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Abstract: This paper is a literature review of field studies on fan-use rates and their effects on thermal comfort, energy 

conservation, and human productivity. In the assessed literature, fans are more popular in Asia, and more used in mixed-

mode (MM) and naturally ventilated (NV) buildings than in air-conditioned (AC) buildings. On the basis of collected 

fan-use models, probit regression models of fan-use rates and ambient environments were obtained and indicate that the 

essential trigger of fan-use is a warm environment rather than building types. This result helps us to understand the 

control behaviors and comfort requirements of occupants. Also, fans could provide benefits in three aspects: widening 

neutral temperatures, saving energy, and improving occupants’ productivity. First, using fans in buildings elevates the 

neutral temperature and the upper limit of neutral zone (0.5 thermal sensation scale) averages by about 3 K in ranges 

from 25.7℃ to 28.7℃ and 27.5℃ to 30.7℃, respectively. Second, fan-use reduces AC-use rates in MM buildings in 

summer. The regression models based on the collected AC-use rate models illustrate that, on average, AC-use is 

expected to be reduced by about 15% in summer when fans are used. Third, providing occupants access to fans could 

improve occupants’ productivity. Based on the limited data available, a 3-K temperature extension is achieved by fans 

ensuring productivity not decreasing. This review could shed some light on the extension of the neutral temperature 

range, predictions of MM buildings’ energy consumptions, and methods to enhance productivity. Additionally, this 

review suggests some valuable directions for future research on fans. 

Keywords: Fans; Thermal comfort; Energy conservation; Productivity; Review of field studies. 

Nomenclature 

AC        air-conditioned 

AC-use     air-conditioning-use 

CEP       corrective-efficiency-to-power (W/K) 

CP        corrective power (K) 

MM       mixed-mode 

NV        naturally-ventilated 

pAC        AC-use rate (%) 

pfan        fan-use rate (%)  
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PCS       personal comfort system 

PMV      predicted mean vote 

Tin        indoor temperature (℃) 

Tout       outdoor temperature (℃) 

TSV      thermal sensation vote 
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1. Introduction 

1.1 Background 

A comfortable environment in buildings is essential for occupants’ health, well-being, and work. In 1970s, Fanger 

established the predicted mean vote (PMV) model to predict human thermal sensations [1]. On the basis of this model, 

two comfort zones of indoor environments were shown in ASHRAE Standard 55 for winter and summer, respectively 

[2]. These zones are for occupants exposed to uniform environments with still air. Later on, ASHRAE Standard 55 [2] 

provided new information (see Fig. 1) on elevated air movement for comfort in warm ambient temperatures. 

!  

Fig. 1. Acceptable ranges of operative temperatures and average airspeeds for the 1.0 and 0.5 clo comfort zones [2]. 

Using fans is an easy and practical way to produce high airspeeds and improve the thermal comfort of occupants in 

warm environments [3]. There are various types of fans, such as desk fans [4, 5], ceiling fans [6], floor fans [7], seat 

fans [8, 9], and even, clothing fans [10]. 

Many laboratory studies have evaluated the comfort performance of fans in warm environments. He et al. [4] used 

desk fans as supplementary cooling for radiant cooled ceilings and found that desk fans made subjects feel neutral at 

warm ambient temperatures up to 30℃. Similar results were found in Zhai et al.’s lab tests with 16 subjects [7] and 

Huang et al.’s lab study with 30 subjects [11]. Zhai et al. [7] confirmed that thermal comfort could be maintained up to 

30℃ with personally controlled air movement. Huang et al. [11] found that the comfortable temperature range could be 

relaxed to 28℃-32℃ with frontal desk fans. Yang et al.’s lab tests [12] with 32 subjects found that individually-

controlled ceiling fans could improve both the perceived thermal comfort and air quality in environments at 26℃. 

Similarly, Atthajariyakul and Lertsatittanakorn's tests [13] found that comfortable temperatures could be relaxed to 

28℃ with small frontal desk fans, leading to an estimated air-conditioning energy-saving potential of as much as 
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1,959.51 GWh/year in Thailand. Additionally, when subjects were able to control both the fans and thermostats of air 

conditioners, they still used fans and set warm indoor temperatures [5]. To sum up, fans are clearly effective for 

ameliorating occupants’ discomfort in warm environments and make it possible for occupants to elevate set-point 

temperatures of air-conditioning systems in summer,  and therefore reduce the energy consumption of buildings [14]. 

Some researchers have proposed ways to evaluate the effects of fans on thermal comfort and energy saving. Yang 

et al. [15] used the cooling fan efficiency (CFE) index to evaluate the ratio between the fan-generated whole-body 

cooling effect (as measured with a thermal manikin) and fan power consumption. Zhang et al. [3] proposed corrective 

power (CP) index to quantify the extent to which a fan can “correct” a warm ambient temperature toward neutral. The 

CP index can be used to evaluate both the equivalent change in ambient temperatures caused by fans as well as the 

changes in subjective responses, such as thermal sensations and comfort. Based on the CP, He et al. [16] proposed the 

corrective-efficiency-to-power (CEP) index, which describes how much energy is consumed when 1-K CP value of 

personal comfort systems (PCSs) is achieved. The CEP index provides a detailed but simple calculation method for 

evaluating the energy-efficiency of PCSs, including fans. 

Due to the advantages of thermal comfort and energy conservation, fans have become the most successful 

commercial PCS. Nowadays, fans are used in offices [17, 18], classrooms [19, 20], houses [21, 22], and numerous other 

indoor environments. However, a lack of critical information obstructs the wider use of fans. 

(1) The first question is: why do people and to what extent do they use fans in real buildings? Fan-use rates in 

different buildings in real-world settings may answer this question because the occupants themselves actively choose to 

use fans (rather than being “asked” to use fans as in lab studies). However, no studies have presented a comprehensive 

review of fan-use and its influential factors in practice. 

(2) Secondly, although many lab studies show that building occupants with fans can be thermally comfortable in 

warmer environments (up to 30℃ or higher), no review to examine the comfortable ambient temperatures using fans in 

actual buildings, i.e., the neutral-zone temperatures of occupants with fans in actual buildings are not clear. 

(3) Thirdly, energy conservation achieved by fans in buildings is usually estimated by simulations with increased 

indoor set-point temperatures [3, 13, 14]. Nonetheless, actual energy savings due to fan use have not been fully 

validated. 

(4) Lastly, the productivity of humans is related to their thermal conditions [23, 24]. Since fans effectively reduce 

warm sensations, they may improve human productivity in warm environments. However, this point has not been fully 

explored in field studies. 

1.2 Objectives 

The main objectives are to explore: 

(1) Fan-use rates (including fan-use rate models) in different types of buildings and the triggers for using fans. 
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(2) Effects of fans on thermal comfort, energy consumption, and work productivity in field studies, including the 

elevation of neutral temperatures with fans, energy saving potentials by using fans, and the extension of temperatures 

ensuring high-productivity. 

1.3 Framework of this review 

As shown in Fig. 2, this review includes two major parts: fan-use rates and the effects of fans. Section 3.1 on fan-

use rates mentions 54 studies on the prevalence of fans and the triggers of their uses. Section 3.2 on the effects of fans 

consists of three sections: thermal comfort, energy conservation, and human productivity. Lastly, a discussion section 

provides useful information for relevant standards and future studies. Detailed methods for presenting fan-use rates and 

its effects are presented in Sections 2.2 and 2.3. 

!  

Fig. 2. Framework of this review. 

2. Methodology 

The studies mentioned in the collected literature were mainly conducted during warm seasons. 

2.1 Definitions of building types 

Based on HVAC system operation conditions, the buildings’ cooling strategies in the collected literature are 

divided into three types: air-conditioned (AC), mixed-mode (MM) and naturally-ventilated (NV). In AC buildings, all 

the air-conditioning systems are running. For example, in study [25], all the occupants in AC buildings were using air 
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conditioners. In MM buildings, mechanical cooling and operable windows are both available, and only a fraction of the 

air-conditioning systems are running all the time or all the air-conditioning systems run for only part of the time. For 

instance, in [26], the air-conditioning systems were not always running, so the buildings were regarded as MM ones. In 

NV buildings, there are no air-conditioning systems or the air-conditioning systems are turned off (as in [27]), and there 

are operable windows. 

Also, in this review, the buildings are also divided according to their functions: residential buildings (including 

houses, apartments, dormitories and so on), office buildings, teaching buildings (classrooms, school computer rooms 

and so on), hybrid buildings (the original studies involved several types of buildings but did not separate them), etc. The 

detailed building types are listed in Appendix tables. 

2.2 Fan-use rate, maximum fan-use rate, and fan-use rate models 

Fan-use rate. The fan-use rate is defined as the percentage of the occupants who are using fans corresponding to 

an ambient temperature. In a study, the fan-use rate was usually calculated in each bin of the ambient temperatures. For 

example, in [18] which was conducted in two office buildings, all records of fan-use rates were assigned to outdoor air 

temperature bins with 1℃ interval, e.g., the temperature bin of 25℃ contains the fan-use data (use fans or not) in the 

range of outdoor air temperatures from 24.5℃ to 25.4℃. 

Maximum fan-use rate. In general, the fan-use rate increases as indoor or outdoor temperature increases. Usually, 

as the temperature increases to a certain level, the fan-use rate reaches its maximum (often it is not 100%) and does not 

increase further as ambient temperature increases further. In this case, we use the first ambient temperature when the 

maximum fan-use rate was recorded as the corresponding temperature of the maximum fan-use rate. This temperature 

defines threshold for maximum fan-use rates. For example, if the maximum fan-use rate is 80% which appears at the 

environmental temperatures of 30℃, 32℃, and 34℃ in a study, then 30℃ is selected as the corresponding temperature 

of the 80% fan-use rate. For some studies, if only the average fan-use rate and its average ambient temperature are 

reported, then these are used as the maximum fan-use rate and its corresponding temperature, respectively. 

Fan-use rate model. Many collected studies also provided fan-use rate models, and those models were also 

collected. These models represent correlations between fan-use rates and environmental temperatures. Most of the 

models in the original studies were obtained by logistic regressions (see Appendix Table 1). These models can be 

divided into two groups according to whether they are correlated with indoor or outdoor temperatures. Indoor 

temperatures could be indoor air, globe, or effective temperatures, depending on what is available in the original papers, 

while outdoor temperatures are raw or calculated dry-bulb outdoor temperatures, which could be actual, binned, average 

monthly, or average daily outdoor dry-bulb temperatures. Detailed temperatures are explained in appendix tables. 

This review developed general models based on these collected models. Since most papers that provide models do 

not provide original data, the general models of this study were established by using the calculated values of the 
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collected models rather than the original data. To quantify the correlations between temperatures and fan-use rates, 

probit regressions were used to obtain general models of fan-use rates. First, the use rate of each model in each 0.1℃ 

bin was calculated. The 0.1℃ bin corresponds to the resolution of temperature sensors used in field studies which is 

usually 0.1℃. Then, the average use rate of each model in each 0.1℃ bin was calculated. Subsequently, probit 

regressions were used to obtain the general models. Logistic regressions use original data in the discrete form which are 

lacked. Probit regressions allow the use of calculated values (such as average values in temperature bins which are 

continuous), and can generate very similar results as those by using logistic regressions. The main difference between 

logistic and probit regressions only lies in the link function. Thus, probit regressions are adopted in this study. Probit 

regressions were also used in some of previous studies on occupant behaviors (including using fans) and thermal 

comfort, such as [1, 28]. The form of regression models is shown as follows: 

!   

where pfan is the fan-use rate, T is the environmental temperature (indoor or outdoor temperature), a and b are the 

coefficients which are obtained through probit regressions. 

2.3 Evaluation of fan effects 

2.3.1 Thermal comfort 

The goal of this analysis is to isolate the effects of fans on thermal comfort in field studies. The approach entails a 

comparison of two groups of field studies: one group with fans and the other without. For the group with fans, studies 

were conducted in buildings in which at least 70% of the total occupants used fans in warm seasons. Their neutral 

temperatures (thermal sensation vote (TSV) equals to 0) and upper limits of neutral-zone temperatures (TSV=+0.5) 

were analyzed. Choosing TSV=+0.5 as the upper limit of the neutral zone was based on the suggestions of ASHRAE 

Standard 55 [2]. For the group without fans, studies were selected from buildings in which none of the occupants used 

fans. The thermal comfort of occupants in AC buildings without fans was not included in the analysis because people in 

AC buildings are less adaptive to warm environments [25] and the comparison would not be influenced by adaptation. 

Therefore, the comfort comparison mainly consists of the results obtained in MM and NV buildings without fans, and 

AC, MM, and NV buildings with fans. 

2.3.2 Energy conservation 

There is only one field study that directly elevated set-point temperatures of air-conditioning systems with fans and 

measured the energy saved by this set-up [29]. Elevating the set-point temperature from 23℃ without fans to 26℃ with 

fans was estimated to achieve annual energy savings of 44 kWh/m2. 

MM buildings provide a unique opportunity to compare the energy use of air-conditioning by comparing the 

pfan =
1

1 + exp(aT + b)
                  (1)
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temperature at which air-conditioning was turned on with or without fans. The higher the temperature, the higher were 

the energy savings. In this review, 50% of the air-conditioning-use (AC-use) rate was taken as the threshold to find the 

corresponding ambient temperatures. The 50% AC-use rate means that half of occupants are using air-conditioning 

systems. When AC-use rate reaches 50% or higher, it indicates more occupants are using AC than those who are not. If 

the corresponding ambient temperature of 50% AC-use rate is higher, it means that occupants rely less on AC in warm 

environments, thus saving both energy and money. The 50% AC-use rate was also used in some collected literature 

(such as references [18] and [22]) to study AC-use behaviors of occupants in buildings. Moreover, AC-use rate models 

were also collected for analyzing whether AC-use rates could be reduced with fans. Similar to what was mentioned in 

Section 2.2, general AC-use rate models correlated with environmental temperatures were obtained by probit 

regressions. 

2.3.3 Human productivity 

Human productivity includes actual work productivity, psychological productivity, and productivity-related 

symptoms. The actual work productivity mainly refers to the score achievable by a person who is working (in activities 

such as learning, typing, calculation, and thinking). The self-estimated productivity is the psychological perception of 

how effective an individual perceives himself or herself to be while working. The work-related symptoms refer to 

factors such as fatigue and tiredness that directly influence a person’s work. 

Different studies used different scales to evaluate productivity. We converted the scales to percentages to quantify 

the productivity. For example, in [29], using a scale ranging from “not productive” to “very productive”, occupants 

reported their self-estimated productivity at temperatures of 23℃ (no fans), 26℃ (with fans), and 27℃ (with fans). We 

represented 0% as “not productive” and 100% as “very productive”. Then, we converted the self-estimated votes 

averaging 0.849, 0.836, and 0.765 to 84.9%, 83.6%, and 76.5%, respectively. Thus, the productivity changes are -1.30% 

and -8.40% at temperatures of 26℃ and 27℃ with fans as compared to the reference condition at 23℃ without fans. 

The corresponding ambient temperature deviations are 3℃ and 4℃, respectively. This method interpolates the original 

data to the corresponding full scale. For this review, we calculated only the temperature deviations of conditions with 

fans that had ambient temperatures equal to or higher than those without fans. Additionally, for studies with fatigue 

proportions, the increase and decrease in productivity were equivalent to the decrease and increase in fatigue 

proportions. 

3. Results 

3.1 Fan-use rate in field studies 

3.1.1. Overview of collected studies 

In total, 54 studies of fan-use rates were collected. Of these studies, 42 were conducted in Asia, 4 in Europe, and 3 

each in Americas and Australia. 2 studies were conducted in both Asia and Europe. It is probably due to both climatic 
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and cultural reasons that fans are more popular in Asia. The main building types in the collected literature were 

residential and office buildings (30 and 16 studies for residential and office buildings, respectively, and one study for 

both types), with several teaching and hybrid buildings (2 and 5 studies, respectively). Of the studies, 4, 13, and 29 were 

undertaken in AC, NV, and MM buildings, respectively, and 8 involve two or three of these building operation types. 

Among these 54 studies, 30 studies provide 60 models that present the relationship between fan-use rates and 

environment temperatures, whereas 38 models are with indoor and 22 with outdoor temperatures. All details of the field 

studies on fan-use rates are presented in Table 1 in the Appendix. 

3.1.2 Fan-use rates in different regions, in buildings with different cooling strategies and functions 

Difference with regions. Fig. 3 illustrates the maximum fan-use rates (means and distributions) in different 

buildings. The blue dots are the actual data of maximum fan-use rates of the collected studies. The grey curve 

represents the distribution trend of data which form the box on the curve’s left. The more the curve bends to right, the 

more data on the rate range (Y axis) which the bend corresponds with. For example, in Fig. 3a, the data of fan-use rates 

in Asia mainly vary between 50% and 100%, and thus the curve forms its bend (to right) mainly corresponding to this 

range. Asia and Europe are the main regions surveyed in the collected studies. As shown in Fig. 3a, fan-use rates are 

higher in Asia (usually higher than 60% and the mean rate is more than 75%) than in Europe (use rate is more evenly 

distributed and the mean rate is about 60%), whereas no significant statistical difference was found between Asia and 

Europe (t-test, p>0.05). 

Difference with cooling strategies. As for buildings with different cooling strategies, in general, the use rate in NV 

buildings is the highest (usually higher than 80%; average use rate is 82%), followed by MM buildings with the average 

fan-use rate reaching about 70%, then by AC buildings (usually lower than 60%; average lower than 50%), Fig. 3b. No 

significant difference between the fan-use rates of MM and NV buildings (t-test, p>0.05) was found, but the fan-use 

rates are significantly higher in MM and NV buildings than in AC buildings (t-test, p<0.05).  

Difference with building functions. Moreover, fan-use rates are different among buildings with different functions. 

In office buildings, fan-uses rates are relatively uniformly distributed between 0% and 100%, whereas it primarily 

varies between 60% and 100% in residential buildings (Fig. 3c). However, the difference is not significant between 

office and residential buildings. In teaching and hybrid buildings (those having multiple functions, such as living and 

recreation spaces in one building), the fan-use rate appears high but there are little supporting data. The data on America 

and Australia, as well as on teaching and hybrid buildings, are not included in Fig. 3 due to the very limited quantity of 

data. 
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!  
Fig. 3. Maximum fan-use rates with (a) different regions, (b) cooling strategies, and (c) building functions. 

3.1.3 Maximum fan-use rates vs. environmental temperatures 

Fig. 4 shows the maximum fan-use rates in different studies and their corresponding indoor and outdoor 

temperatures. It is clear that maximum fan-use rates occur in indoor ambient temperature ranges of 24℃–34℃ and 

outdoor temperatures of 18℃–34℃. Also, the maximum fan-use rate increases as the indoor or outdoor environment 

becomes warmer (see the trends shown by the circles with gray dashed lines). Moreover, between the ranges 

(23℃-28℃ indoors) when AC building data are available, the fan-use rate in AC buildings is close to those in NV and 

MM buildings under the same temperatures (statistical indifferent, p>0.05 for indoors), indicating that the driving force 

of fan-use is indoor temperatures, regardless cooling strategies such as AC, MM, or NV. This point is further discussed 

in Section 4.1. There are too few data corresponding to outdoor temperature, so no statistical analysis was performed,  
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Fig. 4. Maximum fan-use rates against (a) indoor and (b) outdoor temperatures. 

3.1.4 Fan-use rate models 

AC, MM, and NV cooling strategy buildings. 60 models (from 30 studies) correlating fan-use rates with indoor and 

outdoor temperatures were collected, which are presented in Fig. 5 and listed in Appendix Table 1. Fig. 5a shows the 

original models corresponding to the indoor temperature and Fig. 5d shows outdoor temperature models. The ranges of 

the original models were obtained from the original papers. Fan-use rates tend to increase as the indoor or outdoor 

environments become hotter. Also, the models of fan-use rates in AC, MM, and NV buildings are similar (as the lines of 

the original models usually overlap each other) when correlating to indoor or outdoor temperatures. Despite of limited 

data of fan-use rates in AC buildings, the trend is similar to the trends of MM and NV buildings. 

To develop general models based on those individual models, we extended the indoor and outdoor temperature 

ranges to 12℃-40℃ and 0℃-40℃, respectively, which are the largest ranges provided by those models in their 

original papers (see Fig. 5(b, d)). Based on these extended indoor and outdoor temperature ranges, we calculated the 

average fan-use rates of AC, MM, and NV buildings. They are also close to each other (Fig. 5(c, f)). The differences 

between MM and NV buildings are very small (green and orange lines are very close with each other), maximum 

difference less than 5% for indoors and less than 10% for outdoors. The differences between AC and MM or NV are 

bigger, but still lower than 10% at the same indoor temperature, and lower than 20% at the same outdoor temperature. 
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The results indicate that the indoor temperature, not the cooling strategy, mainly drives the fan-use rate. 

The probit regression models based on average fan-use rates (pfan) against the indoor (Tin) and outdoor (Tout) 

temperatures (Fig. 5(c, f)) were obtained as described by several equations below: 

correlated with indoor temperatures: 

!   

!   

!   

!   

correlated with outdoor temperatures: 

!   

!   

!   

!   

Again, it should be noted that only 6 and 2 original fan-use rate models of AC buildings are correlated with indoor 

and outdoor temperatures, respectively, therefore, their regression models of fan-use rate models may not be very solid. 

For AC buildings:        pfan =
1

1 + exp( − 0.247 × Tin + 7.036)
                     (2)

For NV buildings:        pfan =
1

1 + exp( − 0.424 × Tin + 11.967)
                  (3)

For MM buildings:      pfan =
1

1 + exp( − 0.383 × Tin + 11.418)
                   (4)

For All buildings:        pfan =
1

1 + exp( − 0.360 × Tin + 10.394)
                   (5)

For AC buildings:        pfan =
1

1 + exp( − 0.142 × Tout + 4.150)
                   (6)

For NV buildings:        pfan =
1

1 + exp( − 0.215 × Tout + 5.686)
                   (7)

For MM buildings:        pfan =
1

1 + exp(−0.231 × Tout + 6.599)
                 (8)

For All buildings:        pfan =
1

1 + exp( − 0.224 × Tout + 6.161)
                   (9)
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Fig. 5. AC, NV, and MM buildings’ fan-use models with (a) original indoor, (b) extended indoor, (c) extended indoor 

(average fan-use rates), (d) original outdoor, (e) extended outdoor, and (f) extended outdoor (average fan-use rates) 

temperature ranges. 

Office and residential buildings. Further, Fig. 6 represents the models of residential (orange lines) and office (green 

lines) buildings which are the two major building functions of the collected studies regarding fan-use rates. There are 23 

models of residential buildings (15 and 8 models correlated with indoor and outdoor temperatures, respectively), and 33 

models of office buildings (20 and 13 models correlated with indoor and outdoor temperatures, respectively).  

For the models correlating with indoor ambient temperatures (Fig. 6a), the ones for office buildings (represented 

by green lines) are located at the lower ambient temperature ranges (curves towards the left) than the models for 

residential buildings (represented by orange lines, curves towards the right). It indicates that the ambient temperatures 

in office buildings are cooler than the residential buildings. This tendency also appears in models based on outdoor 

temperatures (Fig. 6d), and with the extended temperature ranges (Fig. 6(b, e)). 

The probit regression models of residential and office buildings based on average fan-use rates (pfan) against the 

indoor (Tin) and outdoor (Tout) temperatures were obtained (Fig. 6(c, f)). The corresponding indoor and outdoor 

temperature ranges are 12℃-40℃ and 0℃-40℃, respectively. The models are listed as below: 

correlated with indoor temperatures: 

!   

!   

For Residential buildings:        pfan =
1

1 + exp( − 0.425 × Tin + 12.891)
                   (10)

For Office buildings:                  pfan =
1

1 + exp( − 0.342 × Tin + 9.576)
                      (11)
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correlated with outdoor temperatures: 

!   

!   

!  

Fig. 6. Residential and office buildings’ fan-use models with (a) original indoor, (b) extended indoor, (c) extended 

indoor (average fan-use rates), (d) original outdoor, (e) extended outdoor, and (f) extended outdoor (average fan-use 

rates) temperature ranges. 

3.2. Effects of Fans 

3.2.1 Thermal comfort 

AC, MM, and NV cooling strategy buildings. As described in Section 2.3.1, to study the effects of fans on comfort, 

those with a fan-use rate of 70% or more were compared to those without fans. By excluding the data from AC 

buildings without fans, the comfort results are more comparable assuming adaptation opportunities are available for the 

MM and NV buildings without fans, and AC, MM, and NV buildings with fans. A total of 30 studies (2, 3, and 25 were 

conducted in AC, MM and NV buildings, respectively) with fans and 20 studies (9 in MM and 11 in NV buildings) 

without fans were collected. The details of these studies are listed in Table 2 in the Appendix. 

The neutral temperatures (TSV=0) and the upper limit of the neutral-zone temperatures (TSV=+0.5) in these 

studies are presented in Fig. 7(a, b). All results of the neutral temperatures and upper limits were calculated based on the 

original models in the collected literature.  

Without fans (represented by red and orange squares), neutral temperatures are 24℃-28℃ and the average value is 

For Residential buildings:        pfan =
1

1 + exp( − 0.200 × Tout + 6.065)
                   (12)

For Office buildings:                  pfan =
1

1 + exp( − 0.221 × Tout + 5.783)
                    (13)
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25.7℃. The TSV=0.5 mainly range from 26℃ to 29℃ with only two sets of data being higher than 29℃, and the 

average value of the upper limits is 27.5℃. No data appears above 30℃ for TSV=0 and +0.5, indicating it impossible 

to achieve comfort when the indoor temperature is above 30℃.  

When there are fans (green, blue, and dark blue), both the neutral temperatures and upper limits of neutral-zone 

temperatures are shifted to higher levels. Neutral temperatures with fans fall in the range 27℃-31℃ with the average 

value being 28.7℃, which is about 3℃ higher than that without fans. The upper limits are within the range 29℃-32℃ 

with the average value being 30.7℃, which is also about 3℃ higher than that without fans. It should be noted that 

occupants with fans in MM (blue circles) and NV (green circles) buildings have similar neutral temperatures and close 

upper limits. Occupants without fans (red and orange squares) also have similar neutral temperatures and close upper 

limits but those values are usually lower than when they have fans. It indicates that MM and NV buildings have similar 

ambient temperatures for TSV=0 and +0.5. This point is further discussed in Section 4.1. 

Moreover, the data in Fig. 7a show that neutral temperatures increase as fans are used while the relative humidity 

remains same between 50% and 70%. This indicates that fans are effective at raising neutral temperatures with the same 

relative humidity. Nonetheless, statistical analysis shows no robust correlations between neutral temperatures and 

relative humidity (absolute value of Pearson’s r is lower than 0.04). This result implies that the increase of neutral 

temperatures is mainly produced by using fans rather than by decreasing of relative humidity. 
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!  
Fig. 7. (a) Neutral temperatures (TSV=0) and (b) upper limit of neutral-zone temperatures (TSV=0.5) with and without 

fans (MM, NV and AC buildings). 

Office, residential, and teaching buildings. The collected studies mainly include three building function types: 

office, residential and teaching buildings. Fig. 8 presents their neutral temperatures (TSV=0, Fig. 8a) and the upper 

limits of neutral-zone temperatures (TSV=+0.5, Fig. 8b). For residential buildings (cross marks), without fans, neutral 

temperatures are 24℃-29℃ and the average value is 26.4℃; the temperatures for TSV=0.5 mainly range from 26℃ to 

30℃ with only two sets of data being higher than 30℃, and the average value of the upper limits is 28.3℃. With fans, 

neutral temperatures in residential buildings increase to 27℃-31℃ and the average value is 29.3℃ (increased by 2.9℃ 

as compared to those without fans, 26.4℃); and the upper limits are mainly 30℃-32℃ (only one set of data is lower 

than 30℃), and the average value is 31.0℃ (increased by 2.7℃ as compared to those without fans 28.3℃). For office 

buildings (triangle marks), using fans increases the average neutral temperature and the average upper limit by 0.9℃ 

(from 26.2℃ to 27.1℃) and 1.2℃ (from 28.0℃ to 29.2℃). The small increase is because that in office buildings, even 

with fans, the ambient temperature didn’t increase as much as in residential buildings. For teaching buildings (circle 

marks), using fans increases the average neutral temperature and the average upper limit by 4.8℃ (from 23.7℃ to 
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28.5℃) and 5.0℃ (from 25.7℃ to 30.7℃). These results indicate that fans are more useful to extend neutral-zone 

temperatures in teaching and residential buildings than in office buildings. Besides, although different-function 

buildings may have different neutral temperatures, the results of Fig. 8b indicate that occupants without fans are hard to 

be comfortable when the ambient temperature is higher than 30℃ (only two sets of residential data without fans are 

higher than 30℃ when TSV=+0.5). 

!  

Fig. 8. (a) Neutral temperatures (TSV=0) and (b) upper limits (TSV=0.5) of neutral temperatures with and without fans 

(residential, office and teaching buildings). 

3.2.2 Energy conservation with fan-use in MM buildings 

As described in Section 2.3.2, we used AC-use rates in MM buildings with and without fans to indicate energy 

savings. A total of 24 studies about air-conditioning energy use in MM buildings have been collected. Among these 

studies, 16 and 5 are with or without fans, respectively. The remaining three studies include both data with and without 

fans. Each of the three studies had a same group of occupants, AC-use rates with and without fans. The details of these 

studies are listed in Table 3 in the Appendix. 

Fig. 9 shows the results for indoor and outdoor temperatures when the AC-use rate is 50% in MM buildings. 

Without fans, the mean values of indoor and outdoor temperatures (corresponding to 50% AC-use rate) are 29.7℃ and 
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27.3℃, respectively. When occupants have fans, the indoor and outdoor temperatures (corresponding to 50% AC-use 

rate) are higher. The fans increase indoor temperatures by 2.7℃ on average (mean value 32.4℃, mainly varying from 

32℃ to 33℃, blue boxes in Fig. 9) and outdoor temperatures by 4.1℃ (mean value 31.4℃, mainly varying from 28℃ 

to 35℃, orange boxes in Fig. 9) as compared to the temperatures without fans. A significant difference was found 

between outdoor temperature groups with and without fans (t-test, p<0.05) but not among indoor temperature groups 

due to the small number of data available for without-fan condition. Increases of the indoor and outdoor temperatures 

with 50% AC-use rate indicate that AC-use would be reduced. For example, at 27.3℃ outdoors, AC-use rate in 

buildings without fans reaches 50%, whereas AC-use rate is much less than 50% in buildings with fans because its 

threshold of 50% AC-use is 32.4℃. A quantified reduction of the AC-use rate by using fans is presented in Fig. 13. 

!  
Fig. 9. Indoor/outdoor temperatures when AC-use rate is 50% in buildings. 

Fig. 10 shows indoor (Fig. 10a) and outdoor (Fig. 10b) temperatures (Y-axis) and the corresponding fan-use rate 

(X-axis) when 50% AC-use rate happens. The orange dots illustrate the data without fans while the green dots show 

data with fans. The two fitted regression lines (Fig. 8a and 8b) show the trend as the fan-use rate increases from 0% to 

100%. The indoor and outdoor temperatures (with 50% AC-use rate) increase by about 5 and 8 K, respectively, 

indicating that a higher fan-use rate can reduce the AC-use rate. 
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!  
Fig. 10. Relationships between fan-use rate and indoor/outdoor temperatures when 50% AC-use rate is reached. 

Among the 24 collected studies, 18 studies provide models of AC-use rates vs. outdoor temperatures. Some of the 

models are with fans and others are without fans. Fig. 11 presents all the models of these studies (with original 

temperature ranges). The details are also listed in Table 3 in the Appendix. The orange-solid lines represent the 

conditions without fans and the green-solid lines represent the conditions with fans. At a certain level of AC-use rate, 

fan-use (presented by the green lines) slightly shifted the outdoor temperatures toward warmer temperatures (comparing 

to the orange lines without fans). In other words, occupants with fans use less air-conditioning when the outdoor climate 

is the same. However, there is an overlap between the areas with and without fans, which may lead to some doubt 

whether using fans truly reduces AC-use. To answer this question, three studies provide both models with and without 

fans, which are presented in Fig. 12 (original models with original temperature ranges). From these studies, it is clear 

that the use of fans postpones extensive AC-use because the solid lines (with fans) all located at the warmer side 

comparing to the dashed lines (without fans). 
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!  

Fig. 11. AC-use models against outdoor temperatures. 

!  

Fig. 12. Three studies that provide four models with and without fans (green lines [18], red lines [30], and blue and 

orange lines [31]). 

The average AC-use rates of the collected models (Table 3 in the Appendix) with and without fans and their 

differences against outdoor temperatures (temperature ranges of all models were extended to 10℃-40℃) are illustrated 

in Fig. 13. Clearly, the reduction in AC-use rate peaks at the outdoor temperature of 32.5℃. When outdoors is 

25℃-35℃ (which is also the main range of outdoor temperatures in summer), the reduction is higher than 15%, which 

indicates that at least 15% of the energy used for air-conditioning is saved by the use of fans. The reduction in AC-use 

rate is lower than 10% when the outdoor temperature is higher than 37.5℃ or lower than 22℃, indicating that fan-use 

does not reduce AC-use rates significantly when outdoors is lower than 22℃ (when fans are unlikely to be needed) or 

above 36.5℃ (when AC is needed regardless of the availability of fans). On the basis of the average values, two non-

linear models correlating AC-use rates (pAC) with outdoor temperatures (Tout) were established: 

!   With fans:               pAC =
1

1 + exp( − 0.252 × Tout + 7.671)
                      (14)
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!  
Fig. 13. Average AC-use rates with and without fans in MM buildings. 

3.2.3 Human productivity 

Seven studies were found to evaluate people’s work productivity with fans (see Table 4 in the Appendix) and all of 

them directly compared human productivity with fans at higher ambient temperatures to the productivity without fans at 

the same or lower ambient temperatures (these are called comparison temperatures). Of these 7 studies, 1 compared the 

actual work productivity (learning, scores obtained through examinations), 2 compared the self-estimated productivity, 

and 4 compared the work-related symptoms, respectively. The results of productivity changes with fans vs. temperature 

deviations from the comparison temperatures were calculated according to the data presented in the 7 papers, shown in 

Fig. 14. These studies provide 43 samples of productivity data (43 dots in Fig. 14). The positive value means that the 

human productivity is better with fans than without at the comparison temperatures, whereas the negative value means 

that the human productivity is worse with fans. A zero value means that there is no change in productivity with or 

without fans. The positive temperature deviations mean that the ambient temperature with fans was higher than the 

comparison temperature while a zero-temperature deviation means that the comparison had been made under the same 

ambient temperature both with and without fans. The comparison temperatures are the tested ambient temperatures used 

in the original studies to calculate the temperature derivatives. For example, when a study investigated the productivity 

at 26℃, 28℃, and 31℃, then used 26℃ and 28℃ as comparison temperatures, the deviation temperatures would be 0 

K (26℃-26℃, 28℃-28℃, and 31℃-31℃), 2 K (28℃-26℃), 3 K (31℃-28℃), and 5 K (31℃-26℃). 

It can be seen from the comparison temperatures (0 K-no temperature increase, or within 1 K) that when the 

ambient temperature increases within 1 K, the fans improve the human productivity for most studies (data when 

deviation<1 K, Fig. 14). When the ambient temperature increases further, i.e., between 1 and 5 K from the comparison 

temperatures, with fans, some studies show that the human productivity could be maintained at the same levels as the 

Without fans:         pAC =
1

1 + exp( − 0.276 × Tout + 7.493)
                      (15)
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comparison temperatures (the dots along the 0% productivity change line). There are more data showing that the 

productivity has been reduced compared with the no-fan under comparison temperatures (negative values in Fig. 14), 

but most of the reductions are within 5%. There are only three instances where the reduction is between 8%-10%. There 

are seven examples when productivity increases with fans as compared to the productivity at comparison temperatures 

without fans. Among these examples, 3 are within a 5% increase, whereas 4 are much higher than 10% increase and 

almost reached 20%. 

As shown by the red line in Fig. 14, a linear regression had been made for the data when the deviation temperature 

was larger, i.e., between 1 and 5 K (Pearson’s r =–0.245, R2=0.037, ANOVA: p=0.113, F value=2.612). Although the 

fitting line is not perfect, it indicates a trend that fans could improve occupant productivity (positive productivity 

change) within a certain range of temperature deviations from the comparison temperatures, and the threshold is 3 K. 

When the ambient temperature is warmer than 3 K from the comparison temperatures, fans cannot make up for the 

productivity loss (productivity increase becomes negative; Fig. 14). In the seven studies, there are more data with 

comparison temperatures between 26℃-29℃ (Table 4 in the Appendix), so the 3 K threshold indicates that fans could 

enhance productivity at 29℃-32℃ comparing to the productivity at 26℃-29℃ ambient temperatures. 

!  
Fig. 14. Results of productivity changes with fans vs. temperature deviations (N=7): fitting without data of temperature 

deviation <1℃. Legend and the color of the dots refer to different studies. 

4. Discussion 

4.1 Analyses of trigger and effects of fan-use 

Trigger of fan use. Fig. 5a shows that fan-use is more prevalent in MM and NV buildings because AC buildings 

usually have cooler indoor environments than MM and NV buildings, and so, fewer occupants need fans. When 

extending the temperature range, fan-use models of AC buildings do not show large deviations from those of MM and 

NV buildings (Fig. 5(b, e)). Therefore, it is reasonable to believe that if indoor temperatures in AC buildings become 

higher, more occupants will use fans to remain comfortable. In a similar way, the climate in Europe is less extreme than 
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in Asia in the summer, so people in Asia make more use of fans. Similarly, as shown in Fig. 6a, office buildings have 

lower fan-use rates because their indoor environments are cooler than those of residential buildings. Whereas with 

extended temperature ranges, offices buildings can have the same or even higher fan-use rates (Fig. 6b). These findings 

indicate that the main trigger of using fans is a warm indoor environment, whereas building types do not noticeably 

influence the fan-use mode. 

Fan, an important adaptive strategy for thermal comfort. The ASHRAE adaptive model [32] is for NV buildings, 

and it shows that occupants are still comfortable when their ambient temperatures are up to more than 30℃ (33℃ at 

most). According to the results in Fig. 6, a high neutral-zone temperature (30℃ or higher) is only achieved when 

occupants have fans. Although occupants in NV or MM buildings may have various approaches to adapting to warm 

environments, such as opening windows and doors, adjusting clothing, and drinking cool beverages, they could hardly 

become comfortable with ambient temperatures higher than 30℃ (red and orange dots; no fans) unless they have fans 

(green and blue dots; with fans). This result also indicates that using fans is an important factor for adapting to warm 

environments in summer. 

Energy saving potential. The study [3] implies that using fans could save more than 40% of energy, which is much 

higher than the energy-saving estimation shown in Fig. 13 (20% at most). The difference is caused by the method to 

predict energy savings: the energy-saving estimation of [3] is based on energy simulations with the changed set-point 

temperatures, whereas that of this study is based on the change of AC-use rates of MM buildings rather than the real or 

the simulated energy consumptions. Nonetheless, the field studies listed in Table 3 in the Appendix offer no details of 

how the occupants set the indoor temperatures with or without fans. Therefore, it is difficult to define the extended set-

point temperatures generated by using fans and the resulting energy savings. 

3-K ambient temperature extension with fans for productivity. Fig. 14 shows a trend that fans can extend the 

productivity by 3 K more than the comparison temperatures. This extension is coincident with the extensions of neutral 

temperatures and the upper limit of neutral-zone temperatures mentioned in Section 4.1 (both are about 3℃; Fig. 7). 

One hypothesis states that human productivity is related to the body’s thermal conditions [23, 24]. Fans effectively cool 

the bodies and maintain neutral body temperatures in warmer environments but can only bring warm environments to 

neutral within a certain range (3 K increase; Fig. 7). Thus, when the temperature deviation is too large, individuals using 

fans still feel too warm, so their productivity may decline. 

4.2 Applications of this study 

This study summarized numerous studies related to fan-use in field studies. The applications of the findings in this 

study are as follows: 

(1) According to the fan-use rate models (Equations (2)~(13)), fan-use rates can be predicted in a certain building. 
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Also, fan-use rates help researchers and designers understand the control behaviors and comfort requirements of 

building occupants [5, 17]. 

(2) According to the results mentioned in Fig. 7, fans can averagely extend neutral temperatures by 3 K in the real 

world. This finding can be used to define the different comfortable ranges for people with and without fans, as well as 

specifically help define the neutral-zone temperatures for MM buildings, which are missing in the current standards 

regarding indoor environments. 

(3) AC-use rate models (Equations (14) and (15)) contribute to the energy estimations of MM buildings with and 

without fans. Along with the neutral-zone temperatures (Figs. 7 and 8) being set as indoor set-point temperatures, AC-

use rate models may be used as algorithms for running AC systems in the energy simulations of MM buildings. These 

algorithms are different from the conventional ones of building energy simulations with fixed set-point temperatures 

(usually lower than 26℃) and always-on air-conditioning systems. 

(4) The findings of human productivity presented in Fig. 14 offer guidance for building designers and employers to 

offer fans to improve or maintain productivity when ambient temperature fluctuations do not exceed 3 K. 

4.3 Limitations and potential topics for future studies 

First, it should be noted that a large proportion of the collected studies had been conducted in Asia. Although the 

obtained results (fan-use rates and effects) provide critical information, they will potentially be more suitable for Asian 

regions. Second, as mentioned in Section 3.2.2, the energy savings achieved by fans were estimated by using AC-use 

rate differences in MM buildings but were not based on real set-point temperatures with and without fans, which would 

have given a direct energy saving estimation. Therefore, more studies are needed to prove the final energy savings using 

fans. Third, the trend in Fig. 14 is not universal or fully validated because of the limited number of collected studies. 

The validation of the trend could be a future work when there are more relevant studies. Moreover, air speed is not 

analyzed in this review because only a small group of collected studies provide data of air speed and no robust 

correlations between air speed and neutral temperature were found. One reason for no robust correlations could be that 

literature do not give detailed data of air speed of fans, natural wind or AC. Airflow of fans is usually local and intense 

(mostly on upper body parts of occupants), while natural wind and AC are less intense and could cover bigger area of a 

body. It is questionable whether merely a measured air speed is able to fully represent the air movement of a person 

experiences. Another reason is that measurement locations are often limited in real buildings which might not precisely 

represent ambient air velocities of occupants. Lastly, many factors (such as fan type, fan size and location) may 

influence the results in this study, whereas they are not provided in most of the collected literature, and thus it’s 

impossible to analyze them. 

As for future studies, several potential topics, mostly related to fan-use in AC buildings, are worth further 

exploration. First, control behaviors over AC thermostats and fans should be studied. Using fans can make occupants 
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comfortable at elevated AC set-point temperatures [5]. Nonetheless, current literature provides little detailed 

information regarding how occupants use AC thermostats and fans simultaneously. For example, it is still unknown 

whether occupants use fans when AC is available, and if they do, especially in dynamic conditions (such as moving 

from outdoors to indoors), how they choose certain fan-speed levels and AC set-point temperatures is another piece of 

missing information. This work is useful for estimating the energy consumption of AC buildings where occupants have 

fans and thermostats. This work could be done through lab experiments and validated by field investigations. Second, 

practical control strategies of integrating AC and fans should be studied. As described in Section 3.2.2, using fans 

postpones the use of AC. This postponement is helpful for proposing the “fan-first” control strategy for air-conditioning 

systems. In future, the delay times and indoor temperature thresholds for turning on air-conditioning should be 

explored. Last, the cooling effects of fans may also improve people’s comfort and productivity in outdoor or semi-

outdoor environments where air-conditioning systems are usually not available. Fans may create wider comfort zones in 

outdoor environments and increase the work productivity of people working outdoors. Since outdoor environments 

involve more variables, such as strong winds and solar radiation, the effects will likely differ from those of fans indoors. 

5. Conclusions 

This study reviewed fan-use rates in field studies and their effects on thermal comfort, energy conservation, and 

human productivity. The major findings are listed as follows: 

(1) Currently, fans are more prevalent in MM and NV buildings but not in AC buildings. Despite of some fan-use 

rate differences caused by different cooling strategies (AC, MM and NV) and building functions (residential and office), 

fan-use rate models in different buildings have similar tendencies and they are mainly decided by environmental 

temperatures. This result indicates that the main trigger of using fans is the indoor or outdoor temperatures, not building 

types or functions. Several models were established to present fan-use rates in different buildings correlating with 

indoor and outdoor temperatures, respectively. 

(2) Using fans increases the average neutral temperatures and upper limit of neutral-zone temperatures (using 

TSV=+0.5) in buildings by about 3 K from 25.7℃ to 28.7℃ and from 27.5℃ to 30.7℃, respectively. 

(3) Fan-use reduces AC-use in MM buildings. According to the AC-use rate models in this review, the peak 

reduction of AC-use rate is about 20% when the outdoor temperature is 32.5℃. When the outdoor temperature is 

25℃-35℃, the AC-use rate is reduced by more than 15%, which indicates that at least 15% of cooling energy can be 

saved in MM buildings. 

(4) When the temperature rises within 1 K from its comparison temperatures, offering fans to occupants can 

improve their productivity better than it under the comparison temperatures without fans. As temperature increases 

more, by 1-3 K from the comparison temperatures, a trend shows that fans can still maintain occupants’ productivity at 
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the levels under comparison temperature. This 3 K is coincident with the extensions of neutral temperatures and the 

upper limits of neutral-zone temperatures. As temperature further increases beyond 3K from the comparison 

temperature, fan cannot maintain the productivity level from decreasing. 
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Appendix 

Table 1. Summary of fan-use rates and models. 

Stu
d ie
s

Region S a
m p
l e 
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e
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i n g 
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Bui
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n g 
t yp
e

F a n 
type1

M a x . 
f a n -
u s e 
r a t e 
(%)

Temp. 
type2

Corresp
ond ing 
t e m p . 
(℃)

Fan-use models

[27
]

C h o n g q i n g , 
China

573 Resid
ential

NV Ceilin
g

87 O u t -
Raw

28 logit(p)=0.45×Tout -12.59  
R2=0.82

C h o n g q i n g , 
China

428 Resid
ential

M
M

Ceilin
g

75 O u t -
Raw

28.7 -

[33
]

C h o n g q i n g , 
China

147
1

Resid
ential

NV N.A. 60 In-Air 32.5 0.9960×Tin2 -49.9940×Tin 
+627.33  R2=0.9853

Wuhan, China 128
1

Resid
ential

NV N.A. 100 In-Air 34 0.8189×Tin2 -38.22×Tin 
+448.30  R2=0.9591

Nanjing, China 133
2

Resid
ential

NV N.A. 100 In-Air 32.5 0.7103×Tin2-29.9070×Tin 
+307.53  R2=0.9463

[34
]

G u a n g z h o u , 
China

139
5

Hybri
d

M
M

N.A. 100 In-ET 29.5 1 0 0×Φ ( 0 . 4 1 5 2 8× T i n 
-10.71057)

[35
]

G u a n g z h o u , 
China

921 Hybri
d

NV N.A. 100 In-ET 31 100×Φ(0.331×Tin -9.539)

[36
]

Haikou, China 194
4

Resid
ential

M
M

N.A. 82.3 O u t -
Month
ly

28.2 Tout <22.9℃: 2.603×Tout 
-41.004 
Tout >22.9℃: 12.296×Tout 
-264.28

[37
]

H u a n g g a n g , 
China

85 Resid
ential

M
M

N.A. 100 - - -

[38
]

G u a n g z h o u , 
China

109
2

Resid
ential

NV Ceilin
g

95 In-ET 33 logit(p)=0.66×Tin -19.12  
R2=0.48

[39
]

Xi’an China 160
5

Resid
ential

NV N.A. 100 In-Air 33 logit(p)=0.372×Tin -10.89  
R2=0.837

Xi’an China 160
5

Resid
ential

NV N.A. 100 O u t -
Raw

35 logit(p)=0.283×Tout -7.63  
R2=0.87

[18
]

Changsha, China 215
9

Offic
e

M
M

Ceilin
g and 
Wall

100 O u t -
Raw

33 l o g i t ( p ) = 0 . 6 2 1×T o u t 
-16.792  R2=0.683

[40
]

Tianjin, China 474
3

Resid
ential

M
M

N.A. 34 O u t -
Raw

33 -

[25
]

Changsha, China 240 Resid
ential

AC N.A. 57.5 In-Air 25.99 -

Changsha, China 132 Resid
ential

AC N.A. 43.9 In-Air 25.99 -

Changsha, China 107 Resid
ential

AC N.A. 52.3 In-Air 26.03 -
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[41
]

Changsha, China 101 Resid
ential

M
M

N.A. 100 O u t -
Raw

32.91 -

Yueyang, China 131 Resid
ential

NV N.A. 100 O u t -
Raw

30.1 -

[42
]

Hanzhong, China 99 Resid
ential

M
M

N.A. 64 In-Air 26 -

[43
]

C h o n g q i n g , 
China

732 Resid
ential

M
M

N.A. 81 I n -
Operat
ive

34 0.4053×Tin2-13.834×Tin 
+87.547  R2=0.9759

C h o n g q i n g , 
China

732 Resid
ential

M
M

N.A. 58 I n -
Operat
ive

34 0.6439×Tin2-30.786×Tin 
+364.2  R2=0.9709

[44
]

Nanyang, China 132
0

Resid
ential

M
M

N.A. 100 In-Air 33 7 . 1 4 1 6×T i n - 1 6 4 . 1 8  
R2=0.7415

[17
]

Oxford, UK 244
1

Offic
e

NV N.A. 100 In-Air 21 0 . 0 9 1 2 × T i n - 1 . 8 7  
R2=0.369

Oxford, UK 244
1

Offic
e

NV N.A. 100 O u t -
Raw

21 0 . 0 4 2 × T o u t - 0 . 5 4  
R2=0.375

Oxford, UK 113
2

Offic
e

NV N.A. 100 In-Air 21 0.040×Tin -0.67  R2=0.066

Oxford, UK 113
2

Offic
e

NV N.A. 100 O u t -
Raw

24 0.029×Tout -0.12  R2=0.24

[45
]

Karachi, Multan, 
Peshawar, Quetta 
& Saidu Sharif, 
Pakistan

492
7

Offic
e

M
M

N.A. 100 I n -
Globe

31 -

492
7

Offic
e

M
M

N.A. 100 O u t -
Raw

28 -

[46
]

Singapore 257 Resid
ential

M
M

N.A. 88.8 O u t -
Daily

- -

[26
]

UK 500
0

Offic
e

M
M

N.A. 76 O u t -
Raw

21 logit(p)=0.220×Tout -5.37

Europe 465
5

Offic
e

M
M

N.A. 58 O u t -
Raw

32 logit(p)=0.110×Tout -3.80

Pakistan 700
0

Offic
e

M
M

N.A. 100 O u t -
Raw

33 logit(p)=0.301×Tout -7.09

UK 500
0

Offic
e

M
M

N.A. 58 I n -
Globe

27 logit(p)=0.817×Tin -22.33

Europe 465
5

Offic
e

M
M

N.A. 50 I n -
Globe

31 logit(p)=0.243×Tin -8.36

Pakistan 700
0

Offic
e

M
M

N.A. 98 I n -
Globe

38 logit(p)=0.431×Tin -12.01

[47
]

Tokyo, Japan 240
2

Offic
e

AC D e s k 
a n d 
Floor

64 In-Air 28.2 -
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Tokyo, Japan 240
2

Offic
e

AC D e s k 
a n d 
Floor

64 O u t -
Raw

29.7 -

[48
]

P h i l a d e l p h i a , 
USA

554
8

Offic
e

AC N.A. 60 I n -
Operat
ive

25.8 logit(p)=0.66×Tin -16.68  
R2=0.13

P h i l a d e l p h i a , 
USA

554
8

Offic
e

AC N.A. - O u t -
Raw

- logit(p)=0.08×Tout -2.36  
R2=0.17

[49
]

Fukuoka, Japan 81 Offic
e

NV Floor 19.1 In-Air 28.2 -

Fukuoka, Japan 222 Offic
e

AC Floor 5.7 In-Air 26.3 -

[50
]

L u m p u r , 
Malaysia

115 Offic
e

AC Floor 10 In-Air 24 -

B a n d u n g , 
Indonesia

300 Offic
e

M
M

Floor 1 In-Air 26.2 -

Singapore 56 Offic
e

AC Floor 7 In-Air 23.1 -

Yo k o h a m a & 
Tokyo, Japan

455 Offic
e

M
M

Floor 6.8 In-Air 26.4 -

[22
]

Sydney, Australia 118
5

Resid
ential

M
M

Ceilin
g and 
Desk

72 O u t -
Raw

37 logit(p)=0.11×Tout -4.79  
R2=0.15

[51
]

C h e n n a i & 
Hyderabad, India

559 Offic
e

NV Ceilin
g and 
Floor

100 I n -
Globe

31 l o g i t ( p ) = 0 . 4 4 8 × T i n 
-11.706  R2=0.17

C h e n n a i & 
Hyderabad, India

205
3

Offic
e

AC Ceilin
g and 
Floor

100 I n -
Globe

31 l o g i t ( p ) = 0 . 3 3 8 × T i n 
-10.698  R2=0.12

[52
]

Chennai, India 138
9

Offic
e

AC N.A. 100 O u t -
Daily

34 logit(p)=0.59×Tout -17.62  
R2=0.264

Chennai, India 672 Offic
e

M
M

N.A. 100 O u t -
Daily

31 logit(p)=0.75×Tout -20.89  
R2=0.300

Hyderabad, India 135
6

Offic
e

M
M

N.A. 100 O u t -
Daily

31 logit(p)=0.51×Tout -13.07  
R2=0.143

[53
]

Hyderabad, India 396
2

Resid
ential

M
M

Ceilin
g

70 I n -
Globe

40 -0.007×Tin3+0.572×Tin2-7.
099×Tin -57.5  R2=1

[54
]

Jaipur, India 122
0

Hybri
d

NV N.A. 95 In-Air 30.9 -

[55
]

Jaipur, India 141
8

Hybri
d

M
M

N.A. 100 In-Air 26 -

[56
]

Pakistan 680
2

Offic
e

NV Ceilin
g

100 I n -
Globe

27 logit(p)=0.426×Tin 11.78  
R2=0.48

[57
]

Detroit, USA 155
98

Resid
ential

M
M

N.A. 11.3 In-Air 25.2 -
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[21
]

Harbin, China 423 Resid
ential

M
M

N.A. 3 In-Air 26.9 -

Harbin, China 423 Resid
ential

M
M

N.A. 3 O u t -
Raw

27 -

[58
]

J o g j a k a r t a , 
Indonesia

274 Resid
ential

NV N.A. 78.1 - - -

[20
]

Kharagpur, India 67 Te a c
hing

NV Ceilin
g and 
Wall

100 I n -
Operat
ive

27 -

[59
]

Shanghai, China 67 Resid
ential

M
M

N.A. 87 - - -

[60
]

Singapore 538 Resid
ential

M
M

N.A. 80 - - -

[61
]

Cuba 101 Resid
ential

NV N.A. 59 - - -

[62
]

Taiwan, China 968 Offic
e

M
M

N.A. 13 - - -

Taiwan, China 707 Resid
ential

M
M

N.A. 25 - - -

[63
]

O x f o r d & 
Aberdeen, UK

131
1

Offic
e

NV N.A. 100 In-Air 25 0 . 0 6 8 3×T i n - 1 . 4 3 9 5  
R2=0.3514

O x f o r d & 
Aberdeen, UK

131
1

Offic
e

NV N.A. 80 O u t -
Raw

29 0 . 0 4 0 8×T o u t - 0 . 5 5 8 5  
R2=0.3276

[64
]

J o h o r B a h r u , 
Malaysia

345 Resid
ential

M
M

Ceilin
g

80 - - -

[31
]

Hyogo & Osaka, 
Japan

70 Resid
ential

M
M

N.A. 100 I n -
Operat
ive

33 logit(p)=0.88×Tin -25.5  
R2=0.8

Hyogo & Osaka, 
Japan

70 Resid
ential

M
M

N.A. 100 O u t -
Raw

34.5 logit(p)=0.69×Tout -19.8  
R2=0.83

[65
]

Chandigarh & 
Roorkee, India

984 Resid
ential

M
M

N.A. 100 I n -
Globe

31.5 -

[66
]

L a u s a n n e , 
Switzerland

353
8

Offic
e

NV N.A. 100 In-Air 34 logit(p)=0.696×Tin -19.32  
R2=0.39

L a u s a n n e , 
Switzerland

353
8

Offic
e

NV N.A. 82 O u t -
Raw

32 logit(p)=0.311×Tout -8.18  
R2=0.39

[67
]

Taiwan, China 148
0

Te a c
hing

M
M

Ceilin
g

100 O u t -
Raw

33 logit(p)=0.88×Tout -25.6  
R2=0.88

[68
]

C h o n g q i n g , 
China

452 Resid
ential

M
M

N.A. 80 O u t -
Raw

36 0.0045×Tin2 - 0.2176×Tin 
+ 2.6696  R2=0.7753

[ 6
9]

C h o n g q i n g , 
C h e n g d u & 
Changsha, China

147
7

Hybri
d

NV N.A. 95 In-Air 35 -0.01×Tin2 + 5.411×Tin 
-85.34  R2=0.898

[70
]

Portugal 130
0

Offic
e

AC N.A. 6.8 In-Air 24.9 -
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[71
]

Greece and UK 581 Offic
e

AC N.A. 14 I n -
Globe

24.8 logit(p)=0.377×Tin -12.1

Greece and UK 581 Offic
e

AC N.A. 14 O u t -
Raw

19.3 -

Greece and UK 373 Offic
e

M
M

N.A. 17 I n -
Globe

25.3 -

Greece and UK 373 Offic
e

M
M

N.A. 17 O u t -
Raw

25.3 -

Greece and UK 619 Offic
e

NV N.A. 13 I n -
Globe

25.9 logit(p)=0.804×Tin -22.6

Greece and UK 619 Offic
e

NV N.A. 13 O u t -
Raw

19.6 -

Greece and UK 204
9

Offic
e

AC N.A. 6 I n -
Globe

23.3 logit(p)=0.131×Tin -5.1

Greece and UK 204
9

Offic
e

AC N.A. 6 O u t -
Raw

18.4 -

Greece and UK 196
3

Offic
e

M
M

N.A. 36 I n -
Globe

24 logit(p)=0.577×Tin -15.4

Greece and UK 196
3

Offic
e

M
M

N.A. 36 O u t -
Raw

18.2 -

Greece and UK 302
3

Offic
e

NV N.A. 30 I n -
Globe

24.4 logit(p)=0.519×Tin -13.7

Greece and UK 302
3

Offic
e

NV N.A. 30 O u t -
Raw

19 -

Pakistan 156
2

Offic
e

M
M

N.A. 52 I n -
Globe

27.7 logit(p)=0.532×Tin -14.9

Pakistan 156
2

Offic
e

M
M

N.A. 52 O u t -
Raw

24.2 -

Pakistan 369
7

Offic
e

NV N.A. 55 I n -
Globe

27.4 logit(p)=0.506×Tin -13.4

Pakistan 369
7

Offic
e

NV N.A. 55 O u t -
Raw

23.7 -

[72
]

Xi’an China 132
0

Resid
ential

M
M

N.A. 100 In-Air 34 7 . 1 3 1 4×T i n - 1 6 5 . 2 1  
R2=0.7411

[73
]

Sydney, Australia 487
6

Resid
ential

M
M

Ceilin
g and 
Desk

- O u t -
Raw

- logit(p)=0.11×Tout -4.79

[74
]

D a r w i n , 
Australia

253
5

Resid
ential

M
M

Portab
le and 
Ceilin
g

- O u t -
Raw

- l o g i t ( p ) = 0 . 2 3 2×T o u t 
-6.523

D a r w i n , 
Australia

253
5

Resid
ential

M
M

Portab
le and 
Ceilin
g

- In-Air - logit(p)=0.36×Tin -10.355
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1: None for no fans, Ceiling for ceiling fans, Wall for fans installed on the wall, Desk for desk fans, Chair for 
chairs with fans, Clothing for clothing with fans, Portable for Portable fans, Floor for floor fans or pedestal fans, 
N.A (not available) for studies having fans but not providing information of fan types. 
2: Out means outdoor, Raw for actual or binned actual temperatures (binned indicates temperatures are assigned 
to several temperature points, e.g. 24.1℃ is assigned to the temperature point of 24℃ while 26.8℃ is assigned 
to the temperature point of 27℃), Monthly for average monthly temperatures, Daily for average daily 
temperatures; In means indoor, Operative for operative temperatures, Air for air temperatures, ET* for new 
effective temperatures, Globe for globe temperatures. 

[75
]

Tokyo, Japan 250
4

Resid
ential

NV N.A. - O u t -
Raw

- l o g i t ( p ) = 0 . 3 0 5×T o u t 
-8.232  R2=0.28

Tokyo, Japan 250
5

Resid
ential

NV N.A. - In-Air - l o g i t ( p ) = 0 . 5 0 8 × T i n 
-14.737  R2=0.31

Tokyo, Japan 423 Resid
ential

AC N.A. - In-Air - logit(p)=0.312×Tin -8.642  
R2=0.11

[76
]

Hyderabad, India 396
2

Resid
ential

M
M

Ceilin
g

83 O u t -
Raw

-

[77
]

Tokyo, Japan 320 Offic
e

NV Floor, 
W a l l 
a n d 
Desk

87 In-Air 29 logit(p)=0.441×Tin -12.18  
R2=0.101

Tokyo, Japan 168
9

Offic
e

AC Floor, 
W a l l 
a n d 
Desk

90 In-Air 27.5 logit(p)=0.277×Tin -6.38  
R2=0.021

Tokyo, Japan 423 Offic
e

NV Floor, 
W a l l 
a n d 
Desk

97 O u t -
Daily

- l o g i t ( p ) = 0 . 4 2 2×T o u t 
-10.19  R2=0.179
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Table 2. Summary of neutral temperatures and upper limits of neutral-zone temperatures with and without fans. 

Stud
ies

Region S a
mpl
e 
size

Building 
function

B u i l
d ing 
type

Fan type1 Relative 
humidit
y (%)

Neutr
a l 
temp. 
(℃)

Upper 
l imit2 
(℃)

[78] Makassar, Indonesia 111
1

Teaching NV N.A. 68 30.2 32.5

[79] Ho Chi Minh City, Vietnam 339
5

Teaching NV Ceiling 65 31.3 34.3

[80] Chennai, India 50 Residenti
al

NV N.A. 60 29.5 31.3

[19] Singapore 506 Teaching NV Ceiling 70 28.8 29.8

[81] Changsha, China 127
3

Teaching NV Ceiling 71.2 21.5 29.5

[82] Hyderabad, India 100 Residenti
al

NV Ceiling 45 29.23 30.8

[20] Kharagpur, India 67 Teaching NV Ceiling and 
Wall

50 29.5 31.8

[83] Kharagpur, India 121 Teaching NV Ceiling 50 26.5 29.3

[84] Lumpur, Malaysia 208 Residenti
al

NV Ceiling 70 30.93 32.1

Lumpur, Malaysia 208 Residenti
al

NV Ceiling 70 28.63 29.4

[85] La Réunion 594 Teaching MM Ceiling 73 27.7 29.8

[86] Kajang, Malaysia 375 Teaching NV Ceiling 62.4 28.4 29.5

[87] Calcutta, India 100 Teaching NV Ceiling 68 30.9 31.7

[88] Bangkok, Thailand 376 Office NV N.A. 60 27.4 29.5

[89] Jaipur, India 900 Teaching NV Ceiling 39.4 26.5 29.2

[90] Chennai & Hyderabad, India 135
2

Office NV Ceiling and 
Wall

45 27.3 29.2

[51] Chennai & Hyderabad, India 152 Office NV Ceiling and 
Floor

52.2 26.4 28.8

[91] Jaipur, India 855 Hybrid NV N.A. 49.12 29.4 31.1

[54] Jaipur, India 122
0

Hybrid NV N.A. 46 28.0 30.8

[92] Jaipur, India 102
0

Office AC Wall 35.7 27.5 30.1

[93] Maiduguri, Nigeria 100 Temple NV W a l l a n d 
Floor

31 31.2 32.0

[94] Siliguri & Sonada, Bengal 346 Teaching NV Ceiling 51.7 29.7 31.3

[95] Dhaka, Bengal 100 Teaching NV Ceiling 66.25 30.2 30.4
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[77] Tokyo, Japan 197
9

Office AC Floor, Wall 
and Desk

50.9 26.8 28.3

[96] Jaipur, India 429 Residenti
al

NV Ceiling 53.4 30.15 31.8

[97] Hyderabad, India 113 Residenti
al

MM Ceiling 44.5 29.2 30.8

[58] Jogjakarta, Indonesia 525 Residenti
al

NV N.A. 68.6 29.2 30.0

[98] Kota Kinabalu, Malaysia 890 Residenti
al

NV N.A. 70.71 30.2 31.5

[99] Chennai, India 402 Railway 
station

NV Ceiling and 
Wall

50 31.93 32.7

[100
]

Xi'an, China 80 Residenti
al

MM N.A. 50 27.0 31.6

[101
]

Tiruchirappalli, India 176 Teaching NV Ceiling 55.34 29.0 29.9

[102
]

Nkongsamba, Douala & Bafang, 
Cameroon

120
0

Residenti
al

NV None 48.2 24.58 25.7

[103
]

Shiraz, Iran 160
5

Teaching NV None 38.3 23.3 25.2

[104
]

Jakarta, Indonesia 70 Cathedra
l

NV None 74.3 27.6 28.1

Jakarta, Indonesia 77 Museum NV None 74.1 27.8 28.5

Jakarta, Indonesia 72 Market NV None 70 27.3 28.9

[105
]

Guangzhou, China 460 Office MM None 70 26.8 28.6

[106
]

Jos, Nigeria 200 Hybrid NV None 71.9 24.57 27.68

[107
]

Nanyang, China 149 Residenti
al

MM None 75 27.3 29.1

[108
]

Seville, Spain 34 Office MM None 51.8 24.6 27.1

[109
]

Jakarta, Indonesia 596 Office MM None 65.7 26.7 28.3

Jakarta, Indonesia 596 Office MM None 65.7 26.4 28.0

[110
]

Jakarta, Indonesia 90 Teaching MM None 66.9 24.1 26.1

Jakarta, Indonesia 90 Teaching MM None 66.9 21.7 23.9

[111
]

Guangdong, China 448 Residenti
al

NV None 76 26.4 27.9

[112
]

Jiangsu & Zhejiang, China 181
4

N o t -
given

NV None 68.3 25.6 27.4

[94] Siliguri & Sonada, Bengal 382 Teaching NV None 66.3 21.2 24.1
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1: None for no fans, Ceiling for ceiling fans, Wall for fans installed on the wall, Desk for desk fans, Chair for 
chairs with fans, Clothing for clothing with fans, Portable for Portable fans, Floor for floor fans or pedestal fans, 
N.A (not available) for studies having fans but not providing information of fan types. 
2: 90% acceptable limit, i.e., thermal sensation vote is no higher than +0.5. 

[113
]

Nigeria 40 Residenti
al

MM None 50 29.1 31.2

[114
]

Jakarta, Indonesia 596 Office MM None 65.7 26.4 27.9

[115
]

Mexicali, Hermosillo, La Paz, 
Culiacán, Colima & Mérida, 
Mexico

150 Residenti
al

NV None 50 24.8 26.5

[116
]

Bandung, Indonesia 20 Teaching MM None 59.8 24.7 26.5

Bandung, Indonesia 20 Teaching MM None 59.8 25.7 27.4

Bandung, Indonesia 20 Teaching MM None 59.8 25.4 27.0

[117
]

Jordan, Syria 160 Residenti
al

NV None 30 26.5 28.6

[118
]

Ilam, Iran 513 Residenti
al

NV None 30 29.0 30.9

[119
]

Hermosillo, Mexicali, Merida & 
Colima, Mexico

663 Residenti
al

NV None 50 25.3 29.1

[120
]

Seoul, Korea 24 Residenti
al

MM None 59.5 25.0 26.1
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Table 3. Summary of AC-use with and without fans. 

S t u
dies

Region S a
m p
l e 
s i z
e

Build
i n g 
functi
on

Fan type1 Temp. 
type2

T e m p . 
with 50% 
A C - u s e 
rate (℃)

F a n - u s e 
rates with 
50% AC-
use rate

AC-use rate models

[27] Chongqing, 
China

428 Resid
ential

Ceiling O u t -
Raw

27.5 50.0% logit(p)=0.37×Tout -10.19  
R2=0.72

[36] H a i k o u , 
China

194
4

Resid
ential

N.A. O u t -
Month
ly

26.5 61.6% Tout <24.4℃: 0.4177×Tout 
-5.1268  R2=0.1285 
Tout >24.4℃: 21.859×Tout 
-527.89  R2=0.942

[18] Changsha , 
China

215
9

Offic
e

Ceiling and 
Wall

O u t -
Raw

32.5 96.7% l o g i t ( p ) = 0 . 8 5 2 × T o u t 
-27.721  R2=0.75

Changsha , 
China

215
9

Offic
e

None O u t -
Raw

28.3 0 logit(p)=0.683×Tout -19.35  
R2=0.783

[40] T i a n j i n , 
China

474
3

Resid
ential

N.A. O u t -
Raw

33.0 25.0%

[44] N a n y a n g , 
China

132
0

Resid
ential

N.A. O u t -
Raw

35.4 88.6% 0.3679×Tout2 -17.475×Tout 
+207.96 R2=0.6612

[72] X i ’ a n , 
China

132
0

Resid
ential

N.A. O u t -
Raw

34.2 47.0% 0.3769×Tout2 -17.575×Tout 
+210.11 R2=0.6552

[ 1 2
1]

C h e n g d u , 
China

400 Resid
ential

N.A. O u t -
Raw

29.5 44.3% logit(p)=0.172×Tout -5.063  
R2=0.089

[ 1 2
2]

China 114 Offic
e

None O u t -
Raw

28.5 0 l o g i t ( p ) = 0 . 6 3 5 × T o u t 
-18.035  R2=0.324

[ 1 2
3]

Hangzhou, 
China

251
2

Offic
e

None O u t -
Raw

30.8 0 1 / ( e x p ( - 0 . 2 7 9 × T o u t 
+9.705)-1)

[22] S y d n e y , 
Australia

118
5

Resid
ential

Ceiling and 
Desk

O u t -
Raw

34.2 26.3% logit(p)=0.24×Tout -8.2  
R2=0.4

[52] C h e n n a i , 
India

723 Offic
e

N.A. O u t -
Daily

22.9 1.6% logit(p)=0.30×Tout -6.86  
R2=0.134

Hyderabad, 
India

148
9

Offic
e

N.A. O u t -
Daily

31.2 94.5% logit(p)=0.35×Tout -10.93  
R2=0.394

[53] Hyderabad, 
India

396
2

Resid
ential

Ceiling I n -
Globe

40.0 70.6% 0.464×Tin2 -26.98×Tin 
+385.8  R2=0.966

Jaipur, India 396
2

Resid
ential

Ceiling I n -
Globe

>40.0 >72.0% -0.113×Tin2 +8.783×Tin 
-146.7  R2=0.751

[31] H y o g o & 
O s a k a , 
Japan

80 Resid
ential

N.A. I n -
Operat
ive

29.4 59.20% logit(p)=0.87×Tin -26.1  
R2=0.78

H y o g o & 
O s a k a , 
Japan

42 Resid
ential

None I n -
Operat
ive

28.8 0 logi t (p )=0.76×Tin -22  
R2=0.76
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H y o g o & 
O s a k a , 
Japan

80 Resid
ential

N.A. O u t -
Raw

29.3 60.3% logit(p)=0.78×Tout -22.9  
R2=0.79

H y o g o & 
O s a k a , 
Japan

42 Resid
ential

None O u t -
Raw

28.4 0 logit(p)=0.55×Tout -15.5  
R2=0.79

[67] T a i w a n , 
China

148
0

Scho
ol

Ceiling O u t -
Raw

35.3 96.3% logit(p)=0.97×Tout -34.2  
R2=0.86

[68] Chongqing, 
China

452 Resid
ential

N.A. O u t -
Raw

35.0 62.1%

[71] Greece and 
UK

373 Offic
e

N.A. I n -
Globe

30.9 17.0% logit(p)=0.498×Tin -15.4

Greece and 
UK

204
9

Offic
e

N.A. I n -
Globe

24.2 12.7% logit(p)=0.281×Tin -6.8

Pakistan 156
2

Offic
e

N.A. I n -
Globe

31.8 88.3% logit(p)=0.220×Tin -7.0

[ 1 2
4]

F u k u o k a , 
Japan

36 Resid
ential

None O u t -
Raw

31.6 0 1/(1+1.285-(Tout -31.6))

F u k u o k a , 
Japan

36 Resid
ential

None O u t -
Raw

23.2 0 1/(1+1.405-(Tout -23.2))

F u k u o k a , 
Japan

36 Resid
ential

None I n -
Globe

32.2 0 1/(1+1.850-(Tin -32.2))

F u k u o k a , 
Japan

36 Resid
ential

None I n -
Globe

28.2 0 1/(1+3.425-(Tin -28.2))

[74] D a r w i n , 
Australia

253
5

Resid
ential

P o r t a b l e 
and Ceiling

O u t -
Raw

45.9 98.4% l o g i t ( p ) = 0 . 2 9 3 × T o u t 
-13.459

[75] T o k y o , 
Japan

312
1

Resid
ential

N.A. O u t -
Raw

29.4 54.9% logit(p)=0.271×Tout -7.979  
R2=0.22

T o k y o , 
Japan

312
2

Resid
ential

N.A. In-Air 32.9 85.8% logit(p)=0.214×Tin -7.044  
R2=0.12

[ 1 2
5]

China 474 Resid
ential

None O u t -
Raw

29.7 0 logit(p)=0.199×Tout -5.915

[26] Europe 465
5

Offic
e

N.A. I n -
Globe

>31.0 >30.0%

Pakistan 700
0

Offic
e

N.A. I n -
Globe

32.0 85.6%

Europe 465
5

Offic
e

N.A. O u t -
Raw

>35.0 >50%

Pakistan 700
0

Offic
e

N.A. O u t -
Raw

28.0 79.2%

[76] Hyderabad, 
India

396
2

Resid
ential

Ceiling O u t -
Raw

>35.0 >85.0%

[30] T o k y o , 
Japan

39 Resid
ential

None O u t -
Raw

19.1 0 1/(1+55.1×exp(-0.33×Tout)
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1: None for no fans, Ceiling for ceiling fans, Wall for fans installed on the wall, Desk for desk fans, Chair for 
chairs with fans, Clothing for clothing with fans, Portable for Portable fans, Floor for floor fans or pedestal fans, 
N.A (not available) for studies having fans but not providing information of fan types. 
2: Out means outdoor, Raw for actual or binned actual temperatures (binned indicates temperatures are assigned 
to several temperature points, e.g. 24.1℃ is assigned to the temperature point of 24℃ while 26.8℃ is assigned 
to the temperature point of 27℃), Monthly for average monthly temperatures, Daily for average daily 
temperatures; In means indoor, Operative for operative temperatures, Air for air temperatures, ET* for new 
effective temperatures, Globe for globe temperatures. 

T o k y o , 
Japan

39 Resid
ential

N.A. O u t -
Raw

26.5 - 1 /
(1+9.56×105×exp(-0.52×To
ut))

T o k y o , 
Japan

39 Resid
ential

N.A. O u t -
Raw

22.5 - 1 /
(1+3.86*104×exp(-0.47×To
ut))

[ 1 2
6]

Chongqing, 
China

- Resid
ential

None O u t -
Daily

24.8 0 logit(p)=0.42×Tout -10.4

Chongqing, 
China

- Resid
ential

None O u t -
Daily

32.9 0 logit(p)=0.35×Tout -11.5

Chongqing, 
China

- Resid
ential

None O u t -
Daily

25 0 logit(p)=0.32×Tout -8.01

Chongqing, 
China

- Resid
ential

None O u t -
Daily

23.4 0 logit(p)=0.33×Tout -7.71

Chongqing, 
China

- Resid
ential

None O u t -
Daily

22 0 logit(p)=0.42×Tout -9.25

Chongqing, 
China

- Resid
ential

None O u t -
Daily

35.1 0 logit(p)=0.65×Tout -21.74
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Table 4. Summary of human productivity with and without fans. 

S t u
dies

Region S a
m p
l e 
s i z
e

T e
m p
. 
(℃
)

F a n 
type1

Product
i v i t y 
type

P r o d u c t i v i t y 
e v a l u a t i o n 
scale

Origin
a l 
produ
ctivity

Conve
r t e d 
produ
ctivity

T e m p . 
deviation 
(℃)

Productivit
y change

[ 1 2
7]

India 50 24 None Learnin
g

0-100 61.2 61.2% - -

India 50 29 Ceil i
ng

Learnin
g

0-100 60.0 60.0% 5 -1.2%

[ 1 2
8]

T o k y o , 
Japan

119 26 Chair S e l f -
estimat
ed

-50%-+50% - 4% 0 +4%

[29] Singapor
e

15 23 None S e l f -
estimat
ed

Alert-Sleep 88.1%
2

88.1% - -

Singapor
e

15 26 Ceil i
ng

S e l f -
estimat
ed

Alert-Sleep 88.1%
2

88.1% 3 0

Singapor
e

15 27 Ceil i
ng

S e l f -
estimat
ed

Alert-Sleep 81.7%
2

81.7% 4 -6.40%

Singapor
e

15 23 None S e l f -
estimat
ed

Easy-Difficult 
to concentrate

83.9%
2

83.9% - -

Singapor
e

15 26 Ceil i
ng

S e l f -
estimat
ed

Easy-Difficult 
to concentrate

85.5%
2

85.5% 3 +1.60%

Singapor
e

15 27 Ceil i
ng

S e l f -
estimat
ed

Easy-Difficult 
to concentrate

79.1%
2

79.1% 4 -4.80%

Singapor
e

15 23 None S e l f -
estimat
ed

P r o d u c t i v e -
Less productive

84.9%
2

84.9% - -

Singapor
e

15 26 Ceil i
ng

S e l f -
estimat
ed

P r o d u c t i v e -
Less productive

83.6%
2

83.6% 3 -1.30%

Singapor
e

15 27 Ceil i
ng

S e l f -
estimat
ed

P r o d u c t i v e -
Less productive

76.5%
2

76.5% 4 -8.40%

[16] Changsha
, China

20 28 None Fatigue 0-100% 15% 85% - -

Changsha
, China

20 28 Desk Fatigue 0-100% 15% 85% 0 0

Changsha
, China

20 28 Desk Fatigue 0-100% 10% 90% 0 +5%

Changsha
, China

20 30 None Fatigue 0-100% 0% 100% - -
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Changsha
, China

20 30 Desk Fatigue 0-100% 5% 95% 0/2 -5%/+10%

Changsha
, China

20 30 Desk Fatigue 0-100% 5% 95% 0/2 -5%/+10%

Changsha
, China

20 32 None Fatigue 0-100% 10% 90% - -

Changsha
, China

20 32 Desk Fatigue 0-100% 10% 90% 0/2/4 0 / - 1 0 % /
+5%

Changsha
, China

20 32 Desk Fatigue 0-100% 0% 100% 0/2/4 + 1 0 % /
0/+15%

[ 1
0]

H o n g 
K o n g , 
China

140 2 9 .
84

None Fatigue 1-7 3.752 45.8% - -

H o n g 
K o n g , 
China

140 2 9 .
84

Cloth
ing

Fatigue 1-7 4.632 60.5% 0 +14.7%

H o n g 
K o n g , 
China

140 3 1 .
21

None Fatigue 1-7 3.632 43.8% - -

H o n g 
K o n g , 
China

140 3 1 .
21

Cloth
ing

Fatigue 1-7 4.612 60.2% 0/1.37 + 1 6 . 4 % /
+14.4%

[ 1
2 9
]

Guangzho
u, China

20 2 6 .
8

None Fatigue 0-100% 40% 60% - -

Guangzho
u, China

20 2 8 .
4

Ceil i
ng

Fatigue 0-100% 15% 85% 1.6 +25%

[ 1 3
0]

Malaysia 151 3 0 .
82

None Fatigue 0-100% 10.0% 90.0% - -

Malaysia 151 2 9 .
35

None Fatigue 0-100% 5.7% 94.3% - -

Malaysia 151 3 0 .
52

None Fatigue 0-100% 10.0% 90.0% - -

Malaysia 151 3 0 .
51

None Fatigue 0-100% 15.7% 84.3% - -

Malaysia 151 3 2 .
31

Ceil i
ng

Fatigue 0-100% 10.0% 90.0% 1.49/1.79/
1.8/2.96

0/0/+5.7%/-
4.3%

Malaysia 151 3 0 .
57

Ceil i
ng

Fatigue 0-100% 7.1% 92.9% 0.05/0.06/
1.22

+ 2 . 9 % /
+8.6%/-1.4
%

Malaysia 151 3 0 .
72

Ceil i
ng

Fatigue 0-100% 7.1% 92.9% 0.2/0.21/1.
37

+ 2 . 9 % /
+8.6%/-1.4
%

Malaysia 151 3 1 .
1

Ceil i
ng

Fatigue 0-100% 10.0% 90.0% 0.28/0.58/
0.59/1.75

0/0/+5.7%/-
1.4%
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1: None for no fans, Ceiling for ceiling fans, Wall for fans installed on the wall, Desk for desk fans, Chair for 
chairs with fans, Clothing for clothing with fans, Portable for Portable fans, Floor for floor fans or pedestal fans, 
N.A (not available) for studies having fans but not providing information of fan types. 
2: lower values mean worse productivity. 

Malaysia 151 3 0 .
26

Ceil i
ng

Fatigue 0-100% 8.6% 91.4% 0.91 -2.9%

Malaysia 151 3 2 .
03

Ceil i
ng

Fatigue 0-100% 15.7% 84.3% 1.21/1.51/
1.52/2.68

-5.7%/-5.7
%/0/-10.0%
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