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Introduction
SARS-CoV-2 infection causes acute respiratory and systemic disease (coronavirus disease 2019, COVID-19) (1, 
2). A subset of individuals also experience persistent, recurrent, or new COVID-19–attributed symptoms in the 
months following acute infection — a condition commonly referred to as long COVID (3–19). Long COVID, a 
type of post-acute sequelae of SARS-CoV-2 infection (PASC), can affect an individual’s overall health and qual-
ity of life (3–18, 20). Recently, PASC has been associated with sustained elevated levels of immune activation 
and inflammation (21–24). However, the pathophysiological mechanisms that drive this inflammation remain 
unknown. Among the hypothesized drivers are preexisting medical comorbidities, such as diabetes or obesity, 
the degree of SARS-CoV-2 viremia during acute infection, latent Epstein-Barr virus reactivation, and the pro-
duction of autoantibodies (25–27). We have been investigating a known driver of systemic inflammation and 
severity during other respiratory diseases, microbial translocation resulting from disruption in the gut-lung axis.

Disruption of  the gut-lung axis is a known marker of  severity during other respiratory diseases (28–31) 
and may play a role in potentiating worse clinical outcomes. SARS-CoV-2 infection can affect the gastro-
intestinal tract (GI) tract and cause GI symptoms (32, 33) through indirect and/or direct mechanisms. 

Long COVID, a type of post-acute sequelae of SARS-CoV-2 (PASC), has been associated with 
sustained elevated levels of immune activation and inflammation. However, the mechanisms 
that drive this inflammation remain unknown. Inflammation during acute coronavirus disease 
2019 could be exacerbated by microbial translocation (from the gut and/or lung) to blood. 
Whether microbial translocation contributes to inflammation during PASC is unknown. We 
did not observe a significant elevation in plasma markers of bacterial translocation during 
PASC. However, we observed higher levels of fungal translocation — measured as β-glucan, a 
fungal cell wall polysaccharide — in the plasma of individuals experiencing PASC compared with 
those without PASC or SARS-CoV-2–negative controls. The higher β-glucan correlated with 
higher inflammation and elevated levels of host metabolites involved in activating N-methyl-
d-aspartate receptors (such as metabolites within the tryptophan catabolism pathway) with 
established neurotoxic properties. Mechanistically, β-glucan can directly induce inflammation 
by binding to myeloid cells (via Dectin-1) and activating Syk/NF-κB signaling. Using a Dectin-1/
NF-κB reporter model, we found that plasma from individuals experiencing PASC induced higher 
NF-κB signaling compared with plasma from negative controls. This higher NF-κB signaling was 
abrogated by piceatannol (Syk inhibitor). These data suggest a potential targetable mechanism 
linking fungal translocation and inflammation during PASC.

https://insight.jci.org
https://doi.org/10.1172/jci.insight.160989
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Indirectly, lung infection or injury can provoke systemic inflammation (including cytokine storm), which 
in turn can disrupt gut barrier integrity (mainly by IFN-γ and TNF-α, which are known to disrupt tight 
junction permeability; refs. 34–36), enabling gut microbes and their products to translocate across the gut 
epithelium. This translocation (which can also happen across the lung epithelium) can exacerbate the ini-
tial systemic inflammation, resulting in a positive feedback loop (28–31, 37–39). Directly, SARS-CoV-2 can 
infect gut cells (40); other viral infections of  the gut can cause a breakdown of  the epithelial barrier (41–43).

The human microbiome is composed of  bacteria, fungi, protozoa, and viruses (44–46). Microbial trans-
location of  bacteria and bacterial products (such as LPS) and the subsequent immune activation and inflam-
mation are well documented (47–49). However, there is emerging evidence that fungal translocation also 
plays an important role in driving immune activation and inflammation in conditions involving epithelial 
barrier permeability (such as HIV infection) (50, 51). Translocated fungal products induce immune activa-
tion and inflammation by binding to their receptors on the surface of  immune cells, including macrophages, 
monocytes, and dendritic cells, to induce proinflammatory signaling pathways (reviewed in ref. 52).

Acute COVID-19 has been associated with an increase in the plasma levels of  zonulin, an established 
physiological driver of  tight junction permeability (53, 54). This increased permeability enables the trans-
location of  both bacterial and fungal products to the blood. Such microbial translocation correlates with 
increased systemic inflammation, disrupted gut-associated metabolites, and higher mortality during acute 
COVID-19 (55). These observations are supported with a series of  recent studies, using stool samples, show-
ing that COVID-19 severity is associated with a state of  gut microbial dysbiosis and translocation (including 
fungal translocation) (56–63). Although these data (55–62) do not imply that gut microbial translocation is 
the primary trigger of  inflammation during COVID-19, as the clinical syndrome of  COVID-19 likely embod-
ies multiple pathophysiological pathways, they are consistent with the literature indicating that microbial 
translocation fuels inflammation and disease severity during respiratory diseases (28–31) and thus support 
a model in which microbial translocation fuels inflammation following SARS-CoV-2 infection. However,  
whether the translocation of  microbes — bacteria or fungus — is related to inflammation during PASC is 
unknown and is the subject of  this study.

Results
Participant characteristics. We used samples from 2 cohorts (Table 1): 1) Cross-sectional plasma samples 
from 117 volunteers with a history of  COVID-19 (a subset of  the UCSF LIINC cohort) 90–160 days after 
their first positive SARS-CoV-2 result. These participants were divided into 2 groups: 56 individuals with 
no ongoing COVID-19–attributed symptoms at the time of  sample collection (non-PASC) and 61 with at 
least 2 symptoms present at the time of  sample collection (PASC; Table 1). 2) Cross-sectional plasma sam-
ples from 50 COVID-19 individuals experiencing PASC 3–4 months after their convalescence from acute 
COVID-19 (a subset of  the Rush PASC cohort) and cross-sectional plasma samples from 50 SARS-CoV-2–
negative controls (matched for age and sex to the Rush PASC samples; Table 1).

We examined whether age (Figure 1A), BMI (Figure 1B), self-rated overall health/quality of  life (QoL) 
score on a visual analog scale (0–100; Figure 1C), sex, ethnicity, hospitalization during acute COVID-19, or 
preexisting comorbidities (Figure 1D) differentiated PASC from non-PASC groups within the 117 samples 
from the UCSF LIINC cohort. We found that a higher BMI (P = 0.006; Figure 1B) and a higher rate of  pre-
existing hypertension (P = 0.003; Figure 1D) were associated with the PASC phenotype. The overall health/
QoL score was lower in volunteers experiencing PASC than those in the non-PASC group (P < 0.0001; Fig-
ure 1C). Based on these observations, we adjusted our subsequent analyses on the potential role of  microbial 
translocation in PASC for BMI and hypertension as potential confounders of  the PASC phenotype in this 
subset from the UCSF LIINC cohort. We also used the overall health/QoL score in our subsequent analyses 
examining the potential impact of  microbial translocation on individuals’ well-being during PASC.

PASC is associated with elevated levels of  fungal translocation independent of  BMI and hypertension. We first exam-
ined levels of tight junction permeability (measured as plasma levels of zonulin) in the plasma of the 117 
volunteers from the UCSF LIINC cohort. Zonulin is an established physiological mediator of tight junction 
permeability in the digestive tract, where higher levels of zonulin drive an increase in fungal and bacterial 
translocation (53, 64, 65). We found that PASC was associated with an increase in the plasma levels of zonulin 
compared with non-PASC (Figure 2A). We next examined levels of bacterial translocation (measured as LPS 
binding protein, LBP); these levels were not significantly different between the 2 groups, though a trend of  
higher levels of LBP in individuals experiencing PASC (than in non-PASC) was observed (Figure 2B). We next 

https://doi.org/10.1172/jci.insight.160989
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examined levels of fungal translocation (measured as β-glucan, a fungal wall polysaccharide). We observed 
higher levels of β-glucan in the plasma of volunteers with PASC than of non-PASC volunteers (in a manner 
linked to the number of persistent symptoms and regardless of whether volunteers had been outpatients or hos-
pitalized during their acute COVID-19; Figure 2, C –F). Recently, it was shown that plasma β-glucan levels ≥ 40 
pg/mL are clinically significant and associated with higher inflammation and worse survival in patients with 
acute respiratory failure (66). In the UCSF LIINC cohort, 33% of volunteers experiencing PASC had β-glucan 
levels ≥ 40 pg/mL, whereas only 7.1% of non-PASC volunteers had β-glucan ≥ 40 pg/mL. We also divided 
the PASC into 3 PASC phenotypes based on clinical symptom clusters, defined as having at least 1 symptom 
in the cluster — GI (nausea, diarrhea, loss of appetite, abdominal pain, vomiting), cardiopulmonary (cough, 
dyspnea, chest pain, palpitations), and neurocognitive (headache, concentration problems, dizziness, balance 
problems, neuropathy, vision problems). Levels of β-glucan were higher in individuals experiencing each of  
the 3 PASC symptom clusters compared with individuals who were not experiencing PASC (Figure 2, G–I). 
Furthermore, we investigated individuals experiencing each symptom separately and found that β-glucan levels 
were higher in individuals with certain symptoms, such as GI symptoms (nausea and diarrhea), vision prob-
lems, sleep problems, neuropathy, and pain (Supplemental Figure 1; supplemental material available online 
with this article; https://doi.org/10.1172/jci.insight.160989DS1). Last, we examined levels of soluble CD14 
(sCD14) and soluble CD163 (sCD163) (markers of microbe-mediated myeloid inflammation) but found no 
significant difference between the 2 groups (P > 0.05).

Given that we identified BMI and hypertension as potential confounders of  the PASC phe-
notype in the UCSF LIINC cohort, we examined whether levels of  plasma β-glucan correlated 
with BMI and/or hypertension. We found that individuals with hypertension tended to have higher 
levels of  β-glucan (Figure 2J). We also found that higher BMI correlated with higher levels of  plas-
ma β-glucan (Figure 2K). This is consistent with recent reports suggesting that obesity is associ-
ated with changes in the intestinal mycobiome and with increases in levels of  plasma β-glucan (67, 
68). As such, we used a multivariate logistic regression model adjusting for BMI and hypertension 
and found that higher levels of  β-glucan (OR 1.4 per every 5-unit increase; P = 0.0048) and zonulin 
(OR 1.05 per every 5-unit increase; P = 0.038) remained associated with the PASC phenotype inde-
pendently from BMI and/or hypertension (Figure 2L). The high levels of  fungal translocation during 
PASC were confirmed using PASC samples from the Rush PASC cohort; these PASC samples were 
compared with samples from age- and sex-matched SARS-CoV-2–negative controls (Figure 2M).  

Table 1. Demographic and clinical characteristics of study cohorts

UCSF LIINC cohort Rush PASC cohort

No PASC PASC SARS-CoV-2 
negative PASC

N 56 61 50 50
Age in years: median (IQR) 49 (19.5) 49 (19) 43 (11.8) 45 (18)

Sex as n (%)
Male 33 (55%) 27 (45%) 19 (38%) 19 (38)

Female 23 (40%) 34 (60%) 31 (62%) 31 (62)

Race and ethnicity as n (%)

Asian 8 (73%) 3 (27%) 0 (0%) 0 (0%)
Black 3 (50%) 3 (50%) 26 (52%) 7 (14)

Hispanic/Latino 9 (31%) 20 (69%) 5 (10%) 9 (18)
White 31 (48%) 34 (52%) 0 (0%) 34 (68)

Pacific Islander/ 
Native Hawaiian 2 (67%) 1 (33%) 19 (38%) 0 (0%)

Preexisting comorbidities (autoimmune disease, 
cancer, diabetes, hypertension, heart disease, lung 
disease, kidney disease, liver disease) as n (%)

No 31 (51%) 30 (49%) - -

Yes 25 (45%) 31 (55%) - -

BMI: median (IQR) 26.14 (7.25) 30.94 (9.9) 34.9 (4.9) 28.7 (7.2)
Number of symptoms: median (IQR) 0 (0) 6 (4) 0 (0) 4 (3)
Hospitalization during acute COVID-19 illness  
as n (%)

Nonhospitalized 47 (51%) 46 (49%) - 38 (76)
Hospitalized 9 (37.5%) 15 (62.5%) - 12 (24)

LIINC, Long-term Impact of Infection With Novel Coronavirus. 

https://doi.org/10.1172/jci.insight.160989
https://insight.jci.org/articles/view/160989#sd
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In the Rush PASC cohort, the majority (74%) of  individuals with PASC had β-glucan levels ≥ 40 pg/mL,  
whereas only 12% of  SARS-CoV-2–negative controls had β-glucan levels ≥ 40 pg/mL (Figure 2M). 
Together these data suggest that PASC is associated with elevated levels of  markers of  tight junction 
permeability (zonulin) and fungal translocation (β-glucan) to the blood.

Plasma β-glucan levels associate with markers of  inflammation during PASC. It is well established that  
β-glucan can directly induce inflammation following its binding to Dectin-1 on macrophages, monocytes, 
and dendritic cells. This activates the NF-κB pathway and induces the secretion of  proinflammatory cyto-
kines (69–71). In addition, the exposure of  myeloid cells to β-glucan can modulate several cellular meta-
bolic (including glutathione metabolism) and epigenetic pathways that induce cytokine production (72). 
We, therefore, tested whether β-glucan levels correlated with markers of  inflammation, as well as num-
ber of  symptoms and overall health/QoL score (Figure 3A). We found a positive correlation between  
β-glucan levels of  inflammatory markers, including TNF-α, IL-6, and IP-10 (Figure 3, A, D, and E). Levels of   
β-glucan also associated with a higher number of  symptoms (Figure 3, A and B) and a lower overall health/
QoL score (Figure 3, A and C). The positive correlations between levels of  β-glucan and higher IL-6 and 
TNF-α were confirmed in the PASC samples from the Rush PASC cohort (Figure 3, F and G). These data 
suggest a potential link between fungal translocation and inflammation in individuals with PASC.

Plasma β-glucans from patients with PASC activate the NF-κB pathway. The data described thus far suggest 
that PASC is associated with high plasma levels of  β-glucan in a manner linked to higher inflammation. 

Figure 1. BMI and hypertension differentiate PASC from non-PASC in a subset of the UCSF LIINC cohort. Demographic 
and clinical characteristics of 117 individuals from the UCSF LIINC cohort. Out of these 117 individuals, 61 individuals were 
experiencing 2 or more COVID-19–attributed symptoms 4 months following SARS-CoV-2 infection (PASC), whereas 56 
individuals were not experiencing any ongoing symptoms (non-PASC). (A–C) Mann-Whitney U comparisons of (A) age, 
(B) BMI, and (C) overall health/quality of life (QoL) score between PASC and non-PASC within the 117 individuals from the 
UCSF LIINC cohort. Median and IQR are displayed. (D) Fisher’s exact test comparisons of the indicated demographic and 
clinical characteristics between PASC and non-PASC within the 117 individuals from the UCSF LIINC cohort. + = yes; — = no.

https://doi.org/10.1172/jci.insight.160989
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Figure 2. PASC is associated with elevated levels of plasma markers of fungal translocation. (A) Levels of zonulin in the plasma of 117 individuals from the 
UCSF LIINC cohort. Median and IQR are displayed. (B) Levels of LBP in the plasma. Median and IQR are displayed. (C–F) Plasma levels of β-glucan. Levels of 
β-glucan are higher in PASC compared with non-PASC when analyzing all individuals (C), dividing the PASC group into individuals with 2–7 symptoms (n = 40) 
or ≥8 symptoms (n = 21) (D), analyzing only samples from individuals who were cared for as outpatients during their acute COVID-19 illness (E), or analyzing 
only samples from individuals hospitalized during their acute COVID-19 illness (F). Mann-Whitney U tests. Median and IQR are displayed. (G–I) PASC was 
divided to 3 PASC phenotypes based on clinical symptom clusters, defined as having at least 1 symptom in the cluster — GI (nausea, diarrhea, loss of appetite, 
abdominal pain, vomiting), cardiopulmonary (cough, dyspnea, chest pain, palpitations), and neurocognitive (headache, concentration problems, dizziness, 
balance problems, neuropathy, vision problems). Levels of β-glucan were higher in individuals experiencing each of the 3 PASC symptom clusters compared 
with non-PASC. Mann-Whitney U tests. Median and IQR are displayed. (J) Mann-Whitney U comparison of the levels of β-glucan in individuals with or without 
a history of hypertension. Median and IQR are displayed. (K) Spearman’s rank correlation between BMI and the plasma levels of β-glucan. (L) A multivariate 

https://doi.org/10.1172/jci.insight.160989
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Although modest compared with levels observed during invasive fungal infections, the levels of  plasma 
β-glucan we observed in 2 cohorts of  PASC (Figures 2 and 3) may be clinically significant and with a 
potential to exacerbate a proinflammatory state, as suggested by a recent study (66). In that study (not 
focused on COVID-19), β-glucan levels in plasma of  40 pg/mL or greater were associated with higher 
inflammation, fewer ventilator-free days, and worse survival in patients with acute respiratory failure 
(66). It is known that β-glucans induce inflammation by activating the NF-κB pathway following binding 
to the Dectin-1 receptor (69–71). We, therefore, examined whether there was a mechanistic link between 
the levels of  β-glucans in the plasma of  individuals with PASC and the Dectin-1–dependent activation 
of  the NF-κB pathway. For these experiments, we used a Dectin-1 receptor reporter cell line to measure 
β-glucan/Dectin-1–dependent NF-κB signaling. This cell line stably expresses the Dectin-1 receptor and 
an NF-κB reporter linked to secreted embryonic alkaline phosphatase (SEAP) so that Dectin-1 receptor 
stimulation by β-glucan can be measured by quantifying SEAP activity (Figure 4A).

We treated the Dectin-1 receptor reporter cells with 20 μL of  plasma from volunteers with PASC (a 
subset of  the Rush PASC cohort) or 20 μL of  plasma from SARS-CoV-2–negative controls. The plas-
ma from the PASC group induced significantly higher levels of  NF-κB activation (in a Dectin-1– and 
β-glucan–dependent manner) compared with the plasma from SARS-CoV-2–negative controls (Figure 
4B). This β-glucan/Dectin-1–dependent NF-κB signaling was significantly abrogated by the addition of  
a selective inhibitor to Syk signaling (piceatannol) (Figure 4B). Finally, levels of  β-glucan in the plasma  
of  those with PASC correlated with a higher ability of  these plasma samples to induce β-glucan/ 
Dectin-1–dependent NF-κB signaling using this reporter system (Figure 4C). These data suggest that the 
levels of  β-glucan in the plasma during PASC are capable of  inducing immune activation in a manner 
linked to the activation of  the Dectin-1/Syk/NF-κB signaling pathway. Together, these observations sug-
gest a potential mechanism by which fungal translocation may contribute to inflammation during PASC. 
Importantly, this inflammation can be inhibited using inhibitors to Dectin-1/Syk signaling, providing a 
potential approach to mitigate PASC.

PASC is associated with elevated levels of  host metabolic agonists of  NMDA receptors with established neurotoxic 
properties. Microbial translocation–mediated inflammation can not only impact biological functions directly, 
but also impact them indirectly by modulating the circulating levels of  metabolites derived from interactions 
between gut microbiota and the host. Many plasma metabolites are biologically active molecules able to 
regulate cellular processes and immunological functions (73). For example, inflammation-mediated trypto-
phan catabolism has been associated with the development of  several aging- and inflammation-associated 
diseases during HIV infection (74–78). Severe acute COVID-19 has been associated with a disruption in the 
levels of  several host metabolites such as the metabolites involved in the tryptophan catabolism pathway 
and S-sulfocysteine (55, 79). We therefore performed an untargeted metabolic analysis (using liquid chroma-
tography-tandem mass spectrometry, LC-MS/MS) on the plasma samples from the UCSF LIINC cohort. 
Within the 117 plasma samples, we identified 169 polar metabolites. We observed a significant (with nom-
inal P < 0.05) difference between PASC and non-PASC groups in 12 of  these metabolites (6 were higher in 
the PASC compared with non-PASC group, and 6 were lower in the PASC compared with non-PASC group: 
Supplemental Table 1). Untargeted metabolite enrichment analysis of  these 12 PASC-associated metabolites 
showed an enrichment of  amino acids and certain amino acid–related metabolic pathways (Figure 5A).

Among the differences between PASC and non-PASC groups were higher levels of  quinolinic  
acid, a downstream product of  the tryptophan catabolism pathway, in those with PASC compared 
with the non-PASC group (Figure 5B). Tryptophan catabolism is commonly indicated by 2 ratios, the 
kynurenine-to-tryptophan (K/T) ratio and the quinolinic acid–to-tryptophan (Q/T) ratio (80). Although 
we did not observe a statistically significant difference in the K/T ratio between PASC and non-PASC 
groups, the Q/T ratio was higher in those with PASC compared with the non-PASC group (Figure 5C). 
Higher levels of  quinolinic acid and a higher Q/T ratio have been associated with adverse disease out-
comes during chronic HIV infection (74, 80). Quinolinic acid is an established neurotoxin and NMDA 
receptor agonist (81, 82). Interestingly, other metabolites that activate NMDA receptors were elevated in 
the plasma of  those with PASC, such as S-sulfocysteine (83) (Figure 5D) and l-glutamine (Figure 5E).  

logistic model showing that the higher levels of β-glucan and zonulin (OR per 5-unit increase) can differentiate PASC from non-PASC within the UCSF LIINC 
cohort after adjusting for both BMI and hypertension. (M) Levels of β-glucan in individuals experiencing PASC in an independent validation cohort (Rush PASC 
cohort) compared with SARS-CoV-2–negative controls (matched for age and sex); Mann-Whitney U test. Median and IQR are displayed.

https://doi.org/10.1172/jci.insight.160989
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Indeed, several of  the 12 metabolites that differed between those with and without PASC are involved 
in pathways related to the activation of  NMDA receptors, as shown in the diagram in Figure 5F. Con-
sistent with the neurotoxic ability of  quinolinic acid and S-sulfocysteine, higher Q/T and K/T ratios 
were associated with neuropathy during PASC (Supplemental Figure 2), and higher levels of  S-sul-
focysteine were associated with neurocognitive PASC (and the other 2 PASC phenotypes; Supple-
mental Figure 3). S-sulfocysteine levels were also associated with particular neurological symptoms 
during PASC, such as vision problems, fatigue, headache, and dizziness (Supplemental Figure 4).  
Together, these data indicate that a metabolic signature associated with PASC is compatible with 
increased tryptophan catabolism and accumulation of  metabolites with neurotoxic properties, conferred 
by their ability to activate NMDA receptors.

Plasma metabolomic markers of  PASC are associated with higher inflammation and lower overall health. As 
bioactive molecules, plasma metabolites influence cellular processes and immunological responses. There-
fore, we asked whether any of  the 12 dysregulated plasma metabolites, as well as Q/T and K/T ratios 

Figure 3. Fungal translocation correlates with inflammation during PASC. (A) Three correlation heatmaps showing associations between β-glucan, LBP, or 
zonulin (in rows) and the number of symptoms during PASC, overall health/quality of life (QoL) score, and plasma levels of several inflammatory markers 
(in columns) measured in all (n = 117; top), non-PASC (n = 56; middle), and PASC (n = 61; bottom) groups from the UCSF LIINC cohort. The color of the square 
represents the strength of the Spearman’s rank correlation, where blue shades represent negative correlations and red shades represent positive correlations. 
*P < 0.05; **P < 0.01; ***P < 0.001. GFAP, glial fibrillary acidic protein; NFL, neurofilament; MCP1, monocyte chemoattractant protein 1; IP-10, IFN-γ–inducible 
protein of 10 kDa. (B–G) Examples of the correlations between β-glucan and number of symptoms (UCSF LIINC cohort) (B), β-glucan and overall health/QoL 
score (UCSF LIINC cohort) (C), β-glucan and TNF-α or IL-6 (UCSF LIINC cohort) (D and E), and β-glucan and TNF-α or IL-6 (Rush PASC cohort) (F and G). Spear-
man’s rank correlation tests were used for statistical analysis. Blue = PASC, and gray = non-PASC in B–E.

https://doi.org/10.1172/jci.insight.160989
https://insight.jci.org/articles/view/160989#sd
https://insight.jci.org/articles/view/160989#sd
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(as markers of  tryptophan catabolism), associated with levels of  β-glucan, number of  symptoms, overall 
health score, or plasma markers of  inflammation (Figure 6A shows heatmaps focusing on the correlations 
between Q/T ratio, K/T ratio, and 5 elevated metabolites; a complete list of  correlations is shown in Sup-
plemental Table 2). The most significant associations were between Q/T ratio, quinolinic acid, or K/T ratio 
and lower overall health score (only in the PASC group but not in the non-PASC group; Figure 6, A–D). 
In addition, levels of  quinolinic acid (and other elevated metabolites) and Q/T and K/T ratios correlated 
with higher levels of  markers of  inflammation and higher levels of  β-glucan (Figure 6, A–D), mainly during 
PASC. Notably, the positive correlations between β-glucan levels and markers of  the tryptophan catabolism 
pathway (such as the K/T ratio) were also recently observed during HIV infection (84). Together, these data 
further support potential links between disrupted metabolic activities, especially those related to tryptophan 
catabolism and NMDA receptor activation, and both inflammation and disease severity during PASC.

Discussion
Identifying the potential mechanisms underlying the sustained elevated levels of immune activation and inflam-
mation during PASC is a critical step toward developing tools to prevent or decrease the severity of this syndrome.  

Figure 4. Plasma from individuals with PASC induces NF-κB signaling, which is dampened by the spleen tyrosine 
kinase inhibitor piceatannol. (A) A schematic of the Dectin-1 receptor reporter cell line. This cell line stably express-
es the Dectin-1 receptor and an NF-κB reporter linked to SEAP so that Dectin-1 receptor stimulation by β-glucan 
can be measured by quantifying SEAP activity. Syk, spleen tyrosine kinase. (B) The Dectin-1 receptor reporter cells 
were treated with plasma from individuals with PASC or SARS-CoV-2–negative controls in the presence or absence 
of the Syk inhibitor piceatannol. NF-κB signaling was detected (OD620 nm) 24 hours later. The comparison between 
the SARS-CoV-2–negative controls and PASC samples without piceatannol was performed using Mann-Whitney U 
test, and the comparisons between the conditions with and without piceatannol were performed using Wilcoxon’s 
signed rank tests. (C) Spearman’s rank correlation between levels of β-glucan in the plasma during PASC and NF-κB 
signaling induced by PASC plasma, using the Dectin-1 receptor reporter system.
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Figure 5. PASC is associated with elevated levels of host metabolic agonists of NMDA receptors with established neurotoxic properties. (A) Unbiased 
enrichment analyses of the 12 plasma metabolites whose levels differed between PASC and non-PASC groups within the UCSF LIINC cohort. Analysis was 
performed using MetaboAnalyst 5.0 (http://www.metaboanalyst.ca/). Left image: enrichment of certain classes of metabolites. Right image: enrichment 
of certain metabolic pathways using the Kyoto Encyclopedia of Genes and Genomes database. (B–E) Mann-Whitney U comparisons of the plasma levels 
of quinolinic acid (B), quinolinic acid/tryptophan (Q/T) ratio (C), S-sulfocysteine (D), or l-glutamine (E) in PASC and non-PASC groups from the UCSF LIINC 
cohort. Median and IQR are displayed. (F) A model depicting 8 plasma metabolites whose levels differed between PASC from non-PASC groups (red indi-
cates higher in PASC than non-PASC, and green indicates lower in PASC than non-PASC) within the UCSF LIINC cohort and their relationship to both the 
tryptophan catabolism pathway and the activation of the NMDA receptors. IDO, indoleamine 2,3-dioxygenase.
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Our data support a model where a disturbance in tight junction permeability (in the gut and/or lung) allows 
fungal translocation to the blood. The fungal β-glucan can then induce the production of proinflammatory 
cytokines by binding to its receptor (Dectin-1) on the surface of myeloid cells and activating the Syk/NF-κB 
pathway. This activation can be inhibited with the Syk inhibitor piceatannol. It has also been shown that the 
exposure of myeloid cells to β-glucan modulates several cellular metabolic and epigenetic pathways that can 
induce cytokine production (72). Our data also suggest that elevation of specific microbiome-associated and 
inflammation-associated metabolic pathways may contribute to PASC, in particular, pathways with neurotoxic 
properties due to activation of NMDA receptors (Figure 7). It is unlikely that the elevated levels of fungal trans-
location and neurotoxic host metabolites are the primary triggers of PASC, as this complex clinical syndrome 
likely results from the disruption of multiple and probably distinct pathophysiological pathways. However, the 
robust literature indicating that fungal translocation fuels inflammation and disease severity during long-term 
complications of other viral infections, such as HIV (28, 31), supports and is consistent with our findings and 
suggests that fungal translocation may be one of the mechanisms contributing to inflammation during PASC.

Figure 6. Levels of plasma host metabolites correlate with inflammation during PASC. (A) Three correlation heatmaps showing associations between 
Q/T ratio, K/T ratio, and levels of selected metabolites (in rows) to levels of plasma β-glucan, the number of symptoms during PASC, overall health/QoL 
score, and plasma levels of several inflammatory markers (in columns) measured in all (n = 117; top), non-PASC (n = 56; middle), and PASC (n = 61; bottom) 
individuals from the UCSF LIINC cohort. The color of the square represents the strength of the Spearman’s rank correlation, with blue shades representing 
negative correlations and red shades representing positive correlations. *P < 0.05; **P < 0.01; ***P < 0.001. (B) Examples of the correlations between 
Q/T ratio and overall health/QoL score or β-glucan. (C) Examples of the correlations between quinolinic acid and overall health/QoL score or β-glucan. 
(D) Examples of the correlations between K/T ratio and overall health/QoL score or β-glucan. Spearman’s rank correlation tests were used for statistical 
analysis. Blue = PASC, and gray = non-PASC in B–D.
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Our in vitro experiments suggest that the levels of  β-glucan in the plasma of  individuals experiencing 
PASC are sufficient to induce NF-κB activation in vitro and show that this activation is greater in those 
with PASC than in SARS-CoV-2–negative controls. As noted above, β-glucan is a biomarker of  microbial 
translocation during chronic viral infections, such as HIV infection, and its levels correlate with inflam-
mation, immune suppression, and the development of  HIV-associated comorbidities (50, 52, 67, 84–86). 
It can also directly induce inflammation following its binding to Dectin-1 (69–71). Thus, these data sug-
gest a mechanism, Dectin-1/Syk/NF-κB signaling, by which the increased fungal translocation during 
PASC may contribute to the observed sustained elevated levels of  immune activation and inflammation.  
However, a deeper mechanistic analysis will be needed to identify the degree to which this NF-κB activa-
tion contributes to inflammation during PASC. Further analyses could also investigate the possibility that 
myeloid cells (and other immune cells expressing Dectin-1) from individuals with PASC are less resistant 
to β-glucan stimulation than cells from individuals without PASC. Together, this deeper analysis could shed 
light on the causative versus consequential links between fungal translocation, inflammation, and PASC.

Our results support the development of  novel strategies to prevent or treat PASC, such as microbial 
interaction–targeted therapeutics (such as probiotics or metabolites) and/or selective small molecules. 
For example, small molecules that enhance epithelial barrier integrity or reduce the detrimental effects of   
fungal translocation are available, including the zonulin receptor antagonist AT1001 (larazotide acetate); 

Figure 7. Model of how fungal translocation may contribute to inflammation during PASC. Top: Our data suggest 
that during PASC there are elevated levels of fungal translocation from the gut and/or lung to the blood (possibly 
driven by increases in the tight junction permeability driver, zonulin). Bottom: The translocated β-glucans (fungal cell 
wall polysaccharides) bind to Dectin-1 on myeloid cells to activate the cellular inflammasome via the NF-κB pathway. 
Blocking the Syk pathway (using piceatannol) prevents the β-glucan–mediated myeloid inflammation in vitro and 
may prevent it during PASC. Finally, the inflammation (proinflammatory cytokines) can activate the tryptophan (TRP) 
catabolism pathway, and cause other metabolic dysregulations, to induce levels of host metabolic agonists of the 
NMDA receptors (NMDARs; such as quinolinic acid) with established neurotoxic properties.

https://doi.org/10.1172/jci.insight.160989


1 2

R E S E A R C H  A R T I C L E

JCI Insight 2022;7(15):e160989  https://doi.org/10.1172/jci.insight.160989

this antagonist decreased the severity and incidence of  several inflammation-associated diseases in preclin-
ical and clinical studies (87–89) and successfully treated a 17-month-old boy with SARS-CoV-2–associat-
ed multisystem inflammatory syndrome in children who did not respond to antiinflammatory therapies 
(90). Also available are the Dectin-1 antagonist, laminarin, which has been used safely and successfully in 
mouse models of  ischemic stroke (91) and colitis (92), and the Syk signaling inhibitor piceatannol, which 
has been used to treat a mouse model of  ischemic stroke (91). Our in vitro data suggest that piceatannol 
may abrogate β-glucan–mediated inflammation during PASC. These molecules can form a foundation for 
designing strategies — to be tested preclinically as soon as preclinical models of  PASC are available — to 
prevent PASC and its long-term complications in individuals recovering from SARS-CoV-2 and/or other 
similar post-acute infection syndromes.

Aging, several aging-associated diseases, and even other chronic viral infections, have been associ-
ated with a breakdown of  homeostasis between the gut and its microbiome (93–95). For example, aging 
itself  changes the composition of  the gut microbiota (96–100), leading to microbial translocation, which 
triggers chronic inflammation (101–103). Aging-associated diseases such as cancer, diabetes, and Alzhei-
mer’s disease are associated with specific gut microbial signatures (104–114). Chronic HIV infection is 
associated with a state of  gut microbial translocation, which is thought to be a major cause of  inflamma-
tion (115–123). Even with antiretroviral therapy, the damage to the epithelial barrier caused by HIV is 
never fully repaired, allowing microbial translocation and inflammation to continue (124–126). Our data 
raise the question of  whether the preexisting state of  microbial translocation and chronic inflammation 
during these conditions might make individuals living with them more prone to PASC. In this analysis, 
we included only a small number of  HIV-infected individuals (we analyzed a subset of  the UCSF LIINC 
cohort); however, a recent study focused on LIINC participants with HIV suggested that HIV infec-
tion is indeed a risk factor for developing PASC (127). Whether the preexisting microbial translocation 
and chronic inflammation during HIV infection (115–126), after surviving Ebola disease (128), and/or 
during other aging-related conditions (104–114) contribute to PASC warrants further investigation using 
longitudinal samples before and after acute COVID-19.

Our metabolic analysis suggests that PASC is associated with elevated levels of  several metabolites in 
a manner linked to fungal translocation. Our in vivo analyses do not unequivocally demonstrate a causal 
relationship between microbial translocation and host metabolic dysregulation during PASC. However, 
the robust literature indicating a link between microbial dysbiosis/translocation and host metabolic dys-
regulation (for example, an increase in tryptophan catabolism) in a manner that can fuel inflammation and 
disease severity is consistent with our findings (129, 130). Nevertheless, future mechanistic studies will be 
needed to demonstrate a causal relationship.

Our data suggest that PASC is associated with elevated levels of  several metabolites with known 
neurotoxic properties that are linked to activation of  NMDA receptors, such as quinolinic acid and 
S-sulfocysteine. The overactivation of  NMDA receptors can lead to excitotoxicity and has been associ-
ated with the development of  several neurodegenerative disorders, including epilepsy and Parkinson’s, 
Alzheimer’s, and Huntington’s diseases (131–135). Whether an overactivation of  NMDA receptors due 
to dysregulation of  host metabolites contributes to neuropathology during PASC warrants investiga-
tion. A demonstration that NMDA receptor agonists contribute to PASC symptoms could have several 
clinical implications. For example, NMDA receptor antagonists (such as memantine) have been used 
to block excessive, excitotoxic activity resulting from the overactivation of  the NMDA receptors during 
Alzheimer’s disease (132–136) and have been evaluated for treating other neurodegenerative disorders 
(137–139). Whether memantine or other NMDA receptor antagonists can be used to prevent or treat 
PASC-associated neurological manifestations could then be explored.

This study has several limitations. It is not clear why markers of  fungal translocation, but not bacte-
rial translocation, correlated with PASC in our study. A possible explanation is a difference in the kinet-
ics of  these markers in blood. It was recently shown that β-glucan levels in the blood are more stable 
and less sensitive to time of  sample collection, relative to food uptake, than are LPS levels (140). Oth-
er explanations could include differences in assay sensitivity, specificity, and/or criteria (for example, 
some soluble markers can be more sensitive than other markers to circadian rhythm). Also, the source 
of  β-glucan in the plasma is not clear. Fungal translocation during illness can occur from both the gut 
and the lung (66). Future studies examining the contribution of  the gut microbiome (both bacterial and 
fungal; using stool samples and intestinal biopsies) and lung microbiome (both bacterial and fungal; 
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using sputum and/or bronchoalveolar lavage) will be needed to determine the source and potential 
contribution of  both fungal and bacterial translocation to PASC. It will also be important to examine 
fungal translocation and host metabolites in longitudinal samples (from different body fluids, including 
cerebrospinal fluid) to determine whether, and for how long, elevated levels of  microbial translocation 
persist after acute COVID-19. Another possible explanation of  the persistent dysregulation is that the 
intestinal barrier’s resilience to common intestinal disruptors (such as excessive alcohol or oxidative 
stress) is lower during PASC, making these individuals more vulnerable to frequent, common disrup-
tors, which then can lead to the translocation of  microbes that cause systemic inflammation. Analyzing 
the impact of  the potential fungal translocation during PASC on immune cell activation (such as the 
coexpression of  CD38 and HLA-DR on T cells), other markers of  systemic inflammation and immune 
dysfunction during COVID-19 (such as GDF-15 and galectins, refs. 55, 141), and the expression of  
β-glucan receptors (such as Dectin-1 on monocytes and NKp30 on NK cells), in the intestines and sys-
temically, will be also needed in future studies. Finally, correcting for additional potential confounders 
will require validating our results in larger independent cohorts from varying geographic settings and 
demographic groups. Despite these caveats, this study, which is exploratory in nature, sheds light on 
the potential role of  microbial translocation and dysregulation of  host metabolic pathways related to 
NMDA receptor activation in the pathophysiology of  PASC. By understanding these potential under-
pinnings of  PASC, this work may serve to identify biomarkers for PASC risk stratification and build a 
foundation for developing strategies to prevent or reduce the severity of  inflammation during PASC.

Methods
Study cohorts. Primary analyses were performed using cross-sectional plasma samples from 117 individuals 
with prior nucleic acid–confirmed SARS-CoV-2 infection (a subset of  the UCSF LIINC cohort, described 
in detail elsewhere; ref. 19) collected 90–160 days after the first positive SARS-CoV-2 quantitative PCR 
result; prior work has not identified persistent virus in saliva of  these individuals at the time of  sampling 
(142). These participants were divided into 2 groups based on responses to a standardized symptom assess-
ment at the time of  plasma collection: 56 individuals with no COVID-19–attributed symptoms (non-PASC) 
and 61 with at least 2 COVID-19–attributed symptoms (PASC; Table 1); individuals reporting a single 
symptom were not included. Validation analyses and in vitro experiments were performed using cross- 
sectional plasma samples from 50 individuals with COVID-19 experiencing PASC symptoms 3–4 months 
after acute COVID-19 (a subset of  the Rush PASC cohort) and cross-sectional plasma samples from 50 
SARS-CoV-2–negative controls (matched for age and sex to the Rush PASC samples; Table 1).

Symptoms and QoL score evaluation. Participants in the LIINC study underwent clinical assessment 
at the time of  biospecimen collection. Volunteers completed an interviewer-administered questionnaire 
querying the presence of  32 possible COVID-19–attributed symptoms, QoL, and overall health status. 
The questionnaire was derived from several validated instruments (143, 144) as well as the US CDC list 
of  COVID-19 symptoms. Importantly, a symptom had to be described as new or worsened since the diag-
nosis of  SARS-CoV-2 infection to be recorded as “present”; symptoms that existed prior to SARS-CoV-2 
infection or were unchanged following infection were not counted. The utility of  this instrument in mea-
suring participants longitudinally has been described (19).

Measurement of  plasma markers of  tight junction permeability and microbial translocation. Plasma levels of  
sCD14, sCD163, and LBP were quantified using DuoSet ELISA kits (R&D Systems, Bio-Techne; catalog 
DY383-05, DY1607-05, and DY870-05, respectively). The plasma level of  zonulin was measured using an 
ELISA kit from MyBioSource (catalog MBS167049). Detection of  β-d-glucan in plasma was performed 
using Limulus Amebocyte Lysate assay (Glucatell kit, Associates of  Cape Cod; catalog GT003).

Measurement of  plasma markers of  inflammation. A targeted panel of  markers of  inflammation in plasma 
were measured using the Simoa HD-X platform. These markers were selected based on their importance 
in acute SARS-CoV-2 infection and included Cytokine 3-PlexA (IL-6, IL-10, TNF-α), IFN-γ, IP-10, and 
MCP-1. Levels of  these markers in a subset of  LIINC participants have been previously reported (22, 24). 
The IL-6 and TNF-α measurements of  the PASC samples from the Rush PASC cohorts were performed 
using a customized U-PLEX multiplex assay (Meso Scale Diagnostic catalog K15067L-2).

Untargeted measurement of  plasma metabolites. Metabolomics analysis was performed as described previous-
ly (145, 146). Briefly, polar metabolites were extracted with 80% methanol. A quality control (QC) sample was 
generated by pooling equal volumes of  all samples and was injected periodically during the sample sequence.  
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LC-MS was performed on a Thermo Fisher Scientific Q Exactive HF-X mass spectrometer with HESI II 
probe and Vanquish Horizon UHPLC system. Hydrophilic interaction liquid chromatography (HILIC) was 
performed at 0.2 mL/min on a ZIC-pHILIC column (2.1 mm × 150 mm, MilliporeSigma) at 45°C. All 
samples were analyzed by full MS with polarity switching, and the QC sample was also analyzed by data-de-
pendent MS/MS with separate runs for positive and negative polarities. Raw data were analyzed using Com-
pound Discoverer 3.1 (Thermo Fisher Scientific). Metabolites were identified either by accurate mass and 
retention time using an in-house database generated from pure standards or by querying the mzCloud data-
base (https://www.mzcloud.org) with MS/MS spectral data and selecting matches with 50 or greater scores. 
Metabolite quantification used integrated peak areas from full MS runs. These values were corrected based on 
the periodic QC runs and normalized to the total signal from identified metabolites in each sample.

Reporter assay for Dectin-1 activation by β-glucan. HEK-Blue hDectin-1a cells (InvivoGen; catalog  
hkb-hdect1a) were maintained in growth medium containing DMEM (4.5 g/L glucose), 10% fetal 
bovine serum, 100 U/mL penicillin, 100 μg/mL streptomycin, 100 μg/mL Normocin (InvivoGen; 
catalog ant-nr-05), 2 mM l-glutamine, 1 μg/mL puromycin (InvivoGen; catalog ant-pr-1), and 1×  
HEK-Blue CLR Selection (InvivoGen; catalog hb-csm). This cell line expresses the Dectin-1a isoform and 
genes involved in the Dectin-1/NF-κB/SEAP signaling pathway. On the assay day, 180 μL/well of  cells at 
a concentration of  2.8 × 105 cells/mL in HEK-Blue Detection media (InvivoGen; catalog hb-det2) were 
plated in a 96-well tissue culture plate. Plasma samples (20 μL) were added to each well with and without 
piceatannol (250 nM). The plates were then incubated at 37°C and 5% CO2 for 24 hours. Levels of  SEAP 
were monitored and measured spectrophotometrically at 620 nm. As controls, 20 μL of  water, piceatannol 
(250 nM), 2 μL of  DMSO (piceatannol solvent), 20 μL of  10 μg/mL β-glucan peptides (InvivoGen; catalog 
tlrl-bgp), or 20 μL of  β-glucan peptides + piceatannol (250 nM) were added in separated wells.

Statistics. Mann-Whitney U tests were used in the analyses of  Figure 1; A–C; Figure 2, A–J and M; 
Figure 4B (in the comparisons between the SARS-CoV-2–negative controls and PASC samples without 
piceatannol); and Figure 5, B–E. Fisher’s exact tests were used in the analysis in Figure 1D. Spearman’s 
rank correlations were used in the analyses in Figure 2K, Figure 4C, and Figures 3 and 6. A multivariate 
logistic regression model adjusting for BMI and hypertension was used for each marker in the analysis in 
Figure 2L. Wilcoxon’s signed rank tests were used in the analysis in Figure 4B (in the comparisons between 
the conditions with and without piceatannol). Kruskal-Wallis tests were used in the analyses in Supplemen-
tal Figures 1–3. All statistical analyses were performed in R and Prism 9.0 (GraphPad).

Study approval. All research protocols were approved by the institutional review boards at UCSF, Rush 
University, and The Wistar Institute. All human experimentation was conducted in accordance with the 
guidelines of  the US Department of  Health and Human Services and those of  the authors’ institutions.
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