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	 From flowers to faces, nature is abound with 
symmetry. Most natural objects tend to form according to 
patterns, a tendency which mathematicians readily exploit in 
order to create theoretical models of  the world around us. The 
height of  a cliff, for instance, is modeled by a one-dimensional 
line; a snake’s path through the sand is modeled across a two-
dimensional surface; a block of  ice is modeled as a mass 
extending into three dimensions. But what about objects in 
between dimensions? In fact, between the 1-D and the 2-D 
there exist objects known as fractals. These mathematical 
objects are infinitely self-similar, which means that upon 
magnification of  a certain part of  a fractal, one sees the figure 
of  the overall fractal, and so on unto infinity. Self-symmetry 

allows a fractal to have fractional dimensions because it is not 
purely linear--the border of  a fractal cannot be traced--but 
this lack of  boundedness also means that the fractal never 
encircles a defined area. Imagine a tree whose branches branch 
out infinitely, or a snowflake with six tips, each of  which looks 
like the original snowflake, and so on and so forth. 
	 Clearly, in fractal models, as in all models of  nature, 
there is a difference between the mathematical and the 
natural. Natural fractal objects are composed of  discrete units 
and are not infinitely divisible--the fractal pattern must end 
somewhere, or else, for instance, one might find tiny branches 
at the cellular level of  a tree branch. To correct for this quality, 

scientists define natural fractal objects as having statistical 
self-similarity, or when “the statistical properties of  the pieces 
[of  an object] are proportional to the statistical properties of  
the whole” (Grizzi et al., 2008). 
	 In the human body, statistically self-similar models 
are most commonly applied to branching structures in the 
lung and in networks of  blood vessels. The latter application 
has had particular importance in medical studies of  cancer, 
as there is evidence that understanding the fractal geometry 
of  tumor vasculature may aid in identification and targeted 
treatment of  cancers.
	 Tumor vasculature can in fact be described by a fractal 
model, and is often distinguished from normal vasculature by 
either an abnormally high or abnormally low fractal dimension 
(Zook and Iftekharuddin, 2005). An object’s fractal dimension 
is a constant between the integers 1 and 2, and might be 
described as how ‘proliferative’ the object looks; i.e., an object 
with a higher fractal dimension looks more like an object with 
true area than like a curve. Baish and Jain observed that blood 
vessels in the tumors of  mice had higher fractal dimensions 
than the mice’s normal arteries and veins, claiming that “the 
fractal dimension quantified the degree of  randomness to the 
vascular distribution, a characteristic not easily captured by 
the vascular density” (Baish and Jain, 2000). Moreover, the 
researchers noted that tumor vessels tended to be more twisted 
than normal vessels, having “many smaller bends upon each 
larger bend” (Baish and Jain, 2000). They also found that the 
way tumor vessels grew and branched closely matched a type 
of  statistical growth called invasive percolation. In invasive 
percolation, a substance moves through a medium which has 
varying degrees of  strength, penetrating the weakest areas 
of  the medium and thus branching out to form a network. 
Picture, for example, water trickling through only the most 
loosely packed areas of  a pot of  soil; in the same way, the 
blood vessels of  a tumor grow into the weakest areas of  the 
tissue around it. On the other hand, normal capillaries are 
traditionally modeled by the Krogh cylinder model, which 
assumes that the capillaries are straight, relatively spaced, 
and only reach a cylindrical volume of  tissue immediately 
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“Picture, for example, water 
trickling through only the most 

loosely packed areas of soil in a pot; 
in the same way, the blood vessels of 
a tumor grow into the weakest areas 

of the tissue around it.”

Sierpinski carpet model of plane fractals
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surrounding each linear capillary. Given that the Krogh model 
idealizes even the most organized vasculature, it is clear that a 
statistical fractal model is better suited for tumor vasculature, 
which lacks arterioles, venules and capillaries, and whose 
irregularly shaped vessels often do not even interconnect 
(Folkman, 2002). 
	 In the early 1990s, a series of  studies concluded that 

tumor microvessel density 
(MVD), or the degree to 
which the cancerous tumor 
has established its own 
vasculature, is associated with 
metastasis of  that cancer 
(Folkman, 2002). Since 
then, knowledge of  tumor 
vasculature has been applied 

in attempting antiangiogenesis, or prevention of  blood vessel 
growth, as a proposed way to control tumor growth. However, 
antiangiogenesis has historically had limited success. Some 
scientists hypothesize that the irregular geometry of  tumor 
vasculature--given by an abnormal degree of  self-symmetry-
-results in two problems that mirror each other. First, while 
disorganized vasculature makes it difficult for tumor cells to 
receive nutrients, it also makes it harder for drugs targeting 
the tumor to reach a good proportion of  the tumor. (Chauhan 
et al., 2012) Second, if  an antiangiogenic drug does succeed 
in spreading to most of  the tumor, the tumor might instead 
develop relatively normal vasculature that then allows for 
nutrients to be better transported to tumor cells, speeding up 
the growth of  the tumor. 
	 Nevertheless, understanding tumor vasculature is still 
useful since many cancer treatments are affected by drugs 
which flow through the tumor’s blood vessels. Knowing 
where the tumor vasculature reaches is akin to knowing where 
in the tumor the treatment can reach. To test this reach, Baish 
and Jain performed another study in 2012 in which a tracer 
transport model was coupled to a model of  blood flow based 
on invasive percolation--essentially, the researchers created a 
fractal model of  tracer movement through a tumor, by which 
the tracer represented a potential drug. This model predicted 
“highly heterogeneous transport in the tumor,” which the 
researchers deemed “clinically significant because some ‘out 
of  the way’ regions of  tumor may receive low concentrations 
of  [the drug]” (Baish and Jain, 2012). In an article examining 
medulloblastoma in children, Grizzi, Weber and Di Ieva also 
support the use of  a fractal model for tumor vasculature, 

and go even further to say that this fractality implies a level 
of  irregularity in blood vessel organization that renders 
MVD a poor measure of  the degree to which the tumor has 
established its vasculature. The article concludes that greater 

focus should be placed on modeling tumor vessel networks 
as fractal objects, so that scientists might better understand 
where in the tumor the drug cannot reach, and possibly devise 
drug delivery methods that work around this difficulty. 
	 Interestingly, Brú et al. used a fractal model to 
discount antiangiogenesis entirely as a treatment for cancer. 
These researchers focused their attention on the growth of  the 
tumor as a whole, observing fractal geometry in the way the 
cells proliferate around the edge, or the contour, of  the tumor. 
According to their article in Biophysical journal, such fractal 
growth is an indication that the tumor always maintains a layer 
of  actively proliferating tumor cells about its contour. Their 
article challenges the belief  that decreasing vascularization--
i.e. antiangiogenesis--to effect cell necrosis could effectively 
combat tumor growth, on the basis of  the idea that it is not 
poor vascularization that prohibits cell proliferation toward 
the center of  the tumor, but rather “pressure effects” (Brú 
et al., 2003). Thus, poorly vascularized tumor cells could 
hypothetically still proliferate actively, as long as they are near 
the contour of  the tumor, where pressure is lower.
	 In sum, examination of  the fractal geometry of  
tumors reveals a similarity between the way fractals are infinitely 
proliferated within themselves through self-symmetry, and the 
way a tumor grows through intense proliferation of  its tissue 
and vasculature. Treatment methods aside, fractal geometry 
is useful in approximating the pattern and number of  blood 
vessels present around or in a cancerous tumor, and as such is 
a good way to track tumor progression. Though fully effective 
drug delivery to tumors remains elusive, fractal models can 
in the meantime be used to help physicians in predicting 
the course of  a tumor’s growth, and thus in forming more 
accurate prognoses for the health of  patients with cancer.

“Knowing where the tumor 
vasculature reaches is akin to 

knowing where in the tumor the 
treatment can reach.”

Vascular tumor

Dynamic of fluids in porous media and 
critical percolation phenomenon
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