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ABSTRACT OF THE DISSERTATION

On Tensor Products of Demazure Modules for sis|t]
by
Donna Marie Blanton

Doctor of Philosophy, Graduate Program in Mathematics
University of California, Riverside, June 2017
Professor Vyjayanthi Chari, Chairperson

In this paper, we study tensor products of Demazure modules for the current algebra
slp[t]. We establish a set of generators and relations for the tensor product of two local
Weyl modules (which are also level 1 Demazure modules). We also establish a character
formula for the tensor product of a level 2 Demazure module and a local Weyl module. To
complete the proof of this character formula we also prove a short exact sequence of V' (§)
modules. We further conjecture a character formula for the tensor product of any level ¢
Demazure module and a local Weyl module and provide a proof assuming the analogous

short exact sequence holds.
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Introduction

In recent years, representations of the current algebra, g[t], have been a popular topic
of study. Demazure modules are a family of representations that has been of particular
interest. These modules were originally realized in studying irreducible integrable modules
for affine Lie algebras, specifically as modules for the affine Borel subalgebra, but in certain
conditions they are also modules for the current algebra. These Demazure modules are
especially nice to study due their fairly simple presentations, especially in the sly[t] case
to which we restrict our attention in this paper. In [7], we are also introduced to V(&)
modules, another family of representations for the current algebra. The representations in
this family are quotients of local Weyl modules and we can look at local Weyl modules and
Demazure modules as special cases in this family.

Naoi shows in [12] that these Demazure modules, indexed by level, dominant integral
weight, and grade, have a filtration by higher level Demazure modules in the simply laced
cases. A constructive proof of this theorem was given in [6] for the sly[t] case, and the
result was extended to show that Demazure flags also exist for V(£) modules. We turn
our attention to representations for slp[t] which we obtain by taking tensor products of

Demazure modules. We would like to show that an analogous theorem is true for the



existence of Demazure flags in these tensor products. In chapter 3, we will construct some
examples for level 1 Demazure modules. However, the general case has proven difficult so
we instead investigate the graded character of these tensor products to give evidence that
Demazure flags exist.

In chapter 5, we prove a character formula for the tensor product of a level 2 Demazure
module with a level 1 Demazure module. A generalized conjecture is also given but only
proven in certain cases. The proof of this character formula relies on a short exact sequence

of V(&) modules which we address in chapter 4.



Chapter 1

Modules for the Current Algebra

In this chapter, we give the necessary notation and background from the representation
theory of a simple Lie algebra g, specifically we will focus on g = sly. We will introduce
the current algebra sly[t] and discuss its representations that will be relevant to this paper,

especially Demazure modules.

1.1 The Simple Lie Algebra sl

First we fix the notation C to represent the field complex numbers and Z, Z , N represent
the integers, non-negative integers, and positive integers respectively.

The simple Lie algebra sly is the algebra of 2x2 trace zero matrices over C and the
standard basis is {z,y,h} with [h,z] = 2z, [h,y] = —2y, and [z,y] = h. The Cartan
subalgebra of sly is h = Ch.

The following family of modules defines all irreducible representations of sly. Forn € Z,

let V(n) be the sly-module generated by a nonzero vector v, with the following defining



relations:

z.v, =0, h.v, = nuy, y' o, =0.

We also note that the dim V' (n) = n + 1. Since sly is simple, Weyl’s theorem tells us that
any finite dimensional representation of slo can be decomposed into a direct sum of these
irreducible representations.

The character of an sls-module is an invariant that indexes the dimensions of the weight
spaces of a given representation V. It can be written as the Laurent polynomial

ch(V) =) dim V2™
meZ

where V,,, = {v € V|h.v = mv}.

1.2 The Current Algebra sl,|t]
The current algebra, sly[t], is the Lie algebra sly ® C[t] with bracket defined as follows:
[gl & tTJ g2 ® ts] = [91)92] ® tT+S7

for g; € sly and 7, s € Z,.. For ease of notation we may write an element g ® t" as g,.
We will primarily be concerned with graded representations of sl3[t] so we recall that a
representation V' of sly[t] is called Z-graded if it is a vector space which has the following

properties:

V= @V[r], (gt )Vr|CVir+s|, g€ sly,r€Z,s € Z;.
reZ

For r € Z and V, a Z-graded sls[t]-module, 7.V is the Z-graded sly[t]-module with graded

pieces shifted uniformly by r and the action of sly[t] unchanged.



We notice that there is a natural inclusion of Lie algebras
sly — sly[t] where g — g ® 1.

This means that every representation of sly[t] is a representation of sly as well. We also
note a useful homomorphism that will be necessary in the representation theory of sla[t].
The evaluation homomorphism is the map of Lie algebras ev, : sly[t] — sly defined by
ev,(g® f(t)) = f(z)g for z € C.

The irreducible representations of sla[t] are the pullbacks evV (n) where V(n) is a finite

dimensional irreducible slo-module, with action given by the evaluation homomorphism as:
(9 @t%)v = z°g.v, where g € sly,v € V(n),s € Zy, and z € C.

We note that the only Z-graded evaluation modules occur when z = 0, and so all finite
dimensional graded irreducible representations of sly[t] are of the form 7.evgV (n) for all
T € Ly

For graded representation, we also have the notion of graded characters. As before they
are module invariants, however, in the graded case they index both the dimensions of the
weight spaces and the graded pieces. For a graded sls[t]-module,

chgr(V) = Z chV[rlu".

r>0
1.3 Local Weyl Modules

We note the definition and some facts about a family of modules for sly[t] called local

Weyl modules that we will need in future sections.



The local Weyl module, Wi,.(n), is the sls[t]-module generated by a nonzero vector w;,

with the following relations:
(x@t)w, =0, for r>0

(h®t")wy, =ndp,wy,  for >0

(y @ 1)"w, = 0.
We also note the following facts about local Weyl modules proven in [5]. First we have

Clyo, y1, -]
I/Vloc(n) = (y(?“, S)"l’ +s>1+rk+n-— k)wn

as vector spaces.
Also the basis of Wige(n) is {yi;...4i;,wn|0 < iy < ... <idi; <n—35,0 < j <n} where j =0

gives the basis element wy,, and dim Wi,e(n) = 377 (;L) = 2"

1.4 V(&) Modules

1.4.1 Partitions

The modules V(&) are indexed by partitions £ = (§1 > & > -+ > & > 0) so we give

some notation for these partitions.

First, the length a partition, denoted |£], is the sum of all elements in the partition. So

=& +&+ -+ &

We also let m; represent the number of times ¢ occurs in the partition, and v; represent the

number of elements in the partition greater than or equal to i. When multiple partitions



are involved we specify v;(£). Using this notation we have two alternate forms for writing

our partitions:

€ = (me(f — 1™ 1)

and

€= (L — 1)1V 1),

1.4.2 Presentations of V() Modules
First we recall from [7] that, for r,s € Z,
z(r,s) =Y (xo ) (ze ). (s t5)0)

where the sum is over (b;);>0, b; € Z4 such that

Zbi =r and Zibi =3,

i>0 i>0

p
where for € sly[t], z(P) = x—' The sum y(r, s) is defined similarly. We also denote
p!

ja(rs) =Y (zet®)(ze )t (ze 1)),
where j < s and the sum is over the same set as above.
Now, for a partition & = (£™¢(¢ — 1)™-1...1"™), m; € Z4, V(&) is the sla[t]-module
generated by a nonzero vector ve with the following relations for r, s,k € Z:
(z@t")ve =0
(h @ 1" )ve = |€]0r 0ve,
(y ® 1)|£|+1v§ =0

@) (y@t) e =0 forr+s>1+rk+ &;.
3 J
j>k+1



We note that since (z ® 1)) (y @ t)("+s) = W(m ®1)%(y ® )" it is equivalent to use
(z®@1)5(y@t) v = 0.

A second presentation allows us to replace the last relation with

y(r,s)ve =0, forr+s>1+7rk+ Z &.
J>k+1

The following theorem in [11] gives a finite set of relations for V'(£).
Theorem 1.4.1. The module V(&) is isomorphic to the quotient of the local Weyl module

Wioc(1€]) by the sla[t]—submodule generated by the elements

r
y(?’, —r+1 +ZV]‘)’LU|€‘, 1<r </t
Jj=1

Remark 1.4.2. In fact, the proof of the theorem implies that in V' (£) we have the relation

y(r,s)ve =0, s> —T—I—l—l—Zl/j, r>1.
j=1

Later we will use the notation

T
y(T‘,—T+1+ZV]’)U§ =0, r>1,
j=1

T
with the convention that y(r,0)ve =0if —r+1+ > v; <O.
j=1

1.4.3 Fusion Products

We recall the definition of fusion products of representations of the current algebra
introduced in [8] and restated in [7].
Suppose that V' is a finite-dimensional cyclic g[t] module generated by an element v and

for r € Z4 define

Frv =" U(glt)s].

0<s<r



Each F"V is a g-module and the associated graded space gr V' is a cyclic graded g[t]-module
with action

(z@t)(w) = (z@t)w, weFV/FV.

Now, given any g[t]-module V' and z € C, let V* be the g[t]-module with action defined
by

(2t hw=(xx(t+2)")v, x€g, r€Zy veV.

Then, the fusion product is gr V, denoted Vi x--- % V2™ where
V:V1Z1 ®...Vi]/m’

for V; cyclic finite-dimensional graded g[t]-modules generated by v;, 1 < i < m, and distinct
parameters z; € C.

In [7], it is shown that V' (£) modules can be recognized as the fusion product of evaluation
modules evgV (r) for r € Z. Also, by [9], the fusion product in this case is independent of

choice of parameters.

1.4.4 Demazure Modules

Finally, we consider Demazure modules, which we can simplify for this paper since it is
only necessary for us to understand the Demazure modules discussed in [7] and only for the
algebra slo[t].

Let ¢,s € Z4 and write s = £s1 + so with s; > —1 and sg € N with sg < ¢. Then D(/, s)

is generated by an element v with defining relations:

(z@t)w=0, (h@t)v=ss,v, Y1) Tv=0 r>0,



(yot "™ =0, (yet1)oTly=0, if sy</.

The module 7,,D (¢, s) will be the graded sla[t]-module where the generating element v is
defined to have grade m, for m € Z.
In [7], they also show that these Demazure modules can be recognized as V' (§) modules.

So more specifically, we can write s = nf 4 ¢ for ¢,n,c € Z4 and ¢ < £ and then we have,

D(t,s) =Dl,nl +c) =V ({"c).

10



Chapter 2

Demazure Flags

Since the current algebra, sly[t], is not semisimple we attempt to understand its modules
by finding flitrations or flags. In this section we recall that for certain families of sly[t]-

modules we know that Demzaure flags exist.

2.1 Demazure Flags for V(£) Modules

Let M be a finite-dimensional graded sla[t|-module. We say that an increasing sequence

FM)={0=Mo S M1 G- My & Myy1 =M}

of graded sly[t]-submodules of M is a Demazure flag of level ¢, if

Mz’-i—l/Mz‘ = TpiD(f, Tli), (ni,pi) €l xZ, 0<i<k.

The following theorem from [6] gives us criteria for the existence of Demazure flags for

V(&) modules.

11



Theorem 2.1.1. For all{ = (§&1 > & > -+ > & > 0) and m € N the module V(§) has a
Demazure flag of level m if and only if m > &. In particular, a level k-Demazure module

has a Demazure flag of level m if and only if m > k.

2.2 Tensor Products of Demazure Modules

We would like to try to understand a tensor products of Demazure modules in the
same way that we understand V' (£) modules (and in particular Demazure modules) in the
previous section. We believe the following conjecture should be true, although we are far
from proving it, and the remainder of this paper is devoted to providing evidence in small

cases to support the conjecture.

Conjecture 2.2.1. A tensor product of Demazure modules for sla[t],

D(l1,n1ly + 1) ® D(la,noly + c2) @ -+ @ DUy, nily, + k),

for £;,mi, c; € Zy, has a Demazure flag of level {1 + o + -+ - + £,.

We note that by theorem 2.1.1, to prove that a tensor product of Demazure modules
has a Demazure flag of level Z, it is enough to show it has a filtration by V' (§) modules with
& < (. Since each V(&) in the filtration will have its own Demazure flag of level ¢, we can
construct a Demazure flag for the tensor product. This is the method we use throughout

this paper.

12



Chapter 3

Tensor Products of Local Weyl

Modules

In this chapter we investigate a tensor product of local Weyl modules. These modules
are of interest since they are level 1 Demazure modules. We first prove a set of generators
and relations for the tensor product and then we will construct examples for small values

of m as evidence that a filtration for arbitrary m may exist.

13



3.1 Generator and Relations for W,.(n) ® W,.(m)

3.1.1 Definition of W (n,m)

We denote by W(n,m) the sla[t]-module with generator @ and the following relations

for r,s > 0,k > 0:

y(r,s)w =0, for r+s>1+rk+n—k

z(r,s)w =0, for r+s>1+rk+m—k.

Now, we will show that this module is isomorphic to Wj,.(n) @ Wi,.(m) as sla[t]-modules.

3.1.2 Surjective Map

Lemma 3.1.1. There exists a surjective map of sla[t]-modules

¢ : W(n, m) — Wloc(n) ® VVloc(m>

Proof. We know that wy, ® yg'wy,, generates Wioc(n) ® Wi(m), so we define

d(W) = wy, @ y§'wy,. It suffices to check that the relations W(n, m) hold on wy, ® Yy w,.

= nw, yénwm +wn ® (_m)yglwm

= (n—m)wn @ yg'wm

14



For r > 0,
(h @ t")(wp @ Y5 wm) = hrw, @ yg'wy, + Wy, @ heyy w,
=0+w,® _2yry6n_1wm + wp, ® yOhrygn_lwm

=w, ® ayryz)"*lwm, a €l

=0, since dim Wige(m)_pm = dim Wige(m)_n[0] = 1.

Y(r, 8)(wn @ Yo' wm) = (1, 8)wy @ Y W

=0, by Wioe(n) relations.

(1, 8)(wn @ Y§'wm) = wn ® 7 (1, )y W

=0, by remark below.
O

Remark 3.1.2. Let w,, be a lowest weight element of Wj,.(m) then the following relations

hold:

(y @t )Wy, =0, Yr>0
(h & t" )Wy, = 0p0(—m)Wp,, Vr >0

z(r,s)Wy, =0, for r+s>14+rk+m—k

This can be seen by applying the isomorphism of sly[t] that sends ys — x5, x5 — ys and

hs — —hg, for s > 0.

15



3.1.3 Dimension of W(n,m)

Now that we have a surjective map between our modules, it will suffice to show that

dim W(n, m) < dim Wige(n) @ Wie(m) = 2™,
Lemma 3.1.3. dim W (n,m) < 27+m.

Proof. First, we recall that W (n, m) = U(sly[t])d with the given relations. So we investigate
W (n,m) as a quotient of U(sly[t])w. The PBW basis theorem allows us to write U(sly[t])@
as U™ [t))U(n~[t])U(b[t])@. Now W (n,m) is also a quotient of U(n* [t])U(n~[t])U([t])w
by the ideal generated by the elements (h ® t") — (n — m)d, o for r > 0.

This means

U ) U [)U(b[t]))w = U™ [t])Un~ [t)d

and so we only need to consider U(n™[¢t])U(n~[t])w. We notice that since n™[t] and n™[t]
are abelian Lie algebras their universal enveloping algebras coincide with the symmetric

algebra which can be identified with the polynomial algebra. This means
U™ 1)U [t])w = Clzog, 1, ---|]Clyo, y1, ... |0

as vector spaces. So we also have the following isomorphism of vector spaces:

Ut [t) U [1]) Clyo, y1, -]

v =C o) D.
(y(r,s)]r+821+rk+n—k)w 20, 21, (y(r,s)\r+321+rk+n—k))w

The facts about local Weyl modules in chapter 1 give us that

(C[y()’yh ]
(y(rys)lr+s>1+rk+n—k))

W = (C-span{yil...yij|0 <ip <. <d; <n—jla.

We will denote Y = C-span{y;,...y;;|0 <i1 < ... <ij <n—j}.

16



So we have shown that W(n, m) is a vector space quotient of Clzg, x1,...] - Y.

We now show that every element of WN/(n, m) can also be written as an element of
Y -Clxzo, 21, ...]w. More specifically, we want to show that each element in Clxo, z1, ...]yi, ...yi,
can be written in the form suggested. We proceed with induction on j.

Consider the case where j = 0, then C[zg, z1, ...]w is already in the desired form.

Now, consider the case where j = 1. Without loss of generality we can consider the

element xgo...xzk y;w, where k is maximal such that by > 0. Then, we see that

bo bo by

b ~ -1 ~ b br—1 ~
xy . YW = 2T YW + g T g

_ b bp—2, 2 ~ bo br—2 ~ bo br—1 ~
=Ty Ty TYTRW + 1T T hp i + 2y gy

= yl-ng...kaw +wu, where u € Clzg,z1,...]w

eY- (C[xo,xl, ]QI}

Assume for every £ < 7, wgo...mzkyil...yuw €Y - Clxg, x1, ...]0.

Consider xgo...xzkyil...yijw. We see that

bo bk ~ b b1, A - bo .bx—1 ‘ -
Ty o Ty Yiy Yy W = T T Y Ty Yig W+ T T e Yy Yy W

_ bo bk—l ~
=Ty Ty Yiy TkYiy Yy W + uj—1

where,

uj—1 € Clzo, r1,...] - C-span{y;,..y;; [0 < iy <. <dj 1 <n—j+ 1}

17



since hkﬂ-j Yiy---Yi;_, W must be a linear combination of basis terms that have j-1 y’s to
preserve the weight.
This process continues everytime we move Yi; past some x;. So once we get Yi; to the

front of the expression we have

b b ~ bo br—1 ~ /
Lo o Ty Yiy - Yiy W = €Yy g 2 Tl - Yiy W + uj_g, for some ¢ € C and

u;_y € Clzo, 71, ...] - C-span{y;,..yi; 4|0 <iyp < .. < iy <m—j+ 1}
Next we move y;, , to the front in the same way and we get

xgo...xzkyil...yijtb = dyijflyijmgo...xzk_lxkyil...yij72ﬁ) + u;-_g + u;_l, for some d € C and
u;_Q € Clxo, 1, ...] - C-span{y;,...yi; _,|0 < i1 < ... <ijo <n—j+ 2}
Continuing this process through all of the y;’s we finally get to
xgo...xzkyil...yijw = ayil...yijxgo...mkw +up + ... +u;_q, for some a € C.

Now, by our induction hypothesis, each u) can be written in the correct form and our
first term is already in the correct form, thus

xgo...xzkyil...yijw €Y - Clzo, x1, ...]w which completes our induction.
So, we have shown that every element in W(n, m) can be written as an element of

Y - Clxg, x1, ...]w, and thus W(n, m) is a vector space quotient of Y - C[xg, x1, ...]W.

Finally, we consider the last relation for W(n,m) and we see that W(n, m) is also a

Clzo, z1, ...]

t tient of Y - p. Thi that
vector space quotient o @S ts> 1t rhtm= k))w is means tha

Clxo, 21, ...]

dim W < dimY - w
im W(n, m) < dim (x(r,s)|r+821+7“k+m_k))w

18



Using our facts from section 1 we already know that Y has 2" elements and by the same

Clzo, z1, ...]

a ent » has a basis with 2™ elements. Thus
rgumen (:U(r,s)\r+521+rk‘—|—m—k‘))w S sis wi ments us

Clzo, z1, ...]

dim W < dimY - p=2m
im W(n, m) < dim (:U(r,s)|r+821+7"k+m_k))w

which proves our lemma.

O]

So finally, we have a surjective map of sly[t]-modules W (n,m) — Wige(n) @ Wipe(m)
and dim W (n,m) < dim Wiee(n) ® Wige(m). Therefore, W (n,m) = Wige(n) @ Wige(m) as

slo[t]-modules giving our tensor product the generator and relations defined in this section.

3.2 Filtration Examples

In this section we construct some filtrations for the modules Wi,e(n) @ Wiye(m). We
would like to prove that a Demazure flag always exists, however, as m gets larger the
calculations get difficult so we have not been able to generalize this result. Again we note
that it is enough to show that we can construct a filtration by V(£) modules where & < 2

due to theorem 2.1.1.

3.21 m=0

First we consider the case where m = 0. In this case, Wioe(m) @ Wipe(0) = Wige(m).

And by [7], we also know that Wj,.(n) = D(1,n) = V(1™), and so the filtration is trivial.

19



3.22 m=1

Now we consider the case where m = 1 and find a filtration of the tensor product by
V(§)-modules.

We will show the sls[t]-module W,.(n) ® W,.(1) has the filtration
0 C My = U(sl2[t])(wn @ w1) C My = U(sl2[t]) (wn @ yowr) = Wige(n) @ Wiee(1),
where w,, generates Wj,.(n) and w; generates W,.(1), and
My, = V(21" 1Y) and My /M, = V(1"71),

as sla[t]-modules.

To prove this, we will show there exists surjective maps
V(21" Y — My and V(1Y) — My /M;.

Let v¢ be the generator of V(2171 and let m; = w, ® w; be the generator of M. Define

the map V(21"~!) — M; by mapping vg to my. Checking the relations we see

(@t )my = xsw, Qw1+ w, @xswy =0, for s>0
(h®@t)Ym; = hsw, @ w; +w, @ hsw; =0,  for s>0
(h® 1)m1 = hwy, ® wy + wy, ® hwy = nw, @ w1 +w, @wi = (n+ 1)my

(y ® 1)"my = yi 2w, @ wi + bryy T, @ yowr + ... 4+ wp, ® Yo 2wy = 0,
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and finally checking the last relation for V(£)-modules we see that

(z@t)(y®1)*"'my = :Cf(ySJ”"wn ®wy + byéJFr*lwn ® Yowr)
= ﬁ?/éJrrwn Q@ wy + bxiy8+T_1wn X Yow1

=0 forr+s>1+7k+ ij.
Jj>k+1

So we have a surjective map.

Now similarly we show there exists a surjective map V(1"~1) — My /M.
Let ver be the generator of V(1" 1) and let mg = wy, ® yow; + M; be the generator of
My /M. Define the map V(1"~1) — My/M; by mapping vgr to mg. Checking the relations

we see

(z @ t)ma = xswy, ® Yowy + wy, @ yowr = 0+ wy, @ hswy + wy, @ yorswy =0,  for s>0
(h @t°)ma = hswy, @ Yowr + wn @ hsyowr
=04+ w, ® —2yswi + w, @ yohswi =0  for s>0
(h ® 1)mg = hw, ® yowy + w, @ hyow
= nw, ® Yowi + w, ® —2yowi + wy,  yohw,
= n(wn, ® yow1) — 2(wp ® Yow) + (wn @ Yow1) = (n — 1)ma,
n+1

(y® 1)"ma = ygwn @ yowr + bryy v @ ygwi + ... + wy @ y§ T wy

=yt (v@w) +0=0 since yp ™ (v ®w) € My.

Since V(1" 1) 2 W,(n — 1) there are no further relations to check in this case, so the

map exists.
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So we have shown both surjective maps exist and now we show dim V' (21"~1) = dim M;
and dim V (1"71) = dim My /M;.

First we note that dim M; + dim My/M; = dim(Wee(n) @ Wiee(1)) = 2L Also
dim V(21" 1) = 3.2 ! and dim V(1" 1) = 271

So,

dim V(21" 1) 4 dim V(1" 1) = 3. 2n~1 y on1 — ontl

Finally since we proved surjective maps above we already know that dim V' (21"~!) > dim M;
and dim V (1"71) > dim My/M;. So this fact together with the above calculation forces
dim V(21" 1) = dim M; and dim V(1"~) = dim My/M;.

Thus since we have surjective maps and equal dimension, the modules are isomorphic

and so we have the filtration we were looking for.

3.23 m=2

In this case, we state the filtration without proof. The proof uses similar methods as
the m = 1 case with more calculation but does not give us anymore insight into the general
case.

The module Wjye(n) ® Wiee(2) has the filtration

0C My C My C My C My =We(n) @ Wie(2),
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with

My = U(sla[t])(wn © wy),
My = U(sla]t]) (wn @ yrws) + My,
M3 = U(Slg[t])(’wn & yowz) + Mo,

My = U(sly[t]) (wn @ yows) + Ms,
where w,, generates W,.(n) and wy generates W,.(2), and

My 2 V(2°1"72),
MQ/Ml = 7'1V(21n72),
M3 /My = V(21"72),

My /M3 =V (1"?).
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Chapter 4

A Short Exact Sequence

In this chapter we conjecture a useful short exact sequence that will be necessary for our
character calculations in chapter 5. We complete the proof of the short exact sequence for

two cases.

4.1 Short Exact Sequence

Let £ be the partition (¢™¢(¢ — 1)™=1 .. 4™ .. 1™), with 1 <i </ and m; > 2. Then

we define the following two partitions
ET (1) = (0™(0 — 1)™e=1 . (i + 2)™iH2 (4 4 1) T lmi=2( _ ymicaitlg _gymi-z | 1)
and
E7(1) = (£™(0 — 1)™e=1 L (6 4 2)™iH2 (4 4 1) 1gmiT 2 (§ — )Ml (5 — 2)™im2 1™,

Recall that the notation v;(£) means the number of parts in the partition that are greater

than or equal to j. For ease of notation, we may write v;(§) = v; throughout this chapter.
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Conjecture 4.1.1. The following is a short exact sequence of graded sla[t]-modules:

0 = Ty (@) tri(e)—iV (€7 (1) = V(€) = V(£7(3)) = 0.

The proof of this conjecture for ¢ = 2,3 will occupy the remainder of this chapter.

4.2 The map ¢* (i)

Lemma 4.2.1. There exists a surjective map o+ (i) : V(§) — V(T(4)), and the kernel of

ot (i) is generated by y(i,v1(§) + -+ + vi(€) — i)ve.

Proof. Let 1 < i < £. Assume m; > 2. Define o (i) : VI(§) — V(£7(d)) by ve = ver(a),
where ve generates V(£) and wvg+(;) generates V(£7(i)). Now, we need to show (i) is
well defined. Since [¢] = [£T(7)], V(§) and V(£1(i)) are quotients of the same local Weyl
module. Also, forallk >0, > & > 3 &(i);, which implies that the last V(€) relation
Jj2k+1 Jj>k+1

holds on vg+ ;). Hence, ¢ (i) is well defined. Also, since ¥ (i) is surjective, V(¥ (i) is a
quotient of V'(£).

Since we know V(7 (7)) and V (€) are both quotients of the same local Weyl module, we

note that, using the simplified relations presented earlier, the following are the remaining

defining relations of V(£1(i)) and V (€) respectively:
y(r,v1(E7(0) 4 -+ v (E7(5) — 7 + Dvgr () = 0,

and

y(r,vi(§) + -+ vr(§) —r+1)ve =0,

for all 1 < r < ¢ (we also note that » = ¢ is actually only a relation and not a defining

relation, but we use it here for the case when i = ¢). We also see that v;(£7(¢)) = v;(£) for
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all j <i—1land j >i+2, v(E70) = vi(€) — 1, and v;41(E7 (7)) = v11(€) + 1. Thus, we

have

y(rn (€7 @)+ +re(€7(0) —r+ 1) = y(r (&) + -+ () —r+1)

except at r = 1.

Thus, since V(£1(4)) is a quotient of V(£), the kernel of ¢ (i) is generated by

y(i, v (§7 (@) + - + (€ (0) =i+ Dve = y(i,v1(8) + -+ +vi(&) — )oe.

4.3 An Isomorphic Representation

Lemma 4.3.1. Let a; and as be Lie algebras with ¢ : a; — ag surjective. Let V be an

irreducible representation of as then ©*(V') is an irreducible representation of a;.

Proof. Suppose, by way of contradiction, that ¢*(V) is a reducible representation of aj.
Then there exists a nontrivial subrepresentation W C ¢*(V'). Now we choose any element
T € ag. Since ¢ is surjective, we know that x has a preimage in aj, call it y. We know that
yw € W, for all w € W. But then, since the action of y is determined by the pullback of ¢,
o(y)w = zw € W for all w € W, and thus W is a subrepresentation of V' as well, which is

a contradiction. O
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4.3.1 The Representation poT

Define T : sly[t] — slo[t,t71] by

for all r > 0. Also, define p : slo[t,t 1] — end(evy, V(1) ® - -+ ® eva, V(&) by
k
plg@ f1) = 1@ @ fla)g® - @1

=1

for a; # aj, a; € C* and g € sls.
Lemma 4.3.2. The composite representation po T is an irreducible sla[t] representation.

Proof. We start by noting that p : sla[t,t 1] — end(evq, V(£1) @ - -+ @ evg, V(&) by
k
plg@ f() =D 18- @ fla)g® @1
i=1
for a; # aj, a; € C* and g € sly defines a finite dimensional irreducible representation of
the loop algebra (see [1], [3], [4], and [10]).

Now, since end(evy, V(£1) ®- - ®ev,, V(&) is finite dimensional and sly[t, 1] is infinite

dimensional, the kernel of p is nontrivial. This gives the irreducible representation

5[2][t7t 1] nd( V(&) V(&)
or — end(evy, V(&1) @ ® evq, V (&k))-
Next, we want to show that the map

sloft, t71]

T -1
t lolt, ¢
5[2[]%52[’ ]_> kerp
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is surjective.
First we notice that ker p is an ideal of sla[t,#71] so it must be of the form sly @ (f) for

some f € C[t,t™1]. So

ker p =sh® (f)
Cit, ¢,
(f)

Now we want to find g1, g2, and g3 € C[t] such that for any g €

TR —rRtgr =g
h®ggr—>h®ggr—>h®§

YyRg Yyt lggy®g

Since t* is a unit in C[t,t~!] for all s € Z, it is easy to see that we can choose a coset
representative for g so that g, g2, and g3 € CJt] exist. So, we see that the map is surjective

and applying lemma 4.3.1 we get our result. O

Lemma 4.3.3. The composite representation p ol is isomorphic to

p:slft] = end(evy, V(&) @ -+ ® evq, V (&k)) defined by
k
Plag@ft) =) 18- ® fla)g® - ®1.
i=1

Proof. Now that we know the representation p o T' is irreducible, it is also cyclic. If we

consider vg, ® --- ® vg, where vg, is a highest weight generator of ev,, V' (§;), we see that

Tr(vg, @ - ®vg,) =0
Yo' (g ® - ®vg) =0

hr(v&®---®v£k):Zl(@...@(ai)rh@...@l
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forall r > 0 and A = & +... +&. Thus the representations poT and p are both quotients of
the same local Weyl module. Since local Weyl modules have a unique irreducible quotient,

the two representations must be isomorphic. O

4.4 Facts About ¢ (i)

4.4.1 Local Weyl Module Relations

Lemma 4.4.1. The modules V(£ (7)) and ker ¢ = U(sly[t]))y (i, v1(§) + - -+ + vi(E) — 9)ve

are quotients of the same local Weyl module.

Proof. We already know that the module V({7 (4)) is the quotient of the local Weyl modules
with highest weight |7 (¢)|. Now by section 4.2, we also know that we have the following

short exact sequence of sla-modules:
0—kerot — V(&) = V(ET) —0.

However, this means that this short exact sequence must also be a short exact sequence
of slp-modules and so splits when looked at as slp-modules. This means that ker o™ is

isomorphic as slo-modules to
VOF™" Q. @V(i+ )P @ V(EH)* 2 V(i—1)"m1 Q... @ V(1)%™,

Since the kernel is generated by a highest weight element, the dimension forces the remainder

of the local Weyl module relations to hold. Also since
E7 = (M. (i 4 1) MM T2 (G — 1)™imr 1™

we see that V(£7(4)) and ker ¢ are both quotients of Wi,(|€™(7)]). O
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So, to prove that the map ¢~ (2) : V(£ (¢)) = U(sla[t])y (2, v1(§)+- - -+1vi(§)—1)ve defined
by ¢ (i) (ve-(5)) = y(i,v1(§) + - +vi(§) — 1)ve exists, where ve— ;) generates V(£ (1)), it
remains to show the remaining relations from V(£ (¢)) hold on y(i, v1 (&) +- - - +vi(§) — 1)ve.
This however, has proven very difficult and we have only been able to show this for certain
values of 7. The remainder of this section is devoted to lemmas we will need to prove the

relations hold and thus ¢~ (7) exists for ¢ = 2,3 in the next two sections.

Remark 4.4.2. The lemmas 4.4.3, 4.4.4, 4.4.5, and 4.4.6 are the unpublished work of Kayla
Murray and may or may not appear in her future thesis. The proofs of these propositions

and lemmas can be found in the appendix of this paper.

4.4.2 Number of Parts Relation
Lemma 4.4.3. We have
y(L,v1 = 2)y(i,v1 +vo + - + 13 —1i)ve = 0.
4.4.3 Lemmas for Fusion Product Calculation
Lemma 4.4.4. We have
y(i,vi +vo+ -+ v —i)ve = 1yl v o+ 4 v — 1)
Lemma 4.4.5. For1 <r <14, ifv, > 3 and

(v +ve+- v =3+ Dy(iv + v+ v — o =0,
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foralll1 <j<r—1, then

y(r,vi+va+ -+ v =3r+ Dy(i, v + v+ -+ v —9)ve

= wlrvi+ve+- v, =3r+ Dy(i,v1 + o+ -+ v —i)ve.
Lemma 4.4.6. Fori+1<r</{-1,ifv, > 1,

w@,vi+ve+-+v; =3+ Dy(i, i +va+--+v;—i)ve =0
forall1 <j <1, and

Wi, v +vate v =2 =+ Dy(i, v +va+ -+ v — i)og =0

foralli+1<j<r—1, then

y(rovi+vo 4+ =2 —r+ Dy, v +va 4+ -+ v — i)

= qy(rvi+ a4 A v =2 — 7+ Dyli, v +vo + - + v — i)ve.

4.4.4 Extending the Map ¢~ (i) to any Partition
Lemma 4.4.7. If the map
(i) : V(€' (4) = ker o™ (i)

defined by 0™ (i)(ver-y) = y(i,v1(&) + - +vi(&') — i)ve exists for a partition of the form
¢ = (i%(i—1)™i-1 ... 1™), then the V(€= (i) relations y(r,v1 (£ (i) +- - +vp(E7 (1)) —r+1)
will hold on the generator of the kernel of o™ (i), y(i,v1(§)+- - -+v4(§) —i)ve, for any partition

€= (gme. . qmi(i—1)mi-1 ™),
Proof. We note that there are two cases. If 1 <r < i we have that,

y(rym(E @)+ +w(§ @) —r+1) =ylr,vn(§)+---+1,(&) —3r+1)
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andif i <r </¢-—1,

Y (€ (@) (€ (@) —r+ 1) = y(rn(€) + -+ () — 20— + 1),

So our proof will be in two steps. (Recall that we will let v;(£) = v; for ease of notation.)
Suppose 1 < r < 4, we proceed by induction on r in order to meet the necessary

conditions to apply the lemma 4.4.5. Let r = 1 for our base case. Then

y(Lv1 = 2)y(i, v + -+ v —i)vg =0

by lemma 4.4.3.

Now suppose for all k& < r,

y(k,vn +vo+ -+ v =3k + Dy(i, vy +vo+ - + v —i)ve = 0.

Finally we want to show that

y(r,vi+va+--+ v, =3r+ Dy, v +va+ -+ 1 —i)vg = 0.

We will show this by inducting on, v;, the number of elements greater than or equal to
i in the partition &, specifically we will induct by adding to the front of our partition
at each step. For our base case, we will consider v; = 2, more specifically the partition

(i%(i — 1)™i=1 ... 1™1), In this case, we know that the map ¢~ (i) exists by assumption. So

y(ryvi+va+--+ v =3r+ Dy, v +va+ -+ v —i)vg = 0.

Now suppose the equality holds for v; < m; + -+« +myj_1 + (m; — 1).
Lastly, we show the relation holds for v; = m; 4+ - - - +m;_1 + my, in other words for any

partition, & = (£™¢(£ — 1)™=1 . 1™,
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We know by assumption that for & = (¢¢~1(¢ — 1)™¢-1...1™) we have the following,
y(r,v (&) +- -+ (&) =3r+1)y(i,v1(§)+- - -+v3(§')—i)ve = 0. We note that v;(¢§') = v;—1
for all j < ¢, and so y(r,v1 + -+ v, —4r + 1)y(i,v1 + -+ + 15 — 2i)vg = 0.

Let Y = 1y(r,vi +vo+ -+ v — 3r + 11y(i,vn + vo + -+ + v; —i). Now since we
have shown that the representation p o T" is isomorphic to our standard representation, we
will use it to understand some facts about Ywve. Let Vgt @ -+ @ vgr be the generator of

evg, V(&) ® -+ ® evg, V(§},), then we see that
(poT) (Y ) (vgy @+ - -@ugy ) = p(y(r, vi+vat: - +vp—dr+1)y(i, vi+vet- - +v—20)) (vg @ - -Qug )

by definition of T.
By assumption, y(r,vy +vo + -+ + v, — 4r + Dy(i,v1 + vo + -+ 4+ v; — 2i)vg = 0
which implies that, in the fusion product, this element is in a grade strictly smaller than

2v1+ -+ 20 +vpyqg + -+ v — 4r — 20+ 1. Thus

(p o T)(Y)(’Ug/l SRR Ug;) = p(zcypl e 'ypr+i> (Uﬁ’l Q& vf;%
= (poT) ( Z C,yp1+1 e 'ypr+i+1) <U€'1 Q- ® vﬁk)
where the sums are over the set {0 < p; < ... < p,4;} such that we have

PL+ e+ Prg <2014+ 200 + Vpy1 + - - + v — 4r — 26 + 1. Then reindexing the grades

we get,

(0o og & 1) = o) Lo, (g 9+ )

where this time the sum is over the set {0 < p} < ... <p/_,} such that

pi+o o <2420 +ve oy —3r—i4 L
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So our induction hypothesis implies that Yve sits in two different grades and so is also
zero in the fusion product.

Finally, consider Yve. Let ve, ® - - - ®@ug, be the generator of evg, V(£1) ® - - @ evg, V (&k).
Since the fusion product is independent of choice of parameters, we can choose a; = 0.
Working in the tensor product, we can write Yve = Y (vg, ® v), where v meets the criteria
of our induction hypothesis. Since yq is the only element of the form y, that acts non trivally
on v¢, and since Y = 1y(r,v1 +vo+ - +vp —3r 4+ 1)1y(i, vy +vo + - - 4+ v; — i), we have
Yve =Y (vg, ®v) = vg, ®Yw. Thus, Yve = 0 by the implication of the induction hypothesis
proven above. Applying lemmas 4.4.4 and 4.4.5, we have our result for 1 < r <.

So now we show that if i <r < /-1, y(r,v1+---+vp—2i—r+1)y(i, 1+ - -+1v;—i)ve = 0.
Again we proceed by induction on r in order to meet the necessary conditions to apply the
lemma 4.4.6. Let r = ¢ for our base case. Then we have our result by the previous case.

Now suppose for all k£ < r,

y(k,vir+vo+ -+ —2i—k+ Dy(i, vy +vo+ - + v —i)ve = 0.

Finally we want to show that

y(ryvi+va 4+ = 2i—r+ Dy, v +va+ -+ v —i)vg = 0.

We will show this by inducting on, v;, in exactly the same way as in the first case. When
v; = 2 we know we have our result by assumption. Now suppose the equality holds for
v; < mi+---+my_1+(my—1). Lastly, we show the relation holds for v; = m;+- - -4+my_1+my,

in other words for any partition, £ = (£™¢(¢ — 1)™e=1. .. 1™1).
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We know by assumption that for & = (¢¢~1(¢ — 1)™¢-1...1™) we have the following,
y(r,v (&) +- -+ (&) =3r+1)y(i,v1(§)+- - -+v3(§')—i)ve = 0. We note that v;(¢§') = v;—1
for all j < ¢, and so y(r,v1 + -+ v, —4r + 1)y(i,v1 + -+ + 15 — 2i)vg = 0.

Let Y = wy(r,yn +ve+ - +vp —2i —r+ 1)1y(i,1vn + 2+ -+ + v; — ). Now since we
have shown that the representation p o T" is isomorphic to our standard representation, we
will use it to understand some facts about Ywve. Let Vgt @ -+ @ vgr be the generator of

eva, V(&) ® -+ ® evg, V(§},), then we see that

(poT)(Y)(ver ®- - -@ugr ) = p(y(r, v1+ve+- - +vp—2i—2r+1)y(i, v1+va+- - 41—20) ) (v @- - -Qugr )
&1 &k &1 &k

by definition of T.
By assumption, y(r,v1 +va 4+ -+ 1, — 20 = 2r + Dy(i,v1 + o + - + v — 2i)vg =0
which implies that, in the fusion product, this element is in a grade strictly smaller than

Wi+ + 2+ v+ 4+ vy — 2r — 4i + 1. Thus

(poT)(Y)(vg @ - @vg) = p(chm . 'ypr+i>('”£’1 ® - ®ugy),
=(po T)(chypﬁ—l e 'ypr+i+1) <U€'1 Q- ® vﬁk)

where the sums are over the set {0 < p; < ... < p4;} such that we have

P14 o+ i <214+ 20 + V41 + - - + v — 2r — 40 + 1. Then reindexing the grades

we get,

(po TY(Y)(vg &+ @ vg) = (po T)(Zc’y,,/l . y) (v ® - ®vg)
where this time the sum is over the set {0 < p} < ... <p/_,} such that

pi+o o <2420 +vep+o+y—r =304 1

35



So our induction hypothesis implies that Yve sits in two different grades and so is also
zero in the fusion product.

Finally, consider Yve. Let ve, ® - - - ®@ug, be the generator of evg, V(£1) ® - - @ evg, V (&k).
Since the fusion product is independent of choice of parameters, we can choose a; = 0.
Working in the tensor product, we can write Yve = Y (vg, ® v), where v meets the criteria
of our induction hypothesis. Since yq is the only element of the form y, that acts non trivally
on vg, and since Y = 1y(r,vy +vo+---+vp —2i —r+1)1y(i,v1 +v2 +- - - +v; — i), we have
Yve =Y (vg, ®v) = vg, ®Yw. Thus, Yve = 0 by the implication of the induction hypothesis

proven above. Applying lemmas 4.4.4 and 4.4.6, we have our result for i <r < /¢ — 1.

4.5 The map ¢~ (2)

Lemma 4.5.1. For any partition &, there exists a surjective map
¢ (2) 1 V(E(2)) = kerp™(2) C V().

Proof. By lemma 4.4.1 we know that V(£ (2)) and ker ¢ (2) are quotients of the same local
weyl module. So if we let ¢~ (2)(ve—(2)) = y(2,v1(§) + 12(§) — 2)ve, where ve—(2) generates
V(£ (2)) and y(2, v1(€) +12(€) —2)ve generates ker T (2), it only remains to check the extra
relations from V' (£7(2)) hold on y(2, v1(§) +12(§) —2)ve. By lemma 4.4.7, it suffices to show
this for a partition of the form ¢ = (221™1). However, in this case we have £7(2) = (1™),
which means it is only necessary to check the local Weyl module relations. So we have

shown ¢~ (2) exists and is surjective. O
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4.6 The map ¢~ (3)
Lemma 4.6.1. For any partition &, there exists a surjective map
P (3) 1 V(£ (3)) = ker ™ (3) C V().

Proof. By lemma 4.4.1 we know that V(£ (3)) and ker o (3) are quotients of the same local
weyl module. So if we let ¢~ (3)(ve-(3)) = y(3,v1(§) + v2(§) + v3(§) — 3)ve, Where ve—(3)
generates V(£ (3)) and y(3,v1(§) +1v2(£) +v3(€) — 3)ve generates ker ¢ (3), it only remains
to check the extra relations from V({7 (3)) hold on y(3,v1(§) + v2(§) + v3(§) — 3)ve. By
lemma 4.4.7, it suffices to show this for a partition of the form ¢ = (322™m21™1). However, in
this case we have £7(3) = (221™1), which means it is only necessary to check the relation

when r = 1. So we see that

y(Lv1(§(2)y(3,v1(§) +v2(8) +v3(8) — 3)ve
= y(1,v1(&) — 2)y(3, v1(§) + va(§) + v3(§) — 3)ve

=0,

by lemma 4.4.3. So we have shown ¢~ (3) exists and is surjective. O

4.7 Dimension of ker (i)

Lemma 4.7.1. dimker ¢ " (i) = dim V(£ (7)).

Proof. From [7], we know how to calculate the dimension of V(£) modules. So since

E(1) = (0™ ... (i 4 1)Mi+1gmim2 (5 — 1)™i-1 . 1™) we know

dim V(€7(i)) = (4 1)™ - (i + 2)™i+1 . (54 1)™i72 . (j)Mi=1 ... 9m1,
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We also know that dim ker ¢t (i) = dim V(&) — dim V(€7 (7). Now
MV (€) = (€4 1)™ - (i + 2)™+1 -« (i 4 1)™ - ()™ ... 2
and
dim V(£ (3)) = (€ + 1) - (i + 2)mMi+1 T (G 4 1)mi=2 . (g)mima Tl gma
So
dimker o (i) = dim V(¢) — dim V(7 (4))
= (0+ 1) (i 2)MH (4 1) ()™t 2

= dim ker " (4).

4.8 Theorem

The lemmas in the previous sections imply the proof of the following theorem for ¢ = 2, 3.
We note that the case where ¢ = 1 was proven in [7]. It is also important to note that since
we are considering graded modules, it is not enough that V(£ (i)) = ker ¢ (7)) for our short
exact sequence. Since our kernel generator is y(i,1(§) 4 - - - + v4(§) — 9)ve, every element
in ker o (4) sits in grade v (&) + -+ + v;(£) — i or higher since actions from sly[t] can only
raise the grade. So in the theorem below we need the grade shift 7, (¢)....4y,(¢)—; to ensure

we meet the requirements of graded modules.

Theorem 4.8.1. The following is a short exact sequence of graded sla[t]-modules for
i1=1,2,3:

0= Ty (&) tuate)—V (67 (1)) = V() = V(§7(3)) = 0.
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There are also special cases of partitions where we can show this short exact sequence
exists. In fact, the previous theorem generalizes to the following that will help us prove
more cases of our character formula in chapter 5. Specifically this case occurs when the
elements of the partition smaller than ¢ form a rectangular partition or a consecutive fat

hook (i.e. & = k™* or £ = k™ (k — 1)™k—1),

Theorem 4.8.2. The following is a short exact sequence of graded sla[t]-modules for

E= (M (i 4 1) (B — 1)™k=1) where k < i, m; € Zy., and m; > 2:
J

0 = 7oy (€)1 tum(e)—iV (E7(8) = V(€) = V(£F(i)) = 0.

Proof. The lemmas in the previous sections imply that it suffices to show for

¢ = (k™ (k — 1)"™~1) the map
VI(E™ (k= 1)™=1) = U(sl[t])y (i v1(§) + -+ vi(§) — i)ve

exists and is surjective. Let ve- be the generator of V/(k"™*(k —1)™*~1) and we consider the
map ve- = y(i,v1(§) + - + vi(§) — i)ve. By lemma 4.4.1, we already know the the local
Weyl module relations hold, so it remains to show that the additional V(™) relations hold.
However, by [7] and [13], since the partition £~ is either rectangular or a consecutive fat
hook we need only check that y(1,v1(§) — 2)y(i,v1(§) + - -+ + v4(§) — i)ve = 0. By lemma

4.4.3 we know that relation holds. So we have our result. O
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Chapter 5

Character Formula

In this chapter, we conjecture a character formula for a tensor product of a Demazure
module and a local Weyl module that gives us some evidence to believe that conjecture
2.2.1 is true. The proof of the conjecture will rely on the short exact sequence from the
previous chapter and thus will only be considered a theorem for the cases where we have

proven the short exact sequence holds.

5.1 Conjecture

Conjecture 5.1.1. Forl,m,n,c € Zy, n>m and c < ¥,

m

chap D6l + €) & Wioelm)] = > m chye V(£ 4+ 1P (0 = 1) o).
k=0 q

5.2 More Short Exact Sequences

Before we attempt to prove the conjecture, we prove some short exact sequences that

will be needed.
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Lemma 5.2.1. For n > m, the following is a short exact sequence of sly[t]-modules:
0= V((l+1)m™U—-1)""1e) > VM —1)m o) oW (1) = V(" —1)"c) — 0.
Proof. First, we will show there exists a map

o V((L+1)mm - 1) o) 5> Ve — )™ e @ W(D).

Let vg be the generator of V/((£+1)I" "™ (£ — 1)™~1c) and ve the generator of

V(L (¢ —1)mLe). Define ¢ by ¢(vg) = ve ® wi. Checking the relations of

Wioe(nl —m + ¢ + 2) is trivial, so we only need to show the additional relation from
V((£+ 1)m—™(¢ —1)™"1¢) as a quotient of the local Weyl module. Assume s, € N such
that s +r > 1+rp+3 55,1 ¢ for some p € NU{0}. Then xi’yé”vg = 0. We need to

show z5y5*" (ve ® wy) = 0. We have

wiys T (ve @ wi) = 23 (Y5 ve @ wr + Y5 ve ®@ yown)

= 2iyg T ve @ wi + 25yd T e ® yowr.

Since Zj>p+1 éj > Zj>p+1 & for all p, then x5yj™ ve = 0. For the other summand we

consider the case when p = 0 and p > 0. If the inequality s+r > 1+rp+ ZJZP+1 éj holds

for p = 0, then we have

r+le+Z§j:1+\§]:1+Z§j+1

j=1 j>1

which gives r — 14+ s> 1+ > i>1 65 If the inequality holds for p > 0, we have

res>l+mp+ Y G214+ > +A-p)=1+mp+ Y &+ (1-p).
jzpi jpil izpH
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Rearranging this inequality gives us (r —1) +s > 14+ (r—1)p+>_ 5, 1§jsor—1and s

satisfy the V(§)-relation and thus x‘{ySJrT_lvg = 0. Hence, the map ¢ exists. Let M = Im ¢.

Next, we will show there exists a map
YV 1)) = V(T - D)™ ) @ W(1) /M

where 1) (ver) = ve ® yowy + M where ver is the generator of V (£"~™ (£ —1)™c). We have for
p =0,

aip(’l)g (%9 yowl) = V¢ (%9 hpw1 = 0p,0V¢ QW €M

and

hyp(ve @ yowr) = hpve ® Yowr + ve ® hpyowy
= 0po(fn —m + 14 c)ve @ yowr + ve ® Yohpwi — 2v¢ @ Yypwy

= 0po(ln —m + cJve ® yowr .

Thus ve ® yowr + M is a highest weight vector and V (¢"~™+1 (I — 1)""1c) ® W(1)/M is
finite dimensional thus yg"_ercH(vg ®yowy) € M. Finally, we need to show the additional
relation from V (¢"~™(¢ — 1)"c) as a quotient of the local Weyl module.

We consider the partition & = ("~™(¢ — 1)™¢), we know that the associated module

V(¢') has the following relations for 0 < r < £, y(r,v1(§') + ... + (') =7+ 1)vg = 0. We

want to show y(r,v1 (&) + ... + v (&) —r + 1) (ve @ yow1 + M) = 0+ M as well. We see that
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y(r,n(€) + .. + () =+ 1) (ve@yowr + M)
=y(r, () + ..+ () =7+ Dve @ yowr + M

=0®@yowy + M

since for all 0 < r < £, v,.(¢') = v,-(£). So the additional relations hold.

Finally considering dimension, we have

200+ 1)nm M=l (c 4o 1)
=(L+2)+ D)™ e F 1)+ (41D (e + 1)
=dimV((£+ 1) —1)" 1) + dim V(£ (£ — 1)™c)
>dim V((0+ )™ — 1)™ Le) + [dim V(™ (0 — 1) L) @ Wi (1)]/M
= dim V(£ = 1)) @ Wiee(1)

=200+ 1) e 4 1),

These are all equal thus we get the desired short exact sequence. O

Lemma 5.2.2. Forn > m > k+ 1 > 2, the following is a short exact sequence of sla[t]-
modules:

0=>V(E)=V(EOaW(1)—=V(E) =0,

where € = ((€+2)(£ + 1)k 1gn=mtl(p —1)ym—k=1¢) & = (04 1)k (0 — 1)+ 1¢) and

5/ — ((f 4 1)k71€n7m+2(£ _ 1)mfkflc).
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Proof. First, we will show there exists a map
¢ V((+2)(+ D)k tnmmtlg —ym=k=ley L V(0 + D)kt — 1)kl @ (1),

Let vg be the generator of V((£+2)(¢+ L)k=Lgn=m+l(g —1)m=F=1c) and v¢ the generator of
V(¢4 1)kgn=m+1(g — 1)™=F=1¢). Define ¢ by ¢(vg) = ve ® wi. Checking the relations of

Wioe(2k +nl — m + ¢+ 2) are trivial, so we only need to show the additional relation from
V((£+2)(£+ 1)k~ Lgn=mFl (g — 1)™~F~1¢) as a quotient of the local Weyl module. Assume
s, € N such that s+r>1+7rp+ Zj2p+1 éj for some p € NU{0}. Then :c‘fyé”vg =0.

We need to show z5y5"" (v @ wi) = 0. We have

ziye T (ve @ wi) = 23 (Y5 ve @ wr + Y5t e ® yown)

= xiyé”vg Q@ wy + xfyg’”_lvg ® Yows .-

Since > 5,11 & > > jspr1 &) for all p, then z§ys T ve = 0. For the other summand we

consider the case when p = 0 and p > 0. If the inequality s+ > 1+ 7rp+ ijpﬂ éj holds
for p = 0, then we have
rs>14Y =1+ =1+ &+1
j=1 Jj=1
which gives r —14+s>1+ > i>1 &j. If the inequality holds for p > 0, we have

rbs>14mpt Y G214+ Y G+H1-p)21+mp+ Y &+ (1-p).
jzp+l Jjzp+1 Jjzp+1

Rearranging this gives us (r —1) +s > 1+ (r — )p+ 3 ;5,1 & so 7 — 1 + s satisfies the

V(§)-relation and thus x‘fySJrT_lvg = 0. Hence, the map ¢ exists. Let M = Im ¢.
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Next, we will show there exists a map
Y V(04 DL 2 - DRy S v+ DR (e — 1R e @ (1) /M

where 1 (ver) = ve®yowi +M where vg is the generator of V((£+1)k=1gn=m+2(g_1)m=F=1¢),

We have for p > 0,
Zp(ve ® Yowr) = ve ® hpwy = dpove @ w1 € M
and

hp(vg ® Yowi) = hpve ® yowr + ve @ hpyowr
= 0,02k +in —m+ c+ 1)ve @ yow + ve ® Yohpwi — 2ve @ ypwy

= 0p,0(2k +In —m + c)ve @ yowy.

Thus ve®yow: +M is a highest weight vector and V ((£+1)k¢n=mF1(¢—1)ym=k=1leyoW (1) /M
is finite dimensional thus y2* "=+ (y: ® yow;) € M. Finally, we need to show the
additional relation from V(¢ + 1)k=1gn=m+2(¢ — 1)m=k=1¢) as a quotient of the local Weyl
module.

We consider the partition ¢ = ((£ 4+ 1)F=1gn=m+2(¢ — 1)m=F=1¢) we know that the
associated module V(') has the following relations y(r, 1 (&) + ... + v (&) —r + 1)vg = 0,

for 0 <r < £+1. We want to show y(r,v1(§)+... + v (&) —r+1)(ve @yowr + M) = 0+ M

as well. We see that
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y(r,vi(€) + ... + (&) — 7 4+ 1) (ve@yowr + M)

=y(r,vi(€) + .. + (&) =+ 1Dve @ yowr + M

=0Q® ywy + M

since for all 0 <r < £+ 1, v,-(§') = v-(§). So the additional relations hold.

Finally considering dimension, we have

200 + 2)F(£ 4+ 1)L ()
= (L +3)(+ 2+ )R e 1) b (0 2R (0 )RR (e 4o 1)
=dim V((£ 4 2)(0 + 1)k~ Lr=mHL g — 1)ym=k=1e)y 4 dim V((€ 4+ 1) LemmF2 (0 — 1)m—k-1e)
> dim V((€+2)(0 + 1)k tenmmtlp — 1ym=F-1e)

+ [ dim V(€4 1) = 1) ) © Wiee(1)] /M
=dim V((£ + Dm0 — 1) R 1) @ Wige(1)

— 2(6 4+ 2)k(€ 4+ 1)n—m+1€m—k—1(c+ 1)

These are all equal thus we get the desired short exact sequence. O

5.3 Method for Proof of Conjecture

Now we prove the equality of graded characters in conjecture 5.1.1 assuming the short

exact sequence in chapter 4 holds.
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Conjecture. When 0 < m < n and ¢ < /,

chge (DL, 1l + ¢) @ W(m :Z[ } che, V(£ + D)km=m(0 — 1) k).
k=0

Proof. We will proceed by induction on m to prove the proposition. We will need to consider
the base cases m = 0 and m = 1.

First we consider the case where m = 0. In this case, D(¢,nl + ¢) @ Wi,e(0) = D(¢,nl + c).
And by [7], we also know that D(¢,nl + ¢) = V (£™c), which completes the case.

Now we consider the case where m = 1 and find a filtration of the tensor product by V(&)-

modules.

We will show the sls[t]-module D(¢,nl + ¢) ® Wi,e(1) has the filtration
0C My =U(slaft]) (v ®@wy) C My =Ul(sla[t]) (v @ yowr) = D, nl + ¢) @ Wiee(1),
where v generates D(¢,nf + ¢) and w; generates Wi,.(1), and
My 2V ((£+ 1) e) and My/My = V("1 —1)c),

as sla[t]-modules.

To prove this, we will show there exists surjective maps

V(4 1)) — My and V(010 —1)e) — My /M;.
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Let vg be the generator of V((£ + 1)f"~t¢) and let m; = v ® wy be the generator of Mj.

Define the map V((¢+ 1)¢" '¢) — M; by mapping ve to my. Checking the relations we see

(r@t)ym; =zsv@w +v®zw; =0, for s>0
(h@tym; =hsv@wy +v @ hsw; =0, for s>0
(h@l)mi=hv@w+v@hw; = Ml+c)vRw; +v@w = (nl+c+ 1)my

(y Q 1)né+c+2m1 _ y61€+c+2v ® wy + bly8f+c+1v ® Yowy + ... + v @ y61€+c+2w1 =0,
and finally checking the last relation for V(£)-modules we see that

(z®@t)5(y® 1) my = 2 (yé”v R wy + byé”flv ® Yowr )

= x‘iyé”v ® wy + ba:iyg”_lv ® Yow1

=0 forr+s>14+7rk+ ij
>kt

So we have a surjective map.

Now similarly we show there exists a surjective map V("= (¢ — 1)¢) — May/M;.
Let ver be the generator of V (£"~1(¢ —1)c) and let my = v @ yowy + My be the generator of

My/M;. Define the map V(¢"~ (¢ — 1)c) — My/M; by mapping ver to mo. Checking the
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relations we see

(x @t%)me = 2,0 @ Yowi + v @ xsyows = 0+ v @ hywy + v @ yoxswy =0, for s>0
(h @ t")ma = hsv @ yow1 + v ® hsyowr
=04+v® —2ysw; +v@yohsw1 =0 for s>0
(h® 1)mg = hv ® yowi + v @ hyow
= (nl+ c)v @ yowy + v ® —2ypw1 + v ® Yyohw;
= (nl + c)(v ® yowr) — 2(v @ yow1) + (v @ yowr) = (nl + ¢ — 1)ma,
(y @ 1)"Hemy = yg“cv ® yowr + blyg”C_lv ® yawy + .. V@ yg‘HCle

=y v w) +0=0 since i (v @ wy) € My,

and finally for the partition & = (£"~!(¢ — 1)c), the associated module V(¢’) has the
following relations for 0 < r < £, y(r,11(&) + ... + v (§') — r 4+ 1)vg = 0. We also see that
y(rvi (&) + o+ (€) — 4+ 1) (ve@yowr + M)
=y(r,vi (&) + ... + (&) —r + V)ve @ yowr + My
=0®yowr + My
since for all 0 < r < £, v,.(¢) = v,.(£), where £ = (£"¢), the partition associated to the

module D(¢,nf + ¢). So the additional relations hold.

So we have shown both surjective maps exist and now we show
dim V((£ + 1)6"¢) = dim My and dim V (0"~ (¢ — 1)c) = dim My /M.

First we note that dim M; +dim My /M; = dim(D (¢, nl+c) @ Wiee(1)) = 2(€+1)"(c+1).

Also dim V ((£+1)¢""1c) = (0+2)(¢+1)""1(c+1) and dim V (£~ ({—1)c) = (£+1)" "1l (c+1).
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So,

dim V(0 + 1) o) + dimV ("l —1)e) = U+ 2)U+1D)" e+ 1)+ (L+1)"Y(c+1)
=L+ D))" He+D)(E+2+20)
=4+ )" He+1)2(0+1)

=2+ 1)"(c+1).
Finally since we proved surjective maps above we already know that
dim V((¢ + 1)¢"1¢) > dim My and dim V (¢""1(¢ — 1)¢) > dim My /M.

So this fact together with the above calculation forces dim V' ((¢ + 1)£"~'¢) = dim M; and
dim V(4" 1(¢ — 1)c) = dim My /M;.

Thus since we have surjective maps and equal dimension, the modules are isomorphic
and so we have the character equivalence we were looking for.

Now, assume that the character equality holds for che,(D(¢,nl +c) @ W (k)),k < m—1.

We will use the following fact from [2], for n > m,

cher (Wioe(n) @ Wige(m))

= chgy Wiee(n +m) + é [TIZL [Z] q(1 —u)(1—u?) - (1 —u") chg Wiee(m +n — 2k).

Apply the fact to chg, (Wige(m — 1) ® Wige(1)). Multiplying by chgy Wige(n) for n > m, we
have
chgr D(4,n4 + ¢) chge (W (m — 1) ® W(1))

= chgy D(4,nl + ¢)(chgr Wige(m) + (1 — u)[m — 1] chgy Wige(m — 2)).
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Therefore, we have

chgr (D4, nl + ¢) @ Wige(m)) = chgr (D (4,1l 4 ¢) @ Wige(m — 1)) chgr Wige(1)

+ (u—1)[m — 1] chge (D (£, nl + ¢) @ Wipe(m — 2)).
Using our inductive hypothesis, this gives us

Chgr(D(& nt + C)®I/Vloc(m))

—

m—

=3 [mk_ 1] chge (V((£+ 15" = 1)1 Re) @ Wige (1))
k=0 q

I\J

+ (u—1)[ [ ] chg V(£ 4 D)Fem=mT2(0 — 1)m=2Fe).
k:O q

Now using our the short exact sequences from lemmas 5.2.1 and 5.2.2 we get,
che (D(£, nl + c)@Wige(m))
= chg, (V((£+ )™ — 1)™ Le) + chg, (V(£*™ (£ — 1)™¢)

m—1
+ [m N 1] chge (V((£+2) (£ + D) 1ermH (g — 1)k e)
k q

m—1
+ [mk_ 1:| gr(v((g_i_l)k 1£n m+2(€ 1)mfkflc)
k=1 q
m—2
+ (u—1)[ [ ] chge V(£ 4 D)Fem=m2(0 — 1)m=2Fe),
k:O q
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Then using the short exact sequence from conjecture 4.1.1, labelsescalcl

Chgr(D(fa nt + C) ® I/Vlo<:(7n))

= chg (V((£ + D)™ = 1)™ 1 e) + chg (V€™ (0 — 1)™¢)
- 1]
+) chee (V((£ + 1)L (g — 1)m—k—1e)
k=1 - Bl
Tt — 1]
o . u2k+n€—m—€+c+1 Chgr(V((f + 1)k—1€n—m(£ _ 1)m—k—16)
k=1 -9
el (m — 1]
- (G Dk gnmmt2 g ym=k=1e)
k=1 ‘- 49
m—2
+ (u—1)] [ } chg, V(£ 4 1)ken=mF2(0 — 1)m=2Fe),
k:o q

Reindexing gives us the following,

chge (D4, 1l + ¢) @ Wige(m))

EMS 05%

(V((£+ )™ — 1) e) + chg (V (™ (0 — 1)™¢)

+ [ ] a(V((€+ )R — 1))

3
w

M

2k+nl—m—~L+c+3 km—mip 1\ym—k—2
{HJ chye (V (£ + 1)Fe=m (0 — 1)m=k=2¢)
-1 k pn—m+2 m—k—2
. -1
+ [k’—i—lLChg (V((e+1)"¢ (¢—-1) c)

m—2
+w—-1m-1>" [m . 2] chy, V(€4 1)Fem=mH2 (0 — 1)k 2¢),
k= q
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Using the short exact sequence from conjecture 4.1.1 again we get,

Chgr(D(fa nt + C) ® I/VIOC(WL))

= chye (V((£ + D)™ (0 — 1)) + chyge (V (0™ (¢ — 1)™c)

_|_
M-

[m—l

k— 1L chgr (V((£ + 1)Fer=m (0 — 1) Fe)

m—2 r B
—1
N m u2k+n€—m—€+c+3 Chgr(V((f + 1)k€n—m(€ _ 1)m—k—2c)
k+1
k=0 - -4
T2 m— 1]
+ Chgr(V((E + 1)k+lgn7m(£ o 1)mfkflc)
E+1
k=0 * -9
e P
+ unf—é—m—&-kz-ﬁ-c—i—? Chgr(V((ﬁ + 1)k’€n—m (ﬁ _ 1)m_k_20)
k+1
k=0 * -4
m—2 m— 9
+(u—1)[m —1] [ . ] chg V(£ + 1)EF1gn=m(g — 1)m=Fk=1¢)
k=0 q

[\

+ (u . 1)[m _ 1] [mk— 2] unZ—E—m+k+c+2 Chgr V((f + l)kén_m(f _ l)m_k_QC).
q

3

o
[en]
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Finally reindexing and rearranging the terms we see that two types of V(£)-modules

occur.

chgr (D€, 1l + ¢) @ Wipe(m))
= chg (V((€ + 1)" (0 — D™ le) + chg (V ("™ (0 —1)"¢)

+ [”]z B 1} Che (V (€ + 1R (0 — 1) He)

_1q

M-

[y

+ [m - 1] chye (V (£ + 1)Fm(0 — 1)™He)

3

k

B
Il
—

m—1
+(u—1m -1 [ZL _12] chg, V(£ + 1)k (0 — 1) Fe)
k=1 T g
m—2 _1
N |: :| u2k+n€ m— €+c+3 (V((f—l—l)’%n m(g 1)m—k—26)
k+1
k=0
m—2 _1
I 1] WA (1 (04 DR 1))
k=0
m—2
e 7| e ag v ey,
k:O q

If we compare the coefficients of the modules of the form V(£ + 1)k (¢ — 1)™=k2¢)

we see that

m=l kpnemetrer2 (M1 okinemoryers Fu—Dm—1]|™ 2| etntom—ttet2
k+1 g kE+1 q k q

_ ML ekbntemetrer3 L pebntom—trer2 [ [T (w1 —1)|™ 2
k+1 q k+1 q k q

m =11 opintem—ttet3 | knl—m—ttet2 [ [T —1 k1 m—1
_ 1
[lﬁ—l} tu k+1 q+(“ Ne+1 ,

q
m— 2k+nl—m—~L+c+3 ktnl—m—t+ct2, k+1 1 —0
[k + 1] tu [k: + J
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Thus, our formula can be reduced to

chgr (D4, nl + ¢) @ Wige(m))
= chg (V((£ + )™ — 1) Le) + chg (V"™ (€ — 1)™¢)
+ i [m B 1] cher (V((€ + 1)Fem=m(0 — 1)™F¢)

m—1 |:m_ 1

i L che (V((£+ 1)F=m(0 — 1) Fc)

k=1
m—1 m— 2
+ (u—1)[m —1] E [ ] chg V((€+ 1P (0 — 1) Fe).
k—1
k=1 q
Individually computing the coefficients of chg, V (¢5(¢ — 1)""™¢) for k = 0,1, m, we get,

for chy, V("(¢ — 1)™c),

for chy, V(€ + 1)~ (¢ — 1)™=1¢)

1+ [ml_l]q+(u—1)[m—1][m()_2L: L=u? [TL

and for chg, V ((£+ 1)men—me),
1 [m} ’
mj,

Finally for 2 < k < m — 1, the coefficient of chg, V/((£+ 1)¥n=™ (¢ — 1) Fc) is

m—1 m—1 m—2
LHL*[ . L+<u_1>[m_1][k_l]q
(1 _ umfl) . (1 _ um*kﬂ*l) (1 _ umfl) .. (1 _ umfk)
A—w- (-1 (—w- (-
(1—um"2). - (1 —um™Fk)
(IT—w)--(1—ukT)
(= (w0 =) (=R — (1= wm R (1 b))
(1—w)--- (1 —uk)

- [,

—(1—um™ Y.
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And so we have our result.

5.4 Theorem

As stated at the beginning of the chapter, since we can only prove the short exact
sequence in chapter 4 for certain cases, the previous sections imply the proofs of the following

theorems.

5.4.1  chy (Wiee(n) @ Wipe(m))
Theorem 5.4.1. For m,n € Zy, n > m,
[m
chgr [Wioe(n) @ Wipe(m)] = Z [k:] chgr V(2k1mm).
q

Remark 5.4.2. Theorem 5.5.1 is an unpublished result of Matt O’Dell and Lisa Schneider,

but it can proven by the method above.

5.4.2 chy, (D(2,2n+ ¢) @ Wiee(m))
Theorem 5.4.3. Form,n € Z,, n>m and c € {0, 1},
chg:[D(2,2n + ) @ Wige(m)] = [7:] chg V(3F2nm1m k).
q

We specify these two cases because it means we have the formula for any tensor product
of two level 1 Demazure modules and for the tensor product of any level 2 Demazure module
with any level 1 Demazure module. However, we can generalize this result using theorem

4.8.2 to give us other cases when the character formula holds.
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Theorem 5.4.4. For m,n € Zy, n>m and c € {0,¢ — 1},

h [ (E nt + C) ® VVloc Z|: :| Chgr V f + 1)k£n m(f 1)m—kc).
k=0
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Appendix A

Lemmas for V(£ (7)) relations on

the generator for ker o™

Remark A.0.1. The results in this appendix are the unpublished work of Kayla Murray

and may or may not appear in her future thesis.

A.1 Number of Parts Relation

Lemma A.1.1. In the sla-module V(r1) @ V(re) @ - @ V(r), the ri +ro + -+ 15 — 2

weight space has dimension k.

Proof. For 1 < j <k, let v; be the generator of V(r;). We claim that
{U1®U2®"'®’Uj71®y’0j®vj+l®"'®Uk: |1<j <k}

is a basis for the 1 + ro + - - - + r, — 2 weight space.
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These elements are in the r; 4+ ro + - - 4+ 1 — 2 weight space since
h(vi ®V2 ® -+ ®Vj_1 Q@ Yv; D Vj11 ® -+ Q vg)
=(ri+rod- -+ —201QR - QU1 AYV; D V11 ® - @ .

Also, it is clear that these elements are linearly independent. Now, we need to show that
these elements span the r1 + 9 + -+ - + 1, — 2 weight space. Suppose v is a vector in the

r1+1ro+ -+ 1y — 2 weight space. It suffices to assume v is a simple tensor. So,
V=011 @ gov2 ® -+ - D iUk
where g; € sly for 1 < j < k. By assumption, we have
hv = (T1+T2—|—"'+Tk—2)’u.
On the other hand,
hv = h(g1v1 ® g2v2 ® -+ @ givk)

k
= 2911}1 ® gov2 ® -+ ® gj—1vj-1 ® h(gjvj) ® gjt1vj4+1 @ -+ @ GV

=1

J

For all 1 < j < k, we know that h(gjv;) = r; — 2k; for some k; € Z>¢. Since

hv =1y +---+ 1 — 2, there exists n such that
hgnvn =1y — 2
hgjvj = Tj

for j # n. But, then in V(r,), the r, — 2 weight space is one dimensional. Hence, g,v,, is a
scalar multiple of yv,. Also, for j # n, gjv; is a highest weight vector in V(r;) and hence

a scalar multiple of v;. Thus, v is a scalar multiple of

V1 QUa® -+ Q@Up—1 QYU @ VUpt1 @+ Q V.
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This proves that our set spans the r1 + 7o + - -+ + rp — 2 weight space. Therefore, we have
a basis for the 1 + 72 + - - - + 1 — 2 weight space and the dimension of this weight space is

k. O]
Proposition A.1.2. We have
y(1,v1 = 2)y(i, 1 +va+ -+ 13 —i)ve = 0.
Proof. As sly-modules, we know that the short exact sequence
0= V(£(5)) = V(&) = V(EE@)T) = 0
where

5_@) = gVe(g _ 1)V£—1—V1 ... Z'Vi—Vi+1—2(i _ 1)1/1'71—1/1' R R4

£+ (1) = £7¢(0 — 1)1V (4 + 1)Vi+1*V¢+2+1Z'V¢*V¢+1*2(Z' _ 1)1/1'71*Vi+1 R 4B =

exists. As a sly-module,

V(gVe (g _ 1)1/271*1/2 L (Z 4 1)Vi+1*l/i+2il/¢*l/¢+1*2(i _ 1)1/2‘71*1/2‘ L. 1111*1/2)
— V(£)®V‘ ® V(€ _ 1)®W—1—W R ® V(i + 1)®Vi+1_l/i+2 ® V(Z')(X)Vi_Vi-H—Q

® V(i _ 1)®Vi71*’/i R---® V<1)®V1*V2

In this module, the dimension of the || — 2i — 2 weight space is v1 — 2 by the above lemma.
Hence, in V' (), the dimension of the || — 2i — 2 weight space is v; — 2.

Now, consider the element

y(i,v1 +vo+ -+ v — i),
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which has weight || — 2i. Then, the element
y(Lvr = 2)y(i,v1 +va+ - + v —1)ve

has weight || — 27 — 2.

Since V(&) is finite dimensional, there exists m such that
y(IL,m)y(i,v1 +va + -+ v —i)vg = 0.
Let N be minimal with respect to this property. Now, consider the vectors
v, )yl i+ e+ -+ —i)oe :0< <N —1}

These vectors have different grades and hence are linearly independent. But, since the

dimension of the || — 2i — 2 weight space is v; — 2, N < vy — 2. Hence,

y(l,Ul —2)y(l.,1/1—{—y2—|—---—|—1/i—7;)’0§ = 0.

A.2 Lemmas for Fusion Product Calculation
Proposition A.2.1. We have

Yy, +ve+ -+ v —i)ve = 1y(i, v +va+ -+ v —0)ve.
Proof. First, we write

y(i, 1 +va+-+ v —i) = y(Lyn + v+ + v — 1)

i—1
+Zyéj) 1w —Jyvn +ve+ -+ v — ).
=1
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Now, we claim

1w, +ve+-- 4+ v —i)vg =0
for all 1 < j <4 — 1. We proceed by induction on j. For j = 1, we have
1w, +vo+ - 4 U — 8V = Yoy ot try—iVe-
Since 7 > 2 and v, > v; > 2 for all 2 < k <4, we have
n+ve+-+ryi—i>v+2i—1)—1i

>v+1—2

> .

Hence,

1y(1,V1+V2+"'+Vi—i)U§:O.

For the inductive step, assume 2 < j <i—1 and 1y(k,v1 + 12 + -+ + 13 —i)ve = 0 for all

1 < k < j. First, we note
mt+vot+-F+y -ttty —j+1
since ¢ > j + 1 and v, > 2 for all 1 < n < 4. Hence,
y(j,vi+va+ -+ v —i)ue =0.
Now, we write

y,vi+vet -+ —i) =y t et v —4)

j—1
k) o '
+ 3 1y — ko b ).
k=1
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Hence, by the inductive hypothesis,
y(, i +ve+ -+ —i)ve = 1y(Gvr Hrva+ - v — v =0,
which completes the claim. By the claim, we now have

y(i,vn +vo+ -+ v —i)ve = 1y, v +vo+ -+ v — 1)

Lemma A.2.2. In U(sly[t]), we have
1 s—r+1
_1! . s > > 7.
1y(7’,8) r Z Yj 1y(7’ 178 ])7 T_27 s=2T
7j=1
Proof. First, we recall that for r > 2 and s’ > 0, we have
1
y(r,s') = - Zyjy(r — 1,8 —7)
=0
from a previously proved lemma. Now, we consider the algebra homomorphism
v (C[yO)y17y27 .. ] — (C[yl7y27 Y3, .. ]

given by v(y;) = yj4+1 for all j > 0. Then,

v(y(r, S/)) = 1y(’l“, s’ + T)'
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On the other hand, we have

w(r, s +1) =~(y(r,s))

1S
=~ = aylr—1,8 — 4
7<r ]E:O yiy(r—1,s J)>

1< .
=D (yylr =15 =)
=0

/

l¢ .
:;ijﬂlmr—L5—1+T—U
=0
1 s'+1
:?22%1MT—L§—j+M
j=1

Now, we let s = s’ +r. Then, s > r and

1 s—r+1
1y(T7 8) = ; Z Yj 1y(7’ - 175 _j)a
j=1

which completes the proof.

Lemma A.2.3. In U(sly[t]), we have
[h1, 1y(r,8)] = —2r 1y(r,s + 1) +2y1 1y(r —1,s), r>0, s>r.
Proof. We proceed by induction on r. Assume » = 1 and s > 1. Then, we have

[h17 1y(17 S)] = [hlays]
= _2ys+1

= -2 12/(1, s+ 1)
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Now, assume r = 2 and s > 2. Then, we have
1 s—1
[h1, 1y(2,8)] = [hh 3 > gyl s — j)]
j=1
1 s—1
=3 > [k, yiys—i]
j=1

s—1
1
= 5 E :[hhyj]yS—J + yj[hlays—j]
i=1

1 s—1 1 s—1
=3 Z “2WinYs—j t+ g Z —2YjYst+1-j
=1 =1

1 s 1 s—1
=32 21—t g D 21
=2 j=1
1< 1<
=3 D (=2y5ys41-5) + s + 3 D (=2y5501-5) + ysun

Jj=1 Jj=1

=—21y(2,s+ 1)+ -2 1y(2,5s + 1) + 2y1ys

=—41y(2,5s+1) + 2y1 1y(1, 5).
Now assume r > 3,s > r. Also, assume that for all s’ > r — 1, we have

[h1, 1y(r —1,8)] = =2(r — D)y(r — 1,8 + 1) + 2y 1y(r — 2,5).
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Then,
1 s—r+1
[ha, 1y(r,s)] = |:h1»r >y 1?/(T—1a5—j)]
j=1

1 s—r+1
== D [yl — 15— )]

j=

—_

1 s—r+1 1 s—r+1
= ; Z yj[hla 1y(7“— 173 _])] + ; Z [h17yj] 1y(T - 178 _.7)]
Jj=1 J=1
1 s—r+1
= yi(=2(r = 1) y(r =1L, s+ 1—j) +2y1 1y(r — 2,8 — j))
j=1
1 s—r+1
+ —2yj111y(r — 1,5 —j)
j=1
_o(p 1) 5T ‘ s—r+1 ‘
= (r ) doviwlr—Ls+l—j)+Zy >yl =25 )
Jj=1 J=1
s—r+1

+— z:l Yir1 1y(r — 1,8 — 7).
J:

The first term is equal to

2r — 1 9o —1 s+1—r+1 ‘
(7,)ys—r+2 1y(7"—1,7’—1)+(r) Z yj1y(r—1,s+1—j).
j=1

The second term is equal to

s—r+2
—Ysr2n 1y(r = 2,7 = 2) + ~m Z; yj y(r —2,s — ).
J:
The third term is equal to
9 _ s+1—r+1
- -1 — ; -1 1—7).
T‘yl 13/(7” 78)+ r ]Z; Yj 1:1/(?" S+ .7)
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Now, if we add all these terms up, we get

2(r—1 r—
[h1, 1y(r,s)] = (T)ys_r+2y§ V20— 1) 1y(r, s+ 1)
—2 r_ 2(r—1
+ 7ysfr+2y§ 2)y1 + (r)yl 1w(r—1,s)

2
+ ~ w(r—1,5) =2 1y(r,s + 1)

= —2r 1y(r,s + 1) +2y1 1y(r — 1,5).

Lemma A.2.4. For1 <r <4, ifv, >3 and
ly(j’yl+y2+"'+yj_3j+1)y(i7yl+l/2+"'+7/i—’i)l}§:0,
forall1 < j<r—1, then

y(r,vi+va+ -+ = 3r+ Dy(i, v + v+ -+ v —9)ve

= wrn+ve+-+v=3r+Dyli,n +ve+ -+ v — i),

Proof. We proceed by induction on 7.

Assume r =1 and vy > 3. Then,

y(L,vr = 2)y(i,v1 +vo+ -+ v —i)vg = Yo, —2y(i, 1 + v+ 24 - vy —0)ug

= 1y(Lvy = 2)y(i,v1 +v+2+ -+ v, — 1)y
This completes the base case. Let 2 < r <. Assume v, > 3 and
wi@,vi+ve+-+v; =3+ Dy(i,vi +vo+--+v; —i)ve =0

forall 1 <j<r-—1.
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Now, we claim that

1w(m, sy(i, v +vo+ -+ —i)ve =0

forall<m<r—1lands >vy+ve+---+v, —3m+1.
To prove this claim, we begin by induction on m. Assume m = 1 and s’ > v; — 2. Then,
s’ = v; — 2+ n, where n € Z~o. Now, we continue by induction on n. Assume n = 1. By

assumption, we have
1wl —2)y(i, vy +va+ -+ v — Z')Ug =0.
Hence, by previous lemmas,

0=h1 1y(L,v1 = 2)y(i,v1 +vo+ -+ + vy —i)ve

=[h1, 1y(L, 1 = 2)y(i, v +vo+ -+ vy —0)vg
+ 1w, v = 2)hy(i, v +F v + - v —0)ve

=—21y(Livy =24+ Dy(i,v1 +va+ - + v —i)ve
+ 1w, v = 2)[h, y(G v + v + -+ v —0)]ve

=—21y(Livy =24+ Dy(i, vy +vo+ - + v —0)ve
—2iy(L,v = 2)y(i, i +va+ -+ v —i+ 1)ve
+2y0 1y(Lvn = 2)y(i — Ly +vo+ -+ vy — i+ 1)ve

=—21y(Livy =24+ Dy(i,v1 +vo+ - + v —0)ve
since v; > 1. Therefore,

1wl =2+ Dy(i,vn + o+ 4+ v —i)ve =0
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and this completes the base case n = 1.
Now, assume for n > 1, we have
w(l,vr =2+ n)y(i,vy + v+ -+ v —i)vg = 0.
Hence, by the inductive hypothesis and previous lemmas,

0=h11y(L,vn —2+n)y(i, i +va+ -+ vy —i)ve
=[h1, 1y(L,v1 —24+n)|y(i,v1 + v+ -+ v —i)ve
+ 1y(Lvr =2+ n)hyy(i,vr + v + -+ v — 0)ve
=—21y(L,yn —24+n+ Dy, i +va+ -+ v —0)ve
+ 1wy =24+ n)[h,y(t, v+ v+ + v — 1)
=—2 (L —24+n+Dy(i,ri +va+ -+ v —i)g
—2iy(Lvi =2+ n)y(i, vy + o+ + v —i+ 1
+2yo 1y(L,vi —24+n)y(i — Lvi+ v+ + v —i+ 1)ug
=—21y(l,vn —2+n+Dy(i,vn +va+ -+ vy —i)ve
since v; > 1. Therefore,
w(l,vy =2+ n+1)y(i, +vo+ -+ —i)ve =0,
which completes the induction on n and the base case m = 1.
Assume 2 < m < r — 1. For the inductive hypothesis, assume
w(m—1,8)y(, v +va+ - +v; —i)vg =0

forall § > +va+ - +vpmo1—3(m—1)4+1. Assume s’ > v1 +vo+ -+ vy —3m+ 1.

Then, s=v; +1v9 4+ -+ vy, —3m + 1 +n where n € Z~g. We proceed by induction on n.
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Since m < r — 1, we have

wlm,vi + v+ + v —3m+ 1) y(i, 11 +va + - + v — i)ve = 0.

Hence, by previous lemmas and the inductive hypothesis,

0=hi 1y(m,vi +va+ -+ vm —3m+ 1)y(i,v1 +vo + -+ v — i)ve

=[h1, 1wy(m, v +va+ -+ vy —3m+ Dy(i,v1 + v+ + v — @)
+ wlm,vy +vo+ -+ vy —3m 4+ Dhy(i, v +vo 4 -+ v — i)

=—2my(mvi+vo+ -+ vy —3m+1+Dy(i,v1 +va+ -+ v —i)ug
+2y1 wy(m —Lvy+ -+ vy =3m+ Dy(i, v + v + -+ v — 0)ug
+ wm,vr +vo+ -+ vy —3m 4+ Dh,y(i, v +vo 4+ -+ v —0)ve

=—2myymvi+vo+ -+ vy, —3m+1+1Dy(i,vi+va+ -+ v —i)ug
+ =2 yy(m, v+ o+ -+ v —3m A+ Dy(i, vy +va+ -+ v — i+ v
+2yo 1wy(m, v +vo+- vy, —3m+Dy(i — Ly +va+ -+ v —i+ 1)ve

==—2myy(mvi+vo+ -+ vy —3m+1+1Dy(i,vi+va+ -+ v —i)ug

since v, > v, > 3 and v; > 2. Therefore,

wm,vi +vo+- vy, —=3m+ 14+ Dy, +va+ -+ v —i)rg =0

and this completes the base case n = 1. Now, assume that for n > 1, we have

1y(m,1/1+Vg—|—-"+1/m—3m+1+n)y(i,u1—|—1/2+~-+Vi—i)vgz().
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Hence, by the inductive hypothesis and previous lemmas, we have

0=hi1y(mvi+va+--+vy—3m+1+n)y(i,vn +vo+ - +v; —i)ve
=[h1, wy(m,vi+ 2+ -+ vy —3m+1+n)y(i, v +va+ - + v —i)ve
+ wlm,vi + v+ + vy —3m+ 1+ n)hy(i, v +vo + -+ v — i)ug
=—2mym,v1+va+ -+ vy, —=3m+1+n+Dy(i,vy +vo+ -+ vy —i)ug
+2y1y(m—Lvi 4+ -+ v =3m+1+n)y(i, vy +vo+ - + vy —i)ve
+ w(m,vi +vo+ -+ vy —3m+1+n)h,y(i,v1 + v+ -+ v —9)]ve
=—=2my(m,v1 +vo+ -+ vy —=3m+14+n+Dy(i, v +ve+ -+ v —i)vg
+ =2iy(m, 1 +va+ -+ vm—=3m+1+n)y(i,vy +rvo+ -+ v —i+ 1)ve
+2yo 1y(m, i +vo+ -+ vm—3m+1+n)y(i — Lvi+vo+ -+ — i+ 1)ug

==2my(m,v1 +vo+ -+ vy —=3m+14+n+Dy(i, v +ve+ -+ v —i)vg

since v, > 3 and v; > 2. This completes the induction on n and the claim.

Now, we write

y(rvi+vo 4+ v =3r + Dy(i, v +vo + -+ v —i)ve

r—1
:Zy(()j) wr—gvi+vo+--+v =3r+ Dy, v +va+ -+ 15 — i)
j=1
+ w4+ -+ =3r+ Dy(i,v + v+ -+ v —9)ve.
Also, for 1 <r —j <r —1, we have

ntwvt-Fu=3r+l>vn+m+- 4+ j+3(r—(r—j)—3r+1

=+t +u_j—3r—j+1
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since v, > 3. Therefore, by the claim

wr—gv+va+-+v, =3r+ Dy, v +va+ - +1v; —i)vg =0.
Hence, we have established

y(rvi+va+ -+ =3r + Dy(G,vn + v+ -+ v —i)ue
= 1y(r,1/1+1/2+-~-+1/7,—3r+1)y(i,l/l—|—y2—i—-~-+1/i—i)vé.
This completes the induction on 7. O
Lemma A.2.5. Fori+1<r</{-1, ifv, > 1,
wi@,vi+ve+-+v; =3+ Dy(i, vy +vo+ -+ v —i)ve =0

forall1 <j <4, and

W, +va+- v =20 — j+ Dyli, v +va+ -+ v —i)og = 0
forallz'—l—lgjgr—l, then

y(rvi+vo 4+ =2 —r+ Dy, v +va 4+ -+ v — i)

= W+t 4+ —2i—r+1y(i,v1 +rvo+ -+ v —9)ve.

Proof. We proceed by induction on 7.

Let r =4+ 1. Assume v;41 > 1,v; — ;41 > 2, and
wi@,vi+ve+-+v; =3+ Dy(i,vi +vo+--+v;—i)ve =0

for all 1 < j <. Then v; > 3 and v; > 3 for all 1 < j < ¢. By the claim from that was

proved in the previous lemma,

10, $)yli,vi + o+ v —i)vg =0
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forall1 <j<iand s> v +vp+---+v; — 35+ 1. Now, we write
y(i+ 1o +vo+ -+ vigr — 30)y(i, v +vo + - 4 v — e
i
=Sy i+ 1 — kot i = 30y v vy — e
k=1
+ i+ L+ +- -+ v =30y, v + v+ -+ v — ).
Now, for all 1 < j <14, we have

vttt =32+ v+ v+ v — 3
ZV1—|—1/2—|—---—|-Vj+3(i—j)—|-l—3i

=v+re+--+rv;—3j+1
since v; > 3 and v;41 > 1. Thus, by the previous lemma,
1y(i+1—k,l/l+V2+"'+I/i_|_1—3i)y(i,V1+V2+"‘+Vi—i)1)§:O

for all 1 < k < 4. (Note: The claim in the previous lemma is only for 1 < k < 4, but a

symmetric proof holds for k = i.) Hence,

y(i+1,V1+I/2+"‘+l/i+1—Si)y(i,l/1+V2+"'+I/i—i)vg

= 1y(i—|—1,1/1+l/2+--'—|-1/i+1—3i)y(i,V1—FI/Q—}—-'-—{—VZ'—Z')’U&

This completes the base case.

Let i+2<r</f—1. Assume v, > 1, v; — V11 > 2,
w44 =3+ Dyt s +va+ - +v; —i)oe =0
for all 1 < j <14, and

Wi +vat- 4y =2i—j+ Dyl v +va+ -+ v —i)vg =0
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foralli—i—lﬁjgr—l.

Now, write

y(ropn+vo+--+ v =20 —r+ Dy(i, v +vo+ -+ v —1)ue
1

7
1

ﬁ
|

k) wr—kvi+ve+- 4 —=2i—r+1Dy(i,vn +vo+ -+ v —i)ve

e
Il

+ oyl +rve+ - F v =20 —r+ Dy(i, v + v+ 4 vi — i)

Since r > i+ 2,1, > 1, and v; — vi41 > 2, v; > 3. Hence, v; > 3 for all 1 < j < 4. Also, for

all 1 <5 <1, we have

mtvt+-F+y—2i-r+l=vr+wmr+t---+vi+tvjp+--+r,—2i—r+1
>vitve+ 430 —g)+1(r—i)—2i—r+1

=vi+re+--+rv; =35+ 1
Hence, for all 1 < j <1,
W +ve+- 4 =2i—r+yli,vyn +vo+ -+ v —i)ve =0

by the claim from previous lemma. (Note: The claim in the previous lemma is only for
1 < j <, but a symmetric proof holds for j = i.)
Hence,

y(ropn +vo+- -+ v =20 —r+ Dy(i, v +vo+ -+ v —1)ve

r—i—1
= Z y(()k) wr—kuvi+wvo+- v —2i—r+Dy(i,vi + o+ -+ v —9)ve
k=

=

+ v+ ve+ -y =2 —r+ Dy(i,v +va 4 - 4 v — 1)
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Now, we claim that
w(m, sy(i,vy +vo+ -+ v — i)ve =0

foralli+1<m<r—1lands >uvi+vo+---+ v, —2i —m+ 1. To prove this claim,
we begin by induction on m. Assume m =i+ 1 and s’ > vy + vy + -+ + 111 — 3i. Then,
s =vi+vy+ -+ 11 — 3i +n, where n € Z~g. Now, we continue by induction on n.

Assume n = 1. By assumption, we have
wE+1Lvi+va+ -+ v =30y, v +va+ -+ v —i)ve = 0.
Hence, by previous lemmas,

0=hy1y(i+Lvi4+ve+ -+ —3)y(l, v +va+ -+ v — 0)vg
=lh1, i+ Lvi+va+-- g —30)|y(i, v +vo+ -+ v —i)ve
+ w4+ Lvi+ve+ -+ v =3y, v Fva 4 - v — @)
=—2(i+1) wli+Lvi+vo+-+vip1 —3i+ Dy(i,vn +vo+ - + vy —i)ve
+ 2y 1yl v+ o+ F v — 30)y(G v+ o+ F s —d)ue
+ y(i+ v +vo 4+ v — 30) byl v +va+ -+ v — 1)
=—=20i+1)wli+Lvi+vo+--+vip —3i+ Dy, v +va+ -+ v —i)ue
+ =2 y(i+ 1, +vo+ -+ v =30yl o+ -+ v — i+ v
+2y0 1y(i+ 1Ly +ro+ - v =3y — Ly +ve 4+ F v — i+ 1)ue
=—2(i+1) wli+Lvi+vo+--+vip1 —3i+ Dy, v +va+ -+ v —i)ue

since v; > 1 and v;41 > 1. Therefore,

Wi+ Lvi+ve+- o +vign = 3i+ Dy(i,vi+ v+ v —i)ug =0
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and this completes the base case n = 1. Now, assume for n > 1, we have
1y(i+1,V1+V2+~--+Vi+1—3i+n)y(2‘,l/1—i-yg+--~+l/i—i)’l)é" = 0.
Hence, by the inductive hypothesis and previous lemmas,

0=h1 1yt + 1Ly +vo+--+vip1 —3i+n)y(i, vy +vo+ -+ v —i)ve
=[h1, w4+ 1L +va+ -+ v —3i+n)y(i, v +vo+ - v — 1)
+ 1w+ 1L +ve 4 F v — 3i +n)hay(i, v +vo 4+ v — i)
=—20+1) 1wyl +Lvn+rvo+--Fvip1 —3i+n+ Dy, v +vo+ -+ v —0)ve
+2y1 1y(i, v+ v+ v = 3i A )y v F e+ v — g
+ i+ Lvi+ve+-+vip —3i+n)h,y( v v+ v — 1)
=—20+1) 1w+ Lvn+rvo+--Fvip1 —3i+n+ Dy, v +vo+- -+ v —i)ve
+=2iwyGE+ 1,4+t v —3i+n)y(, v +va+ -+ —i+ 1)ue
+2y0 1y(i+ 1L +vo+ - F v —3i+n)y(i — Ly +rva+ -+ v — i+ Lo
=—20+1)wyli+Lvn+rvo+--Fvip1 —3i+n+ Dy, v +vo+ -+ v —i)ve
since v; > 1 and v;41 > 1. Therefore,
wi+Lvi+ve+ -+ v = 3i+n+ Dyl +va + -+ v —i)ve =0,
which completes the induction on n and the base case m = 1. Assume ¢t +2 < m < r — 1.
For the inductive hypothesis, assume
wm—1,8)y(, v +va+- +v; —i)vg =0

forall § > v 4+vo+- 4 vm_1—2i—(m—1)4+1. Assume s’ > vy +vo+---+1vpy —2i—m+1.

Then, s=vy +vo+ -+ vy — 2t —m+ 1 +n where n € Z~y. We proceed by induction on
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n. Since i +1 < m <r — 1, we have

wm,vi+vo+- -+ vy —2i —m+ Dy(i, 1 +va+ - + v —i)ve = 0.
Hence, by previous lemmas and the inductive hypothesis,

0=hi 1yimvi+va+ -+ vy —2i—m+1)y(i,vy + v+ + v —i)ve
=[h1, 1y(m,v1 + v+ + v — 20 —m+ Dy(i,v1 +vo + -+ v; — i)ve
+ wylm,vr +vo+ - F vy —2i —m 4+ Dhy(i, v +vo+ -+ v —1)ve

—29m 1y(m,l/1+I/2—|—..-—{—I/m—2i—m+1+1)y(i7]j1—|—y2_|_...+yi_i)vf

+ 2y wyim =1L+ + vy —2i —m+ Dy(i, v + v + - + 1 —i)ve
+ wlm,vr +vo+ -+ vy —2i —m A+ 1)[h,y(i, 01 +va+ -+ v — 1)

—2may(myi+ve+ -+, —2i—m+ 1+ Dy(i, vy + v+ + v — i)

+ =2 yy(m, v +va+ - v —2i—m+ Dy(l,vy +va+ -+ v — i+ 1)ve
+2yo wy(m,vr +vo+ - vy, —2i—m+ 1Dy — Lvi+va+ - +v; —i+ Do

—2m 1y(m,l/1+U2+-..+Vm—27;—m+1—|—1)y(i’1/1—|—y2+...+Vi_i)UE

since v, > v > 1 and v; > 2. Therefore,
wmv +vo+ - v, —2i—m+ 14+ Dy, +va+ -+ —i)ug =0
and this completes the base case n = 1. Now, assume that for n > 1, we have

wmv +vo+ - v, —2i —m+14+n)y(i,v1 +va+ - + v —i)vg = 0.
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Hence, by the inductive hypothesis and previous lemmas, we have

0=hi1yimvi+va+-+vm—2i—m+1+n)y(i,v1 +vo+ - +v; —i)ve

=[h1, wym,vi+va+ -+ v —2i —m+14+n)]y(i, v +vo+ -+ v — i)
+ wm,v+vo+ -+ v, —2i—m+14+n)hy(i, v +va+ -+ v — i)ug

=—2mym,vi+va+ - Fvyp—2i—m+1+n+Dy(i,vy +vo+ -+ vy —i)ug
+2y1ym—Lvi 4+ -+ vy =2 —m+1+n)y(i,v1 +vo + -+ 15 — i)ug
+ wy(muvi+ a4+ vm —2i—m+1+n)[h,y(i, v + v+ -+ v — i)

=—2myim,v+vo+ - Fvyp—2i—m+1+n+ Dy, +vo+ -+ vy —i)ug
+ =2iwy(m, i +vo+- -+ —2i—m+1+n)y(i, vy +vo+ -+ v —i+ 1)ve
+2yo 1wy(m, v +vo+ -+ v —2i—m+1+n)yi — L,y +va+ -+ v —i+ 1)ve

=—2mymvi+va+ - Fvym—2i—m+1+n+ Dy, +va+ -+ vy —i)ug

since v, > 1 and v; > 2. This completes the induction on n and the claim.

Now, recall

y(ron+ v+ v —=2i —r+ Dy(i, vy +va + - + v —i)ve

r—i—1
= Z y(()k) wr—kvi+v+- 4+, =2i—r+ 1Dy, + o+ + v —i)ve
k=

[y

+ wlrvi+ve+ -+, =2i—r+ Dy, v +va+ -+ 15 — i)ve.

Also, for i +1 < j <r —1, we have

Yoty —2i—r+1>vn 4+ +(r—j)—2i—r+1

:I/1—|-I/2—|—---+I/j—2’i—j+1
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since v, > 1. Therefore, by the claim

wi@,m+ve+- v, =2i—r+ Dy, +vo+ -+ v —i)vg =0

foralli+1<j<r-—1.

Hence, we have established

yrvi+va+ -+ =2t —r+ Dy(i, v +va 4+ -+ v — @)

=1 y(r,vi+va+- -+ =20 —r+ Dy(i, v +vo+ - + v —0)ve.

This completes the induction on 7.
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