〈b3, i〉 ◦ ω) = Eα(〈i〉 ◦ ω) = Eγ(〈b3, i〉 ◦ ω)

Eβ(〈b2, i〉 ◦ ω) = Eβ(〈i〉 ◦ ω) = Eγ(〈b2, i〉 ◦ ω)

2. pi ∈ B2: by the definitions of Eα, Eβ , and Eγ and the induction hypothesis:

Eα(〈b3, i〉 ◦ ω) = Eβ(〈i〉 ◦ ω) = Eγ(〈i〉 ◦ ω) = Eγ(〈b3, i〉 ◦ ω)

Eβ(〈b2, i〉 ◦ ω) = Eβ(〈i〉 ◦ ω) = Eγ(〈i〉 ◦ ω) = Eγ(〈b2, i〉 ◦ ω)

3. pi ∈ B3: by the definitions of Eα, Eβ , and Eγ and the induction hypothesis:

Eα(〈b3, i〉 ◦ ω) = Eα(〈i〉 ◦ ω) = Eγ(〈i〉 ◦ ω) = Eγ(〈b3, i〉 ◦ ω)

Eβ(〈b2, i〉 ◦ ω) = Eα(〈i〉 ◦ ω) = Eγ(〈i〉 ◦ ω) = Eγ(〈b2, i〉 ◦ ω)

Because processes in B3 cannot distinguish between executions Eα and Eγ ,

these processes have to decide v in Eγ . On the other hand, processes in B2 cannot
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distinguish execution Eβ from execution Eγ , and consequently they have to decide v′ in

Eγ . By assumption, in execution Eγ , the processes in both subset B2 and subset B3 are

correct. This implies that Eγ violates Agreement.

2

3.3.6 An algorithm to solve strong consensus

We describe an algorithm that solves strong consensus in a system with profile

〈Π, CΠ,SΠ〉. This algorithm is based on the one described by Lamport et al. to show

that 3t + 1 processes (t is the maximum number of faulty processes) is sufficient to

solve Interactive Consistency for arbitrarily faulty processes [LSP82]. Different from

the one proposed by Lamport et al., we assume a system profile that satisfies Byzantine

Intersection. As a consequence, our algorithm does not use a threshold on the number

of faulty processes.

Because the formal description of the algorithm is fairly complex, we first

present an overview of the algorithm, and then we present a more detailed description.

Overview

The algorithm proceeds in rounds of message exchange. In each round, a

process receives messages from other processes, and prepare new messages to send to

the other processes. Each message a process receives contains a mapping from sequence

of process ids to value. A sequence of process ids in such a mapping does not contain

repeated ids, and a process pi interprets an entry [i1 ◦ i2 ◦ i3 7→ v] in a mapping received

from process pi1 as the value that pi3 sent to pi2 and pi2 sent to pi1 .

Once all the entries a correct process pi receives are such that the sequence of

process ids contains a core, it does the equivalent of mapping the sequences of process

ids to nodes of a tree, where the value of a node is the value the sequence maps to.

The process then traverses this tree in postorder. When visiting each of the nodes, it

determines the value of the node by observing if there is a pair of survivor sets such
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that the children corresponding to the intersection of this pair contains the same value

(leaves maintain their original values). By Byzantine Intersection, such an intersection

must contain at least one correct process. A process decides upon the value in the root

of this tree.

As we show in the following detailed characterization of the algorithm, in the

end of this postorder traversal, every node that contains a sequence such that the last id

is the one of a correct process has the same value across all correct processes. This prop-

erty implies that the root must contain the same value across all the correct processes

because the immediate level under the root corresponds to the sequences containing a

single process and there is at least one survivor set containing only correct processes by

assumption.

Detailed description

We call our algorithm SyncByz. In SyncByz, all the processes run the same

code, and the algorithm proceeds in rounds of message exchange. A message contains a

mapping from sequence of process ids to value. Using Processes(ω) = {pi : i ∈ ω} to

denote the set of processes that have their ids in ω ∈ S-Pid(Π), such a sequence ω must

also satisfy the following two constraints:

• For every pi ∈ Π, i appears at most once in ω;

• Either ω = 〈〉 or ω = 〈i〉 ◦ ω′, ω′ ∈ S-Pid(Π), and there exists Sω ∈ SΠ such that

Sω ⊆ Π \ Processes(ω′).

We use D-Pid(Π) to denote the subset of S-Pid(Π) that satisfy these two con-

straints.

In each round a correct process pi receives a set of messages, each one contain-

ing a mapping, and it forwards to process pj a new mapping containing all the sequences

that do not contain j. In this new mapping, pi adds its own id to every sequence that is

an element of the domain of the mapping. For example, if ω and ω′ are two sequences

that do not contain j, then the mapping (VSeq : seq ∈ D-Pid(Π) 7→ V ) that pi sends to
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pj contains 〈i〉 ◦ ω 7→ v and 〈i〉 ◦ ω′ 7→ v′, where ω 7→ v and ω′ 7→ v′ are in mappings

that pi receives in messages from other processes and v, v′ ∈ V .

To illustrate further, consider a system with four processes: pi1 , pi2 , pi3 , pi4 .

Suppose that process pi2 is correct and it receives in round 2 a message m from pro-

cess pi3 such that (DOMAIN m.VSet) contains the sequence 〈i3, i4〉.2 Process pi2

sends a message m′ to pi1 in round 2 such that 〈i2, i3, i4〉 ∈ (DOMAIN m′.VSet) and

m.VSeq(〈i3, i4〉) = m′.VSeq(〈i2, i3, i4〉).

In the last round, correct processes use a recursive procedure to decide upon

a value. This recursive procedure, which we call DecisionValue, uses the mappings

from sequences of process ids to values received throughout the rounds to compute a

decision value. DecisionValue computes a final mapping from sequences of process ids

to values. To describe in a more abstract fashion how this procedure computes a decision

value, we can use a tree, where the nodes are labeled with sequences of process ids. The

label of the root is the empty sequence. For each leaf of the tree, assuming ω = jω′ is

its label, process pi assigns VSeq(ω) to this leaf if at round Len(ω) pi receives a message

m from pj such that ω ∈ (DOMAIN m.VSet).

Once a process assigns values to the leaves, it traverses the tree in post-order.

This means that we first visit the children of a node before visiting the node itself, and

visiting a node consists in assigning a value to this node. A leaf, when visited, just keeps

the value previously assigned as we explained before. When visiting a parent node, if

there is a set of ids of its children such that they are ids of processes in the intersection of

two survivor sets and the value assigned to these children is the same value, say v, then

v is also the value the process assigns to the parent node. After visiting all the nodes of

the tree, the decision value is the value assigned to the root.

The total number of rounds is |Π| − min{x|(x = |S|) ∧ (S ∈ SΠ)} + 1. An

important observation is that this algorithm is optimal with respect to the number of

rounds, as it matches the lower bound of Section 3.3.2. Comparing with SyncCrash,

note that we cannot use a single core or a single survivor set as a set of active processes
2DOMAIN f denotes the domain of an arbitrary mapping f.
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because the system profile has to satisfy Byzantine Intersection, according to our result

in Section 3.3.5.

Definitions and conventions. Before presenting the pseudocode and the proof of cor-

rectness, we review a few definitions and present new ones. We use m.VSeq to denote

the mapping from sequences of process ids to values in message m, and m.VSeq(ω) to

denote the value that m.VSeq evaluates to for ω. Similarly, we use pi.VSeq to denote the

mapping from process ids to values of process pi, and pi.VSeq(ω) to denote the value that

pi.VSeq evaluates to. In the proofs that follow the algorithm, we also use pi.VSeqR(r)

to denote the state of the VSeq mapping of process pi in the last step of round r. Thus,

pi.VSeqR(ω, r) evaluates to the value of pi.VSeq(ω) in the last step of round r. If process

pi does not receive any message m such that ω ∈ D-Pid(Π) is in (DOMAIN m.VSeq)

or it does not assign a value to ω when executing DecisionValue in the last round of an

execution, then pi.VSeq(ω) is undefined throughout this execution.

Note that pi.VSeq(ω) can have different values at different stages of an exe-

cution. If pi receives a message m at round r such that ω ∈ DOMAIN m.VSeq, then

pi.VSeq(ω) evaluates to m.VSeq(ω) until the execution of the recursive procedure De-

cisionValue. After the execution of DecisionValue in the last round, pi.VSeq(ω) can

evaluate to a value different than the one previously assigned.

As for SyncCrash, we use pi.M(r) to denote the set of messages that process

pi receives by the beginning of round r. Because processes can fail in an arbitrary

fashion, messages can be malformed. A malformed message is one that satisfies one of

the following:

1. It does not follow the message format;

2. Its mapping contains at least one invalid element. An invalid element either maps

a sequence to v 6∈ V or maps a sequence ω to a value v ∈ V , but Len(ω) > r,

Len(ω) < r, or ω 6∈ D-Pid(Π).

Henceforth, we assume that pi.M(r) does not include such malformed mes-
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sages, as it is straightforward to detect and to discard them.

Figure 3.3 presents the pseudocode for SyncByz. Appendix C contains a

specification of SyncByz in TLA+. In the pseudocode, we use the operator CHOOSE

of TLA+. The expression (CHOOSE x ∈ X : e) evaluates to an element x of the set

X , chosen deterministically, such that x satisfies the boolean expression e.

We now prove that the algorithm SyncByz satisfies the properties of strong

consensus. First, we state and prove preliminary lemmas that we use when showing

agreement and strong validity SyncByz. For the following lemmas, we assume a system

profile 〈Π, CΠ,SΠ〉. We use Smin to denote a smallest survivor set in SΠ. That is, there is

no survivor set in SΠ with fewer elements than Smin.

Lemma 3.3.23 Let E be an execution of SyncByz, pi be a process in Π \ Faulty(E),

and ω ∈ D-Pid(Π) be a sequence such that i 6∈ Processes(ω) and there is at least one

survivor set in SΠ contained in Π\Processes(ω). For every process pj ∈ Π\Faulty(E),

j 6∈ Processes(ω), pj.VSeqR(〈i〉 ◦ ω, |Π| − |Smin|+ 1) = pi.VSeqR(ω,Len(ω)).

Proof:

There are two cases to analyze: j = i and j 6= i. If i = j, then by the algorithm, process

pi adds [〈i〉 ◦ω 7→ pi.VSeqR(ω,Len(ω))] to pi.VSeq in round Len(ω) + 1 and it does not

change this value when executing recursively procedure DecisionValue. This implies

that pi.VSeqR(〈i〉 ◦ ω, |Π| − |Smin|+ 1) = pi.VSeqR(ω,Len(ω)).

For the case i 6= j, let Sω be the smallest survivor set in SΠ such that Sω ⊆

Π \ Processes(ω). We prove this case by induction on the values of ρ, where 0 ≤ ρ ≤

|Π \ Sω| and Len(ω) = |Π \ Sω| − ρ.

Base case. ρ = 0. Because pi is correct by assumption, it sends a message m to

pj in round Len(ω) such that 〈i〉 ◦ ω ∈ DOMAIN m.VSeq and m.VSeq(〈i〉 ◦ ω) =

pi.VSeqR(ω,Len(ω)). According to the construction of the mapping VSeq in the last

round, process pj does not change the value of pj.VSeq(〈i〉 ◦ ω) when executing recur-

sively DecisionValue. Thus, we have that pj.VSeqR(〈i〉 ◦ω, r) = pi.VSeqR(ω,Len(ω)),
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Algorithm SyncByz for process pi:
Input: a set of processes Π; a set of survivor sets SΠ; an input value vi ∈ V

Initialization:
Smin = min{S : S ∈ SΠ}
pi.VSeq← [〈i〉 7→ vi]

Round r = 0:
for every pj ∈ Π \ {pi}, send(pi.VSeq, pj)

Rounds 1 ≤ r < (|Π| − |Smin|+ 1):
for every message m ∈ pi.M(r)

pi.VSeq← pi.VSeq ∪m.VSeq
for every pj ∈ Π

ToSendVSeq← ∅
for every message m ∈ pi.M(r)

for every ω ∈ (D-Pid(Π) ∩ DOMAIN m.VSeq)
such that (pj 6∈ Processes(ω)) ∧ (∃S ∈ SΠ : S ⊆ Π \ Processes(ω))

ToSendVSeq← ToSendVSeq ∪ [〈i〉 ◦ ω 7→ m.VSeq(ω)]
send (ToSendVSeq, pj)

Round r = (|Π| − |Smin|+ 1):
for every message m ∈ pi.M(r)

pi.VSeq← pi.VSeq ∪m.VSeq
TmpVSeq← pi.VSeq
DecisionValue(TmpVSeq)
pi.dec← pi.VSeq(〈〉)

DecisionValue(VSeq ∈ (D-Pid(Π)× V ∪ {⊥}))
if ∀ω ∈ DOMAIN VSeq : Len(ω) = 1

if ∃v ∈ V : S, S′ ∈ SΠ : ∀pj ∈ S ∩ S′ : VSeq(〈j〉) = v
v ← CHOOSE v ∈ V : S, S′ ∈ SΠ : ∀pj ∈ S ∩ S′ : VSeq(〈j〉) = v

else v ← CHOOSE v ∈ V : ∃S ∈ SΠ : ∃pj ∈ S : VSeq(〈j〉) = v
pi.VSeq← pi.VSeq ∪ [〈〉 7→ v]
return

else
(〈j〉 ◦ ω)← CHOOSE Sq ∈ DOMAIN V Seq : ∀Sq′ ∈ DOMAIN V Seq : Len(Sq) ≥ Len(Sq′)
v ←⊥
if ∃v′ ∈ V : S, S′ ∈ SΠ : ∀pl ∈ S ∩ S′ : VSeq(〈l〉 ◦ ω) = v′

v ← CHOOSE v′ ∈ V : S, S′ ∈ SΠ : ∀pl ∈ S ∩ S′ : VSeq(〈l〉 ◦ ω) = v′

pi.VSeq← (pi.VSeq \ [ω 7→ pi.VSeq(ω) : ω ∈ DOMAIN pi.VSeq]) ∪ [ω 7→ v]
IntSet← [〈l〉 ◦ ω 7→ VSeq(〈j〉 ◦ ω) : 〈l〉 ◦ ω ∈ DOMAIN VSeq] ∪

[ω 7→ VSeq(ω) : ω ∈ DOMAIN VSeq]
VSeq← (VSeq \ IntSet) ∪ [ω 7→ v]
DecisionValue(VSeq)
return

Figure 3.3: Algorithm SyncByz
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r ≥ Len(ω) + 1.

Induction step. We now assume that the proposition holds for every ρ < |Π \ Sω|

and we show for ρ + 1. If the proposition holds for ρ, then for every correct process

pl, such that pl 6∈ Processes(〈i〉 ◦ ω), we have that pj.VSeqR(〈l, i〉 ◦ ω,Len(〈l, i〉 ◦ ω))

evaluates to pi.VSeqR(ω,Len(ω)). Let Sc ∈ SΠ be a survivor set containing only correct

processes in E. Such a survivor set exists by assumption. By the algorithm, we have

that Sc ∩ Sω ⊆ Π \ Processes(〈i〉 ◦ ω). Consequently, for every pl ∈ Sc ∩ Sω, the value

of pj.VSeqR(〈l, i〉 ◦ ω,Len(〈l, i〉 ◦ ω)) evaluates to pi.VSeqR(ω,Len(ω)).

By assumption, 〈Π, CΠ,SΠ〉 satisfies Byzantine Intersection. This implies that

the intersection of every two survivor sets contains a core. By definition, a core contains

at least one correct process in every execution. Thus, there are no two survivor sets

S, S ′ ∈ SΠ, S ∩S ′ ∩Sc = ∅, and v ∈ V ∪ {⊥}, v 6= pi.VSeqR(ω,Len(ω)), such that for

every pl ∈ S ∩ S ′, the value of pj.VSeqR(〈l, i〉 ◦ ω,Len(〈l, i〉 ◦ ω)) evaluates to v.

By the algorithm, process pj constructs the mapping pj.VSeq in the last round

such that pj.VSeq(〈i〉 ◦ ω) evaluates to pi.VSeqR(ω,Len(ω)) after executing Decision-

Value. Thus, pj.VSeqR(〈i〉 ◦ ω, |Π| − |Smin|+ 1) evaluates to pi.VSeqR(ω,Len(ω)).

2

Lemma 3.3.24 Let E be an execution of SyncByz and (〈i〉 ◦ ω) be an element of

D-Pid(Π) such that there is some survivor set in SΠ contained in Π \ Processes(ω).

If we have that:

∧
∀ω′ ◦ 〈i〉 ◦ ω ∈ D-Pid(Π) : Processes(〈ω′〉 ◦ i) ∩ (Π \ Faulty(E)) 6= ∅∧
∃pc1 ∈ Π \ (Faulty(E) ∪ Processes(ω)) : ∃v ∈ V : pc1 .VSeqR(〈i〉 ◦ ω, |Π| − |Smin|+ 1) = v

then for every correct process pc2 ∈ Π \ (Faulty(E) ∪ Processes(ω)), pc2 .VSeqR(〈i〉 ◦

ω, |Π| − |Smin|+ 1) = v.

Proof:

Let Sω ∈ SΠ be a survivor set such that Sω ⊆ Π \ Processes(ω). We prove this lemma

by induction on the values of ρ, where 0 ≤ ρ ≤ |Π \ Sω| and Len(ω) = |Π \ Sω| − ρ.
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Base case. ρ = 0. In this case, Π \Processes(ω) = Sω. We then have that by assump-

tion pi is correct, and that pc1 .VSeqR(〈i〉◦ω, |Π|−|Smin|+1) = pc2 .VSeqR(〈i〉◦ω, |Π|−

|Smin|+ 1), from Lemma 3.3.23, for every pc1 , pc2 ∈ Π \ (Faulty(E) ∪ Processes(ω)).

Induction step. Suppose that the proposition holds for every ρ < |Π \ Sω|. We show

for ρ + 1. There are two cases to analyze: pi is correct and pi is faulty. If pi is correct,

then the proof follows from Lemma 3.3.23. If pi is faulty, then Processes(ω′) ∩ (Π \

Faulty(E)) 6= ∅. We then have that for every pc1 , pc2 ∈ Π\ (Faulty(E)∪Processes(ω)),

pc1 .VSeqR(〈j, i〉 ◦ ω, |Π| − |Smin| + 1) = pc2 .VSeqR(〈j, i〉 ◦ ω, |Π| − |Smin| + 1) by the

induction hypothesis, where pj ∈ Π \ Processes(〈i〉 ◦ ω). Because the assignment of

values to sequences in the recursive procedure DecisionValue is deterministic, we then

have that if pc1 .VSeqR(〈i〉◦ω, |Π|−|Smin|+1) ∈ V , pc1 ∈ Π\(Faulty(E)∪Processes(ω)),

then pc1 .VSeqR(〈i〉◦ω, |Π|−|Smin|+1) = pc2 .VSeqR(〈i〉◦ω, |Π|−|Smin|+1), for every

pc2 ∈ Π \ (Faulty(E) ∪ Processes(ω)).

2

Lemma 3.3.25 SyncByz satisfies Strong Validity.

Proof:

Let Sc ∈ SΠ be a survivor set containing only correct processes. By assumption, such

a survivor set exists in every execution. By Lemma 3.3.23, for every process pc ∈ Sc,

we have that pc.VSeqR(〈i〉, |Π| − |Smin| + 1) is the initial value of pi, assuming pi is

also correct. By the algorithm, to determine the value of pc.VSeqR(〈〉, |Π| − |Smin|+ 1),

process pc first checks if there is a subset Π′ of processes in the intersection of two

survivor sets, such that for every pi ∈ Π′, pc.VSeq(〈i〉) = v, for some v ∈ V . Otherwise,

it chooses deterministically some v ∈ V such that pc.VSeq(〈i〉) = v, for some pi.

In the first case, by Lemma 3.3.23 and Byzantine Intersection, every correct

process decides upon the same value v ∈ V . In the second case, every correct process

chooses the same value by Lemma 3.3.24. Thus, if every correct process pc has the same

initial value v ∈ V , then every correct process pc decides upon the same value v ∈ V .

2
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Lemma 3.3.26 SyncByz satisfies Agreement.

Proof:

Let E be an execution of SyncByz. We need to show that for every process pc ∈

Π\Faulty(E), pc.VSeqR(〈〉, |Π|−|Smin|+1) = v, for some v ∈ V . By Lemma 3.3.24, for

every pi1 ∈ Π, we have that if pc1 .VSeqR(〈i〉, |Π|−|Smin|+1) ∈ V , pc1 ∈ Π\Faulty(E),

then pc1 .VSeqR(〈i〉, |Π| − |Smin|+ 1) = pc2 .VSeqR(〈i〉, |Π| − |Smin|+ 1), for every pc2 ∈

Π \ Faulty(E). By the procedure that assigns a value to pc.VSeqR(〈〉, |Π| − |Smin|+ 1),

pc ∈ Π \Faulty(E), we have that pc1 .VSeqR(〈〉, |Π| − |Smin|+1) = pc2 .VSeqR(〈〉, |Π| −

|Smin| + 1), for every pc1 , pc2 ∈ Π \ Faulty(E). This implies that every correct process

decides upon the same value v in E.

2

Lemma 3.3.27 SyncByz satisfies Termination.

Proof:

In every execution, every correct process decides in a finite number of rounds. We

conclude that correct processes eventually decide, thus satisfying Termination.

2

3.3.7 Revisiting the lower bound on the number of rounds

For crash failures, a single core is sufficient to solve consensus, as we dis-

cussed in Section 3.3.3. Consider a system sys = 〈Π, CΠ,SΠ〉 that contains at least one

core. Assuming arbitrary failures, a system profile has to satisfy Byzantine Intersection

to enable a solution to strong consensus. Because of these different requirements, we

have that the lower bound on the number of rounds can be different for the same system

profile. Suppose the following profile:

Example 3.3.28

Π = {p1, p2, p3, p4, p5}
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CΠ = {{p1, p2, p3}, {p1, p4}, {p1, p5}, {p2, p4}, {p2, p5}, {p3, p4}, {p3, p5}, {p4, p5}}

SΠ = {{p1, p2, p3, p4}, {p1, p2, p3, p5}, {p1, p4, p5}, {p2, p4, p5}, {p3, p4, p5}}

The smallest cores in this profile have size two. Thus, according to our lower

bound result, there are executions with two failures that require at least two rounds,

assuming crash failures. This bound is actually tight, as we have shown in Section 3.3.3.

For arbitrary failures, we have that the lower bound on the number of rounds is Π −

Smin + 1 = 5 − 3 + 1 = 3, and this is also tight from Section 3.3.4. We conclude

that for different failure models, the number of rounds necessary and sufficient to solve

consensus considering the worst case (maximum number of faulty processes by the

system profile and one failure in each round) can be different. This is in contrast with

the previous result for consensus under the t of n failure assumption (threshold model),

where the lower bound on the number of rounds in the worst case is the same for both

crash and arbitrary. It is important to observe that these results do not contradict each

other. If all the cores have the same size, then our result shows that the number of rounds

necessary and sufficient to enable a solution to consensus is the same.

3.4 Asynchronous systems

In this section, we present results for consensus in asynchronous systems us-

ing our new model. In asynchronous systems, there is no bound on message latency,

clock drift, or processor speed, although message latency is finite and correct processes

take steps infinitely often if enabled forever. According to the well-known FLP re-

sult, consensus cannot be solved in asynchronous systems even if a single process can

crash [FLP85]. A common technique to enable a solution to consensus in such systems

is to extend the system with a failure detector [CT96]. A failure detector consists of

a collection of modules, one for each process, that provide to processes information

about failures. Henceforth, we assume that the output of the failure detector module of

a process pi is the subset of processes that pi suspects to be faulty.
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Chandra et al. show that 3W is the weakest class of failure detectors to en-

able a solution to consensus [CHT96]. Failure detectors of the class 3W satisfy the

following two properties:

Weak Completeness: Eventually every process that crashes is permanently suspected

by some correct process;

Eventual Weak Accuracy: There is a time after which some correct process is never

suspected by any correct process.

In [CT96], Chandra and Toueg show that the class 3W is equivalent to the

class 3S. Failure detectors of the class 3S also satisfy both a completeness property

and an accuracy property. The accuracy property is Eventual Weak Accuracy as for

3W , whereas the completeness property is a different one. The completeness property

is as follows:

Strong Completeness: Eventually every process that crashes is permanently suspected

by every correct process.

In Section 3.4.1, we present an algorithm based on the one by Chandra and

Toueg that assumes a failure detector of the class 3S.

When processes fail arbitrarily, it is possible to use a stronger failure detec-

tor that identifies faulty processes through different failure modes. For example, if a

process sends a malformed message, or if it skips messages, then it must be faulty.

Doudou and Schiper propose a class of failure detectors based on the definition of mute

processes [DS98]. A mute process is defined as follows:

Mute process: Let pi and pj be two processes. Process pi is mute to pj if there is a time

t after which either:

1. pi crashes;

2. pi stops forever sending messages to pj .
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In [DS98], Doudou and Schiper assume that messages are digitally signed

using a public key scheme. If a process incorrectly signs messages it sends to other

processes, then these messages are discarded by correct receivers. Thus, in the case that

all messages sent by a faulty process pi to another correct process pj after some time t

are incorrectly signed, pj eventually declares pi mute.

Based on the notion of mute processes, the following property replaces strong

completeness in [DS98]:

Mute Completeness: There is a time t after which every process pi that is mute to a

process pj is suspected forever by pj .

Failure detectors of the class 3M satisfy Eventual Weak Accuracy and Mute

Completeness. Section 3.4.2 describes a consensus algorithm that assumes a failure de-

tector of the class 3M (processes have a failure detector module such that the collection

for these modules satisfy the properties of the 3M class).

It is important to observe at this point that other classes of failure detectors

for Byzantine failures have been previously proposed. Malkhi and Reiter propose un-

reliable failure detectors that detect faulty processes that are quiet [MR97b], where a

process is said to be quiet if it broadcasts only a finite number of messages in an exe-

cution. This definition is similar to the one of a mute process, and the difference relies

on the assumption that processes have available a primitive for reliably broadcasting

messages, and that this primitive also preserves causal order of messages. Kihlstrom et

al. also propose new classes of failure detectors for Byzantine failures. Different from

these two previous approaches, their failure detectors do not include in their output only

processes that become silent during an execution, but also processes that present any

form of detectable misbehavior [KMMS97]. Delegating the detection of all forms of

detectable misbehavior to the failure detector is not strictly necessary, however, as the

work by Doudou and Schiper show. We therefore opt for minimal properties of a failure

detector that enable a solution to consensus in asynchronous systems with arbitrarily

faulty processes.
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Because the system model in the remainder of this section is extended with

some failure detector, an execution of an algorithm has also to consider the behavior

of such failure detectors. Thus, we extend our definition of an execution by adding a

mapping from time and process identifiers to subsets of processes:

H : Π,Time 7→ 2Π

The tuple 〈Init, Steps,Time,Faulty, H〉 then represents an execution in a sys-

tem model extended with a failure detector, where H is the failure detector history in

this execution.

In the remainder of this section, we discuss solutions to consensus assuming

two different failure models. In Section 3.4.1, we assume that processes fail by crashing,

and in Section 3.4.2, we assume that processes fail arbitrarily.

3.4.1 Asynchronous consensus for crash failures

This section discusses consensus in asynchronous systems, assuming that pro-

cesses fail by crashing. Under the assumption of crash failures, a process executes no

further steps once it fails, but all the steps it executes, it executes correctly. We use

crash step to denote the last step that a faulty process executes. Because a faulty process

executes no further steps once it fails in an execution, it must execute a finite number

of steps in such an execution. A correct process executes an infinite number of steps if

enabled forever.

The structure of this section is identical to one of Section 3.3.4. We first

present two properties, Crash Partition and Crash Intersection, that are necessary and

sufficient to solve consensus in this model, and show that these two properties are equiv-

alent. Second, we show that these properties are necessary by showing that there is no

algorithm that can solve consensus in a system that does not satisfy these properties.

Finally, we present an algorithm that solves consensus in systems that satisfy these two

properties, thus showing that Crash Partition and Crash Intersection are necessary and

sufficient.
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As in Section 3.3.4, let Pb(Π) be the set of all partitions of Π into b blocks.

Given a system profile 〈Π, CΠ,SΠ〉, suppose the following properties for this system:

Property 3.4.1 (Crash Partition) ∀(B1, B2) ∈ P2(Π) : ∃C ∈ CΠ : (C ⊆ B1) ∨ (C ⊆

B2) 2

Property 3.4.2 (Crash Intersection) ∀Si1 , Si2 ∈ SΠ : Si1 ∩ Si2 6= ∅ 2

We show that Crash Partition and Crash Intersection are equivalent with the

following claim.

Claim 3.4.3 Crash Partition ≡ Crash Intersection.

Proof:

Crash Partition→ Crash Intersection. Proof by contrapositive. Suppose a system

〈Π, CΠ,SΠ〉 such that Crash Intersection does not hold for 〈Π, CΠ,SΠ〉. This implies

that there is a pair of survivor sets Si1 , Si2 ∈ SΠ such that Si1 ∩ Si2 = ∅. We need to

construct a partition of Π into two blocks such that no block contains a core.

Suppose the following partition:

B1 = Π \ Si1

B2 = Π \ (Si2 ∪B1)

It is straightforward to see that B1 and B2 are disjoint sets (no element of B1

can be in B2). We have to show now that B1 ∪B2 = Π.

B1 ∪B2 = Π \ (Si1 ∩ (Si2 ∪B1))

= Π (3.7)

Note that Si1 does not have any process in common with Si2 by assumption,

and no process in common with B1 by construction. By definition, if a block does not

contain at least one element from some survivor set, then it does not contain a core. As

both of the blocks do not contain elements from some survivor set, no block contains a

core.
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Crash Intersection→ Crash Partition. Proof by contrapositive. Let 〈Π, CΠ,SΠ〉 be

a system profile such that there is some partition (B1, B2) ∈ P2(Π) such that none of

B1 and B2 contains a core. If B1 does not contain a core, then B2 contains a survivor set

Si2 . Similarly, if B2 does not contains a core, then B1 contains a survivor set Si1 . This

implies that Si1 ∩ Si2 = ∅, and 〈Π, CΠ,SΠ〉 does not satisfy Crash Intersection.

2

Lower bound on process replication

In [CT96], Chandra and Toueg show that n > 2 · t is necessary to solve con-

sensus, assuming a threshold t on the number of process failures and a failure detector

of the class 3S [CT96]. In our core/survivor set model, the Crash Intersection (Crash

Partition) property gives a condition for a set of processes that is necessary to enable a

solution to consensus. We now present a proof that this property is necessary. First, we

discuss the proof at a high level.

Suppose there is an algorithmA that solves consensus in a system 〈Π, CΠ,SΠ〉

such that there is a partition (B1, B2) of the processes in Π such that neither B1 nor B2

contains a core. We build an execution in which the Agreement property is violated, no

matter what the algorithm does. We build two preliminary executions of A, Eα and Eβ ,

in the process of building an execution Eγ that violates Agreement.

Execution Eα. All the processes in B1 are correct and the processes in B2 crash before

sending a single message. Also, every process in B1 suspects forever every pro-

cess in B2, starting at time t = 0. From the Termination property, every process

in B1 eventually decides, and they all have to decide upon the same value v in

order to satisfy Agreement. If all the processes in B1 have the same initial value

v1, then we have that v = v1 by Validity.

Execution Eβ . All the processes in B2 are correct, all the processes in B1 crash before

sending a single message, and a process in B2 suspects every process in B1 start-

ing at t = 0. We assume also that all the processes in B2 have the same initial
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value v2, and v2 6= v1. Again from the three consensus properties, every cor-

rect process pi ∈ B eventually decides, and every process pi ∈ B2 decides upon

v′ = v2.

Execution Eγ . Every process in Π is correct. We build execution Eγ such that it looks

the same as Eα for the processes in B1, and the same as Eβ for the processes in

B2. The initial value for every process in B1 is v1 and for every process in B2 is

v2. Let t1 be the time by which all processes in B1 have decided in Eα, and t2

the time by which all processes in B2 have decided in Eβ . We use t1 and t2 to

determine the schedule of messages and the failure detector history. The messages

sent between every pair of processes in B1 are scheduled as in Eα, whereas the

messages between every pair of processes in B2 are scheduled as in Eβ . The

messages from processes in B1 to processes in B2, and from processes in B2 to

processes in B1 are only delivered after some time t > max{t1, t2}. The failure

detector history follows the same pattern. For the processes in B1, the failure

detector history is the same as in Eα up to time ta. Processes in B2 have the same

history as in Eβ up to time tb.

Considering the previous definitions for executions Eα, Eβ , and Eγ , processes

in B1 and processes in B2 cannot distinguish executions Eα and Eβ , respectively, from

execution Eγ . Hence, processes in B1 decide v1, and processes in B2 decide v2 in Eγ .

Execution Eγ therefore violates Agreement independently of what algorithm A does.

We now prove our proposition more formally.

Claim 3.4.4 Let 〈Π, CΠ,SΠ〉 be a system extended with a failure detector of the class

3S. If consensus is solvable in 〈Π, CΠ,SΠ〉, then 〈Π, CΠ,SΠ〉 satisfies Crash Partition.

Proof:

We prove this theorem by contradiction. Suppose that there is some algorithm A that

solves consensus in 〈Π, CΠ,SΠ〉, and 〈Π, CΠ,SΠ〉 does not satisfy Crash Partition. That

is, there is at least one partition (B1, B2) of the processes in Π, such that none of B1



65

or B2 contains a core. We show that there is an execution Eγ in which Agreement is

violated.

We define first two other executions, Eα and Eβ that we use to build Eγ . Let

Eα = 〈Initα, Stepsα,Timeα,Faultyα, Hα〉 be as follows:

Faultyα(s) = B2,∀s ∈ Stepsα

Hα(t, i) = B2,∀t ≥ 0,∀pi ∈ B1

Initα(i) = v1, v1 ∈ V, ∀pi ∈ B1

There is a finite time t1 such that for every pi ∈ Π \Faulty(Eα), there is a step

s ∈ Stepsα of pi in which pi decides, Timeα(s) ≤ t1. By assumption, algorithmA solves

consensus and therefore it has to satisfy Termination (every correct process eventually

decides). Thus, such a t1 must exist.

Now let Eβ = 〈Initβ, Stepsβ,Timeβ,Faultyβ, Hβ〉 be as follows:

Faultyβ(s) = B1,∀s ∈ Stepsβ

Hβ(t, i) = A,∀t ≥ 0,∀pi ∈ B2

Initβ(i) = v2,∀pi ∈ B2, v2 ∈ V, v2 6= v1

By the same argument presented for execution Eα, there must be a time t2

such that, for every pi ∈ Π \ Faulty(Eβ), there is a step s ∈ Stepsβ of pi in Stepsβ in

which pi decides, Timeβ(s) ≤ t2.

Let t′ be equal to max{t1, t2}. We then define execution Eγ =

〈Initγ, Stepsγ,Timeγ,Faultyγ, Hγ〉 as follows:

Faultyγ(s) = ∅,∀s ∈ Stepsγ

Hγ(t, i) =


Hβ(t, i) ∀t ≤ t′, pi ∈ B2

Hα(t, i) ∀t ≤ t′, pi ∈ B1

∅ ∀t > t′,∀pi ∈ Π

Initγ(i) =

 v1 ,∀pi ∈ B1

v2 ,∀pi ∈ B2

Stepsγ and Timeγ are as follows:
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• For every sa ∈ Stepsα such that Timeα(sa) ≤ max{t1, t2}, we have that sa ∈

Stepsγ and Timeγ(sa) = Timeα(sa);

• For every sb ∈ Stepsβ such that Timeβ(sb) ≤ max{t1, t2}, we have that sb ∈

Stepsγ and Timeγ(sb) = Timeβ(sb);

• If s ∈ Stepsγ and Timeγ(s) < max{t1, t2}, then either s ∈ Stepsα or s ∈ Stepsβ .

If s ∈ Stepsα, then Timeα(s) = Timeγ(s), otherwise Timeβ(s) = Timeγ(s);

• Let s ∈ Stepsγ be a step in which a process pi ∈ B1 receives a message from a

process pj ∈ B2. We have that for every such a step, Timeγ(s) > max{t1, t2};

• Let s ∈ Stepsγ be a step in which a process pi ∈ B2 receives a message from a

process pj ∈ B1. We have that for every such a step, Timeγ(s) > max{t1, t2};

A process pi ∈ B1 cannot distinguish execution Eα from execution Eγ ,

whereas process pj ∈ B2 cannot distinguish execution Eβ from execution Eγ . Thus,

pi and pj have to decide upon v1 and v2, respectively, therefore violating Agreement.

We conclude that 〈Π, CΠ,SΠ〉 must satisfy Crash Partition to enable a solution to con-

sensus.

2

An algorithm to solve consensus

As discussed before, consensus is not solvable in a purely asynchronous sys-

tem. An approach to overcome this impossibility is to extend the asynchronous model

with a failure detector. Here we assume a failure detector D of the class 3S, which

satisfies the strong completeness and eventual weak accuracy properties. The algorithm

we describe, called AsyncCrash, uses this failure detector to guarantee liveness (correct

processes eventually decide).

As the algorithm proposed by Chandra and Toueg [CT96], our algorithm

AsyncCrash is based on the rotating coordinator paradigm and proceeds in asyn-

chronous rounds. In every asynchronous round, one process is assigned as the coor-
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dinator of that round. This assignment of processes is deterministic and hardcoded, and

the only requirement on it is that processes must be assigned as coordinators infinitely

often. In AsyncCrash, we use the round number modulo the number of processes to

determine which process is the coordinator of a particular round.

The coordinator of a round gathers the estimates of some survivor set S ∈ SΠ

and chooses a value out of the ones received from these processes. In the algorithm,

the coordinator chooses the value from the process that updated it in the latest round

among all the estimates received from the processes in S. Once the coordinator chooses

a value, it sends a message to inform all the processes of its estimate. A process that

receives this message from the coordinator “echoes” the coordinator estimate to all the

other processes. A process decides as soon as it receives an echo from all the processes

in some survivor set S ′ ∈ SΠ, not necessarily the same as S.

So far in this informal discussion, we assumed that the coordinator is correct.

If the coordinator crashes and no correct process receives an estimate from the coor-

dinator, then eventually all the processes in some survivor set containing only correct

processes suspect that the coordinator has crashed (strong completeness). Once a pro-

cess pi suspects that the coordinator of its current round has failed, pi sends a message

to all the other processes suggesting the others to proceed to the next round. If a pro-

cess receives a message to move on from all the processes in some survivor set, then it

re-initializes its variables and proceeds to the next round.

The use of echo messages is not really necessary, but it may anticipate decision

when the coordinator cr of round r crashes in r and at least one correct process, say pi,

receives either a message from the coordinator or an echo message from some other

process pj . The echo messages from pi cause other processes to send echo messages

as well, and eventually non-crashed processes executing round r decide. Without the

echo messages, every non-crashed process would need to wait until all the processes in

some survivor set containing only correct processes suspect the coordinator and send

messages requesting them to move on to the next round. Furthermore, decision would

be postponed, thereby delaying termination. Because the time to suspect the coordinator
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may be arbitrarily long, this mechanism prevents unnecessary wait in making a decision.

Therefore, the argument in favor of echo messages is not correctness, since it is not

hard to modify the algorithm to work without it. Its use, however, may reduce the

latency in reaching agreement among the correct processes in a real implementation.

Schiper proposed originally the utilization of echo messages as an optimization to have

a coordinator-based algorithm less dependent on the coordinator in an asynchronous

round [DS98, Sch97].

Figure 3.4 shows the pseudocode of AsyncCrash and Table 3.2 presents a

brief description of the variables used in the algorithm. We also present an specification

of AsyncCrash in TLA+ in Appendix D.

Every process executes the same code in a run of the algorithm, although pro-

cesses have different roles in a round. The algorithm is structured in stages, and every

process initiates an execution in stage StartRound. In the first round, round 1, p1 is the

coordinator. After sending an Estimate message to itself, it transitions to a different

stage, from StartRound to WaitEstimates. Once it receives an Estimate message from

every process in some survivor set, then it sends a CoordEstimate message with its

proposed value to all the processes. After sending CoordEstimate messages, the coor-

dinator transitions to stage WaitCoordEstimate and behaves as the other processes for

the rest of this round. Note that there is a trivial optimization that can be implemented

in this case: the coordinator can process the estimate and move directly to stage WaitE-

choes. For exposition purposes, the pseudocode does not incorporate this optimization.

The other processes proceed to stage WaitCoodEstimate after sending an Es-

timate message in stage StartRound. In stage WaitCoordEstimate, a process waits for

either an estimate from the coordinator or an Echo message from some other process.

Once it receives such a message, it transitions to stage WaitEchoes. In stage WaitEchoes,

a process waits until it receives Echo messages from every process in some survivor set

S ∈ SΠ. By receiving Echo messages from the processes in S, a process pi decides

(process pi can also decide by receiving a decide message). If enough processes sus-

pect the coordinator and send MoveOn messages, then pi proceeds to the next round
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upon reception of these MoveOn messages. It is important to observe that, by strong

completeness, a correct process eventually suspects a faulty coordinator, thus prevent-

ing cases in which this correct process neither decides nor proceeds to the next round.

By assumption, every process has a failure detector module that it consults to determine

whether it suspects the coordinator or not. In the pseudocode, the output of the mod-

ule appears in the form of a predicate which determines when a process should send

MoveOn messages. More specifically, a process pi sends MoveOn messages if the

predicate “upon suspicion of pc and (Stage = WaitCoordEstimate)” holds (pi suspects

the coordinator and it is in stage WaitCoordEstimate, then it sends MoveOn messages).

Table 3.2: Variables used in the algorithm AsyncCrash

Stage Indicates the stage the process is in the current round.

Echoes Set with Echo messages received in the current round.

Estimate Current estimate of process pi.

EstUpdate Round in which Estimate is updated.

CurEstimates Set with the Estimate messages received by the coordinator.

c Process id of the coordinator of the current round.

r Keeps track of the current round.

A process sends MoveOn messages to other processes at most once. That is,

once a non-faulty process pi suspects the coordinator and sends MoveOn messages to

other processes in a round r, the predicate “upon suspicion of pc and (Stage = WaitCo-

ordEstimate)” is false for the subsequent steps of pi in round r.

The failure detector D may also falsely suspect the coordinator. In this case,

a process either collects enough messages to move on to the next round, or receives

enough Echo messages to decide. Before moving on to the following round, a process

increments the round number, assigns a new coordinator, and moves on the next round

by transitioning back to stage StartRound. This procedure is repeated until all the correct

processes decide.

We now provide a proof of correctness for the algorithm AsyncCrash. Before
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Algorithm AsyncCrash for process i:
Input: set Π of processes; set CΠ of cores; set SΠ of survivor sets; initial value vi ∈ V
Variables: Stage← StartRound; Echoes← ∅; CurEstimates← ∅; Estimate← vi;

EstUpdate← 0; r ← 1; c← 1
Stages: {StartRound, WaitEstimates, WaitCoordEstimate, WaitEchoes}

Transitions:
upon (Stage = StartRound)

Send(Estimate, i, r, Estimate, EstUpdate) to the coordinator pc

if(c = i) then Stage← WaitEstimates
else Stage← WaitCoordEstimate

upon reception of (Estimate, j, r , vj , rj) and (Stage = WaitEstimates)
CurEstimates← CurEstimates ∪{(j, vj , rj)}
if(∃S ∈ SΠ: ∀pk ∈ S: (k,vk, rk) ∈ CurEstimates)
then rk ← max{rx|(x, vx, rx) ∈ CurEstimates}

Estimate← vk, (x, vk, rk) ∈ CurEstimates; EstUpdate← r
Send(CoordEstimate, i, r, Estimate) to all processes in Π
Stage← WaitCoordEstimate

upon reception of (Type, j, r, vj), Type ∈ { CoordEstimate, Echo }, and (Stage =
WaitCoordEstimate)

if(Type = Echo) then Echoes← Echoes ∪{(Echo, j, r, vj)}
Send(Echo, j, r, vj) to all processes in Π
if (c 6= i) then Estimate← vj ; EstUpdate← r
Stage← WaitEchoes

upon reception of (Echo, j, r, vj) and (Stage = WaitEchoes)
Echoes← Echoes ∪{(Echo, j, r, vj)}
if(∃S ∈ SΠ such that ∀pk ∈ S, (Echo, k, r , v) ∈ Echoes, v ∈ V ) then

Decide upon value v
Send(Decide, i, v) to all processes in Π
halt

upon suspicion of pc and (Stage = WaitCoordEstimate)
Send(MoveOn, j, r) to all processes in Π

upon reception of (MoveOn, j, r)
MoveOn← MoveOn ∪ (MoveOn, j, r)
if (∃S ∈ SΠ : ∀pk ∈ S : (MoveOn, k, r) ∈ MoveOn) then
r ← r + 1; c← ((c + 1) mod |Π|) + 1
Echoes← ∅; MoveOn← ∅; CurEstimates← ∅
Stage← StartRound

upon reception of (Decide, j, v) and (Stage 6= Decided)
Decide upon value v
Send(Decide, i, v) to all processes in Π
halt

Figure 3.4: Algorithm AsyncCrash
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stating and proving the theorems that actually show that AsyncCrash satisfy the three

consensus properties, we show some preliminary lemmas.

Lemma 3.4.5 Let E be an execution of AsyncCrash and pi be some correct process

that does not decide in round r, r > 0. Eventually pi moves on to round r + 1.

Proof:

Proof by contradiction. Suppose a round r of E such that pi does not decide and pi

never proceeds to round r + 1. If a process pi does not decide in round r, then it neither

receives a Decide message nor receives an Echo message from all processes in some

survivor set. If pi does not receive a Decide message, then there is no pj such that pj

received an Echo message from all processes in some survivor set.

By assumption, at least one survivor set S ∈ SΠ contains only correct pro-

cesses, and every message sent by a correct process to another process is eventually

received. According to the algorithm, the processes in S send an Echo message upon

reception of either the first Echo message or a CoordEstimate message. If none of

these messages is received by any of the processes in S, then the coordinator is faulty.

Eventually the elements of S suspect the coordinator and send MoveOn messages, by

the strong completeness property of the failure detector. Once process pi receives a

MoveOn message from every process pj ∈ S, pi proceeds to round r + 1, a contradic-

tion.

2

For the following lemma, we say that the coordinator of a round r proposes

value v in round r, if the coordinator sends at least one CoordEstimate message propos-

ing v in this round.

Lemma 3.4.6 Let E be an execution of AsyncCrash and pi be a non-faulty process in

round r of E. If pi receives an Echo message m from process pj in round r, then the

estimate v of m is the value proposed by the coordinator of r.

Proof:

Proof by induction. By the algorithm, if pi receives an Echo message from pj , then there
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is a sequence of processes pj1 , pj2 , . . . , pjρ (j1 = i, j2 = j, ρ ≥ 2) such that pjk
sends

an Echo message by receiving an Echo message from pjk+1
, pjρ sends Echo messages

by receiving a CoordEstimate from the coordinator, and jk 6= jk′ , k 6= k′. We show the

proposition with an induction on the value of ρ.

Base case: ρ = 2. Process pj = pj2 receives a CoordEstimate message from the

coordinator. The Echo messages pj sends to other processes, including pi, contain as

their estimate the value v received in the CoordEstimate message. This implies that the

Echo message pi receives from pj contains the value v proposed by the coordinator.

Induction step. We assume that the proposition holds for ρ ≥ 2, and show for ρ + 1.

By the algorithm, the Echo messages pjρ+1 sends to other processes contains the estimate

it receives in a CoordEstimate messages from the coordinator of round r. This implies

that the Echo messages that pjρ send contain the value proposed by the coordinator. By

the induction hypothesis, if pjρ sends Echo messages that contain the estimate of the

coordinator of round r, then the estimate in the Echo message pi receives from pj must

be the value v proposed by the coordinator of round r. This concludes the proof of the

induction step and of the lemma.

2

Lemma 3.4.7 Let E be an execution of AsyncCrash and r be the first asynchronous

round in which some process pi decides. If pi decides upon value v and the coordinator

of round r′ proposes v′, r′ > r, then v′ = v.

Proof:

We prove this lemma by induction on the round numbers r′.

Base case: r′ = r+1. By assumption, we have that some process pi decides in round r.

Suppose without loss of generality that pi decides by receiving Echo messages from a

survivor set S ∈ SΠ. (Process pi can also decide by receiving a Decide message, which

implies that there is some other process pj that decides in round r by receiving Echo
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messages from some survivor set.) A non-faulty process pj sends an Echo message to

all the processes, including itself, upon reception of either a CoordEstimate or an Echo

message for the first time from some other process. Moreover, pj updates its estimate

upon reception of the first Echo message. Thus, if pj does not crash in round r+1, then

it sends an Echo message and updates its estimate. From Lemma 3.4.5, every correct

process that does not decide in round r eventually moves on to round r + 1.

Suppose that the coordinator of r + 1 proposes value v′. In the beginning of

round r + 1, the coordinator waits for the estimate of all the processes in some survivor

set S ′ ∈ SΠ. Upon reception of all the Estimate messages sent by processes in S ′, the

coordinator chooses the estimate updated in the latest round. By the Crash Intersection

property, there is at least one process pj ∈ S ′ such that pj’s estimate is v and it is updated

in round r. Consequently, the coordinator of r + 1 chooses v′ = v as its estimate.

Induction step. Suppose that the proposition is true for every r′ > r. We prove the

proposition for r′ + 1. If the coordinator of round r′ + 1 proposes v′, then it received

Estimate messages from a survivor set of processes. By the algorithm, the coordinator

chooses v′ as the value in the estimate with highest round number. Suppose that this

round number is r′′. By the Crash Intersection property, r′′ ≥ r. If r′′ = r, then v = v′

by assumption. Otherwise, v′ = v by the induction hypothesis.

2

Lemma 3.4.8 Let E be an execution of AsyncCrash and r be the first round of E such

that some process pi decides in r. If pi decides upon v ∈ V , then v is the value proposed

by the coordinator of r.

Proof:

By the algorithm, pi decides by either receiving Echo messages from some survivor set

S ∈ SΠ or receiving a Decide message. In the first case, the estimate in each of these

Echo messages is the value v′ proposed by the coordinator of r (Lemma 3.4.6). By the

algorithm, the value v that pi decides upon must be equal to v′, the value proposed by
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the coordinator.

If pi decides by receiving a decide message from a process pj , then there is

a sequence of processes pj1 , pj2 , . . . , pjr (j1 = i, j2 = j, r ≥ 2), such that pjk
sends a

Decide message due to the reception of a Decide message from process pjk+1
, pjr sends

Decide messages due to the reception of Echo messages from some survivor set, and

jk 6= jk′ , k 6= k′. By the algorithm, the Decide messages sent by pjk
contain the decision

value in the Decide message received from process pjk+1
. By Lemma 3.4.6, we conclude

that pjr decides upon the value v′ proposed by the coordinator, and consequently pi also

decides upon the value v = v′ proposed by the coordinator.

2

Lemma 3.4.9 Let E be an execution of AsyncCrash and pi be some correct process

that decides in round r. Process pi decides upon the value v ∈ V proposed by the

coordinator of round r′ ≤ r.

Proof:

Let v′ be the value proposed by the coordinator of round r. Process pi decides either

when it receives an Echo message from every process in some survivor set S ∈ SΠ or

when it receives a Decide message from some other process.

If pi decides upon v in round r by receiving Echo messages from a survivor set

S ∈ SΠ, then v must be the value proposed by the coordinator of round r (Lemma 3.4.6).

If pi decides upon v in round r by receiving a Decide message from some

process pj , then v must be a value proposed by the coordinator of some round r′ ≤ r.

We show this claim with a simple induction on the sequence of processes that send

Decide messages and cause the reception of a Decide message by pi. This sequence

is composed of processes pj1 , pj2 , . . . , pjr (j1 = i, j2 = j, and r ≥ 2), such that pjk

decides and sends Decide messages by receiving a Decide message from process pjk+1
,

pjr decides and sends Decide messages by receiving in round r′ Echo messages from

some survivor set S ∈ SΠ, and jk 6= jk′ , k 6= k′. By Lemma 3.4.6, we conclude that the

Echo messages received by process pjr contain the value v′ proposed by the coordinator
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of round r as their estimate. This implies that pi decides upon v = v′.

2

Lemma 3.4.10 Let E be an execution of AsyncCrash. For every process pi, if pi up-

dates its estimate in round r, then it does so with the initial value of some process pj ∈ Π.

Proof:

We prove this lemma with an induction on the round numbers r.

Base case: r = 1. From the algorithm, there are two possibilities for a process pi to

update its estimate. First, if i = 1 (pi is the coordinator), then it receives an Estimate

message from every process in some survivor set S ∈ SΠ. Because this is the first round,

all the Estimate messages contain initial values. More specifically, if process pj sends

out an Estimate message, then this message contains the initial value of pj . Thus, the

coordinator p1 chooses arbitrarily among the Estimate messages, since they all indicate

that the last update occurred in round zero, and updates its estimate accordingly. For the

second case, pi is not the coordinator. Suppose that pi updates its estimate in round 1.

There are two possibilities:

1. Process pi receives a CoordEstimate message before receiving any Echo mes-

sage. In this case, process pi updates its estimate with the value proposed by the

coordinator p1;

2. Process pi receives an Echo message before it receives a CoordEstimate message

from the coordinator. In this case this Echo message also contains the estimate of

the coordinator, by Lemma 3.4.6, and consequently pi updates its estimate with

the value proposed by the round coordinator.

Induction step. Now suppose that r > 1 and that the proposition is true for every

round r′ < r. We show that the proposition is also true for r. There are two cases: 1)



76

pi is the coordinator of round r; 2) pi is not the coordinator of round r. First, suppose

that pi is the coordinator of round r. Process pi then updates its estimate based on the

values received in the Estimate messages sent by every process in some survivor set

S ∈ SΠ. By the induction hypothesis, the estimate of every process pj in S has as its

estimate the initial value of some process. For every pj ∈ S, if pj has not updated its

estimate in any previous round, then its estimate is still its initial value vj . Otherwise,

from the inductive assumption, pj has as its estimate the initial value of some process.

Consequently, pi updates its estimate with the initial value of some process. In the case

pi is not the coordinator, it updates its estimate if and only if it receives a CoordEstimate

message or at least one Echo message. If pi updates its estimate using the value sent

in a CoordEstimate message, then this value must be the initial value of some process

because the coordinator updates its estimate with the initial value of some process by the

previous argument (the argument for pi being the coordinator). If pi receives an Echo

message from some other process pj , then the value in this message must be the initial

value of some process as it contains the estimate of the coordinator, by Lemma 3.4.6.

2

Lemma 3.4.11 Let E be an execution of AsyncCrash. Every pi ∈ Π \ Faulty(E)

eventually decides in E.

Proof:

From Lemma 3.4.5, every correct process that does not decide in a round r, r > 0,

proceeds to the next round. A process proceeds to the next round by receiving one

MoveOn message from every process pj in some survivor set S ∈ SΠ. According

to the algorithm, a non-faulty process pi sends a MoveOn message to all the other

processes when it detects that the coordinator pc has failed. From the eventual weak

accuracy property of the failure detector, however, there is a time t after which there is

some correct process pc that is permanently not suspected by any other correct process.

Therefore, there is time t′ > t and a round r such that pc is the coordinator of r and no

process proceeds to round r before t′. By assumption, no non-faulty process suspects pc
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in round r. Consequently, no non-faulty process sends MoveOn messages in this round,

and no correct process proceeds to the next round. Eventually, every correct process

receives either an Echo message from every process in some survivor set or a Decide

message and decides.

2

We now show three theorems to conclude our proof of correctness for Async-

Crash. We present three theorems, each one showing that AsyncCrash satisfies one of

the consensus properties.

Theorem 3.4.12 AsyncCrash satisfies Validity.

Proof:

By Lemma 3.4.9, if a correct process decides in a round r, then it must decide upon

the value proposed by the coordinator of some round r′ ≤ r. By the algorithm,

the coordinator updates its estimate before sending CoordEstimate messages, and by

Lemma 3.4.10, this estimate is the initial value of some process.

2

Theorem 3.4.13 AsyncCrash satisfies Agreement.

Proof:

Let pi and pj be two correct processes that decide in rounds ri and rj , respectively, of

some execution of AsyncCrash, and r be the first round such that some process pf

decides in this execution. Let v be the value that pf decides upon. By Lemma 3.4.8, the

coordinator of round r proposes v. By Lemma 3.4.7, if the coordinator of round r′ > r

proposes a value v′, then v = v′. By Lemma 3.4.9, pi and pj decide upon the values

proposed by the coordinators of rounds r′i and r′j , respectively. By the algorithm and by

assumption, we have that r ≤ r′i and r ≤ r′j . We conclude that the values vi and vj that

pi and pj decide upon respectively must be equal to v.

2

Theorem 3.4.14 AsyncCrash satisfies Termination.
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Proof:

This result follows directly from lemma 3.4.11.

2

3.4.2 Asynchronous consensus for Byzantine failures

Section 3.3.4 shows that Byzantine Partition (Byzantine Intersection) is a

replication property that is necessary and sufficient to solve consensus in synchronous

systems for Byzantine failures. Byzantine Partition is also necessary and sufficient to

solve strong consensus in an asynchronous system extended with a failure detector

M ∈ 3M. To show this claim, we assume a system that does not satisfy Byzantine

Partition, and we then construct an execution in which two correct processes decide

differently. Such an execution violates the Agreement property of strong consensus.

We then describe AsyncByz, an algorithm that solves strong consensus assuming the

Byzantine Intersection property holds. This protocol has features from the protocols

proposed by by Doudou and Schiper [DS98] and Kihlstrom et al. [KMMS97].

Lower bound on process replication

We claim that Byzantine Partition is necessary to solve consensus in asyn-

chronous systems extended with failure detectors of the class 3M . Different from Sec-

tion 3.3.4, we assume here that messages are digitally signed. More specifically, we

assume a public key scheme that processes use to sign and verify the messages sent by

other processes.

We show our claim by contradiction. Intuitively, we assume that there is an

algorithm A that solves strong consensus for some system that does not satisfy Byzan-

tine Partition. Thus, there is a partition of the processes into three subsets B1, B2, and

B3 such that none of these subsets contains a core, and we construct three executions as

follows:

Execution Eα. Every process pi has v1 ∈ V as its initial value, and every process
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pj ∈ B2 crashes at time zero (0). All the other processes are correct in Eα, and

their failure detector modules suspect permanently every process inB2, starting at

time t ≥ 0. In such an execution, processes in subsets B1 and B2 have to decide

v1, by the strong validity property. Suppose that tα is the latest time at which some

correct process decides in Eα;

Execution Eβ . Every process pi has v2 ∈ V , v2 6= v1, as its initial value, and every

process pj ∈ B1 crashes at time zero (0). All the other processes are correct in

Eβ , and their failure detector modules suspect permanently every process in B1,

starting at time t ≥ 0. In such an execution, processes in subsets B2 and B3 have

to decide v2, by the strong validity property. Suppose that tβ is the latest time at

which some correct process decides in Eβ;

Execution Eγ . : Let tγ = max(tα, tβ). Suppose that processes in subsets B1 and B2

are correct, whereas processes inB3 are faulty. Furthermore, processes inB1 have

initial value v1, and processes in B2 have initial value v2. In this execution, the

failure detector modules of processes in B1 suspect every process in B2 from time

zero to time tγ , and the failure detector modules of processes in B2 suspect every

process in B1 from time zero to time tγ . Messages sent from processes in B3 to

processes in B1 are as in Eα, and the ones from processes in B3 to processes in

B2 are as in Eβ . Messages sent between processes in B1 and B2, however, are

delayed until tγ . It is not difficult to see that processes in B1 cannot distinguish

Eα fromEγ up to time tγ , and hence decide upon v1. Processes inB2, on the other

hand, cannot distinguish Eβ from Eγ up to time tγ , and consequently decide v2;

Agreement is clearly violated in Execution Eγ . Note that even if we assume

digitally signed messages, the result still holds. Even assuming a full-information pro-

tocol, processes in C can selectively choose the messages they want to include in their

own messages to other processes.

We now provide a formal argument to support our claim.

Claim 3.4.15 Let 〈Π, CΠ,SΠ〉 be a system extended with a failure detector of the class
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3M . If strong consensus is solvable in 〈Π, CΠ,SΠ〉, then 〈Π, CΠ,SΠ〉 satisfies Byzantine

Partition.

Proof:

Proof by contradiction. Suppose that there is a system 〈Π, CΠ,SΠ〉 extended with a fail-

ure detector of the class 3M that does not satisfy Byzantine Partition and an algorithm

A that solves strong consensus. If 〈Π, CΠ,SΠ〉 does not satisfy Byzantine Partition, then

there is a partition (B1, B2, B3) ∈ P3(Π) such that none of B1, B2, or B3 contains a

core. We construct an execution Eγ of A in which Agreement is violated. First, we

construct two other executions: Eα and Eβ .

Let Eα = 〈Initα, Stepsα,Timeα,Faultyα, Hα〉 be as follows:

StepsOf α(i) = ∅, pi ∈ B2

Faultyα(s) = B2,∀s ∈ Stepsα

Hα(t, i) = B2,∀t ≥ 0,∀pi ∈ (B1 ∪B3)

Initα(i) = v1, v1 ∈ V, ∀pi ∈ (B1 ∪B3)

Stepsα and Timeα can be arbitrary, as long as the three strong consensus prop-

erties hold for Eα.

Now let Eβ = 〈Initβ, Stepsβ,Timeβ,Faultyβ, Hβ〉 be as follows:

StepsOf β(i) = ∅, pi ∈ B1

Faultyβ(s) = B1,∀s ∈ Stepsα

Hβ(t, i) = B1,∀t ≥ 0,∀pi ∈ (B2 ∪B3)

Initβ(i) = v2, v2 ∈ V, ∀pi ∈ (B2 ∪B3)

Similarly, Stepsβ and Timeβ can be arbitrary, as long as the three strong con-

sensus properties hold for Eβ .

Let tα be a time value such that every correct process has decided at or be-

fore tα in execution Eα. Such a time exists by the termination property of strong con-

sensus and the assumption that the algorithm is correct. Similarly, let tβ be a time
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value such that every correct process decides at or before tβ in Eβ . Finally, let tγ be

a time value that satisfies tγ > max{tα, tβ}. We are now ready to define execution

Eγ = 〈Initγ, Stepsγ,Timeγ,Faultyγ, Hγ〉.

Faultyγ(s) = ∅,∀s ∈ Stepsα

Hγ(t, i) =


Hβ(t, i) ∀t ≤ tγ, pi ∈ B2

Hα(t, i) ∀t ≤ tγ, pi ∈ B1

∅ ∀t > tγ,∀pi ∈ Π

Initγ(i) =

 v1 ,∀pi ∈ B1

v2 ,∀pi ∈ B2

Stepsγ and Timeγ satisfy the following:

• For every t ≤ tα, if there is s ∈ Stepsα such that Timeα(s) = t, then s ∈ Stepsγ

and Timeγ(s) = t;

• For every t ≤ tβ , if there is s ∈ Stepsβ such that Timeβ(s) = t, then s ∈ Stepsγ

and Timeγ(s) = t;

• If s ∈ Stepsγ is such that Timeγ(s) ≤ tγ , then s ∈ Stepsα or s ∈ Stepsβ;

• For every step s ∈ Stepsα such that a process pi ∈ B1 sends a message m to

a process pj ∈ B2, there is a step s′ ∈ Stepsγ such that pj receives m in s and

Timeγ(s) > tγ;

• For every step s ∈ Stepsβ such that a process pj ∈ B2 sends a message m to

a process pi ∈ B1, there is a step s′ ∈ Stepsγ such that pi receives m in s and

Timeγ(s) > tγ .

A process pi ∈ B1 cannot distinguish execution Eα from execution Eγ ,

whereas a process pj ∈ B2 cannot distinguish execution Eβ from execution Eγ . Thus,

pi and pj decide upon v1 and v2, respectively, violating the agreement property. We

conclude that 〈Π, CΠ,SΠ〉must satisfy Byzantine Partition to enable a solution to strong

consensus.

2
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An algorithm for strong consensus

This section describes AsyncByz an asynchronous consensus algorithm for

Byzantine failures. AsyncByz is based on the rotating coordinator paradigm and

proceeds in asynchronous rounds, as the AsyncCrash protocol we described in Sec-

tion 3.4.1. Different from AsyncCrash, AsyncByz assumes a public key scheme: every

process pi has a pair of keys 〈σi, δi〉, such that σi is the private key and δi is the public

key. Only pi has access to its private key σi, whereas any process pj 6= pi has free access

to the public key δi of pi. Every message m process pi sends to pj has a certificate gen-

erated with σi. This certificate is unforgeable, that is, only a process under possession

of σi may generate a valid certificate for a given message. Upon reception of a message

from pi, process pj uses δi to assert that the message was constructed by pi. Note that

a faulty process pi may leak its private key to other processes, allowing them to forge

messages of pi.

We assume FIFO channels. This feature is necessary to prevent faulty pro-

cesses from hampering the system. A process pi that sends out-of-order messages, by

definition, is not mute. Thus, the failure detector M is not guaranteed to eventually

suspect pi. If this kind of behavior is not detected by the algorithm, then there are exe-

cutions of AsyncByz in which pi prevents some correct process pj from deciding. This

observation will become clear after we describe the algorithm. A possible implemen-

tation of these FIFO channels uses counters to order the messages of a channel. More

specifically, the communication subsystem only delivers message number x to process

pi once it delivers all messages prior to x. Also, the communication subsystem does not

deliver messages with duplicate sequence numbers.

In an execution of AsyncByz, a correct process proceeds from one round to

the next until it decides. The execution of a round for a process pi is divided into stages,

as shown in Figure 3.6. A process pi begins the execution of round r in stage Start, and

the first action of pj is to send its estimate to the coordinator in a Estimate message.

Initially, every process has as its estimate its own initial value.
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Let pc be the coordinator of round r. Process pc transitions to stage WaitEs-

timates after sending an Estimate message to itself. Every other process pj transitions

to stage WaitCertEst. Upon reception of one Estimate message from every process in

some survivor set Si1 , the coordinator then sends a CertEstimate message to all pro-

cesses, and transitions to stage WaitCertEst. This message contains the current estimate

of the coordinator, where this estimate is a value that the coordinator selects based on

the received Estimate messages from processes.

The estimate sent in the CertEstimate message is chosen in the following

manner: if there is a pair of survivor sets Si2 , Si3 ∈ SΠ such that every process in Si2∩Si3

has the same estimate v ∈ V , then the coordinator updates its estimate to v, otherwise

it keeps the previous estimate. After receiving a CertEstimate from the coordinator, a

process pj replies with an Echo message. If pj = pc, then pj waits for Echo messages

(transitions to WaitEchoes). Otherwise, pj transitions to C WaitRoundEst. Once the

coordinator receives one Echo message from every process in some survivor set, it sends

a RoundEstimate message to all the other processes and transitions to WaitRoundEst.

Upon reception of the first RoundEstimate message, a correct process forwards it to all

the other processes, and transitions to WaitRoundEst.

In the WaitRoundEst/C WaitRoundEst stage, a process either decides upon

a value or prepares to proceed to the next round. If a correct process receives one

RoundEstimate message from every process in some survivor set, then it decides and

sends a Decide message to all the other processes. A process that receives a well-formed

Decide message decides upon the value in this message. Note that a Decide message is

not associated with any particular round or stage. That is, if pj receives a well-formed

Decide message, independently of the round or stage it is, then pj decides. We explain

the requirements necessary for a message to be well-formed later in this section.

Figure 3.5 shows an execution without failures or suspicions. The diagram in

this figure shows the sequence of messages starting with Estimate messages and ending

with RoundEstimate messages. It omits Decide messages for the sake of clarity.

During any stage of a round, a process may suspect the coordinator and broad-
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Figure 3.5: AsyncByz: Execution with no failures or suspicions

cast a Suspicion message. A process that eventually receives a Suspicion message from

every process in some survivor set sends a MoveOn message. Upon reception of one

MoveOn message from every process in some survivor set, a process pi updates its es-

timate with the most recent one in the set of received MoveOn messages and proceeds

to the next round.

During this brief description of the algorithm, some details were omitted to

preserve clarity. Now we discuss in more detail some of the aspects omitted.

Because we are assuming that processes may fail arbitrarily, the messages a

faulty process sends are not guaranteed to have the correct form. Thus, it is necessary

to have some mechanism to certify the content of a message besides authentication.

Based on the definition of [DS98], we say a message is well formed if it follows some

particular rules we establish for each type of message. A common rule for every type

of message is that a message must be properly signed by its sender in order to be well

formed. The rules particular to each type of message are as follows:

• An Estimate message is well formed if it contains an estimate value Estimate

certified by a set EstimateCert, which is either empty or contains a collection of

well-formed Echo messages, and a set InitCert, which is either empty or contains
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Figure 3.6: AsyncByz: Stage diagram for process pi

a set of well-formed MoveOn messages. The Echo messages must be such that,

for some survivor set S and for every process pi ∈ S, there is a message from pi

in EstimateCert. Note that, in the algorithm, the set EstimateCert, if not empty,

is the certificate of a well-formed RoundEstimate message. If it is empty, then

the receiver assumes that this is the initial value of the sender. The set InitCert

certifies the choice for the pair (Estimate, EstimateCert);

• A RoundEstimate message is well formed if it is properly signed by the coor-

dinator, and it contains an estimate value Estimate certified by a set EchoCert of

well-formed Echo messages, such that, for some survivor set S and for every pro-

cess pi ∈ S, there is an Echo message from pi in EchoCert. As we show later

in this section, in each round, the coordinator can only generate one well-formed

RoundEstimate message;

• An Echo message is well formed if it is certified by a well-formed CertEstimate

message;
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• A CertEstimate message is well formed if it contains an estimate value that is

certified by InitEstCert, which contains two sets: 1) the set of Estimate messages

received by the coordinator; 2) the set EstimateCert that determined the estimate

value of the coordinator in a previous round. The value InitEstimate proposed in

the CertEstimate message by the coordinator depends on the Estimate messages

received. If there are survivor sets Si and Sj , such that for every pi ∈ Si, there is

a message in InitEstCert from pi, and for every pj ∈ Si ∩ Sj , there is a message

from pj in InitEstCert proposing the same value v ∈ V , then v is the value of

InitEstimate. Otherwise, it is the value of Estimate in the end of the previous

round;

• A Suspicion message is well formed if it is properly signed by its sender, and it

requires no certification;

• A MoveOn message is well formed if it is properly signed by its sender, and it

is certified by a set SuspicionCert of well formed Suspicion messages, such that,

for some survivor set S and for every process pi ∈ S, there is a message from pi

in SuspicionCert. Moreover, it contains an estimate value Estimate certified by a

set EstimateCert of well-formed Estimate messages;

• A Decide message is well formed if it is properly signed by its sender, and it

is certified by a set RoundCert of well-formed RoundEstimate messages, such

that, for some survivor set S and for every process pi ∈ S, there is a well-formed

message in RoundCert from pi.

Late messages – messages sent in a previous round or in a previous stage of

the same round – are simply discard, well-formed or not. In more detail, we assume

that any message received by a process pi at stage x of round r that refers to a previous

round r′ < r, or to a stage y of round r that pi has been through already is discarded. On

the other hand, a process pi keeps messages that refer to possible future stages or future

rounds, and delivers them when appropriate.
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A last comment is on the MostRecentEstimate function. This function tra-

verses a set of MoveOn messages received by a process and determines the estimate

value that was updated more recently. If there is no estimate updated in a more recent

round, then the function returns null. As we show with the following lemmas, by using

this update strategy, we guarantee that once some correct process decides, the decision

value v is locked, meaning that no correct process can decide on a different value v′.

We present the pseudocode for algorithm AsyncByz in Figures 3.7 and 3.8. Table 3.3

presents a brief description of the variables used in the pseudocode. Additionally, Ap-

pendix E presents a specification of AsyncByz in TLA+.

Table 3.3: Variables used in the algorithm AsyncByz

Stage Indicates the stage the process is in the current round.

r Current round of process pi.

c Process id of the coordinator of the current round.

Estimate Current estimate of process pi.

EstimateCert Certificate for Estimate.

InitCert Justifies the choice of the pair (Estimate, EstimateCert).

InitEstimate Used by the coordinator to determine the value to propose in the current round.

InitEstCert Certificate for InitEstimate.

RoundEstimateCert Certificate for RoundEstimate messages.

DecisionCert Certificate for Decide messages.

SuspicionCert Certificate for MoveOn messages.

MoveOnCert Certificate for the value of Estimate.

We now provide a proof of correctness for AsyncByz. We assume a system

profile 〈Π, CΠ,SΠ〉 that satisfies Byzantine Intersection. The proof presented here follow

a structure similar to the one for the proof of correctness of AsyncCrash.

Lemma 3.4.16 Let E be an execution of AsyncByz. If a correct process pi does not

decide in round r > 0, then pi eventually proceeds to round r + 1.

Proof:
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Algorithm AsyncByz for process pi

Input: set Π of processes; set S of survivor sets; initial value vi

Variables:
Stage← Start; r ← 1; c← 1; Estimate← vi; InitEstimate← vi; InitEstCert← ∅;
EstimateCert← ∅; SuspicionCert← ∅; DecisionCert← ∅;
MoveOnCert← ∅; RoundEstimateCert← ∅; InitCert← ∅;

Stages: Start; WaitEstimates; WaitCertEst; WaitEchoes; C WaitRoundEst; WaitRoundEst

Transitions:
When (Stage = Start)

Send(Estimate, i, r, Estimate, EstimateCert, InitCert) to c
if (i = c) then Stage←WaitEstimates
else Stage←WaitCertEst

upon reception of well formed (Estimate, j, r, ej , ecj , icj) and (Stage = WaitEstimates)
InitEstCert← InitEstCert ∪ EstimateCert ∪ {(Estimate, pj , r, ej , ecj , icj)}
if (∃S ∈ SΠ such that ∀pj ∈ S, (Estimate, j, r, ej , ecj , icj) ∈ InitEstCert)
then if (∃S′ ∈ SΠ : ∃v ∈ V : ∀pl ∈ (S ∩ S′): (Estimate, l, rl, v, ecl, icl) ∈ InitEstCert)

then InitEstimate← v
else InitEstimate← Estimate

SendAll(CertEstimate, i, r, InitEstimate, InitEstCert)
Stage←WaitCertEst

upon reception of well formed (CertEstimate, j, r, ej , ecj) and
(Stage = WaitCertEst)

m← (CertEstimate, j, r, ej , ecj)
Send(Echo, i, m) to pc

if (i = c) then Stage←WaitEchoes
else Stage← C WaitRoundEst

upon reception of well formed (Echo, j, m) and
(Stage ∈ {WaitEchoes})

RoundEstimateCert← RoundEstimateCert ∪ { (Echo, j, m) }
if (∃S ∈ SΠ such that ∀pj ∈ S, (Echo, j, m) ∈ RoundEstimateCert) then

SendAll(RoundEstimate, i, r, Estimate, RoundEstimateCert)
Stage← C WaitRoundEst

upon reception of well formed (RoundEstimate, j, r, ej , rej) and
(Stage = C WaitRoundEst)

SendAll(RoundEstimate, j, r, ej , rej)
if (i 6= c) then Estimate← ej ; EstimateCert← rej

DecisionCert← DecisionCert ∪ {(RoundEstimate, j, r, ej , rej)}
Stage←WaitRoundEst

upon reception of well formed (RoundEstimate, j, r, ej , rej) and
(Stage = WaitRoundEst)

DecisionCert← DecisionCert ∪ {(RoundEstimate, j, r, ej , rej)}
if (∃S ∈ S such that ∀pj ∈ S, (RoundEstimate, j, r, ej , rej) ∈ DecisionCert)
then Decide upon ej

SendAll(Decide, i, ej , DecisionCert)
Halt

Figure 3.7: Algorithm AsyncByz



89

Transitions:
upon suspicion of pc

SendAll(Suspicion, i, r)

upon reception of well formed (Suspicion, j, r)
SuspicionCert← SuspicionCert ∪ {(Suspicion, j, r)}
if(∃S ∈ SΠ such that ∀pj ∈ S, (Suspicion, j, r) ∈ SuspicionCert)
then SendAll(MoveOn, i, r, SuspicionCert, Estimate, EstimateCert)

Stage←MoveOn

upon reception of (MoveOn, j, r, csj , ej , ecj)
MoveOnCert←MoveOnCert ∪ {(MoveOn, j, r, csj , ej , ecj)}
if(∃S ∈ SΠ such that ∀p ∈ S, (MoveOn, j, r, csj , ej , ecj) ∈ MoveOnCert)
then (tmpEstimate, tmpEstimateCert)←MostRecentEstimate(MoveOnCert)

if (tmpEstimate 6= null)
then Estimate← tmpEstimate; EstimateCert← tmpEstimateCert

InitCert←MoveOnCert
r ← r + 1; c← ((c + 1) mod |Π|) + 1
SuspicionCert← ∅; DecisionCert← ∅; MoveOnCert← ∅; RoundEstimateCert← ∅; InitEstCert← ∅
Stage← Start

upon reception of well formed (Decide, j, ej , edj)
Decide upon ej

SendAll(Decide, i, ej , edj)
Halt

Figure 3.8: Algorithm AsyncByz (cont.)

Proof by contradiction. Suppose that pi neither decides in r nor proceeds to round r+1.

If pi does not decide in r, then it neither receives a well-formed Decide nor receives

well-formed RoundEstimate messages from a survivor set. If pi does not receive a well-

formed Decide message from some other process pj , then no non-faulty process has

decided in round r. This implies that no non-faulty process receives RoundEstimate

messages from a survivor set and decides.

If no correct process receives RoundEstimate messages from a survivor set,

then, by the algorithm, no correct process receives a well-formed RoundEstimate mes-

sage in round r. This implies that the coordinator is mute to every correct process. By

the mute completeness property of the failure detector, every correct process eventually

suspects the coordinator. This implies that process pi eventually receives well-formed

MoveOn messages from a survivor set and proceeds to round r + 1.

2
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Lemma 3.4.17 Let E be an execution of AsyncByz. In every round r of E, the coordi-

nator of r can not construct two well-formed RoundEstimate messages m and m′ such

that the estimate of m is v and the estimate of m′ is v′, v 6= v′.

Proof:

A RoundEstimate message is certified by a set M of Echo messages, such that M

contains one Echo message from every process pi ∈ S, for some survivor set S ∈ SΠ.

To generate two well-formed RoundEstimate messages, each one proposing values v

and v′, v 6= v′, the coordinator has to receive a well formed Echo message from every

process pj ∈ (S ∪ S ′), for S, S ′ ∈ SΠ. Each Echo message from a process in S certifies

the reception of a well formed CertEstimate with estimate value v, whereas each Echo

message from a process in S ′ certifies the reception of a well formed CertEstimate with

estimate value v′. By Byzantine Intersection, for every S, S ′ ∈ SΠ, we have that there is

a process pj ∈ (S ′ ∩ S), such that pj is correct. From the algorithm, pj sends an Echo

message upon reception of the first CertEstimate message. In the case that pj receives

two well-formed CertEstimate messages from the coordinator, pj replies with an Echo

message only upon the reception of the first message. Thus, it is not possible for the

coordinator of r to have two sets M and M ′ of Echo messages, M 6= M ′, such that M

certifies value v, whereas M ′ certifies value v′.

2

Lemma 3.4.18 Let E be an execution of AsyncByz, r be the first round of E in which

some non-faulty process pi decides, and v ∈ V be the value pi decides upon. For every

round r′ ≥ r, if a correct process pj proceeds to round r′ + 1, then the estimate of pj

is v.

Proof:

We prove this lemma by induction on the round numbers ρ.

Base case. ρ = r. If some non-faulty process pi decides in round r, then it receives

either one well-formed RoundEstimate message from every process in some survivor
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set Sre ∈ SΠ or a well-formed Decide message from some other process.

If pi receives a well-formed Decide message, then there is a sequence of pro-

cesses pj1 , pj2 , . . . , pjd
(j1 = i, d ≥ 2) such that pjk

decides by receiving a Decide

message from pjk+1
, pjd

sends Decide messages by receiving RoundEstimate from

processes in some survivor set S, and jk 6= jk′ , k 6= k′. Since the certificate of the

Decide messages induced by this sequence is not altered by assumption (otherwise one

of these messages is not well formed), pi has also to decide upon the same value as

pjd
. Thus, suppose without loss of generality that pi decides due to the reception of one

well-formed RoundEstimate from every process in some Sre ∈ SΠ.

If a correct process pj proceeds to round r + 1, then it must receive a well-

formed MoveOn message from every process in some survivor set Smo ∈ SΠ in round r.

By the Byzantine Intersection property, there is at least one correct process pi2 , such that

pi2 ∈ (Smo∩Sre). The estimate of pi2 must be v because pi2 forwards a RoundEstimate

message with value v to pi and updates its estimate before doing so. The estimate pi2

sends in the MoveOn message is therefore v, the same value pi decides upon, updated in

round r. Process pj , by receiving a well-formed MoveOn message from every process

in Smo, updates its estimate to the value proposed in the latest round. From our previous

observation, at least process pi2 sends a well formed MoveOn message with estimate

v and update round r. By Lemma 3.4.17, no other process pi3 sends a well-formed

MoveOn message with value v′, v 6= v′. Process pj consequently proceeds to round

r + 1 with estimate v.

Induction step. Now assume that the proposition is valid for every round ρ = r′ ≥ r.

We prove for r′ + 1. By the induction hypothesis, every correct process that proceeds to

round r′ + 1 does so with estimate v. By assumption, there is at least one survivor set

Sc ∈ SΠ such that Sc contains only correct processes. To certify the value in a CertEsti-

mate message, the coordinator of round r′+1 collects an Estimate message from every

process pi1 ∈ Ses, for some survivor set Ses ∈ SΠ. By the Byzantine Intersection prop-

erty, the intersection Sc ∩ Ses is not empty and contains only correct processes. From
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the algorithm, a well-formed CertEstimate sent by the coordinator pc or round r′ + 1

has consequently to propose v. By Lemma 3.4.17, if the coordinator eventually sends a

well formed RoundEstimate, then it must propose v.

Suppose pj receives one well-formed MoveOn message from every process

in some survivor set Smo ∈ SΠ. If some correct process pi2 changes its estimate before

sending MoveOn messages in a round, then pi2 does so upon reception of a well-formed

RoundEstimate. This message, as observed before, has to propose v. If such a process

pi2 is in Smo, then pj updates its estimate to v with update round equal to r′ + 1. Other-

wise, there is some process pi3 ∈ Smo, such that the estimate of pi3 is properly certified

and is the most recent.

The estimate of pi3 must be v. Suppose the contrary. That is, the estimate

of pi3 is v′ 6= v. In this case, there is a set M of well-formed MoveOn messages

sent in round r′, one from each process in some survivor set S ′mo ∈ SΠ such that one

of the messages in M certifies the estimate v′ and this estimate was updated in round

r′′. By the argument for the base case, we have that r′′ > r. By the algorithm, the

certificate for this estimate is a collection of Echo messages, which contain a copy of

the Estimate messages the coordinator of r′′ used to select the round estimate. By the

induction hypothesis, the estimate of every correct process in the beginning of round r′′

is v. Thus, the estimate of the coordinator of r′′ must be v, by the algorithm.

We conclude that pj also updates its estimate to v at the end of round r′ + 1

and therefore proceeds to round r′ + 2 with estimate v.

2

Lemma 3.4.19 Let E be an execution of AsyncByz, r be the first round of E in which

some non-faulty process pi decides, and v ∈ V be the value pi decided upon. For every

round r′ > r, if the coordinator of r′ sends a well-formed RoundEstimate during the

execution of round r′, then the value in this message is v.

Proof:

By the algorithm, the coordinator of a round can only send a well-formed RoundEsti-
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mate message after receiving well-formed Echo messages from the processes in some

survivor set. To receive well-formed Echo messages, the coordinator must have sent

first well-formed CertEstimate messages. The coordinator can only send well-formed

CertEstimate messages after receiving Estimate messages from a survivor set, which

certify its choice for the estimate value proposed in these messages.

From Lemma 3.4.18, the estimate of every correct process at stage Start of

round r′ > r is v. By assumption, there is at least one survivor set Sc ∈ SΠ such that Sc

contains only correct processes. Let Ses ∈ SΠ be a survivor set such that the coordinator

pc of round r′ receives one well-formed Estimate message from every process in Ses.

By Byzantine Intersection, Ses ∩ Sc is not empty and contains only correct processes.

Moreover, for every S ∈ SΠ, Ses ∩ S contains at least one correct process. Thus, there

are no two survivor sets S, S ′ ∈ SΠ such that:

1. The estimate of every process in Ses ∩ S is v, v ∈ V

2. The estimate of every process in Ses ∩ S ′ is v′, v′ ∈ V

3. v 6= v′

A well formed CertEstimate sent by the coordinator of round r′ hence must propose v.

By sending CertEstimate messages, the coordinator eventually receives one

well-formed Echo message from every process in some survivor set Ses ∈ SΠ. Each

one of these Echo messages is well formed if it contains a copy of the CertEstimate

message that the coordinator sent. Consequently, a well-formed Echo message acknowl-

edges the value v as the proposed value for round r′. A well-formed RoundEstimate

message sent by the coordinator, consequently, must propose v.

2

Lemma 3.4.20 Let E be an execution of AsyncByz, r be the first round of E in which

some non-faulty process decides, and pi be a non-faulty process that decides in round

r′ ≥ r. Process pi decides upon the value proposed by the coordinator of some round

r′′, r′ ≥ r′′ ≥ r.
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Proof:

A process decides by either receiving a well-formed Decide message or receiving well-

formed RoundEstimate messages from a survivor set. If pi decides by receiving a

Decide message, then there is a sequence of processes pj1 , pj2 , . . . , pjd
(j1 = i, d ≥

2) such that pjk
decides by receiving a Decide message from pjk+1

, pjd
sends Decide

messages by receiving RoundEstimate from processes in some survivor set S, and

jk 6= jk′ , k 6= k′. Since the certificate of the Decide messages induced by this sequence

is not altered by assumption (otherwise one of these messages is not well-formed), pi

also decides upon the same value as pjd
.

Suppose that pjd
decides in round rjd

≤ r′. By assumption, rjd
must be greater

or equal to r. By the algorithm, pjd
must receive well-formed RoundEstimate mes-

sages from some survivor set in SΠ. Such messages can only be well formed if they

were signed by the coordinator. Moreover, by Lemma 3.4.17, the coordinator can only

propose one single value in a round.

By the same argument, if pi decides by receiving well-formed RoundEsti-

mate messages from a survivor set, then it must decide upon the value of the coordinator

of round r′.

2

Lemma 3.4.21 Let E be an execution of AsyncByz in which the initial value vj of

every correct process pj is v ∈ V . If a correct process pi executing round r, r ≥ 1,

eventually proceeds to round r + 1, then it does so with estimate value v′ = v.

Proof:

We prove this lemma by induction on the round numbers r.

Base case: r = 1. Suppose the coordinator of round 1, p1, constructs a well-formed

CertEstimate message. To construct such a message, the coordinator receives one Es-

timate message from every process pi1 in some survivor set Ses ∈ SΠ. From the Byzan-

tine Intersection property, Ses ∩ Sc is not empty, where Sc is a survivor set containing
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only correct processes (such a survivor set exists by assumption). Thus, for every pro-

cess pi1 ∈ Ses ∩ Sc, the Estimate message pi1 sends to the coordinator p1 proposes v.

Moreover, there is no survivor set S ∈ SΠ, such that:

∀pi1 ∈ Ses ∩ S : pi1 sends an Estimate message to p1 containing a value v′ 6= v

because Ses∩S∩Sc is not empty. If p1 eventually constructs a well-formed RoundEsti-

mate and sends to other processes in Π, then the value proposed in these messages must

be v.

To proceed to round r + 1 = 2, a correct process pi has to receive a well-

formed MoveOn message from every process in some survivor set Smo ∈ SΠ. Suppose

that there is at least one process pi2 ∈ Smo such that pi2 receives at least one well-formed

RoundEstimate message during round 1. The value proposed in the RoundEstimate

message must be v, and consequently pi2 updates its estimate with value v. Otherwise,

every MoveOn message contains the initially uncertified value of the process that has

sent the message. In the former case, pi updates its estimates with v, updated in round

1. In the latter case, pi does not update its estimate, and keeps its initial value, which is

v. Every correct process pi therefore proceeds to round 1 with estimate value v.

Induction step. Suppose that the proposition is valid for every round r ≥ 1. We prove

for round r + 1. To proceed to round r + 2, a correct process pi has to receive a well-

formed MoveOn message from every process in some survivor set Smo ∈ SΠ. Suppose

that there is at least one process pi1 ∈ Smo such that pi1 receives at least one well-

formed RoundEstimate message during round r. By the inductive hypothesis and the

Byzantine Intersection property, the value proposed in a well-formed RoundEstimate

message from the coordinator of round r must be v, and consequently pi1 updates its

estimate with value v.

If there is no such a process pi1 , then for every process pi2 ∈ Smo, the estimate

pi2 sends in a well-formed MoveOn message to pi in round r+ 1 is still the estimate pi2

has when it proceeds to round r + 1, which is v. Moreover, there is a process pmr such
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that pmr has the most recent certified estimate. Suppose that pmr updates this estimate in

round r′, 1 < r′ < r + 1.

If the estimate pmr is v′, then there is a set of well-formed MoveOn messages

from round r′, containing one message from each process in some survivor set S ′mo ∈

SΠ, and certifying the value v′ as the estimate of pmr. To form such a set, a process

needs, by the algorithm, a set M of well-formed Echo messages certifying the choice

of the coordinator of round r′ for the estimate v′. By the algorithm, an Echo message

from some process pj contains a copy of the CertEstimate message pj receives from the

coordinator of round r′. The certificate of a CertEstimate message is a set of Estimate

messages. Again by the algorithm, the CertEstimate message proposes the value v′ that

is the estimate of every process in the intersection of two survivor sets S, S ′ ∈ SΠ. By

the induction hypothesis, every correct process proceeds to round r′ (or starts in r′) with

estimate v. By Byzantine Intersection, S ∩ S ′ ∩ Sc is not empty, where Sc is a survivor

set containing only correct processes. We conclude that the coordinator of round r′ can

not build a valid certificate for CertEstimate messages certifying v′. Consequently, the

estimate of pmr must be v and pi proceeds to round r + 2 with estimate v.

2

Lemma 3.4.22 Let E be an execution of AsyncByz, and r be a round of E such that

the coordinator of r sends at least one well-formed RoundEstimate message msg. If

every correct process pi that executes round r has v as its estimate when pi starts round

r, then the estimate of msg must be v.

Proof:

To construct a well-formed RoundEstimate message, the coordinator of round r must

receive a setM of well-formed Echo messages such that there is one message inM from

every process in some survivor set Se ∈ SΠ. Each Echo message in M from process pi

contains a copy of the CertEstimate message that the coordinator of round r generates.

By the algorithm, such a CertEstimate message must be well-formed to be received

by pi. Again by the algorithm, if there is some value v′ such that v′ is the estimate of
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every process in the intersection of survivor sets S and S ′, then v′ is the estimate in

CertEstimate. By assumption, there is some survivor set Sc containing only correct

processes, and the estimate of every process in S ∩ Sc is v. Moreover, by Byzantine

Intersection, there is no other survivor set S ′′ such that the estimate of every process in

S ∩ S ′′ is v′′ 6= v because S ∩ S ′′ ∩ Sc is not empty. Thus, the round estimate value in

msg must be v.

2

Theorem 3.4.23 AsyncByz satisfies Termination.

Proof:

From the weak accuracy property of the failure detector, for every execution E, there

is a time t and some correct process pi such that for every t′ ≥ t and correct pj , pi 6∈

HE(t′, j). By lemma 3.4.16, a correct process that does not decide in round r eventually

proceeds to round r+1. Therefore, there is a round r′ such that every correct process pj

that does not decide in a round r′′ < r′ starts executing round r′ at time t′ ≥ t and pi is

the coordinator of r′. In this round, no correct process suspects the coordinator, which

implies that no correct process receives a sufficient number of MoveOn messages to

proceed to the next round (every survivor set contains at least one correct process by

the Byzantine Intersection property and the assumption that at least one survivor set

contains only correct processes). Eventually, every correct process receives either one

RoundEstimate message from every process pi1 ∈ Sre, for some Sre ∈ SΠ, or one

Decide message and decides.

2

Theorem 3.4.24 AsyncByz satisfies Strong Validity.

Proof:

Let E be an execution of AsyncByz such that the initial value of every correct process

is v, and some correct process pi decides in round r. If r = 1, then by the algorithm and

Lemma 3.4.22, pi decides upon v. If r > 1, then there are two cases to analyze: 1) r
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is the first round in which some non-faulty process decides; 2) some non-faulty process

decides in round r′ < r.

Suppose that r is the first round in which some process decides. By

Lemma 3.4.21 the estimate of every correct process is v in the beginning of round r.

By Lemma 3.4.22 the round estimate must be v. Finally, by Lemma 3.4.20, pi must

decide upon the round estimate proposed by the coordinator of round r, which is v.

If r is not the first round in which some non-faulty process decides, then there

is some round r′ < r such that some non-faulty process pj decides. By the argument

given for the first case, pj must decide upon v. By Lemma 3.4.19 and Lemma 3.4.17,

if the coordinator of round r′′ ≥ r′ proposes a round estimate, then this estimate must

be v. By Lemma 3.4.20, pi must decide upon the value proposed by the coordinator of

some round r′′ ≥ r, which must be v.

2

Theorem 3.4.25 AsyncByz satisfies Agreement.

Proof:

Let E be an execution of AsyncByz. Let r be the first round of E in which some correct

process decides. From Lemma 3.4.20, if two correct processes decide in round r, then

they have to decide upon the same value v. If a correct process decides in round r′ > r,

then by Lemmas 3.4.19 and 3.4.20 pi must decide upon v.

2

3.5 Conclusions

This chapter presented several results related to the traditional consensus prob-

lem for both synchronous and asynchronous systems. These results show some benefits

of having a more expressive failure model as opposed to one single threshold to model

the number of failures. The most important conclusions are:
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• The number of rounds for synchronous algorithms can be different for dif-

ferent types of failure. We have presented synchronous algorithms for both crash

and arbitrary failures, and showed an example of a system in which solving con-

sensus for crash failures takes fewer rounds compared to solving consensus for

Byzantine failures. This shows that a traditional theoretical result for the thresh-

old model does not hold when we consider dependent failures;

• Solutions to consensus may require fewer replicas. The partition and intersec-

tion properties determine the minimum amount of replication to solve consensus

in our model of cores and survivor sets. For Byzantine failures, the example of

Chapter 2 show that we can solve consensus with the algorithms we presented in

this chapter, but no solution exists if we assume a threshold on the number of fail-

ures. This exposes an artificial constraint the threshold model imposes on systems

to enable solutions.

To design algorithms with cores and survivor sets, we in general used two

equivalent properties that are necessary and sufficient to solve consensus. For three out

of the four cases analyzed, we used a partition property to show that no system that does

not satisfy this property can solve consensus, and an equivalent intersection property

to design algorithms. The only case we did not use the same techniques (synchronous

systems, crash failures) was a simpler case, which has no strict constraint on the amount

of replication to enable a solution to consensus.

The next chapter develops on the idea of extending the set of partition and in-

tersection properties we presented so far, with the goal of applying the same techniques

to other problems.



Chapter 4

New replication predicates for

dependent-failure algorithms

The previous chapter discusses properties that are necessary and sufficient to

solve the consensus problem in different system and failure models, using cores and

survivor sets to describe sets of faulty processes instead of a threshold. This chapter

presents general versions of the properties of the previous chapter. These properties

generalize predicates of the form n > k · t, and they are interesting because they are

applicable to a broad set of problems, thus constituting, along with the core/survivor

set model, a theoretical framework for designing fault-tolerant distributed algorithms.

We begin by observing how lower bounds on process replication have been traditionally

derived.

Lower bounds for the amount of process replication typically rely upon an

argument with the following structure:

1. Partition the n processes into k blocks, where each block has at most dt/be pro-

cesses, t ≥ dnb/ke, and k, b are positive integers such that k > b ≥ 1.

2. Construct a set of executions. For each block A, there is at least one of the execu-

tions in which all the processes in A are faulty.

3. Given the set of executions, show that some property of interest is violated. Con-

100
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clude that if the maximum number of faulty processes in an execution is never

larger than t, then t < dnb/ke and n > bkt/bc.1

Examples of such proofs include consensus with arbitrary process failures and no digital

signatures requiring n > 3 · t (k = 3, b = 1) [LSP82], primary backup with general

omission failures requiring n > 2 · t (k = 2, b = 1) [Mul95b], and consensus with the

eventually strong failure detector 3S requiring n > 2 · t (k = 2, b = 1) [CHT96, CT96].

We call a predicate like n > bkt/bc a replication predicate: it gives a lower

bound on the number of processes required given all possible sets of faulty processes.

Expressing bounds in terms of t is often referred to as a threshold model. Using t to ex-

press the number of faulty processes is convenient, but the bounds can lead to mistaken

conclusions when processes do not fail independently or do not have identical probabili-

ties of failure. Assuming that any subset of t processes can be faulty implies that failures

are independent and identically distributed (IID). To use an algorithm developed under

the threshold model on a system that does not have IID failures, one can compute the

maximum number of processes that can fail in any execution, and then use that number

as t. On the other hand one may be able to use fewer processes if an algorithm based on

non-IID failures is used instead.

In the previous chapter, we studied consensus under the core/survivor set

model. We derived replication requirements in our new model and presented algorithms

that showed these bounds to be tight. This chapter generalizes these results to algo-

rithms other than consensus. We show how the lower bound argument given above can

be easily generalized to accommodate our model of dependent failures. This argument

leads to a replication predicate that we call k–Partition, which generalizes the replica-

tion predicate n > k · t (b = 1) for when failures are not IID. The k–Partition property,

however, may not prove to be very useful when designing an algorithm. An equivalent

property, which we call k–Intersection, is often more useful for this purpose. It is more

useful for designing algorithms because algorithms often refer to minimal sets of correct
1Some authors have used different symbols, such as f , to indicate an upper bound on the number of faulty

processes.
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processes (n − t processes when process failures are IID). These properties generalize

the two properties we developed for consensus in Chapter 3.

In this chapter, we define the replication predicate k–Partition for k > 1. We

then define k–Intersection and show that it is equivalent to k–Partition. We illustrate

the utility of k–Intersection by showing that the M-Consistency property [MR97a] for

Byzantine Quorum Systems is equivalent to 4–Intersection. Thus, a system that requires

M-Consistency has a replication predicate of 4–Partition. Finally, we examine one point

in the space of replication predicates for b > 1. We do so by considering a weak

version of the Leader Election problem for synchronous systems that can suffer receive-

omission failures. We review a previously-given lower bound proof that argues n >

b3t/2c (k = 3, b = 2) for IID failures. This proof yields a definition that we call (3,2)-

Partition. We derive an equivalent (3,2)-Intersection property and use it to develop an

optimal protocol for weak leader election. An immediate consequence is that the lower

bound n > b3t/2c for IID failures is tight. This result is the first to show this bound to

be tight.

4.1 k properties

In the generic lower bound proof described in the introductory part of this

chapter, one first partitions the set of processes into k blocks, and then constructs a set

of executions. For each block A, there is some execution in which all the processes in

A are faulty. Being able to fail all the processes of a particular block then enables the

construction of an execution in which some property is violated. For example, for con-

sensus, the property violated is agreement. For primary-backup protocols, the property

violated is the one that says that at any time there is at most one primary.

Having derived a contradiction, the proof concludes by stating that one cannot

partition the processes in the manner that was done. With the threshold model and b = 1,

this conclusion implies that not all processes of any subset of size dn/ke can be faulty,

and consequently t < dn/ke. In our dependent failure model, this same conclusion
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implies that in any partition of the processes into k blocks, there is at least one block A

that does not contain only faulty processes: A contains a core. More formally, let Pk(Π)

be the set of partitions of Π into k blocks. We then have the following property for a

system profile 〈Π, CΠ,SΠ〉:

Property 4.1.1 k–Partition, k > 1, |Π| > k: ∀A ∈ Pk(Π) : ∃Ai ∈ A : ∃C ∈ CΠ :

C ⊆ Ai 2

Although k–Partition is useful for lower bound proofs, it is often not very

useful for the design of algorithms because algorithms often refer to survivor sets and

not cores. For example, the algorithm for consensus by Chandra and Toueg for crash

failures in asynchronous systems with failure detectors of the class 3S assumes at least

2t+1 processes. For this number of processes, any pair of subsets of size n−t has a non-

empty intersection, and this property is crucial to avoid the violation of the agreement

property of consensus. A more general way of stating this same constraint is to say any

two survivor sets intersect, or equivalently that SΠ is a coterie [GMB85].

4.1.1 k–Intersection

We now state the property that we show to be equivalent to k–Partition and

that references survivor sets instead of cores. We call it k–Intersection. k–Intersection

states that for a system profile 〈Π, CΠ,SΠ〉, for every set T ⊂ SΠ of size k, there is some

process that is in every element of T . Let Gx(A) be the set of all the subsets of A of

size x; if |A| < x, then Gx(A) = ∅. We have the following property for a system profile

〈Π, CΠ,SΠ〉:

Property 4.1.2 k–Intersection, k > 1, |Π| > k, |SΠ| > k: ∀T ∈ Gk(SΠ) : (∩S∈TS) 6=

∅ 2

As an example, the set SΠ in Example 2.3.1 satisfies 3–Intersection. We now

show the equivalence between k–Partition and k–Intersection.

Theorem 4.1.3 k–Partition ≡ k–Intersection
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Proof:

⇒: Proof by contrapositive. Suppose a system profile 〈Π, CΠ,SΠ〉 such that there is a

subset S = {S1, . . . , Sk} ⊂ SΠ such that
⋂
S = ∅. We then build a partition A =

{A1, . . . , Ak} as follows:

A1 = Π \ S1

A2 = Π \ (S2 ∪ A1)

...

Ai = Π \ (Si ∪ A1 ∪ A2 . . . ∪ Ai−1)

...

Ak = Π \ (Sk ∪ A1 . . . ∪ Ak−1)

Suppose without loss of generality that noAi is empty (if some block is empty,

then the partition is into k′ blocks, k > k′, although it is possible to re-arrange processes

to obtain a partition into k blocks). It is clear from the construction that no two distinct

blocks Ai, Aj intersect. It remains to show that: 1)
⋃
A = Π; 2) ∀i ∈ {1, . . . , k} : Ai

does not contain a core. To show 1), consider the following derivation:⋃
A = (Π \ S1) ∪ (Π \ (S2 ∪ A1)) ∪ . . .

∪(Π \ (Sk ∪ A1 ∪ A2 . . . ∪ Ak−1)) (4.1)

= Π \ ((S1 ∩ (S2 ∪ A1)) ∩ . . . ∩ (Sk ∪ A1 ∪ A2 . . . ∪ Ak−1)) (4.2)

= Π \ (S1 ∩ S2 ∩ . . . ∩ (Sk ∪ A1 ∪ A2 . . . ∪ Ak−1)) (4.3)
...

= Π \ (∩iSi) (4.4)

= Π (4.5)

Explaining the derivation:

• Line 4.1 to Line 4.2 follows from the observation that, for any subsets A,B of Π,

we have that (Π \ A) ∪ (Π \B) = Π \ (A ∩B);
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• Line 4.2 to Line 4.3: the intersection between S1 and A1 has to be empty, since

S1 contains exactly the elements we removed from Π to form A1;

• Line 4.3 to Line 4.4: by repeating inductively the process used to derive Line 4.3,

we remove every term Ai present in the equation;

• Line 4.4 to Line 4.5: By assumption, the intersection of S1 through Sk is empty.

To show 2), we just need to observe that any Ai is such that we removed all

the elements of Si. By the definitions of a core and of a survivor set, a subset that does

not contain elements from some survivor set does not contain a core.

⇐: Proof also by contrapositive. Let 〈Π, CΠ,SΠ〉 be a system profile such that

there is a partition {A1, . . . , Ak} of Π in which no Ai contains a core. Because no block

contains elements from every survivor set (no block contains a core), we have that, for

everyAi, there is a survivor set Si such that Si∩Ai = ∅. Consequently, we have that∩iSi

is empty, otherwise either some Ai contains an element that is in
⋂

i Si or {A1, . . . , Ak}

is not a partition, either way contradicting our previous assumptions.

2

In the remainder of this section, we discuss the utility of these prop-

erties. In particular, we show the equivalence between 4–Intersection and M-

Consistency [MR97a].

4.1.2 4–Intersection and M-Consistency

In [MR97a], the following M-Consistency property was defined. It was stated

that this property was necessary to implement a masking Byzantine quorum system. This

property allows a process to identify a result from a non-faulty server. The set Q used

in this definition is the set of quorums, and B is the fail-prone system.

Property 4.1.4 M-Consistency: ∀Q1, Q2 ∈ Q : ∀B1, B2 ∈ B : (Q1 ∩ Q2) \ B1 6⊆ B2

2
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The paper then shows that if all sets in B have the same size t, then M-

Consistency implies n > 4t.

We show that M-Consistency is equivalent to 4–Intersection. Since a faulty

process can stop sending messages, we can use SΠ as the set of quorums: waiting to

receive messages from more than a survivor set could prove fruitless. A fail-prone set is

the complement of a survivor set, and for any two sets X and Y , (X \ Y ) ≡ (X ∩ Ȳ ),

where Ȳ is the complement of Y . Hence, we can rewrite M-Consistency as:

∀Q1, Q2 ∈ SΠ : ∀B1, B2 ∈ B : (Q1 ∩Q2) ∩ B̄1 6⊆ B2

Then, for any two sets X and Y , (X 6⊆ Y ) ≡ (X ∩ Ȳ 6= ∅), and so:

∀Q1, Q2 ∈ SΠ : ∀B1, B2 ∈ B : Q1 ∩Q2 ∩ B̄1 ∩ B̄2 6= ∅.

Since B̄i is a survivor set, Bi ∈ B, this can be more compactly written as:

∀Q1, Q2, S1, S2 ∈ SΠ : Q1 ∩Q2 ∩ S1 ∩ S2 6= ∅.

which is 4–Intersection. Hence, another way to write the replication requirement stated

in M-Consistency is 4–Intersection, or equivalently 4–Partition.

4.2 An example of fractional k

The results of the previous section are perhaps not surprising to those who

have designed consensus or quorum algorithms. For example, 2–Intersection states that

the survivor sets form a coterie, and 3–Intersection states that the intersection of any

two survivor sets contains a non-faulty process. It takes some effort to show that 4–

Intersection is equivalent to M–consistency, and we expect that it will not be difficult to

show that the n > 5t requirement of Fast Byzantine Paxos [MA05] can be understood

from 5–Intersection. We conjecture that it is possible to define classes of algorithms that,

as for consensus [GR03], are built on top of quorums of various strengths, and whose

communication requirements are easily understood in terms of k–Intersection. Such
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algorithms developed for the threshold model should easily translate into our model of

non-IID failures.

Less well understood are algorithms that have fractional replication predicates.

To further motivate the utility of intersection properties, we consider a problem that we

call weak leader election. Given a synchronous system and assuming receive-omission

failures (that is, a faulty process can crash or fail to receive messages), this problem

requires n > b3t/2c. This lower bound is not new, but to the best of our knowledge,

it has not been shown that the lower bound is tight. We show here that the bound is

tight, which is a result of some theoretical value. Our primary reason for choosing this

algorithm, however, is the insight we used from the intersection property to arrive at the

solution.

We first specify the problem. Our specification allows for faulty (but non-

crashed) processes to become elected. Such a feature is necessary because it requires

more replication to detect receive-omission failures [Mul95b], and the original lower

bound proof allowed such behaviors. We then discuss the lower bound on process repli-

cation for this problem using our model of dependent failures. We further provide an

algorithm, showing that the lower bound is actually tight, and prove its correctness in

Appendix A.

4.2.1 Weak leader election

Each process pi has a local boolean variable pi.elected, where pi.elected is

false for a crashed process. Weak leader election has two safety and two liveness prop-

erties.

Safety: 2(|{pi ∈ Π : pi.elected}| < 2).

LE-Liveness: 23(|{pi ∈ Π : pi.elected}| > 0).

FF-Stability: In a failure-free execution, only one process ever has elected set to true.

E-Stability: ∃pi ∈ Π : 32(∀pj ∈ Π : pj.elected ⇒ (j = i)).
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These properties state that infinitely often some process elects itself (LE-liveness), and

no more than one process elects itself at any time (safety). The third property states that,

in a failure-free execution, only one process is ever elected. This property, however,

does not rule out executions with failures in which two or more processes are elected

infinitely often. We hence define E-stability.

4.2.2 Lower bound on process replication

In [BMST92], the following lower bound was shown. The proof was given in

the context of showing a lower bound on replication for primary-backup protocols.

Claim 4.2.1 Weak leader election for receive-omission failures requires n > b3t/2c.

Proof:

Assume that weak leader llection for receive-omission failures can be solved with n =

b3t/2c. Partition the processes into three blocks A, B and C, where |A| = |B| =

bt/2c and |C| = dt/2e. Consider an execution Eα in which the processes in B and

C initially crash. From LE-liveness and E-stability, eventually a process in A will be

elected infinitely often. Similarly, let Eβ be an execution in which the processes in A

and C crash. From LE-liveness and E-stability, eventually a process inB will be elected

infinitely often.

Finally, consider an execution Eγ in which the processes in A fail to receive

all messages except those sent by processes in A, and the processes in B fail to receive

all messages except those sent by processes in B. This execution is indistinguishable

from Eα to the processes in A and is indistinguishable from Eβ to the processes in B.

Hence, there will eventually be two processes, one in A and one in B, elected infinitely

often, violating either safety or E-stability.

2

To develop the algorithm, we first generalize the replication predicate for this

problem using cores and survivor sets. From the lower bound proof, we consider any

partition of the processes into three blocks. Then, one constructs three executions, where
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in each execution all of the processes in two of the three subsets are faulty. The conclu-

sion of the proof is the following property for k = 3:

Property 4.2.2 (k,k − 1)-Partition, k > 1, |Π| > 2: ∃k′ ∈ {2, . . . ,min(k, |Π|)} :

∀A ∈ Pk′(Π) : ∃A′ ∈ Gk′−1(A) : ∃C ∈ CΠ : C ⊆
⋃
A′ 2

(k,k − 1)-Partition says that for any partition of the set of processes in to k′

blocks, k′ ∈ {2, . . . ,min(k, |Π|)}, the union of some k′− 1 blocks contains a core. The

equivalent intersection property is:

Property 4.2.3 (k,k − 1)-Intersection, k > 1, |Π| > 2, |SΠ| > 2: ∃k′ ∈ {2,

. . . ,min(k, |Π|)} : ∀T ∈ Gk′(SΠ) : ∃T ∈ G2(T ) : (∩S∈TS) 6= ∅ 2

Stated more simply, (k,k − 1)-Intersection says that for any set of k′ survivor

sets, k′ ∈ {2, . . . ,min(k, |Π|)}, at least two of them have a non-empty intersection.

(k,k − 1)-Intersection and (k,k − 1)-Partition generalize replication predicates in the

threshold model of the form n > bkt/(k − 1)c. Thus, a profile that satisfies (k + 1,k)-

Intersection must also satisfy (k,k − 1)-Intersection. To illustrate, a system profile sat-

isfies (3,2)-Intersection if either it satisfies (2,1)-Intersection or, for every three survivor

sets, two intersect. Also, note that (2,1)-Intersection is 2–Intersection.

Example 4.2.4

Π = {pa1 , pa2 , pa3 , pb1 , pb2 , pb3}

CΠ = {{pi1 , pi2 , pi3 , pi4} : (i1, i2 ∈ {a1, a2, a3}) ∧ (i3, i4 ∈ {b1, b2, b3} ∧ i1 6= i2 ∧ i3 6= i4)}

SΠ = {{pi1 , pi2} : ((i1, i2 ∈ {a1, a2, a3}) ∨ (i1, i2 ∈ {b1, b2, b3})) ∧ i1 6= i2};

Consider now an example of a system that satisfies (3,2)-Intersection. It is

based on a simple two-cluster system. A process can fail by crashing, and there is a

threshold t on the number of crash failures that can occur in a cluster. A cluster can

suffer a total failure, which causes all of the processes in that cluster to crash. A total
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failure results from the failure of a shared resource such as storage, for example. We

assume that total failures are rare enough that the probability of both clusters suffering

total failures is negligible. However, processes can crash in one cluster at the same

time that the other cluster suffers a total failure. Assuming that each cluster has three

processes and t = 1, we have the system profile of Example 4.2.4, where processes with

identifier ai are in one cluster and processes with identifier bi are in the other cluster.

Note that this profile satisfies (3,2)-Intersection because out of any three survivor sets,

at least two intersect.

We now show the equivalence of (k,k−1)-Partition and (k,k−1)-Intersection

with the following theorem.

Theorem 4.2.5 (k,k − 1)-Partition ≡ (k,k − 1)-Intersection

Proof:

⇒: Proof by contrapositive. Consider a system profile 〈Π, CΠ,SΠ〉 such that, for every

k′, k′ ∈ {2, . . . ,min(k, |Π|)}, there is a subset S = {S1, S2, . . . , Sk′} ⊆ SΠ such that

Si ∩ Sj = ∅, i 6= j. That is,
⋃

P∈G2(S)

⋂
P = ∅. For every k′, we then build a partition

A = {A1, A2, . . . , Ak′} as follows:

A1 = Π \ (S2 ∪ S3 ∪ . . . ∪ Sk′)

A2 = Π \ (S1 ∪ S3 ∪ . . . ∪ Sk′ ∪ A1)

...

Ai = Π \ (S1 ∪ S2 ∪ . . . ∪ Si−1 ∪ Si+1 ∪ . . . ∪ Sk′ ∪ A1 ∪ A2 . . . ∪ Ai−1)

...

Ak′ = Π \ (S1 ∪ S2 ∪ . . . Sk′−1 ∪ A1 . . . ∪ Ak′−1)

It is clear that Ai, Aj are disjoint, i 6= j. We now have to show that: 1)
⋃
A = Π; 2) For

every subset A′ = {Ai1 , Ai2 , . . . , Aik′−1
} ⊂ A,

⋃
A ′ does not contain a core. To show

1), let ψi = ∪(Sj∈S\Si)Sj , i ∈ {1, . . . , k′}. We then have the following derivation:⋃
A = (Π \ ψ1) ∪ (Π \ ψ2 ∪ A1) ∪ . . .
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∪(Π \ (ψk′ ∪ A1 ∪ A2 . . . ∪ Ak′−1)) (4.1)

= Π \ ((ψ1 ∩ (ψ2 ∪ A1)) ∩ . . . ∩ (ψk′ ∪ A1 ∪ A2 . . . ∪ Ak′−1)) (4.2)

= Π \ (ψ1 ∩ ψ2 ∩ . . . ∩ (ψk′ ∪ A1 ∪ A2 . . . ∪ Ak′−1)) (4.3)
...

= Π \ (∩iψi) (4.4)

= Π (4.5)

• Line 4.1 to Line 4.2 follows from the observation that for any subsets A,B of Π,

we have that (Π \ A) ∪ (Π \B) = Π \ (A ∩B);

• Line 4.2 to Line 4.3: the intersection between ψ1 and A1 has to be empty, since

ψ1 contains exactly the elements we removed from Π to form A1.

• Line 4.3 to Line 4.4: by repeating inductively the process used to derive Line 4.3,

we are able to remove every term Ai present in the equation.

• Line 4.4 to Line 4.5: Transforming from a conjunctive form to a disjunctive form,

we have that
⋂

P∈Gk′−1(S)

⋃
P =

⋃
P∈G2(S)

⋂
P . To see why this is true, note that

for every pair Si, Sj ∈ S , i 6= j, and P ∈ Gk′−1(S), we have that (Si ∈ P )∨(Sj ∈

P ). Finally, we have that
⋃

P∈G2(S)(∩Si∈PSi) = ∅ by assumption.

By the construction of the partition and from the assumption that for every

Si, Sj ∈ S , Si∩Sj = ∅, we have that for every i ∈ {1, . . . , k′}, there is Si ∈ S such that

Si ⊆ Ai. From this, we conclude that for any A′ = {Ai1 , Ai2 , . . . , Aik′−1
} ⊂ A,

⋃
A′

does not contain elements from some survivor set, and consequently it does not contain

a core.

⇐: Proof also by contrapositive. Suppose a system profile 〈Π, CΠ,SΠ〉 such that

for every k′, k′ ∈ {2, . . . ,min(k, |Π|)}, there is a partition A = {A1, A2, . . . , Ak′} of Π

in which no union of k′−1 blocks ofA contains a core. If a subset of processes does not

contain a core, then it contains no elements from some survivor set. The complement
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of such a set of processes consequently contains a survivor set. Because no union of

k′ − 1 blocks in A contains a core, for every Ai there is an Si ∈ SΠ such that Si ⊆ Ai.

Thus, for all Ai, Aj ∈ A, i 6= j, we have by construction that Ai ∩ Aj = ∅, and hence

Si∩Sj = ∅. We conclude that no pair Si, Sj ∈ {S1, S2, . . . , Sk′} is such that Si∩Sj 6= ∅.

2

4.2.3 A weak leader election algorithm

We now develop a synchronous algorithm WLE for weak leader election. For

this algorithm, we assume a system profile 〈Π, CΠ,SΠ〉 that satisfies (3,2)-Intersection.

WLE is round based: in each round a process receives messages sent in the previous

round and then sends messages to all processes. We use pi.M(r) to denote the set of

messages that pi receives in round r, and pi.s(r) to denote the set of processes from

which process pi receives messages in round r.

We developed this algorithm by first observing what (3,2)-Intersection means.

Given three survivor sets, at least two of them intersect. Put another way, if two survivor

sets S1 and S2 are disjoint, then any survivor set S3 intersects S1 ∪ S2. Since a core is a

minimal set that intersects every survivor set, the above implies that S1 ∪ S2 contains a

core. Thus, given any two disjoint survivor sets, at least one of them contains a correct

process.

Our algorithm uses as a building block a weak version of uniform consensus

that we call RO consensus. We call it RO consensus because of its resemblance to

uniform consensus. RO consensus, however, is tailored to suit the requirements of WLE

and therefore is fundamentally different.

In RO consensus, each process pi has an initial value pi.a ∈ V ∪ {⊥}, where

V is the set of initial values, and a decision value pi.d [1 . . . n], where pi.d is a list and

pi.d[j] ∈ V ∪ {⊥}. We use v ∈ pi.d to denote that there is some p` ∈ Π such that

pi.d[`] = v. If a process pi crashes, then we assume that its decision value pi.d is

N , where N stands for the n element list [⊥, . . . ,⊥]. To avoid repetition throughout
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the discussion of our algorithm, we say that a process pi decides in an execution E if

pi.d 6= N .

As we describe later, we execute our algorithm for RO consensus, called ROC,

two times in electing a leader. We then have that processes may crash before starting

an execution E of ROC. Such processes hence have initial value undefined in E. We

therefore use⊥ to denote the initial value of crashed processes. That is, if pi.a =⊥, then

pi has crashed. We also use the relation x ⊆ y for x and y lists of n elements to denote

that: ∀i, 1 ≤ i ≤ n : (x[i] 6=⊥)⇒ (x[i] = y[i]).

The specification of RO consensus is composed of four properties as follows:

Termination: Every process that does not crash eventually decides on some value;

Agreement: If pi.d[`] 6=⊥, pi, p` ∈ Π, then for every non-faulty pc, pi.d[`] = pc.d[`];

RO Uniformity: Let vals be the following set:2 {d : ∃pi ∈ Π s.t. (pi.d = d)} \ N .

Then:∧
1 ≤ |vals| ≤ 2∧
∀d, d′ ∈ vals : d ⊆ d′ ∨ d′ ⊆ d∧
∀df , dc ∈ vals, df ⊆ dc : ∃Sf , Sc ∈ SΠ:

∧ ∀p ∈ Sf : (p crashes) ∨ (p.d = df )

∧ ∀p ∈ Sc : (p.d = dc) ∧ (p is not faulty)

That is, there can be no more than two non-N decision values, and if there are two then

one is a subset of the other. Furthermore, if there are two different decision values, then

these are the values that processes in two disjoint survivor sets decide upon, one for the

processes of each survivor set.

2We use the “bulleted conjunction” and the “bulleted disjunction” notation list invented in TLA+ [Lam02]. In
Definition 5.2.1, the list corresponds to the conjunction of the statements to the right of the “

V
” marks.
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Validity:
∧

If pj ∈ Π does not crash, then for all non-faulty pi, pi.d[j] = pj.a∧
If pj ∈ Π does crash, then for every non-faulty pi, pi.d[j] ∈ {⊥, pj.a}

∧
If there are survivor sets Sc, Sf ∈ SΠ and values vc, vf ∈ V,

vc 6= vf , such that: ∧ ∀p ∈ Sf : p.a ∈ {vf ,⊥}

∧ ∀p ∈ Sc : ((p.a = vc) ∧ (p is not faulty))

∧ ∃pi, p` ∈ Π : pi.d[`] = vf

then for all pj that does not crash, vf ∈ pj.d

That is, if a process pi is not faulty and pi.d[j] 6=⊥, then the value of pi.d[j] must be

pj.a. The value of pi.d[j], however, can be ⊥ only if pj crashes. The third case exists

because we use the decision values of an execution as the initial values for another

execution. From RO uniformity, there can be two different non-N values df and dc. If

this is the case, then there is a survivor set Sc containing only correct processes such that

all processes in Sc decide upon dc, and another survivor set Sf containing only faulty

processes such that all the processes in Sf either crash or decide upon df . Let vf be df

and vc be dc. By the third case, if some process that decides includes vf in its decision

value, then every process that does not crash also includes vf in its decision value.

Figure 4.1 shows our algorithm ROC. In each round r, a process pi collects

messages and updates its list of initial values pi.A. Once it updates pi.A, pi sends a

message containing pi.A to all processes. A process pi also assigns pi.A to pi.Ap(r)

once it updates pi.A at round r. This enables pi to verify in round r + 2 if a process pj

has received the message pi sent in round r. As we describe below, pi uses pi.Ap(r) to

determine if it is faulty.

ROC is an adaptation of a classic round-based synchronous consensus algo-

rithm for crash failures. There are two main differences. First, it uses survivor sets rather

than a threshold scheme. It does use a constant t to bound the number of rounds; t is the

number of processes subtracted the size of the smallest survivor set. Second, it has each

process verify if it has committed receive-omission failures.

There are two ways that a process can notice that it has committed an omission
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Algorithm ROC on input pi.a, pi.Procs
round 0:

pi.s(0)← pi.Procs; pi.sr(0)← pi.s(0)
pi.A [i]← pi.a
for all pk ∈ Π, pk 6= pi : pi.A [i]← ⊥
pi.Ap(0)← pi.A
send pi.A to all

round 1:
pi.sr(1)← pi.s(1)
if ∨ pi.s(1) 6⊆ pi.s(0)
∨ 6 ∃S ∈ SΠ : S ⊆ pi.sr(1)

then decide N
else for each m ∈ pi.M(1), pk ∈ Π:

if (pi.A [k] = ⊥) pi.A [k]← m.A [k]
pi.Ap(1)← pi.A
send pi.A to all

round r: 2 ≤ r ≤ t:
pi.sr(r)← pi.s(r) \ {pj : ∃m ∈ pi.M(r) :

pi.Ap(r − 2) 6⊆ m.A ∧m.from = pj}
if ∨ pi.s(r) 6⊆ pi.s(r − 1)
∨ 6 ∃S ∈ SΠ : S ⊆ pi.sr(r)

then decide N
else for each m ∈ pi.M(r), pk ∈ Π:

if (pi.A [k] = ⊥) pi.A [k]← m.A [k]
pi.Ap(r)← pi.A
send pi.A to all

round t + 1:
pi.sr(t + 1)← pi.s(t + 1)\

{pj : ∃m ∈ pi.M(t + 1) :
pi.Ap(t− 1) 6⊆ m.A ∧m.from = pj}

if ∨ pi.s(t + 1) 6⊆ pi.s(t)
∨ 6 ∃S ∈ SΠ : S ⊆ pi.sr(t + 1)

then decide N
else for each m ∈ pi.M(t + 1), pk ∈ Π:

if (pi.A [k] = ⊥) pi.A[k]← m.A[k]
pi.Ap(t + 1)← pi.A
decide pi.A

Figure 4.1: ROC - Algorithm run by process pi
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failure:

1. Processes that have not decided or crashed send messages to all processes. We

then have that for every non-faulty pi that receives messages in rounds r and r+1:

pi.s(r + 1) ⊆ pi.s(r). If this does not hold, then pi must have failed to receive

some message;

2. Consider a message m that pi receives from pj in round r > 1. Unless it crashes

or discovers that it is faulty, a process sends a message to all processes in each

round except the last. Let m′ be the message that pi sent to pj in round r−2. If m

indicates that pj has not received m′ (pi.Ap(r− 2) 6⊆ m.A), then pi knows that pj

is faulty. Let pi.sr(r) be the processes in pi.s(r) with all processes that pi knows

to be faulty removed. By definition, we know that there is some survivor set that

contains only correct processes. If pi.sr(r) does not contain a survivor set, then

there is some correct process from which pi did not receive a message. Hence, pi

can conclude that it has failed to receive a message.

Note that RO consensus differs from the definition of uniform consensus in

that faulty processes may decide upon different values, although these values are not

arbitrary and must be such as described by the RO Uniformity property. In the algorithm

by Parvèdy and Raynal, for example, every process that decides must decide upon the

same value [PR04].

Informally, ROC satisfies RO Uniformity because (3,2)-Intersection holds. To

decide on a value other than N , a process must receive in each round messages from

a set of processes that contains a survivor set. (3,2)-Intersection implies a low enough

replication that there can be a set S of non-crashed faulty processes that communicate

only among themselves. But, there cannot be two such sets S and S ′: if S and S ′ do not

intersect, then (3,2)-Intersection implies that their union contains a core, and there must

be a correct process either in S or in S ′.

A set S of faulty processes that communicate only among themselves will

decide on a value d where d[i] = ⊥ for pi 6∈ S and d[i] = pi.a for pi ∈ S. In addition, a
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Algorithm WLE
P ← Π
repeat {
pi.elected← FALSE
Phase 1:

Run ROC with
pi.a← i; pi.Procs← P

P ← pi.s(t + 1)
if (pi.d = [⊥, . . . ,⊥]) then stop

Phase 2:
Run ROC with

pi.a← pi.d from Phase 1; pi.Procs← P
P ← pi.s(t + 1)
if (pi.d = N ) then stop
let x ∈ pi.d be a value such that∧

pi.d [x] 6= N∧
pi.d has the least number of non-⊥ values

if (pi is the first index of x such that x[i] 6= ⊥)
then pi.elected← TRUE

}

Figure 4.2: WLE - Algorithm run by process pi

correct process will also decide d[i] = pi.a for pi ∈ S. Of course, a non-crashed faulty

process can read from different sets of processes in each round, but by using the two

rules given above, such a process can determine that it is faulty. Hence, at worst some

faulty processes will decide on a value df and the correct processes will decide on a

value dc such that df ⊆ dc.

The algorithm in Figure 4.2 uses ROC to implement weak leader election.

Algorithm WLE proceeds in iterations of an infinite repeat loop, where each iteration

consists of two phases. In Phase 1, processes use ROC to distribute their process iden-

tifiers. In Phase 2, they use ROC to distribute what they decided on in Phase 1.

Appendix A presents a formal proof of correctness for WLE, and here we only

present an informal argument for the correctness of WLE. Informally, this algorithm

satisfies safety because of the following: it is possible for a set of faulty processes S to

decide on the smaller value df in Phase 1, but by the end of Phase 2 the correct processes

will know this. By Validity and RO Uniformity, every process that finishes Phase 2 uses

the same list df to determine whether it is the current leader or not. Having the processes
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decide based on the smaller list df forces the receive-omission faulty processes to elect

the same process as the correct processes. Note though, as mentioned above, that in this

case the correct processes know that the elected process is faulty (although the elected

process does not know). LE-liveness is obtained by repeatedly running the algorithm

without resorting to a failure detector (which would require higher replication). If there

are no faulty processes, each election will always elect the process with the lowest iden-

tifier, which implies FF-stability. To guarantee that there is no alternating behavior in

which two processes are leaders infinitely often, non-crashed processes move forward

the set of processes they believe are not crashed or have not stopped. That is, the input

pi.Procs in ROC takes the value pi.s(t + 1) from the previous execution of ROC (Π if

it is the first execution of ROC). This implies E-stability.

4.3 Conclusions

This chapter generalized a common argument used in proofs of lower bounds

on process replication. The argument is based on the threshold model: it makes the

assumption that, given n processes, any subset of dnb/ke processes can be faulty. Then,

after deriving a contradiction, the proof concludes that n > bkt/bc. In our generalization

of the proof for b = 1, we conclude that k–Partition holds: if one partitions the processes

into k subsets, then at least one of the subsets contains a core. Thus, lower bounds for

many protocols can be trivially generalized for when process failures are not IID. We

then gave an equivalent property, k–Intersection, that is often useful when designing a

protocol that takes advantage of non-IID process failures.

We considered a problem for which the lower bound has b = 2. The lower

bound on process replication for weak leader election in a synchronous system with

receive-omission failures was known to be n > b3 · t/2c, but this bound was not known

to be tight. We showed that this bound is tight by first determining the intersection

property for this replication predicate ((k,k − 1)-Intersection, equivalent to (k,k − 1)-

Partition, k = 3) and using it to guide our development of a protocol.



Chapter 5

Coteries in multi-site systems

The previous chapters discussed theoretical applications of the core/survivor

set model. This chapter is the first one to discuss the application of the core/survivor

set model to realistic settings. We consider replication techniques for a specific type of

system: wide-area systems composed of geographically dispersed sites. In particular,

we consider quorum systems as a general replication technique and we use the survivor

set abstraction to derive quorum systems with optimal availability.

There has been a proliferation of large distributed systems that support a di-

verse set of applications such as sensor nets, data grids, and large simulations. Such

systems consist of multiple sites connected by a wide-area network, where a site is a

collection of computing nodes running one or more processes. The sites are often man-

aged by different organizations, and the systems are large enough that site and process

failures are common facts of life rather than rare events.

Critical services in such systems can be made highly available using replica-

tion. In data grids, for example, data sets are the most important assets, and having

them available under failures of sites is very desirable. To improve availability, the well-

known quorum update technique can be used. This technique consists of implementing

a mutual exclusion mechanism by reading and writing to sets of processes that inter-

sect (quorums) [GMB85]. As another example, the Paxos protocol [Lam98] enables

the implementation of fault-tolerant state machines for asynchronous systems. Paxos is

119
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a popular choice because of its ability to produce results when a majority of replicas

survive, for its feature of not producing erroneous results when failures of more than a

majority (indeed, up to a complete failure) occur, and its very weak assumptions about

the environment. Underlying Paxos (and other similar protocols) is the same quorum

update technique.

This chapter considers quorum constructions for multi-site systems. The prob-

lem area of quorums for multi-site systems is large and not well studied. We address a

set of problems from this area as an early foray. We first give a failure model for multi-

site systems that is simple and has intuitive appeal, and then give a second failure model

that has less intuitive appeal but theoretical and practical interest. Because sites can fail,

the failures of processes are not independent, and so an IID (independent, identically

distributed) model is not ideal. We define a new metric for availability that is suitable

to non-IID failures, and give optimal quorum constructions for both models. Using this

metric, however, assumes that the survivor sets are known, and is hence not as simple as

counting the minimum number of nodes that affect all quorums in a quorum system. We

then discuss the implementability of the two failure models, and discuss an experiment

of running Paxos on PlanetLab [pla06] that gives some validation of our results.

5.1 Related work

Quorum systems have been studied for over two decades. The first al-

gorithms based on quorums use voting [Gif79]. Garcia-Molina and Barbara gener-

alized the notion of voting mechanisms, and proposed the use of minimal collec-

tions of intersecting sets, or coteries [GMB85]. Most of the following work (such

as [Kum91, Mae85, PW95b]) has concentrated on how quorums can be constructed to

give good availability, load and capacity assuming relatively simple system properties

(such as identical processes and independent failures) [AW98a, BGM86, NW98]. Only

recently the problem of choosing quorums according to properties of the system (such

as location) has attracted some attention [GM04]. Of particular interest to our work
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are the constructions of [Kum91] and [BBB+04]. In [Kum91], Kumar proposed, to the

best of our knowledge, the first hierarchical quorum construction, and showed that by

doing so one can have smaller quorums. The analysis in [Kum91], however, assumes

IID failures. The work by Busca et al. assumes a multi-site system similar to what

we assume here, and their quorum construction [BBB+04] is very similar to our Qsite

construction. Their focus, however, was on performance. If one considers the distribu-

tion of response times from a quorum system, performance is often measured using the

average or median, while availability is a property of the tail of the distribution. Thus,

high performance does not necessarily imply high availability. Availability in quorum

systems has been studied before [AW98a, BGM86, NW98], but we argue here that the

previous metrics are not suitable for multi-site systems. A notable exception is the work

by Amir and Wool [AW96], which evaluates several existing quorum constructions in

the context of a small, real network.

A network partition is a failure event that leads to one set of non-faulty pro-

cesses being unable to communicate with another set of non-faulty processes (and, of-

ten, vice versa). Quorum systems are asynchronous, and so a network partition is treated

identically to slow-to-respond processes. Long-lasting network partitions can make it

impossible to obtain a quorum. A recent paper by Yu presents a probabilistic construc-

tion that does increase availability in the face of partitions, but it assumes a uniform

distribution of servers across the network [Yu04]. In comparison, our constructions are

deterministic and make no assumption about distributions of sites.

5.2 System model

We consider a system of a set Π of processes. The processes are partitioned

into sites B = {B1, B2, . . . , Bk}, and between each pair of processes there is a bidirec-

tional communication channel. Processes can fail by crashing, and a crashed process

can recover. Similarly, a site can fail and recover. A site failure represents the loss of

a key resource used by the processes in the site (such as network, power, or a storage
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server) or some event that causes physical damage to the equipment on the site (such as

loss of A/C); the processes in the site are all effectively crashed while the site is faulty.

Let E denote the executions of the system as before. Recall that each execution

E = 〈Init, Steps,Time,Faulty〉 ∈ E is a sequence of steps of processes, and there is a

system state (a collection of states from all processes) associated to each step. Each

step s ∈ Steps of E has an associated failure pattern Faulty(s) ⊆ Π, which is the

set of processes that are faulty in s. If site Bi is faulty in s, then all of the processes

in Bi are in Faulty(s). Because we do not make use of all elements of executions as

defined in Section 2, we use as shortcuts the following notation for an execution E =

〈Init, Steps,Time,Faulty〉:

• s ∈ E to denote a step s that is the set Steps of steps of E;

• F(s, E) to denote Faulty(s), where s ∈ E. That is, the set of faulty processes of

step s of execution E;

• NF(s, E) = Π \ Faulty(s), where s is a step of E. That is, the set of non-faulty

processes of a step s of E.

We say that a failure pattern f is valid iff ∃E ∈ E : ∃s ∈ E : f = F(s, E).

We use survivor sets to express valid failure patterns. Recall that, informally,

a survivor set is a minimal subset of non-faulty processes. This definition does not rely

on probabilities directly, although failure probabilities can be used to determine survivor

sets; we postpone this discussion until later in this chapter. The definition is:

Definition 5.2.1 Given a set of processes Π, a set S is a survivor set if and only if:

∧
S ⊆ Π∧
∃E = 〈Init, Steps, Time, Faulty〉 ∈ E : ∃s ∈ E : S = NF(s,E)∧
∀p ∈ S : ∀E = 〈Init, Steps, Time, Faulty〉 ∈ E : ∀s ∈ E : S \ {p} 6= NF(s,E)

We use SΠ to denote the set of survivor sets of Π, and we call a pair 〈Π, CΠ,SΠ〉

a system profile. Note that in this chapter, a system profile does not include a set of cores.
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We do so because the constructions we present in the following sections do not make

use of cores.

We now repeat a few definitions that have appeared elsewhere in the literature

and that we use in this chapter. A coterie Q is a set of subsets of Π that satisfies the

following two properties [GMB85]: 1) ∀Qi, Qj ∈ Q : Qi ∩ Qj 6= ∅; 2) ∀Qi, Qj ∈ Q, Qi 6=

Qj : Qi 6⊂ Qj ∧Qj 6⊂ Qi. The first property is 2–Intersection (Chapter 4), and it says that

quorums in a coterie pairwise intersect. This property guarantees mutual exclusion when

executing operations on quorums, such as reads and writes, as every pair of quorums

must have at least one process in common. The second property states that all quorums

are minimal. A coterie Q is dominated if there is a coterie Q′ such that: 1) Q 6= Q′; 2)

∀Q ∈ Q : ∃Q′ ∈ Q′ : Q′ ⊆ Q. If no coterie dominates a coterie Q, then we say that Q in

non-dominated.

A transversal of a coterie is a subset of processes that intersects every quorum

in the coterie. We use T (Q) to denote the set of transversals of the coterieQ. Transver-

sals are useful for defining the availability of a coterie: a coterie Q is available in a step

s of some execution E if and only if F(s, E) 6∈ T (Q).

5.3 Computing availability

The availability of coteries can be computed in various ways. One metric is

node vulnerability which is the minimum number of nodes that, if removed, make it im-

possible to obtain a quorum [BGM86]. A similar metric, edge vulnerability, counts the

minimum number of channels whose removal makes it impossible to obtain a quorum

(no connected component contains a quorum). Both of these metrics are appropriate

when failures are independent and identically distributed (IID) because they measure

the minimum number of failures necessary to halt the system. They are not necessarily

good metrics for multi-site systems. Consider the following three-site system in which

a survivor set is the union of majorities of processes in a site for some majority of sites:1

1We use x1x2 . . . xn as a short notation for the set {x1, x2, . . . , xn}.
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Π = {a1, a2, a3, b1, b2, b3, c1, c2, c3}

B = {a1a2a3, b1b2b3, c1c2c3}

SΠ= {aiajblbm : i, j, l,m ∈ {1, 2, 3} ∧ i 6= j ∧ l 6= m}

∪ {aiajclcm : i, j, l,m ∈ {1, 2, 3} ∧ i 6= j ∧ l 6= m}

∪ {bibjclcm : i, j, l,m ∈ {1, 2, 3} ∧ i 6= j ∧ l 6= m}

From our system model, processes are pairwise connected. According to the

results in [BGM86], the best strategy for both node and edge vulnerability is then to

use quorums formed of majorities, which for this system is any subset of five processes.

By definition, for every S ∈ SΠ, there is some step s of some execution E ∈ E such

that S = NF(s, E), where E is the set of executions of 〈Π, CΠ,SΠ〉. As Π contains

nine processes and every S ∈ SΠ contains four processes, there are five faulty processes

in such a step, and hence no majority quorum can be obtained. If one uses SΠ as a

coterie, however, then there is one quorum available in every step, by construction. SΠ

has therefore better availability than the majority construction.

An alternative to node and edge vulnerability is, given probabilities of failures,

to directly compute the probability of the most likely failure patterns that make it im-

possible to obtain a quorum. Probability models, however, can become quite complex

when failures are not IID. To avoid such complexity, we use a different counting metric:

the number of survivor sets that allow a quorum to be obtained. More carefully:

Definition 5.3.1 Let 〈Π, CΠ,SΠ〉 be a system profile and Q be a coterie over Π. The

availability of Q is given by: A(Q) = |{S : S ∈ SΠ ∧ (Π \ S) 6∈ T (Q)}|

A coterie Q covers a survivor set S if there is a quorum Q ∈ Q such that

Q ⊆ S. For some survivor set S, if (Π \ S) 6∈ T (Q) holds, then S must contain a

quorum of Q. That is, Q covers S. According to the definition, A(Q) is hence the

number of survivor sets that Q covers. Note, however, that if Q is dominated, then the

S ∈ T (Q) may not imply that (Π \ S) 6∈ T (Q) (due to Lemma 2.8 of [PW95a]). This

observation implies that we cannot simply replace (Π \ S) 6∈ T (Q) with S ∈ T (Q) to

obtain an equivalent definition.
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This is a good metric because in every step s of an execution E, there is at

least one survivor set in SΠ that does not intersect F(s, E). If a coterie allows a quorum

to be obtained for more survivor sets, then this coterie is available during more steps. As

with node vulnerability and edge vulnerability,A() is a deterministic metric and as such

has a similar limitation with respect to probabilities. If we assign probabilities of failure

to subsets of processes, then our metric may lead to wrong conclusions, as there might

be higher available coteries that include discarded survivor sets. For the constructions

and examples we discuss in this chapter, however, using this metric gives us coteries

with optimal availability.

If a coterie Q is dominated, then by definition there is some other coterie Q′

that dominates Q. Under reasonable assumptions, the availability of Q′ is at least as

high as the availability of Q. Thus, we use domination to break ties between coteries

that cover the same number of survivor sets. We say that Q ≺a Q′ iff:

∨
A(Q′) > A(Q)∨
(A(Q′) = A(Q)) ∧Q′ dominates Q

In Section 5.5, we give quorum constructions that are optimal with respect

to this metric without the tiebreaker rule. We do not discuss how to construct non-

dominated coteries from dominated ones; possible ways to do so are discussed in [BI95]

and [GMB85].

5.4 Failure models

In this section, we present two failure models that we use to derive quorum

constructions: one that enables survivor sets to be used directly as quorums, and one

that requires survivor sets to be discarded to form a quorum system. Both models are

specific to multi-site systems, and although they both model site failures, they model

different system properties as we discuss in Section 5.7.
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5.4.1 The multi-site hierarchical model

The first model, which we call the multi-site hierarchical model, decouples
site failures from process failures. The failure model has two components: Fs, which
characterizes the failures of sites, and Fp, which characterizes failures within a site.
More specifically, Fs is a set of maximal subsets of sites that can fail simultaneously,
|Fs| > 0. Fp is an array with one entry for each site, where Fp[i] is the set of maximal
subsets of processes that can be simultaneously faulty in site Bi when Bi is not faulty,
|Fp[i]| > 0, i ∈ {1, . . . , |B|}. Given an instance of this model, a set Si ⊆ P is in SΠ if
and only if:

∃FS ∈ Fs :
∧
∀Bj ∈ B \ FS : ∃FP ∈ Fp[j] : Bj ∩ Si = Bj \ FP∧
∀Bj ∈ FS : Si ∩Bj = ∅

The multi-site threshold model proposed in [JM05b] is a threshold-based ver-

sion of this model: fs is the maximum number of sites that fail simultaneously, and Fp[i]

is the maximum number of processes that fail simultaneously in site Bi.

5.4.2 The bimodal model

The bimodal model is similar to the multi-site hierarchical model: it also has

two components Fs and Fp. In general, this model represents settings in which there

are multiple sites (|B| > 1), all sites can fail but one, and if only one site is not faulty,

then all processes in it are correct. Thus, each site is a survivor set. If multiple sites

are non-faulty, then the non-faulty sites can have faulty processes. We describe these

process failures with Fs and Fp. Finally, we assume that there exists at least one site

Bi such that Bi 6∈ FS for every FS ∈ Fs. Although Bi is not in any element of Fs, it

can still fail in the case that there is one non-faulty site Bj with no faulty processes, and

j 6= i. This assumption is necessary to derive an optimal construction, as we explain in

Section 5.5.2.

The bimodal model contains the same failure patterns as the multi-site hierar-

chical model for the same components Fs and Fp, but it contains |B| additional failure

patterns, one for each site Bi. More specifically, a set Si ⊆ P is a survivor set for an
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instance of this model if and only if:

∨
∃FS ∈ Fs :

∧
∀Bj ∈ B \ FS : ∃FP ∈ Fp[j] : Bj ∩ Si = Bj \ FP∧
∀Bj ∈ FS : Si ∩Bj = ∅∨

∃Bj ∈ B : Si = Bj

To construct a proper set of survivor sets, we need to impose the following

constraint: ∀FS ∈ Fs : (|B \ FS| > 1) ∧ (∀Bi ∈ FS : Fp[i] 6= {∅}). Without this constraint, the

set of survivor sets might not be minimal, violating minimality.

The bimodal model does not have the intuitive appeal of the multi-site hierar-

chical model. Nonetheless, we argue in Section 5.7 that for at least two-site systems, it

is practical. In addition, it has theoretical interest, which we describe in Section 5.5.

5.5 Quorum constructions

In this section, we use the failure models described to derive quorum construc-

tions that are optimal with respect to the metric A(). The first construction covers all

survivor sets in SΠ by using SΠ itself. We provide a necessary and sufficient condition

for this to hold. The other construction is for systems in which it is not possible to cover

all survivor sets. Such a construction is important when survivor sets do not pairwise

intersect. This construction is also optimal with respect to the metricA() except that the

resulting coterie may be dominated.

5.5.1 Achieving optimal availability

Let 〈Π, CΠ,SΠ〉 be a system profile, and suppose that we use the multi-site
hierarchical model to determine SΠ. To cover all survivor sets in SΠ, it is necessary and
sufficient that Fs and Fp satisfy the following property:

∀FS, FS′ ∈ Fs : ∃Bi ∈ B :
∧

Bi 6∈ FS∧
Bi 6∈ FS′∧
∀FP, FP′ ∈ Fp[i] : ∃p ∈ Bi : p 6∈ FP ∧ p 6∈ FP′
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In words, we require that there is at least one site shared between any two

survivor sets, and within that site there is at least one process that is shared between the

two survivor sets. To show that this property is necessary, suppose that this property is

violated. That is, there are FS,FS′ in Fs such that, for every Bi ∈ B, at least one of

the following holds: 1) Bi ∈ FS; 2) Bi ∈ FS′; 3) there are FP,FP′ ∈ Fp[i] such that

for every p ∈ Bi, either p ∈ FP or p ∈ FP′. This implies that there are at least two

disjoint survivor sets S and S ′ in SΠ. Now suppose by way of contradiction that there

is a coterie Q that covers all survivor sets in SΠ, i.e., A(Q) = |SΠ|. We then have that

there is a quorum Q ∈ Q such that Q ⊆ S. Similarly, there is a quorum Q′ ∈ Q such

that Q′ ⊆ S ′. Thus, if S ∩ S ′ = ∅, then Q ∩ Q′ = ∅. We conclude that Q cannot be a

coterie because it violates the 2–Intersection property.

To see that the property is sufficient is straightforward: by the definition of sur-

vivor sets, no survivor set is strictly contained in another, and the intersection property

is guaranteed by assumption.

If we use SΠ as a coterie, then we have achieved the best possible value for our

availability metric because it covers all the survivor sets (i.e., A(SΠ) has the maximum

value of |SΠ|). Using all the sites in the system, however, may be unnecessary. For

example, if the system satisfies k–Intersection for some k > 2, then we may be able to

construct a coterie over fewer sites.2 We illustrate this point with a threshold version

of the multi-site hierarchical model. Suppose that every set FS ∈ Fs has the same size

fs ≥ 0, and that for every Bi ∈ B and every FP ∈ Fp[i], we have that |FP| = t for some

nonnegative integer t. Then, if |B| ≥ 2fs + 1, we only need to select a subset B′ ⊆ B of

2fs + 1 sites. For each site Bi ∈ B′, we select 2t + 1 processes from Bi. A quorum is

obtained by selecting a majority of processes from a majority of sites in B′.

We call this construction Qsite. As an example, suppose that |B| = 4, fs = 1,

and for each siteBi, we have that |Bi| = 4 and t = 1. We then use 3 sites, as 2fs+1 = 3,

and 3 processes from each site, as 2t + 1 = 3. From the construction, a quorum in Q

is hence composed of four processes, two from a site Bi and two from a site Bj , i 6= j.
2k–Intersection generalizes 2–Intersection, and states that all subsets of k quorums intersect.
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Table 5.1: Quorum sizes

t = 1 t = 2

fs Majority Qsite Majority Qsite

1 5 4 8 6

2 8 6 13 9

3 11 8 18 12

4 14 10 23 15

This system has nine processes, and so a majority would consist of five processes. For

both majority and Qsite, the coterie is available as long as there are fs + 1 = 2 non-

faulty sites. Majority, however, not only requires that two sites are non-faulty, but also

that at least one of the sites contains no faulty processes. A coterie generated by Qsite

does not have this same constraint, and it is available as long as there are two non-faulty

sites, each non-faulty site containing two non-faulty processes. This happens because

majority uses larger quorums, and it tolerates fewer process failures.

It is not hard to see that Qsite requires fewer processes compared to majority

coteries, and that the difference increases with the value of fs. Table 5.1 shows quorum

sizes for different values of fs and t. The main observation is that Qsite requires fewer

processors in all the cases, and the difference between the two constructions increases

with the value of fs. Using fewer processors in each quorum reduces the load handled

by any particular processor. Assuming that quorums are uniformly chosen by clients,

having smaller quorums implies that processors have to handle fewer requests. Load is

inversely proportional to the capacity, and by reducing load we are actually increasing

the total capacity of the system, where the capacity is the number of requests the system

can handle per unit of time [NW98].

5.5.2 The bimodal construction

It may be the case that the set of survivor sets do not satisfy 2–Intersection,

and so can not be used as a coterie. For example, in the bimodal model, for each site Bi,
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Bi is a survivor set, and since sites are disjoint, SΠ is not a coterie.

One can construct a coterie from any SΠ, though, by simply discarding sur-

vivor sets until remaining sets satisfy 2-Intersection. This procedure clearly will termi-

nate with a coterie since a single set is a coterie of one quorum. To obtain a coterie that

is optimal with respect to A(), we need to determine the minimal set S ⊂ SΠ such that

SΠ\S is a coterie. The problem of computing the minimum number of survivor sets that

have to be removed from SΠ to obtain a coterie, however, is in general NP-Complete.

We present a proof in the next section.

Under the bimodal model, it is simple to determine which survivor sets to dis-

card. Consider the following intersection property that we call k-bimodal Intersection,

k > 1:

∀ distinct S1, S2, . . . , Sk+2 ∈ SΠ :
∨
∃i, j ∈ [1, k] : Si ∩ Sj 6= ∅∨
Sk+1 ∩ Sk+2 6= ∅

Assume 〈Π, CΠ,SΠ〉 follows the bimodal failure model. According to the

model, it contains |B| survivor sets that are disjoint, one for each site Bi ∈ B. Also

by the failure model, there is a site Bi such that Bi 6∈ FS, for every FS ∈ Fs. Let

Si be the survivor set consisting of the processes of Bi. If 〈Π, CΠ,SΠ〉 also satisfies

k-bimodal Intersection, k = |B|, then we know that any two survivor sets Sa, Sb in

SΠ \ {S1, S2, . . . Sk} intersect, and that Si ∩ Sa 6= ∅ and Si ∩ Sb 6= ∅. Since this is

true for any Sa and Sb, the set Q` = {Si} ∪ (SΠ \ {S1, S2, . . . Sk}) is a coterie, and

A(Q`) = |SΠ| − (k − 1). This is clearly optimal, since all of the remaining k − 1

survivor sets do not intersect Si. Also, if 〈Π, CΠ,SΠ〉 does not satisfy k-bimodal Inter-

section, then there is no coterie that covers |SΠ| − (k − 1) survivor sets, as there is no

subset of SΠ of size |SΠ| − (k − 1) that pairwise intersect. We call this construction

Bsite.
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5.6 NP-Completeness of the DSS problem

In this section, we show that the problem of determining the minimum number

of survivor sets that has to be removed from a set SP such that the remaining survivor

sets form a coterie is NP-Complete. Our strategy consists in defining a decision prob-

lem, and showing that this problem is NP-Hard with a reduction from the Vertex-Cover

problem. We then argue that an algorithm for the decision problem can be used to solve

the search problem, which consists in determining the actual set of survivor sets to re-

move. Finally, we argue that we can use a search solution to solve the optimization

problem. The optimization problem consists in determining a minimal set of survivor

sets to remove.

We now define the DSS (Disjoint Survivor Sets) decision problem. Instead of

assuming only a set of survivor sets SΠ as the input of the problem, we also assume

pairs of survivor sets in SΠ that are disjoint. To compute such pairs from the set of

survivor sets SΠ in a system profile 〈Π, CΠ,SΠ〉 can be done in polynomial time by

simply checking the intersection of every pair of survivor sets. A simple solution for

this algorithm has time complexity O(|P | · |SΠ|). This simple algorithm consists in

having a matrix M with |P | rows and |SΠ| columns. For each process p, we set Mp,s if

the survivor set associated with column s contains process p. Another pass on the matrix

provides the information we are looking for. This algorithm is perhaps not the best one

to use. A further discussion of algorithms to optimally find such disjoint sets is out of

the scope of this work.

We then state the DSS decision problem as follows:

Instance : A set SΠ of survivor sets, a set P of pairs of survivor sets in SΠ, and a

positive integer r ≤ |SΠ|.

Question : Is there a subset S ⊆ SΠ such that:

1. For every (S1, S2) ∈ P: S1 ∈ S ∨ S2 ∈ S;

2. |S| ≤ r.
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Consider now the definition of the VC (Vertex Cover) problem, taken

from [GJ79]:

Instance : A graph G = (V,E) and a positive integer k ≤ |V |.

Question : Is there a vertex cover of size k or less for G, that is, a subset V ′ ⊆ V such

that |V ′| ≤ k, and for each edge {u, v} ∈ E, at least one of u and v belongs to

V ′?

The following two claims show that DSS is NP-complete.

Claim 5.6.1 VC ≤m DSS

Proof:

To show this claim, we have to provide a polynomial-time algorithm that outputs an

instance 〈SΠ,P , r〉 of the DSS problem given an instance 〈G, k〉 of the VC problem

such that:

〈G, k〉 ∈ VC→ 〈SΠ,P , r〉 ∈ DSS (5.1)

〈SΠ,P , r〉 ∈ DSS→ 〈G, k〉 ∈ VC (5.2)

Consider the following algorithm:

Algorithm VCtoDSS on input 〈G = (V,E), k〉

SΠ ← ∅

P ← ∅

For every v ∈ V :

SΠ ← SΠ ∪ {Sv}

For every edge {u, v} ∈ E:

P ← P ∪ {(Su, Sv)}

r ← k

output 〈SΠ,P , r〉
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The algorithm clearly runs in polynomial time. We then need to show impli-

cations 5.1 and 5.2. First we show 5.1. Suppose that 〈G, k〉 ∈ VC. We then have that

there is a vertex cover V ′ of size at most k for G. That is, there is a subset V ′ of V of

size at most k such that for every edge {u, v}, either u or v is in V ′. By the construction

of the algorithm, if S is the set of all Sv such that v ∈ V ′, then S must be such that for

all (Sv, Su) ∈ P , either Sv ∈ S or Su ∈ S . We conclude that 〈SΠ,P , r〉 is in DSS.

It remains to show implication 5.2. Suppose that 〈SΠ,P , r〉 is in DSS. This

means that there is a subset S of SΠ such that |S| ≤ r and for every (Sv, Su) ∈ P , either

Sv ∈ S or Su ∈ S. We then have that V ′ = {v : Sv ∈ S} must be a vertex cover for

G, and |V ′| ≤ k, by the construction of the algorithm. This concludes the proof of our

claim.

2

With a simple modification of the algorithm presented in the previous proof,

we can also show that DSS map-reduces to VC. This is important because there

are efficient approximation algorithms for the vertex cover problem, such as the ones

in [Hal02], that can be used to compute a solution for DSS.

Claim 5.6.2 DSS is in NP

Proof:

We need to provide a polynomial-time verifier that takes an instance 〈SΠ,P , r〉 of the

DSS problem and a certificate C. The verifier then outputs whether 〈SΠ,P , r〉 ∈ DSS

or not. The certificate consists of a subset of SΠ. We have that the verifier works as

follows:

Verifier on input 〈SΠ,P , r〉, C

Parse C into set S

Verify if |S| ≤ r

Verify if S ⊆ SΠ

Verify if for every (Si, Sj) ∈ P ,

either Si ∈ S or Sj ∈ S
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If any verification fails return false, else return true

The verifier clearly runs in polynomial time on the size of the input.

2

A well-known result from complexity theory says that search reduces to de-

cision for NP-complete problems [BG94]. For DSS, the search problem consists of

finding a subset S of SΠ such that |S| ≤ r and for every (Si, Sj) ∈ P , either Si ∈ S

or Sj ∈ S. The algorithm returns ⊥ if no such set exists. Thus, we can only have

a polynomial-time algorithm for the search problem if there is a polynomial-time al-

gorithm for the decision problem. Such an algorithm only exists if P = NP. To find

the smallest set S given a system profile 〈Π, CΠ,SΠ〉 we can run a search algorithm for

smaller values of r, and return the set S returned by the smallest value of r for which the

search algorithm does not return ⊥. We then also have that there is a polynomial-time

algorithm for the optimization problem if and only if P = NP.

5.7 Failure models in practice

The failure models presented in Section 5.4 are abstract views of failures in a

multi-site system. In this section, we present probabilistic models that we use to extract

the parameters of our failure models. First, we use data from a real system to argue

why we believe site failures are common in multi-site systems. In the remainder of the

section, we discuss process failures for the two models we propose in this chapter. For

each model, we discuss a framework based on a Markov chain and illustrate it with an

example.

5.7.1 Site failures

To understand how sites fail in a multi-site system, we studied the failure data

of a particular system, the BIRN Grid [bir06]. We obtained monthly availability data for
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15 BIRN sites from January 2004 through August 2004.3 The monthly availability of a

site is given by:

Availability =
Total hours− Unplanned outages

Total hours
× 100

where “Total hours” is the total number of hours in a month deducted the scheduled

down time, and “Unplanned outages” is the total number of hours that the site was not

available not considering scheduled down time.

According to this availability data, a site becoming unavailable is a surpris-

ingly common event. On average, each site did not have 100% availability on 5 out of

the 8 months, which implies that in a given month several sites have unplanned outages

and become unavailable as a consequence.

< !

Figure 5.1: Site availability: Number of sites with availability below α. The error bars correspond to the

standard error.

Figure 5.1 summarizes the availability of sites. For each month, we counted

the number of sites that had availability below some value α, for different values of α.

We then computed the average across the eight months for each value. This average is

what we plot in Figure 5.1. From the figure, on average over 10 sites do not have 100%

availability in a month.
3This data is consistently collected by the BIRN staff, and made available through their web page. To determine

availability of a site, they use pings and notifications from the SRB (Storage Resource Broker) service.
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Table 5.2: Average worst-case unavailability across eight months with standard error in parentheses

Number of sites Unavailability in minutes

1 3288 (979)

2 87 (33)

3 1.9 (1.0)

4 0.017 (0.009)

According to our definition of availability, if the availability of a site is 99%,

then it was down for approximately 7 hours in that month, and hence every 1% of un-

availability corresponds to 7 hours of unplanned down time. From Figure 5.1, there is

on average at least one site with availability less than 97%, which implies that such a

site is unavailable for over 21 hours. In fact, we observed availability values as low as

79%.

Because we aim at constructing coteries that leverage the existence of multiple

sites, we computed the average worst-case down time. Table 5.2 shows the worst-case

unavailability for different numbers of sites averaged across the eight months. In more

detail, for each month we determine the x sites, x ∈ {1, 2, 3, 4}, with lowest availabil-

ity, and then compute how many minutes during that month we expect the x sites to

be simultaneously unavailable. To compute such numbers, we assume that the events

causing the sites to be unavailable happen independently. For each value of x, we then

average the number of minutes obtained across the eight months. We observe that the

average worst case varies from over 55 hours for a single site to a fraction of a minute

for four sites.

Back to the model of Section 5.4, one can determine the value of fs by looking

at the values of Table 5.2 and choosing the one that corresponds to the requirements of

the application. For example, if an application sets fs to zero and uses a single site, then

it will experience, considering the worst case, 55 hours of unavailability in a month on

average.

In trying to determine the causes of low monthly availabilities in multi-site
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systems, we identified a few causes for a site to be unavailable, observed in BIRN sites,

in TeraGrid sites, and in a local computer cluster. These causes are:

1. Software incompatibility/misconfiguration;

2. Power failures;

3. Failure of shared resources (e.g. storage);

4. Broken pipes causing floodings;

5. Local campus network problems;

6. Loss of air-conditioning.

Note that the order in this list is arbitrary. We are currently attempting to

further quantify these failures.

5.7.2 Obtaining the multi-site hierarchical model

The multi-site hierarchical model has two components: Fs that describes site

failures, and Fp that describes the failures of processes within a site. We can determine

Fs using, for example, data such as described in Section 5.7.1. To determineFp, we need

a model of failures within a site. Even when sites are not faulty, individual processes

can fail due to, for example, hardware faults. In many multi-site systems, hardware and

software platforms are the same across the computing nodes (where processes run) of

a site because of the difficulty in managing a heterogeneous environment. We hence

assume that the reliability of processes within a site is uniform and independent. Of

course, this assumption may be violated by viruses and worms. We discuss techniques

to cope with such threats in Chapter 6.

We can model failures in sites using a Markov chain [Ros00]. Instead of mod-

eling the whole system, we have chosen to model sites individually. We assume that

sites operate independently, and that outside of expected message communication the

operation of a process at a site has little or no influence on the operation of a process at

another site. As a consequence, sites change their failure states concurrently.
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Figure 5.2: Model for a single site with n process

As process failures are independent, states of the model correspond to the

number of faulty processes in a site, and the probability of undergoing a transition from

a state with f faulty processes to a state with f + 1 process is p. Repair transitions

(from f + 1 to f ), however, may have probabilities that change with the value of f . For

example, resources to repair processes can be progressively allocated as more processes

fail. As a result, the repair probability remains constant or even increases with the value

of f .

Figure 5.2 depicts the chain we just described. Assuming that no transition

probability is zero, we have that this chain is irreducible and ergodic. According to the

model, processes fail independently, but the probability of repair (undergoing a transi-

tion from state f + 1 to f ) may change with the value of f . In our model, we use rf to

denote the probability that the site undergoes a transition from state f + 1 to state f .

Repairs in different sites happen independently, and hence the probability of

a repair transition does not increase with failures in different sites. That is, if a process

fails in site Bi and another in site Bj , i 6= j, they do not mutually affect their repair

probabilities.

Using this model, we can easily compute a threshold on the number of failures

for each site. First, we need to determine a target degree of reliability ρ, which is the

probability that the number of simultaneous process failures in any site is higher than

expected. Because our model is an irreducible ergodic Markov chain, we can compute

the limiting probabilities of all states: the probability of being at a state j after a long

time has elapsed, independent of the initial state i (πj = limn→∞ P n
ij) [Ros00]. Using

these limiting probabilities, we can determine a threshold for each site: the threshold
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for a site Si is the number of failures associated to the first state that has a limiting

probability smaller than ρ. This implies that any state with failures above the threshold

has probability lower than ρ.

To illustrate the process of obtaining a threshold for a site, we give an example.

Let B be a collection of sites such that each site has three processes. Suppose that the

probabilities of failure and repair are the same across all the sites. These probabilities

are as follows: p = 0.01, r0 = 0.3, r1 = 0.4, and r2 = 0.5. Computing the limiting

probabilities, we have the following: π0 = 0.96695, π1 = 0.03223, π2 = 0.00080, π3 =

0.00002. If ρ is 0.001, for instance, we have that the threshold is one for every site, and

Fp is as follows: Fp[i] = {ai : ai ∈ Bi},∀Bi ∈ B.

Note that the reverse order is also possible: choose a value for t (the threshold

on the number of process failures in a site) and compute the corresponding probability of

violating this threshold. Using one method or the other depends on design constraints.

5.7.3 Obtaining the bimodal model

From the description of the bimodal model in Section 5.4, when k − 1 sites

fail, the remaining sites have no faulty processes. This means that the processes of each

site comprise a survivor set. At the same time, it is possible that all available sites have

faulty processes. We model this with a framework based on a Markov chain. Due to the

complexity of this model, our framework is only meant to give a more practical view

rather than serve as a general framework.

As in the previous section, the basic idea consists in determining probabilities

for the possible states of the system, and to use a degree of reliability (a value ρ ∈ [0, 1])

to determine the states that we consider as normal states. Compared to the chain from

the previous section, a state corresponds to failures across all the sites. We then label

states with counters, one for each site. That is, we have one state for each possible value

of the string f1 · f2 · . . . · fk, where 0 ≤ fi ≤ |Bi| and Bi ∈ B. Using a directed graph

as a way of visualizing the model, we have that the states are represented by nodes, and

the transitions by edges, where each edge has a weight that is the transition probability.
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In this model, we have three types of edges: site-failure edges, process-failure edges,

and repair edges. A site-failure edge corresponds to the transition from a state in which

a given site has one or more available processes to one in which all processes in this site

are faulty. Using probability notation, let Xs be the random variable representing the

state at step s. We then have that:

Pr{Xs+1 = f1 · · · |Bi| · fi+1 · · · fk|Xs = f1 · · · fi · fi+1 · · · fk} = ps, fi < |Bi| − 1

Pr{Xs+1 = f1 · · · |Bi| · fi+1 · · · fk|Xs = f1 · · · |Bi| − 1 · fi+1 · · · fk} = pf + ps, fi

= |Bi| − 1

where pf is the probability of a process failure, and ps is the probability of a site failure.

As a simplifying assumption, we have that ps and pf are constant across the sites. A

process-failure edge is a transition from a state in which some site Bi has fi faulty

processes to a state in which Bi has fi +1 faulty processes, fi < |Bi|. Using probability

notation, we have:

Pr{ Xs+1 = f1 · · · fi + 1 · · · fk|Xs = f1 · · · fi · · · fk} = pf , fi < |Bi|

Finally, we call a repair edge a transition from a state in which fi+1 processes

of some site Bi are faulty to a state in which fi processes of Bi are faulty. That is:

Pr{ Xs+1 = f1 · · · fi · · · fk|Xs = f1 · · · fi + 1 · · · fk} = pr(f1 · · · fi + 1 · · · fk), fi ≥ 0

where pr() is a repair probability mapping. Different from ps and pf , we assume that

the repair probability may differ for different states. In fact, this control over repair

probabilities is what we use to guarantee that the properties of the bimodal model hold.

An additional assumption that completes the model is that all other possible transitions

have zero probability.

Figure 5.3 illustrates a model for two identical sites B1 and B2 of n processes

each. In the figure, we mark the undesirable states by including them in a gray region.
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Figure 5.3: Model for two sites

These states are the ones that violate the Bsite construction, and therefore must have low

probability. To determine the probability of a state, we use also limiting probabilities.

In this model, we assume that probabilities of failure are constant, and they

cannot be changed as the system changes states. We assume, however, that we are able

to have different repair probabilities for different states. As a physical explanation, re-

pair probabilities change as the effort spent to repair the system changes. Thus, we can

increase the repair probability for an undesirable state, thereby decreasing the probabil-

ity of being in this state. In practice, this means that the amount of physical resources

used to repair processes must increase with the number of failures in the system. It

is then necessary to be able to detect failures. A failure detector for this application,

however, can be unreliable as the only side-effect is to have more resources used to

repair processes unnecessarily. Having an unreliable failure detector implies that the

repair probabilities have to take into account false positives. We therefore assume that

it is possible to bound and estimate the frequency with which the failure detector makes

mistakes.

As an example, suppose that n = 3, ps = 0.004, pf = 0.001, and pr(f1 · f2) =

0.1, if f1 · f4 is outside the gray region, and pr(f1 · f2) = 0.4, if f1 · f2 is inside the

gray region. We have chosen these values using the following guidelines. First, as we

observed in Section 5.7.1, site failures are common. We then assume that the probability
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of a site failure is higher than that of a process failure, although we kept them in the same

order of magnitude. Second, we assume that repair probabilities are much higher than

the failure probabilities.
One still needs to choose a value for t, as repair probabilities depend upon this

value. For such a small system, this choice is constrained to be either t = 0 or t = 1.
If t is greater than 1, then the 2-bimodal intersection property cannot be satisfied, and
we are not able to construct a coterie using the technique proposed in Section 5.5. We
therefore assume that t = 1, and we have the following limiting probabilities:

M =


0.7815 0.0391 0.0332 0.0344

0.0391 0.0020 0.0004 0.0004

0.0332 0.0004 0.0003 0.0004

0.0344 0.0004 0.0004 0.0004


where M [f1 + 1, f2 + 1] is the limiting probability of state f1 · f2. More specifically, we

have that πf1·f2 = M [f1 + 1, f2 + 1].
Suppose now that a1, a2, a3 are the processes in one site, b1, b2, b3 are the pro-

cesses in the other site, and 4 × 10−4 < ρ < 2 × 10−3. We have that: 1) Fs = {∅};
2) Fp[1] = {ai : ai ∈ B1}; 3) Fp[2] = {bi : bi ∈ B2}. The set of survivor sets is as
follows:

SΠ = {a1a2a3, b1b2b3} ∪ {aiajblbm : i, j, l,m ∈ {1, 2, 3} ∧ i 6= j ∧ l 6= m}

and from the Bsite construction, we have, for example, the following coterie:

Q = {a1a2a3} ∪ {aiajblbm : i, j, l,m ∈ {1, 2, 3} ∧ i 6= j ∧ l 6= m}

which is dominated by:

Q′ = {a1a2a3} ∪ {aibjbl : i, j, l ∈ {1, 2, 3} ∧ j 6= l}

and we have by definition that Q ≺a Q′. From the matrix M , observe that Q′ is

unavailable only in state 30, considering only allowed states (states that have probability

greater than the degree of reliability). This is optimal as there is no coterie that is

available for both states 30 and 03.

Although the system of the example is a simple one, it illustrates well that the

bimodal model is implementable. We believe that the results can be generalized for two-
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site systems with more processes, but it is an open question whether there is a practical

implementation for systems with more than two sites.

5.8 Evaluating coteries on PlanetLab

To evaluate the different choices for quorums in a multi-site system, we

conducted an experiment on PlanetLab using an implementation of the Paxos algo-

rithm [Lam98]. In brief, Paxos assumes that processes have one or more of the three

following roles: Proposer, Acceptor, and Learner. Proposers propose ballots that are ac-

cepted by Acceptors. To propose, a Proposer has to read from and write to a quorum of

Acceptors. Once an Acceptor accepts a ballot, it notifies the set of Learners. A Learner

decides upon a value once it receives notifications from a quorum of Acceptors.

In our experiment, we have three settings. In all settings, one single host (a

UCSD host) has the roles of both a Proposer and a Learner, whereas the Acceptors are

PlanetLab hosts spread across three sites (UC Davis, UT Austin, Duke). The settings

are:

3Sites: One host from each site. A quorum consists of any set of two hosts. This is the

Qsite construction, for fs = 1, and t = 0;

3SitesMaj: Three hosts from each site. A quorum consists of majorities of hosts from

two sites, and it has size four. This is the Qsite construction for fs = 1, and t = 1;

SimpleMaj: Three hosts from each site. A quorum consists of any simple majority of

sites. That is, any subset of five Acceptors.

For each setting, we have the Proposer issuing a new ballot every 15 minutes,

and we log the time it takes to decide upon a value for this ballot. To implement a

reliable channel, we create a new thread for every message sent, and this thread tries to

send the message through a TCP connection until it succeeds. As a consequence, we

have that every message sent by one process to another is eventually received, as long

as the receiving process eventually recovers if it fails.
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Figure 5.4: Cumulative latency distribution

To register failures, every time establishing a TCP connection to another host

times out, we log it to a file. A failure in this case is the inability to reach the Acceptor,

not necessarily implying that the host has crashed. That is, the unavailability of a host

may be caused by a network partition.

We had these three settings running in parallel for 27 days in April 2005.

Figure 5.4 shows part of the cumulative distribution function for the latency of reaching

agreement on each ballot. We additionally show in Table 5.3 the fraction of samples

with value greater than 4s, and in Figures 5.5, 5.6, and 5.7 the time series for each of

the constructions.

It is not surprising that 3Sites has the best response time for the average case,

followed by 3SitesMaj and SimpleMaj, since quorums have fewer Acceptors in this

exact order. However, the graph shows that there is a point (around 3.5s) in which

the curve for 3SitesMaj crosses 3Sites. This implies that there are fewer samples for

3SitesMaj with latency greater than 3.5s than for 3Sites. As the tail of the distribution

for 3SitesMaj contains fewer samples, it has best availability among the three in this

experiment.



145

 0

 1

 2

 3

 4

 5

 6

04/2604/1804/0903/31

La
te

nc
y 

(s
)

Time

Figure 5.5: 3Sites latency to learn - time series

Table 5.3: Samples with value greater than 4 seconds.

Latency > 4s

3Sites 0.0020

3SitesMaj 0.0016

SimpleMaj 0.0057

To understand why this is the case, we need to understand what components

are involved in deciding upon a ballot. The latency of a ballot has two main components:

message latency and process failures. From the graph, the message latency component

dominates until 3.5s. After 3.5s, the delay is mostly caused by the inability to reach

enough Acceptors. Having more processes increases the latency for 3SitesMaj and Sim-

pleMaj compared to 3Sites for values under 3.5s, where the message latency component

has more weight. On the other hand, 3SitesMaj presents better response time for val-

ues greater than 3.5s, when there are process failures. Thus, there is a tension between

obtaining good response time on average and having a larger fraction of the samples

within a bounded response time. This information is important, for example, when de-
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Figure 5.6: 3SitesMaj latency to learn - time series

termining the time-out for a quorum-based service. Considering our three settings, if a

time-out value greater than 3.5s is chosen, then 3SitesMaj is likely to time out less often

than 3Sites and SimpleMaj. Finally, an interesting observation is that SimpleMaj not

only had the worst average response time, but also had the largest fraction of samples

with response time greater than 4s. This indicates that using majority quorums is a poor

choice for multi-site systems.

We also counted the number of ballots for which the Proposer could not ini-

tially contact enough Acceptors to obtain a quorum, and the decision on the ballot was

therefore delayed until enough Acceptors were available. When this happens to a ballot,

we say that this ballot is postponed. For each setting, we have the following:

3Sites: There were 3 postponed ballots;

3SitesMaj: There were 2 postponed ballots. Only for one of these ballots, there would

be one quorum available in the simple majority scheme;

SimpleMaj: There were 4 postponed ballots. For all these ballots, using the majorities

of two sites would give us an available quorum.
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Figure 5.7: SimpleMaj latency to learn - time series

The data presented in this section is perhaps not conclusive because the num-

ber of failures observed was too small to be statistically valid. Moreover, PlanetLab is

not a production system in the sense that sites are not designed to be highly available,

and node repair is often leisurely. On the other hand, the results presented do not con-

tradict any of our assumptions, thus indicating that our models may be suitable even for

multi-site systems such as PlanetLab.

5.9 Conclusions

The constructions in this chapter constitute a first step into the practical con-

struction of coteries for multi-site systems. We base one coterie construction on a failure

model that we motivate from failure measurements from a deployed multi-site system

and from a Markov model. We also consider a weaker failure model that has some

theoretical and practical interest. We define optimality by introducing a metric that is

suitable to dependent failures, and we show that our quorum constructions are optimal

with respect to this metric.

Being a first step, this work leaves some questions unanswered. First, our
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multi-site hierarchical model is intuitive and is based on some failure data from a real

system. How typical is this system? Is the model broadly applicable? Second, our

bimodal model is based on the idea of having different repair probabilities for different

states. This technique, which essentially integrates operating procedures with the failure

model, appears to be a potentially powerful new direction for the design of novel and

efficient protocols. Finally, we describe a method of building a coterie from survivor

sets that do not satisfy 2–Intersection. The survivor sets are defined by some target

availability, and the availability of the quorum system is reduced by discarding survivor

sets. How does this strategy compare with one in which the initial target availability is

increased until the survivor sets satisfy 2–Intersection?



Chapter 6

Surviving Internet catastrophes

This chapter also shows that our core/survivor set model has practical value by

using the core abstraction to design a system that protects users’ data against large-scale

Internet attacks.

The Internet today is highly vulnerable to Internet epidemics: events in which

a particularly virulent Internet pathogen, such as a worm or email virus, compromises a

large number of hosts. Starting with the Code Red worm in 2001, which infected over

360,000 hosts in 14 hours [MSB02], such pathogens have become increasingly virulent

in terms of speed, extent, and sophistication. Sapphire scanned most IP addresses in less

than 10 minutes [MPS+03], Nimda reportedly infected millions of hosts, and Witty ex-

ploited vulnerabilities in firewall software explicitly designed to defend hosts from such

pathogens [MS04]. We call such epidemics Internet catastrophes because they result

in extensive wide-spread damage costing billions of dollars [MSB02]. Such damage

ranges from overwhelming networks with epidemic traffic [MPS+03, MSB02], to pro-

viding zombies for spam relays [myd04] and denial of service attacks [sob], to deleting

disk blocks [MS04]. Given the current ease with which such pathogens can be created

and launched, further Internet catastrophes are inevitable in the near future.

Defending hosts and the systems that run on them is therefore a criti-

cal problem, and one that has received considerable attention recently. Approaches

to defend against Internet pathogens generally fall into three categories. Preven-

149
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tion reduces the size of the vulnerable host population [Sym, WFBA00, WGSZ04].

Treatment reduces the rate of infection [crc01, SK03]. Finally, containment tech-

niques block infectious communication and reduce the contact rate of a spreading

pathogen [MSVS03, Wil02, Won04].

Such approaches can mitigate the impact of an Internet catastrophe, reducing

the number of vulnerable and compromised hosts. However, they are unlikely to pro-

tect all vulnerable hosts or entirely prevent future epidemics and risk of catastrophes.

For example, fast-scanning worms like Sapphire can quickly probe most hosts on the

Internet, making it challenging for worm defenses to detect and react to them at Inter-

net scale [MSVS03]. The Witty worm embodies a so-called zero-day worm, exploiting

a vulnerability soon after patches were announced. Such pathogens make it increas-

ingly difficult for organizations to patch vulnerabilities before a catastrophe occurs. As

a result, we argue that defenses are necessary, but not sufficient, for fully protecting

distributed systems and data on Internet hosts from catastrophes.

In this chapter, we propose a new approach for designing distributed systems

to survive Internet catastrophes called informed replication. The key observation that

makes informed replication both feasible and practical is that Internet epidemics exploit

shared vulnerabilities. By replicating a system service on hosts that do not have the

same vulnerabilities, a pathogen that exploits one or more vulnerabilities cannot cause

all replicas to fail. For example, to prevent a distributed system from failing due to a

pathogen that exploits vulnerabilities in Web servers, the system can place replicas on

hosts running different Web server software.

The software of every system inherently is a shared vulnerability that repre-

sents a risk to using the system, and systems designed to use informed replication are no

different. Substantial effort has gone into making systems themselves more secure, and

our design approach can certainly benefit from this effort. However, with the dramatic

rise of worm epidemics, such systems are now increasingly at risk to large-scale failures

due to vulnerabilities in unrelated software running on the host. Informed replication

reduces this new source of risk.
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This chapter makes four contributions. First, we develop a system model us-

ing the core abstraction of Chapter 2. Recall that a core is a reliable minimal subset of

components such that the probability of having all hosts in a core failing is negligible.

Compared to the use of cores in the previous chapters, we need a method for deter-

mining the dependencies among hosts that cause dependent failures, and that enables a

proper selection of cores. To reason about dependent failures, we associate attributes

with hosts. Attributes represent characteristics of the host that can make it prone to fail-

ure, such as its operating system and network services. Since hosts often have many

characteristics that make it vulnerable to failure, we group host attributes together into

configurations to represent the set of vulnerabilities for a host. A system can use the

configurations of all hosts in the system to determine how many replicas are needed,

and on which hosts those replicas should be placed, to survive a worm epidemic.

Second, the efficiency of informed replication fundamentally depends upon

the degree of software diversity among the hosts in the system, as more homogeneous

host populations result in a larger storage burden for particular hosts. To evaluate the

degree of software heterogeneity found in an Internet setting, we measure and charac-

terize the diversity of the operating systems and network services of hosts in the UCSD

network. The operating system is important because it is the primary attribute differenti-

ating hosts, and network services represent the targets for exploit by worms. The results

of this study indicate that such networks have sufficient diversity to make informed

replication feasible.

Third, we develop heuristics for computing cores that have a number of at-

tractive features. They provide excellent reliability guarantees, ensuring that user data

survives attacks of single- and double-exploit pathogens with probability greater than

0.99. They have low overhead, requiring fewer than 3 copies to cope with single-exploit

pathogens, and fewer than 5 copies to cope with double-exploit pathogens. They bound

the number of replica copies stored by any host, limiting the storage burden on any sin-

gle host. Finally, the heuristics lend themselves to a fully distributed implementation

for scalability. Any host can determine its replica set (its core) by contacting a constant
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number of other hosts in the system, independent of system size.

Finally, to demonstrate the feasibility and utility of our approach, we apply

informed replication to the design and implementation of Phoenix. Phoenix is a co-

operative, distributed remote backup system that protects stored data against Internet

catastrophes that cause data loss [MS04]. The usage model of Phoenix is straightfor-

ward: users specify an amount F of bytes of their disk space for management by the

system, and the system protects a proportional amount F/k of their data using storage

provided by other hosts, for some value of k. We implement Phoenix as a service lay-

ered on the Pastry DHT [RD01] in the Macedon framework [RKB+04], and evaluate its

ability to survive emulated catastrophes on the PlanetLab testbed.

The remainder of this chapter is organized as follows. Section 6.1 discusses

related work. Section 6.2 describes our system model for representing dependent fail-

ures. Section 6.3 describes our measurement study of the software diversity of hosts

in a large network, and Section 6.4 describes and evaluates heuristics for computing

cores. Section 6.5 describes the design and implementation of Phoenix, and Section 6.6

describes the evaluation of Phoenix. Finally, Section 6.8 concludes.

6.1 Related work

Most distributed systems are not designed such that failures are independent,

and there has been recent interest in protocols for systems where failures are correlated.

Quorum-based protocols, which implement replicated update by reading and writing

overlapping subsets of replicas, are easily adapted to correlated failures. A model of de-

pendent failures was introduced for Byzantine-tolerant quorum systems [MR97a]. This

model, called a fail-prone system, is a dual representation of the model (cores) that we

use here. Our model was developed as part of a study of lower bounds and optimal

protocols for consensus in environments where failures can be correlated.

The ability of Internet pathogens to spread through a vulnerable host popu-

lation on the network fundamentally depends on three properties of the network: the
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number of susceptible hosts that could be infected, the number of infected hosts actively

spreading the pathogen, and the contact rate at which the pathogen spreads. Various ap-

proaches have been developed for defending against such epidemics that address each

of these properties.

Prevention techniques, such as patching [Mic, Sym, WGSZ04] and over-

flow guarding [CPM+98, WFBA00], prevent pathogens from exploiting vulnerabilities,

thereby reducing the size of the vulnerable host population and limiting the extent of a

worm outbreak. However, these approaches have the traditional limitations of ensuring

soundness and completeness, or leave windows of vulnerability due to the time required

to develop, test, and deploy.

Treatment techniques, such as disinfection [cod01, crc01] and vaccina-

tion [SK03], remove software vulnerabilities after they have been exploited and reduce

the rate of infection as hosts are treated. However, such techniques are reactive in nature

and hosts still become infected. Further, counter-worms have questionable legality, and

automatic vaccination has limiting constraints on deployment (e.g., requiring source to

patch).

Software patching also treats infected hosts, although the slow rate at which

users patch infected systems has little impact on the initial propagation of worms and de-

fending against them. For example, during the Code-Red epidemic it took sixteen days

for most hosts to eliminate the underlying vulnerability and thousands had not patched

their systems six weeks later [MSB02]. Recent proposals include anti-worms that dis-

infect hosts using the same propagation methods as the original worm [cod01, crc01],

and vaccinating hosts by automatically detecting infection in software and generating

and applying patches online [SK03].

Containment techniques, such as throttling [Lis06, Wil02] and filter-

ing [MSVS03, TK02], block infectious communication between infected and unin-

fected hosts, thereby reducing or potentially halting the contact rate of a spreading

pathogen. The efficacy of reactive containment fundamentally depends upon the abil-

ity to quickly detect a new pathogen [LLO+03, MVS01, WSP04, ZGGT03], charac-
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terize it to create filters specific to infectious traffic [Hya04, KA94, KC03, SEVS04],

and deploy such filters in the network [LMK+03, TW03]. Unfortunately, containment

at Internet scales is challenging, requiring short reaction times and extensive deploy-

ment [MSVS03, Won04]. Again, since containment is inherently reactive, some hosts

always become infected.

Proactive defenses include reducing the propagation of pathogens, such as

the La Brea “tarpit” for slowing TCP-based worms [Lis06] and throttling connection

rates [Wil02]. Reactive defenses contain the spread of pathogens by blocking infectious

communication in reaction to the onset of an epidemic [MSVS03, TK02].

Such defenses typically involve installing filters in firewalls or routers to block

infected communication. For example, Cisco’s Network Based Application Recognition

(NBAR) feature [Cis] allows a router to block particular TCP sessions based on the

presence of individual strings in the TCP stream. NBAR was first used in blocking the

spread of the Code-Red worm, enabling networks to prevent the propagation of worm

probes on port 80 while allowing legitimate traffic to reach Web servers.

Various approaches take advantage of software heterogeneity to make sys-

tems fault-tolerant. N-version programming uses different implementations of the same

service to prevent correlated failures across implementations. Castro’s Byzantine fault

tolerant NFS service (BFS) is one such example [CL02] and provides excellent fault-

tolerance guarantees, but requires multiple implementations of every service. Scram-

bling the layout and execution of code can introduce heterogeneity into deployed soft-

ware [BAF+03]. However, such approaches can make debugging, troubleshooting, and

maintaining software considerably more challenging. In contrast, our approach takes

advantage of existing software diversity.

Phoenix is one of many proposed cooperative systems for providing archival

and backup services. For example, Intermemory [Che99] and Oceanstore [KBC+00] en-

able stored data to persist indefinitely on servers distributed across the Internet. As with

Phoenix, Oceanstore proposes mechanisms to cope with correlated failures [WMK02].

The approach, however, is reactive and does not enable recovery after Internet catastro-
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phes. With Pastiche [CN02], pStore [BBST01], and CIBS [LEB+03], users relinquish

a fraction of their computing resources to collectively create a backup service. How-

ever, these systems target localized failures simply by storing replicas offsite. Such

systems provide similar functionality as Phoenix, but are not designed to survive wide-

spread correlated failures of Internet catastrophes. Finally, Glacier is a system specifi-

cally designed to survive highly correlated failures like Internet catastrophes [HMD05].

In contrast to Phoenix, Glacier assumes a very weak failure model and instead copes

with catastrophic failures via massive replication. Phoenix relies upon a stronger failure

model, but replication in Phoenix is modest in comparison.

6.2 System model

As a first step toward the development of a technique to cope with Internet

catastrophes, in this section we describe our system model for representing and reason-

ing about dependent failures, and discuss the granularity at which we represent software

diversity. This system model is based on the core abstraction of Chapter 2.

6.2.1 Representing dependent failures

Consider a system composed of a set H of hosts each of which is capable of

holding certain objects. These hosts can fail (for example, by crashing) and, to keep

these objects available, they need to be replicated. A simple replication strategy is to

determine the maximum number t of hosts that can fail at any time, and then maintain

more than t replicas of each object.

However, using more than t replicas may lead to excessive replication when

host failures are correlated. As a simple example, consider three hosts {h1, h2, h3}

where the failures of h1 and h2 are correlated while h3 fails independent of the other

hosts. If h1 fails, then the probability of h2 failing is high. As a result, one might set

t = 2 and thereby require t + 1 = 3 replicas. However, if we place replicas on h1 and

h3, the object’s availability may be acceptably high with just two replicas.
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To better address issues of optimal replication in the face of correlated failures,

we have defined an abstraction that we call a core. A core is a minimal set of hosts such

that, in any execution, at least one host in the core does not fail. In the above example,

both {h1, h3} and {h2, h3} are cores. {h1, h2} would not be a core since the probability

of both failing is too high and {h1, h2, h3} would not be a core since it is not minimal.

Using this terminology, a central problem of informed replication is the identification of

cores based on the correlation of failures.

An Internet catastrophe causes hosts to fail in a correlated manner because all

hosts running the targeted software are vulnerable. Operating systems and Web servers

are examples of software commonly exploited by Internet pathogens [MSB02, Sop04].

Hence we characterize a host’s vulnerabilities by the software they run. We associate

with each host a set of attributes, where each attribute is a canonical name of a software

package or system that the host runs; in Section 6.2.2 below, we discuss the tradeoffs

of representing software packages at different granularities. We call the combined rep-

resentation of all attributes of a host the configuration of the host. An example of a

configuration is {Windows, IIS, IE}, where Windows is a canonical name for an op-

erating system, IIS for a Web server package, and IE for a Web browser. Agreeing

on canonical names for attribute values is essential to ensure that dependencies of host

failures are appropriately captured.

An Internet pathogen can be characterized by the set of attributes A that it

targets. Any host that has none of the attributes in A is not susceptible to the pathogen.

A core is a minimal set C of hosts such that, for each pathogen, there is a host h in C

that is not susceptible to the pathogen. Internet pathogens often target a single (possibly

cross-platform) vulnerability, and the ones that target multiple vulnerabilities target the

same operating system. Assuming that any attribute is susceptible to attack, we can re-

define a core using attributes: a core is a minimal setC of processes such that no attribute

is common to all hosts in C. In Section 6.4.4, we relax this assumption and show how

to extend our results to tolerate pathogens that can exploit multiple vulnerabilities.

To illustrate these concepts, consider the system described in Example 6.2.1.
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In this system, hosts are characterized by six attributes which we classify for clarity into

operating system, Web server, and Web browser.

H1 and H2 comprise what we call an orthogonal core, which is a core com-

posed of hosts that have disjoint configurations. Given our assumption that Internet

pathogens target only one vulnerability or multiple vulnerabilities on one platform, an

orthogonal core will contain exactly two hosts. {H1, H3, H4} is also a core because

there is no attribute present in all hosts, and it is minimal.

Example 6.2.1
Attributes: Operating System = {Unix, Windows};

Web Server = {Apache, IIS};

Web Browser = {IE, Netscape}.

Hosts: H1 = {Unix, Apache, Netscape};

H2 = {Windows, IIS, IE};

H3 = {Windows, IIS, Netscape};

H4 = {Windows, Apache, IE}.

Cores = {{H1, H2}, {H1, H3, H4}}.

The smaller core {H1, H2} might appear to be the better choice since it re-

quires less replication. Choosing the smallest core, however, can have an adverse effect

on individual hosts if many hosts use this core for placing replicas. To represent this

effect, we define load to be the amount of storage a host provides to other hosts. In en-

vironments where some configurations are rare, hosts with the rare configurations may

occur in a large percentage of the smallest cores. Thus, hosts with rare configurations

may have a significantly higher load than the other hosts. Indeed, having a rare config-

uration can increase a host’s load even if the smallest core is not selected. For example,

in Example 6.2.1, H1 is the only host that has a flavor of Unix as its operating system.

Consequently, H1 is present in both cores.

To make our argument more concrete, consider the well-known worms in Ta-

ble 6.1 that were unleashed in the past few years. For each worm, given two hosts with
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one not running Windows or not running a specific server such as a Web server or a

database, at least one survives the attack. With even a very modest amount of hetero-

geneity, our method of constructing cores includes such pairs of hosts.

6.2.2 Attribute granularity

Attributes can represent software diversity at many different granularities. The

choice of attribute granularity balances resilience to pathogens, flexibility for placing

replicas, and degree of replication. An example of the coarsest representation is for a

host to have a configuration comprising a single attribute for the generic class of operat-

ing system, e.g., “Windows”, “Unix”, etc. This single attribute represents the potential

vulnerabilities of all versions of software running on all versions of the same class of

operating system. As a result, replicas would always be placed on hosts with different

operating systems. A less coarse representation is to have attributes for the operating

system as well as all network services running on the host. This representation yields

more freedom for placing replicas. For example, we can place replicas on hosts with the

same class of operating system if they run different services. The core {H1, H3, H4} in

Example 6.2.1 is an example of this situation since H3 and H4 both run Windows. More

fine-grained representations can have attributes for different versions of operating sys-

tems and applications. For example, we can represent the various releases of Windows,

such as “Windows 2000” and “Windows XP”, or even versions such as “NT 4.0sp4”

as attributes. Such fine-grained attributes provide considerable flexibility in placing

replicas. For example, we can place a replica on an NT host and an XP host to protect

against worms such as Code Red that exploit an NT service but not an XP service. But

doing so greatly increases the cost and complexity of collecting and representing host

attributes, as well as computing cores to determine replica sets.

Our initial work [JBM+03] suggested that informed replication can be effec-

tive with relatively coarse-grained attributes for representing software diversity. As a

result, we use attributes that represent just the class of operating system and network

services on hosts in the system, and not their specific versions. In subsequent sections,
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Table 6.1: Recent well-known pathogens

Worm Form of infection (Service) Platform

Code Red port 80/http (MS IIS) Windows

Nimda multiple: email; Trojan horse versions Windows

using open network shares (SMB: ports

137–139 and 445); port 80/HTTP

(MS IIS); Code Red backdoors

Sapphire port 1434/udp (MS SQL, MSDE) Windows

Sasser port 445/tcp (LSASS) Windows

Witty port 4000/udp (BlackICE) Windows

we show that, when representing diversity at this granularity, hosts in an enterprise-scale

network have substantial and sufficient software diversity for efficiently supporting in-

formed replication. Our experience suggests that, although we can represent software

diversity at finer attribute granularities such as specific software versions, there is not a

compelling need to do so.

6.3 Host diversity

With informed replication, the difficulty of identifying cores and the resulting

storage load depend on the actual distribution of attributes among a set of hosts. To better

understand these two issues, we measured the software diversity of a large set of hosts at

UCSD. In this section, we first describe the methodology we used, and discuss the biases

and limitations our methodology imposes. We then characterize the operating system

and network service attributes found on the hosts, as well as the host configurations

formed by those attributes.

6.3.1 Methodology

On our behalf, UCSD Network Operations used the Nmap tool [Ins04] to scan

IP address blocks owned by UCSD to determine the host type, operating system, and

network services running on the host. Nmap uses various scanning techniques to clas-
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sify devices connected to the network. To determine operating systems, Nmap interacts

with the TCP/IP stack on the host using various packet sequences or packet contents

that produce known behaviors associated with specific operating system TCP/IP imple-

mentations. To determine the network services running on hosts, Nmap scans the host

port space to identify all open TCP and UDP ports on the host. We anonymized host IP

addresses prior to processing.

Due to administrative constraints collecting data, we obtained the operating

system and port data at different times. We had a port trace collected between December

19–22, 2003, and an operating system trace collected between December 29, 2003 and

January 7, 2004. The port trace contained 11,963 devices and the operating system trace

contained 6,395 devices.

Because we are interested in host data, we first discarded entries for special-

ized devices such as printers, routers, and switches. We then merged these traces to

produce a combined trace of hosts that contained both operating system data and open

port data for the same set of hosts. When fingerprinting operating systems, Nmap deter-

mines both a class (e.g., Windows) as well as a version (e.g., Windows XP). For added

consistency, we discarded host information for those entries that did not have consistent

OS class and version info. The result was a data set with operating system and port data

for 2,963 general-purpose hosts.

Our data set was constructed using assumptions that introduced biases. First,

worms exploit vulnerabilities that are present in network services. We make the assump-

tion that two hosts that have the same open port are running the same network service

and thus have the same vulnerability. In fact, two hosts may use a given port to run

different services, or even different versions (with different vulnerabilities) of the same

service. Second, ignoring hosts that Nmap could not consistently fingerprint could bias

the host traces that were used. Third, DHCP-assigned host addresses are reused. Given

the time elapsed between the time operating system information was collected and port

information was collected, an address in the operating system trace may refer to a dif-

ferent host in the port trace. Further, a host may appear multiple times with different
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addresses either in the port trace or in the operating system trace. Consequently, we

may have combined information from different hosts to represent one host or counted

the same host multiple times.

The first assumption can make two hosts appear to share vulnerabilities when

in fact they do not, and the second assumption can consistently discard configurations

that otherwise contribute to a less skewed distribution of configurations. The third as-

sumption may make the distribution of configurations seem less skewed, but operating

system and port counts either remain the same (if hosts do not appear multiple times in

the traces) or increase due to repeated configurations. The net effect of our assumptions

is to make operating system and port distributions appear to be less diverse than it really

is, although it may have the opposite effect on the distribution of configurations.

Another bias arises from the environment we surveyed. A university envi-

ronment is not necessarily representative of the Internet, or specific subsets of it. We

suspect that such an environment is more diverse in terms of software use than other en-

vironments, such as the hosts in a corporate environment or in a governmental agency.

On the other hand, there are perhaps thousands of universities with a large setting con-

nected to the Internet around the globe, and so the conclusions we draw from our data

are undoubtedly not singular.

6.3.2 Attributes

Together, the hosts in our study have 2,569 attributes representing operating

systems and open ports. Table 6.2 shows the ten most prevalent operating systems and

open ports identified on the general purpose hosts. Table 6.2.a shows the number and

percentage of hosts running the named operating systems. As expected, Windows is the

most prevalent OS (54% of general purpose hosts). Individually, Unix variants vary in

prevalence (0.03–10%), but collectively they comprise a substantial fraction of the hosts

(38%).

Table 6.2.b shows the most prevalent open ports on the hosts and the network

services typically associated with those port numbers. These ports correspond to ser-
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Table 6.2: Top 10 operating systems (a) and ports (b) among the 2,963 general-purpose hosts

(a)

OS

Name Count (%)

Windows 1604 (54.1)

Solaris 301 (10.1)

Mac OS X 296 (10.0)

Linux 296 (10.0)

Mac OS 204 (6.9)

FreeBSD 66 (2.2)

IRIX 60 (2.0)

HP-UX 32 (1.1)

BSD/OS 28 (0.9)

Tru64 Unix 22 (0.7)

(b)

Port

Number Count (%)

139 (netbios-ssn) 1640 (55.3)

135 (epmap) 1496 (50.4)

445 (microsoft-ds) 1157 (39.0)

22 (sshd) 910 (30.7)

111 (sunrpc) 750 (25.3)

1025 (various) 735 (24.8)

25 (smtp) 575 (19.4)

80 (httpd) 534 (18.0)

21 (ftpd) 528 (17.8)

515 (printer) 462 (15.6)

vices running on hosts, and represent the points of vulnerability for hosts. On average,

each host had seven ports open. However, the number of ports per host varied con-

siderably, with 170 hosts only having one port open while one host (running a firewall

software) had 180 ports open. Windows services dominate the network services running

on hosts, with netbios-ssn (55%), epmap (50%), and domain services (39%) topping the

list. The most prevalent services typically associated with Unix are sshd (31%) and

sunrpc (25%). Web servers on port 80 are roughly as prevalent as ftp (18%).

These results show that the software diversity is significantly skewed. Most

hosts have open ports that are shared by many other hosts (Table 6.2.b lists specific

examples). However, most attributes are found on few hosts, i.e., most open ports are

open on only a few hosts. From our traces, we observe that the first 20 most prevalent

attributes are found on 10% or more of hosts, but the remaining attributes are found on

fewer hosts.

These results are encouraging for the process of finding cores. Having many

attributes that are not widely shared makes it easier to find replicas that cover each
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Figure 6.1: Visualization of UCSD configurations

other’s attributes, preventing a correlated failure from affecting all replicas. We examine

this issue next.

6.3.3 Configurations

Each host has multiple attributes comprised of its operating system and net-

work services, and together these attributes determine its configuration. The distribution

of configurations among the hosts in the system determines the difficulty of finding core

replica sets. The more configurations shared by hosts, the more challenging it is to find

small cores.

Figure 6.1 is a qualitative visualization of the space of host configurations.

It shows a scatter plot of the host configurations among the UCSD hosts in our study.

The x-axis is the port number space from 0–6500, and the y-axis covers the entire set

of 2,963 host configurations grouped by operating system family. A dot corresponds to

an open port on a host, and each horizontal slice of the scatter plot corresponds to the

configuration of open ports for a given host. We sort groups in decreasing size according

to the operating systems listed in Table 6.2: Windows hosts start at the bottom, then

Solaris, Mac OS X, etc. Note that we have truncated the port space in the graph; hosts

had open ports above 6500, but showing these ports did not add any additional insight

and obscured patterns at lower, more prevalent port numbers.
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Figure 6.2: Distribution of configurations

Figure 6.1 shows a number of interesting features of the configuration space.

The marked vertical bands within each group indicate, as one would expect, strong cor-

relations of network services among hosts running the same general operating system.

For example, most Windows hosts run the epmap (port 135) and netbios (port 139) ser-

vices, and many Unix hosts run sshd (port 22) and X11 (port 6000). Also, in general,

non-Windows hosts tend to have more open ports (8.3 on average) than Windows hosts

(6.0 on average). However, the groups of hosts running the same operating system still

have substantial diversity within the group. Although each group has strong bands, they

also have a scattering of open ports between the bands contributing to diversity within

the group. Lastly, there is substantial diversity among the groups. Windows hosts have

different sets of open ports than hosts running variants of Unix, and these sets even differ

among Unix variants. We take advantage of these characteristics to develop heuristics

for determining cores in Section 6.4.

Figure 6.2 provides a quantitative evaluation of the diversity of host configu-

rations. It shows the cumulative distribution of configurations across hosts for different

classes of port attributes, with configurations on the x-axis sorted by decreasing order

of prevalence. A distribution in which all configurations are equally prevalent would be

a straight diagonal line. Instead, the results show that the distribution of configurations

is skewed, with a majority of hosts accounting for only a small percentage of all con-
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figurations. For example, when considering all attributes, 50% of hosts comprise just

20% of configurations. In addition, reducing the number of port attributes considered

further skews the distribution. For example, when only considering ports that appear on

more than one host, shown by the “Multiple” line, 15% of the configurations represent

over 50% of the hosts. And when considering only the port attributes that appear on at

least 100 hosts, only 8% of the configurations represent over 50% of the hosts. Skew

in the configuration distribution makes it more difficult to find cores for those hosts that

share more prevalent configurations with other hosts. In the next section, however, we

show that host populations with diversity similar to UCSD are sufficient for efficiently

constructing cores that result in a low storage load.

6.4 Surviving catastrophes

With informed replication, each host h constructs a core Core(h) based on

its configuration and the configuration of other hosts.1 Computing a core of optimal

size, however, is NP-hard. Hence, we use heuristics to compute Core(h). We postpone

a discussion on the complexity of finding cores until Section 6.7. In this section, we

first discuss a data structure for representing advertised configurations that is amenable

to heuristics for computing cores. We then describe four heuristics and evaluate via

simulation the properties of the cores that they construct. As a basis for our simulations,

we use the set of hostsH obtained from the traces discussed in Section 6.3.

6.4.1 Advertised configurations

Our heuristics are different versions of greedy algorithms: a host h repeatedly

selects other hosts to include in Core(h) until some condition is met. Hence we chose

a representation that makes it easier for a greedy algorithm to find good candidates to

include in Core(h). This representation is a three-level hierarchy.
1More precisely, Core(h) is a core constrained to contain h. That is, Core(h) \ {h} may itself be minimal, but

we require h ∈ Core(h).
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Figure 6.3: Illustration of containers and sub-containers

The top level of the hierarchy is the operating system that a host runs, the

second level includes the applications that run on that operating system, and the third

level are hosts. Each host runs one operating system, and so each host is subordinate

to its operating system in the hierarchy (we can represent hosts running multiple virtual

machines as multiple virtual hosts in a straightforward manner). Since most applications

run predominately on one platform, hosts that run a different operating system than h are

likely good candidates for including in Core(h). We call the first level the containers

and the second level the sub-containers. Each sub-container contains a set of hosts.

Figure 6.3 illustrates these abstractions using the configurations of Example 6.2.1.

More formally, let O be the set of canonical operating system names and C

be the set of containers. Each host h has an attribute h.os that is the canonical name of

the operating system on h. The function mc : O → C maps operating system name to

container; thus, mc(h.os) is the container that contains h.

Let h.apps denote the set of canonical names of the applications that are run-

ning on h, and let A be the canonical names of all of the applications. We denote with

S the set of sub-containers and with ms : C → 2S the function that maps a container

to its sub-containers. The function mh : C × A → S maps a container and appli-

cation to a sub-container; thus, for each a ∈ h.apps, host h is in each sub-container

mh(mc(h.os), a).

At this high level of abstraction, advertising a configuration is straightforward.

Initially C is empty. To advertise its configuration, a host h first ensures that there is a

container c ∈ C such that mc(h.os) = c. Then, for each attribute a ∈ h.apps, h ensures

that there is a sub-container mh(c, a) containing h.
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6.4.2 Computing cores

The heuristics we describe in this section compute Core(h) in time linear with

the number of attributes in h.apps. These heuristics reference the set C of containers and

the three functions mc,ms and mh, but they do not reference the full set A of attributes.

In addition, these heuristics do not enumerateH, but they do reference the configuration

of hosts (to reference the configuration of a host h′, they reference h′.os and h′.apps).

Thus, the container/sub-container hierarchy is the only data structure that the heuristics

use to compute cores.

Metrics

We evaluate our heuristics using three metrics:

• Average core size: |Core(h)| averaged over all h ∈ H. This metric is impor-

tant because it determines how much capacity is available in the system. As the

average core size increases, the total capacity of the system decreases.

• Maximum load: The load of a host h′ is the number of cores Core(h) of which

h′ is a member. The maximum load is the largest load of any host h′ ∈ H.

• Average coverage: We say that an attribute a of a host h is covered in Core(h)

if there is at least one other host h′ in Core(h) that does not have a. Thus, an

exploit of attribute a can affect h, but not h′, and so not all hosts in Core(h)

are affected. The coverage of Core(h) is the fraction of attributes of h that are

covered. The average coverage is the average of the coverages of Core(h) over

all hosts h ∈ H. A high average coverage indicates a higher resilience to Internet

catastrophes: many hosts have most or all of their attributes covered. We return

to this discussion of what coverage means in practice in Section 6.4.3, after we

present most of our simulation results for context.

For brevity, we use the terms core size, load, and coverage to indicate average

core size, maximum load, and average coverage, respectively. Where we do refer to
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these terms in the context of a particular host, we say so explicitly.

A good heuristic will determine cores with small size, low load, and high

coverage. Coverage is the most critical metric because it determines how well it does in

guaranteeing service in the event of a catastrophe. Coverage may not equal one either

because there was no host h′ that was available to cover an attribute a of h, or because

the heuristic failed to identify such a host h′. As shown in the following sections, the

second case rarely happens with our heuristics.

Note that, as a single number, the coverage of a given Core(h) does not fully

capture its resilience. For example, consider host h1 with two attributes and host h2 with

10 attributes. If Core(h1) covers only one attribute, then Core(h1) has a coverage of 0.5.

If Core(h2) has the same coverage, then it covers only 5 of the 10 attributes. There are

more ways to fail all of the hosts in Core(h2) than those in Core(h1). Thus, we also use

the number of cores that do not have a coverage of 1.0 as an extension of the coverage

metric.

Heuristics

We begin by using simulation to evaluate a naive heuristic called Random that

we use as a basis for comparison. It is not a greedy heuristic and does not reference the

advertised configurations. Instead, h simply chooses at random a subset ofH of a given

size containing h.

The first row of Table 6.3 shows the results of Random using one run of our

simulator. We set the size of the cores to 5, i.e., Random chose 5 random hosts to form

a core. The coverage of 0.977 may seem high, but there are still many cores that have

uncovered attributes and choosing a core size smaller than five results in even lower

coverage. The load is 12, which is significantly higher than the lower bound of 5.2

Our first greedy heuristic Uniform (“uniform” selection among operating sys-

tems) operates as follows. First, it chooses a host with a different operating system than
2To meet this bound, number the hosts in H from 0 to |H| − 1. Let Core(h) be the hosts {h + i (mod |H|) :

i ∈ {0, 1, 2, 3, 4}}.
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Table 6.3: A typical run of the heuristics

Core size Coverage Load

Random 5 0.977 12

Uniform 2.56 0.9997 284

Weighted 2.64 0.9995 84

DWeighted 2.58 0.9997 91

h.os to cover this attribute. Then, for each attribute a ∈ h.apps, it chooses both a con-

tainer c ∈ C \ {mc(h.os)} and a sub-container sc ∈ ms(c) \ {mh(c, a)} at random.

Finally, it chooses a host h′ at random from sc. If a 6∈ h′.apps then it includes h′ in

Core(h). Otherwise, it tries again by choosing a new container c, sub-container sc, and

host h′ at random. Uniform repeats this procedure diff OS times in an attempt to

cover a with Core(h). If it fails to cover a, then the heuristic tries up to same OS times

to cover a by choosing a sub-container sc ∈ mc(h.os) at random and a host h′ at random

from sc.

The goal for having two steps, one with diff OS and another with same OS,

is to first exploit diversity across operating systems, and then to exploit diversity among

hosts within the same operating system group. Referring back to Figure 6.1, the set

of prevalent services among hosts running the same operating system varies across the

different operating systems. In the case the attribute cannot be covered with hosts run-

ning other operating systems, the diversity within an operating system group may be

sufficient to find a host h′ without attribute a.

In all of our simulations, we set diff OS to 7 and same OS to 4. After

experimentation, these values have provided a good trade-off between number of useless

tries and obtaining good coverage. However, we have yet to study how to in general

choose good values of diff OS and same OS. Figure 6.4 shows the pseudocode for

Uniform.

The second row of Table 6.3 shows the performance of Uniform for a repre-

sentative run of our simulator. The core size is close to the minimum size of two, and
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Algorithm Uniform on input h:
integer i;
core ← {h};
C′ ← C \ {mc(h.os)}
for each attribute a ∈ h.apps

i← 0
while (a is not covered) ∧

(i ≤ diff OS + same OS)
if (i ≤ diff OS) choose randomly c ∈ C′

else c← mc(h.os)
choose randomly sc ∈ ms(c) \ {mh(c, a)}
choose a host h′ ∈ sc : h′ 6= h
if (h′ covers a) add h′ to core
i← i + 1

return core

Figure 6.4: Uniform heuristic

the coverage is very close to the ideal value of one. This means that using Uniform

results in significantly better capacity and improved resilience than Random. On the

other hand, the load is very high: there is at least one host that participates in 284 cores.

The load is so high because h chooses containers and sub-containers uniformly. When

constructing the cores for hosts of a given operating system, the other containers are ref-

erenced roughly the same number of times. Thus, Uniform considers hosts running less

prevalent operating systems for inclusion in cores a disproportionately large number of

times. A similar argument holds for hosts running less popular applications.

This behavior suggests refining the heuristic to choose containers and appli-

cations weighted on the popularity of their operating systems and applications. Given

a container c, let Nc(c) be the number of distinct hosts in the sub-containers of c, and

given a set of containers C, let Nc(C) be the sum of Nc(c) for all c ∈ C. The heuris-

tic Weighted (“weighted” OS selection) is the same as Uniform except that for the first

diff OS attempts, h chooses a container cwith probabilityNc(c)/Nc(C\{mc(h.os)}).

Heuristic DWeighted (“doubly-weighted” selection) takes this a step further. Let

Ns(c, a) be |mh(c, a)| and Ns(c, A) be the size of the union of mh(c, a) for all a ∈ A.

Heuristic DWeighted is the same as Weighted except that, when considering at-

tribute a ∈ h.apps, h chooses a host from sub-container mh(c, a
′) with probability
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Ns(c, a
′)/Ns(c,A \ {a}).

In the third and fourth rows of Table 6.3, we show a representative run of our

simulator for both of these variations. The two variations result in comparable core sizes

and coverage as Uniform, but significantly reduce the load. The load is still very high,

though: at least one host ends up being assigned to over 80 cores.

Another approach to avoid a high load is to simply disallow it at the risk of

decreasing the coverage. That is, for some value of L, once a host h′ is included in L

cores, h′ is removed from the structure of advertised configurations. Thus, the load of

any host is constrained to be no larger than L.

What is an effective value of L that reduces load while still providing good

coverage? We answer this question by first establishing a lower bound on the value of

L. Suppose that a is the most prevalent attribute (either service or operating system)

among all attributes, and it is present in a fraction x of the host population. As a simple

application of the pigeonhole principle, some host must be in at least l cores, where l is

defined as:

l =

⌈
|H| · x

|H| · (1− x)

⌉
=

⌈
x

(1− x)

⌉
(6.1)

Thus, the value of L cannot be smaller than l. Using Table 6.2, we have that

the most prevalent attribute (port 139) is present in 55.3% of the hosts. In this case,

l = 2.

Using simulation, we now evaluate our heuristics in terms of core size, cover-

age, and load as a function of the load limit L. Figures 6.5–6.8 present the results of our

simulations. In these figures, we vary L from the minimum 2 through a high load of 10.

All the points shown in these graphs are the averages of eight simulated runs with error

bars (although they are too narrow to be seen in some cases). For Figures 6.5–6.7, we

use the standard error to determine the limits of the error bars, whereas for Figure 6.8 we

use the maximum and minimum observed among our samples. When using load limit

as a threshold, the order in which hosts request cores from H will produce different

results. In our experiments, we randomly choose eight different orders of enumerating
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H for constructing cores. For each heuristic, each run of the simulator uses a different

order. Finally, we vary the core size of Random using the load limit L to illustrate its

effectiveness across a range of core sizes.

Figure 6.5 shows the average core size for the four algorithms for different

values of L. According to this graph, Uniform, Weighted, and DWeighted do not

differ much in terms of core size. The average core size of Random increases linearly

with L by design.

In Figure 6.6, we show results for coverage. Coverage is slightly smaller than

1.0 for Uniform, Weighted, and DWeighted when L is greater or equal to three. For

L = 2, Weighted and DWeighted still have coverage slightly smaller than 1.0, but

Uniform does significantly worse. Using weighted selection is useful when L is small.
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Random improves coverage with increasing L because the size of the cores increases.

Note that, to reach the same value of coverage obtained by the other heuristics, Random

requires a large core size of 9.

There are two other important observations to make about this graph. First,

coverage is roughly the same for Uniform, Weighted, and DWeighted when L > 2.

Second, as L continues to increase, there is a small decrease in coverage. This is due

to the nature of our traces and to the random choices made by our algorithms. Ports

such as 111 (portmapper, rpcbind) and 22 (sshd) are open on several of the hosts with

operating systems different than Windows. For small values of L, these hosts rapidly

reach their threshold. Consequently, when hosts that do have these services as attributes

request a core, there are fewer hosts available with these same attributes. On the other

hand, for larger values of L, these hosts are more available, thus slightly increasing the

probability that not all the attributes are covered for hosts executing an operating system

different than Windows. We observed this phenomenon exactly with ports 22 and 111

in our traces.

This same phenomenon can be observed in Figure 6.7. In this figure, we plot

the average fraction of hosts that are not fully covered, which is an alternative way of

visualizing coverage. We observe that there is a share of the population of hosts that are

not fully covered, but this share is very small for Uniform and its variations. Such a set

is likely to exist due to the non-deterministic choices we make in our heuristics when

forming cores. These uncovered hosts, however, are not fully unprotected. From our

simulation traces, we note the average number of uncovered attributes is very small for

Uniform and its variations. In all runs, we have just a few hosts that do not have all their

attributes covered, and in the majority of the instances there is just a single uncovered

attribute.

Finally, we show the resulting variance in load. Since the heuristics limit each

host to be in no more than L cores, the maximum load equals L. The variance indicates

how fairly the load is spread among the hosts. As expected, Random does well, having

the lowest variance among all the algorithms and for all values of L. Ordering the greedy
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heuristics by their variance in load, we have Uniform �Weighted � DWeighted. This

is not surprising since we introduced the weighted selection exactly to better balance the

load. It is interesting to observe that for every value of L, the load variance obtained for

Uniform is close to L. This means that there were several hosts not participating in any

core and several other hosts participating in L cores.

A larger variance in load may not be objectionable in practice as long as a

maximum load is enforced. Given the extra work of maintaining the functions Ns and

Nc, the heuristic Uniform with small L (L > 2) is the best choice for our application.

However, should load variance be an issue, we can use one of the other heuristics.
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6.4.3 Translating to real pathogens

In this section, we discuss why we have chosen to tolerate exploits of vulnera-

bilities on a single attribute at a time. We do so based on information about past worms

to support our choices and assumptions.

Worms such as the ones in Table 6.1 used services that have vulnerabilities

as vectors for propagation. Code Red, for example, used a vulnerability in the IIS Web

server to infect hosts. In this example, a vulnerability on a single attribute (Web server

listening on port 80) was exploited. In other instances, such as with the Nimda worm,

more than one vulnerability was exploited during propagation, such as via e-mail mes-

sages and Web browsing. Although these cases could be modeled as exploits to vulnera-

bilities on multiple attributes, we observe that previous worms did not propagate across

operating system platforms: in fact, the worms targeted services on various versions of

Windows.

By covering classes of operating systems in our cores, we guarantee that

pathogens that exploit vulnerabilities on a single platform are not able to compromise all

the members of a core C of a particular host h, assuming that C covers all attributes of

h. Even if Core(h) leaves some attributes uncovered, h is still protected against attacks

targeting covered attributes. Referring back to Figure 6.7, the majority of the cores have

maximum coverage. We also observed in the previous section that, for cores that do not

have maximum coverage, usually it is only a single uncovered attribute.

Under our assumptions, informed replication mitigates the effects of a worm

that exploits vulnerabilities on a service that exists across multiple operating systems,

and of a worm that exploits vulnerabilities on services in a single operating system.

Figure 6.7 presents a conservative estimate on the percentage of the population that is

unprotected in the case of an outbreak of such a pathogen. Assuming conservatively that

every host that is not fully covered has the same uncovered attribute, the numbers in the

graph give the fraction of the population that can be affected in the case of an outbreak.

As can be seen, this fraction is very small.
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With our current use of attributes to represent software heterogeneity, a worm

can be effective only if it can exploit vulnerabilities in services that run across operating

systems, or if it exploits vulnerabilities in multiple operating systems. To the best of our

knowledge, there has been no large-scale outbreak of such a worm. Of course, such a

worm could be written. In the next section, we discuss how to modify our heuristics to

cope with exploits of vulnerabilities on multiple attributes.

6.4.4 Exploits of multiple attributes

To tolerate exploits of multiple attributes, we need to construct cores such that,

for subsets of attributes possessed by members of a core, there must be a core member

that does not have these attributes. We call a k-resilient core C a group of hosts in H

such that, for every k attributes of members of C, there is at least one host in C that

does not contain any of these attributes. In this terminology, the cores we have been

considering up to this point have been 1-resilient cores.

To illustrate this idea, consider the following example. Hosts run Windows,

Linux, and Solaris as operating systems, and IIS, Apache, and Zeus as Web servers. An

example of a 2-resilient core is a subset composed of hosts h1, h2, h3 with configura-

tions: h1 = {Linux, Apache}; h2 = {Windows, IIS}; h3 = {Solaris, Zeus}. In this

core, for every pair of attributes, there is at least one host that contains none of them.
As before, every host h builds a k-resilient core Core(h). To build Core(h),

host h uses the following heuristic:

Step 1 Select randomly k−1 hosts, h1 through hk−1, such that hi.os 6= h.os, for every i ∈ {1, . . . , k−1};

Step 2 Use Uniform to search for a 1-resilient core C for h;

Step 3 For each i ∈ {1, . . . , k − 1}, use Uniform to search for a 1-resilient core Ci for hi;

Step 4 Core(h)← C ∪ C1 ∪ . . . ∪ Ck−1.

Intuitively, to form a k-resilient core we need to gather enough hosts such that

we can split these hosts into k subsets, where at least one subset is a 1-resilient core.

Moreover, if there are two of these subsets where, for each subset, all of the members
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Table 6.4: Summary of simulation results for k = 2 for 8 different runs

L Avg. 2–coverage Avg. 1–coverage Avg. Core size

5 0.829 (0.002) 0.855 (0.002) 4.19 (0.004)

6 0.902 (0.002) 0.917 (0.002) 4.59 (0.005)

7 0.981 (0.001) 0.987 (0.001) 5.00 (0.005)

8 0.995 (0.0) 1.0 (0.0) 5.11 (0.005)

9 0.996 (0.0) 1.0 (0.0) 5.14 (0.005)

10 0.997 (0.0) 1.0 (0.0) 5.17 (0.003)

of that subset share some attribute, then the shared attribute of one set must be different

from the shared attribute of the other set. Our heuristic is conservative in searching in-

dependently for 1-resilient cores because the problem does not require all such sets to

be 1-resilient cores. In doing so, we protect clients and at the same time avoid the com-

plexity of optimally determining such sets. The sets output by the heuristic, however,

may not be minimal, and therefore they are approximations of theoretical cores.

In Table 6.4, we show simulation results for this heuristic for k = 2. The first

column shows the values of load limit (L) used by the Uniform heuristic to compute

cores. We chose values of L ≥ 5 based on an argument generalized from the one given

in Section 6.4.2 giving the lower bound of L. In the second and third columns, we

present our measurements for coverage with standard error in parentheses. For each

computed core Core(h), we calculate the fraction of pairs of attributes such that at least

one host h′ ∈ Core(h) contains none of the attributes of the pair. We name this metric

2-coverage, and in the table we present the average across all hosts and across all eight

runs of the simulator. 1-coverage is the same as the average coverage metric defined in

Section 6.4.2. Finally, the last column shows average core size.

According to the coverage results, the heuristic does well in finding cores

that protect hosts against potential pathogens that exploit vulnerabilities in at most two

attributes. A beneficial side-effect of protecting against exploits on two attributes is that

the amount of diversity in a 2-resilient core permits better protection to its client against
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pathogens that exploit vulnerabilities on single attributes. For values of L greater than

seven, all clients have all their attributes covered (the average 1-coverage metric is one

and the standard error is zero).

Having a system that more broadly protects its hosts requires more resources:

core sizes are larger to obtain sufficiently high degrees of coverage. Compared to the

results in Section 6.4.2, we observe that we need to double the load limit to obtain

similar values for coverage. This is not surprising. In our heuristic, for each host, we

search for two 1-resilient cores. We therefore need to roughly double the amount of

resources used.

Of course, there is a limit to what can be done with informed replication. As

k increases, the demand on resources continues to grow, and a point will be reached in

which there is not enough diversity to withstand an attack that targets k + 1 attributes.

Using our diversity study results in Table 6.2, if a worm were able to simultaneously

infect machines that run one of the first four operating systems in this table, the worm

could potentially infect 84% of the population. The release of such a worm would most

likely cause the Internet to collapse. An approach beyond informed replication would

be needed to combat an act of cyberterrorism of this magnitude.

6.5 The Phoenix Recovery System

A cooperative recovery service is an attractive architecture for tolerating Inter-

net catastrophes. It is attractive for both individual Internet users, like home broadband

users, who do not wish to pay for commercial backup service or deal with the inconve-

nience of making manual backups, as well as corporate environments, which often have

a significant amount of unused disk space per machine. If Phoenix were deployed, users

would not need to exert significant effort to backup their data, and they would not require

local backup systems. Phoenix makes specifying what data to protect as straightforward

as specifying what data to share on file-sharing peer-to-peer systems. Further, a coop-

erative architecture has little cost in terms of time and money; instead, users relinquish
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Figure 6.9: Phoenix ring

a small fraction of their disk, CPU, and network resources to gain access to a highly

resilient backup service.

As with Pastiche [CN02], we envision using Phoenix as a cooperative recov-

ery service for user data. However, rather than exploiting redundant data on similar

hosts to reduce backup costs for operating system and application software, we envi-

sion Phoenix users only backing up user-generated data and relying upon installation

media to recover the operating system and application software. With this usage model,

broadband users of Phoenix can recover 10 GB of user-generated data in a day. Given

the relatively low capacity utilization of disks in desktop machines [BJZH04], 10 GB

should be sufficient for a wide range of users. Further, users can choose to be more

selective in the data backed up to reduce their recovery time. We return to the issue of

bandwidth consumption and recovery time in Section 6.6.3.

6.5.1 System overview

A Phoenix host selects a subset of hosts to store backup data, expecting that

at least one host in the subset survives an Internet catastrophe. This subset is a core,

chosen using the Uniform heuristic described in Section 6.4.

Choosing cores requires knowledge of host software configurations. As de-

scribed in Section 6.4, we use the container mechanism for advertising configurations.

In our prototype, we implement containers using the Pastry [RD01] distributed hash ta-

ble (DHT). Pastry is an overlay of nodes that have identifiers arranged in a ring. This

overlay provides a scalable mechanism for routing requests to appropriate nodes.
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Phoenix structures the DHT identifier space hierarchically. It splits the identi-

fier space into zones, mapping containers to zones. It further splits zones into sub-zones,

mapping sub-containers to equally-sized sub-zones. Figure 6.9 illustrates this hierar-

chy. Corresponding to the hierarchy, Phoenix creates host identifiers out of three parts.

To generate its identifier, a host concatenates the hash representing its operating sys-

tem h.os, the hash representing an attribute a ∈ h.apps, and the hash representing its

IP address. As Figure 6.9 illustrates, each part has bo, ba, and bi bits, respectively. To

advertise its configuration, a host creates a hash for each one of its attributes. It there-

fore generates as many identifiers as the number of attributes in h.apps. It then joins

the DHT at multiple points, each point being characterized by one of these identifiers.

Since the hash of the operating system is the initial, “most significant” part of all the

host’s identifiers, all identifiers of a host lie within the same zone.

To build Core(h) using Uniform, host h selects hosts at random. When trying

to cover an attribute a, h first selects a container at random, which corresponds to choos-

ing a number c randomly from [0, 2bo − 1]. The next step is to select a sub-container and

a host within this sub-container both at random. This corresponds to choosing a random

number sc within [0, 2ba − 1] and another random number id within [0, 2bi − 1], respec-

tively. Host h creates a Phoenix identifier by concatenating these various components as

(c ◦ sc ◦ id). It then performs a lookup on the Pastry DHT for this identifier. The host h′

that satisfies this lookup informs h of its own configuration. If this configuration covers

attribute a, h adds h′ to its core. If not, h repeats this process.

The hosts in h’s core maintain backups of its data. These hosts periodically

send announcements to h. In the event of a catastrophe, if h loses its data, it waits

for one of these announcements from a host in its core, say h′. After receiving such

a message, h requests its data from h′. Since recovery is not time-critical, the period

between consecutive announcements that a host sends can be large, from hours to a

day.

A host may permanently leave the system after having backed up its files. In

this situation, other hosts need not hold any backups for this host and can use garbage



181

collection to retrieve storage used for the departed host’s files. Thus, Phoenix hosts

assume that if they do not receive an acknowledgment for any announcement sent for a

large period of time (e.g., a week), then this host has left the system and its files can be

discarded.

Since many hosts share the same operating systems, Phoenix identifiers are not

mapped in a completely random fashion into the DHT identifier space. This could lead

to some hosts receiving a disproportionate number of requests. For example, consider

a host h that is either the first of a populated zone that follows an empty zone or is the

last host of a populated zone that precedes an empty zone. Host h receives requests sent

to the empty zone because, by the construction of the ring, its address space includes

addresses of the empty zone. In our design, however, once a host reaches its load limit,

it can simply discard new requests by the Phoenix protocol.

Experimenting with the Phoenix prototype, we found that constructing cores

performed well even with an unbalanced ID space. But a simple optimization can im-

prove core construction further. The system can maintain an OS hint list that contains

canonical names of operating systems represented in the system. When constructing a

core, a host then uses hashes of these names instead of generating a random number.

Such a list could be maintained externally or generated by sampling. We present results

for both approaches in Section 6.6.

6.5.2 Service design

The Phoenix software a host runs is composed of two mechanisms, an agent

and a server. The Phoenix agent is responsible for interacting with a user application on

top of it and with a Pastry agent underneath. Figure 6.10 is a state machine description

of the behavior of the Phoenix agent. The agent begins in the Init state, and changes

to Joining when the user application requests it to join the Phoenix ring. In the

Joining state, it creates a session for each Phoenix address of the host. Each of these

sessions has its own routing table and leaf set, and thus participates in the DHT as an

independent Pastry agent. After joining all the sessions, a Phoenix agent change its state
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Figure 6.10: State machine for a Phoenix agent

to Uncovered. At this point, the agent requires input from the user application. If

the application specifies that the host needs a core to backup data, the agent undergoes

transition “3”, changing to state to Covering. If, on the other hand, the application

specifies that the host has lost data, it generates a request that causes the agent to use

transition “7”, changing its state to Waiting.

In state Covering, the agent uses heuristic Uniform to select a core. Note

that containers and sub-containers in the original specification of Uniform map to zones

and sub-zones, respectively. After selecting a core, the agent notifies the application and

changes its state to Core. The application then has to decide if the core satisfies its

expectations, or if the agent should try again. If it decides to accept the core, then the

agent sends Data messages containing the data to be backed up to the Phoenix servers

of the core components. When the data backup completes on all the hosts in the core,

the host transitions to state Covered.

If, while in state Uncovered, the Phoenix agent undergoes a transition to

Waiting, then it waits until it receives an announcement from a host in its core. Hosts

holding data on behalf of other hosts send these messages periodically so that hosts

learn of the members of their core in the event of a catastrophe. Upon reception of an

announcement, a host in state Waiting sends a request to the core member that made

the announcement to restore its data. The Phoenix server of the core member receives

the request and replies with the content requested.

The two main responsibilities of the Phoenix server of a host are managing
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storage, and sending announcements and responding to requests to restore data. When

a Phoenix server of a host h participates in a core, it commits to store the data of the

requester. If it receives data from the requester, then h stores this data, and starts sending

announcements to this host. The requester, however, may decide not to include h in its

core. In this case, the requester may ignore the reply or send a release message. If

the requester sends a release message, then h removes this host from its list of served

clients. Otherwise, the acceptance eventually times out, and h again rejects data from

the requester. Release messages also serve the purpose of releasing data stored on core

members. This happens in the case that a user decides to select another core or if a core

partially fails.

Since recovery is not time-critical, the period between consecutive announce-

ments sent to the same host can be relatively large, from hours to a day. For this reason,

we assume that hosts send such announcements once a day, although the parameter

is configurable and can be changed according to the demands on the system. These

messages are acknowledged by the receiver. Note that not getting a reply to an an-

nouncement does not necessarily mean that the host left the system ungracefully, since

the particular host that did not reply might have failed. At the same time, it is necessary

to garbage collect backups of hosts that are not part of the system anymore. For this

reason, we assume that if a host h does not receive a reply to announcement messages

it sent to h′ within a large period of time, say a week, then it garbage collects the data it

holds on behalf of h′. A week should be sufficient time for users to notice that they lost

their data and request a restore.

We now turn our attention to the protocol used by Phoenix to communicate

among servers. Phoenix implements this protocol using the following message types:

• request: requests participation in a core;

• reply: in response to a request to participate in a core, a host h replies indicating

whether it agrees to participate or not. This decision depends on the number of

other hosts already being serviced by this host. If h decides to accept, then it sends
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its own configuration along with the reply message;

• release: if a host h′ decides not to use h as a core member for its data, it sends

this message to h so that h is notified that it is not a core member for h′.

• announcement: a host h periodically sends this message to host h′ if h is in h′s

core and stores a copy of h′s data;

• data: a host h sends this message containing its data to be backed up to a host h′

if h′ has agreed to participate in the core constructed by h;

• request restore: after a catastrophe, a host sends this message as soon as

it discovers a member of its core storing its data, i.e., as soon as it receives an

announcement message;

• restore: once a host receives a restore request, it replies with the data it

stored on behalf of the requesting host.

6.5.3 Phoenix application

The Phoenix application is responsible for all the interaction with a Phoenix

user. To start operating, this application needs to determine the data to be backed up,

the amount of storage available for other hosts, and the configuration of the current host.

Currently, the input to the application is composed of a tar file of data to be backed up

and a host configuration. Although in our prototype users manually specify the host

configuration, we believe it is necessary to add procedures for extracting the host con-

figuration automatically. The idea for these procedures, however, is not to eliminate the

user from the process of deciding the attributes of the host. Instead, the goal is provide

the user with hints of what the attributes should be. We expect that, from a practical point

of view, a user will want to have some say in which attributes are important. Designing

such procedures for determining the attributes of a host is part of future work.
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6.5.4 Attacks on Phoenix

Phoenix uses informed replication to survive wide-spread failures due to ex-

ploits of vulnerabilities in unrelated software on hosts. However, Phoenix itself can also

be the target of attacks mounted against the system, as well as attacks from within by

misbehaving peers.

The most effective way to attack the Phoenix system as a whole is to unleash a

pathogen that exploits a vulnerability in the Phoenix software. In other words, Phoenix

itself represents a shared vulnerability for all hosts running the service. This shared

vulnerability is not a covered attribute, hence an attack that exploits a vulnerability in

the Phoenix software would make it possible for data to be lost as a pathogen spreads

unchecked through the Phoenix system. To the extent possible, Phoenix relies on good

programming practices and techniques to prevent common attacks such as buffer over-

flows. However, this kind of attack is not unique to Phoenix or the use of informed

replication. Such an attack is a general problem for any distributed system designed to

protect data, even those that use approaches other than informed replication [HMD05].

A single system fundamentally represents a shared vulnerability; if an attacker can ex-

ploit a vulnerability in system software and compromise the system, the system cannot

easily protect itself.

Alternatively, hosts participating in Phoenix can attack the system by trying

to access private data, tamper with data, or mount denial-of-service attacks. To prevent

malicious servers from accessing data without authorization or from tampering with

data, we can use standard cryptographic techniques [JBH+05]. In particular, we can

guarantee the following: (1) the privacy and integrity of any data saved by any host is

preserved, and (2) if a client host contacts an honest server host for a backup operation,

then the client is able to recover its data after a catastrophe. From a security perspective,

the most relevant part of the system is the interaction process between a host client and

a host server which has agreed to participate in the host’s core.

Malicious servers can mount a denial-of-service attack against a client by
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agreeing to hold a replica copy of the client’s data, and subsequently dropping the data

or refusing recovery requests. One technique to identify such misbehavers is to issue

signed receipts [JBH+05]. Clients can use such receipts to claim that servers are mis-

behaving. As we mentioned before, servers cannot corrupt data assuming robustness of

the security primitives.

Hosts could also advertise false configurations in an attempt to free-ride in the

system. By advertising attributes that make a host appear more unreliable, the system

will consider the host for fewer cores than otherwise. As a result, a host may be able to

have its data backed up without having to back up its share of data.

To provide a disincentive against free-riders, members of a core can maintain

the configuration of hosts they serve, and serve a particular client only if their own

configuration covers at least one client attribute. By sampling servers randomly, it is

possible to reconstruct cores and eventually find misbehaving clients.

An important feature of our heuristic that constrains the impact of malicious

hosts on the system is the load limit: if only a small percentage of hosts is malicious at

any given time, then only a small fraction of hosts are impacted by the maliciousness.

Hosts not respecting the limit can also be detected by random sampling.

6.6 Phoenix evaluation

In this section, we evaluate our Phoenix prototype on the PlanetLab testbed

using the metrics discussed in Section 6.4. We also simulate a catastrophic event —

the simultaneous failure of all Windows hosts — to experiment with Phoenix’s ability

to recover from large failures. Finally, we discuss the time and bandwidth required to

recover from catastrophes.

6.6.1 Prototype evaluation

We tested our prototype on 63 hosts across the Internet: 62 PlanetLab hosts

and one UCSD host. To simulate the diversity we obtained in the study presented in
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Section 6.3, we selected 63 configurations at random from our set of 2,963 configura-

tions of general-purpose hosts, and made each of these configurations an input to the

Phoenix service on a host. In the population we have chosen randomly, out of the 63

configurations 38 have Windows as their operating system. Thus, in our setting roughly

60% of the hosts represent Windows hosts. From Section 6.4.2, the load limit has to be

at least three.

For the results we present in this section, we use an OS hint list while searching

for cores. Varying L, we obtained the values in Table 6.5 for coverage, core size, and

load variance for a representative run of our prototype. For comparison, we also present

results from our simulations with the same set of configurations used for the PlanetLab

experiment. From the results in the table, coverage is perfect in all cases, and the average

core size is less than 3 (less than 2 replica copies).

The major difference in increasing the value of L is the respective increase in

load variance. As L increases, load balance worsens. We also counted the number of

requests issued by each host in its search for a core. Different from our simulations, we

set a large upper bound on the number of request messages (diff OS + same OS

= 100) to verify the average number of requests necessary to build a core, and we

had hosts searching for other hosts only outside their own zones (same OS = 0). The

averages for number of requests are 14.6, 5.2, and 4.1 for values of L of 3, 5, and 7,

respectively. Hence, we can tradeoff load balance and message complexity.

We also ran experiments without using an OS hint list. The results are very

good, although worse than the implementation that uses hint lists. We observed two

main consequences in not using a hint list. First, the average number of requests is

considerably higher (over 2x). Second, for small values of L (L = 3, 5), some hosts did

not obtain perfect coverage.

6.6.2 Simulating catastrophes

Next we examine how the Phoenix prototype behaves in a severe catastrophe:

the exploitation and failure of all Windows hosts in the system. This scenario corre-
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Table 6.5: Implementation results on PlanetLab (“Imp”) with simulation results for comparison (“Sim”)

Load limit (L) Core size Coverage Load var.

Imp. Sim. Imp. Sim. Imp. Sim.

3 2.12 2.23 1.0 1.0 1.65 1.88

5 2.10 2.25 1.0 1.0 2.88 3.31

7 2.10 2.12 1.0 1.0 4.44 3.56

sponds to a situation in which a worm exploits a vulnerability present in all versions of

Windows, and corrupts the data on the compromised hosts. Note that this scenario is

far more catastrophic than what we have experienced with worms to date. The worms

listed in Table 6.1, for example, exploit only particular services on Windows.

The simulation proceeded as follows. Using the same experimental setting

as above, hosts backed up their data under a load limit constraint of L = 3. We then

triggered a failure in all Windows hosts, causing the loss of data stored on them. Next

we restarted the Phoenix service on the hosts, causing them to wait for announcements

from other hosts in their cores (Section 6.5.1). We then observed which Windows hosts

received announcements and successfully recovered their data.

All 38 hosts recovered their data in a reasonable amount of time. For 35 of

these hosts, it took on average 100 seconds to recover their data. For the other three ma-

chines, it took several minutes due to intermittent network connectivity (these machines

were in fact at the same site). Two important parameters that determine the time for a

host to recover are the frequency of announcements and the backup file size (transfer

time). We used an interval between two consecutive announcements to the same client

of 120 seconds, and a total data size of 5 MB per host. The announcement frequency

depends on the user expectation on recovery speed. In our case, we wanted to finish

each experiment in a reasonable amount of time. Yet, we did not want to have hosts

sending a large number of announcement messages unnecessarily. For the backup file

size, we chose an arbitrary value since we are not concerned about transfer time in this

experiment. On the other hand, this size was large enough to hinder recovery when
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connectivity between client and server was intermittent.

It is important to observe that we stressed our prototype by causing the failure

of these hosts almost simultaneously. Although the number of nodes we used is small

compared to the potential number of nodes that Phoenix can have as participants, we did

not observe any obvious scalability problems. On the contrary, the use of a load limit

helped in constraining the amount of work a host does for the system, independent of

system size.

6.6.3 Recovering from a catastrophe

We now examine the bandwidth requirements for recovering from an Internet

catastrophe. In a catastrophe, many hosts will lose their data. When the failed hosts

come online again, they will want to recover their data from the remaining hosts that

survived the catastrophe. With a large fraction of the hosts recovering simultaneously, a

key question is what bandwidth demands the recovering hosts will place on the system.

The aggregate bandwidth required to recover from a catastrophe is a function

of the amount of data stored by the failed hosts, the time window for recovery, and

the fraction of hosts that fail. Consider a system of 10,000 hosts that have software

configurations analogous to those presented in Section 6.3, where 54.1% of the hosts

run Windows and the remaining run some other operating system. Next consider a

catastrophe similar to the one above in which all Windows hosts, independent of version,

lose the data they store. Table 6.6 shows the bandwidth required to recover the Windows

hosts for various storage capacities and recovery periods. The first column shows the

average amount of data a host stores in the system. The remaining columns show the

bandwidth required to recover that data for different periods.

The first four rows show the aggregate system bandwidth required to recover

the failed hosts: the total amount of data to recover divided by the recovery time. This

bandwidth reflects the load on the network during recovery. Assuming a deployment

over the Internet, even for relatively large backup sizes and short recovery periods, this

load is small. Note that these results are for a system with 10,000 hosts and that, for an
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Table 6.6: Bandwidth consumption after a catastrophe

Size (GB) 1 hour 1 day 1 week

Aggregate bandwidth

0.1 1.2 Gb/s 50 Mb/s 7.1 Mb/s

1 12 Gb/s 0.50 Gb/s 71 Mb/s

10 120 Gb/s 5.0 Gb/s 710 Mb/s

100 1.2 Tb/s 50 Gb/s 7.1 Gb/s

Per-host bandwidth (L = 3)

0.1 0.7 Mb/s 28 Kb/s 4.0 Kb/s

1 6.7 Mb/s 280 Kb/s 40 Kb/s

10 66.7 Mb/s 2.8 Mb/s 400 Kb/s

100 667 Mb/s 28 Mb/s 4.0 Mb/s

equivalent catastrophe, the aggregate bandwidth requirements will scale linearly with

the number of hosts in the system and the amount of data backed up.

The second four rows show the average per-host bandwidth required by the

hosts in the system responding to recovery requests. Recall that the system imposes a

load limit L that caps the number of replicas any host will store. As a result, a host

recovers at most L other hosts. Note that, because of the load limit, per-host bandwidth

requirements for hosts involved in recovery are independent of both the number of hosts

in the system and the number of hosts that fail.

The results in the table show the per-host bandwidth requirements with a load

limit L = 3, where each host responds to at most three recovery requests. The results in-

dicate that Phoenix can recover from a severe catastrophe in reasonable time periods for

useful backup sizes. As with other cooperative backup systems like Pastiche [CN02],

per-host recovery time will depend significantly on the connectivity of hosts in the sys-

tem. For example, hosts connected by modems can serve as recovery hosts for a modest

amount of backed up data (28 Kb/s for 100 MB of data recovered in a day). Such backup

amounts would only be useful for recovering particularly critical data, or recovering fre-
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quent incremental backups stored in Phoenix relative to infrequent full backups using

other methods (e.g., for users who take monthly full backups on media but use Phoenix

for storing and recovering daily incrementals). Broadband hosts can recover failed hosts

storing orders of magnitude more data (1–10 GB) in a day, and high-bandwidth hosts

can recover either an order magnitude more quickly (hours) or even an order of magni-

tude more data (100 GB). Further, Phoenix could potentially exploit the parallelism of

recovering from all surviving hosts in a core to further reduce recovery time.

Although there is no design constraint on the amount of data hosts back up

on Phoenix, for current disk usage patterns, disk capacities, and host bandwidth con-

nectivity, we envision users typically storing 1–10 GB in Phoenix and waiting a day to

recover their data. According to a recent study, desktops with substantial disks (> 40

GB) use less than 10% of their local disk capacity, and operating system and temporary

user files consume up to 4 GB [BJZH04]. Recovery times on the order of a day are also

practical. For example, previous worm catastrophes took longer than a day for organi-

zations to recover, and recovery using organization backup services can take a day for

an administrator to respond to a request.

6.7 The complexity of finding cores

In this section, we discuss the complexity of searching for cores in a set of

hosts. The goal is to show that the problem of selecting optimally cores (cores that

contain the fewest possible number of hosts) is intractable even when hosts know all

the other hosts in the system and their configurations. Throughout this section, we

first show that the problem of selecting one core is NP-complete. Then we show that

selecting optimally a k+1-resilient core is at least as hard as selecting a k-resilient core.

We begin by providing a few important definitions.
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6.7.1 Definitions

Recall that, informally, a core is a subset of hosts that is diverse enough for a

given task. What “enough” means depends on the application. In the case of the Phoenix

system, the members of a core must have sufficiently different software configurations

so that not all members share a non-empty set of exploitable vulnerabilities.

We show that finding such cores is an intractable problem. Let the definition

of a system be as follows:

Definition 6.7.1 A system is a triple 〈H,A, α〉, where H is a finite set of hosts, A is a

finite set of attributes, and α a mapping from hosts to attributes (α : h ∈ H → A ⊆ A).

We define a k-resilient core as follows:

Definition 6.7.2 Given a system 〈H,A, α〉, a set of hosts C ⊆ H is a k-resilient core,

k > 0 ∧ k ∈ N, if and only if there is no A ⊆ A, |A| ≤ k, such that for every hc ∈ C,

α(hc) ∩ A 6= ∅. Such a subset must be also minimal: ∀hc ∈ C,∃a ∈ α(h) : ∀h′c ∈

C \ {hc}, a 6∈ α(h′c).

Recall from Section 6.4 that a core serves a particular host h and it is con-

strained to contain h. We hence make the same assumption here with the following

definition:

Definition 6.7.3 A k-resilient core C is a k-resilient core for h ∈ H if and only if

h ∈ C.

We now present two important problems for the purposes of this section. The

Set Cover problem is a well-known NP-complete problem, often used in mapping re-

ductions [GJ79]. We repeat its definition here for the sake of clarity:

Problem : SC decision problem

Instance : Collection T of subsets of a finite set U , positive integer k ≤ |T |;
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Question : Does T contain a cover for U of size at most k?

Now the problem we are interested in:

Problem : k-Core decision problem

Instance : A system 〈H,A, α〉, a host h ∈ H, a positive integer s > 0;

Question : Is there a k-resilient core C ⊆ H for h of size at most s?

6.7.2 NP-completeness of 1-Core

We show with the following two claims that the 1-Core decision problem

is NP-complete. By doing so, we later argue in this section that there cannot be a

polynomial-time algorithm that outputs a minimal 1-resilient core, unless P = NP. In

other words, the correspondent search problem cannot be easier to solve than the de-

cision problem. In the next section, we discuss in more detail the problem of search-

ing for a minimal k-resilient core for a value of k greater than one. Intuitively, such

a problem is at least as hard as searching for a minimal 1-resilient core. As such, if

there is no polynomial-time algorithm that outputs a minimal 1-resilient core given a

system 〈H,A, α〉, there cannot be a polynomial-time algorithm that outputs a minimal

k-resilient core given a system 〈H,A, α〉, for values of k greater than one.

Claim 6.7.4 SC ≤m 1-Core

Proof:

We need to provide a polynomial-time algorithm that, given an instance 〈U, T , k〉 of the

SC problem, returns an instance 〈〈H,A, α〉, h, s〉 of the 1-Core Problem, such that the

following holds:

i. If 〈U, T , k〉 ∈ SC, then 〈〈H,A, α〉, h, s〉 ∈ 1-Core;

ii. If 〈〈H,A, α〉, h, s〉 ∈ 1-Core, then 〈U, T , k〉 ∈ SC.

An algorithm that achieves this goal is the following:
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Algorithm SCtoC: 〈U, T , k〉

A ← ∅;H ← {h};

A← ∅;

For every element u of U ,

A ← A∪ {au, âu};

A← A ∪ {au};

α← α ∪ [h→ A];

For every element T of T ,

H ← H∪ {hT};

A← ∅;

∀au ∈ A, if (u ∈ T ) then A← A ∪ {âu};

else A← A ∪ {au};

α← α ∪ [hT → A];

s← k;

Every step of the algorithm runs in polynomial time. Consequently, time com-

plexity is given by the sum of the complexities of the individual steps. This is clearly

polynomial.

It remains to show that Properties (i) and (ii) hold for SCtoC. First we show

(i). For an instance 〈U, T , k〉 of the SC problem, suppose there is a subset T ′ of T such

that |T ′| ≤ k and T ′ is a cover for U . We construct a 1-resilient core Ω for the instance

of the Core Problem returned by our algorithm as follows:

1. ∀T ∈ T ′ : Ω← Ω ∪ {hT};

2. Ω← Ω ∪ {h}.

By construction, for every attribute a ∈ α(h), there is in Ω at least one host

hT such that a 6∈ α(hT ). According to the description of SCtoC, a host hT only covers

an attribute au of h if u ∈ T . Because T ′ is a cover for U , Ω must be a 1-resilient core

for h. Moreover, Ω must have size at most s = k.
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Now we show ii). Given an instance 〈〈H,A, α〉, h, s〉 of the 1-Core problem,

suppose there is a 1-resilient core Ω for h of size at most s. From the definition of a

core, we have that a host hT is in Ω only if it covers at least one attribute of h. By the

construction of SCtoC, if a host hT covers an attribute au of h, then u ∈ T . Thus, we

can construct a cover T ′ for U by including in T ′ all the sets T ∈ T such that hT ∈ Ω.

Again by construction, T ′ must cover U , and |T ′| ≤ k. This completes our proof.

2

Now we show that 1-Core is in NP.

Claim 6.7.5 1-Core ∈ NP.

Proof:

We need to provide a polynomial-time verifier for 1-Core. The verifier takes as input an

instance 〈〈H,A, α〉, h, s〉 of the 1-Core problem and a certificate Cert. This certificate

consists of a subset of H. Thus, the verifier has to check whether the subset provided

as a certificate is an 1-resilient core of size at most s for the instance provided. We now

describe such a verifier as follows:

Verifier V: 〈〈H,A, α〉, h, s〉, Cert

Parse Cert into a subset Ω of processes;

Check if Ω ⊆ H;

Check if |Ω| ≤ s;

Check if h ∈ Ω;

For every attribute a ∈ A:

Check if there are at least one host in Ω that does not contain a;

If any of these checks fail, then reject, otherwise accept.

Each step of the verifier executes in polynomial time on the size of the input.

Thus, the total execution time has to be polynomial on the size of the input. This con-

cludes the proof of our claim.

2
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With these two claims, we have shown that there is no polynomial-time algo-

rithm for 1-Core if P 6= NP. From [BG94], we have that search reduces to decision for

NP-complete problems. The search problem for k-Core is as follows:

Problem: k-Core search problem

Instance: A system 〈H,A, α〉 a host h ∈ H, a positive integer s > 0;

Search for k-Core: Find a subset H ⊆ H such that H is a k-resilient core, h ∈ H , and

|H| ≤ s, or output ⊥.

Thus, we conclude that there is a polynomial-time algorithm for the 1-Core

search problem if and only if there is a polynomial-time algorithm that solves the 1-Core

decision problem. Furthermore, the following optimization problem clearly reduces to

the k-Core search problem:

Problem: k-MinCore

Input: A system 〈H,A, α〉 a host h ∈ H;

Output: a subset H ⊆ H such that H is a k-resilient core and h ∈ H;

Cost function: f(H) = |H|;

Goal: Minimize.

Given an oracle OSk-Core that solves the k-Core search problem in polyno-

mial time on the size of the input, we can solve the optimization problem by calling the

oracle with increasing values of s, until the oracle outputs a k-resilient core. Note that

we need to call the oracle at most |H| times in the worst case. Thus, running such an al-

gorithm still takes polynomial time on the size of the input. Note also that this argument

is valid for any k > 0, and consequently it is valid for the case k = 1, which is the one

we discussed above.
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6.7.3 Searching for k–resilient cores

In the previous section, we showed that the 1-Core problem is NP-complete.

In this section we show that computing k-resilient core is also a hard problem, k > 1.

Recall that the problem of searching for a 1-resilient core consists in determin-

ing a subset H of hosts such that the intersection of the set of attributes across all hosts

of H is empty. Searching for a k-resilient core, for any positive integer k, consists in

searching for a subset of hosts H such that there is no subset A of k attributes in which

every host inH contains at least one attribute ofA in their configuration. This constraint

can be expressed as follows:

Definition 6.7.6 A subset H ⊆ H of hosts is a k-resilient core if and only if the follow-

ing holds:

∃ H1, . . . , Hk ⊆ H :

∧∃i ∈ [1 . . . k] : Hi is a 1-resilient core

∧∀i, j ∈ [1 . . . k], i 6= j : (∩h∈(Hi∪Hj)α(h)) = ∅

Note that if a set of processes H satisfies the properties above, then it is nec-

essary a set A formed of at least k + 1 attributes so that every process in H contains at

least one of the attributes in A.

Claim 6.7.7 k-Core ≤m (k + 1)-Core , k ≥ 1

Proof:

We have to show that there is a polynomial-time algorithm KtoK+1 such that, given an

instance of the K-Core problem, it outputs an instance of the (k + 1)-Core. Such an

instance must be such that:

i. If 〈〈H,A, α〉, h, s〉 ∈ k-Core, then 〈〈H′,A′, α′〉, h′, s′〉 ∈ (k + 1)-Core;

ii. If 〈〈H′,A′, α′〉, h′, s′〉 ∈ (k + 1)-Core, then 〈〈H,A, α〉, h, s〉 ∈ k-Core.
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We now describe KtoK+1:

Algorithm KtoK+1:〈〈H,A, α〉, h, s〉

H′ ← H∪ {h∗}, h∗ 6∈ H;

A′ ← A∪ {a∗}, a∗ 6∈ A;

α← [α : h∗ → {a∗}];

h′ ← h;

s′ ← s+ 1;

output 〈〈H,A, α〉, h′, s′〉;

The algorithm clearly runs in polynomial time, since every step is executed

in polynomial time on the size of the input. It remains to show (i) and (ii). First,

we show (i). Let C ⊆ H be a k-resilient core of size at most s. We then have that

C ′ = C ∪ {h∗} is a (k + 1)-resilient core. By assumption, C is a k-resilient core.

Consequently, there is no subsetA of k or less attributes such that for all h ∈ C, α(h)∩A

is not empty. The host we add to C to form C ′ has a single attribute that is not shared

by any other host. There are two cases to analyze. First, let A′ be a subset of k + 1

attributes that does not include a∗. Such a subset of attributes cannot intersect every

host in C ′ because it does not intersect at least h∗. Second, let A′′ be a subset of k + 1

attributes such that A′′ includes a∗. Such subset cannot intersect the configuration of

every host in C ′ either. Otherwise, there is a subset of k attributes in A′′ that intersects

the configuration of every host in C, thereby contradicting our assumption that C is a

k-resilient core. We thus have that there is no subset of k + 1 or less attributes such that

for all h ∈ C, α(h) ∩ A is not empty, and C ′ has size at most s′ = s+ 1.

We now show (ii). Let C ′ be a (k + 1)-resilient core of size at most s′ for the

instance of (k + 1)-Core output by KtoK+1. If C ′ does not contain h∗, then there is a

host h′ in C ′ such that C ′ \ {h′} is a k-resilient core. This must be true, otherwise there

is a subset of at k + 1 that intersects the configurations of all the hosts in C ′. Now, if

C ′ does contain h∗, then C ′ \ {h∗} is a k-resilient core of size at most s. To see why

C ′ \ {h∗} must be a k-resilient core observe that if it is not, then there exists a set A′ of
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k attributes of A such that they intersect the configurations of all the hosts in C ′ \ {h∗}.

In this case, C ′ cannot be a (k + 1)-resilient core either because A′ ∪ {a∗} intersects all

the configurations of C ′. In both cases, we have that the resulting k-resilient core has

size at most s′ − 1 = s. This concludes our proof.

2

Using a simple recursive argument, we have that 1-Core reduces to k-Core for

any k > 1. We therefore have that k-Core cannot be solved in polynomial time, unless

1-Core has a polynomial-time solution.

6.8 Conclusions

In this chapter, we proposed a new approach called informed replication for

designing distributed systems to survive Internet epidemics that cause catastrophic dam-

age. Informed replication uses a model of correlated failures to exploit software di-

versity, providing high reliability with low replication overhead. Using host diversity

characteristics derived from a measurement study of hosts on the UCSD campus, we

developed and evaluated heuristics for determining the number and placement of repli-

cas that have a number of attractive features. Our heuristics provide excellent reliability

guarantees (over 0.99 probability that user data survives attacks of single- and double-

exploit pathogens), result in low degree of replication (less than 3 copies for single-

exploit pathogens; less than 5 copies for double-exploit pathogens), limit the storage

burden on each host in the system, and lend themselves to a fully distributed implemen-

tation. We then used this approach in the design and implementation of a cooperative

backup system called the Phoenix Recovery Service. Based upon our evaluation results,

we conclude that our approach is a viable and attractive method for surviving Internet

catastrophes.

The results of this chapter also illustrate an important advantage of incorpo-

rating dependent failure information explicitly into a failure model. By using attributes

to determine the cores of the system, the amount of replication necessary to protect
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hosts against Internet attacks is much smaller compared to considering the set of hosts

as homogeneous and selecting hosts at random.



Chapter 7

Conclusion

As our reliance upon computer systems increases, failures of computers can be

highly disruptive. As a result, we use fault-tolerant techniques to build more reliable and

more available systems. When building fault-tolerant computer systems, it is common

to assume that parts of the system fail independently. In particular, when building repli-

cated systems, it is common to assume that processes fail independently. In practice,

however, failures are often not independent due to dependencies of groups of processes

upon resources.

To model sets of processes that can fail in the execution of an algorithm, a typ-

ical assumption is that is possible to determine a threshold t on the number of process

failures. Such an assumption is ideal when processes fail independently and with iden-

tical probability distribution because all subsets of processes have the same probability

of failure.

To enable the design of algorithms for fault-tolerant systems when failures are

not independent, we have proposed in this dissertation a model of dependent failures

based on two abstractions: cores and survivor sets. Cores and survivor sets generalize

abstractions typically used when designing fault-tolerant algorithms, namely t + 1 and

n − t, where n is the number of processes. Modeling failures with cores and survivor

sets has at least three immediate advantages. First, it enables a more expressive char-

acterization of failures. As cores and survivor sets do not reference a value of t, it is

201
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possible to have heterogeneous sets with respect to size. Second, it is simple to use

compared to complex probability models that accurately capture the details of a system.

Although probability models may be able to capture more accurately the behavior of a

system, it is often more complex to design algorithms using such models, and applying

algorithms designed with probability models to different systems is often more difficult.

Third, it enables solutions using fewer processes. As our model enables the use of sets

of different sizes meeting a particular reliability/availability goal, it is possible to solve

problems with fewer processes compared to the number necessary when using a single

threshold.

We applied this model to the traditional consensus problem, and derived re-

sults for different types of failure and system models. For synchronous systems with

crash process failures, we showed that it is sufficient to have a single core in the system.

In fact, our algorithm SyncCrash assumes that only the processes in one of the smallest

cores are active. For synchronous systems with Byzantine failures, we showed equiva-

lent properties that are necessary and sufficient to enable a solution to consensus under

such a model. These properties are Byzantine Partition and Byzantine Intersection. In

general, partition properties are useful in showing the minimal requirement on process

replication, whereas intersection properties are more useful when designing algorithms.

Proofs of lower bound on process replication often refer to partitions and cores, as ours

for synchronous Byzantine consensus that concludes that Byzantine Partition must hold.

In designing algorithms, however, partition properties are less useful. Intersection prop-

erties are more useful in this case because algorithms often refer to survivor sets when

waiting for messages from processes and proofs of correctness often refer to the inter-

section of survivor sets. Our algorithm SyncByz uses survivor sets when constructing

messages to send in a round, and assumes Byzantine Intersection for correctness.

A surprising result is the difference on the minimum number of rounds neces-

sary to solve consensus when considering crash and Byzantine failures. As the proof we

provided shows, it depends upon the maximum number of failures in the set of processes

allowed to send messages (active processes). It is a well-known result that the minimum
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number of rounds is the same for both crash and Byzantine failures in the threshold

model. Thus, considering more expressive models enables the design of algorithms that

are, at least theoretically, more efficient.

For asynchronous systems, we also considered crash and Byzantine failures.

For crash process failures, there are two equivalent properties, similar to Byzantine Par-

tition and Byzantine Intersection, that determine a necessary and sufficient requirement

on the number of processes to enable solutions to consensus. These properties are

Crash Partition and Crash Intersection. Similarly to the synchronous case for Byzan-

tine failures, Crash Partition is useful when deriving the necessary requirement on pro-

cess replication, whereas Crash Intersection is more useful when designing algorithms,

e.g., AsyncCrash. For Byzantine failures, we have also shown that Byzantine Parti-

tion and Byzantine Intersection are necessary and sufficient to solve consensus in such

a model. To show that these properties are sufficient, we described an algorithm called

AsyncByz. This algorithm is interesting because it works in environments with both

weak failure assumptions and weak timing constraints.

As a natural extension of the set of partition and intersection properties used

for consensus, we considered parameterized versions of these properties, which we

called k–Partition and k–Intersection, k > 1. The general idea is that k–Partition and

k–Intersection are equivalent, and correspond in our model to the constraint n > k · t

in the threshold model, for some value of k. We have also shown that there is value

in exploring the space of properties even further. A set of parameterized properties

(k,k − 1)-Partition and (k,k − 1)-Intersection are important, for example, when solving

the weak leader election problem, which arises in the context of the primary-backup

approach to replication in systems in which processes can fail by omitting to receive

messages. We presented an algorithm that solves this problem in our model. As a corol-

lary of this result, we have also shown that the known lower bound of n > 3 · t/2 on

process replication for the threshold model is actually tight, which is a result of theoret-

ical value.

Although the space of partition and intersection properties is infinite, there are
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two major reasons for not having explored it any further. First, it is not clear what form

the partition and intersection properties take, as there are different possibilities and it is

not clear which one is more useful, or even if any of the forms is useful. Second, we

could not find problems, as we did for the other properties, to motivate new definitions.

A further expansion of the space of intersection and partition properties is therefore part

of future work.

One reason for pursuing a space of partition and intersection properties was

to invent a technique for translating automatically algorithms designed for the threshold

model to our model of cores and survivor sets. This is an important goal because with

such a mechanism we can adapt all previous work done under the threshold model to

this new model, without having to recreate all the algorithms designed and all the lower

bound results proved for the threshold model. The existence of such a general technique,

however, is a conjecture at this point.

In the last two chapters of this dissertation, we considered two practical appli-

cations of our model. In multi-site systems, we have shown that it is possible to achieve

higher availability for quorum systems when incorporating dependent failure informa-

tion. In particular, we show that majority quorums do not have necessarily optimal

availability, which is a traditional result for when failures of processes are independent

and identically distributed. The main observation leading to this conclusion was that

multi-site systems experience site failures, where a site failure implies the simultaneous

unavailability of all the hosts (or nodes) in a site. Based on this observation, we dis-

cussed problems with traditional availability metrics for quorum systems, presenting a

new metric that consists in counting survivor sets, and new quorum constructions that

are optimal with respect to this new metric. Results from an experiment conducted on

PlanetLab showed that our quorum construction not only achieve higher availability, but

also has better average case behavior due to the use of fewer replicas per quorum.

To tolerate threats that exploit shared software vulnerability, such as outbreaks

of worms and viruses, we proposed to replicate data using a technique called informed

replication. This technique consists in selecting replica sets using attributes, where dif-
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ferent attributes indicate different vulnerabilities. In the case of large-scale Internet

attacks, these attributes are the software systems hosts run. We then used the core ab-

straction to represent subsets of participating hosts such that at least one survives such

an attack.

As building such cores requires a population that is diverse in the software

systems they run, we conducted a study of the UCSD network to determine whether

there is sufficient diversity in a large Internet setting to make this approach feasible. We

concluded that, although the popularity of software systems is highly skewed (e.g., over

50% of the hosts run Windows), the amount of diversity is sufficient to enable efficient

replication mechanisms. In particular, we have designed heuristics that enable hosts to

select replica sets that often comprise the host itself and one single extra replica. Our

simulations and experimental results from a deployment on PlanetLab show that it is

possible for a host to survive such attacks with high probability, using a small amount

of replication (less than two extra replicas on average) and committing a small amount

of resources (a host participating in at most three cores from other hosts). Compared to

a technique that selects hosts at random, ignoring the diversity of the population of par-

ticipating hosts, our techniques use three times less storage, thus reducing significantly

the storage overhead.

To conclude, incorporating dependent failures into the failure model when de-

signing fault-tolerant algorithms has both theoretical and practical benefits. We have

shown these benefits by considering important theoretical problems, such as consensus

and leader election, as well as practical applications, such as replication in multi-site

systems and cooperative systems that tolerate large-scale Internet attacks. As current

systems increase in size and extent, more realistic failure models will have a fundamen-

tal role in system design, and incorporating dependent failures is certainly an important

part of such failure models. Our results on modeling with cores and survivor sets there-

fore constitute an important step toward more practical designs.
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Appendix A

Weak Leader Election in the

receive-omission failure model

Leader Election is an important primitive in fault-tolerant distributed comput-

ing because it enables the solution of problems broadly applicable in real systems such

as consensus, as illustrated by the Paxos algorithm [Lam98], and primary-backup pro-

tocols, as in [BMST92].

The particular version of the Leader Election problem we develop upon first

appeared in the context of primary-backup protocols. In the primary-backup approach

for fault-tolerant services, clients issue requests that the primary is responsible for han-

dling and replying to. When the primary fails, one of the backup replicas takes over as

the new primary. Thus, a primary-backup protocol embeds a Leader Election algorithm

that can infinitely often select a primary.

In [BMST92], Budhiraja and Marzullo show a lower bound of n > b3t/2c for

such algorithms when processes can fail to receive messages, where n is the number of

processes and t is the maximum number of process failures in an execution. The basic

idea of the lower bound proof is that multiple primaries can be elected if fewer than

b3t/2c + 1 processes compose the system. In a later section, we repeat this result for

exposition purposes.

Still on the early work by Budhiraja and Marzullo on primary-backup pro-
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tocols, the degree of replication necessary for the algorithm they designed is higher

because they require faulty processes not to be elected [BMST92]. According to their

statement of the problem, if a process does not crash but it commits receive-omission

failures, then it cannot be elected. This is due to the assumption that responses to client

requests are bounded in time. Failure detection for receive-omission failures, however,

requires at least twofold replication. In our statement of the leader election problem, we

allow faulty processes to be elected, and this is the reason for naming the problem as a

weaker version of the traditional leader election problem.

When implementing a system based on the primary-backup approach, servers

are often connected by a local area network to bound response time to client requests,

which implies bounded fail-over time. For such settings, partitions are unlikely to occur

if processors operate at a reasonable speed. Messages, however, can be lost due to, for

example, buffer overflows at the receiver. One can imagine using retransmissions to

cope with such failures. A retransmission mechanism, however, only guarantees even-

tual delivery; bounded response is not possible with eventual delivery of messages. Be-

cause of the requirements on bounded response and failure-over time, primary-backup

protocols are usually synchronous.

In this chapter, we describe a synchronous algorithm for Leader Election un-

der receive-omission process failures and prove its correctness. The novelty in this

algorithm is fourfold: 1) it proves tight a lower bound that has been known for over 10

years; 2) by permitting faulty (but not crashed) processes to be elected, it requires fewer

replicas; 3) it is based on cores and survivor sets which are abstractions that enable one

to more expressively represent failure scenarios by considering failures that are not in-

dependent or not identically distributed; 4) although it allows for faulty processes to be

elected, correct processes are able to detect this situation, enabling the use of alarms to

indicate failures in the system. Relating to our discussion on primary-backup protocols,

by assuming that faulty processes can be elected, we cannot bound response time for a

primary-backup protocol. We can guarantee, however, that there is at most one primary

at any time, and that response is bounded whenever a correct process emerges as the
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primary. We further discuss this and other issues with primary-backup protocols later in

the chapter.

The remainder of this chapter is organized as follows. We describe in detail the

system model in Section A.1. We then introduce the problem by stating the properties

an algorithm must fulfill (Section A.2). Still in Section A.2, we repeat the lower bound

proof for process replication, and generalize this bound to our model of dependent fail-

ures. Section A.3 describes our FFS-WLE algorithm for Leader Election. As we shall

see, the algorithm depends on a primitive that we call RO consensus. The properties

for RO consensus resemble the ones for the traditional uniform consensus primitive.

The differences, however, are significant enough for naming the problem differently. In

Section A.3, we also provide an algorithm for RO consensus. Sections A.4 and A.5 pro-

vide proofs of correctness for FFS-ROC and FFS-WLE, respectively. In Section A.6,

we strengthen the definition of Leader Election to disable executions in which different

leaders are elected infinitely often, and provide a simple modification of the algorithm

that enables it. Before concluding, we provide a discussion on the implications of the

properties of our algorithm in a primary-backup protocol in Section A.7. We finally

conclude in Section A.8.

A.1 System model

A system is a collection of processes Π = {p1, p2, . . . , pn} that communicate

through messages.1 For every pair of processes pi, pj ∈ Π, there is a channel that pi uses

to send messages to pj .

In such a system, an algorithm alg is a collection of state machines, one for

each process. alg then proceeds in steps of processes. In a step, a process pi executes

atomically the following:∧ ∨
receives a message from a process pj∨
sends a message to a process pj

1We use pi to denote a process and i to denote the identifier of this process.
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∨
executes a local operation∧
undergoes a state transition

The definition of an execution is as in Chapter 2. We now review it here. An

execution E of alg is a tuple 〈Init, Steps,Time,Faulty〉, where: Faulty is a mapping from

step to set of faulty processes; Init is the set of initial states, one for each process; Steps

is a set of steps; Time is a mapping from step to integer, such an integer corresponding

to global elapsed time. We use global time in proofs, but we do not assume that such a

clock that produces global time is available to processes. The assumption of such a vir-

tual clock is useful for defining executions, more specifically to order steps of processes

with respect to time. We also use Correct(E) for the set of processes that are correct in

E. Finally, E is the set of executions of alg.

We assume that processes can fail by crashing or by omitting to receive mes-

sages. If a process pi crashes in an execution E, then there is step s of pi such that pi

executes no further steps after Time(s). We call this step a crash step. A faulty process,

however, does not necessarily crash: it can selectively fail to receive messages. To char-

acterize failure scenarios, we use our model of dependent process failures based on the

abstractions of cores and survivor sets. We assume that systems are synchronous: the

steps of every execution of some algorithmA can be split into rounds. That is, there is a

mapping Round : S → R from steps of processes to round numbers, whereR = Z∗ and

round numbers monotonically increase with time. We then have the following properties

for rounds:

P-Liveness : If a process executes all the steps of a round r, then every process that

does not crash by r executes at least one step of r.

C-Liveness : If a process pi sends a message m to a correct process pj in round r and

pi does not crash by round r, then pj receives m in round r.

Integrity : If pi receives a message m from pj , then pj sent m to pi.

No duplicates : No message m is received more than once.
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A.2 Problem specification

For the following description of the problem, we assume that each process pi

in Π has a boolean variable pi.elected that is set to true if the process elects itself, and

to false otherwise. We then define the weak leader election problem with the following

three properties:

Safety 2|{pi ∈ Π : pi.elected}| < 2.

LE-Liveness 23(|{pi ∈ Π : pi.elected}| > 0).

FF-Stability In a failure-free execution, only one process ever has elected set to true.

In words, infinitely often some process elects itself, and no more than one pro-

cess is elected at any time. The third property eliminates the possibility of an algorithm

that, for example, elects processes in a round-robin fashion (which can be implemented

with no communications given that the system is synchronous). It does not rule out,

however, executions in which two or more processes are elected infinitely often when

there is at least one process failure in the execution. For this reason, we propose another

property called E-stability stated as follows:

E-Stability ∃pi ∈ Π : 32(∀pj ∈ Π : pj.elected ⇒ ( j = i ) )

An algorithm satisfying this property eventually elects the same process for-

ever in every execution. Note that with E-stability only, failure-free executions are al-

lowed to have multiple leaders elected (at different times, to not violate safety), and

hence does not render FF-stability unnecessary.

In the following sections, we first derive an algorithm that satisfies the first

three properties. Later we modify this algorithm to also satisfy E-stability. We discuss

a lower bound for this problem in Chapter 4.



221

A.3 The algorithm

In this section, we describe an algorithm FFS-WLE that satisfies safety, LE-

liveness, and FF-stability (Figure A.2). It assumes a system profile 〈Π, CΠ,SΠ〉 that

satisfies (3,2)-Intersection and uses as a building block an algorithm FFS-ROC that

implements a weak version of uniform consensus that we call RO consensus. We call

it RO consensus because its definition resembles the one of consensus. It is tailored,

however, to fulfill the requirements of FFS-WLE. Note that we use the prefix “FFS-”

(FF-stability) to distinguish the algorithms in this section from the ones of Section A.6.

Recall that in Section A.6 we present an algorithm that also satisfies E-stability.

We assume that each process pi has an initial value pi.a ∈ V ∪ {⊥}, where

V is the set of initial values and ⊥ is a default value, and a decision value pi.d [1 . . . n],

where pi.d[j] ∈ V ∪ {⊥}. We use v ∈ pi.d to denote that there is some p` ∈ Π such

that pi.d[`] = v. If a process pi crashes, then we assume that its decision value pi.d is

N , whereN stands for the n element list [⊥, . . . ,⊥]. To avoid repetition throughout the

discussion of our algorithm, we say that a process p decides in an execution E if p.d is

different than N .

As we describe later, we execute FFS-ROC multiple times in electing a

leader. We then have that processes may crash before starting an execution E of FFS-

ROC. Such processes consequently have initial value undefined in E. We therefore

use ⊥ to denote the initial value of crashed processes. That is, if pi.a =⊥, then pi has

crashed.

Let the relation x ⊆ y for x and y lists of n elements be that, for all i : 1 ≤

i ≤ n, (x[i] 6=⊥)⇒ (x[i] = y[i]).

The specification of RO consensus is given by four properties as follows:

Termination: Every process that does not crash eventually decides on some value.

Agreement: If pi.d[`] 6=⊥, then for every non-faulty pc, pi.d[`] = pc.d[`];

RO Uniformity: Let vals be {d : ∃pi ∈ Π s.t. (pi.d = d)} \ N . Then,∧
1 ≤ |vals| ≤ 2
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∧
∀d, d′ ∈ vals : d ⊆ d′ ∨ d′ ⊆ d∧
∀df , dc ∈ vals, df ⊆ dc : ∃Sf , Sc ∈ SΠ :

∧ ∀p ∈ Sf : ∨ p crashes

∨ p.d = df

∧ ∀p ∈ Sc : ∧ p.d = dc

∧ p is not faulty

That is, there can be no more than two non-N decision values, and if there are two

then one is a subset of the other. Furthermore, if there are two different decision

values, then these are the values that processes in two disjoint survivor sets decide

upon, one for the processes of each survivor set.

Validity:∧
If pj ∈ Π does not crash, then for all non-faulty pi, pi.d[j] = pj.a∧
If pj ∈ Π does crash, then for all non-faulty pi, pi.d[j] ∈ {⊥, pj.a}∧
If there are survivor sets Sf , Sc ∈ SΠ

and values vf , vc ∈ V , vf 6= vc, such that∧
∀p ∈ Sf :p.a ∈ {vf ,⊥}∧
∀p ∈ Sc :

∧
p.a = vc∧
p is not faulty∧

∃pi, p` ∈ Π : pi.d[`] = vf

then for all pj that does not crash, vf ∈ pj.d

That is, if a process pi is not faulty and pi.d[j] 6=⊥, then the value of pi.d[j]

must be pj.a. The value of pi.d[j] can be ⊥ only if pj crashes. The third case

exists because we use the decision values of an execution as the initial values for

another execution. From RO uniformity, there can be two different non-N values

df and dc. If this is the case, then there is a survivor set Sc containing only correct

processes such that all processes in Sc decide upon dc, and another survivor set Sf

containing only faulty processes such that all the processes in Sf either crash or

decide upon df . Let df be vf and dc be vc. By the third case, if some process that
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decides includes vf in its decision value, then every process that does not crash

also includes vf in its decision value.

We now describe our algorithm FFS-ROC for RO consensus. Figure A.1

shows the pseudocode for a single process. A TLA+ specification of the algorithm

appears in Appendix F. From the figure, the algorithm FFS-ROC executes exactly in

t + 1 rounds, where t = mins{s = |Si| ∧ Si ∈ SΠ} or alternatively t + 1 = maxc{c =

|Ci|∧Ci ∈ CΠ}.2 For the proof of correctness we present in the next section, we assume

that the value of t is at least one (t ≥ 1). Note that for t = 0 there is a trivial, much

simpler algorithm.

In every round r of FFS-ROC, a process pi sends its list pi.A of values to a

subset of the processes Π′ in Π. If process pi does not crash or stop3 in round r, then

Π = Π′. Otherwise, this subset is arbitrary. Before the end of round r, every process

pi that does not execute a crash step at r receives all the messages sent to it in round

r. Note that if a process pi crashes in round r, but sends a message mi to process pj ,

then pj does not necessarily receive mi by C-liveness. We then use the following, where

0 ≤ r ≤ t:

• pi.M(r) denotes the set of messages of round r that pi receives;

• pi.s(r) denotes the set of processes from which process pi receives messages of

round r. That is, pi.s(r) = {p : m ∈ pi.M(r) ∧m.from = p};

• pi.sr(r) denotes the set pi.s(r) removed the processes pi detects to be faulty in

round r.

Processes send no messages at the last round. Note that, by the algorithm,

messages received by the end of round r are available for processing at the beginning of

round r + 1.
2The first and the last rounds in the algorithms are actually half rounds, and we then consider that both together

constitute a single round. Put another way, we can easily rearrange the order of sending and receiving messages to
make it fit into t + 1. We have chosen the former for expositional convenience.

3A stop instruction is equivalent to a crash in that a process does not execute any further steps after executing a
stop instruction. A process, however, executes a stop instruction according to its own state machine, and hence it is
not in any arbitrary step.
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If a process detects that it has failed to receive messages, then it stops by de-

ciding on N . In the discussion that follows, we treat processes that crash and processes

that stop in the same manner. If a distinction is necessary, then we clearly state it. There

are two ways a processes pi can determine that it is faulty:

1. By receiving messages from a set of processes in round r such that pi.s(r) 6⊂

pi.s(r − 1), r > 1; 2) By determining that in its set of messages of round r, there

is no survivor set possibly containing only correct processes.

2. The second form of detection relies on the set of values pi receives from another

process pj . If pi notices that pj did not receive a previous message from pi, then

pi declares pj faulty. By removing the obviously faulty processes and looking at

the remaining set, if there is no survivor set in the remaining set, then pi must

be faulty as well. More specifically, pi checks in round r > 1 whether pi.sr(r)

contains a survivor set. To decide upon membership for pi.sr(r), pi uses the value

of pi.A from round r− 2. We use pi.Ap(r) as the value of pi.A in round r after pi

updates pi.A with the values received in the messages from round r. Note that the

value of pi.Ap(r), 0 ≤ r ≤ t− 1, is used only in round r + 2.

Figure A.2 shows the pseudocode for an algorithm that implements safety,

LE-liveness, and FF-stability. It proceeds in iterations of an infinite repeat loop. In each

iteration, a process executes FFS-ROC twice, and decides if it has to elect itself by the

end of the second phase.

In the following sections, we prove the correctness of both FFS-ROC and

FFS-WLE.

A.4 Correctness of FFS-ROC

We provide a proof of correctness for the FFS-ROC algorithm. We say that a

process pi is alive in round r if either one of the following happens:
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Algorithm FFS-ROC on input pi.a
round 0:

pi.s(0)← Π; pi.sr(0)← pi.s(0)
pi.A [i]← pi.a
for all pk ∈ Π, pk 6= pi : pi.A [i]← ⊥
pi.Ap(0)← pi.A
send pi.A to all

round 1:
pi.sr(1)← pi.s(1)
if 6 ∃S ∈ SΠ : S ⊆ pi.sr(1)
then decide [⊥, . . . ,⊥]
else for each message m ∈ pi.M(1), pk ∈ Π:

if (pi.A [k] = ⊥) pi.A [k]← m.A [k]
pi.Ap(1)← pi.A
send pi.A to all

round r: 2 ≤ r ≤ t:
pi.sr(r)← pi.s(r) \ {pj : ∃m ∈ pi.M(r) :

(m.from = pj) ∧ (pi.Ap(r − 2) 6⊆ m.A)}
if ∨pi.s(r) 6⊆ pi.s(r − 1)
∨ 6 ∃S ∈ SΠ : S ⊆ pi.sr(r)

then decide [⊥, ...,⊥]
else for each message m ∈ pi.M(r), pk ∈ Π:

if (pi.A [k] = ⊥) pi.A [k]← m.A [k]
pi.Ap(r)← pi.A
send pi.A to all

round t + 1:
pi.sr(t + 1)← pi.s(t + 1) \ {pj : ∃m ∈ pi.M(t + 1) :

(m.from = pj) ∧ (pi.Ap(t− 1) 6⊆ m.A)}
if ∨ pi.s(t + 1) 6⊆ pi.s(t)
∨ 6 ∃S ∈ SΠ : S ⊆ pi.sr(t + 1)

then decide [⊥, ...,⊥]
else for each message m ∈ pi.M(t + 1), pk ∈ Π:

if (pi.A [k] = ⊥) pi.A[k]← m.A[k]
pi.Ap(t + 1)← pi.A
decide pi.A

Figure A.1: FFS-ROC: Algorithm run by process pi.
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Algorithm FFS-WLE
repeat {
pi.elected← FALSE
Phase 1:

Run FFS-ROC with
pi.a← i.

if (pi.d = [⊥, . . . ,⊥]) then stop
Phase 2:

Run FFS-ROC with
pi.a← pi.d from Phase 1.

if (pi.d = [⊥, . . . ,⊥]) then stop
let x be a value of pi.d [1 . . . n]

such that pi.d [x] 6= [⊥, . . . ,⊥]
and it has the least number of non-⊥ values

if (pi is the first index of x such that x[i] 6= ⊥)
then pi.elected← TRUE

}

Figure A.2: FFS-WLE: Algorithm run by process pi.

• if pi sends at least one message mi to some process pj in round r, 0 ≤ r ≤ t, and

pj receives mi by the end of round r;

• if pi decides in round r, r = t+ 1.

We use Alive(r) to denote the processes that are alive in round r. For an

execution E of FFS-ROC we define the following to use in the proofs of this section:

• T i
φ(i, r) ∈ T denotes the value of Time(sf ), where pi ∈ Alive(r) and sf ∈ S is the

first step pi executes of round r, r ∈ {0, . . . , t + 1}. If pi executes no steps in r,

then T i
φ(i, r) is undefined;

• T u
φ (i, r) ∈ T denotes the value of Time(sm), where pi ∈ Alive(r) and sm ∈ S is

the first step of round r in which pi sends a message, 0 ≤ r ≤ t. If pi 6∈ Alive(r),

then T u
φ (i, r) is undefined;

• T u
φ (i, t+ 1) ∈ T denotes Time(sd), where pi ∈ Alive(t+ 1) and sd ∈ S is the step

in which pi decides in round t+1. If pi 6∈ Alive(r), then T u
φ (i, t+1) is undefined;
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• M r
i is a list of n values, one for each process in Π such that the following holds:

M r
i [j]

 pj.a, ∃m ∈ pi.M(r) : m.A[j] 6=⊥

⊥, otherwise

Processes that are alive in a round r may send messages to a strict subset

of Π when they fail in r. Thus, in executions in which processes fail, we have that

processes may have a different knowledge of the initial values. For example, if in round

zero, a process p` sends a message to a non-faulty process pi, but it crashes before

sending a message to a non-faulty process pj , then pi.A[`] = p`.a and pj.A[`] =⊥.

For the purpose of analyzing these cases, we define a process chain (or simply a chain)

ω` = (i0 ◦ i1 ◦ . . . ◦ ik)`, k ≤ t+ 1, to be a string over the set of process identifiers. Let

ω`[x] be the process identifier at position x of the chain ω`. The following holds for a

process chain ω`:

1. ω`[r] 6= ω`[r
′], if r 6= r′;

2. If ω`[r] = i, then (pi.Ap(r)[`] 6=⊥) ∧ (∀r′ ∈ {x ∈ Z∗ : x ≤ r − 1} :

pi.Ap(r
′)[`] =⊥);

3. If ω`[r] = i, r > 0, then ∃m ∈ pi.M(r) : (m.A[`] 6=⊥) ∧ (ω`[r − 1] = j) ∧

(m.from = pj);

4. If ω`[0] = i, then i = `.

We say that a process pi is in ω` (i ∈ ω`) if and only if there exists an index

r such that ω`[r] = i. We use process chains in the proofs below to represent the

propagation of knowledge in executions with failures.

We show the correctness of FFS-ROC with Proposition A.4.1. We divide the

proof of this proposition into several statements (lemmas and theorems). Each of these

statements may depend upon others. Thus, we summarize in Figure A.3 the structure of

the proof. For each statement, we show the other statements it depends upon.

Proposition A.4.1 FFS-ROC implements RO consensus.
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Proposition
A.4.1: {A.4.20, A.4.21, A.4.22, A.4.23}

Theorems
A.4.20: {}
A.4.21: {A.4.16}
A.4.22: {A.4.5, A.4.15, A.4.17, A.4.18}
A.4.23: {A.4.2, A.4.5, A.4.11, A.4.16, A.4.19}

Lemmas
A.4.2: {}
A.4.3: {A.4.2}
A.4.4: {A.4.2, A.4.3}
A.4.5: {A.4.3, A.4.4}
A.4.6: {A.4.5}
A.4.7: {A.4.4, A.4.6}
A.4.8: {A.4.6}
A.4.9: {}
A.4.10: {A.4.9}
A.4.11: {A.4.2, A.4.4, A.4.5}
A.4.12: {A.4.6, A.4.7, A.4.10, A.4.11}
A.4.13: {A.4.2, A.4.4, A.4.6, A.4.7, A.4.10, A.4.11, A.4.12}
A.4.14: {A.4.2, A.4.4, A.4.12}
A.4.15: {A.4.13}
A.4.16: {A.4.2, A.4.4, A.4.5, A.4.11, A.4.12}
A.4.17: {A.4.13, A.4.16}
A.4.18: {A.4.5, A.4.11, A.4.13, A.4.14, A.4.15, A.4.16, A.4.17}
A.4.19: {A.4.3, A.4.4, A.4.13, A.4.16}

Figure A.3: FFS-ROC proof hierarchy.

We prove Proposition A.4.1 with the following lemmas.

Lemma A.4.2 Let E be an execution of FFS-ROC, r be a round of E, 0 ≤ r ≤ t+ 1,

pi be a process in Alive(r), and pj be a process in Π. If pi.Ap(r)[j] 6=⊥, then pi.Ap(r) =

pj.a.

Proof:

We show with an induction on the round numbers ρ, 0 ≤ ρ ≤ t+1, that for every round

r′ ≤ r, if p` ∈ Alive(ρ) and p`.Ap(r
′)[j] 6=⊥, then p`.Ap(ρ)[j] = pj.a. The base case is

ρ = 0. From the algorithm, in round 0 a process p` has p`.Ap(0)[j] =⊥, if ` 6= j, and

p`.Ap(0)[`] = p`.a. Thus, p`.Ap(0)[j] 6=⊥ only if ` = j, and p`.Ap(0)[`] = p`.a.

Now suppose that for every p` ∈ Alive(ρ) if p`.Ap(ρ)[j] 6=⊥, then

p`.Ap(ρ)[j] = pj.a. We show that for every p` ∈ Alive(ρ + 1), if p`.Ap(ρ + 1)[j] 6=⊥,

then p`.Ap(ρ + 1)[j] = pj.a. By the algorithm, if p` ∈ Alive(ρ) is such that
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p`.Ap(ρ)[j] = pj.a, then for every message m it sends at round ρ, m.A[j] = pj.a.

For p`′ ∈ Alive(ρ + 1), if p`′ .A[j] 6=⊥ at T i
φ(`

′, ρ + 1), then p`′ .Ap(ρ)[j] 6=⊥ and must

be equal to pj.a by the induction hypothesis and the algorithm. Otherwise, for every

message m it receives such that m.A[j] 6=⊥, m.A[j] = pj.a. Thus, by the algorithm,

if p`′ receives at least one such a message, it sets p`′ .A[j] to pj.a, and we have that

p`′ .Ap(ρ+ 1)[j] = pj.a.

From the previous induction, we conclude that if pi.Ap(r)[j] 6=⊥, then

pi.Ap(r)[j] = pj.a.

2

Lemma A.4.3 Let E be an execution of FFS-ROC, r be a round of E, 0 < r ≤ t+ 1,

and pi be a process in Alive(r). For every message m ∈ pi.M(r) such that m.A[`] 6=⊥,

for some p` ∈ Π, m.A[`] = p`.a.

Proof:

By Lemma A.4.2, for every pj ∈ Alive(r − 1), if pj.Ap(r − 1)[`] 6=⊥, then pj.Ap(r −

1)[`] = p`.a. If pj sends a message mj to pi in round r − 1, then m.A[`] = p`.a. We

conclude that for every m ∈ pi.M(r) such that m.A[`] 6=⊥, m.A[`] = p`.a.

2

Lemma A.4.4 Let E be an execution of FFS-ROC and r be a round of E, 0 < r ≤

t+ 1. For every pi ∈ Alive(r), M r
i = pi.Ap(r).

Proof:

By the algorithm, if pi ∈ Alive(r), then for every j ∈ [1 . . . n], such that pi.A[j] =⊥

at T i
φ(i, r), pi sets pi.A[j] to a value v ∈ V = {v : v = m.A[j] ∧ m ∈ pi.M(r) ∧

m.A[j] 6=⊥ }, j ∈ [1 . . . n] at t if V 6= ∅, where T i
φ(i, r) ≤ t ≤ T u

φ (i, r), t = Time(s),

and s is a step of pi that updates pi.A[j] in round r. Otherwise, if pi.A[j] 6=⊥ at T i
φ(i, r),

then no step of pi in round r modifies the value of pi.A[j], and pi.Ap(r)[j] = pi.Ap(r −

1)[j].

Let pj be a process of Π. By Lemma A.4.3, we have that V = {v : v =

m.A[j]∧m ∈ pi.M(r)∧m.A[j] 6=⊥}, j ∈ [1 . . . n], is either empty or contains a single
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value. If |V | = 1, then V = {pj.a}. There are two cases to consider: 1) pi.Ap(r −

1)[j] 6=⊥; 2) pi.Ap(r − 1) =⊥.

If pi.Ap(r − 1)[j] 6=⊥, then, by the algorithm, pi does not modify the value

of pi.A[j] in round r. By Lemma A.4.2, pi.Ap(r − 1)[j] = pj.a. By the algorithm, pi

sends pi.Ap(r − 1) to itself. Finally, by Lemma A.4.3, every message m ∈ pi.M(r),

m.A[j] 6=⊥, is such that m.A[j] = pj.a. We then have that pi.Ap(r)[j] = M r
i [j].

If pi.Ap(r − 1) =⊥ and V = {pj.a}, then pi.Ap(r)[j] = pj.a. If V = ∅, then

pi.Ap(r)[j] =⊥. In both cases, pi.Ap(r)[j] = M r
i [j].

We conclude that pi.Ap(r) must be equal to M r
i .

2

Lemma A.4.5 LetE be an execution of FFS-ROC. For every r ∈ {z ∈ R : z ≤ t+1},

Correct(E) ⊆ Alive(r).

Proof:

By definition, a process is alive in round t+ 1 of E if it neither crashes nor stops before

deciding in this round. We show this claim by showing that for every pc ∈ Correct(E)

and every r ∈ {x ∈ R : x ≤ t + 1}, pc ∈ Alive(r). Let pc be a process in Correct(E).

By definition, pc does not crash in any round. It remains to show that, for every pc ∈

Correct(E) and every r ∈ {z ∈ R : z ≤ t + 1}, pc does not stop in r. We show this

with an induction on the round numbers ρ, ρ ∈ {z ∈ R : z ≤ t+ 1}.

By the algorithm, no process stops in round 0. At round 1, a process only stops

if it does not receive messages from a survivor set. Let pc be a process in Correct(E). By

definition, there is a survivor set Sc containing only correct processes, and every process

pc′ ∈ Sc sends a message to pc in round 0. By C-liveness, pc must have messages in

pc.M(1) at least from the processes in Sc. That is, Sc ⊆ pc.s(1). Consequently, pc does

not stop in round 1.

Now suppose that the claim holds for every ρ, ρ ∈ {z ∈ R : 1 ≤ z ≤ t},

and we show for ρ + 1. Let pc be a process in Correct(E). By assumption, if pc does

not receive a message from some process pi in round ρ, then pi must have crashed
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by round ρ. This implies that all processes in Π \ pc.s(ρ) crashed by round ρ, and

pc.s(ρ + 1) therefore cannot contain a process pi that is not in pc.s(ρ). Consequently,

pc.s(ρ+ 1) ⊆ pc.s(ρ).

For the induction step, it remains to show that pc.sr(ρ + 1) contains some

survivor set. From the algorithm, a process pi is in pc.sr(ρ + 1) if there is a message

mi ∈ pc.M(ρ + 1) and pc.Ap(ρ − 1) ⊆ mi.A. By assumption, no correct process

stops by round ρ. Thus, for every pc′ ∈ Correct(E), there is a message mc ∈ pc′ .M(ρ)

from pc. By Lemma A.4.3, for every p` ∈ Π such that mc.A[`] 6=⊥, we have that

mc.A[`] = pc.Ap(ρ − 1)[`] = p`.a and Mρ
c′ [`] = p`.a. By Lemma A.4.4, we then have

that for every pc′ ∈ Correct(E), pc.Ap(ρ − 1) ⊆ pc′ .Ap(ρ). By the algorithm and by

the assumption that no correct process stops in round ρ, for every pc′ ∈ Correct(E), pc′

sends a message to pc. By the observation that for every pc′ , pc.Ap(ρ− 1) ⊆ pc′ .Ap(ρ),

we have that Correct(E) ⊆ pc.sr(ρ+1). By assumption, there is a survivor set Sc ∈ SΠ

such that Sc ⊆ Correct(E). We conclude that Sc ⊆ pc.sr(ρ+ 1).

This concludes the proof of the lemma.

2

Lemma A.4.6 Let E be an execution of FFS-ROC such that ω` is a chain in E, 1 ≤

|ω`| ≤ t + 1. If ω`[r] is the identifier of a correct process for some r, then M r+1
j [`] 6=⊥

for every process pj ∈ Correct(E).

Proof:

Let r be an index such that ω`[r] is the identifier of a correct process in E and i be

the process identifier in ω`[r]. By the definition of a process chain, we have that

(pi.Ap(r)[`] 6=⊥) ∧ (∀r′ ∈ {x ∈ R : x ≤ r − 1} : pi.Ap(r
′)[`] =⊥). By the al-

gorithm, process pi sends pi.Ap(r) to all the processes in Π. By Lemma A.4.5, every

correct process decides in E (Correct(E) ⊆ Alive(t + 1)). By C-liveness, for every

pj ∈ Correct(E), there is mi ∈ pj.M(r + 1) such that mi.A[`] 6=⊥. Again by the

algorithm, M r+1
j [`] must be different than ⊥ for every correct process pj in E.

2
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Lemma A.4.7 Let E be an execution of FFS-ROC such that there is a chain ω` of

length at least three in E. There are no three correct processes pc1 , pc2 , pc3 such that

c1, c2, c3 ∈ ω`.

Proof:

Proof by contradiction. Suppose that there are three processes pc1 , pc2 , pc3 ∈ Correct(E)

such that c1, c2, c3 ∈ ω`, and that r is the smallest index such that ω`[r] is the identifier

of a correct process. Observe that |ω`| must be at least as large as r + 3 (|ω`| ≥ r + 3),

otherwise the claim is vacuously true.

Without loss of generality, let ω`[r] = c1. By Lemma A.4.6, for every correct

process pc in Correct(E) we have that M r+1
c [`] different than ⊥ and by Lemma A.4.4

pc.Ap(r + 1)[`] = M r+1
c [`]. Consequently, we have that pc2 .Ap(r + 1)[`] 6=⊥ and

pc3 .Ap(r + 1)[`] 6=⊥. By the definition of a process chain, c2 and c3 cannot be both in

ω`, a contradiction.

2

Lemma A.4.8 Let E be an execution of FFS-ROC such that there is a chain ω` of

length at least three. There is no two correct processes pi, pj such that i, j ∈ ω` and

ω` = (ω′ ◦ i ◦ ω ◦ j ◦ ω′′)`, where ω, ω′, ω′′ are substrings of ω` and ω is not the empty

string.

Proof:

Proof by contradiction. Suppose that there are two correct processes pi and pj in E such

that ω`[r] = i and ω`[r
′] = j, r + 1 < r′. By Lemma A.4.6 and by the definition of a

process chain, for every correct process pj in Correct(E), M r+1
j [`] 6=⊥. We hence have

that r′ must be equal to r+1, and ω must be empty, contradicting out initial assumption

that r + 1 < r′.

2

Lemma A.4.9 Let E be an execution of FFS-ROC and pi be a process in Alive(r),

r ≥ 2, such that pi.Ap(r)[`] 6=⊥ and for all r′ ∈ {x ∈ R : x ≤ r− 1}, pi.Ap(r
′)[`] =⊥.
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For every round ρ ∈ {x ∈ R : 1 ≤ x ≤ r}, there are processes pj1 ∈ Alive(ρ) and

pj2 ∈ Alive(ρ− 1) such that the following holds:

1. pj1 .Ap(ρ)[`] 6=⊥, and for all ρ′ ∈ {x ∈ R : x ≤ ρ− 1}, pj1 .Ap(ρ
′)[`] =⊥;

2. pj2 .Ap(ρ− 1)[`] 6=⊥, and for all ρ′ ∈ {x ∈ R : x ≤ ρ− 2}, pj2 .Ap(ρ
′)[`] =⊥;

3. ∃mj2 ∈ pj1 .M(ρ) : (mj2 .A[`] 6=⊥).

Proof:

We now show with an induction on the values of ψ, 0 ≤ ψ ≤ r− 1, that for every round

ρ = r − ψ, the claim holds.

The base case is ψ = 0, ρ = r. By assumption, pi is such that pi.Ap(r)[`] 6=⊥

and for all r′ ∈ {x ∈ R : x ≤ r − 1}, pi.Ap(r
′)[`] =⊥. This implies that M r

i [`] 6=⊥.

From the algorithm, we have that pi.s(ρ) ⊆ pi.s(ρ− 1) ⊆ . . . ⊆ pi.s(0). Consequently,

there must be some process pj ∈ Alive(ρ−1) such that the following holds: A) pj.Ap(r−

1) 6= ⊥; B) pj.Ap(ρ
′) = ⊥ for all ρ′ ∈ {x ∈ R : x ≤ r − 2}; C) ∃m ∈ pi.M(r) :

(m.A[`] 6=⊥) ∧ (m.from = pj). If there is no such a process pj that satisfies both A)

and C), then pi.Ap(r) =⊥, contradicting our initial assumption. By the algorithm, once

pj sets the value of pj.A[`] to a value different than ⊥, then the value of pj.A[`] does

not change in subsequent rounds. This implies that for all ρ′, 0 ≤ ρ′ < r − 1, pj.Ap(ρ
′)

must be equal to ⊥, because by the algorithm pi receives a message from pj in every

round (pi.s(%) ⊆ pi.s(% − 1), r ≥ % > 0) and pi.Ap(ρ
′′) is different than ⊥ otherwise,

for some ρ′′ < r.

Suppose the claim is true for ψ < r − 1. We show for ψ + 1. If it is true

for ψ, then there is a process pj1 alive in ρ = r − (ψ + 1) such that pj1 .Ap(ρ)[`] 6= ⊥,

and for all ρ′ ∈ {x ∈ R : x ≤ ρ − 1}, pj1 .Ap(ρ
′)[`] =⊥. From the algorithm, we

have that pj1 .s(ρ) ⊆ pj1 .s(ρ − 1) ⊆ . . . ⊆ pj1 .s(0). Consequently, there must be some

process pj2 ∈ Alive(ρ − 1) such that the following holds: A) pj2 .Ap(ρ − 1) 6= ⊥; B)

pj2 .Ap(ρ
′) = ⊥ for all ρ′ ∈ {x ∈ R : x ≤ ρ − 2}; C) ∃m ∈ pj1 .M(ρ) : (m.A[`] 6=⊥

) ∧ (m.from = pj2). If there is no such a process pj2 that satisfies both A) and C),
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then pj1 .Ap(ρ) =⊥, contradicting our assumption that the hypothesis hold for ψ. By

the algorithm, once pj2 sets the value of pj2 .A[`] to a value different than ⊥, then the

value of pj2 .A[`] does not change in subsequent rounds. This implies that for all ρ′,

0 ≤ ρ′ < ρ− 1, pj2 .Ap(ρ
′) must be equal to ⊥, because by the algorithm pj1 receives a

message from pj2 at every round (pj1 .s(%) ⊆ pj1 .s(%− 1), ρ ≥ % > 0) and pi.Ap(ρ
′′) is

different than ⊥ otherwise, for some ρ′′ < ρ.

This concludes the proof of the lemma.

2

Lemma A.4.10 Let E be an execution of FFS-ROC and pi be a process that is alive

in round r of E, r ≥ 0, such that pi.Ap(r)[`] 6=⊥ and for all r′ ∈ {x ∈ R : x ≤ r − 1},

pi.Ap(r
′)[`] =⊥. There is a chain ω` such that |ω`| = r + 1, and ω`[r] = i.

Proof:

We have to build a chain ω` such that |ω`| = r + 1, and ω`[r] = i.

We build such a chain ω` as follows:

ω`[0] = `

ω`[ρ] = j , ∧(0 < ρ < r)

∧(pj.Ap(ρ) 6=⊥)

∧(∀ρ′ ∈ {x ∈ R : x ≤ ρ− 1} : pj.Ap(ρ
′) =⊥)

∧∃mj ∈ pω`[ρ+1].M(ρ+ 1) from pj

ω`[r] = i

We can easily verify that ω` satisfies the properties of a process chain. It

remains to show that it is a valid construction.

By the algorithm, we have that ω`[0] = `. By Lemma A.4.9, we have that for

every ρ, 0 < ρ < r, there is a process pj that satisfies the properties we stated above.

Finally, by assumption, pi is such that pi.Ap(r)[`] 6=⊥ and for all r′ ∈ {x ∈ R : x ≤

r − 1}, pi.Ap(r
′)[`] =⊥.



235

This concludes the proof of the lemma.

2

Lemma A.4.11 Let E be an execution of FFS-ROC. If pi, pj ∈ Correct(E), then

pi.d = pj.d in E.

Proof:

By Lemma A.4.5, every correct process decides in E (no correct process stops). Now

let r, 0 ≤ r ≤ t, be a round in which no process crashes. Such a round exists in E by

assumption (no more than t processes can fail in an execution, where t is |Π| subtracted

the size of the smallest survivor set).

We first show by induction on the values of ρ, r+1 ≤ ρ ≤ t+1, the following

proposition: ∧
∀pc1 , pc2 ∈ Correct(E) : pc1 .Ap(ρ) = pc2 .Ap(ρ)∧
∀p` ∈ Alive(ρ), pc ∈ Correct(E) : p`.Ap(ρ) ⊆ pc.Ap(ρ)

The base case is ρ = r + 1. According to the algorithm, every process pi

that is alive in round r sends a message containing pi.Ap(r) to every other process.

According to C-liveness and the assumption that no process crashes in round r, for

every process pc ∈ Correct(E), pc.s(r + 1) = Alive(r). This implies that for every

pc1 , pc2 ∈ Correct(E), M r+1
c1

= M r+1
c2

. By Lemma A.4.4, M r+1
c = pc.Ap(r + 1) for

every pc ∈ Correct(E). This implies that for every pc1 , pc2 ∈ Correct(E), pc1 .Ap(r +

1) = pc2 .Ap(r + 1).

It remains to show the second part of the proposition for the base case. Let p`

be a process in Alive(r + 1) and pc be a process in Correct(E). By the failure assump-

tions, we have that p`.s(r+1) ⊆ Alive(r). This implies that p`.s(r+1) ⊆ pc.s(r+1). If

p`.s(r+1) ⊆ pc.s(r+1), then M r+1
` ⊆M r+1

c . By Lemma A.4.4, M r+1
` = p`.Ap(r+1)

and M r+1
c = pc.Ap(r + 1), which implies that p`.Ap(r + 1) ⊆ pc.Ap(r + 1). This

concludes the proof of the base case.

Suppose that the proposition holds for every ρ < t + 1. We show for ρ +

1. By the induction hypothesis, the algorithm, and Lemma A.4.2, for every process
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pc ∈ Correct(E), pc.Ap(ρ) = Mρ+1
c . By Lemma A.4.4, for every pc ∈ Correct(E),

pc.Ap(ρ + 1) = Mρ+1
c . We conclude that for every pc1 , pc2 ∈ Correct(E), pc1 .Ap(ρ +

1) = pc2 .Ap(ρ+ 1).

By our failure assumptions, a faulty process may receive an arbitrary subset

of the messages sent to it in a round. Let p` be a process in Alive(ρ + 1) and pc be a

process in Correct(E). By the induction hypothesis, the algorithm, and Lemma A.4.2,

Mρ+1
` ⊆Mρ+1

c . By Lemma A.4.4, p`.Ap(ρ+1) = Mρ+1
` and pc.Ap(ρ+1) = Mρ+1

c . We

conclude that p`.Ap(ρ + 1) ⊆ pc.Ap(ρ + 1). This concludes the proof of the induction

step.

From the previous proposition, we have that pi.Ap(t+ 1) = pj.Ap(t+ 1). By

the algorithm, pi decides upon pi.Ap(t + 1) and pj decides upon pj.Ap(t + 1). Conse-

quently, pi.d = pj.d. This concludes the proof of the lemma.

2

Lemma A.4.12 Let E be an execution of FFS-ROC and pi, pj be two processes in

Alive(t+ 1), and p` be a process in Π. If (pi.Ap(t+ 1)[`] 6=⊥) and for all r ∈ {x ∈ R :

x ≤ t}, (pi.Ap(r)[`] =⊥), then pj.d[`] 6=⊥.

Proof:

By the algorithm, once pj sets the value of pj.A[`] to a value different than ⊥, pj does

not change it in subsequent rounds. Thus, we only need to show that there is some round

r in which pj sets pj[`] to a value different than ⊥.

Suppose that:

(pi.Ap(t+ 1)[`] 6=⊥) ∧ (∀r ∈ {z ∈ R : z ≤ t} : pi.Ap(r)[`] =⊥)

Assuming that pi and pj can be either correct or faulty, there are four possible

cases, and we analyze each case separately as follows:

• pi and pj are correct in E. By Lemma A.4.11, we have that pi.d = pj.d;

• pi is faulty and pj is correct in E. If pi decides in E, then pi is in Alive(t+ 1). By

Lemma A.4.10, there is a chain ω` such that |ω`| = t+ 2, and ω`[t+ 1] = i. Since
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there are at most t failures by assumption, there is at least one correct process in

ω`. Moreover, such correct process must be in a position r of the chain such that

0 ≤ r ≤ t. Thus, pj.Ap(t + 1)[`] must be different than ⊥, by Lemma A.4.6 and

the algorithm;

• pi is correct and pj is faulty in E. If pi is correct, then, by Lemma A.4.10, there is

a chain ω` such that |ω`| = t+ 2, and ω`[t+ 1] = i. Because pi is correct, one of

the following two must happen: 1) for every r, 0 ≤ r ≤ t − 1 and x = ω`[r], px

crashes in round r of E; 2) pi.Ap(r)[`] 6=⊥ for some r < t + 1 by Lemma A.4.6

(there is a correct process in the chain). Case 1 cannot happen because pj ∈

Alive(t+ 1) by assumption, and there are at least t+ 1 faulty processes, violating

our assumptions for survivor sets. In case 2, pi learns the initial value of p` in an

earlier round, contradicting our initial assumption. We conclude that this case is

hence not possible;

• pi and pj are faulty in E. By Lemma A.4.10, there is a chain ω` such that |ω`| =

t+2, and ω`[t+1] = i. By Lemma A.4.7, there are at most two correct processes

in any chain. Thus, ω` contains t faulty processes. Consequently, there must be

an r, 0 ≤ r ≤ t, such that j = ω`[r], and pj.Ap(r) 6=⊥.

From the previous analysis, we have that either pi.d = pj.d or pj.Ap(t+ 1) 6=⊥. By the

algorithm, we have pj decides upon pj.Ap(t + 1), and in both cases pj.d[`] 6=⊥. This

concludes the proof of the lemma.

2

Lemma A.4.13 Let E be an execution of FFS-ROC, pi, pj be two processes in

Alive(t + 1), and Si, Sj be two survivor sets in SΠ such that for all r ∈ {z ∈ R :

z ≤ t+ 1}, Si ⊆ pi.sr(r), Sj ⊆ pj.sr(r), and Si ∩ Sj 6= ∅. pi.d = pj.d in E.

Proof:

By the algorithm, once a process pi sets the value of pi.A[`] in round r ∈ {z ∈ R : z ≤

t} to a value different than ⊥, it does not change it in subsequent rounds. We then have
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to show that if pi learns about the initial value of p` in round r (that is, pi.Ap(r)[`] 6=⊥

and for all r′ ∈ {z ∈ R : z ≤ r−1}, pi.Ap(r
′)[`] 6=⊥), then there is a round r′ such that

pj learns the initial value of p` at round r′ (that is, pj.Ap(r
′)[`] 6=⊥ and for all r′′ ∈ {z ∈

R : z ≤ r′−1}, pj.Ap(r
′′)[`] 6=⊥). By Lemma A.4.2, if pi.Ap(r)[`] = pj.Ap(r

′)[`] 6=⊥,

then pi.Ap(r)[`] = pj.Ap(r
′)[`] = p`.Ap(0)[`]. We now analyze each case separately.

First, suppose that ((pi.Ap(t + 1)[`] 6=⊥) ∧ (∀r ∈ {z ∈ R : z ≤ t} :

pi.Ap(r)[`] =⊥)). This follows directly from Lemma A.4.12.

Now, suppose that (pi.Ap(t)[`] 6=⊥) ∧ (∀r ∈ {z ∈ R : z ≤ t − 1} :

pi.Ap(r)[`] =⊥):

• pi and pj are correct in E. By Lemma A.4.11, we have that pi.d = pj.d.

• pi is faulty and pj is correct in E. From Lemma A.4.10, there is a chain ω` such

that |ω`| = t + 1, and ω`[t] = i. Because there are at most t faulty processes by

assumption, there must be a correct process in ω`. That is, there must be some r,

0 ≤ r ≤ t− 1, such that ω`[r] is the identifier of a correct process in E. It follows

that pj.Ap(r + 1) must be different than ⊥, by Lemma A.4.6.

• pi is correct and pj is faulty in E. From Lemma A.4.10, there is a chain ω` such

that |ω`| = t + 1, and ω`[t] = i. Because pj is faulty, either there is some r such

that ω`[r] = j or there are at most t − 1 faulty processes in ω`. If the former

holds, then we are done. If the latter holds, then ω`[t − 1] must be the identifier

of a correct process, and there is no r < t − 1 such that ω`[r] is the identifier of

a correct process. Otherwise there is some r ∈ {z ∈ R : z ≤ t − 1} such that

pi.Ap(r)[`] 6=⊥ (by Lemma A.4.6). In addition, because ω` contains t − 1 faulty

processes and pj is faulty, any px ∈ (Si∩Sj) is either correct or is in the chain ω`.

Thus, px.Ap(t) 6=⊥, for every px ∈ (Si ∩Sj). Since by assumption Sj ⊆ pj.sr(r)

for every r ∈ {z ∈ R : z ≤ t + 1}, we have that pj.Ap(t + 1) 6=⊥, by the

algorithm and Lemma A.4.4;

• pi and pj are faulty in E. From Lemma A.4.10, there is a chain ω` such that

|ω`| = t+1, and ω`[t] = i. Because ω` contains exactly t+1 process identifiers, at
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least one must be correct, and by Lemma A.4.7, at most two correct processes. We

then have that either there is some r such that ω`[r] = j or ω`[r] 6= j for every r. In

the former case, we have that pj.Ap(r)[`] 6=⊥ for some r < t. In the latter, ω` must

contain t− 1 faulty processes (at most two correct processes and pj is not in ω`).

Let px be a process in Si ∩Sj . px is either correct or faulty. Suppose px is correct.

Because there is some correct process in ω`[r], for r ∈ {z ∈ R : z ≤ t − 1},

by Lemma A.4.6, it must be the case that px.Ap(t − 1)[`] 6=⊥ and consequently

pj.Ap(t)[`] 6=⊥, by the algorithm and Lemma A.4.4.

Now suppose that px is faulty. In this case, either there is r ∈ {z ∈ R : z ≤ t}

such that ω`[r] = x or x = j. The case that ω`[r] = x is straightforward. If x = j,

then either {pj} = Sj or {pj} ⊂ Sj . Suppose the former. If Sj is a singleton set,

then t = |Π| − 1 and t + 1 = |Π|. In this case, all the processes in Π must be in

the chain ω`, and hence it is must be the case that pj ∈ ω`. Thus, Sj must contain

at least two processes. Let pj′ be a process in Sj such that j 6= j′. We then have

that either j′ ∈ ω` or pj′ ∈ Correct(E). In either case, there must be some round

r ∈ {z ∈ R : z ≤ t} such that pj.Ap(r)[`] 6=⊥, and pj.Ap(t + 1)[`] 6=⊥ by the

algorithm.

Finally, suppose that ∃r ∈ {z ∈ R : z ≤ t − 1} : (pi.Ap(r)[`] 6=⊥) ∧ (∀r′ ∈

{z ∈ R : z ≤ r − 1} : pi.Ap(r
′)[`] =⊥). By assumption Si ⊆ pi.sr(ρ) for all

ρ ∈ {z ∈ R : z ≤ t+1}. This implies by the algorithm that px.Ap(r+1) ⊆ pi.Ap(r+2),

px ∈ Si ∩ Sj . Because Sj ⊆ pj.sr(ρ), for all ρ ∈ {z ∈ R : z ≤ t + 1}, and px ∈ Sj ,

we then have by the algorithm and Lemma A.4.4 that pj.Ap(r + 2)[`] must be different

than ⊥, and equal to pi.Ap(r)[`] by Lemma A.4.2.

From the previous argument, we conclude that pi.Ap(t+1) = pj.Ap(t+1). By

the algorithm, we have that pi decides upon pi.Ap(t+1) and pj decides upon pj.Ap(t+1).

Again by the algorithm, we have that pi.d = pj.d.

2

Lemma A.4.14 Let E be an execution of FFS-ROC and pi, pj be two processes in
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Alive(t + 1) such that pj ∈ pi.sr(r) for every r ∈ {z ∈ R : z ≤ t + 1}. pj.d ⊆ pi.d in

E.

Proof:

By the algorithm, once a process pj sets the value of pj.A[`] to a value different than

⊥ in a round r, for some p` ∈ Π and some 0 ≤ r ≤ t + 1, it does not change it in

subsequent rounds. If pj.Ap(t + 1)[`] 6=⊥, then there is some round ρ, 0 ≤ ρ ≤ t + 1,

such that pj.Ap(ρ)[`] 6=⊥ and for all ρ′ ∈ {z ∈ R : z ≤ ρ − 1}, pj.Ap(ρ
′)[`] =⊥. We

then have to show that for every p` ∈ Π such that pj.Ap(t + 1)[`] 6=⊥, there is some %

such that pi.Ap(%)[`] 6=⊥, % ∈ {z ∈ R : z ≤ t+ 1}.

Let p` be a process such that pj.Ap(ρ)[`] 6=⊥ and for all ρ′ ∈ {x : 0 ≤

x < ρ}, pj.Ap(ρ
′)[`] =⊥. Suppose that ρ = t + 1. This case follows directly from

Lemma A.4.12. Now suppose that ρ ≤ t. Because pj sends a message to pi in every

round by assumption, Mρ+1
i [`] must be different than ⊥, and pi.Ap(ρ+ 1)[`] = Mρ+1

i [`]

by Lemma A.4.4. We conclude that if pj.Ap(t + 1)[`] 6=⊥, for some p` ∈ Π, then

pi.Ap(t+ 1)[`] 6=⊥. By Lemma A.4.2, pi.Ap(t+ 1)[`] = pj.Ap(t+ 1)[`] = p`.a. By the

algorithm, pi decides upon pi.Ap(t+1) and pj decides upon pj.Ap(t+1). Consequently,

pj.d ⊆ pi.d.

2

Lemma A.4.15 Let E be an execution of FFS-ROC. If pi, pj , and p` decide in E, then

either pi.d = pj.d, pi.d = p`.d, or pj.d = p`.d.

Proof:

If pi, pj , and p` decide in E, then there are survivor sets Si, Sj , and S` such that Si ⊆

pi.sr(r), Sj ⊆ pj.sr(r), and S` ⊆ p`.sr(r), for all r, 0 ≤ r ≤ t + 1. By the (3,2)-

Intersection property, either Si∩Sj 6= ∅, Si∩S` 6= ∅, or Sj∩S` 6= ∅. By Lemma A.4.13,

we then have that either pi.d = pj.d, pi.d = p`.d, or pj.d = p`.d.

2

Lemma A.4.16 Let E be an execution of FFS-ROC and pi be a correct process in E.

If pj decides in E, then pj.d ⊆ pi.d.
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Proof:

By Lemma A.4.5, pi ∈ Alive(t + 1) (pi decides in E). If pj is correct, then the lemma

follows from Lemma A.4.11. Now suppose that pj fails to receive at least one message

in E. By assumption, both pi and pj decide in E. By the algorithm, pj ∈ pi.s(r) for

every r, 0 ≤ r ≤ t+1. Because pi is correct, we have that there ism from pj in pi.M(r)

for every r, 0 ≤ r ≤ t + 1. By Lemma A.4.4 and the algorithm, we then have that if

pj.Ap(r)[`] 6=⊥, for some p` ∈ Π and 0 ≤ r ≤ t, then pi.Ap(r + 1)[`] = pj.Ap(r)[`].

It remains to show that if pj.Ap(t + 1)[`] 6=⊥, and pj.Ap(r)[`] =⊥, p` ∈ Π, for every

r ∈ {z ∈ R : z ≤ t}, then pi.Ap(t+1)[`] = pj.Ap(t+1)[`]. By Lemma A.4.12, we have

that if pj.Ap(t+1)[`] 6=⊥, then pi.Ap(t+1)[`] 6=⊥. By Lemma A.4.2, pi.Ap(t+1)[`] =

pj.Ap(t+ 1)[`] = p`.a. We conclude that pj.d ⊆ pi.d.

2

Lemma A.4.17 Let E be an execution of FFS-ROC. If there are two processes pi and

pj , pi, pj ∈ Alive(t+ 1), then either pi.d ⊆ pj.d or pj.d ⊆ pi.d.

Proof:

If at least one of pi and pj is correct, then the proof follows from Lemma A.4.16. Now

suppose both pi and pj are faulty. Because both pi and pj decide in E by assumption,

there are survivor sets Si and Sj such that (Si ⊆ pi.sr(r)) ∧ (Sj ⊆ pj.sr(r)) for every

r, 0 ≤ r ≤ t + 1. If Si ∩ Sj 6= ∅, then the lemma follows because pi.d = pj.d

by Lemma A.4.13. Suppose now the contrary: Si ∩ Sj = ∅. By assumption, there

must be a survivor set Sc containing only correct processes. By the (3,2)-Intersection

property, either Si ∩ Sc 6= ∅ or Sj ∩ Sc 6= ∅. Let pc be a process in Sc. We then have

by Lemma A.4.13 that either pi and pc decide upon the same value or pj and pc decide

upon the same value. Suppose without loss of generality that pi and pc decide upon the

same value. We hence have from Lemma A.4.16 that pj.d ⊆ pi.d. This concludes the

proof of the lemma.

2

Lemma A.4.18 Let E be an execution and vals be {d : ∃pi ∈ Π : (pi.d = d)} \N . For
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every df , dc ∈ vals, df ⊆ dc, there are survivor sets Sf , Sc ∈ SΠ such that the following

properties hold: ∧
∀p ∈ Sf : ∨ p crashes

∨ p.d = df∧
∀p ∈ Sc : ∧ p.d = dc

∧ p is not faulty

Proof:

By Lemma A.4.5, Correct(E) ⊆ Alive(t + 1). By the algorithm, every non-faulty

process pc is such that pc.d[c] = pc.a. We then have that vals contains at least one value.

By Lemma A.4.15, there cannot be three different decision values, and if there are two

values d and d′, then either d ⊆ d′ or d′ ⊆ d by Lemma A.4.17. We analyze these two

cases separately.

Case 1. Suppose that vals contains a single value, say d, and df = dc = d. By

assumption, there is a survivor set S ′c such that S ′c contains only non-faulty processes. By

Lemma A.4.11, every process pi ∈ S ′c is such that pi.d = d. If we make Sc = Sf = S ′c,

then our claim holds.

Case 2. Suppose that vals contains two distinct values df and dc, df ⊆ dc. Let pi be a

process such that pi ∈ Alive(t + 1) and pi.d = df . By the algorithm, there is survivor

set Si such that Si ⊆ pi.sr(r), for every r ∈ {z ∈ R : z ≤ t + 1}. Let pj be a process

in Si. If pj ∈ Alive(t + 1), then there is an Sj ∈ SΠ such that Sj ⊆ pj.sr(r), for every

r ∈ {z ∈ R : z ≤ t + 1}. Now let S ′c be a survivor set such that S ′c ⊆ Correct(E). By

the (3,2)-Intersection property, either Sj ∩S ′c 6= ∅ or Sj ∩Si 6= ∅. Note that Si∩S ′c must

be empty, otherwise pi.d = dc according to Lemma A.4.13, contradicting our initial

assumption.
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If Sj ∩ S ′c 6= ∅, then by Lemma A.4.13 we have that pj.d = dc because

pj.d = pc.d for every pc ∈ S ′c (Lemma A.4.13) and pc.d, pc ∈ S ′c, must be equal to dc

(Lemma A.4.16). By Lemma A.4.14, however, we have that pj.d ⊆ pi.d. This implies

that pi.d = dc, again contradicting our initial assumption. It therefore must be the case

that Si ∩ Sj is not empty. By Lemma A.4.13, we have that pi.d = pj.d = df .

Now suppose that pj 6∈ Alive(t + 1). We then have that pj crashes in E, and

pj.d = N . We therefore have that pj ∈ Si either decides upon df or crashes in E.

It remains to show the second part of the properties in the statement of the

lemma. By Lemma A.4.16, every correct process must decide upon dc. Thus, every

process pc in S is such that pc.d = dc in E.

To conclude, if we make Sf = Si and Sc = S ′c, then our claim holds.

2

Lemma A.4.19 Let E be an execution of FFS-ROC such that there are survivor sets

Sf , Sc ∈ SΠ and values vf , vc ∈ V , vf 6= vc, such that the following holds:∧
∀p ∈ Sf : p.a ∈ {vf ,⊥}∧
∀p ∈ Sc : p.a = vc∧
∀p ∈ Sc : p is not faulty

If exists pi, p` ∈ Π such that pi.d[`] = vf , then for all pj ∈ Alive(t + 1),

vf ∈ pj.d.

Proof:

Suppose that pi.d[`] = vf , for some pi, p` ∈ Π. By the algorithm, if a process pj does not

crash or stop in an execution of FFS-ROC, then there is some survivor set Sj such that

Sj ⊆ pj.sr(r) for every r ∈ {z ∈ R : z ≤ t+1}. Sf and Sc must be disjoint, otherwise

there is some process with two different initial values. By the (3,2)-Intersection property,

either Sj∩Sf 6= ∅ or Sj∩Sc 6= ∅. If Sj∩Sf 6= ∅, then pj.Ap(r)[`] = M r
j [`] = p`.a = vf

(Lemma A.4.4, Lemma A.4.3, and the algorithm). We then have by the algorithm that

pj.Ap(t+ 1)[`] = pj.d[`] = p`.a = vf .
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If Sj ∩ Sc 6= ∅, then pj.d = pc.d by Lemma A.4.13, for every pc ∈ Sc. By

Lemma A.4.16, pi.d ⊆ pc.d for every non-faulty pc. That is, we have that pc.d[`] =

pi.d[`] = vf . We then have that pj.d[`] = pc.d[`] = p`.a = vf . This concludes the proof

of the lemma.

2

Theorem A.4.20 Algorithm FFS-ROC satisfies Termination.

Proof:

This is straightforward from the algorithm: every process that does not crash in an

execution of FFS-ROC decides in round t+ 1.

2

Theorem A.4.21 Algorithm FFS-ROC satisfies Agreement.

Proof:

By Lemma A.4.16, if a process pi decides in E, then pi.d ⊆ pc.d for every non-faulty

pc. This implies that for every p` such that pi.d[`] 6=⊥, we have that pc.d[`] = pi.d[`] for

every non-faulty pc.

2

Theorem A.4.22 Algorithm FFS-ROC satisfies RO Uniformity.

Proof:

By Lemma A.4.5, every correct process decides in E. By the algorithm, for every non-

faulty process pc, pc.d[c] = pc.a. Thus, there must be at least one non-N decision value.

By Lemma A.4.15, there cannot be three processes in an execution of FFS-ROC such

that each process decides upon a different value. This shows the first statement of the

property: 1 ≤ |vals| ≤ 2, where vals = {d : ∃pi ∈ Π s.t. (pi.d = d)} \ N in any

execution of FFS-ROC. The second statement follows directly from Lemma A.4.17.

The third statement follows directly from Lemma A.4.18.

2
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Theorem A.4.23 Algorithm FFS-ROC satisfies Validity.

Proof:

If pi ∈ Alive(t + 1) in some execution E of FFS-ROC, then by Lemmas A.4.5

and A.4.16 pi.d ⊆ pc.d, for every pc ∈ Correct(E). By the algorithm, pi.d[i] must

be equal to pi.a. We consequently have that pc.d[i] must be equal to pi.a. This proves

the first statement in the specification of validity.

If pi crashes in an execution E of FFS-ROC, then by Lemmas A.4.2

and A.4.11 either pc.d[i] =⊥ or pc.d[i] = pi.a, for every pc ∈ Correct(E). This shows

the second statement in the definition of validity. The third statement follows directly

from Lemma A.4.19.

2

With Theorems A.4.20, A.4.21, A.4.22, and A.4.23, we show that FFS-ROC

implements the four RO consensus properties, thereby showing Proposition A.4.1.

A.5 Correctness of FFS-WLE

Algorithm FFS-WLE proceeds in iterations of an infinite repeat loop. In each

iteration, processes execute two phases, and in each phase a process participates in the

execution of an algorithm that implements RO consensus. For the following description,

we assume that such an algorithm is FFS-ROC. As shown in Figure A.2, a process that

does not crash in an execution of FFS-WLE executes infinitely many iterations of the

repeat loop. According to our system model, we split an execution of an algorithm into

rounds. We further number the iterations of an execution of FFS-WLE and assume that

round numbers map to iteration numbers. That is, there is a mapping Iteration : R→ I,

where R is the set of round numbers as before, and I = Z∗ is the set of iteration

numbers. In addition, we assume that iteration numbers increase monotonically with

round numbers, and the number of rounds executed in an iteration is fixed, being a

function of the number of rounds in an execution of FFS-ROC.4 For the purpose of the
4Because there are infinitely many executions of FFS-ROC in an execution of FFS-WLE and round numbers

monotonically increase with time, the round numbers in the pseudocode for FFS-ROC are relative to the first round
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proofs that follow, we only need to assume that each phase executes at least two rounds.

Note that FFS-ROC requires t + 1 rounds, and t + 1 ≥ 2 if t ≥ 1. We therefore have

that each phase must have at least two rounds, assuming systems in which processes can

fail. In fact, because processes can fail by crashing and we assume cores and survivor

sets to characterize valid sets of faulty processes, we can use the same argument of

Section 3.3.2 to show that t+ 1 is a lower bound on the number of rounds.

According to the discussion in the previous paragraph, we associate an itera-

tion number with each iteration of the algorithm in an execution. In the following, we

use iteration numbers to refer to iterations of the repeat loop. In proving the correctness

of FFS-WLE, we also use the following definitions:

• valsi, i ∈ {1, 2} is the set {d : pi.d = d∧ pi ∈ Π} \N after executing FFS-ROC

in phase i of some iteration ζ , ζ ∈ I;

• a process pi finishes a phase ρ ∈ {1, 2} of some iteration ζ in an execution E if it

neither stops nor crashes before executing the last step of that phase;

• A process pi starts phase x ∈ {1, 2} of an iteration ζ at time τ if pi executes at

least one step of phase x of ζ and the first step s of pi in phase x of ζ is such that

Time(s) = τ .

As in Section A.3, we assume that FFS-WLE uses a system profile

〈Π, CΠ,SΠ〉 and that this profile satisfies (3,2)-Intersection.

Now we prove the following proposition.

Proposition A.5.1 FFS-WLE implements Safety, LE-Liveness, and FF-Stability.

We show proposition A.5.1 with the following set of theorems, each one prov-

ing a property of weak leader election.

Theorem A.5.2 Algorithm FFS-WLE satisfies Safety.

in which an execution of FFS-ROC starts.
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Proof:

Let E be an execution of FFS-WLE. We have to show that |{pi ∈ Π : pi.elected}| < 2

for every τ ∈ T . First, we show that in an iteration of E, at most one process is elected.

By the RO uniformity property of RO consensus, there is at least one decision value and

at most two different decision values as a result of phase 1. That is, 1 ≤ |vals1| ≤ 2.

Suppose |vals1| = 1. By the algorithm, every process pi that finishes phase 2 uses a list

x in its decision value pi.d, where x has the minimum number of non-⊥ values among

all lists in pi.d. x must be the initial value of some process by validity. By assumption,

there is a single initial value in phase 2, and consequently pi.d[j] ∈ {x,⊥}, for every

pj ∈ Π, implying that no two distinct processes that finish phase 2 can be elected.

Now suppose that |vals1| = 2. From RO uniformity, we have that there are

values d1, d2 ∈ vals1 and S1, S2 ∈ SΠ such that:

∧ ∀p ∈ S1 : ∨ p crashes

∨ p.d = d1

∧ ∀p ∈ S2 : ∧ p.d = d2

∧ p is not faulty

By the algorithm, a process that finishes phase 1 of an iteration executes FFS-

ROC once more in phase 2 with its decision value of the previous phase as its initial

value. If the above properties hold, then the only processes in S1 that do not have d1 as

initial value are the ones that crash before phase 2 starts. Let’s call this set Crash1. By

validity, if some process pi decides upon a value pi.d such that d1 ∈ pi.d, then every

process pj that finishes phase 2 is such that d1 ∈ pj.d. We then again have that there is a

single process that can be elected because every process that finishes phase 2 has d1 in

its decision value and d1 ⊆ d2 by agreement.

It remains to show that if pi is elected in iteration ζ , and pj is elected in it-

eration ζ ′, and ζ > ζ′, then there is no τ ∈ T such that both pi.elected and pj.elected

are true at time τ . By the algorithm, every process that starts the execution of phase 1

in an iteration, first sets its flag elected to false. If the iteration is the first of E, then
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pj cannot be elected in a previous iteration, and the hypothesis is vacuously true. Now

suppose an iteration ζ > 0. By assumption, every process that executes a phase of an

iteration ζ executes at least two rounds. By P-liveness, no process can start a new round

r + 1, r ≥ 0, without having every other alive process executing at least one step of r.

If a process pi starts phase 2 of an iteration at time τ , then every process that has not

crashed by τ must have executed at least one step of round zero of FFS-ROC at phase 1

of ζ . Otherwise, there is a non-crashed process pj such that pi executes the first step of a

round r+ 1 of FFS-ROC whereas pj has not executed any steps of r. This implies that

no process can finish phase 2 of an iteration without having all non-crashed processes

setting elected to false.

This concludes the proof of the theorem.

2

Theorem A.5.3 Algorithm FFS-WLE satisfies LE-Liveness.

Proof:

We have to show that for every execution E of FFS-WLE and for every τ ∈ T , there is

some iteration after τ such that |{pi ∈ Π : pi.elected}| > 1.

Proof by contradiction. Suppose an execution E of FFS-WLE and a time

τ ∈ T such that pi.elected is false forever after τ for every pi. By validity and RO

uniformity, in every iteration ζ of E, ζ ∈ I, there is a value v ∈ vals1 such that v is the

list with the least number of non-⊥ values, and for every process pi that finishes phase 2

of iteration ζ , v ∈ pi.d. Every process that finishes phase 2 of iteration ζ selects the same

value i as the first index of v mapping to a value in v with a non-⊥ value. If process pi

evaluates the last “if” statement of phase 2, then it sets pi.elected to true. If pi crashes,

however, then it does not set pi.elected to true, and no process is elected in iteration ζ .

By the assumption that all failures are benign, crashing (or stopping which is equivalent

to crashing in our model) is the only possibility for having no process elected in an

iteration ζ . By the assumption that t (|Π| subtracted the size of the smallest survivor set)

is the largest number of processes that can crash in E, there can be at most t iterations
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after τ such that |{pi ∈ Π : pi.elected}| = 0.

2

Theorem A.5.4 Algorithm FFS-WLE satisfies FF-Stability.

Proof:

Suppose E is a failure-free execution and ζ is an iteration of E. By agreement, every

process decides upon the same value in both phases of iteration ζ . We then have that

every process pi uses the same value x to determine whether it sets pi.elected to true

in E. Moreover, we have that x[i] = pi for every i, by validity. Assuming that Π =

{p1, p2, . . . , pn}, we have by the algorithm that p1 sets p1.elected to true at phase 2 of ζ .

2

A.6 Adding E-Stability

FFS-WLE allows for executions in which two or more processes are elected

infinitely often. Such behavior, however, is not desirable. As leadership moves from

one process to another, the responsibility of accomplishing the tasks of a leader also

moves. Recall that the original motivation is to embed such a Leader Election algorithm

into a primary-backup protocol. This oscillation causes unnecessary overhead such as

requests being forwarded to the correct Primary or even system instabilities if changes

occur too frequently.

We now show how to modify FFS-WLE (and FFS-ROC) to also satisfy E-

stability. We call WLE the modified version of FFS-WLE, and ROC the modified

version of FFS-ROC to distinguish between the previous versions and the modified

versions.

First, instead of initializing pi.s(0) to Π, as in FFS-ROC , pi.s(0) is initialized

to a parameter pi.Procs. We also roll forward the value of pi.s(t + 1) in FFS-WLE

instead of having pi.s(0) constant as in FFS-ROC. That is, in an iteration ζ > 0, pi.s(0)
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in phase 1 is pi.s(t + 1) in phase 2 of iteration ζ − 1. If ζ = 0, then pi.s(0) in phase

1 is Π. For the initial value of pi.s(0) in phase 2, we use pi.s(t + 1) of phase 1 of

the same iteration. For clarity, we repeat the pseudocode for these algorithms with the

respective modifications in Figures A.4 and A.5. Note that the main modifications in

ROC are: 1) ROC has two parameters instead of one; 2) in round 1, pi checks whether

pi.s(1) ⊆ pi.s(0). WLE is different from FFS-WLE by initializing pi.Procs to Π and

by rolling pi.s(t+ 1) forward.

It is straightforward to see that the proof of Section A.4 is valid for ROC if

the following constraint holds for every execution E of ROC: if pc ∈ Correct(E) and

pi ∈ Π is a process in pc.s(1), then pi ∈ pc.Procs. That is, pc.Procs must contain all

the processes that send messages to pc in round zero if pc is not faulty. Otherwise, pc

can falsely detect that it is faulty, and stop, violating validity. Lemma A.4.5 states that

correct processes do not stop, and hence the proof changes with the modification to the

algorithm. The change is small, however. It consists in modifying the base case of the

inductive argument to show that no correct process pc stops in round 1 if pc.s(0) contains

all the processes that send messages to pc in round zero (0).

If pf is faulty, then there are no restrictions on the input pf .Procs. Intuitively,

a faulty process pf .Procs can receive any subset of processes sent to it. Consequently,

it is not possible to impose a similar constraint as we did for correct processes. Differ-

ent from correct processes, if a faulty process stops, it does not violate any of the RO

consensus properties.

According to the modifications described previously, pi.Procs is the set of

processes from which pi receives a message in the last round of the previous execution

of ROC (Π if it is the execution of ROC in phase 1 of iteration 0). By assumption

and by the algorithm, once a process crashes (or stops) it never sends messages again

in an execution of WLE. Thus, if pc is a correct process, then pc.Procs must contain all

the processes that pc receives messages from in an execution of ROC, satisfying our

constraint on pc.Procs for correct processes.

Because the proofs of Theorems A.5.2 and A.5.3 rely solely on the properties
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Algorithm ROC on input pi.a, pi.Procs
round 0:

pi.s(0)← pi.Procs; pi.sr(0)← pi.s(0)
pi.A [i]← pi.a
for all pk ∈ Π, pk 6= pi : pi.A [i]← ⊥
pi.Ap(0)← pi.A
send pi.A to all

round 1:
pi.sr(1)← pi.s(1)
if ∨pi.s(1) 6⊆ pi.s(0)
∨ 6 ∃S ∈ SΠ : S ⊆ pi.sr(1)

then decide [⊥, . . . ,⊥]
else for each message m ∈ pi.M(1), pk ∈ Π:

if (pi.A [k] = ⊥) pi.A [k]← m.A [k]
pi.Ap(1)← pi.A
send pi.A to all

round r: 2 ≤ r ≤ t:
pi.sr(r)← pi.s(r) \ {pj : ∃m ∈ pi.M(r) :

pi.Ap(r − 2) 6⊆ m.A ∧m.from = pj}
if ∨pi.s(r) 6⊆ pi.s(r − 1)
∨ 6 ∃S ∈ SΠ : S ⊆ pi.sr(r)

then decide [⊥, ...,⊥]
else for each message m ∈ pi.M(r), pk ∈ Π:

if (pi.A [k] = ⊥) pi.A [k]← m.A [k]
pi.Ap(r)← pi.A
send pi.A to all

round t + 1:
pi.sr(t + 1)← pi.s(t + 1) \ {pj : ∃m ∈ pi.M(t + 1) :

pi.Ap(t− 1) 6⊆ m.A ∧m.from = pj}
if ∨ pi.s(t + 1) 6⊆ pi.s(t)
∨ 6 ∃S ∈ SΠ : S ⊆ pi.sr(t + 1)

then decide [⊥, ...,⊥]
else for each message m ∈ pi.M(t + 1), pk ∈ Π:

if (pi.A [k] = ⊥) pi.A[k]← m.A[k]
pi.Ap(t + 1)← pi.A
decide pi.A

Figure A.4: ROC: Algorithm run by process pi.
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Algorithm WLE
P ← Π
repeat {
pi.elected← FALSE
Phase 1:

Run ROC with
pi.a← i; pi.Procs← P .

P ← pi.s(t + 1)
if (pi.d = [⊥, . . . ,⊥]) then stop

Phase 2:
Run ROC with

pi.a← pi.d from Phase 1; pi.Procs← P .
P ← pi.s(t + 1)
if (pi.d = [⊥, . . . ,⊥]) then stop
let x be a value of pi.d [1 . . . n]

such that pi.d [x] 6= [⊥, . . . ,⊥]
and it has the least number of non-⊥ values

if (pi is the first index of x such that x[i] 6= ⊥)
then pi.elected← TRUE

}

Figure A.5: WLE: Algorithm run by process pi.

of RO consensus, we also have that these proofs hold for WLE. It remains to show that

WLE satisfies E-stability. First, we present a few definitions to be used in the proof of

E-stability. By Theorem A.5.2, in every iteration ζ of an execution E of WLE it is the

case that either one process pi is such that pi.elected evaluates to true at the end of ζ

or no process pi is such that pi.elected evaluates to true at the end of ζ . We then use

Leader(ζ, E) to denote the process pi, pi.elected evaluates to true at the end of iteration

ζ of E, or ⊥ if no such process exists. Finally, we need some terminology to refer

to values that processes decide across iterations and in the two different phases of an

iteration. We then use Dρ
ζ (i) to denote pi.d at the end of phase ρ ∈ {1, 2} of iteration ζ .

Proposition A.6.1 WLE implements weak leader election.

With Theorems A.5.2, A.5.3, and A.5.4, we showed that WLE satisfies Sta-

bility, LE-liveness, and FF-stability. It remains to show E-stability. Before we show our

main result of this section, we state and prove a few preliminary lemmas.

Lemma A.6.2 Let E be an execution of WLE. For every iteration ζ of WLE, if pi fin-

ishes phase 1 of both ζ and ζ + 1, then D1
ζ+1(i) ⊆ D1

ζ(i).
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Proof:

Proof by contradiction. Suppose that there is an iteration ζ such that the assertion

D1
ζ+1(i) ⊆ D1

ζ(i) is false. This implies that there is some process p`, ` 6= i, for which

D1
ζ+1(i)[`] 6=⊥ and D1

ζ(i)[`] =⊥. By Lemma A.4.10, in the execution of ROC in phase

1 of iteration ζ + 1, there is a chain ω` such that ω`[r] = i, r > 0. By assumption, for

every process pj such that ω`[ρ] = j, ρ ∈ {z ∈ R : 1 ≤ z ≤ r}, pj′ must be in pj.Procs,

where ω`[ρ−1] = j′, otherwise the process with identifier ω`[ρ], ρ ≤ r, stops in round ρ.

Now suppose that ω`[1] = j. By the algorithm, pj.sr(r) contains some sur-

vivor set Sj , for every round r ∈ {z ∈ R : z ≤ t + 1} of the execution of ROC in

iteration ζ . Also, there is such a survivor set Si for pi, and there is some survivor set Sc

such that Sc ⊆ Correct(E). By (3,2)-Intersection, Si either intersects Sj or intersects

Sc. If Si intersects Sj , then by Lemma A.4.13, D1
ζ(i)[`] 6=⊥, contradicting our initial

assumption. If Si intersects Sc, then by Lemma A.4.14 D2
ζ(c) ⊆ D2

ζ(i), for some non-

faulty pc ∈ Correct(E). By agreement, D2
ζ(c)[`] 6=⊥, and consequently D1

ζ(i)[`] 6=⊥,

again contradicting our initial assumption.

This completes the proof of the lemma.

2

Lemma A.6.3 Let E be an execution of WLE and ζ be an iteration of E . No process

is elected in ζ only if some process crashes or stops in ζ .

Proof:

By RO uniformity, we have that 1 ≤ valsi ≤ 2, i ∈ {1, 2}. By validity and RO unifor-

mity, there is some value d in vals1 such that d ∈ pi.d for every process pi that finishes

phase 2 of iteration ζ , and d contains the least number of non-⊥ values. Because d 6= N ,

there must be a process pe such that e is the smallest index of d such that d[e] 6=⊥. We

then have that pe sets pe.elected to true unless pe crashes. Thus, if Leader(ζ, E) =⊥,

then pe must crash or stop in ζ .

2

Lemma A.6.4 Let E be an execution of WLE, ζ and ζ ′ be iterations of E, ζ + 1 < ζ ′,
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such that Leader(ζ, E) = Leader(ζ ′, E) = pe. If Leader(ζ + 1, E) = pe′ , e 6= e′, then

there is a process pi that crashes or stops in some iteration ζ ′′, ζ ≤ ζ ′′ ≤ ζ ′.

Proof:

If pe is elected in iteration ζ of E, then there is a value d in vals1 of ζ such that e is the

smallest index of d with a non-⊥ value, and d ∈ D2
ζ(e). Now if pe′ is elected in iteration

ζ + 1, then there is a value d′ in vals1 of ζ + 1 such that e′ is the smallest index of d′

with a non-⊥ value, and d′ ∈ D2
ζ(e

′). By assumption, pe is elected again in iteration ζ ′.

As before, there must be a value d′′ in vals1 of ζ ′ such that e is the smallest index of d′′

with a non-⊥ value.

There are two possibilities regarding the identifiers e and e′: 1) e′ < e; 2)

e < e′. If e′ < e, then there must be a second value dc in vals1 of ζ such that d ⊆ dc

(by assumption, pe has not crashed by iteration ζ ′ > ζ + 1; by validity, every non-

faulty process pc is such that pe.a ∈ pc.d). Let pi be a process such that D1
ζ(i) = d.

Suppose by way of contradiction that pi finishes phase 2 of ζ + 1. By Lemma A.6.2,

D1
ζ+1(i) ⊆ D1

ζ(i), and D1
ζ+1(i)[e

′] =⊥. By validity, there is some pc ∈ Correct(E) such

thatD1
ζ+1(c)[e

′] 6=⊥. Note that pe′ does not crash or stop in iteration ζ+1 or in a previous

iteration. By RO uniformity, D1
ζ+1(i) ⊆ D1

ζ+1(c) = d′. By RO uniformity and validity,

D1
ζ+1(i) must be the value used by every process that completes phase 2 of iteration ζ+1

to determine whether it elects itself or not. Since e′ is not the smallest index of D1
ζ+1(i)

that evaluates to a non-⊥ value, pe′ is not elected in ζ + 1. This contradicts our initial

assumption. We hence have that pi must crash or stop by iteration ζ + 1.

Now if e < e′, then d′[e] =⊥ by assumption (e′ is the smallest index in d′

with a non-⊥ value). We use a similar argument as in the first case. Suppose by way

of contradiction that pe′ finishes phase 2 of ζ ′. By Lemma A.6.2, D1
ζ′(e

′) ⊆ D1
ζ+1(e

′),

and D1
ζ′(e

′)[e] =⊥. By validity, there is some pc ∈ Correct(E) such that D1
ζ′(c)[e] 6=⊥.

Note that pe does not crash or stop in iteration ζ ′ or in a previous iteration. By RO

uniformity, D1
ζ′(e

′) ⊆ D1
ζ′(c) = d′′. By RO uniformity and validity, D1

ζ′(e
′) must be the

value used by every process that completes phase 2 of iteration ζ ′ to determine whether
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it elects itself or not. Since e is not the smallest index ofD1
ζ′(i) that evaluates to a non-⊥

value, pe is not elected in ζ ′. This contradicts our initial assumption. We conclude that

pe is not elected in ζ ′ unless pe′ crashes or stops by iteration ζ ′.

Finally, we have that either pe′ crashes or stops by iteration ζ ′ or some faulty

process pi crashes or stops by iteration ζ + 1. This concludes the proof of the lemma.

2

Theorem A.6.5 WLE satisfies E-Stability.

Proof:

Let E be an execution of WLE. By LE-liveness, infinitely often some process is elected

in E. By Lemma A.6.3, an iteration ζ has no leader elected only if some process crashes

in ζ , and by assumption there is a finite number of processes that crash or stop. Thus,

there is a bounded number of iterations that have no leader elected.

Let t be a time such that every iteration that starts after t has a leader elected.

Such a t exists by the previous argument. We then have that every iteration that starts

after t has a leader elected, and it remains to show that there is some t′ ≥ t and some

process pe such that for every iteration ζ that starts after t′, pe is elected in both ζ and

ζ + 1. Suppose by way of contradiction that there is no such t′ in E. Let pe be a process

that is elected infinitely often after t′. Such a process must exist because the set of

processes is finite. By assumption, there is an infinite sequence of iterations ζ1 < ζ2 <

ζ3 . . ., which are not necessarily consecutive, such that pe is elected in ζi but not in ζi+1.

By Lemma A.6.4, for every i ∈ Z+, there is an iteration ζ , ζi ≤ ζ ≤ ζi+1, such that

some process crashes or stops in ζ . By assumption, the number of processes crashing

or stopping is bounded. Consequently, there cannot be such an infinite sequence. We

conclude that there must be some t′ ≥ t and some process pe such that for every iteration

ζ that starts after t′, pe is elected in both ζ and ζ + 1.

2
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A.7 Discussion

Developing a primary-backup protocol that uses WLE is future work. We

can, however, make a few observations regarding the use of an algorithm as WLE to

elect primaries in a primary-backup protocol. As mentioned previously, WLE enables

faulty processes to be elected. In a primary-backup system, this feature impacts liveness,

although not correctness. Often, there is a time bound on the replies to client requests,

and it is impossible to meet such bounds if the primary can be faulty. An immediate

consequence of electing faulty processes is that service time is not bounded during the

period of time a faulty process remains as the primary. As discussed before, processes

that commit failures (but do not stop or crash) are detected. In practice, we rely on an

off-line mechanism to detect these anomalies and take the appropriate measures that can

be, for example, to remove faulty processes from the system.

It is possible, however, that faulty processes go through an iteration of WLE

undetected as such, and fail to reply to client requests due to receive-omission failures.

To solve this problem, we can require clients to broadcast requests to all the replicas and

the primary to broadcast replies to all the backup replicas as well. Correct processes are

also capable of detecting failures in such cases, although they may not be able to “warn”

the faulty primary that it is actually faulty. Recall that failure detection for omission

failures requires twofold replication.

Finally, the iterations of the repeat loop of WLE are consecutive without any

delay in between for expositional purposes. In practice, iterations should be delayed

until failures are detected, they are manually triggered, or, if none of these are desirable

or possible, some time threshold is reached.

A.8 Conclusions

We presented in this chapter a weaker version of the Leader Election problem

and an algorithm that solves this problem. This version of the problem, unlike the
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traditional definition of Leader Election, enables faulty processes to be elected. The

main advantage of enabling it is requiring a lower degree of replication.

There are other interesting features of the WLE algorithm. First, it uses cores

and survivor sets instead of a threshold. This approach enables a more flexible charac-

terization of systems with a heterogeneous set of processes. Second, it uses an unusual

type of Intersection property, i.e., (3,2)-Intersection. This property generalizes a degree

of replication of the form n > b3t/2c, where t is the threshold on the number of fail-

ures in any execution. Finally, correct processes are able to detect faulty processes. By

Lemma A.4.16, non-crashed faulty processes decide upon lists with fewer values, and

one can build an alarm system by collecting decision values by the end of every iteration.

Although we have not thoroughly investigated using WLE to implement

primary-backup protocols, we believe our algorithm provides practical benefits com-

pared to previous solutions.



Appendix B

SyncCrash specification in TLA+

MODULE SyncCrashConsensusED
EXTENDS FiniteSets, Naturals, TLC

CONSTANTS V , Values
I , Initial values
P , Set of processes
Cores, Set of cores
NULL Default value

VARIABLES CurrentRound ,

MsgsToSend ,

Faulty ,

Silent ,
PV ,

SentMsgs,
SentDecs,
CompletedRecv ,

Completed ,

Decision

ASSUME ∧ ∀C ∈ Cores : C ∈ SUBSET P
∧ I ∈ [P → V ]
∧NULL /∈ V

MinCore ∆= CHOOSE C ∈ Cores : ∧ ∀D ∈ Cores : Cardinality(D) ≥ Cardinality(C )

Rounds ∆= 0 . . (Cardinality(MinCore) + 1)

Correct ∆= P \Faulty
Msgs ∆= [from : P , to : P , vals : [P → V ∪ {NULL}], r : Rounds]
DecMsgs ∆= [from : P , to : P , v : V ]

RoundMsgs(p, r) ∆= {m ∈ SentMsgs : m.to = p ∧m.r = r}
RoundValues(p, r) ∆= [q ∈ P 7→

258
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IF PV [p][q ] 6= NULL
THEN PV [p][q ]
ELSE

IF ∃m ∈ RoundMsgs(p, r) : m.vals[q ] 6= NULL
THEN CHOOSE v ∈ {u ∈ V :

∃m ∈ RoundMsgs(p, r) :
m.vals[q ] = u} : TRUE

ELSE NULL]
DecisionValue(p, Values) ∆= CHOOSE v ∈ V : ∃ q ∈ P : Values[p][q ] = v

E (p, r) ∆= P \ {q ∈ P : ∃m ∈ SentMsgs : m.r = r ∧m.from = q ∧m.to = p}

SCCEDTypeOK ∆= ∧ CurrentRound ∈ Rounds
∧MsgsToSend ∈ [P → SUBSET Msgs]
∧ Faulty ∈ SUBSET P
∧ Silent ∈ [P → BOOLEAN ]
∧ PV ∈ [P → [P → V ∪ {NULL}]]
∧ SentMsgs ∈ SUBSET Msgs
∧ SentDecs ∈ SUBSET DecMsgs
∧ CompletedRecv ∈ [P → Rounds]
∧ Completed ∈ [P → Rounds]
∧Decision ∈ [P → V ∪ {NULL}]

SCCEDInit ∆= ∧ CurrentRound = 0
∧ Faulty = {}
∧ Silent = [p ∈ P 7→ FALSE]
∧ PV = [p ∈ P 7→ [q ∈ P 7→ IF q = p THEN I [p] ELSE NULL]]
∧ SentMsgs = {}
∧ SentDecs = {}
∧MsgsToSend = [p ∈ P 7→

{[from 7→ p, to 7→ q ,

vals 7→ [tp ∈ P 7→
IF tp = p
THEN I [p]
ELSE NULL],

r 7→ 0] :
q ∈ P}]

∧ CompletedRecv = [p ∈ P 7→ 0]
∧ Completed = [p ∈ P 7→ 0]
∧Decision = [p ∈ P 7→ NULL]

Fail(p) ∆= ∧ ∀C ∈ Cores : ∃ q ∈ (Correct \ {p}) : q ∈ C
∧ Faulty ′ = Faulty ∪ {p}
∧ UNCHANGED 〈CurrentRound , MsgsToSend , Silent , PV ,

SentMsgs, SentDecs, CompletedRecv , Completed ,

Decision〉

NextRound ∆= ∧ ∀ p ∈ P : Completed [p] = CurrentRound
∧ CurrentRound ′ = (CurrentRound + 1)
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∧ UNCHANGED 〈MsgsToSend , Faulty , Silent , PV , SentMsgs,
SentDecs, CompletedRecv , Completed ,

Decision〉

Send(p) ∆= ∧ CurrentRound < Cardinality(MinCore)
∧ p ∈ MinCore
∧ CompletedRecv [p] = CurrentRound
∧MsgsToSend ′ = [MsgsToSend EXCEPT ![p] = {}]
∧ Completed ′ = [Completed EXCEPT ![p] = CurrentRound ]
∧ IF p ∈ Correct

THEN ∧ SentMsgs ′ = SentMsgs ∪MsgsToSend [p]
∧ Silent ′ = Silent

ELSE IF Silent [p]
THEN ( ∧ SentMsgs ′ = SentMsgs

∧ Silent ′ = Silent)
ELSE ( ∧ ∃TMsgs ∈ SUBSET MsgsToSend [p] :

∧ ((∃ q ∈ (P \MinCore) :
∃m ∈ TMsgs : m.to = q)⇒
(∀ q ∈ MinCore : ∃m ∈ TMsgs :

m.to = q))
∧ SentMsgs ′ = SentMsgs ∪ TMsgs
∧ Silent ′ = [Silent EXCEPT ![p] = TRUE])

∧ UNCHANGED 〈CurrentRound , Faulty , PV , SentDecs, CompletedRecv ,

Decision〉

Recv(p) ∆= LET ToSend ∆= {[from 7→ p,

to 7→ q ,

vals 7→ RoundValues(p, CurrentRound − 1),
r 7→ CurrentRound ] : q ∈ P}

IN

∧ CompletedRecv [p] = CurrentRound − 1
∧ CompletedRecv ′ = [CompletedRecv EXCEPT ![p] = CurrentRound ]
∧ IF ((p ∈ (P \MinCore)) ∧ (CurrentRound < Cardinality(MinCore)))

THEN Completed ′ = [Completed EXCEPT ![p] = CurrentRound ]
ELSE Completed ′ = Completed

∧ PV ′ = [PV EXCEPT ![p] =
RoundValues(p, CurrentRound − 1)]

∧MsgsToSend ′ = [MsgsToSend EXCEPT ![p] = ToSend ]
∧ UNCHANGED 〈CurrentRound , Faulty , Silent ,

SentMsgs, SentDecs, Decision〉

Decide(p) ∆= ∧ (CurrentRound = Cardinality(MinCore))
∧ p ∈ Correct
∧ CompletedRecv [p] = CurrentRound
∧ Completed ′ = [Completed EXCEPT ![p] = CurrentRound ]
∧ PV ′ = [PV EXCEPT ![p] =

RoundValues(p, CurrentRound − 1)]
∧Decision ′ = [Decision EXCEPT ![p] =

DecisionValue(p, PV ′)]



261

∧ UNCHANGED 〈CurrentRound , MsgsToSend , Faulty ,

CompletedRecv , Silent , SentMsgs,
SentDecs〉

EarlyDecide(p) ∆= LET ToSendDecs(values) ∆= {[from 7→ p,

to 7→ q ,

v 7→ DecisionValue(p, values)] :
q ∈ P}

IN

∧Decision[p] 6= NULL
∧ CurrentRound > 0
∧ CurrentRound < Cardinality(MinCore)
∧ E (p, CurrentRound) = E (p, CurrentRound − 1)
∧ CompletedRecv ′ = [CompletedRecv EXCEPT ![p] = CurrentRound ]
∧ Completed ′ = [Completed EXCEPT ![p] = CurrentRound ]
∧ PV ′ = [PV EXCEPT ![p] =

RoundValues(p, CurrentRound − 1)]
∧Decision ′ = [Decision EXCEPT ![p] =

DecisionValue(p, PV ′)]
∧ IF p ∈ Faulty

THEN ∃TMsgs ∈ ToSendDecs(PV ′) :
SentDecs ′ = SentDecs ∪ TMsgs

ELSE SentDecs ′ = SentDecs ∪ ToSendDecs(PV ′)
∧ Silent ′ = [Silent EXCEPT ![p] = TRUE]
∧ UNCHANGED 〈CurrentRound , MsgsToSend , Faulty , SentMsgs〉

RecvDec(p) ∆= LET ToSendDecs(v) ∆= {[from 7→ p, to 7→ q , v 7→ v ] : q ∈ P}
IN

∧Decision[p] 6= NULL
∧ Completed [p] = CurrentRound − 1
∧ CompletedRecv ′ = [CompletedRecv EXCEPT ![p] = CurrentRound ]
∧ Completed ′ = [Completed EXCEPT ![p] = CurrentRound ]
∧ ∃m ∈ SentDecs : ∧m.to = p

∧Decision ′ = [Decision EXCEPT ![p] = m.v ]
∧ IF p ∈ Faulty

THEN ∃TMsgs ∈ ToSendDecs(m.v) :
SentDecs ′ = SentDecs ∪ TMsgs

ELSE SentDecs ′ =
SentDecs ∪ ToSendDecs(m.v)

∧ Silent ′ = [Silent EXCEPT ![p] = TRUE]
∧ UNCHANGED 〈CurrentRound , MsgsToSend , Faulty , SentMsgs〉

SCCEDStep ∆= ∨NextRound
∨ ∃ p ∈ P :

∨ Send(p)
∨ IF (∃m ∈ SentDecs : m.to = p)

THEN RecvDec(p)
ELSE IF (E (p, CurrentRound) = E (p, CurrentRound − 1))

THEN EarlyDecide(p)
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ELSE Recv(p)
∨Decide(p)
∨ Fail(p)

vars ∆= 〈CurrentRound , MsgsToSend , Faulty , Silent , PV , SentMsgs,
SentDecs, CompletedRecv , Completed , Decision〉

SCCEDSpec ∆= SCCEDInit ∧2[SCCEDStep]vars

Termination ∆= ∨ CurrentRound < Cardinality(MinCore) + 1
∨ ∀ p ∈ Correct : Decision[p] 6= NULL

Agreement ∆= ∃ v ∈ V : ∀ p ∈ P : Decision[p] = v ∨Decision[p] = NULL
Validity ∆= ∀ p ∈ P : ∨Decision[p] = NULL

∨ ∃ q ∈ P : Decision[p] = I [q ]
Safety ∆= Agreement ∧Validity
Liveness ∆= Termination

THEOREM SCCEDSpec ⇒ 2SCCEDTypeOK



Appendix C

SyncByz specification in TLA+

MODULE SyncByzConsensus
EXTENDS FiniteSets, Naturals, Sequences, TLC

CONSTANTS V , Values
I , Initial values
P , Set of processes
SurvivorSets, Set of cores
NULL, Default value
DEC

VARIABLES CurrentRound ,

Faulty ,

NotSent ,
MyValues,
SentMsgs,
Completed ,

Decision

ASSUME ∧ ∀S ∈ SurvivorSets : S ∈ SUBSET P
∧ ∀S1, S2, S3 ∈ SurvivorSets : S1 ∩ S2 ∩ S3 6= {}
∧ I ∈ [P → V ]
∧NULL /∈ V
∧DEC /∈ P

Types
VD ∆= V ∪ {NULL}

PSeqsRound(r) ∆= {S ∈ [1 . . r → P ] : ∀ i , j ∈ 1 . . r : S [i ] = S [j ]⇒ i = j}

PSeqsRoundExc(p, r) ∆= {S ∈ PSeqsRound(r) : ∀ i ∈ 1 . . r : S [i ] 6= p}

PSeqs ∆= UNION {PSeqsRound(r) : r ∈ 1 . . Cardinality(P)}

PairType ∆= [SeqOfPs : PSeqs ∪ {1 :> DEC}, Value : VD ]

MinSS ∆= CHOOSE S ∈ SurvivorSets : ∀OS ∈ SurvivorSets :

263



264

Cardinality(OS ) ≥ Cardinality(S )

Rounds ∆= 0 . . (2 + Cardinality(P)− Cardinality(MinSS ))

LastRound ∆= 1 + Cardinality(P)− Cardinality(MinSS )

Correct ∆= P \Faulty

SSPred(s) ∆= LET PinS (ns) ∆= {p ∈ P : ∃ i ∈ 1 . . Len(ns) : ns[i ] = p}
IN

∃S ∈ SurvivorSets : S ⊆ (P \PinS (s))

Msgs ∆= [from : P , to : P , vals : SUBSET PairType, r : Rounds]

RoundMsgs(p, r) ∆= {m ∈ SentMsgs : m.to = p ∧m.r = r ∧m.vals 6= {}}

NewRoundValues(p, r) ∆= {pair ∈ PairType :
∃m ∈ RoundMsgs(p, r) :

pair ∈ m.vals}

ToSendValues(p, q , r) ∆= LET MyRoundValues ∆= {pair ∈ PairType :
(∃m ∈ RoundMsgs(p, r − 1) :

∃ pt ∈ m.vals :
∧ pair .SeqOfPs = ((1 :> p) ◦ pt .SeqOfPs)
∧ pair .Value = pt .Value)}

IN

IF r = 0
THEN MyValues[p]
ELSE

{ pt ∈ MyRoundValues :
∧ (∀ i ∈ 1 . . Len(pt .SeqOfPs) : pt .SeqOfPs[i ] 6= q)
∧ (SSPred(Tail(pt .SeqOfPs)))

}

IntermediateSet(p, r) ∆= {mseq ∈ PSeqsRound(r + 1) :
∧ SSPred(Tail(mseq))
∧ ∃ tmseq ∈ PSeqsRoundExc(p, r) :

mseq = (1 :> p) ◦ tmseq}

FaultyRoundValues(p, q , r) ∆= {pair ∈ PairType : ∧ pair .SeqOfPs ∈ IntermediateSet(p, r)
∧ pair .Value ∈ V }

FaultyValues(p, q , r) ∆= {SVals ∈ SUBSET FaultyRoundValues(p, q , r) :
∧ ∀ pt1 ∈ SVals : ∀ pt2 ∈ (SVals \ pt1) :

pt1.SeqOfPs 6= pt2.SeqOfPs
}

DecisionValue[p ∈ P , pSeqs ∈ SUBSET PairType, count ∈ Nat ] ∆=
LET VSet(s) ∆= {v ∈ VD :

∧ ∃ ov ∈ V :
∧ ∃S1, S2 ∈ SurvivorSets :
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∀ q ∈ S1 ∩ S2 :
[SeqOfPs 7→ (1 :> q) ◦ s,
Value 7→ ov ] ∈ MyValues[p]

∧ v = ov
}

VSetFinal ∆= {v ∈ V :
∃ ov ∈ V :

( ∧ ∃S1, S2 ∈ SurvivorSets :
∀ q ∈ S1 ∩ S2 :
[SeqOfPs 7→ (1 :> q),
Value 7→ ov ] ∈ MyValues[p]

∧ v = ov)
}

VFinalArb ∆= CHOOSE v ∈ V : ∃ s ∈ pSeqs : s.Value = v
SChoice ∆= CHOOSE s ∈ pSeqs :

∀ os ∈ pSeqs :
Len(s.SeqOfPs) ≥ Len(os.SeqOfPs)

IN

IF ∃ v ∈ VD : [SeqOfPs 7→ (1 :> DEC ), Value 7→ v ] ∈ pSeqs
THEN CHOOSE v ∈ VD :

[SeqOfPs 7→ (1 :> DEC ), Value 7→ v ] ∈ pSeqs
ELSE DecisionValue[p, (pSeqs

∪ {pt ∈ PairType :
∨ ∧ pt .SeqOfPs = Tail(SChoice.SeqOfPs)
∧ IF VSet(Tail(SChoice.SeqOfPs)) = {}

THEN pt .Value = NULL
ELSE ∃ v ∈ VSet(Tail(SChoice.SeqOfPs)) :

pt .Value = v
∨ ∧ Len(SChoice.SeqOfPs) = 1
∧ pt .SeqOfPs = (1 :> DEC )
∧ IF VSetFinal = {}

THEN pt .Value = VFinalArb
ELSE ∃ v ∈ VSet(Tail(SChoice.SeqOfPs)) :

pt .Value = v})
\ {r pt ∈ pSeqs :

∨ ( ∧ Len(r pt .SeqOfPs) = 1
∧ Len(SChoice.SeqOfPs) = 1)

∨ ( ∧ Len(SChoice.SeqOfPs) > 1
∧ Tail(r pt .SeqOfPs) = Tail(SChoice.SeqOfPs))

}, count + 1]

SBCTypeOK ∆= ∧ CurrentRound ∈ Rounds
∧ Faulty ∈ SUBSET P
∧NotSent ∈ [P → BOOLEAN ]
∧MyValues ∈ [P → SUBSET PairType]
∧ SentMsgs ∈ SUBSET Msgs
∧ Completed ∈ [P → Rounds]
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∧Decision ∈ [P → VD ]

SBCInit ∆= ∧ CurrentRound = 0
∧ Faulty = {}
∧NotSent = [p ∈ P 7→ TRUE]
∧MyValues = [p ∈ P 7→ {[SeqOfPs 7→ (1 :> p), Value 7→ I [p]]}]
∧ SentMsgs = {}
∧ Completed = [p ∈ P 7→ 0]
∧Decision = [p ∈ P 7→ NULL]

Fail(p) ∆= ∧ ∃S ∈ SurvivorSets : (Faulty ∪ {p}) ∩ S = {}
∧ Faulty ′ = Faulty ∪ {p}
∧ UNCHANGED 〈CurrentRound , NotSent , MyValues,

SentMsgs, Completed , Decision〉

NextRound ∆= ∧ ∀ p ∈ P : ( ∧ ¬NotSent [p]
∧ Completed [p] = CurrentRound)

∧ CurrentRound ′ = CurrentRound + 1
∧ UNCHANGED 〈NotSent , Faulty , MyValues,

SentMsgs, Completed , Decision〉

Send(p) ∆= LET TMsgVals(tp, tq , r) ∆=
{tvals ∈ SUBSET FaultyRoundValues(tp, tq , r) :

∧ ∀ v1 ∈ tvals :
∀ v2 ∈ (tvals \ {v1}) :

v1.SeqOfPs 6= v2.SeqOfPs
∧ tvals 6= {}}

TMsgSet(q) ∆=
{[from 7→ p, to 7→ q , r 7→ CurrentRound , vals 7→ tvals] :

tvals ∈ TMsgVals(p, q , Completed [p])}
TMsgsAll ∆= UNION {TMsgSet(q) : q ∈ P}
PChoice(SubP) ∆= CHOOSE q ∈ SubP : q ∈ P
TMsgsAux (q , Opts) ∆= {〈m, M 〉 ∈ (TMsgSet(q)×Opts) : TRUE}
TMsgsOptions[SubP ∈ SUBSET P ] ∆=

IF (SubP = {})
THEN {{}}
ELSE UNION {{{m} ∪ PM : PM ∈

TMsgsOptions[SubP \ {PChoice(SubP)}]} :
m ∈ TMsgSet(PChoice(SubP))}

TMsgsMerge ∆= UNION {TMsgsOptions[SubP ] : SubP ∈ SUBSET (P \ {p})}
Pmp ∆= P \ {p}

IN

∧ CurrentRound < LastRound
∧ Completed [p] = CurrentRound
∧NotSent [p] = TRUE

∧NotSent ′ = [NotSent EXCEPT ![p] = FALSE]
∧ IF p ∈ Correct

THEN SentMsgs ′ = SentMsgs ∪
{[from 7→ p,
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to 7→ q ,

r 7→ CurrentRound ,

vals 7→ ToSendValues(p, q , Completed [p])] :
q ∈ P}

ELSE ∃TMsgs ∈ TMsgsMerge : SentMsgs ′ = SentMsgs ∪ TMsgs
∧ UNCHANGED 〈CurrentRound , Faulty , MyValues, Completed , Decision〉

Recv(p) ∆= LET TMsgSet(q) ∆=
{[from 7→ p, to 7→ q , r 7→ CurrentRound , vals 7→ tvals] :

tvals ∈ SUBSET FaultyRoundValues(p, q , Completed [p])}
Pmp ∆= P \ {p}

IN

∧ Completed [p] = CurrentRound − 1
∧ Completed ′ = [Completed EXCEPT ![p] = CurrentRound ]
∧MyValues ′ = [MyValues EXCEPT ![p] =

MyValues[p] ∪
NewRoundValues(p, Completed [p])]

∧NotSent ′ = [NotSent EXCEPT ![p] = TRUE]
∧ UNCHANGED 〈CurrentRound , Faulty , SentMsgs, Decision〉

Decide(p) ∆= ∧ CurrentRound = LastRound
∧ Completed [p] = LastRound
∧ Completed ′ = [Completed EXCEPT ![p] = CurrentRound ]
∧NotSent ′ = [NotSent EXCEPT ![p] = FALSE]
∧MyValues ′ = [MyValues EXCEPT ![p] =

MyValues[p] ∪
NewRoundValues(p, Completed [p])]

∧ IF p ∈ Faulty
THEN ∃ v ∈ VD : Decision ′ = [Decision EXCEPT ![p] = v ]
ELSE Decision ′ = [Decision EXCEPT ![p] =

DecisionValue[p, MyValues[p] ∪
NewRoundValues(p, Completed [p]), 0]]

∧ UNCHANGED 〈CurrentRound , Faulty , SentMsgs〉

SBCStep ∆= ∃ p ∈ P : ∨ Send(p)
∨ Recv(p)
∨Decide(p)
∨ Fail(p)
∨NextRound

vars ∆= 〈CurrentRound , Faulty , NotSent , MyValues, SentMsgs, Completed , Decision〉
SBCSpec ∆= SBCInit ∧2[SBCStep]vars

Termination ∆= ∨ CurrentRound < LastRound + 1
∨ ∀ p ∈ Correct : Decision[p] 6= NULL

Agreement ∆= ∃ v ∈ V : ∀ p ∈ Correct : Decision[p] = v ∨Decision[p] = NULL
Validity ∆= ∀ p ∈ Correct : ∃ q ∈ P : Decision[p] = I [q ] ∨Decision[p] = NULL
Safety ∆= Agreement ∧Validity
Liveness ∆= Termination
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THEOREM SBCSpec ⇒ 2SBCTypeOK



Appendix D

AsyncCrash specification in TLA+

MODULE AsyncCrashConsensus

EXTENDS FiniteSets, Naturals, TLC

CONSTANTS P , Set of processes
I , Initial values
SurvivorSets, Survivor sets
V , Decision values
NULL, Default value
MaxRound , Largest round number
PMap, Mapping from integers to processes
EstMsg , CoordMsg , EchoMsg , MoveOnMsg , DecMsg ,

InitRound , WaitEstimates, WaitCoordEstimate, WaitEchoes,
Decided , Silent

ASSUME ∧ ∀S ∈ SurvivorSets : S ⊆ P
∧ ∀S1, S2 ∈ SurvivorSets : S1 ∩ S2 6= {}
∧NULL /∈ V
∧ I ∈ [P → V ]
∧ PMap ∈ [0 . . (Cardinality(P)− 1)→ P ]

VARIABLES Estimate, CurrentEstimate

EstUpdate, Last round that estimate was updated
Decision, Decision value
MyStage, Current state of a process in a round
Round , Time counter
Faulty , Faulty Processes
SentMsgs Sent Messages

RoundRange ∆= 0 . . MaxRound
MsgType ∆= {EstMsg , CoordMsg , EchoMsg , MoveOnMsg , DecMsg}
States ∆= {InitRound , WaitEstimates, WaitCoordEstimate, WaitEchoes, Decided , Silent}
EstimateMsgs ∆= [type : MsgType, from : P , to : P , r : RoundRange, v : V , updr : RoundRange]
CoordEstMsgs ∆= [type : MsgType, from : P , to : P , r : RoundRange, v : V ]
EchoMsgs ∆= [type : MsgType, from : P , to : P , r : RoundRange, v : V ]
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MoveOnMsgs ∆= [type : MsgType, from : P , to : P , r : RoundRange]
DecideMsgs ∆= [type : MsgType, from : P , to : P , d : V ]
Coordinator(r) ∆= PMap[r%Cardinality(P)]

CurEstimates(r) ∆= {m ∈ SentMsgs : m.type = EstMsg ∧m.to = Coordinator(r)}
CurEchoes(p, r) ∆= {m ∈ SentMsgs : m.type = EchoMsg ∧m.r = r ∧m.to = p}
CurMoveOn(p, r) ∆= {m ∈ SentMsgs : m.type = MoveOnMsg ∧m.r = r ∧m.to = p}
CurDecide(p) ∆= {m ∈ SentMsgs : m.type = DecMsg ∧m.to = p}
Procs(msgs) ∆= {p ∈ P : ∃m ∈ msgs : m.from = p}
SurvivorSetPred(Ps) ∆= ∃S ∈ SurvivorSets : ∀ p ∈ S : p ∈ Ps
NewEstimate(Msgs) ∆= CHOOSE v ∈ V : ∃m1 ∈ Msgs : ∧m1.v = v

∧ ∀m2 ∈ Msgs : m1.updr ≥ m2.updr

RoundValue(p, r) ∆= CHOOSE v ∈ V : ∀m ∈ CurEchoes(p, r) : m.v = v

ACCTypeOk ∆= ∧ Estimate ∈ [P → V ]
∧ EstUpdate ∈ [P → RoundRange]
∧Decision ∈ [P → V ∪ {NULL}]
∧MyStage ∈ [P → States]
∧ Round ∈ [P → RoundRange]
∧ Faulty ∈ SUBSET P
∧ SentMsgs ∈ SUBSET (EstimateMsgs ∪

CoordEstMsgs ∪
EchoMsgs ∪
DecideMsgs)

ACCInit ∆= ∧ Estimate = [p ∈ P 7→ I [p]]
∧ EstUpdate = [p ∈ P 7→ 0]
∧Decision = [p ∈ P 7→ NULL]
∧MyStage = [p ∈ P 7→ InitRound ]
∧ Round = [p ∈ P 7→ 1]
∧ Faulty = {}
∧ SentMsgs = {}

Fail(p) ∆= ∧ ∃S ∈ SurvivorSets : (Faulty ∪ {p}) ∩ S = {}
∧ Faulty ′ = Faulty ∪ {p}
∧ UNCHANGED 〈Estimate, EstUpdate, Decision,

MyStage, Round , SentMsgs〉

Processes send estimate to the coordinator
SendEstimate(p) ∆= ∧ p /∈ Faulty

∧MyStage[p] = InitRound
∧ SentMsgs ′ = SentMsgs ∪ {[type 7→ EstMsg , from 7→ p,

to 7→ Coordinator(Round [p]),
r 7→ Round [p],
v 7→ Estimate[p],
updr 7→ EstUpdate[p]]}

∧ IF p = Coordinator(Round [p])
THEN MyStage ′ = [MyStage EXCEPT ![p] =

WaitEstimates]
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ELSE MyStage ′ = [MyStage EXCEPT ![p] =
WaitCoordEstimate]

∧ UNCHANGED 〈Estimate, EstUpdate, Decision,

Round , Faulty〉

Coordinator receive estimates from a survivor set
RecEstimates(p) ∆= LET ToSend ∆= {[type 7→ CoordMsg ,

from 7→ p,

to 7→ q ,

r 7→ Round [p],
v 7→ Estimate ′[p]] :
q ∈ P}

IN

∧MyStage[p] = WaitEstimates
∧ SurvivorSetPred(Procs(CurEstimates(Round [p])))
∧ Estimate ′ = [Estimate EXCEPT ![p] =

NewEstimate(CurEstimates(Round [p]))]
∧ EstUpdate ′ = [EstUpdate EXCEPT ![p] = Round [p]]
∧ IF p ∈ Faulty

THEN ∃TMsgs ∈ SUBSET ToSend :
( ∧ SentMsgs ′ = SentMsgs ∪ TMsgs
∧MyStage ′ = [MyStage EXCEPT ![p] = Silent ])

ELSE ( ∧ SentMsgs ′ = SentMsgs ∪ ToSend
∧MyStage ′ = [MyStage EXCEPT ![p] =

WaitCoordEstimate])
∧ UNCHANGED 〈Decision, Round , Faulty〉

Receive Certified Estimate from the Coordinator

CoordEstimate(p) ∆= LET ToSend(m) ∆= {[type 7→ EchoMsg ,

from 7→ p,

to 7→ q ,

r 7→ Round [p],
v 7→ m.v ] :
q ∈ P}

IN

∧MyStage[p] = WaitCoordEstimate
∧ ∃m ∈ SentMsgs :

∧m.type ∈ {CoordMsg , EchoMsg}
∧m.to = p
∧m.r = Round [p]
∧ Estimate ′ = [Estimate EXCEPT ![p] = m.v ]
∧ EstUpdate ′ = [EstUpdate EXCEPT ![p] = Round [p]]
∧ IF p ∈ Faulty

THEN ∃TMsgs ∈ SUBSET ToSend(m) : (
∧ SentMsgs ′ = SentMsgs ∪ TMsgs
∧MyStage ′ = [MyStage EXCEPT ![p] = Silent ])

ELSE ( ∧ SentMsgs ′ = SentMsgs ∪ ToSend(m)
∧MyStage ′ = [MyStage EXCEPT ![p] = WaitEchoes])
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∧ UNCHANGED 〈Decision, Round , Faulty〉

Receive Echoes
RecEchoes(p) ∆= LET ToSend(value) ∆= {[type 7→ DecMsg ,

from 7→ p,

to 7→ q ,

r 7→ Round [p],
v 7→ value] :
q ∈ P}

IN

∧MyStage[p] = WaitEchoes
∧ SurvivorSetPred(Procs(CurEchoes(p, Round [p])))
∧ ∃m ∈ CurEchoes(p, Round [p]) : (

IF p ∈ Faulty
THEN ∃TMsgs ∈ SUBSET ToSend(m.v) :

∧ SentMsgs ′ = SentMsgs ∪ TMsgs
∧MyStage ′ = [MyStage EXCEPT ![p] = Silent ]
∧Decision ′ = Decision

ELSE ∧ SentMsgs ′ = SentMsgs ∪ ToSend(m.v)
∧MyStage ′ = [MyStage EXCEPT ![p] = Decided ]
∧Decision ′ = [Decision EXCEPT ![p] =

RoundValue(p, Round [p])])
∧ UNCHANGED 〈Estimate, EstUpdate, Round , Faulty〉

Upon suspicion, send suspicion messages
Suspicion(p) ∆= LET ToSend ∆= {[type 7→ MoveOnMsg ,

from 7→ p,

to 7→ q ,

r 7→ Round [p]] :
q ∈ P}

IN

∧MyStage[p] = WaitCoordEstimate
∧ p 6= Coordinator(Round [p])
∧ ¬(∃m ∈ SentMsgs : ( ∧ (m.type = MoveOnMsg)

∧ (m.from = p)
∧ (m.r = Round [p])))

∧ IF p ∈ Faulty
THEN (∃TMsgs ∈ SUBSET ToSend :

∧ SentMsgs ′ = SentMsgs ∪ TMsgs
∧MyStage ′ = [MyStage EXCEPT ![p] = Silent ])

ELSE ( ∧ SentMsgs ′ = SentMsgs ∪ ToSend
∧MyStage ′ = MyStage)

∧ UNCHANGED 〈Estimate, EstUpdate, Decision,

Round , Faulty〉

Receive MoveOn msg
MoveOn(p) ∆= ∧MyStage[p] /∈ {Silent , Decided}

∧ SurvivorSetPred(Procs(CurMoveOn(p, Round [p])))
∧ Round ′ = [Round EXCEPT ![p] = Round [p] + 1]
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∧MyStage ′ = [MyStage EXCEPT ![p] = InitRound ]
∧ UNCHANGED 〈Estimate, EstUpdate, Decision,

Faulty , SentMsgs〉

Decide
Decide(p) ∆= ∧MyStage[p] /∈ {Decided , Silent}

∧MyStage ′ = [MyStage EXCEPT ![p] = Decided ]
∧ ∃m ∈ SentMsgs :

∧m.to = p
∧m.type = DecMsg
∧Decision ′ = [Decision EXCEPT ![p] = m.v ]

∧ UNCHANGED 〈Estimate, EstUpdate, Round ,

Faulty , SentMsgs〉

ACCStep ∆= ∃ p ∈ P : ∨ Fail(p)
∨Decide(p)
∨ Suspicion(p)
∨MoveOn(p)
∨ SendEstimate(p)
∨ RecEstimates(p)
∨ CoordEstimate(p)
∨ RecEchoes(p)

vars ∆= 〈Estimate, EstUpdate, Decision, MyStage, Round , Faulty , SentMsgs〉

ACCSpec ∆= ACCInit ∧2[ACCStep]vars

Correct ∆= P \Faulty
Validity ∆= ∀ p ∈ Correct : ∨Decision[p] = NULL

∨ ∃ q ∈ P : Decision[p] = I [q ]
Agreement ∆= ∀ p, q ∈ Correct : ∨Decision[p] = NULL

∨Decision[q ] = NULL
∨Decision[p] = Decision[q ]

THEOREM ACCSpec ⇒ 2ACCTypeOk



Appendix E

AsyncByz specification in TLA+

MODULE AsyncByzConsensus
EXTENDS FiniteSets, Naturals, TLC

CONSTANTS P , Set of processes
SurvivorSets, Set of Survivor sets
I , Initial Values of processes
V , Set of decision values
NULL, NULL value
MaxRound , Maximum round number
PMap, Map from round numbers to processes
InitRound , WaitEstimates, WaitCertEst , WaitEchoes,

C WaitRoundEst , WaitRoundEst , Decided , Stages
EstMsg , CertEstMsg , EchoMsg , RoundEstMsg ,

SuspMsg , MoveOnMsg , DecMsg Msg types

ASSUME ∧ I ∈ [P → V ]
∧ ∀S ∈ SurvivorSets : ∀ e ∈ S : e ∈ P
∧ ∀S1, S2, S3 ∈ SurvivorSets : S1 ∩ S2 ∩ S3 6= {}
∧NULL /∈ V
∧ PMap ∈ [0 . . (Cardinality(P)− 1)→ P ]

VARIABLES Faulty , Faulty processes
SentMsgs, Set of messages sent
MyStage, Stage of processes
Estimate, Estimates of processes
EstRound , Round in which estimate was updated
Round , Rounds of processes
Decision Decision values

RoundRange ∆= 0 . . MaxRound
Stages ∆= {InitRound , WaitEstimates, WaitCertEst , WaitEchoes,

C WaitRoundEst , WaitRoundEst , Decided}
MsgType ∆= {EstMsg , CertEstMsg , EchoMsg , RoundEstMsg ,

SuspMsg , MoveOnMsg , DecMsg}
EstimateMsgs ∆= [type : MsgType, from : P , to : P , v : V , r : RoundRange]
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CertEstimateMsgs ∆= [type : MsgType, from : P , to : P , v : V , r : RoundRange]
EchoMsgs ∆= [type : MsgType, from : P , to : P , v : V , r : RoundRange]
RoundEstMsgs ∆= [type : MsgType, from : P , to : P , v : V , r : RoundRange]
SuspMsgs ∆= [type : MsgType, from : P , to : P , r : RoundRange]
MoveOnMsgs ∆= [type : MsgType, from : P , to : P , v : V ,

er : RoundRange, r : RoundRange]
DecideMsgs ∆= [type : MsgType, from : P , to : P , v : V ]

CurEstimates(p, r) ∆= {m ∈ SentMsgs : m.type = EstMsg ∧m.to = p}
CurCertEst(p, r) ∆= {m ∈ SentMsgs : m.type = EstMsg ∧m.to = p}
CurEchoes(p, r) ∆= {m ∈ SentMsgs : m.type = EchoMsg ∧m.to = p}
CurRoundEst(p, r) ∆= {m ∈ SentMsgs : m.type = RoundEstMsg ∧m.to = p}
CurDec(p) ∆= {m ∈ SentMsgs : m.type = DecMsg ∧m.to = p}
CurSusp(p, r) ∆= {m ∈ SentMsgs : m.type = SuspMsg ∧m.to = p}
CurMoveOn(p, r) ∆= {m ∈ SentMsgs : m.type = MoveOnMsg ∧m.to = p}
Procs(Msgs) ∆= {p ∈ P : ∃m ∈ Msgs : m.from = p}

Coordinator(r) ∆= PMap[r%Cardinality(P)]
SurvivorSetPred(PS ) ∆= ∃S ∈ SurvivorSets : ∀ p ∈ S : p ∈ PS

ABCTypeOk ∆= ∧ Faulty ∈ SUBSET P
∧ SentMsgs ∈ SUBSET (EstimateMsgs ∪

CertEstimateMsgs ∪
EchoMsgs ∪
RoundEstMsgs ∪
SuspMsgs ∪
MoveOnMsgs ∪
DecideMsgs)

∧ Estimate ∈ [P → V ]
∧ EstRound ∈ [P → RoundRange]
∧MyStage ∈ [P → Stages]
∧Decision ∈ [P → V ∪ {NULL}]
∧ Round ∈ RoundRange

ABCInit ∆= ∧ Faulty = {}
∧ SentMsgs = {}
∧ Estimate = [p ∈ P 7→ I [p]]
∧ EstRound = [p ∈ P 7→ 0]
∧MyStage = [p ∈ P 7→ InitRound ]
∧Decision = [p ∈ P 7→ NULL]
∧ Round = [p ∈ P 7→ 1]

Fail(p) ∆= ∧ ∃S ∈ SurvivorSets : ((Faulty ∪ {p}) ∩ S ) = {}
∧ Faulty ′ = Faulty ∪ {p}
∧ UNCHANGED 〈SentMsgs, Estimate, EstRound ,

MyStage, Round , Decision〉

Each process sends its own current estimate
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SendEstimate(p) ∆= LET ToSend ∆= {[type 7→ EstMsg ,

from 7→ p,

to 7→ Coordinator(Round [p]),
v 7→ Estimate[p],
r 7→ Round [p]]}

IN

∧ IF p ∈ (P \Faulty)
THEN ∧MyStage[p] = InitRound

∧ SentMsgs ′ = SentMsgs ∪ ToSend
∧ IF p = Coordinator(Round [p])

THEN MyStage ′ =
[MyStage EXCEPT ![p] = WaitEstimates]

ELSE MyStage ′ =
[MyStage EXCEPT ![p] = WaitCertEst ]

ELSE ∧ ∃SM ∈ SUBSET ToSend :
SentMsgs ′ = SentMsgs ∪ SM

∧MyStage ′ = MyStage
∧ UNCHANGED 〈Faulty , Estimate, EstRound ,

Round , Decision〉

Coordinator sends certified estimates
SendCertEst(p) ∆= LET

ToSendUnique(value) ∆= {[type 7→ CertEstMsg ,

from 7→ p,

to 7→ q ,

v 7→ value,

r 7→ Round [p]] :
q ∈ P}

ToSendMult(Vals) ∆= UNION {ToSendUnique(value) : value ∈ Vals}
CurValues ∆= {v ∈ V : ∃S1, S2 ∈ SurvivorSets :

∧ ∨ S1 ⊆ Procs(CurEstimates(p, Round [p]))
∨ S2 ⊆ Procs(CurEstimates(p, Round [p]))

∧ ∀ q ∈ (S1 ∩ S2) :
∃m ∈ CurEstimates(p, Round [p]) :
∧m.from = q
∧m.v = v}

IN

∧ SurvivorSetPred(Procs(CurEstimates(p, Round [p])))
if coordinator is not faulty
∧ IF p /∈ Faulty

THEN ∧MyStage[p] = WaitEstimates
∧ IF CurValues 6= {}

THEN ∧ ∃ v ∈ CurValues :
SentMsgs ′ =
SentMsgs ∪ ToSendUnique(v)

∧MyStage ′ =
[MyStage EXCEPT ![p] = WaitCertEst ]
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ELSE ∧ SentMsgs ′ =
SentMsgs ∪ ToSendUnique(I [p])

∧MyStage ′ =
[MyStage EXCEPT ![p] = WaitCertEst ]

Coordinator is faulty
ELSE IF CurValues = {}

THEN ∧MyStage ′ = MyStage
∧ ∃SM ∈ SUBSET ToSendMult(V ) :

∧ ∀m1 ∈ SM :
∀m2 ∈ (SM \ {m1}) :

m1.to 6= m2.to
∧ SentMsgs ′ = SentMsgs ∪ SM

ELSE ( ∧MyStage ′ = MyStage
∧ ∃SM ∈ SUBSET ToSendMult(CurValues) :
∧ ∀m1 ∈ SM :

∀m2 ∈ (SM \ {m1}) :
m1.to 6= m2.to

∧ SentMsgs ′ = SentMsgs ∪ SM )
∧ Print(SentMsgs ′, TRUE)

∧ UNCHANGED 〈Faulty , Estimate, EstRound , Round , Decision〉

Non-coordinator processes reply with echo messages
SendEcho(p) ∆= LET ToSend(value) ∆= {[type 7→ EchoMsg ,

from 7→ p,

to 7→ Coordinator(Round [p]),
v 7→ value,

r 7→ Round [p]]}
IN

∧ ∃m ∈ SentMsgs : (
∧m.to = p
∧m.type = CertEstMsg
∧m.r = Round [p]
∧ IF p ∈ (P \Faulty)

THEN ∧MyStage[p] = WaitCertEst
∧ SentMsgs ′ = SentMsgs ∪ {[type 7→ EchoMsg ,

from 7→ p,

to 7→ Coordinator(Round [p]),
v 7→ m.v ,

round 7→ Round [p]]}
∧ IF p = Coordinator(Round [p])

THEN MyStage ′ =
[MyStage EXCEPT ![p] = WaitEchoes]

ELSE MyStage ′ =
[MyStage EXCEPT ![p] = C WaitRoundEst ]

ELSE ∧ ∃m1 ∈ SUBSET ToSend(m.v) :
SentMsgs ′ = SentMsgs ∪m1

∧MyStage ′ = MyStage)
∧ UNCHANGED 〈Faulty , Estimate, EstRound , Round , Decision〉
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Coordinator sends RoundEstimate msgs
SendRoundEstimate(p) ∆= LET ToSend(value) ∆= {[type 7→ RoundEstMsg ,

from 7→ p,

to 7→ q ,

v 7→ value,

r 7→ Round [p]] :
q ∈ P}

IN

∧ ∃S ∈ SurvivorSets : (
∧ S ⊆ Procs(CurEchoes(p, Round [p]))
∧ ∃ v ∈ V : (

∧ ∀ q ∈ S :
∃m ∈ CurEchoes(p, Round [p]) :

( ∧m.from = q
∧m.v = v)

∧ IF p ∈ (P \Faulty)
THEN ∧MyStage[p] = WaitEchoes

∧MyStage ′ =
[MyStage EXCEPT ![p] = C WaitRoundEst ]

∧ SentMsgs ′ = SentMsgs ∪ ToSend(v)
ELSE ( ∧MyStage ′ = MyStage

∧ ∃SM ∈ SUBSET ToSend(v) :
SentMsgs ′ = SentMsgs ∪ SM )))

∧ UNCHANGED 〈Faulty , Estimate, EstRound , Round , Decision〉

Forward RoundEstimate message to other processes
EchoRoundEstimate(p) ∆= LET ToSend(value) ∆= {[type 7→ RoundEstMsg ,

from 7→ p,

to 7→ q ,

v 7→ value,

r 7→ Round [p]] :
q ∈ P}

IN

∧ CurRoundEst(p, Round [p]) 6= {}
∧ ∃m ∈ CurRoundEst(p, Round [p]) :

IF p ∈ (P \Faulty)
THEN ∧ SentMsgs ′ = SentMsgs ∪ ToSend(m.v)

∧MyStage[p] = C WaitRoundEst
∧MyStage ′ =

[MyStage EXCEPT ![p] = WaitRoundEst ]
ELSE ( ∧ ∃SM ∈ SUBSET ToSend(m.v) :

SentMsgs ′ = SentMsgs ∪ SM
∧MyStage ′ = MyStage)

∧ UNCHANGED 〈Faulty , Estimate, EstRound , Round ,

Decision〉

Decide if process has received RoundEstMsg from a survivor set
Decide(p) ∆= LET ToSend(value) ∆= {[type 7→ DecMsg ,
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from 7→ p,

to 7→ q ,

v 7→ value] :
q ∈ P}

Values ∆= {v ∈ V :
∃S ∈ SurvivorSets :

∧ S ⊆ Procs(CurRoundEst(p, Round [p]))
∧ ∀ q ∈ S :
∃m ∈ CurRoundEst(p, Round [p]) :
∧m.from = q
∧m.v = v}

FaultySend ∆= UNION {ToSend(v) : v ∈ Values}
IN

∧ SurvivorSetPred(Procs(CurRoundEst(p, Round [p])))
∧ IF p ∈ (P \Faulty)

THEN ∧MyStage[p] = WaitRoundEst
∧ ∃S ∈ SurvivorSets :

∃ v ∈ V :
∧ ∀ q ∈ S :

∃m ∈ CurRoundEst(p, Round [p]) :
( ∧m.from = q
∧m.v = v)

∧Decision ′ = [Decision EXCEPT ![p] = v ]
∧ SentMsgs ′ = SentMsgs ∪ ToSend(v)
∧MyStage ′ = [MyStage EXCEPT ![p] = Decided ]

ELSE ∃SM ∈ SUBSET FaultySend : (
∧ SentMsgs ′ = SentMsgs ∪ SM
∧Decision ′ = Decision
∧MyStage ′ = MyStage)

∧ UNCHANGED 〈Faulty , Estimate, EstRound , Round〉

Receive a decide message
RecDec(p) ∆= LET ToSend(value) ∆= {[type 7→ DecMsg ,

from 7→ p,

to 7→ q ,

v 7→ value] :
q ∈ P}

Values ∆= {v ∈ V : ∃m ∈ CurDec(p) : m.v = v}
FaultySend ∆= UNION {ToSend(v) : v ∈ Values}

IN

∧ CurDec(p) 6= {}
∧ IF p ∈ (P \Faulty)

THEN ∧Decision[p] 6= NULL
∧ ∃m ∈ CurDec(p) :

∧Decision ′ = [Decision EXCEPT ![p] = m.v ]
∧ SentMsgs ′ = SentMsgs ∪ ToSend(m.v)
∧MyStage ′ = [MyStage EXCEPT ![p] = Decided ]

ELSE ∃SM ∈ SUBSET FaultySend : (
∧ SentMsgs ′ = SentMsgs ∪ SM
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∧Decision ′ = Decision
∧MyStage ′ = MyStage)

∧ UNCHANGED 〈Faulty , Estimate, EstRound , Round〉

Suspect(p) ∆= LET ToSend ∆= {[type 7→ SuspMsg ,

from 7→ p,

to 7→ q ,

r 7→ Round [p]] :
q ∈ P}

IN

∧ IF p ∈ (P \Faulty)
THEN ∧MyStage[p] ∈ {WaitCertEst , WaitRoundEst}

∧ ∀m ∈ CurSusp(p, Round [p]) : m.from 6= p
∧ SentMsgs ′ = SentMsgs ∪ ToSend

ELSE ( ∧ ∃SM ∈ SUBSET ToSend :
SentMsgs ′ = SentMsgs ∪ SM )

∧ UNCHANGED 〈Faulty , Estimate, EstRound , MyStage, Round , Decision〉

SendMoveOn(p) ∆= LET ToSend ∆= {[type 7→ MoveOnMsg ,

from 7→ p,

to 7→ q ,

v 7→ Estimate[p],
er 7→ EstRound [p],
r 7→ Round [p]] :
q ∈ P}

IN

∧ SurvivorSetPred(Procs(CurSusp(p, Round [p])))
∧ IF p ∈ (P \Faulty)

THEN ∧ ∀m ∈ CurMoveOn(p, Round [p]) : m.from 6= p
∧ SentMsgs ′ = SentMsgs ∪ ToSend

ELSE ∃SM ∈ SUBSET ToSend :
SentMsgs ′ = SentMsgs ∪ SM

∧ UNCHANGED 〈Faulty , Estimate, EstRound , MyStage,

Round , Decision〉

MoveOn(p) ∆= ∧ SurvivorSetPred(Procs(CurMoveOn(p, Round [p])))
∧ IF p ∈ (P \Faulty)

THEN ∃m ∈ CurMoveOn(p, Round [p]) :
∧ ∀ tm ∈ CurMoveOn(p, Round [p]) :

tm.er ≤ m.er
∧ Estimate ′ = [Estimate EXCEPT ![p] = m.v ]
∧ EstRound ′ = [Estimate EXCEPT ![p] = m.er ]
∧ Round ′ = [Round EXCEPT ![p] = Round [p] + 1]
∧MyStage ′ = [MyStage EXCEPT ![p] = InitRound ]

ELSE ∃SM ∈ SUBSET CurMoveOn(p, Round [p]) :
∧ ∃S ∈ SurvivorSets :

∀ q ∈ S :
∃m ∈ SM : m.from = q

∧ ∃m ∈ SM :
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∧ ∀ tm ∈ SM : tm.er ≤ m.er
∧ Estimate ′ = [Estimate EXCEPT ![p] = m.v ]
∧ EstRound ′ = [Estimate EXCEPT ![p] = m.er ]
∧ ∃ r ∈ RoundRange : Round ′ =

[Round EXCEPT ![p] = 1 + Round [p]]
∧MyStage ′ = MyStage

∧ UNCHANGED 〈Faulty , SentMsgs, Decision〉

ABCStep ∆= ∃ p ∈ P : ∨ Fail(p)
∨ SendEstimate(p)
∨ SendCertEst(p)
∨ SendEcho(p)
∨ SendRoundEstimate(p)
∨ EchoRoundEstimate(p)
∨Decide(p)
∨ RecDec(p)
∨ Suspect(p)
∨ SendMoveOn(p)
∨MoveOn(p)

vars ∆= 〈Faulty , SentMsgs, Estimate, EstRound , MyStage, Round , Decision〉
ABCSpec ∆= ABCInit ∧2[ABCStep]vars

StrongValidity ∆= ∃ v ∈ V :
((∀ p ∈ (P \Faulty) :

I [p] = v) ⇒ (∀ p ∈ (P \Faulty) :
∨Decision[p] = NULL
∨Decision[p] = v))

Agreement ∆= ∃ v ∈ V : ∀ p ∈ (P \Faulty) : ∨Decision[p] = NULL
∨Decision[p] = v

THEOREM ABCSpec ⇒ 2ABCTypeOk



Appendix F

ROC specification in TLA+

MODULE ROConsensus
EXTENDS Naturals, FiniteSets, TLC

CONSTANTS P , Set of processes
Vals, Domain of d values
NULL, A null value
SurvivorSet , All survivor sets
I Initial values

VARIABLES A, Accumulated values of a process
Aprime, Accumulated values of a process (previous round)
d , Decision value of a process
messages, Sent messages
crashed , Crashed processes
faulty , R-O faulty processes
round , Current round
pRound , Round that p is in
MyTurn,

recdFrom recdFrom[p][r ] is the set of processes
p received a message from in round r .

N ∆= Cardinality(P)

ASSUMPTION P ⊆ Nat

SurvivorSet satisfies (3, 2)-Intersection
ASSUMPTION ∧ ∀ s ∈ SurvivorSet : s ⊆ P

∧ ∀ s1, s2, s3 ∈ SurvivorSet :
∨ s1 ∩ s2 6= {}
∨ s2 ∩ s3 6= {}
∨ s1 ∩ s3 6= {}

∧ ∀ p ∈ P : ∃ s ∈ SurvivorSet : p ∈ s

ASSUMPTION I ∈ [P → Vals]

Used for number of rounds

282
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t ∆= LET x ∆= CHOOSE s ∈ SurvivorSet :
∀ s2 ∈ SurvivorSet :

Cardinality(s) ≤ Cardinality(s2)
IN N − Cardinality(x )

ROETypeOK ∆= ∧A ∈ [P → [P → Vals ∪ {NULL}]]
∧Aprime ∈ [P → [P → Vals ∪ {NULL}]]
∧ d ∈ [P → [P → Vals ∪ {NULL}] ∪ {NULL}]
∧messages ⊆ [

from : P ,

to : P ,

round : 0 . . t ,
val : [P → Vals ∪ {NULL}]]

∧ faulty ⊆ P
∧ crashed ⊆ P
∧ round ∈ 0 . . (t + 1)
∧ pRound ∈ [P → 0 . . (t + 1)]
∧ Cardinality(faulty) + Cardinality(crashed) ≤ t
∧ faulty ∩ crashed = {}
∧MyTurn ∈ P

∧A ∈ [P → [P → Vals ∪ {NULL}]]
∧ ∀ p, q ∈ P : IF p = q THEN A[p][q ] = I [p]

ELSE A[p][q ] = NULL

ROEInit ∆= ∧A = [p ∈ P 7→ [q ∈ P 7→ IF p = q THEN I [p] ELSE NULL]]
∧Aprime = A
∧ d = [p ∈ P 7→ NULL]
∧messages = {}
∧ faulty = {}
∧ crashed = {}
∧ round = 0
∧ pRound = [p ∈ P 7→ 0]
∧ recdFrom = [p ∈ P 7→ [r ∈ 0 . . (t + 1) 7→

IF r = 0 THEN P ELSE {}]]
∧MyTurn = CHOOSE p ∈ P : 1 = 1

Send message v in round r

Send(from, to, r , v) ∆=
∧ from /∈ crashed
∧messages ′ = messages ∪

{[from 7→ from, to 7→ to, round 7→ r , val 7→ v ]}

Process p has decided
Decided(p) ∆= d [p] 6= NULL

Consensus has terminated
Terminated ∆= ∀ p ∈ P \ crashed : Decided(p)



284

Sources of messages
From(msgs) ∆= {p ∈ P : ∃m ∈ msgs : m.from = p}

LastStep(p) ∆= ∧ p /∈ crashed
∧ round = t + 1
∧ pRound [p] = t + 1
∧ ¬Decided(p)
∧ d ′ = [d EXCEPT ![p] = A[p]]
∧ UNCHANGED 〈A, Aprime, messages, crashed ,

faulty , round , pRound , recdFrom,

MyTurn〉

Fail(p) ∆= ∧ ∃ s ∈ SurvivorSet : s ⊆ (P \ (faulty ∪ crashed ∪ {p}))
∧ ∨ ∧ p /∈ crashed ∪ faulty

∧ faulty ′ = faulty ∪ {p}
∧ UNCHANGED crashed

∨ ∧ p /∈ crashed
∧ crashed ′ = crashed ∪ {p}
∧ faulty ′ = faulty \ {p}

∧ UNCHANGED 〈A, Aprime, d , messages, round , pRound ,

recdFrom, MyTurn〉

Each round (except round 0) starts by receiving messages sent in the previous round
and terminates (except round t + 1) by sending A[p] to all processes.

RoundDone(r) ∆= ∧ round = r
∧ ∀ p ∈ P \ crashed :
∨Decided(p)
∨ ∀ q ∈ P :
∃m ∈ messages : ∧m.from = p

∧m.to = q
∧m.round = r

∧ round ′ = round + 1
∧ UNCHANGED 〈A, Aprime, d , messages, crashed , faulty ,

pRound , recdFrom, MyTurn〉

RecvRound1(p) ∆= LET msgsSentToMe ∆= {m ∈ messages : (m.to = p ∧m.round = 0)}
Am faulty if didn’t receive messages from a survivor set

IMustBeFaulty(mset) ∆=
∨ ¬(From(mset) ⊆ recdFrom[p][0])
∨ ¬(∃ s ∈ SurvivorSet : s ⊆ From(mset))

IN

∧MyTurn = p
∧ round = 1
∧ p /∈ crashed
∧ pRound [p] = 0
∧ ¬Decided(p)
∧ pRound ′ = [pRound EXCEPT ![p] = 1]
∧ ∃msgsRecd ∈ SUBSET msgsSentToMe :
∧ (p ∈ faulty ∨ msgsRecd = msgsSentToMe)
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∧ p ∈ From(msgsRecd)
∧ recdFrom ′ = [recdFrom EXCEPT ![p][1] = From(msgsRecd)]
∧ IF IMustBeFaulty(msgsRecd)

THEN ∧ d ′ = [d EXCEPT ![p] = [q ∈ P 7→ NULL]]
∧ UNCHANGED A

ELSE ∧A′ = [A EXCEPT ![p] = [q ∈ P 7→
CASE A[p][q ] 6= NULL→ A[p][q ]
2 ∧ (A[p][q ] = NULL)
∧ (∀m ∈ msgsRecd : m.val [q ] = NULL)
→ A[p][q ]

2 ∧ (A[p][q ] = NULL)
∧ (∃m ∈ msgsRecd : m.val [q ] 6= NULL)
→ CHOOSE v ∈ Vals : (∃m ∈ msgsRecd :

m.val [q ] = v)
]]

∧ UNCHANGED d
∧ UNCHANGED 〈Aprime, messages, crashed , faulty , round , MyTurn〉

RecvRoundR(p, r) ∆= LET msgsSentToMe ∆= {m ∈ messages :
(m.to = p ∧m.round = r − 1)}

Am faulty if received a message from a process in this round
not in last round OR

Removing messages from obviously faulty processes, did not receive
messages from a survivor set.

IMustBeFaulty(mset) ∆=
∨ ¬(From(mset) ⊆ recdFrom[p][r − 1])
∨ ¬(∃ s ∈ SurvivorSet : s ⊆

From({m ∈ mset :
∀ i ∈ P : ( ∨ (Aprime[p][i ] = NULL)

∨ (m.val [i ] = Aprime[p][i ]))}))
IN

∧MyTurn = p
∧ round = r
∧ p /∈ crashed
∧ pRound [p] = r − 1
∧ ¬Decided(p)
∧ pRound ′ = [pRound EXCEPT ![p] = r ]
∧Aprime ′ = [Aprime EXCEPT ![p] = A[p]]
∧ ∃msgsRecd ∈ SUBSET msgsSentToMe :
∧ (p ∈ faulty ∨ msgsRecd = msgsSentToMe)
∧ p ∈ From(msgsRecd)
∧ recdFrom ′ = [recdFrom EXCEPT ![p][r ] = From(msgsRecd)]
∧ IF IMustBeFaulty(msgsRecd)

THEN ∧ d ′ = [d EXCEPT ![p] = [q ∈ P 7→ NULL]]
∧ UNCHANGED A

ELSE ∧A′ = [A EXCEPT ![p] = [q ∈ P 7→
CASE A[p][q ] 6= NULL→ A[p][q ]
2 ∧ (A[p][q ] = NULL)
∧ (∀m ∈ msgsRecd : m.val [q ] = NULL)
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→ A[p][q ]
2 ∧ (A[p][q ] = NULL)
∧ (∃m ∈ msgsRecd : m.val [q ] 6= NULL)
→ CHOOSE v ∈ Vals : (∃m ∈ msgsRecd :

m.val [q ] = v)
]]

∧ UNCHANGED d
∧ UNCHANGED 〈messages, crashed , faulty , round , MyTurn〉

SendRound(p, r) ∆= LET sentTo ∆= {q ∈ P : ∃m ∈ messages :
(m.from = p ∧m.to = q ∧m.round = r)}

IN

∧MyTurn = p
∧ p /∈ crashed
∧ ¬Decided(p)
∧ round = r
∧ pRound [p] = r
∧ ∃ q ∈ P : ∧ q /∈ sentTo

∧ Send(p, q , r , A[p])
∧ UNCHANGED 〈A, Aprime, d , crashed , faulty , round , pRound ,

recdFrom, MyTurn〉

NextP(r) ∆= LET sentTo ∆= {q ∈ P : ∃m ∈ messages :
(m.from = MyTurn ∧m.to = q ∧m.round = r)}

IN

∧ ∨ ∀ q ∈ P : q ∈ sentTo
∨MyTurn ∈ crashed

∧MyTurn ′ = CHOOSE p ∈ P : p 6= MyTurn ∧ p /∈ crashed
∧ UNCHANGED 〈A, Aprime, d , messages, crashed , faulty , round ,

pRound , recdFrom〉

ROENext ∆= ∨ ∃ p ∈ P : Fail(p)
∨ ∃ p ∈ P : ∨ RecvRound1(p)

∨ LastStep(p)
∨ ∃ r ∈ 0 . . t : ∨ RoundDone(r)

∨ SendRound(p, r)
∨ ∃ r ∈ 2 . . (t + 1) : RecvRoundR(p, r)
∨ ∃ r ∈ 0 . . (t + 1) : NextP(r)

vars ∆= 〈A, Aprime, d , messages, crashed , faulty , round , pRound ,

recdFrom, MyTurn〉

Since behaviors are finite ignoring stuttering, ignore liveness
ROESpec ∆= ROEInit ∧2[ROENext ]vars

Some sets of processes

NotCrashed ∆= P \ crashed

NotFaulty ∆= (P \ crashed) \ faulty
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DecidedSomething ∆= {p ∈ P : Decided(p)}

DecidedSomethingInteresting ∆= {p ∈ DecidedSomething :
∃ q ∈ P : d [p][q ] 6= NULL}

Relations on decisions
dvSubsetEq(d1, d2) ∆= ∀ r ∈ P : (d1[r ] 6= NULL)⇒ (d1[r ] = d2[r ])

dSubsetEq(p, q) ∆= dvSubsetEq(d [p], d [q ])

dSubset(p, q) ∆= dSubsetEq(p, q) ∧ (d [p] 6= d [q ])

RO-Consensus safety properties
GoodDecision ∆= ∧ ∀ p ∈ NotFaulty , q ∈ P :

IF q ∈ NotCrashed THEN d [p][q ] = I [q ]
ELSE d [p][q ] ∈ {NULL, I [q ]}

∧ ∀ v1, v2 ∈ Vals :
∀S1, S2 ∈ SurvivorSet :

( ∨ ∃ p ∈ S1 : I [p] 6= v1
∨ ∃ p ∈ S2 : ( ∨ I [p] 6= v2

∨ p ∈ faulty)
∨ ∀ p1, p2 ∈ P : ( ∨ d [p1] = NULL

∨ d [p1][p2] 6= v1)
∨ ∀ p ∈ NotCrashed : ∃ q ∈ P : d [p][q ] = v1)

∧ ∀ p ∈ NotCrashed : ∀ q ∈ P : ( ∨ d [p][q ] = NULL
∨ ∀ c ∈ NotFaulty :

d [c][q ] = d [p][q ])
∧ LET vals ∆= {d [p] : p ∈ DecidedSomethingInteresting}

IN ∧ Cardinality(vals) ≤ 2
∧ Cardinality(vals) ≥ 1
∧ ∀ d1, d2 ∈ vals : dvSubsetEq(d1, d2) ∨ dvSubsetEq(d2, d1)
∧ ∀ d1, d2 ∈ vals :

∨ d1 = d2
∨ ∃S1, S2 ∈ SurvivorSet :

( ∧ ∀ p ∈ S1 : ( ∨ p ∈ crashed
∨ d [p] = d1)

∧ ∀ p ∈ S2 : ( ∧ d [p] = d2
∧ p ∈ NotFaulty))

OnlyGoodDecisions ∆= Terminated ⇒ GoodDecision

THEOREM ROESpec ⇒ 2ROETypeOK
THEOREM ROESpec ⇒ 2OnlyGoodDecisions




