
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Algorithm-Hardware Optimization of Deep Neural Networks for Edge Applications

Permalink
https://escholarship.org/uc/item/7hx3z4n4

Author
Akhlaghi, Vahideh

Publication Date
2020
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7hx3z4n4
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA SAN DIEGO

Algorithm-Hardware Optimization of Deep Neural Networks for Edge Applications

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy

in

Computer Science (Computer Engineering)

by

Vahideh Akhlaghi

Committee in charge:

Professor Rajesh K. Gupta, Chair
Professor Hadi Esmaeilzadeh, Co-Chair
Professor Gert Cauwenberghs
Professor Sicun Gao
Professor Ryan Kastner

2020



Copyright

Vahideh Akhlaghi, 2020

All rights reserved.



The dissertation of Vahideh Akhlaghi is approved, and it is

acceptable in quality and form for publication on microfilm

and electronically:

Co-Chair

Chair

University of California San Diego

2020

iii



DEDICATION

To my dearest family and my loving husband

iv



EPIGRAPH

Be the peace you wish to see in the world!

—Martin Luther King, Jr.

v



TABLE OF CONTENTS

Signature Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Epigraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Background and Problem Definition . . . . . . . . . . . . . . . . . 2
1.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Algorithmic Optimization . . . . . . . . . . . . . . . . . . 5
1.2.2 Hardware Optimization . . . . . . . . . . . . . . . . . . . . 11

1.3 Dissertation Contribution and Organization . . . . . . . . . . . . . 13

Chapter 2 Hardware Efficient Function Approximation . . . . . . . . . . . . . . . . 16
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Function Approximation with Bloom Filters . . . . . . . . . . . . . 21

2.3.1 Bloom Filters (BFs) . . . . . . . . . . . . . . . . . . . . . 21
2.3.2 Utilizing Bloom Filters for Function Approximation . . . . 23
2.3.3 Bounding Bloom Filter Errors at Design Time . . . . . . . . 25

2.4 Function Approximation in Image Processing Applications . . . . . 25
2.4.1 Maximum Tolerable Error Rates . . . . . . . . . . . . . . . 26
2.4.2 The Number of Input Patterns Saved in BF . . . . . . . . . 27
2.4.3 BF Configuration . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 Function Approximation in CNNs . . . . . . . . . . . . . . . . . . 28
2.5.1 LeNet Architecture . . . . . . . . . . . . . . . . . . . . . . 28
2.5.2 Layer-Based Pattern Matching . . . . . . . . . . . . . . . . 29
2.5.3 Approximate Pattern Matching . . . . . . . . . . . . . . . . 30
2.5.4 Approximate Pattern Matching with Bloom Filters . . . . . 32

2.6 ReBF: Resistive Bloom Filter . . . . . . . . . . . . . . . . . . . . . 33

vi



2.6.1 ReBF Architecture . . . . . . . . . . . . . . . . . . . . . . 34
2.6.2 Scalability of ReBF . . . . . . . . . . . . . . . . . . . . . . 35

2.7 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.7.1 Evaluation of Function Approximation on Image Processing

Applications . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.7.2 Evaluation of Function Approximation on CNNs . . . . . . 40

2.8 Summary of the Chapter . . . . . . . . . . . . . . . . . . . . . . . 44

Chapter 3 Dynamic Network Pruning . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3 SnaPEA Hardware-Software Solution . . . . . . . . . . . . . . . . 51

3.3.1 SnaPEA Software Workflow . . . . . . . . . . . . . . . . . 51
3.3.2 SnaPEA Hardware Architecture . . . . . . . . . . . . . . . 54

3.4 Computation Reduction in SnaPEA . . . . . . . . . . . . . . . . . 55
3.5 SnaPEA Software Optimization . . . . . . . . . . . . . . . . . . . 56

3.5.1 Speculation Parameters . . . . . . . . . . . . . . . . . . . . 57
3.5.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . 58
3.5.3 Finding the Speculation Parameters . . . . . . . . . . . . . 59

3.6 Architecture Design for SnaPEA . . . . . . . . . . . . . . . . . . . 62
3.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.7.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.7.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . 71

3.8 Summary of the Chapter . . . . . . . . . . . . . . . . . . . . . . . 78

Chapter 4 Platform-Aware Algorithm-Hardware Approximation . . . . . . . . . . . 79
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.3 Overview of the Framework . . . . . . . . . . . . . . . . . . . . . 85

4.3.1 Parameterized Error Injection . . . . . . . . . . . . . . . . 86
4.3.2 Model and Hardware Related Constraints . . . . . . . . . . 88
4.3.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . 90
4.3.4 Learning Optimal Algorithm-Hardware Level Approximation

and Architecture Design . . . . . . . . . . . . . . . . . . . 91
4.4 Optimal Algorithm-Hardware Approximation for FPGA-based CNN

accelerators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.4.1 Injecting Quantization and DRAM Voltage Scaling Error into

CNNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.4.2 Constraints on Model Accuracy and FPGA Resource Budget 96
4.4.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . 98
4.4.4 Optimal Quantization and DRAM Voltage . . . . . . . . . . 99

4.5 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . 99

vii



4.5.1 Optimal Hardware Approximation for the Weight Updates in
Linear Regression and SVM . . . . . . . . . . . . . . . . . 99

4.5.2 Optimal Algorithm-Hardware Approximation . . . . . . . . 105
4.5.3 Optimal FPGA-Aware Algorithm-Hardware Approximation 120

4.6 Summary of the Chapter . . . . . . . . . . . . . . . . . . . . . . . 125

Chapter 5 Parameter Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.3.1 Convolutional Neural Network (CNN) . . . . . . . . . . . . 134
5.3.2 Slices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.3.3 Code Vectors . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.4 Convolutional Slice Generator . . . . . . . . . . . . . . . . . . . . 135
5.4.1 The CSG Network . . . . . . . . . . . . . . . . . . . . . . 136
5.4.2 Training the CSG-Augmented Network . . . . . . . . . . . 136
5.4.3 Cardinality of the Code Vector Space . . . . . . . . . . . . 137
5.4.4 Training Convergence . . . . . . . . . . . . . . . . . . . . 139

5.5 Binarized Slice Generator (BSG) . . . . . . . . . . . . . . . . . . . 141
5.5.1 Binarization . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.5.2 Permutation . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.5.3 Bit-Level Manipulation . . . . . . . . . . . . . . . . . . . . 142

5.6 Accelerator Architecture for BSG-Augmented CNNs . . . . . . . . 143
5.6.1 Hardware Implementation of BSG . . . . . . . . . . . . . . 143
5.6.2 BSG-based Architectural Modification of Accelerators . . . 143

5.7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
5.7.1 CSG on CIFAR-10 Dataset . . . . . . . . . . . . . . . . . . 148
5.7.2 CSG on ImageNet-1000 (ILSVRC2012) Dataset . . . . . . 150
5.7.3 Training the CSG alongside the CNN . . . . . . . . . . . . 151
5.7.4 Using Pre-Trained CSG . . . . . . . . . . . . . . . . . . . 152
5.7.5 CSG for Semantic Segmentation Tasks . . . . . . . . . . . 152
5.7.6 Comparison of CSG with Related Methods . . . . . . . . . 153
5.7.7 BSG for Improved Inference on FPGA . . . . . . . . . . . 155

5.8 Summary of the Chapter . . . . . . . . . . . . . . . . . . . . . . . 161

Chapter 6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

viii



LIST OF FIGURES

Figure 1.1: The organization of this dissertation . . . . . . . . . . . . . . . . . . . . . 13

Figure 2.1: The hardware architecture of Bloom filter. . . . . . . . . . . . . . . . . . . 22
Figure 2.2: Function approximation using Bloom filters . . . . . . . . . . . . . . . . . 23
Figure 2.3: An illustration of a convolutional neural network. . . . . . . . . . . . . . . 29
Figure 2.4: The hit rate of exact pattern matching. . . . . . . . . . . . . . . . . . . . . 30
Figure 2.5: The hit rate of approximate pattern matching. . . . . . . . . . . . . . . . . 31
Figure 2.6: The implementation of approximate pattern matching. . . . . . . . . . . . 32
Figure 2.7: Energy consumption comparison of the proposed architecture using CMOS

BFs and conventional FU. . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 2.8: 1T-1R implementation of ReBF. . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 2.9: Total memory size vs frequency of computational reuse (hit rate) . . . . . . 36
Figure 2.10: Energy comparison of the proposed architecture using ReBFs and conven-

tional FUs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 2.11: Neural network accuracy loss due to approximate pattern matching. . . . . 41
Figure 2.12: Energy Savings under different matching mode. . . . . . . . . . . . . . . . 42

Figure 3.1: Fraction of activation input values that are negative. . . . . . . . . . . . . . 47
Figure 3.2: GoogLeNet [SLJ+15], in which the intermediate feature maps for two input

images are magnified. The ellipses on the intermediate feature maps highlight
the varying spatial distribution of non-zero values for distinct input images. 48

Figure 3.3: Software workflow for SnaPEA. . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 3.4: A 1×3 convolution in (a) unaltered (b) exact, and (c) predictive modes. In

the latter two, the weights and their corresponding inputs are reordered. The
white boxes highlight the operations that are cut. . . . . . . . . . . . . . . 55

Figure 3.5: (a) The unaltered 3D convolution where all the MAC operations (bubbles)
are carried out. (b) The same convolution with SnaPEA, where a significant
number of operations are eliminated, delineated by the white bubbles. . . . 56

Figure 3.6: (a) The overall structure of the SnaPEA architecture and its multilevel mem-
ory hierarchy. (b) The micro-architecture of each PE. The weights are shared
across the compute lanes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Figure 3.7: Prediction Activation Unit (PAU). The Predict signal determines the PAU
operation mode (exact or predictive). The Terminate signal, once asserted,
terminates the computation early. . . . . . . . . . . . . . . . . . . . . . . 67

Figure 3.8: Overall (a) speedup and (b) energy reduction with exact mode. . . . . . . . 72
Figure 3.9: Overall (a) speedup and (b) energy reduction with SnaPEA over EYERISS

[CES16] in the predictive mode. The acceptable classification accuracy drop
is maintained within ≤3% range of its baseline value. . . . . . . . . . . . . 73

Figure 3.10: Speedup of convolutional layers in each network for the predictive mode
when the degradation in classification accuracy is set to ≤ 3%. . . . . . . . 74

Figure 3.11: Speedup for different levels of loss in the CNN classification accuracy. . . 75

ix



Figure 3.12: Sensitivity of speedup with SnaPEA over EYERISS to the number of compute
lanes per each PEs. The number of compute lanes per each PEs is altered by
different factors (acceptable classification accuracy drop ≤3%). . . . . . . 77

Figure 4.1: Overview of FPGA-based accelerator architecture with uniform quantization
and DRAM voltage for all layers. . . . . . . . . . . . . . . . . . . . . . . 93

Figure 4.2: CNN accelerator architecture to support non-uniform quantization and ap-
proximate main memory error . . . . . . . . . . . . . . . . . . . . . . . . 94

Figure 4.3: Energy consumption improvement of different approximate systems com-
pared to the baseline in executing Linear Regression training algorithm with
different number of features under different quality constraints. . . . . . . 101

Figure 4.4: Energy consumption improvement of different approximate systems com-
pared to the baseline in executing SVM training algorithm with different
number of features under different quality constraints. . . . . . . . . . . . 102

Figure 4.5: The learned Bit error rate and the number of bits of feature maps and weights
in ResNet-56 without fine-tuning the original network parameters. . . . . . 110

Figure 4.6: The learned bit error rate and the number of bits of IFMs/OFMs and weights
in ResNet-56 with fine-tuning the original network parameters. . . . . . . . 111

Figure 4.7: The learned bit error rate and the number of bits of feature maps and weights
in ResNet-110 without fine-tuning the original network parameters. . . . . 112

Figure 4.8: The learned number of bits for the fractional part of quantized feature maps
and weights in different filters of layers 2-19 of ResNet-56 without fine-
tuning the original network parameters. . . . . . . . . . . . . . . . . . . . 113

Figure 4.9: The learned number of bits for the fractional part of quantized feature maps
and weights in different filters of layers 44-49 of ResNet-56 without fine-
tuning the original network parameters. . . . . . . . . . . . . . . . . . . . 114

Figure 4.10: The learned bit error rate of feature maps and weights in different layers
of ResNet-56 without fine-tuning of the original model parameters with
filter-wise approximation setting. . . . . . . . . . . . . . . . . . . . . . . 115

Figure 4.11: The learned number of bits for the feature maps and weights for ResNet-56
without fine-tuning of the original model parameters when the only source of
error is quantization with layer-wise approximation setting. . . . . . . . . . 118

Figure 4.12: Estimated energy (µJ) of DRAM accesses for various models under various
configurations. Nominal baseline voltage for DRAM is 1.5V. . . . . . . . . 119

Figure 4.13: Bit error rate and the number of bits for the mantissa of feature maps
(IFMs/OFMs) and weights represented in BFloat format in ResNet-56 learned
by platform-aware algorithm-hardware approximation process. . . . . . . . 123

Figure 4.14: Bit error rate and the number of bits for the mantissa of feature maps and
weights represented in BFloat format in ResNet-56 learned by platform-aware
algorithm-hardware approximation process. . . . . . . . . . . . . . . . . . 124

Figure 5.1: Generation of a regular-shaped but approximate set of filters from the con-
catenation of slices through Convolutional Slice Generator. . . . . . . . . . 130

x



Figure 5.2: a) The hardware implementation of BSG and b) the BSG-augmented acceler-
ator architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Figure 5.3: Training and test error for DenseNet-BC-40-48, DenseNet-BC-40-36 and
their CSG-augmented versions on CIFAR-10 dataset. . . . . . . . . . . . . 147

Figure 5.4: Training and test error for the ResNet-56 and its CSG-augmented versions. 150
Figure 5.5: Training and test error for MobileNet V2 (CIFAR version) and its CSG-

augmented version. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Figure 5.6: Training and test error for ShuffleNet V2 (0.5x) (CIFAR Version) and its

CSG-augmented version. . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Figure 5.7: Train and validation errors of ResNet-50-CSG-[16,16,3,3]-128, and ResNet-

101-CSG-[16,16,3,3]-128 on ImageNet dataset. . . . . . . . . . . . . . . . 153

xi



LIST OF TABLES

Table 1.1: Various CNN models for ImageNet-1K dataset and their number of parameters,
MAC operations for classifying a single input image, and their Top-1 and
Top-5 classification accuracies. . . . . . . . . . . . . . . . . . . . . . . . . 4

Table 2.1: Maximum Acceptable Error Rate and Output PSNR . . . . . . . . . . . . . 27
Table 2.2: Energy consumption Comparison of resistive Bloom vector in ReBF and

CMOS Bloom vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 2.3: Optimum ReBF configuration for different applications . . . . . . . . . . . 38
Table 2.4: Total energy consumption (fJ) of CMOS components in ReBF, Hash functions,

output registers, and decoder for FUs in different applications . . . . . . . . 39
Table 2.5: Energy savings and neural network accuracy across different BF settings. . . 42

Table 3.1: Workloads, their released year, model size, number of convolution and fully-
connected layers, and baseline classification accuracy. . . . . . . . . . . . . 69

Table 3.2: SnaPEA and EYERISS design parameters and area breakdown. . . . . . . . 69
Table 3.3: Absolute and relative energy comparison for different components of SnaPEA

architecture along with off-chip memory access energy cost. . . . . . . . . . 71
Table 3.4: The percentage of convolution layers operating in the predictive mode, and

their average speedup and energy reduction when classification accuracy drop
is set to ≤ 3%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Table 3.5: True negative and false negative rate in predictive mode when classification
accuracy drop is set to ≤ 3%. . . . . . . . . . . . . . . . . . . . . . . . . . 76

Table 4.1: Energy-error of approximate units extracted from [LPMZ11, AKAKP17,
VKAKP17] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Table 4.2: Number of error parameters, adders and multipliers, and the quality loss on the
validation dataset for Linear Regression and Support Vector Machine learning
algorithms with different number of input features . . . . . . . . . . . . . . 103

Table 4.3: Energy consumption of adders, multipliers and refreshing DRAM of Linear
Regression in the exact and approximate modes with quality loss of 5%. . . 105

Table 4.4: CNN model size, original model accuracy, and accuracy of the models with
the approximate configurations at layer-wise granularity without fine-tuning
the original model parameters. . . . . . . . . . . . . . . . . . . . . . . . . 108

Table 4.5: Accuracy obtained for ResNet-56 in various settings: layer-wise approxi-
mation with fine-tuning, filter-wise approximation without fine-tuning, and
layer-wise approximation quantization only . . . . . . . . . . . . . . . . . 110

Table 4.6: Error model (percentage of beats that are erroneous) in approximate DRAM
units under various voltage levels obtained from [CYG+17] . . . . . . . . 117

Table 4.7: The estimated coefficients α and β in Problem 4.2. to model the required
number of LUTs and FFs for different number of MAC units based on the
required resources for 16 MACs . . . . . . . . . . . . . . . . . . . . . . . 122

xii



Table 4.8: On-chip energy consumption, energy improvement of DRAM accesses and
resource utilization on a Xilinx Zynq-7000 series FPGA for original ResNet-
56 and platform-aware quantization and approximate DRAM settings. . . . 125

Table 5.1: Training results of CSG on CIFAR-10 dataset with similar hyperparameters
as original models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Table 5.2: Training results of CSG on ImageNet-1000 (ILSVRC2012) dataset. . . . . . 152
Table 5.3: Results of CSG for semantic segmentation on Pascal VOC 2012 validation

dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Table 5.4: Comparison of various compression techniques with CSG method on CIFAR-

10 dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Table 5.5: Accuracy and the model size of ResNet-56 and its BSG augmented version

for different sizes of code vectors (nc) . . . . . . . . . . . . . . . . . . . . 157
Table 5.6: Latency, on-chip energy consumption, energy improvement of DRAM ac-

cesses and resource utilization on a Xilinx Zynq-7000 series FPGA for BSG-
augmented ResNet-56 compared to the original model. . . . . . . . . . . . 158

Table 5.7: Accuracy and the model size of MobileNetV2 and its BSG augmented version
for different sizes of code vectors . . . . . . . . . . . . . . . . . . . . . . . 159

Table 5.8: Latency, on-chip energy consumption, energy improvement of DRAM ac-
cesses and resource utilization on a Xilinx Zynq-7000 series FPGA for BSG-
augmented MobileNetV2 compared to the original model. . . . . . . . . . . 160

xiii



ACKNOWLEDGEMENTS

This dissertation would not have been possible without the encouragement, guidance and

support from many people throughout my academic study.

First and foremost, I would like to express my greatest appreciation to my Ph.D. advisor,

Professor Rajesh K. Gupta, for providing me an opportunity to join University of California

San Diego and his research group, where I could follow a new path for research and enjoy the

beautiful city of San Diego. His great leadership and vision enabled me to choose an exciting

research area and explore it enthusiastically during my PhD program. His expertise, guidance

and continuous support helped me shape my Ph.D. dissertation as well as my future path.

I am deeply grateful to my co-advisor, Professor Hadi Esmaeilzadeh, for sharing his

knowledge in computer architecture and providing opportunities to explore practical aspects of

my research area that significantly helped broaden my perspective. I would also like to thank

Professor Sicun Gao, one of my committee members, whose expertise in optimized automation

notably aided in the introduction of a new way for systematic hardware design. I would like to

thank my other committee members, Professor Gert Cauwenberghs and Professor Ryan Kastner,

for their feedback and suggestions, without which, I would not have expanded my research from

different perspectives. Moreover, I am thankful to Professor Massimo Franceschetti and Professor

Hao Su, who kindly accepted to collaborate and shared their valuable ideas and feedback.

In addition to professors at UCSD, I am greatly thankful to Professor Zainalabedin Navabi

and Professor Ali Afzali-Kusha, who not only taught me research skills and fundamental concepts

in digital systems while studying for my Bachelor’s and Master’s degrees at University of Tehran,

their efforts to instill confidence in their students including me to think big and pursue their own

ideas were also commendable.

I was highly fortunate to be surrounded by past and current members of the Microelec-

tronic Embedded Systems Laboratory (MESL) at UCSD, whose guidance, friendship, sense of

humor, and support made my Ph.D. program at UCSD enjoyable and unforgettable. I would like

xiv



to thank my colleagues in the MESL, Abbas Rahimi, Atieh Lotfi, Xun Jiao, Jeng-Hau Lin, Dezhi

Hong, Francesco Fraternali, Dhiman Sengupta, Sean Hamilton, Jason Koh, Omid Assare, Manish

Gupta, Zhou Fang, Ranak Roy Chowdhury, Muhammad Adnan, Bharathan Balaj and many more

who made me feel here home and my path brighter and easier.

Last but not least, I owe my deepest gratitude to my parents, Masoumeh Koosha and

Seyfollah Akhlaghi, for their unconditional love, dedication, wisdom, their belief in me and more

importantly for respecting my choice to study abroad. I would have not been able to stand at this

point in my life without their help, love, patience and support. I am also greatly indebted to my

sisters, Saeedeh Akhlaghi and Sepideh Akhlaghi, for always being there in the time of need with

love and for encouraging me to move forward. I would also like to extend my deepest gratitude

to my husband, Hamed Omidvar, who not only helped strengthen my dissertation through sharing

his mathematical insights and fundamental ideas, he has also supported me during challenging

times. His trust in me and his love for me have been helping me grow.

The material in this dissertation is based on the following publications.

Chapter 2 contains re-organized reprints of Vahideh Akhlaghi, Abbas Rahimi, and Rajesh

Gupta, “Resistive Bloom Filters: from Approximate Membership to Approximate Computing

with Bounded Errors”, In IEEE Design, Automation, and Test in Europe (DATE), 2016, of which

the dissertation author is the primary author, and Xun Jiao, Vahideh Akhlaghi, Yu Jiang, and

Rajesh Gupta, “Energy-Efficient Neural Networks using Approximate Computation Reuse”, In

IEEE Design, Automation, and Test in Europe (DATE), 2018, of which the dissertation author

is the co-author and primary investigator.

Chapter 3, in full, is a reprint of the material appeared in Vahideh Akhlaghi, Amir

Yazdanbakhsh, Kambiz Samadi, Rajesh Gupta, and Hadi Esmaeilzadeh, “Snapea: Predictive Early

Activation for Reducing Computation in Deep Convolutional Neural Networks”, In ACM/IEEE

International Symposium on Computer Architecture (ISCA), 2018. This dissertation author is the

primary author of the paper.

xv



Chapter 4, partly contains the materials of Vahideh Akhlaghi, Sicun Gao, and Rajesh

Gupta, “LEMAX: learning-based Energy Consumption Minimization in Approximate Computing

with Quality Guarantee”, In ACM/IEEE Design Automation Conference (DAC), 2018. In addition,

this chapter contains the unpublished materials co-authored by Vahideh Akhlaghi, Dezhi Hong,

Sicun Gao, Hadi Esmaeilzadeh and Rajesh K. Gupta. This dissertation author is the primary

author of the mentioned materials.

Chapter 5 contains the materials of Hamed Omidvar, Vahideh Akhlaghi, Hao Su, Massimo

Francescheti, and Rajesh K. Gupta, “Associative Convolutional Layers”, submitted for publication

in International Conference on Artificial Intelligence and Statistics (AISTATS), 2021, of which this

dissertation author is the co-author and the primary investigator and Vahideh Akhlaghi, Hamed

Omidvar, Massimo Francescheti, and Rajesh K. Gupta, “Parameter Approximation of CNNs

for Improved Inference on FPGA”, submitted for publication in Design Automation Conference

(DAC), 2021, of which this dissertation author is the primary author.

Finally, I would like to thank all my co-authors and collaborators (Abbas Rahimi, Xun

Jiao, Yu Jiang, Amir Yazdanbakhsh, Kambiz Samadi, Dezhi Hong, Hamed Omidvar, Massimo

Franceschetti, Hao Su, Sicun Gao, Hadi Esmaeilzadeh and Rajesh K. Gupta) who kindly approved

the inclusion of the aforementioned publications in my dissertation.

xvi



VITA

2007 B. S. in Computer Engineering (Hardware Engineering),
University of Tehran

2011 M. S. in Computer Engineering (Computer Architecture),
University of Tehran

2020 Ph. D. in Computer Science (Computer Engineering),
University of California San Diego

PUBLICATIONS

Vahideh Akhlaghi, Hamed Omidvar, Massimo Francescheti, and Rajesh K. Gupta, “Parameter
Approximation of CNNs for Improved Inference on FPGA”, submitted for publication in Design
Automation Conference (DAC), 2021.

Hamed Omidvar, Vahideh Akhlaghi, Hao Su, Massimo Francescheti, and Rajesh K. Gupta,
“Associative Convolutional Layers”, submitted for publication in International Conference on
Artificial Intelligence and Statistics (AISTATS), 2021.

Vahideh Akhlaghi, Sicun Gao, and Rajesh Gupta, “LEMAX: learning-based Energy Consumption
Minimization in Approximate Computing with Quality Guarantee”, in Proceedings of ACM/IEEE
Design Automation Conference (DAC), 2018.

Vahideh Akhlaghi*, Amir Yazdanbakhsh*, Kambiz Samadi, Rajesh Gupta, and Hadi Esmaeilzadeh,
“Snapea: Predictive Early Activation for Reducing Computation in Deep Convolutional Neural
Networks”, in Proceedings of ACM/IEEE International Symposium on Computer Architecture
(ISCA), 2018. (*equal contributions)

Xun Jiao, Vahideh Akhlaghi, Yu Jiang, and Rajesh Gupta, “Energy-Efficient Neural Networks
using Approximate Computation Reuse”, in Proceedings of IEEE Design, Automation, and Test
in Europe (DATE), 2018.

Vahideh Akhlaghi, Abbas Rahimi, and Rajesh Gupta, “Resistive Bloom Filters: from Approximate
Membership to Approximate Computing with Bounded Errors”, in Proceedings of IEEE Design,
Automation, and Test in Europe (DATE), 2016.

xvii



ABSTRACT OF THE DISSERTATION

Algorithm-Hardware Optimization of Deep Neural Networks for Edge Applications

by

Vahideh Akhlaghi

Doctor of Philosophy in Computer Science (Computer Engineering)

University of California San Diego, 2020

Professor Rajesh K. Gupta, Chair
Professor Hadi Esmaeilzadeh, Co-Chair

Deep Neural Network (DNN) models are now commonly used to automate and optimize

complicated tasks in various fields. For improved performance, models increasingly use more

processing layers and are frequently over-parameterized. Together these lead to tremendous

increases in their compute and memory demands. While these demands can be met in large-scale

and accelerated computing environments, they are simply out of reach for the embedded devices

seen at the edge of a network and near edge devices such as smart phones and etc. Yet, the

demand for moving these (recognition, decision) tasks to edge devices continues to grow for

increased localized processing to meet privacy, real-time data processing and decision making
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needs. Thus, DNNs continue to move towards the edges of the networks at ‘edge’ or ‘near-edge’

devices, even though a limited off-chip storage and on-chip memory and logic on the edge devices

prohibit the deployment and efficient computation of large yet highly-accurate models.

Existing solutions to alleviate such issues improve either the underlying algorithm of

these models to reduce their size and computational complexity or the underlying computing

architectures to provide efficient computing platforms for these algorithms. While these attempts

improve computational efficiency of these models, significant reductions are only possible through

optimization of both the algorithms and the hardware for DNNs.

In this dissertation, we focus on improving the computation cost of DNN models by

taking into account the algorithmic optimization opportunities in the models along with hardware

level optimization opportunities and limitations. The techniques proposed in this dissertation

lie in two categories: optimal reduction of computation precision and optimal elimination of

inessential computation and memory demands. Low precision but low-cost implementation of

highly frequent computation through low-cost probabilistic data structures is one of the proposed

techniques to reduce the computation cost of DNNs. To eliminate excessive computation that has

no more than minimal impact on the accuracy of these models, we propose a software-hardware

approach that detects and predicts the outputs of the costly layers with fewer operations. Further,

through the design of a machine learning based optimization framework, it has been shown that

optimal platform-aware precision reduction at both algorithmic and hardware levels minimizes

the computation cost while achieving acceptable accuracy. Finally, inspired by parameter redun-

dancy in over-parameterized models and the limitations of the hardware, reducing the number

of parameters of the models through a linear approximation of the parameters from a lower

dimensional space is the last approach proposed in this dissertation. We show how a collection

of these measures improve deployment of sophisticated DNN models on edge devices.
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Chapter 1

Introduction

Deep Neural Networks (DNNs) have expanded applications in various areas, including

but not limited to healthcare, education, cybersecurity, and climatology [LLZ+17, HRH+19,

AKX+19, OYSO17, SM19, CZZ19, FMJS19, YBU19]. To continuously fuel performance im-

provements, the size and computation complexities of DNNs are still increasing rapidly. Yet,

complex and powerful algorithms are placing high demands on the computing systems in terms

of latency and energy consumption. Furthermore, as implementation of these algorithms on the

edge and end devices is becoming commonplace due to extreme importance of data privacy and

real-time data processing and decision making, similar concerns are also relevant in this area

[MARAM18, LBG+15, WBC+19]. Therefore, to fully exploit the benefits of these algorithms

and increase their applicability, they are required to become less computationally complex and be

implemented efficiently in order to be executed with high speed and low energy consumption on

both large and small scale devices while providing high accuracy.

There exist several attempts to improve DNN models execution ,the majority of which

can be categorized in two major directions: lowering the computational complexities of these

models algorithms and designing efficient hardware architecture. However, in this dissertation,

we show that simultaneous consideration of opportunities in both models algorithms and hardware
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designs provides significant improvement and optimizes the state-of-the-art solutions without

unacceptable drop in the models accuracies. This dissertation provides a set of algorithm-hardware

optimization techniques to accelerate Convolutional Neural Networks (CNNs), as one of the

important DNN models that are extensively used in various applications such as image and video

recognition, recommender systems, and etc. These techniques can be applied on various DNN

models due to their algorithmic similarity. Before explaining the techniques, in this section, we

review CNN algorithms, their computation and memory demands, and the existing solutions to

improve the computation costs of these algorithms.

1.1 Background and Problem Definition

CNN algorithms automatically extract features from a given input image through a set of

layers, and depending on the application, the extracted features are being processed and used for

decision making, classification, recognition, and etc. To extract the features, CNNs consist of

various types of layers such as convolutional layers, batch normalization layers, activation layers,

pooling layers and fully connected layers. Compared to other types of layers, the computation and

memory demands of convolutional layers are relatively high (i.e., it accounts for more than 90%

of total computation and memory demand of the whole model [CES16, GPY+17, SPM+16].)

A convolutional layer is composed of a number of filters that are convolved with the input

of the layer called input feature maps with several dot-product operations and generate the output

called output feature maps. Equation 1.1 shows the mathematical formulation of a singe pixel in

the output feature maps Y generated by a a convolutional layer that has F filters and input feature

maps of X . The parameters corresponding to filters (i.e., the weights) are shown as a matrix W .

In this equation, s is the stride determining the overlap between the regions of the input called

receptive fields that each convolution operation is performed on, K the size of kernels in filters, C

the number of channels of the input feature maps, and D the number of rows (and columns) of
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the output feature maps.

Y [ f , i, j] =
C

∑
c=1

K

∑
k=1

K

∑
k=1

X [c][si+ k][s j+ k]×W [ f ][c][k][k]

0≤ f < F, 0≤ i, j < D

(1.1)

Equation 1.1 indicates several points. First, the main operation in the convolutional layers

is multiply-and-add (MAC) operations that is performed in a large quantity depending on values

of F , D, C, K. As we can see in the equation, total number of operations to generate all the output

feature maps in a single convolutional layer of a CNN with F filters is F×D2×C×K2, meaning

that the current trend of increasing the number of layers and deepening the convolutional layers

in CNNs to improve their accuracies results in performing copious number of MAC operations.

Second, total number of parameters in a single convolutional layers is F×C×K2, which similarly

indicates that large number of convolutional layers with a large number of filters in current highly

accurate CNN models results in tremendous number of parameters to be stored and accessed on

computing devices. According to these points, the computation of today’s CNN models mainly

due to the large number of MAC operations and large sizes of model parameters pushes the limits

of computing devices.

Table 1.1 summarizes various CNN models for the classification task on ImageNet-1K

[RDS+15] dataset with their corresponding number of parameters, the number of MAC operations

that are required to classify a single input image and their Top-1 and Top-5 accuracies. The

reported accuracies are obtained from [Tor30]. As we can see in the table, in CNN models with

similar architectures increasing the number of parameters and MAC operations leads to increase

in their classification accuracies. However, this is not the case across various model architectures.

For example, VGG-19 with batch normalization layers (VGG-19-w/BN in the table), although

consists of a considerably larger number of parameters and operations compared to ResNet-50,

ResNet-101 and ResNeXt architectures, both of its Top-1 and Top-5 accuracies are lower than

those models. In addition, comparing ResNeXt-50 (32×4d) and ResNet-50 indicates that only
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Table 1.1: Various CNN models for ImageNet-1K dataset and their number of parameters,
MAC operations for classifying a single input image, and their Top-1 and Top-5 classification
accuracies. The reported accuracies are obtained from [Tor30] except those of ResNeXt-
101(64×4d) marked by asterisks which are obtained from [XGD+17]. In networks with similar
structures, increasing the number of parameters and operations will improve the accuracies.

CNN Models #Parameters #MAC Operations Top-1 accuracy Top-5 accuracy

VGG-19-w/BN [SZ14] 144M 19.6B 74.4 91.9

MobileNet-V2 [SHZ+18] 3.4M 300M 71.9% 90.3%

ResNet-18 [HZRS16a] 11.1M 1.8B 69.8% 89.1%

ResNet-50 [HZRS16a] 25.6M 3.8B 76.2% 92.9%

ResNet-101 [HZRS16a] 44.7M 7.6B 77.4% 93.6%

ResNeXt-50(32x4d) [XGD+17] 25.6M 3.8B 77.6% 93.7%

ResNeXt-101(64x4d) [XGD+17] 79.8M 15.2B 79.6%* 94.7%*

re-structuring the original model (ResNet-50) without any additional parameters and operations

can result in improving the accuracy. Therefore, in general, Table 1.1 indicates that there are

opportunities in the model algorithm itself that can be exploited to improve the model accuracy

without the need to add extra parameters and operations.

In addition to opportunities in the model algorithms, another possible direction to improve

the model execution cost (i.e., energy consumption and latency) is to optimize hardware design

and architecture of underlying computing devices for these algorithms. Existing powerful

computing devices with tremendous computing capacities such as Graphics Processing Units

(GPUs), although are the main reason behind the advancement of highly accurate DNN models,

due to several reasons such as high cost, large energy consumption and area, they are not suitable

to be deployed in various range of devices especially in the edge and end devices. Therefore,

there is an imperative need to design low energy yet powerful computing devices that can execute

the CNN models efficiently without significant degradation of the model accuracy.

According to the mentioned needs and opportunities to improve the computational costs

of CNN models without degrading their accuracies to the unacceptable levels, in this dissertation,

we introduce a set of techniques, namely algorithm-hardware optimization techniques. These
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methods optimize the execution of the CNN models and advance the related state-of-the-art

methods by considering the optimization opportunities available both in the model algorithms

and their hardware implementations.

1.2 Related Works

To improve the computational costs of DNN algorithms, most of the existing techniques

mainly focus on optimizing either the computation in DNN models or the underlying computing

architectures. Here, we review some of these techniques in each category.

1.2.1 Algorithmic Optimization

To optimize the model computation and size, several techniques have been introduced

that can be categorized into four groups [CWZZ18]: network pruning, quantization, low rank

factorization, and transferred convolutions. Network pruning approaches reduce the network size

and computation by removing the unnecessary connections and operations in the DNN models

determined based on various metrics. In quantization based approaches, the computation precision

is reduced by lowering the bit-width of operations, weights and feature maps. The methods in

low-rank factorization category break down the convolutional layers into several smaller layers

by factorizing their weight matrices to low-rank ones, which leads to fewer number of parameters

and MAC operations. The last category of the methods to optimize DNN algorithms is transferred

convolutions in which a fraction of parameters are eliminated and their corresponding feature

maps are generated by a specific transformation of the outputs of the remaining parameters. In

the rest of this section, several methods in each category will be explained in more details.
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Network Pruning

One of the common techniques to reduce the computation and memory demands of a DNN

model is pruning in which unimportant parameters and operations are identified and removed.

One set of approaches to identify unimportant parameters and operations is based on the

magnitude of the weights that eliminates the neurons corresponding to the weights with small

magnitude. An example of such methods is biased weight decay [HP89] which includes the

weight decay term in the weight update process during the backpropagation in order to make

the unimportant weights approach zero and be removed automatically. Another method in this

category is introduced in [HPTD15b] that prunes the parameters and the related operations of the

pre-trained models by removing their small magnitude weights.

Optimal Brain Damage (OBD) [CDS90] and Optimal Brain Surgeon (OBS) [HSW93] are

another set of pruning approaches that eliminate the weights according to their impact on the loss

function rather than their magnitude. These methods are built upon measuring the changes in the

loss function as a result of deleting a weight and removing the weights with small impact on the

loss. To measure the impact of weights on the loss function, the Taylor series of the change in the

loss function is represented as a function of perturbation of the weights and a set of coefficients

that can be obtained by the Hessian matrix at the end of training.

Despite the effectiveness of the mentioned approaches in reducing the model size and

computation, due to irregular sparsity which leads to irregular computation patterns, their final

impact on the execution costs is not optimal. To avoid this issue, finding structured sparse models

in which a set of regular computational blocks in the original model (e.g., a number of filters

in a convolutional layer of a CNN model) are removed are another technique in pruning DNN

networks proposed in [WWW+16]. The technique learns the structured sparse models by adding

a group lasso of a set of weights into the loss function and using the regularization technique to

make all the weights in a group zero.
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Quantization

Lowering the numerical precision of computation through lowering the bit-width of pa-

rameters and feature maps, namely quantization, is another common effective approach to reduce

the computation and memory demands of DNN models. In general, the computation in DNN

models is performed in 32-bits floating point format (FP-32), which imposes high computational

and memory burden on computing devices due to performing high-cost floating point MAC

operations and transferring large sizes of data across the memory hierarchy, especially for large

models with a large number of operations. To reduce the cost, quantizing the values of parameters

and feature maps to a numerical format with lower bit-width is commonplace; however, due to

reduced precision the final accuracy of the quantized models may be degraded in some cases.

Here, we review some of the quantization methods available in the literature and their impact

on the model accuracies.

Representing the values in fixed point format with less than 32 bits during the inference

phase is one of the common quantization method, which requires significantly lower cost computa-

tion compared to computation in 32-bit floating point format. [GMG16] uses dynamic fixed point

values in which the model parameters and feature maps are quantized to different bit-width due to

the different ranges of their values. To recover the resulting accuracy degradation due to quantiza-

tion, the under-studied models are fine-tuned (with the floating point format in back-propagation

stage) until the final accuracy drop remains within 1%. Quantizing the values to integer format

is another approach that is studied in [JKC+18], which quantizes the network parameters and

feature maps to 8-bits integer values during the inference while during training the models, in

the backpropagation pass floating point format is used and in the forward pass, the impact of

quantization is computed. This method, although reduces the computation overhead, it drops the

accuracy significantly (2% accuracy drop for ResNet models on ImageNet-1K are reported.)

Although quantization is more common in the inference phase of DNN algorithms, there

exists some work that quantize the computed gradients and the model parameters and feature
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maps during DNNs’ training as well. Binarized Neural Networks (BNNs) [HCS+16] and XNOR-

Nets [RORF16] binarize the weights and feature maps, and Quantized Neural Networks (QNNs)

[HCS+17] quantizes them to more than 1-bits during both inference and training phases. In

addition, in XNOR-Net and QNN, the impact of binarizing/quantizing the gradients on the model

accuracy are also studied. The accuracies obtained by all these methods indicates that excessive

quantization, especially in training phase, can lead to significant reduction in the model’s accuracy.

In addition, most of these methods require elaborate modifications to the model and its training

and inference phases and hence are not always easy to implement.

Low-Rank Factorization

Low-rank factorization methods aim to reduce the number of operations and parameters

of a DNN by breaking down a matrix multiplication in fully connected layers or convolutional

layers into several smaller matrix multiplications that have lower rank, thus lower number of

parameters and operations.

To be more specific, let’s go back to the operations in a convolutional layer discussed in

Section 1.1 with a parameter matrix of W with the dimension of F×C×K×K and the input

feature maps as a matrix X with the dimension of C×Din×Din. In general, the convolution of W

and X in the convolutional layer can be formulated as follows:

Yf =Wf ∗X ∀ f ∈ {1,2, ...,F} (1.2)

where Wf and Yf is the parameters of filter f and its the corresponding output feature maps,

respectively. Here, the dimension of Wf is C×K×K.

In low-rank factorization approaches, the parameter matrix of Wf corresponding to filter f

is broken down into several low-rank matrices called separable filters [RSLF13] in different ways.

One way upon which filter decomposition approaches in [TXZ+15] and [JVZ14] are built is to
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represent the parameter matrix of a filter f (Wf ) as a sum of R matrix multiplications between

a set of horizontal and vertical matrices H f and V with rank R (i.e., Wf = ∑
r=R
r=1 Hr

f (Vr)
T ). The

matrix H f consists of R horizontal kernels of shape 1×K and the matrix V consists of R vertical

filters of shape C×K×1. Therefore, the corresponding convolution in equation 1.2 is broken

down into two convolutions according to the following equation:

Yf =Wf ∗X =
r=R

∑
r=1

Hr
f ∗ (Vr ∗X) (1.3)

Here, in this method the main challenge is to find the horizontal and vertical matrices

to represent the parameters of a convolutional layer. In [TXZ+15], such matrices are obtained

by computing the Singular Value Decomposition (SVD) of the weight matrix of a layer. To

minimize the error of this decomposition, SVD decomposition is added in the forward pass of

training a CNN model by breaking down the weights in the forward pass and back-propagating

the corresponding error and updating the weights in the backward pass. This method due to

computing SVD during training of CNNs results in high training cost; the inference phase,

however, due to performing smaller convolutions is more efficient compared to the original model.

Another approach to find such breakdown is introduced in [JVZ14], which proposes to learn

the H and V matrices by defining a new objective function that reflects the approximation error

as a difference between the original weights in a pre-trained model and approximated weights

obtained by multiplications of H and V and learns these matrices such that the objective function

(i.e., the approximation error) is minimized.

Another way of decomposing filters into the low-rank ones is to break them down into

depth-wise and point-wise filters, which is a common method widely used for designing a small

network for embedded devices such as MobileNet models [HZC+17]. Depth-wise and point-wise

separable filtersare a decomposition of matrix W with a shape of F×C×K×K into C separate

1×K×K depth-wise filters, which are convolved with feature maps in each channel of the input
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feature maps X separately and F point-wise separable filters with the shape of C×1×1, which

are convolved with the results of depth-wise filters.

Transferred Convolutions

Transferred convolutions are one of the interesting methods that compact a network by

allowing high degree of weight sharing inspired by the translation symmetry existing in most

of the perception tasks such as the tasks in computer vision [CW16]. Translation symmetry is a

property that means data labels and distributions are invariant to shifts. By this property, shifting

an image and feeding it to a network generate the same results as feeding the image to the network

and shifting the outputs. This characteristic is held in all the layers of a CNN as well as in the first

layer. Therefore, the output feature maps of a layer can be constructed by feeding a part of input

feature maps to a layer and constructing the rest through a transformation function, which can

help to share and reuse the weights to a large extent. More specifically, transferred convolutions

compact the parameters of a model and reduce the operations by specifying a set of base filters,

computing the corresponding feature maps and constructing the rest of the feature maps by spatial

repetition of the feature maps obtained by the base filters.

An example of such approach is CReLU [SSAL16], which reduces the computation and

parameters by 2× through constructing half of the feature maps in each convolution layer as the

opposite of the other half. Another method to transfer convolutions is called G-CNN introduced

in [CW16] that reduces the computation and the size of parameters by rotating a fraction of

the feature maps obtained by a set of base filters, which in size is a fraction of the number of

parameters in the original model to construct all the feature maps. In these methods, although the

size of feature maps remains the same as the original models, the number of MAC operations

and parameters are reduced. Depending on the compression ratios, the accuracy of the models is

degraded by up to 3% of the original models.
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1.2.2 Hardware Optimization

The next set of existing solutions to improve the execution cost of DNN algorithms is

designing specialized hardware architectures optimized for these algorithms. In these solutions the

model computation is not modified and only the hardware is optimized to perform the computation

efficiently. Here, in this section, we review some of the main architectures developed in academia

and industry with the goal of improving the performance and energy consumption of the DNN

models.

Due to high computing capacity of GPUs, especially with the added tensor cores along

with CUDA cores, and high degree of parallelization, these computing devices are the main

computing platforms for training large neural networks. However, due to their large size, high

cost, high energy consumption and inefficient processing of single input, GPUs are a poor

fit for inference especially on edge and end devices with limited area, memory and energy

budget, where efficient processing of single input matters most. To improve the inference

performance and cost, many ASIC or FPGA based specialized architectures are introduced

[LCL+15, ZLS+15, XYP+17, AJH+16, CES16, JYP+17, FOP+18].

PuDiannao [LCL+15] is one of the ML accelerators that executes various types of ML

algorithms and tasks such as classification, regression and clustering. This ASIC accelerator

implements a general ML functional unit that supports various computation types used in ML

algorithms such as dot-product, sorting, and etc along with various types of on-chip buffers to

factor in various locality properties of ML algorithms and maximize reusability of on-chip data.

[ZLS+15] introduces an analytical method to optimize resource and bandwidth utilization

on an FPGA platform to maximize the performance. It quantitatively analyzes the computation

throughput and memory bandwidth for a CNN design with various optimization methods such as

loop tiling and chooses the design with maximum performance and lowest resource requirements.

In addition, [XYP+17] focuses on designing a high-performance FPGA accelerator for CNNs

using systolic arrays with a number of PEs. To achieve such design, it proposes an automatic
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design space exploration framework that selects the best mapping of operations onto the systolic

array to feed proper data to each PE location, the best PE array shape to maximize DSP efficiency,

and a proper tiling size to maximize on-chip data reusability.

Cnvlutin [AJH+16] is another design that eliminates multiplication of the zero operands

by grouping the lanes and allowing them to execute operations independently while skipping

zero values multiplications. It also introduces a data storage format that encodes the elimination

decision and controls the lanes.

Another ASIC accelerator design is called Eyeriss [CES16], which is a spatial architecture

consisting of a global buffer and an array of processing elements (PEs). Each PE is made up of sev-

eral MAC units and local registers and connected to other PEs with a Network on Chip (NoC). The

entire operations of a convolutional layer are parallelized on PEs based on a novel dataflow called

Row Stationary (RS). RS dataflow maximizes reusability of both feature maps and weights through

sharing a set of filters horizontally and a set of feature maps diagonally across the PEs in the PE ar-

ray, which leads to reduced data movement across various memory units and energy consumption.

In addition, Google in [JYP+17] introduces an ASIC architecture called Tensor Processing

Units (TPU), which is hard-wired for parallelizing MAC operations in a matrix-matrix multiplica-

tions through a systolic array of 256×256 MAC units. Despite achieving high performance for

a batch of dense layers in DNN models, this design suffers from resource under-utilization for

processing a single input.

To efficiently serve single requests, Microsoft introduces a new FPGA based architecture

called Brainwave [FOP+18], which instead of parallelizing operations in a matrix-matrix multipli-

cation, parallelizes operations in matrix-vector (MV) multiplications and constructs matrix-matrix

multiplications through MV multiplications. To parallelize operations in convolutional layers,

Brainwave employs a set of tile engines, each performing a native-sized MV multiplications and

accumulates the results of all tile engines by a set of accumulators.

In addition to the mentioned 2D architectures, the challenges of designing CNN accelera-
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Figure 1.1: The organization of this dissertation

tors in 3D-stacked logic-in-memory computing systems are also studied in the literature and new

accelerators such as Neurocube [KKC+16] and TETRISS [GPY+17] are introduced.

1.3 Dissertation Contribution and Organization

As discussed in the previous section, existing solutions to reduce the execution costs of

DNN models in the literature mostly focus on optimizing either the underlying algorithms or

hardware architectures. Even though the execution cost of these models are improved with the

mentioned approaches, sometimes model accuracy is compromised and due to disregarding the

other end of the spectrum, maximum benefit is not achieved. Therefore, substantial improvement

without unacceptable accuracy degradation is still achievable by considering holistic optimization

opportunities. In this dissertation, we explore various approaches for providing such optimizations

to CNN accelerators. The organization of this dissertation is summarized in Figure 1.1.
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In general, the methods presented in this dissertation are inspired by the fact that due to

several reasons such as the algorithmic structures of DNNs, i.e., pooling and activation layers

in their algorithms and specific functions at the end of their networks to make final decision

based on the underlying task (e.g., softmax for classification), over-parameterization and repeated

operations on similar inputs these models are error-tolerant. Therefore, approximate computation

of models algorithms with less precise and a decreased number of parameters and operations

along with efficient hardware architecture designs to support these approximate computation can

lead to lower execution cost while achieving an acceptable accuracy. This dissertation exploits

this characteristics and proposes several algorithm-hardware optimization approaches.

First, due to similarity of data and parameters in various CNN models, highly frequent pat-

terns (approximate patterns) can be observed on the inputs (on a part) of inputs of MAC operations

in their convolutional layers. Motivated by this observation, we propose an optimization approach

at their algorithmic level by which the computed outputs for the matching patterns are reused

in order to reduce the number of heavy MAC operations. A proper selection of these patterns (or

approximate patterns) can achieve acceptable accuracy while lowering the cost. We optimize the

hardware architecture as well for efficient implementation of this computation reuse by exploiting

a low-cost data structure to memorize frequent patterns and match approximate patterns. Chapter

2 provides the detailed description of this algorithm-hardware optimization approach.

Second, due to the algorithmic structure of CNN models in which compute-heavy convolu-

tional layers are followed by the activation layers, thus a specific range of their outputs are mapped

to a predetermined set of values, a large number of the convolution outputs are not required to be

thoroughly computed. Therefore, to reduce the number of MAC operations and memory accesses,

we propose to dynamically identify and prune a large number of unnecessary MAC operations

by speculating the range of convolutional outputs that are bounded by the activation functions

with a fewer number of operations. To support such dynamic pruning at the hardware level, we

design a low-cost hardware architecture with a slight modification of the prevailing accelerator
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architectures. This technique, called SnaPEA, is explained in more detail in Chapter 3.

Third, tolerance of DNN models to low precision computation and hardware units, non-

uniform impact of imprecise computation in various layers/filters on the model output and

different architecture designs and resource constraints in different underlying computing platforms

are the motivation behind our proposed approach in chapter 4, where we propose platform-

aware algorithm-hardware approximation of various layers/filters of a CNN model in order

to maximize speedup and energy saving. Due to a large design space, we propose a novel

machine learning based optimization framework for automatic and quick exploration and selection

of proper approximate version of computation in DNN algorithms and proper approximate

hardware configurations to implement various layers/filters by taking the resource constraints of

the underlying computing platform into consideration.

As the final approach, in chapter 5, to reduce the model size that helps to improve the

inference cost by reducing the off-chip memory accesses and the training cost, especially in

distributed and federated learning, by reducing the communication overhead (i.e., to transfer

gradients of parameters among devices), we provide a plug-and-play solution that generates

the model parameters from a lower dimensional space with a linear transformation. For further

parameter reduction, this method mainly exploits the associativity between convolutional layers

and generates all the parameters through a set of fewer auxiliary parameters that is shared among

all layers. Given the limited energy of edge devices, we further optimize this approach in order

to provide low energy inference on edge through representation and reconstruction of models

parameters with binary parameters and operations.

Finally, chapter 6 concludes this dissertation.
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Chapter 2

Hardware Efficient Function

Approximation

Current hardware implementations of neural networks exhibit high energy consumption

due to the intensive computing workloads. The problem exacerbates, especially, when these

models are executed on massively parallel architectures such as GPUs, which bring large-scale

computations on a single device at the expense of significant energy consumption. Inspired by

highly repetitive patterns on costly operations observed in the computation of these models, we

provide an energy efficient implementation of these models through proposing a novel function

approximation. We provide an energy efficient yet controllable function approximation using

the probabilistic membership provided by Bloom filters (BF). A set of BFs is integrated into the

functional units (FU) to store and detect frequent patterns for computational reuse. Depending on

the applications, the computation reuse can be expanded through approximate pattern matching

that detect frequent patterns on narrow precision data. Our approach has the ability to control

the error behavior of a target function, hence the output quality, at the design time with the

aid of controllable false positives (FP) available in the structure of the BF.We further lower

energy consumption by designing a resistive Bloom filter (ReBF) using memristor array. Our
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experimental results show that for Convolutional Neural Networks, the BFs enable 47.5% energy

saving of multiplication operations, while incurring only 1% accuracy drop. While the actual

savings will vary depending upon the extent of approximation and reuse, this work presents a

method for reducing computing workloads and improving energy efficiency.

2.1 Introduction

Recent advances in neural networks have achieved impressive performance on vari-

ous application domains such as medical diagnostics [YJZ+06], image classification [KSH12],

speech recognition [HDY+12], and natural language processing [CWB+11]. The continued

success of neural networks has led to their implementation on a variety of hardware platforms

[CLL+14][HAM07][CDS+14a]. Energy consumption is an important metric for their implemen-

tation in increasingly broad range of computing platforms. Arithmetic operations and memory

accesses constitute a significant source of energy consumption in deep learning accelerators. We

focus here on reducing the computational workloads in neural networks.

In recent literature, computational workloads have been addressed by using approxima-

tions in computations thus creating a tradeoff between accuracy and energy [DLC+15][MSS+16].

The approximations can be made both in hardware or in software. For instance, approximate

computation units have been shown to have better energy efficiency than the exact ones [JLL+17].

Neural network computations are dominated by additions and multiplications. Due to their cost

and latency, multiplications have been a natural target for optimization in hardware. For instance,

in [DLC+15], the authors substitute the normal multipliers with inexact multipliers that provide

inexact logic but with less hardware cost. Mrazek et al. further optimize approximate multiplier

design with a uniform structure suitable for hardware implementation [MSS+16]. While the

adaptability of neural networks in its applications is naturally suited to use approximation, in

practice it also requires retraining the network to mitigate accuracy loss caused by logic errors
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from inexact design. Moreover, once the design has been physically implemented in hardware, it

is not possible to reconfigure the design to control the approximation level entirely in hardware.

To overcome above-mentioned limitations, we propose using a reconfigurable and con-

trollable approximation technique in neural networks by exploiting the computation reuse op-

portunities. Computation reuse has been adopted in various applications where value locality and

similarity are observed [RGLM+14]. To enable computation reuse, we provide tight integration of

Bloom filters (BFs) into the computation units in hardware, a data structure that supports approx-

imate set membership queries with a tunable rate of errors to store frequent computation patterns

and return the results without actual execution of energy-intensive float point units (FPUs).

To ensure effectiveness of computation reuse using Bloom Filters, we use a set of tech-

niques. First, we perform approximate pattern matching instead of exact pattern matching in

neural networks. This is done in the context of arithmetic operations on floating point numbers.

We thus explore matching operations under limited precision of operands. This is done via a

reconfigurable BF architecture that can do approximate pattern matching with hashing for data

items that feature varying bit width. Second, we perform layer-based pattern matching instead of

global pattern matching. That is, we detect and store different set of input patterns for each layer

separately. The reason is that in neural networks, each layer has its own set of functions thus may

experience different input workloads. Accordingly, we configure BFs for each layer separately.

Third, we implement the BFs with resistive memory elements to provide energy efficient storage

for saving the frequently used patterns. Based on our implementation and evaluation, we make

the following contributions:

• We design BFs to generate an approximate function with a guaranteed error bound. Hence,

a set of BFs is tightly-coupled to individual functional unit (FU). This set of BFs approx-

imately represents highly frequent computations of the associated FU. Each BF reports

no false negatives (i.e., recall rate of 100%), and has a tunable parameter to control false

positives.

18



• We explore and use computation reuse opportunities in multiplication operations of neural

networks and enhance them with layer-based approximate pattern matching.

• We design a reconfigurable Bloom filter unit that can perform approximate pattern matching,

increasing the computation reuse opportunities while leading to a controllable approxima-

tion level for neural networks.

• To further lower energy consumption and enable scalability, we utilize low-power memristor

array in designing resistive Bloom filter (ReBF).

• We demonstrate the effectiveness of the approximate BFs by reducing 47.5% energy con-

sumption of multiplication operations of LeNet CNN used for MNIST dataset in 45nm

technology while incurring only 1% accuracy degradation. To show the possibility of using

this approach for other applications and reduce GPUs energy consuption, we integrate ReBF

into the Southern Islands GPU and simulate five image processing kernels on it. Caltech 101

computer vision data set [Cal] is used for profiling and finding the error bounds. The exper-

imental results show that five image processing applications save on average, 24.1% energy

consumption when we exploit ReBFs to represent their partial functionality along with FUs.

2.2 Related Work

For the purpose of improving energy consumption by accepting erroneous computa-

tions, several circuit and architecture techniques including voltage overscaling (VOS), and hard-

ware approximation are proposed [RVPR13], [KK12], [GMRR13], [GMP+11]. For instance,

[RVPR13] presents a synthesis methodology to allow further VOS beyond the critical points.

Another set of typical approaches are based on the use of inexact designs to replace

normal computation units. Approximate adders are introduced by reducing circuit complexity

[GMRR13, GMP+11]. Low power imprecise floating point arithmetic units for GPUs are pre-
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sented in [ZPL14]. For energy efficient implementation of neural networks, Venkataramani et al.

evaluates the impact of different neurons on neural network accuracy and selectively approximate

the less-critical neurons with dynamically configurable accuracies [VRRR14]. A Similar work

[ZWT+15] replaces less-critical neurons with approximate ones and skip some neuron operations.

These two works focus on finding the opportunities for approximate computing without signif-

icantly degrading the accuracy. Du et al. proposed an inexact multiplier design using an inexact

logic minimization method, and emphasizes the need to approximate multipliers rather than

adders. A hardware optimization approach was proposed in [MSS+16] to design multipliers in a

uniform way that suits physical VLSI implementation. Although these techniques offer significant

energy saving, they cannot control the erroneous behavior for unseen inputs. These techniques

typically consider a specific set of input patterns to design approximate hardware/circuit, hence

they cannot guarantee error bounds for all data set. To increase the effectiveness of approximate

methods in practice, efficient approaches with guarantee on error bounds are necessary.

BFs are among the data structures that can provide compact and efficient representation

of a set of values with bounded error rate. BFs are used extensively to keep track of incoming

data and states of flows in network applications [BMP+06], [DKSL03]. For instance, data

structures using both Bloom filters and hash tables are presented to concurrently track network

flows [BMP+06]. Another work provides hardware-based solution to find packets containing

predefined signatures [DKSL03]. Multiple BFs with a set of signatures are used to parallelize

search operations [DKSL03]. The hardware implementation of these techniques are expensive

since they strive to return an exact value by performing one-to-one mapping between inputs and

outputs, leading to large BFs.

This work provides an innovative use of fast parallel lookups to significantly enhance the

space of pre-computed results table through functional approximations. We employ a set of BFs

to approximately represent few output values of a function which occur frequently. Performing

such many-to-few mapping using BFs imposes errors on the function outputs; however, we have

20



the opportunity to bound the error rates by adjusting the false positives (FP) rate of BFs. To

further lower the energy cost, we design resistive BFs exploiting low-power memristor elements.

A common approach for approximate computation reuse provided in the literature is

based on using content addressable memory (CAM). Rahimi et al. uses content addressable

memory (CAM) to perform computation reuse in GPU and perform voltage scaling on CAM to

enable approximate pattern matching within a specified hamming distance [RGLM+14][IPK+17].

However, such approximate pattern match is hard to control because the bit mismatches could

also occur in the exponent field.

In summary, our work differs from the previous works in two aspects: 1) We propose

the first approximate Bloom filters to exploit and enhance the computation reuse opportunities.

Such BF design can enable a reconfigurable as well as a controllable approximation by match-

ing patterns with specific bit positions. 2) This approach does not require retraining and the

approximation level can be tuned to satisfy the accuracy constraints.

2.3 Function Approximation with Bloom Filters

2.3.1 Bloom Filters (BFs)

BFs provide a compact representation of a set of elements. A BF consists of an m-bit

vector which is programmed using k random hash functions. For a given element, k bits of the

Bloom vector, selected by the k hash functions, are set in the programming stage. For a look up

process, the same hash functions are computed on an input pattern, the membership of which, is

queried. If the k bits in the vector determined by k hash values are all set, the input pattern is said

to be present in the BF. Since those k values may also be obtained by any of actual members, the

presence of an input pattern in the BF may be confirmed erroneously. On the other hand, if at

least one of the k bits is not set, the input is certainly not the member of the BF. This explains that

a BF has a recall rate of 100% and there is no false negative; however, it allows false positives
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Figure 2.1: The hardware architecture of Bloom filter.

(FP), the rate of which is formulated as:

f p = (1− e−
nk
m )k (2.1)

where, n is the number of patterns saved in the BF, m is the length of Bloom vector, and k

is the number of hash functions. False positive rate of a BF can be controlled by any of the

aforementioned parameters. For a given m/n ratio, FP rate can be reduced by increasing the

number of hash functions. In addition, the length of the vector (m) should be large enough to

ensure that the FP rate is small for a given number of elements saved in the BF.

The hardware implementation of the BF is represented in Figure 2.1. The Bloom vector is

shown as an m-bit array. For a look up operation, BF, at first, computes k hash functions (HF)
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Figure 2.2: Function approximation using Bloom filters

concurrently to produce k addresses. The input data is also split into the number of bytes to

parallelize the computations of each hash function. Each part of the computations in a HF is

performed on one byte of the data through HFB module. Each HFB is made of XOR gates, and a

number of coefficients, each has log2(m) bits. Coefficients are XORed if the corresponding bit of

the input is one. The last XOR gate in each HF produces the final address by XORing outputs of

HFBs. If all of the k bits of Bloom vector are one, hit occurs and the EnL signal becomes one.

2.3.2 Utilizing Bloom Filters for Function Approximation

In this section, we describe our proposed method for function approximation using

BFs to reduce energy. Our proposed method expands the probabilistic membership query to

function approximation. The method exploits value locality and similarity due to the presence of

redundancy in the input data and the nature of applications.

To avoid redundant computation overhead due to re-execution of an operation for the same

inputs, we identified highly frequent output values in the function co-domain and stored their

corresponding input patterns in a set of BFs, as shown in Figure 2.2. For example, input patterns
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of output value 1 in function domain are mapped to output value 1 in function co-domain through

Bloom filter out1. To perform a function for a given input, at first, the membership of the input

is queried in the BFs associated to the function. If a hit event occurs, the corresponding output

value is returned as the final output of the function, and all pipeline stages in the implementation

of the functional unit (FU) are clock-gated to save energy. As described in Section 2.3.1, positive

responses of the BF to the membership queries are not always correct due to the FP. The source

of error in our computation, is a FP event where the BF wrongly reports the output value as the

function output. Therefore, depending on the FP rate of the BF, the returned output values of

the FU for some input patterns are erroneous. Here, the rate of the error corresponds to the FP

rate, and can be controlled by tuning the parameters affecting the FP (i.e., n, m, k). In case of

a miss, the FU continues computing the results for the inputs, the memberships of which, are

not confirmed in the BF. Due to absence of the false negative in the structure of BFs, the exact

computation is performed for the mismatched input patterns. Based on the aforementioned details,

a set of BFs can be exploited to approximate partial outputs of a function with the bounded

errors that provide guaranteed quality. The output quality, here, is maintained by adjusting the FP

rate of BFs. To approximate the whole functionality of a FU using BFs, all of the inputs of the

function are required to be identified and stored in a set of BFs. Accommodating a large number

of input patterns in a BF, while meeting the desired error rate, and storing the corresponding

pre-computed output values may produce large BFs and registers, thereby, increasing the energy

overhead. We address this problem using the two facts. First, because of the value locality and

similarity [LWS96, AFL97] especially in data-level parallel applications [SJLS14, RBG13] few

number of output values occur frequently at the run-time. The second fact is that the output values

in the function co-domain can be classified into a number of clusters. Therefore, a few number of

output values (i.e., the centers of clusters) becomes the representative of all output values. This

characteristic is useful for approximating a function by returning the value of the cluster center as

the function output instead of an exact value in the cluster. The function approximation using the
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co-domain classification necessitates a probabilistic data structure with the bounded error rate.

Hence, BFs that demonstrate controllable error behavior, are applicable to our purpose.

2.3.3 Bounding Bloom Filter Errors at Design Time

In our method, the degree of approximation is entirely controlled by a set of BFs integrated

to the FU. Probabilistic membership provided by the FP in BFs results in occasional false hit of

the input patterns in the BFs. Returning a wrong output value for an input which is not stored in

the BF, while wrongly considered as BF members, is manifested as an error at the output of the

function. However, we are able to limit the error rate to meet the acceptable output quality by

limiting the FP rate of associated BFs at the design time. As we mentioned earlier, the FP rate of

a BF depends on several parameters such as the number of element stored in the BF, the number

of hash functions and the length of the Bloom vector. A system, therefore, has the capability of

allowing acceptable error by tuning these parameters of BFs attached to the FUs. Our approach

to approximate a function can be applied to applications that are amenable to approximation.

In the rest of this chapter, we explain how to use BF to perform approximate version of costly

operations in image processing applications and in CNNs.

2.4 Function Approximation in Image Processing Applications

In this section, we focus on image processing applications harnessing floating-point FUs

in the GPUs. The multimedia applications exhibit tolerance to the error, and offer the well-known

notion of output quality with peak signal-to-noise ratio (PSNR). With approximate computing, an

application with PSNR of equal or greater than 25 dB can still appear to execute correctly from the

user’s perspective [Bar06]. In GPUs, floating-point FUs consume higher energy per-instruction

than their integer counterparts, and the overall arithmetic operations contribute to more than 70%

of the total GPU power consumption in compute-intensive kernels [ZPL14]. FUs in the GPU
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architecture, used to map the most of arithmetic operations of a kernel, are targeted for integrating

BFs. To determine the number of BFs for each FU, we need to configure them to ensure that

the output quality will never go below the desired threshold. We require, at first, to identify

the maximum tolerable error rate for each FU in a given kernel. We set the error magnitude

conservatively to its maximum value for each FP event during the design time analysis. Then,

the parameters of BF should be set to yield the FP rate less than or equal to the error rate. To

do that, we need to specify the number of inputs to store in the BF through profiling. For the

sake of clarity, we describe the process of configuring BFs in more detail, given the fact that

four types of operations are identified in GPU architecture: adder (ADD), multiplier (MUL),

multiply-accumulator (MAC) and SQRT.

2.4.1 Maximum Tolerable Error Rates

To find maximum tolerable error rates of the FUs used in a kernel, we use the following

algorithm, and simulate the kernel for 30 different images using Multi2Sim [Mul]. The desired

output quality, here, is assumed to be equal or greater than 25 dB. However, the algorithm has the

ability to find the maximum error rate for any given PSNR threshold.

The first step is to find the maximum tolerable error rate for each individual operation. To

achieve this, one operation is selected and random error with different rates is injected into it. We

start from error rate of 0.1 and decrease it until the average PSNR of final output images becomes

acceptable. The obtained error rate is, then, assigned to the operation. The process is repeated for

all operations in a kernel (the error rate of 0.001 is obtained for each FUs in the Sobel filter). The

next step aims to inject errors to all FUs to see their combined effect on the output quality. To

do that, we inject errors simultaneously into all operations with the error rate assigned to them

in the previous step. If the average obtained PSNR for 30 images are satisfactory, the algorithm

stops. In case of unacceptable output quality, in the third step, we identify the frequency of each

operation using the assembly code of the kernel generated by Multi2Sim, and sort them. Then,
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we decrease the error rate of the most frequent operation (MUL in Sobel) by ten times. If the

output quality is not still acceptable, the next FU in the sorted list will be chosen to decrease

its error rate. This step is repeated until acceptable PSNR is achieved. The algorithm ends up

with maximum tolerable error rate for each operation. For example, in Sobel filter application,

error rate of 0.001 for ADD, MAC, and SQRT and error rate of 0.0001 for MUL leads to average

PSNR of 28 dB.

Table 2.1: Maximum Acceptable Error Rate and Output PSNR

App ADD MUL MAC SQRT PSNR (min, max, avg) (dB)
Sobel Filter 0.001 0.0001 0.001 0.001 (26.4,32.9,28.0)

Sharpen − 0.01 0.01 0.01 (24.7, 36.8, 28.12)
Roberts − 0.001 0.001 0.001 (25.4, 32.5, 27.9)
Prewitt − 0.01 0.001 0.01 (25.2, 33.3, 27.1)
Scharr − 0.001 0.0001 0.001 (26.1, 31.1, 27.2)

Table 2.1 summarizes the maximum tolerable error rate of each FU for five image process-

ing applications, and minimum, maximum and average PSNR of the output images. To ensure

that our proposed approximate architecture generates acceptable output, the associated BFs to

each operation must display a FP rate of lower or equal than the pre-determined error rates.

2.4.2 The Number of Input Patterns Saved in BF

We performed profiling on inputs and outputs of every floating point operations in the

kernel using 10% of the training samples. In this phase, the frequency of each output value and

the number of different input patterns responsible for that value are extracted. We also choose a

number of output values to assign a set of BF to them. To increase the frequency of computational

reuse (i.e., hit rate), we should increase the number of BFs and their size to save inputs of more

output values. If we want to save all inputs of each output value (e.g., 329 inputs for most frequent

output value of MAC in Sobel), large size of BF is needed, hence increasing energy overhead. To
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overcome this problem, we investigate the frequency of each input pattern for a specific output

value. We observed that a few number of input patterns for an output constitute most fraction of

the hit rate achieved by that output (e.g., one input for the most frequent output value of MAC in

Sobel leads to hit rate 6.2% (compared to 7.3% obtained by 329 inputs)). Therefore, for each

output value, we saved its most frequent input patterns.

2.4.3 BF Configuration

After specifying the FP rate of BFs, which is determined by the tolerable error of the

unit BFs are integrated into and the number of elements to save (i.e., n) in the profiling stage, we

change the value of m which indicates the length of BF vector, and k, which indicates the number

of hash function to be used, to meet the predetermined error rates (i.e., the error rate of each units

which is shown in Table 2.1) and design a BF for each operation to investigate its energy overhead.

2.5 Function Approximation in CNNs

Here, we explain the process of using our proposed technique to improve energy con-

sumption of CNN architectures. Without the loss of generality, we apply the process on LeNet, a

CNN used for MNIST dataset.

2.5.1 LeNet Architecture

Fig. 2.3 depicts the architecture of LeNet that consists of six layers, where the first, third,

and fifth layer are convolutional, while the second, fourth are pooling layers, and the sixth layer

is a fully connected layer. Consisting of a set of learnable filters, the convolutional layer is the

core building block of a CNN. It performs the convolution operations on each filter and a portion

of input volume, where a large number of costly multiplication operations are used, generating

a new output image, namely a feature map. Then the pooling layer is used to reduce the size
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Figure 2.3: An illustration of a convolutional neural network.

of a feature map by averaging various pixel strengths. This process only preserves the most

informational features of input by dropping the unnecessary minor information. We integrate BFs

in multiplication units used in convolutional and fully connected layers, which account for 98%

of multiplications in our experimented neural network [MSS+16].

2.5.2 Layer-Based Pattern Matching

To maximize the energy savings, we need to maximize the computation reuse opportunities.

Since we need to store a set of pre-calculated computations, we aim to store most frequent input

patterns to maximize the computation reuse opportunities. To do this, we use several steps. First,

we profile the input operands of multiplications using some training input. Second, in the profiled

input, we look for the most frequent input patterns and calculate their results.

In this process, we use two strategies to look for the most frequent input patterns: global-

based and layer-based. Global-based means we look for the most frequent input patterns from

all the multiplication operations in neural network inferences, regardless of their locations. Layer-

based means we look for the frequent input patterns for each layer separately. That is, for each

layer, we find the most frequent patterns from the input operands of multiplications profiled from

that specific layer. For example, to find the most frequent patterns for the third convolutional

layer, we profile all input operands of multiplications in that layer and find the most frequent

patterns in this set of input operands.
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Figure 2.4: The hit rate of exact pattern matching.

Third, we then check the hit rate of the chosen frequent patterns using another set of

data. We also vary the number of stored input patterns for each layer. Note that, for the sake of

simplicity, we always use the same number of stored patterns for each layer. As shown in Fig. 2.4,

we can see that layer-based matching leads to higher hit rate than global-based matching. From

now on, we conduct all of our experiments using layer-based approach. We also observe that

as the number of stored patterns increases, the hit rate also increases. However, the hit rate still

remains low, at around 10%, even if we store 50 patterns for each layer. Thus, we improve the hit

rate by developing approximation techniques as described in the next part.

2.5.3 Approximate Pattern Matching

As shown in Fig. 2.4, even if we use layer-based pattern matching, the hit rate is still low.

Thus, we propose the use of approximate pattern matching for floating point numbers instead of

exact matching, i.e., we only match for limited bit width. For example, there are two floating point

numbers 0.45 and 0.451, with their IEEE 754 format as 00111110111001100110011001100110
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Figure 2.5: The hit rate of approximate pattern matching.

and 00111110111001101110100101111001. If we use exact matching, then 0.451 would not

match 0.45. However, if we use 9-bit matching, then 0.451 would match 0.45-because their first 9

bits (sign bit and exponential bits) match. In this case, their first 16 bits (sign bit, exponential bits

and 7 mantissa bits) are identical so they will match even under 16-bit matching mode. We use

four different approximate matching modes to measure the hit rate: 9-bit, 10-bit, 11-bit, and exact

matching, as illustrated in Fig. 2.5. We can see that as we increase the approximation level, the

hit rate also increases significantly even by 1 bit. For example, by storing 50 patterns (for each

layer), a 10-bit approximation can have hit rate at 57.1% while 9-bit approximation can have hit

rate at 82.6%, which is 56% higher.

But note that the increased hit rate does come with a cost. Rather than returning the exact

computation result, the approximate pattern matching will return an inexact result. And as we

increase the approximation level, the extent of inaccuracy will also increase. We explore several

different approximate matching modes in the experimental results discussed later by varying the

matching bit width and number of stored patterns to maximize the energy savings while keeping
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Figure 2.6: The implementation of approximate pattern matching.

the accuracy loss minimal.

2.5.4 Approximate Pattern Matching with Bloom Filters

To implement approximate pattern matching at the hardware level, we employ BFs. The

detected frequent patterns are stored in a set of BFs, and the BFs are integrated to the multiplier.

The number of BFs equals to the number of distinct output values generated by the frequent

patterns. Each BF stores the patterns corresponding to its assigned output value.

The overall architecture of using BF for approximate pattern matching is shown in figure

2.6. In order to enable the approximate pattern matching, we store approximated input patterns

in the BF. We resize each input of the multiplier to apx bit bits by selecting its apx bit most

significant bits and concatenate them into a single vector. The obtained bit vector forms an input

to the hash functions which determine bits to be set in the BF vectors. Similarly, to investigate

the approximate pattern matching of incoming inputs to the multiplier, the inputs are re-sized and

concatenated before going to the hash functions. Then, the bits in the BV specified by the hash

functions determine whether the incoming pattern of the multiplier is matched or not. In case of

matching, the multiplier is clock-gated to avoid the re-execution and the output in the register
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corresponding to the BF is returned as the output of the multiplier.

To control the drop in the classification accuracy of the LeNet that may occur due to FP

rate of the BFs, the FP rate will be tuned by properly setting the parameters of the BFs (n, m

and k). Since most of today’s applications such as neural networks demonstrate tolerance to the

controlled imprecision in computations, in this work, BFs with controllable error rate are adapted

to implement approximate pattern matching and recall the computations in neural networks.

To further improve the energy consumption of the computations, we employ resistive

memory elements to implement Bloom vectors, which exhibit significant energy savings than its

CMOS counterparts [ARG16]. Moreover, resistive memory consumes little area overhead as it

can be implemented on top of the chip [IPR16].

2.6 ReBF: Resistive Bloom Filter

Before introducing architecture of a resistive Bloom filter (ReBF), let examine energy

efficacy of CMOS implementation of BFs. BF allows accommodating more patterns, hence,

increasing the frequency of computational reuse. The more pre-computed results the BFs use,

the more energy the entire system will save due to clock-gating of costly FUs. We accordingly

implement BFs configured for five image processing applications using Verilog, and synthesized

them with 45 nm standard CMOS library. Each individual output value is stored in a 32-bit

register, connected to the corresponding BF.

Figure 2.7 illustrates the energy of the proposed architecture using CMOS BFs compared

to the conventional one, which purely uses FUs. As shown, computational reuse with the aid of

CMOS BFs offers negligible or no benefit due to the high energy overhead of implementing BFs

using CMOS cells. For instance, Sobel incurs 23.8% energy penalty and on overage the overhead

is 4.4%. This energy overhead is mainly due to the implementations of m-bit vectors that are

turned into CMOS storage elements (i.e., about 70% of the power is consumed by the Bloom vec-
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Figure 2.7: Energy consumption comparison of the proposed architecture using CMOS BFs
and conventional FU.

tor). To improve the energy efficiency of our proposed architecture, we use 1-transistor/1-resistive

(1T-1R) cells, a promising low-power technique, to implement the m-bit vector used in the BF.

2.6.1 ReBF Architecture

In this section, we describe the implementation of ReBF using the memristive elements.

The architecture of ReBF is shown in Figure 2.8. Each bit of the resistive Bloom vector is

implemented by a 1T-1R cell. The cells are connected to each other through a match line (ML).

The stored value in each cell is represented by the value of the resistor element. High value of the

resistor is considered as digital one, and low value as digital zero. The transistor in the cell is

controlled by a select line (SL). During the programming stage, k hash values for each member are

obtained using the combinational CMOS circuit, and, then, the resistor of the corresponding cell

in ReBF is set to the high value. For the look up/search process, the ML is, at first, pre-charged to

Vdd via the pre-charge circuit. Then, the same k hash functions are computed for the incoming

input using CMOS technology, and k addresses are generated. These addresses will be decoded

in parallel through k CMOS decoders. The outputs of decoders determine the cells in the ReBF

to be verified. The select lines of the corresponding cells are, then, activated. This turns on the

NMOS transistor in the cell. If the stored value in any of the kcells is zero (i.e., the resistor value
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Figure 2.8: 1T-1R implementation of ReBF.

is low), a path between Vdd and ground will be established and the ML will be discharged. The

voltage drop on the ML will be amplified by the sense circuit; therefore, a full swing will be

observed on the EnL signal. This means that the incoming input is not saved in the ReBF. In this

case, EnL prevents the output register to be read. The delay of the circuit is determined by the

time it takes to pre-charge ML to Vdd, and the time it takes to discharge the line and observe

the full swing on EnL. The worst-case delay happens when only one of the cells is not matched,

and tries to discharge the ML. If more than one cell are not matched, the ML will be discharged

rapidly, thereby, the delay is lower than the previous case. However, if all k cells are set to one,

the resistor values are all high, and prevent the ML from discharging. This means that hit occurs

and EnL signal becomes high, which leads to returning pre-calculated value stored in a CMOS

register as the final output of the FU that uses the ReBF.

2.6.2 Scalability of ReBF

The low-power capability of ReBF allows it to save more input patterns using larger

Bloom vectors compared to the CMOS BF. This means that further portion of a FU functionality
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Figure 2.9: Total memory size vs frequency of computational reuse (hit rate)

can be represented by a set of ReBFs. To see the relation between the required amount of

memory and the degree of representing a function using Bloom filters, we computed total memory

size required for each operation in four image processing applications. The degree of function

representation is equivalent to the hit rate in BF. To obtain the memory size, we set the FP rate of

BFs for each operation to their pre-determined maximum error rate which guarantees acquiring

the acceptable output images. Given three hash functions to map the input patterns to BF, total

size of memory for different hit rates in four applications is shown in Figure 2.9. This memory

size counts for the m-bit vectors and the output registers. As shown, the number of bits required

to represent more functionality of an application increases rapidly, specifically in MAC operation

of Sobel filter and Sharpen because of increased number of inputs compared to other operations

with the same hit rate. This makes ReBF a feasible replacement for the corresponding function.
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2.7 Experimental Results

2.7.1 Evaluation of Function Approximation on Image Processing Appli-

cations

To assess the efficiency of the function approximation using ReBF, we choose five image

processing applications adopted from AMD APP SDK v2.5 [AMD]: Sobel, Robert, Prewitt,

Scharr and Sharpen. The openCL code of these applications are simulated by Multi2Sim [Mul] to

perform profiling and finding the error rate bound on four operations (i.e., ADD, MUL, MAC, and

SQRT). We generates the VHDL code of these FUs as the six-stage pipeline unit, commensurate

with the AMD Southern Islands GPUs [Mul], using FloPoCo [Flo]. The hardware realization

of different size of BFs with different number of hash functions are implemented using Verilog.

To compare the energy consumption of these hardware, the implemented FUs and BFs are

synthesized using Synopsys Design Compiler, with 45 nm standard CMOS library. The operating

voltage is set to 1.0V and the clock period is 1.5 ns. To estimate the power and delay of ReBF,

transistor-level design of the Bloom vector of different sizes is performed using HSPICE with the

same technology. We consider RON as 10K Ω and ROFF as 1M Ω. We set the other parameters of

the cell such as the capacitance of the line based on the one presented in [ZJ13].

Energy Saving

Energy consumption of an individual resistive Bloom vector (RBV) for different length of

2048, 1024, 512, 256, 128, and 64 bits is summarized in Table 2.2. The delay of the vector with

different size is fixed at 1.4 ns. This is achieved by adaptively adjusting the operating voltage

shown in the table. Energy consumption of CMOS Bloom vector of different sizes is also shown

in the table. As we can see, implementing Bloom vector using memristor cells presents extremely

low energy consumption even if the larger vector is used (i.e.,19.3 fJ compared to 1649.55 fJ for

2048 bit).
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Table 2.2: Energy consumption Comparison of resistive Bloom vector in ReBF and CMOS
Bloom vector

Size (bits) 2048 1024 512 256 128 64
Vdd (V) 1.0 0.71 0.6 0.54 0.51 0.47
RBV (fJ) 19.3 17.12 8.04 5.10 3.77 1.62

CMOS BV (fJ) 12188.4 6662.4 3992.4 2603.1 1837.35 1649.55

Table 2.3: Optimum ReBF configuration for different applications

FU Sobel Roberts Sharpen Prewitt Scharr

#Out #In HR% BV #Fn #Out #In HR% BV #Fn #Out #In HR% BV #Fn #Out #In HR% BV #Fn #Out #In HR% BV #Fn

ADD 2 12 29.46 256 4 - - - - - - - - - - - - - - - - - - - -
MUL 2 16 29.61 1024 3 6 26 41.61 512 4 6 15 42.18 256 2 8 30 59.4 512 2 4 12 27.7 256 4
MAC 4 12 25.44 256 4 10 12 29.5 256 4 6 15 30.2 256 2 6 15 32.6 1024 2 8 18 37 512 4
SQRT 16 16 20.8 512 3 10 10 29.5 256 4 - - - - - 14 14 82 256 2 18 18 10 512 3

To assess the efficiency of our approach, we profile five image processing kernels using

10% of Caltech 101 computer vision dataset [Cal], and find the maximum tolerable error rate for

each FUs in the kernels as described in Section 2.4.1 using 30% of the dataset. For each kernels,

we select various hit rates obtained from profiling stage. Then, we configure BFs based on the

number of elements that depends on the hit rate, and the maximum error rate obtained for each

FU. We evaluate energy consumption of our approach for each configuration to find the maximum

energy improvement compared to the conventional FU without ReBF. For each application, we

summarize the optimum configuration of the Bloom filters (i.e. the number of bits required for

Bloom vector (BV) , and the number of hash functions (Fn)) integrated into each FU in Table 2.3.

Table 2.3 also shows hit rates (HR) provided by the selected frequent patterns, the number of

pre-computed outputs, and the number of stored inputs for each FUs used in the application.

For each FU in five applications, Table 2.4 contains the total energy consumption of hash

functions, decoder, and output registers which are implemented using CMOS cells. Comparing to

the small energy consumption of resistive vector shown in Table 2.2, CMOS modules constitute

most fraction of energy consumption of the proposed architecture (e.g., for MUL in Roberts, 5.10

fJ is used for 256-bit ReBF vector compared to 1637.8 fJ for CMOS modules). This means that
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Table 2.4: Total energy consumption (fJ) of CMOS components in ReBF, Hash functions, output
registers, and decoder for FUs in different applications

FU Sobel Roberts Sharpen Prewitt Scharr
ADD 918.94 - - - -
MUL 882.63 1302.74 796.95 1179.72 996.76
MAC 1347.97 1637.83 879.07 1076.94 1815.01
SQRT 873.78 882.91 - 2329.27 644.58
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Figure 2.10: Energy comparison of the proposed architecture using ReBFs and conventional
FUs.

the main dominant factor that inhibits us from further computational reuse, and energy saving

is high energy consumption of modules implemented with CMOS technology. Comparing the

energy consumption of resistive vector and CMOS modules shows that the main dominant factor

that inhibits us from further computational reuse, and energy saving is high energy consumption

of modules implemented with CMOS technology (e.g., for MUL in Roberts, 5.10 fJ is used for

256-bit ReBF vector compared to 1637.8 fJ for CMOS modules). Figure 2.10 illustrates the

total energy of using ReBF (including resistive and CMOS parts) along with FUs and energy of

conventional FUs without ReBF. We use the optimum configurations for ReBF shown in Table 2.3.

For Sobel filter application, 21.7% energy is saved using the 256-bit Bloom vector with five hash

functions for each ADD and MAC, and 1024 (512)-bit vector with three hash functions for MUL

(SQRT). The bloom filters are used to store 12 input patterns for ADD and MAC, and 16 input
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patterns for MUL and SQRT.

ReBF also demonstrates 25.2%, 25.3%, 31.4%, and 16.8% energy improvement for

Sharpen, Roberts, Prewitt, and Scharr, respectively. For Sharpen, maximum improvement is

achieved by using ReBFs for MUL and MAC, to store 15 patterns for each module. To meet the

maximum error rates, we employ bloom vector of size 256 bits, and two hash functions for each

operation. The provided hit rates are 42.18% and 30.2% for MUL and MAC, respectively. In this

case, we do not use ReBFs for SQRT. In Prewitt, since for each FUs higher hit rate is achieved

compared to other kernels with nearly the same number of input patterns (e.g., 14 (10) inputs

provides 82% (29.5%) hit rate in SQRT module of Prewitt (Roberts)), this application exhibits

the most energy saving.

2.7.2 Evaluation of Function Approximation on CNNs

In this work, we use tiny-dnn [tin], a header only, dependency free deep learning library

written in C++, as our evaluation platform. For CNN, we use LeNet-like architecture as illustrated

in Fig. 2.3. We use MNIST (Mixed National Institute of Standards and Technology) database of

handwritten numbers [LCB98] as our dataset to evaluate the accuracy. The dataset is split into a

training set and a test set with 60,000 and 10,000 28 × 28 images. We randomly select 5% of the

training input data to profile the frequent input operands. To estimate the energy consumption of

the proposed design, we implement the hash functions using Verilog, and we extract the Verilog

implementation of a six-stage pipelined floating point multiplier using FloPoCo [DDP11]. Then,

the implementations are synthesized using Synopsys Design Compiler, with 45 nm standard

CMOS library. The operating voltage is set to 1.0V and the clock period is 1.5 ns. In addition,

Bloom vectors (BV) are designed with resistive 1T1R cells using HSPICE, where RON is set

to 1K Ω and ROFF to 1M Ω [ZJ13]. Bloom filters can be used in different hardware platforms,

including CPU [FSTN16], FPGA [DKSL03], and GPU [ARG16].
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Figure 2.11: Neural network accuracy loss due to approximate pattern matching.

Accuracy Loss

As described in Section 2.5.3, the BF will return an inexact result due to approximate

pattern matching. Thus, we investigate here on how the approximation level impacts the neural

network accuracy. We vary the approximate pattern matching mode from 8-bit matching to 11-bit

matching and store 10 most frequent patterns for each of the approximation modes with a FP rate

of 0.001. Fig. 2.11 shows the accuracy under each configuration. The baseline accuracy is 98.5%

without any approximations. The 8-bit matching introduces aggressive approximation because it

does not cover the last bit in the exponent bits, which leads to only 60.6% accuracy. Starting from

9-bit matching, the accuracy loss is insignificant. Note that 9-bit matching covers the sign bit

and exponent bits for floating point numbers. This indicates the high error-tolerance of neural

networks to data imprecision.

According to Fig. 2.5, 9-bit matching gives us the highest hit rate among the approximation

modes which introduces little drop on neural network accuracy. Thus, using 9-bit matching as our

approximation mode, we then investigate how the accuracy will vary with the number of stored

frequent patterns. As shown in Table 2.5, various number of stored patterns under 9-bit matching

have little impact on neural network accuracy. The lowest accuracy is 97.2% under the (9, 50) con-

figuration, meaning that we use 9-bit approximate pattern matching and store 50 input patterns.
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Table 2.5: Energy savings and neural network accuracy across different BF settings.

Matching Mode (BV size, #Hash Fn, #inp BF) Hit Rate NN Accuracy Esave
(8, 10) (64, 2, 1) 66.9% 60.6% 58.9%
(9, 5) (64, 2, 1) 28.9% 97.5% 24.9%

(9, 10) (64, 2, 1) 45.7% 97.4% 37.9%
(9, 20) (64, 2, 1) 60.7% 97.9% 45.4%
(9, 30) (64, 2, 1) 70.6% 97.4% 47.5%
(9, 30) (32, 3, 1) 70.6% 97.4% 41.6%
(9, 40) (64, 2, 1) 77.3% 97.3% 47.3%
(9, 50) (64, 2, 1) 82.3% 97.2% 44.7%
(10, 10) (64, 2, 1) 30.4% 98.3% 22.3%
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Figure 2.12: Energy Savings under different matching mode.

Energy Savings

We use several different matching modes and BF configuration to compute the energy

savings and the resulting neural network accuracy as shown in Table 2.5. The matching mode

(appx bit,#inp) refers to how many bits we use for approximate pattern matching and the number

of patterns we store. The BF setting (BV size, #hash Fn, #inp BF) refers to BV size in bit

length (m), number of hash functions (k) and number of input patterns stored in each BF (n). For

example, the BF setting at (64, 2, 1) means that we set the BV size as 64 bits, use 2 hash functions

and store 1 input pattern for each BF. To satisfy the FP rate which can lead to acceptable accuracy,

we carefully select BF configurations.

Table 2.5 exhibits several important facts. First, 9-bit matching is the optimal matching
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mode here. By comparing with 8-bit matching and 10-bit matching, we find that 8-bit matching

achieves the most energy saving at 58.9%, but its resulted neural network accuracy is only 60.6%,

a significant accuracy drop over baseline accuracy of 98.5%. 10-bit matching achieves higher

accuracy than 9-bit because it introduces smaller approximation errors into the neural network

than 9-bit matching but its resulting energy saving is only at 22.3%, which is less than the one

obtained with 9-bit matching mode. Thus, 9-bit matching achieves the better balance between

neural network accuracy and energy savings.

Second, after we fix 9-bit matching mode, we then look for the optimal number of patterns

to store. We vary the number of stored patterns from 5 to 50. Note that all 9-bit matching modes,

regardless of the number of stored patterns, achieve accuracy close to the baseline. Thus, we

focus on locating the best energy saving setting. As shown in Fig. 2.12, we found that the energy

saving increases as the number of stored patterns increases from 5 to 30 (we call it the first stage),

however the energy saving starts to decrease as the number of stored patterns increases from 30 to

50 (second stage). This is because in the first stage, the hit rate increases as the number of stored

patterns increases, which will reduce the use of multipliers. In the second stage, although the hit

rate still increases, the energy consumption of BFs increases as the number of stored patterns

increases, which dominates the energy consumption. Thus, we find that the optimal matching

mode is (9, 30).

Third, we also try different settings of BV size and hash functions. To satisfy the FP error

rate of 0.001, we use two realistic BF settings, (64, 2, 1) and (32, 3, 1). The BF setting at (32, 3,

1) consumes more energy than that of (64, 2, 1) because it uses 3 hash functions, which is the

main source of energy consumption of BFs. In summary, the optimal configuration is (9, 30) as

matching mode and (64, 2, 1) as BF setting. This leads to a neural network accuracy of 97.4%

and energy saving of 47.5%.
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2.8 Summary of the Chapter

Many algorithms including machine learning and image processing algorithms offer

massive parallelism and significant degrees of tolerance to approximate computing. This paper

aims to address the following challenge: how to increase approximate computational reuse

through non-volatile resistive storages in GPUs with bounded errors? Combining computational

reuse and approximate computing, we propose a resistive Bloom filter (ReBF) that provides an

approximate representation of a function by integrating Bloom filters to the hardware functional

units. BeBFs are used to store highly frequent patterns to avoid re-executions. Computation reuse

capability can be enhanced by performing approximate pattern matching. This methodology has

the ability to control the degree of function approximation by adjusting the false positive rate of

the ReBFs. To reduce energy consumption of the proposed architecture, low-power memristive

arrays are exploited to perform search operations at extremely low energy. Our experimental

results show 47.5% energy reductions of multiplication is obtained with classification accuracy

degradation at 1% for convolutional neural networks. Experimental results show that for image

processing applications, our approach represents on average 38.42% of the functionality of FUs

in five different kernels running on GPUs, while guaranteeing the acceptable outputs with PSNR

of greater than 27 dB. This leads to on average 24.1% energy reduction compared to conventional

architectures without ReBF.

Chapter 2 contains re-organized reprints of Vahideh Akhlaghi, Abbas Rahimi, and Rajesh

Gupta, “Resistive Bloom Filters: from Approximate Membership to Approximate Computing

with Bounded Errors”, In IEEE Design, Automation, and Test in Europe (DATE), 2016, of which

this dissertation author is the primary author, and Xun Jiao, Vahideh Akhlaghi, Yu Jiang, and

Rajesh Gupta, “Energy-Efficient Neural Networks using Approximate Computation Reuse”, In

IEEE Design, Automation, and Test in Europe (DATE), 2018, of which this dissertation author is

the primary investigator.
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Chapter 3

Dynamic Network Pruning

Deep Convolutional Neural Networks (CNNs) perform billions of operations for classi-

fying a single input. To reduce these computations, this chapter offers a solution that leverages

a combination of runtime information and the algorithmic structure of CNNs. Specifically, in

numerous modern CNNs, the outputs of compute-heavy convolution operations are fed to ac-

tivation units that output zero if their input is negative. By exploiting this unique algorithmic

property, we propose a predictive early activation technique, dubbed SnaPEA Ṫhis technique cuts

the computation of convolution operations short if it determines that the output will be negative.

SnaPEA can operate in two distinct modes, exact and predictive. In the exact mode, with no

loss in classification accuracy, SnaPEA statically re-orders the weights based on their signs and

periodically performs a single-bit sign check on the partial sum. Once the partial sum drops

below zero, the rest of computations can simply be ignored, since the output value will be zero

in any case. In the predictive mode, which trades the classification accuracy for larger savings,

SnaPEA speculatively cuts the computation short even earlier than the exact mode. To control

the accuracy, we develop a multi-variable optimization algorithm that thresholds the degree of

speculation. As such, the proposed algorithm exposes a knob to gracefully navigate the trade-offs

between the classification accuracy and computation reduction. Compared to a state-of-the-art
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CNN accelerator, SnaPEA in the exact mode, yields, on average, 28% speedup and 16% energy

reduction in various modern CNNs without affecting their classification accuracy. With 3% loss in

classification accuracy, on average, 67.8% of the convolutional layers can operate in the predictive

mode. The average speedup and energy saving of these layers are 2.02× and 1.89×, respectively.

The benefits grow to a maximum of 3.59× speedup and 3.14× energy reduction. Compared to

static pruning approaches, which are complimentary to the dynamic approach of SnaPEA our

proposed technique offers up to 63% speedup and 49% energy reduction across the convolution

layers with no loss in classification accuracy.

3.1 Introduction

Deep Convolutional Neural Networks (CNNs) are among the most widely used family of

machine learning methods that have had a transformative effect on a wide range of applications.

CNNs require ample amounts of computation even for a single input query. For instance, assigning

a label to a relatively small RGB image (224×224×3) from the ImageNet database [RDS+15]

requires billions of multiply-and-accumulate operations [CES16, SPM+16, HMD16]. This work

aims to reduce these copious amount of computation by exploiting both their runtime information

and algorithmic structure. In convolutional layers of many modern CNNs, each convolution

operation is commonly followed by an activation function called a Rectifying Linear Unit (ReLU)

that returns zero for negative inputs and yields the input itself for the positive ones. We observe

that a large fraction of ReLU outputs are zero, indicating a large number of negative convolution

outputs. Figure 3.1 illustrates this trend among several modern CNNs where ReLU nullifies

42%-68% of inputs. In addition, comparing the outputs of intermediate convolutional layers

for different input images shows the zero values vary spatially across the images. Figure 3.2

illustrates this insight across two images passing through GoogLeNet [SLJ+15]. The highlighted

differences in the output of the intermediate convolutional layer attest to the varying spatial
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Figure 3.1: Fraction of activation input values that are negative.

distribution of zeros. Harnessing these insights, we devise SnaPEA1, a holistic software-hardware

solution, that cuts a large fraction of the computations short by identifying the zero intermediate

values earlier during the runtime.

SnaPEA operates in two distinct modes, namely exact and predictive. In the exact mode,

in which the classification accuracy remains unchanged, SnaPEA detects the zero values by static

re-ordering of weights along with a low-overhead sign-bit monitoring of partial sums. A negative

partial sum triggers early termination of convolution operations. SnaPEA in the predictive mode,

trades off the classification accuracy for larger computation savings by predicting the zero values.

Predictive mode results in earlier termination of the convolution operations compared to the

exact mode, further reducing the amount of computation. Notwithstanding the higher benefits of

predictive mode, an undisciplined prediction of zero values leads to significant loss compared to

the nominal CNN classification accuracy. To minimize this loss while maximizing the reduction in

computation, we propose a co-designed hardware-software solution that (1) statically pre-arranges

the weights, (2) determines a threshold for triggering predictive early activation, and (3) uses a

low-overhead runtime monitoring mechanism to apply the early activation. As such, SnaPEA

makes the following contributions:

• SnaPEA leverages the algorithmic structure of CNNs to to reduce their computation. This

work provides an insight that the amount of computation in CNNs can be significantly reduced
1SnaPEA: Snappy Predictive Early Activation
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Figure 3.2: GoogLeNet [SLJ+15], in which the intermediate feature maps for two input images
are magnified. The ellipses on the intermediate feature maps highlight the varying spatial
distribution of non-zero values for distinct input images.

by using a combination of runtime information along with the algorithmic structure of CNNs,

which feeds many negative inputs to the activation function.

• SnaPEA is a runtime technique that cuts the CNN computations short. Exploiting the afore-

mentioned insight, this chapter devises an exact runtime approach that relies on a single-bit

sign-check to cut the computation short without losing any accuracy. In addition, SnaPEA

comes with a predictive mode that speculates on the outcome of sign-check and terminates the

computation even earlier, trading off accuracy for less computation.

• SnaPEA provides hardware-software solution to control the accuracy trade-offs. We develop a

multi-variable optimization algorithm that systematically thresholds the degree of speculation

based on the sensitivity of the CNN output to each layer. The threshold becomes a knob for

controlling the accuracy-computation tradeoff.

To evaluate the effectiveness of the proposed technique, we evaluate it on a number of

modern CNNs. In the exact mode, which has no effect on the classification accuracy, SnaPEA on

average, delivers 28% (maximum of 74%) speedup and 16% (maximum of 51%) energy reduction

over EYERISS [CES16], a state-of-the-art CNN accelerators. With 3% loss in classification
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accuracy, on average, 67.8% of the convolutional layers can operate in the predictive mode.

The average speedup and energy saving of the layers in the predictive mode over EYERISS are

2.02× and 1.89×, respectively. GoogLeNet sees the maximum benefit of 3.59× speedup and

3.14× energy reduction. Finally, we evaluate the benefits of SnaPEA along with static pruning

techniques using the already pruned SqueezeNet CNN [IHM+16]. In the exact mode, SqueezeNet

achieves 30% speedup and 15% energy reductions with no loss of accuracy, demonstrating the

complimentary nature of SnaPEA’s dynamic approach to the static pruning techniques. Overall,

these benefits suggests that coalescing runtime information with algorithmic insights can lead to

new avenues for reducing the heavy computations of CNNs.

3.2 Related Work

SnaPEA is fundamentally different from the prior studies in three major ways: (1) we

exploit the inherent algorithmic structure of CNNs and runtime information to judiciously perform

early activation and save ineffectual computations, (2) we expose a knob that enables the user to

gracefully navigate the trade-offs between the classification accuracy, performance, and energy

efficiency, and (3) we study the rich and unexplored area of task skipping in the domain of deep

convolutional neural networks and conjoin these two disjoint lines of research in SnaPEA. Below,

we discuss the most related works.

CNN Accelerators

Several accelerators for CNNs has been proposed [GPY+17, PRM+17, CES16, JAH+16,

RWA+16, ZDZ+16, HLM+16, AJH+16, DFC+15, LCL+15, ZLS+15, CDS+14b, FMC+11]. In

some of the most recent works [CES16, DFC+15, FMC+11], 2D spatial architectures have been

proposed to match with the convolution dataflow and maximize the data reuse. TETRIS [GPY+17]

and Neurocube [KKC+16] have almost the same compute engines as the previous CNN accel-
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erators. However, these works studied the challenges and opportunities for designing efficient

CNN accelerators in a 3D-stacked memory setting. Neither of these accelerators evaluated the

benefits of performing early activation in the convolution operation.

Pruning Techniques

A handful of research [MHP+17, ALPBP17, HZS17, HMD16, IHM+16] proposed var-

ious static pruning techniques to reduce the overhead of computation in deep convolutional

neural networks. These static pruning techniques are agnostic to the dynamically-generated

zeros whose locations in the activation layer vary from one image to another. As our re-

sults show, SnaPEA is complementary to these techniques and further improve the benefits

over the static pruning techniques. Furthermore, several architectures also have been pro-

posed [PRM+17, AJH+16, RWA+16, ZDZ+16, HLM+16] for exploiting the sparsity in the

input activations and/or weights to improve the efficiency of the accelerator. In one of the most

recent work, SCNN [PRM+17] designs an accelerator that exploits the sparsity in both the ac-

tivations and weights. The proposed novel dataflow in SCNN maximizes the data reuse in the

sparse activations and weights. This work is orthogonal to the previous efforts that focused on

exploiting the sparsity in CNN accelerators. SnaPEA takes on a distinct approach than prior

designs by judiciously re-ordering the MAC operations in a sliding window and performing the

early activation in convolutional windows.

Task Skipping

A handful of research efforts [YPT+15, MRR11, SDMHR11, MSHR10, HMS+09, Rin07,

Rin06, LSKS17] have looked into task skipping in various domains. In one of the most recent

efforts [SDMHR11], Sidiroglou et al. proposed loop perforation in which the accuracy is traded

in return for improvement in performance. In their proposal, they algorithmically transform the

critical loops in the program and only execute a subset of their iterations. PredictiveNet [LSKS17]
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proposes a skipping mechanism for CNNs. They first perform the computations on the most-

significant bits and then speculatively decide whether to perform the computation on the least-

significant bits. However, SnaPEA completely skips the computations of the significant fraction

of the operations. As such, SnaPEA not only reduces the computation cost, but also reduces the

number of accesses to the on-chip buffers. Although SnaPEA takes inspiration from the prior

proposals in task skipping, it uniquely applies the task skipping mechanism in the domain of deep

convolutional neural networks in order to effectively eliminate the ineffectual data transfers and

computations.

3.3 SnaPEA Hardware-Software Solution

SnaPEA provides a hardware-software solution to reduce the computation in a given CNN.

The software part of SnaPEA, illustrated in Figure 3.3, is comprised of two distinct passes: one

for the exact mode, and the other for the predictive mode. In the latter pass, the solution finds the

thresholds for speculation while considering the acceptable loss in accuracy. In both cases, the

task is to reorder weights of the convolution kernels, depending on the operating mode. To utilize

these transformations, the SnaPEA comes with an accelerator design that can efficiently execute

the CNN with reordered convolution weights with support for early termination of convolution.

This section overviews the hardware and software components of SnaPEA.

3.3.1 SnaPEA Software Workflow

Figure 3.3 depicts the software workflow of SnaPEA which takes a CNN model, an

acceptable accuracy loss, and an optimization dataset as its inputs. The CNN goes through the

multiple passes of this workflow. The first pass, called Convolution Layer Extraction, elicits the

convolution kernels of the CNN. Then, the weights of each kernel are re-ordered through the

remaining passes, depending on the operating mode, exact or predictive.
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Figure 3.3: Software workflow for SnaPEA.

Software Workflow in the Exact Mode

To develop this flow, we leverage the observation that in the CNNs with ReLU activation

layers, the inputs to the convolution layers are positive. Consequently, in these layers, the

convolution output remains positive by performing Multiply-Accumulate (MAC) operations with

the positive subset of the weights. Only performing the remaining MAC operations with the

negative subset of the weights can turn the convolution output negative. Given this insight, in the

exact mode, Sign-Based Weight Reordering pass reorders the weights of convolution kernels based

on their sign such that the positive subset are followed by the negative subset. The reordering

enables SnaPEA to first perform MAC with the positive subset and then cut the computation

and apply activation function earlier in the case of observing a negative partial output during the

computation with negative weights.

Software Workflow in the Predictive Mode.

To reduce the computations further, SnaPEA in the predictive mode, speculates on the

sign of the convolution outputs before starting to go through the negative weights. A thresholding

mechanisms controls the aggressiveness of the speculation. The intuition is that if the partial

output of a convolution after a certain number of MAC operations is less than a threshold, the

final convolution output will likely be negative. In this mode, since SnaPEA may misspeculate a
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positive convolution output as negative, the final classification accuracy may decline. Therefore,

to utilize this intuition effectively, the software part of SnaPEA needs to deliberately determine:

(1) a threshold value and (2) its associated number of MAC operations, such that the loss in

the classification accuracy remains below the acceptable level while the computation reduction

is maximized. These two speculation parameters need to be determined for as many layers as

possible to maximize the benefits. To determine a proper set of parameters, SnaPEA formulates the

problem as a multi-variable constrained optimization problem, and provides a greedy algorithm

to solve it (See Section 3.5 for more details). The algorithm is run by the software part on the

Optimization Dataset through the following three passes. This triad of passes is to mange the

complexity of accounting for the combined effects of the layers without an exponential explosion

of the search space. First, the software statically runs a characterization pass, named Kernel

Profiling, that measures the sensitivity of the accuracy to the imprecision introduced in each kernel

in isolation. According to this sensitivity, the Kernel Profiling pass determines a set of speculation

parameters for each kernel. Then, the next pass (Local Optimization) consolidates the kernel

parameters of each layer and identifies a set of speculation parameters for the layer. This pass also

considers the effects of speculation in each layer in isolation. Finally, the Global Optimization pass

iteratively adjusts the speculation parameters of all layers such that the cross-layer effect yields

an acceptable accuracy with the maximal computation reduction. The optimization algorithm

runs once offline and does not impose additional runtime overhead during the execution of CNNs.

Based on the obtained speculation parameters for the entire network, the weights of

each kernel are reordered by the Weight Reordering pass. This pass reorders the kernel weights

by placing the ones determined by the speculation parameters ahead of the others. Then, the

remaining weights are reordered based on the same procedure used for the Sign-Based Weight

Reordering pass, which puts the negative weights after the positive ones. Finally, these reordered

weights determine the execution of the CNN on the SnaPEA hardware.
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3.3.2 SnaPEA Hardware Architecture

The SnaPEA architecture comprises number of identical Processing Engines (PEs), each of

which is designed to compute a convolution using the reordered weights. To support computation

with the reorderings, each PE is equipped with an index buffer that hold the indices of weights in

the original kernel. The PE uses this index buffer to fetch the corresponding input value for each

weight. This design is necessary because SnaPEA can reorder the weights but cannot tamper with

the order of the inputs or activation. Section 3.6 expounds this design. The following provides an

overview of the execution flow of a single convolution window in the exact and predictive modes.

Convolution Execution Flow in the Exact Mode

The PE first performs the operations of the positive weights. For the negative weights, the

PE probes the sign of each partial sum value before proceeding to the next MAC operation. As

soon as the partial sum becomes negative, the PE terminates the convolution early and triggers the

early activation. Once the early activation is triggered, the PE is free to perform the computations

of another convolution window. The sign-bit check merely requires a single AND gate, a low

overhead addition to the PE.

Convolution Execution Flow in the Predictive Mode

In the predictive mode, each PE speculates the sign of the convolution output by comparing

the partial sums with a threshold value after performing a pre-determined number of MAC

operations. As mentioned, both the threshold and the number of operation are determined in the

SnaPEA software workflow. If the partial result is less that the threshold, PE can speculatively

terminate the convolution and compute the activation early. That is, the PE outputs a zero for the

current convolution window. To support this speculative execution, each PE is equipped with a

unit called Predictive Activation Unit (PAU) (See Section 3.6).
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3.4 Computation Reduction in SnaPEA

Figure 3.5 demonstrates how SnaPEA reduces the computation by an example of 1×3

convolution. Figure 3.4a performs the unaltered convolution in which all of the MAC operations

are performed and yields “-9” as the output. Figure 3.4b illustrates convolution in the exact mode.

In this mode, SnaPEA reorders the weights based on their sign, and starts the computation with

the positive weights. The computation is terminated after performing only two MAC operations

as the results is already negative, “-3”. The simple sign check stops the computation. Although

the partial sum after two MAC operations (“-3”) has not reached the final convolution output

(“-9”), it will be converted to zero by the following ReLU operation. As such, the results is the

same as the unaltered convolution. Therefore, the exact SnaPEA does not change the final output

after ReLU and does not lead to accuracy degradation.

Weight:

Input:

-5 +1 -1

+1 +2 +6
CONV -9 0ReLU-9

(a)

+1 -5 -1

+2 +1 +6

Weight:

Input:
CONV -3 SnaPEA 0ReLU-3

(b)

Weight:

Input:

+1 -5 -1

+2 +1 +6
CONV +2 SnaPEA 0ReLU-1

(c)

Figure 3.4: A 1×3 convolution in (a) unaltered (b) exact, and (c) predictive modes. In the latter
two, the weights and their corresponding inputs are reordered. The white boxes highlight the
operations that are cut.

Figure 3.4c illustrates how predictive mode cuts the operations earlier than the exact mode.

As shown, after performing the MAC operations on only one weight, SnaPEA predicts that the

convolution value will eventually be negative. Even though the corresponding partial sum value
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is positive (“+2”), SnaPEA speculatively triggers the ReLU function early with a negative value

(e.g., “-1”) and puts out zero. This speculation reduces the computation from two in the exact

mode to one. In real-world CNNs, convolution is most often 3D and requires a relatively large

number of MAC operations as depicted in Figure 3.5a. Using these methods, SnaPEA can forgo

a significant number of the MAC operations as illustrated in 3.5b.

ReLUConv

nX

i=0

xi ⇥ wi

(a)

ReLUConv

nX

i=0

xi ⇥ wi

(b)

Figure 3.5: (a) The unaltered 3D convolution where all the MAC operations (bubbles) are
carried out. (b) The same convolution with SnaPEA, where a significant number of operations
are eliminated, delineated by the white bubbles.

3.5 SnaPEA Software Optimization

Significant computation reduction provided by the predictive mode comes at a price of

experiencing loss in the classification accuracy due to misspeculating positive outputs as negative

ones. To avoid unacceptable loss while maximizing the computation reduction, the predictive

pass in the software part of SnaPEA, aims to systematically control the degree of speculation by

properly determining the speculation parameters. To determine the parameters, the predictive pass

formulates the problem as a constrained optimization problem, and designs a greedy algorithm to
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solve it. In this section, we first elaborate on the speculation parameters, and then explain the

problem formulation and the algorithm to determine the parameters.

3.5.1 Speculation Parameters

As mentioned in Section 3.3.1, speculation on the sign of a convolution output is performed

by comparing the partial result of a set of MAC operations with a threshold value. Therefore,

the threshold value and its associated set of operations are the parameters that control the

degree of speculation. The threshold is merely a value that is required to be determined by the

software for the controlled speculation. However, to determine a proper set of operations, the

software requires to select the proper weights. One approach to select the weights would be

to sort the weights in descending order of their absolute values, and select those with larger

magnitude as a set of operations for performing the speculation. In this approach, although the

contributions of both positive and negative weights are taken into account, the classification

accuracy drastically declines. The reason is that selecting the weights with the larger magnitude

ignores the contributions of input values which are, to a large degree, random and data dependent.

To mitigate the mentioned issue, SnaPEA sorts the weights in ascending order, partitions

them into a number of smaller groups, and selects the weight with the largest magnitude from

each group. This approach enables even the smallest weights to appear in the set of operations

for the speculation; consequently, the smaller weights that may couple with large input values

have an opportunity to contribute to the speculation. In this approach, to select a proper set

of operations, the software only requires to determine the number of groups. This means that

the number of groups can be exploited as an indicator of a set of operations in the speculation

parameters. Accordingly, we denote the speculation parameters of all kernels in all layers of a

CNN as (Th,N), in which Th is a list of threshold values and N is a list of the number of groups

for selecting the corresponding operations.
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3.5.2 Problem Formulation

The problem of finding the speculation parameters (i.e., (Th,N)) to maximize the compu-

tation reduction with an acceptable loss can be formulated as an optimization problem. In order

to formulate the problem, we measure the computation reduction by subtracting the number of

MAC operations that are performed by SnaPEA from the one performed by an unaltered CNN.

However, since the number of MAC operations in the unaltered CNN is constant across various

inputs, maximizing the computation reduction becomes equivalent to minimizing the number of

MAC operations performed by SnaPEA. Accordingly, we define a function that calculates the

number of MAC operations in SnaPEA as follows.

Let od
l,k be the result of a single convolution window obtained by kernel k in layer l with

the speculation parameters Thk
l and Nk

l for the input image d. The number of MAC operations to

compute od
l,k can be calculated by the function Op shown in (3.1). Let assume that the reordered

weights are stored in a 1D array such that the Nk
l speculation weights are placed at the beginning

of the array while the remaining positive weights followed by the remaining negative weights are

placed at the end. The function in (3.1) returns Nk
l if the value of partial sum after performing

Nk
l operations (i.e., PartialSumNk

l
) is less than the threshold value Thk

l . Otherwise, the number of

operations is determined by checking the sign of the partial sum value obtained by performing

operations with the negative weights (i.e., PartialSumw−). If a negative partial sum is observed,

the function returns the index of the corresponding negative weight in the array (i.e., Idxw−).

If none of the above cases occurs (last part in 3.1), the number of operations is set to the total

number of weights in the kernel. Total number of weights of the kernel is Cin,l ×Dk
l ×Dk

l , in
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which Cin,l is the number of input channels of the layer l, and Dk
l is the kernel width.

Op(od
l,k,Thk

l ,N
k
l ) =





Nk
l , if PartialSumNk

l
≤ Thk

l ,

Idxw−, if PartialSumNk
l
> Thk

l & PartialSumw− ≤ 0,

Cin,l×Dk
l ×Dk

l , otherwise
(3.1)

The amount of computation to produce all the convolution outputs is the sum of the

number of MAC operations required to produce each individual output. Based on this definition,

the problem is translated into finding the speculation parameters that minimize total number of

MAC operations and meet the constraint on the accuracy loss, which can be formulated as the

following constrained optimization problem.

Let L be a set of all the layers in a given CNN, Kl a set of all the kernels in layer l, D an

optimization dataset, ε an acceptable accuracy loss, Thk
l and Nk

l the speculation parameters of

kernel k of layer l, Od
l,k the outputs of the convolution generated by kernel k in layer l for the

input image d from D, and AccuracyCNN and AccuracySnaPEA the classification accuracy of the

CNN and the classification accuracy obtained by SnaPEA, respectively. Now, (Th,N) can be

determined by solving the following problem:

min
Th,N

∑
d∈D

∑
l∈L

∑
k∈Kl

∑
o∈Od

l,k

Op(o,Thk
l ,N

k
l )

subject to AccuracyCNN−AccuracySnaPEA ≤ ε

(3.2)

3.5.3 Finding the Speculation Parameters

In order to solve the optimization problem formulated as (3.2), we devise a greedy

algorithm (i.e., Algorithm 1). The algorithm takes a CNN, an optimization dataset D, and
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an acceptable accuracy loss ε and returns a list named ParamCNN that stores the value of the

speculation parameters (Th,N). The algorithm first characterizes the sensitivity of the CNN to

the speculation performed in each kernel in isolation. Then, it adjusts the speculation parameters

for all the kernels through a greedy search such that they cooperatively minimize the computation

while keeping the loss less than ε. Accordingly, we break the algorithm into two main stages (i.e.,

the profiling and the optimization stage) as follows:

Profiling Stage

Function KernelProfilingPass in Algorithm 1 profiles the number of operations (op) and

the accuracy loss (err) corresponding to various values of (Thk
l ,N

k
l ) for the kernel k in layer l.

The exact mode of each kernel is also included in the profiling results by setting (0,1) as one of

the values for its (th,n). The process is repeated for all the kernels in the CNN. The acceptable

profiling results in terms of the accuracy loss, are accumulated in a list called ParamK. Each

sub-list ParamK[l][k] in the list ParamK is sorted in ascending order based on the value of op.

Optimization Stage

The optimization stage evaluates the combined effects of kernels and determines the proper

speculation parameters for them. To avoid the complexity of evaluating the combined effects, the

optimization stage consists of two functions: LocalOptimizationPass and GlobalOptimizationPass.

The function LocalOptimizationPass in Algorithm (1), aims to evaluate the combined effects of

kernels in each layer when the speculation is performed in the layer in isolation. Then, the function

identifies a set of speculation parameters for each individual layer separately that leads to accept-

able accuracy with minimum operations. To do this, the function LocalOptimizationPass generates

T configurations for layer l such that in the t-th configuration, the speculation parameters of kernel

k is set to t-th profiled parameters from the sorted list ParamK[l][k]. The configurations yielding

an acceptable accuracy are selected as the set of configurations for the layer l. The acceptable
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Algorithm 1 Finding the threshold value and its associated number of operations for all kernels
in a CNN

1: Inputs: CNN: a CNN model, D: an optimization dataset,
ε: Acceptable loss in classification accuracy

2:
3: Outputs: ParamCNN: Speculation parameters (Th,N) for the CNN
4: function KERNELPROFILINGPASS(CNN,D,ε)
5: Initialize ParamK[l][k]→ /0

6: for ∀ layer l in CNN do
7: for ∀ kernel k in layer l do
8: for a set of values (th,n) do
9: op, err = Simulate(CNN, D , k, th, n)

10: if err≤ ε then
11: ParamK[l][k].append((th,n,op))
12: Sort ParamK[l][k] based on op
13: return ParamK
14: function LOCALOPTIMIZATIONPASS(CNN,D,ε,ParamK)
15: for layer l in CNN do
16: for t in range(0,T) do
17: for k in layer l do
18: param = ParamK[l][k][t]
19: op, err = Simulate(CNN,D,ε,param)
20: if err ≤ ε then
21: ParamL[l].append((param,op,err))
22: return ParamL
23: function ADJUSTPARAM(CNN,ParamCNN,ParamL)
24: for ∀ layer l in CNN do
25: for ∀ t in range(len(ParamL[l])) do

26: meritL[l][t] =
-(ParamL[l][2]-ParamCNN[l][2])
(ParamL[l][1]−ParamCNN[l][1])

27: l,t = Argmax(meritL)
28: return (l,t)
29: function GLOBALOPTIMIZATIONPASS(CNN,D,ε,ParamL)
30: for ∀ layer l in CNN do ParamCNN[l] = ParamL[l][0]
31: err = Simulate(CNN,D ,ParamCNN)
32: while err> ε do
33: l,t=ADJUSTPARAM(CNN,ParamCNN,ParamL)
34: ParamCNN[l] = ParamL[l][t]
35: remove ParamL[l][t] from ParamL[l]
36: err = Simulate(CNN,D,ε,ParamCNN)
37: return ParamCNN
38: Initialize ParamCNN[l]→ /0

39: ParamK = KERNELPROFILINGPASS(CNN,D,ε)
40: ParamL = LOCALOPTIMIZATIONPASS(CNN,D,ε,ParamK)
41: ParamCNN =GLOBALOPTIMIZATIONPASS(CNN,D,ε,ParamL)
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configurations of all layers are populated in a list called ParamL, and passed to the next function.

The second function, GlobalOptimizationPass, evaluates the effect of speculation per-

formed in all the layers simultaneously and adjusts their speculation parameters with respect to

the cross-layer effect on the classification accuracy and computation reduction. The output of

the function is the final speculation parameters for all the kernels in the CNN which is stored

in the list ParamCNN. To find the final parameters, the function first initializes the ParamCNN

by setting the speculation parameters of each layer l to ParamL[l][0]. This initialization leads

to the maximum computation reduction given the configurations stored in ParamL. However,

the accuracy loss obtained by the initial setting may not be acceptable. In case of meeting the

desired accuracy, the current parameters in ParamCNN is returned. Otherwise, the parameters

are adjusted iteratively until the accuracy loss becomes less than ε. For adjusting the parameters,

in the next iteration, those parameters are of interest that lead to small increase in the number

of operations while large improvement in the classification accuracy. Hence, we define a merit

value as −∆err/∆op, where the larger the ∆err and the smaller the ∆op are, the larger the merit is.

Accordingly, the function GlobalOptimizationPass selects the configuration with the maximum

merit value among all the configuration in ParamL and updates the corresponding speculation

parameters in the list ParamCNN.

3.6 Architecture Design for SnaPEA

SnaPEA provides an accelerator architecture in order to efficiently execute the CNN with

the transformed convolution operations. Modern CNNs consist of several back-to-back layers

including convolution, ReLU activation, pooling, and fully-connected. To provide an end-to-end

solution, the accelerator architecture consists of several units to execute the computation of all

layers in the CNN. In order to efficient execution of CNNs, the architecture, specifically, targets

to optimize the hardware of the convolution layers because of the following reasons. The first
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reason is that the computation of the convolution layers dominates the overall runtime of modern

CNNs [CES16, PRM+17, GPY+17, AJH+16, CDS+14b, SPM+16]. The second reason is to

execute the convolutions with the reordered weights and to support the predictive early activation

at the hardware level. To perform the computations of the fully-connected layers, the same

hardware unit designed for the convolution layers is employed. The fully-connected layers are

mainly used to perform the actual classification. CNNs usually have much smaller number (i.e.

one or two) of fully-connected layers compared to the convolution layers at the final stage of the

network. For example, GoogleNet has 57 convolution layers and only one fully-connected layer.

On average, the computation of fully-connected layers accounts for ≈1% of the total number

of computations performed in CNNs [CES16, GPY+17, SPM+16]. Therefore, using the same

hardware unit for the fully-connected layers has virtually no impact on the total runtime of the

CNNs. Finally, the SnaPEA architecture consists of dedicated units to support the computations

of ReLU activation and pooling layers as well.

Figure 3.6 (a) illustrates the high-level block diagram of the proposed accelerator archi-

tecture. The accelerator consists of a 2D array of identical Processing Engines (PEs). Each PE

is equipped with an input and output buffer that communicates with the off-chip memory. The

weights of kernels and the inputs—coming from an off-chip memory—are stored in the dedicated

buffers within each PE. In the following, we explain each unit of the accelerator architecture in

more details.

Processing Engine (PE)

Figure 3.6 (b) depicts the microarchitecture of one PE in the SnaPEA architecture. Each

PE comprises multiple compute lanes, a weight and index buffer, an input/output buffer, and

multiple Predictive Activation Units. Each compute lane consists of one dedicated Multiply-

and-Accumulate (MAC) unit and one Predictive Activation Unit (PAU). The weight, index, and

input/output buffers are shared across all the compute lanes within each PE. The computation of
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Figure 3.6: (a) The overall structure of the SnaPEA architecture and its multilevel memory
hierarchy, containing an off-chip memory and a distributed on-chip buffer for input and outputs.
(b) The micro-architecture of each PE. The weights are shared across the compute lanes.

a convolution layer in each PE starts upon receiving a block of input features, their corresponding

weights, and the weight indices from the off-chip memory. In every cycle, the PE controller reads

one weight value from the weight buffer and broadcasts it to all the compute (MAC units) lanes.

The PE controller also reads one weight index from the index buffer and sends the fetched index

to the input buffer. Upon receiving the index, the input buffer reads a set of values (one value per

each MAC unit) and sends them to the MAC unit for processing. Each compute lane is dedicated

to perform all the computations of one convolution window. That is, each MAC unit performs

the multiplication of one input and weight for each convolution window and sends the results

to the accumulation register. The accumulation register accumulates the partial sums for each

convolution window. At the same time, the Predictive Activation Unit (PAU) checks the values

of the partial sums to determine whether further computations for each convolution window

is required. If the PAU determines that no further computations for a convolution window is

required, it data gates the corresponding multiplier and accumulator to save energy. This process

continues until either all the computations for the current convolution window are performed or

the PAU determines to apply the activation early.
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Weight and Index Buffers

The weight buffer contains the weight values of the convolution kernels in the pre-

determined order (See Section 3.5). The weights are ordered offline and loaded into the memory

with the proper ordering. Since the ordering of the weights are changed, we also need to add an

index buffer to properly index the input buffer. This index is used to load a value from the index

buffer. In every cycle, the controller fetches one weight from the weight buffer and broadcasts it

to all the compute lanes. Simultaneously, the controller reads an index and sends it to the input

buffer to read the corresponding input value. The input buffer delivers the inputs to each compute

lane to perform one multiplication for adjacent convolution windows.

Input/Output Buffers

The input buffer holds a portion of input data for each convolution layer. Upon completion

of all the computations, the results are written into the output buffer. We use one physical buffer

for inputs and outputs. However, the buffer is logically divided into two sub-buffers for holding

the input and output data of each layer. The logical partitioning allows us to use each of the

sub-buffers as an input or an output buffer. The results of a layer l stored in the output buffer may

be used by the next layer l+1 in . In this case, the data of each sub-buffers are logically swapped

without wasting additional cycles for data transfers.

Predictive Activation Unit (PAU)

Figure 3.7 illustrates the microarchitecture of the Predictive Activation Unit (PAU). One

PAU unit is added to each compute lane to support the convolution operations in the exact and

predictive mode. Performing the convolution operations in the exact mode only requires to

check the sign of the partial sum value during the MAC operations with the negative weights.

Accordingly, in the exact mode, the signal Predict is set to zero which allows the sign-bit of

the partial sum stored in the register Acc Reg to determine the termination of the convolution
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operations. Once the sign-bit becomes one, the signal terminate is asserted and notifies the

controller to terminate the rest of computations for the underlying convolution window.

In the predictive mode, the sign of the convolution output is speculated through the

threshold value (th) and its associated number of operations (n) which are statically determined

through the software part (See Algorithm 1). To perform speculation, PAU first checks the partial

sum value, coming from the accumulator register, with a threshold value after a pre-determined

number of MAC operations. At this time, the controller sets the signal Predict to one. If the

partial sum value is less than the pre-determined threshold value, PAU predicts that the final value

of this convolution window will eventually become negative. In this case, the PAU performs

the following tasks: (1) notifies the controller that no further computations are required for this

convolution window and (2) performs the early ReLU activation and sends zero to the output

buffer. If the partial sum value is larger than the pre-determined threshold, the compute lane

continues the computations for the convolution window normally until it reaches the negative

weights. The next check on the partial sum starts upon starting the MAC operations with the

negative weights. Here, the signal Predict is de-asserted, and PAU periodically performs a simple

one-bit sign check on the partial sum values after each MAC operations, similar to the process

mentioned in the exact mode. Once the sign-bit becomes one, the PAU terminates the convolution

operations of the current window and sends a zero value to the output.

The mechanism of dynamically checking the partial sum values might lead to idle compu-

tation lanes. These computation lanes remain idle until the rest of the lanes finish the computations

of their assigned convolution window. Accordingly, increasing the computation lanes may result

in making more lanes idle despite providing higher parallelism between the convolution windows.

In Section 3.7, we evaluate the effect of increasing computation lanes on the idle cycles and their

effects on the performance and energy savings.

66



M
A
C

Wi

Ai

A
cc
	R
eg 0

Terminate
PredictThreshold

Output

PAU

>=

Sign	Bit

0

1

0

1

Figure 3.7: Prediction Activation Unit (PAU). The Predict signal determines the PAU operation
mode (exact or predictive). The Terminate signal, once asserted, terminates the computation early.

Pooling Unit

Once the computations of a group of convolution windows complete, the PE performs the

pooling operation on the results. Once done, the PE writes the results back into the output buffer.

These results are either used in the computations of the next layers of CNNs or written back to

the off-chip memory, if no further computations is required.

Organization of PEs

As shown in Figure 3.12, the SnaPEA architecture contains multiple identical PEs or-

ganized in a 2D array. The PEs are logically grouped both vertically and horizontally. The

input data are partitioned between the horizontal PEs and the kernels are partitioned between the

vertical PEs. The PEs in the same horizontal and vertical groups work on the same portion of the

input data and kernels, respectively. Before the computation starts, a portion of input data are

broadcasted to all the PEs within the same horizontal group. Similarly, one or more kernels are

broadcasted to the PEs within the same vertical group. After the input and kernel data distribution,

the PEs start and proceed their computations independent from other PEs. Once the computations

for all the PEs within the same horizontal group end, the on-chip buffer delivers the next portion

of input data. In this partitioning, some of the PEs may finish their computations earlier than other

PEs within the same horizontal group. These PEs remain idle until all the other PEs complete their

computations for all the assigned kernels and input data portion. This synchronization mechanism
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reduces the cost of multiple data broadcasting among the PEs while having a small impact on

the performance. We evaluate the impact of this synchronization mechanism in Section 3.7.2 by

analyzing the sensitivity of performance to the number of compute lanes per each PE.

3.7 Evaluation

3.7.1 Methodology

We use several popular medium to large scale dense CNN workloads. We also include

SqueezeNet [IHM+16] that maintains AlexNet-level accuracy with 50× fewer parameters through

a static pruning approach. The fewer parameters in SqueezeNet are attained using an iterative

pruning and re-training of the convolution weights. Table 3.1 summarizes the evaluated networks

and some of the most pertinent parameters such as model size, number of convolution layers

(Conv.), number of fully-connected layers (FC), and the baseline classification accuracy. In all of

the evaluations, we use ILSVRC-2012 [RDS+15] validation dataset. We use Caffe v1.0 [JSD+14] to

run the pre-trained networks on a GPU. We compile Caffe using NVCC v8.0.62 and GCC v4.8.4 with

maximum architecture-specific and compiler optimizations enabled. We configure Caffe to use

Nvidia cuDNN v6.0, a highly tuned GPU-accelerated deep neural network library.

To learn the threshold values and their associated set of operations for each kernel, we

implement Algorithm 1 through updating the data of convolutional layers in Caffe v1.0. We uni-

formly sample a subset of images from each of the 1,000 classes in ImageNet [RDS+15] to obtain

the training and testing datasets for the proposed algorithm. The uniform sampling among all

the classes enables us to cover images from distinct classes during the training and testing phases

of Algorithm 1.

We implement the microarchitectural units of the proposed architecture including the

controllers, PEs, predictive activation unit (PAU), and registers in Verilog. We use Synopsys

Design Compiler (L-2016.03-SP5) and a TSMC 45-nm standard-cell library to synthesize the proposed
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Table 3.1: Workloads, their released year, model size, number of convolution (Conv.) and
fully-connected (FC) layers, and baseline classification accuracy. The model size shows the size
of weights in Megabytes.

Network Year Model Size 
(MB)

AlexNet
GoogLeNet
SqueezeNet
VGGNet

2012
2015
2016
2014

224
54
6

554

# of Layers
Conv. FC

Classification 
Accuracy

5
57
26
13

3
1
1
3

72.6%
84.4%
74.1%
83.0%

Table 3.2: SnaPEA and EYERISS [CES16] design parameters and area breakdown.

PE

# Compute Lanes / PE
Partial Sum Register
Input Register
Weight Buffer
Index Buffer
Input / Output RAM
Predictive Activation Units

Ac
cl

. Number of PEs
Global Buffer

SnaPEA EYERISS
Size Area (mm2) Size Area (mm2)

4 0.012 1 0.003
N/A 0 48 B 0.002
N/A 0 24 B 0.001

0.5 KB 0.014 0.5 KB 0.014
0.5 KB 0.007 N/A 0
20 KB 0.250 N/A 0

4 0.008 N/A 0
64 18.62 256 4.94

N/A 0 1.25 MB 12.9
Total Area 18.6 mm2 17.8 mm2

architecture and obtain the area, delay, and energy numbers of the logic hardware units.

In this work, we explore an 8×8 array of PEs in SnaPEA, each with four compute lanes,

with a total of 256 MAC units. However, the SnaPEA architecture can be scaled up to larger

numbers of PEs. Table 3.2 lists the major architectural parameters of the SnaPEA design. We

add a weight buffer and an index buffer, each 0.5 KB per each PE. Both weight and index buffers

are shared across all the compute lanes within each PE. Each PE is also equipped with a 20 KB

buffer, that is evenly divided between input and output. The total capacity of the buffers therefore

is 1.25 MB. Similar to the weight and index buffers, both input and output buffers are shared across

all the compute lanes within a PE. Sharing the on-chip memories across multiple PEs enables us
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to reduce the overhead of index buffers. We size the input and output buffer so that the activations

of all the CNN models, except VGGNet, fit within these on-chip buffer. This sizing eliminates

the need of draining and filling the on-chip buffers during the execution. For VGGNet, which

has deeper and larger layers, however, SnaPEA has to spill the activations to memory during

the accelerations. We consider the overhead of spilling the data to the off-chip memory in our

experiments. For the baseline architecture, we use the EYERISS [CES16] accelerator. Table 3.2

shows the major architectural components for EYERISS. To have the same peak throughput

in both accelerators, we configure EYERISS to have the same number of MAC units (256) as

ours. In addition, we allocate the same on-chip memory size (1.25 MB) to both accelerators.

The frequency of both accelerators are fixed to 500 MHz. Table 3.2 summarizes the area of the

major microarchitectural components in SnaPEA and EYERISS. Overall, the SnaPEA accelerator

needs ≈4.5% more area compared to the EYERISS architecture with the specified configurations

(Table 3.2). This increase in the area is mainly attributed to the added predictive activation units

(PAUs) in the PEs and the controllers.

Table 3.3 lists the energy consumption of SnaPEA microarchitectural units. For hardware

units, we use the synthesis results with TSMC 45-nm and reported numbers in TETRIS [GPY+17],

which uses the same technology node and has a similar PE architecture as EYERISS. We include

the energy overhead of the predictive activation unit in the energy cost of PE (second row in

Table 3.3). However, for the baseline architecture (EYERISS), we exclude the energy consumption

of the predictive activation unit and use a relative cost of 1.0 in the evaluations. We use the

publicly available Micron’s DDR4 system power calculator [micb] to estimate the energy cost of

accesses to the off-chip memory.

We develop a cycle-level microarchitectural simulator that closely model the architecture

of EYERISS and SnaPEA hardware to measure the performance and energy savings of both

hardware. We integrate the microarchitectural components explained in Section 3.6 into the

simulator in a cycle-level manner. To measure the energy savings, we use the synthesis results
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Table 3.3: Absolute and relative energy comparison for different components of SnaPEA
architecture along with off-chip memory access energy cost. PE energy includes the cost of
Predictive Activation Unit (PAU).

Operation Energy (pJ/Bit) Relative Cost

Register File Access
16-bit Fixed Point PE
Inter-PE Communication
Global Buffer Access
DDR4 Memory Access

0.20
0.30
0.40
1.20
15.00

1.0
1.5
2.0
6.0
75.0

and the reported energy numbers from some of the recent works [GPY+17, CES16, Gal12].

Furthermore, we use CACTI-P [LCA+11] to calculate the area and power of the register files

and on-chip buffers. In the case of any inconsistency in terms of technology node, we properly

scaled the area, delay, and energy numbers to make them consistent with our synthesis flow.

We integrate the delay and energy numbers collected from the aforementioned sources into our

cycle-level simulator. The simulator takes the configuration of a CNN architecture as input and

generates an event log for each hardware component. Finally, using the generated event log along

the integrated delay and energy numbers, the simulator reports the number of cycles and energy

numbers for the whole network.

3.7.2 Experimental Results

Overall Benefits in the Exact Mode

Figure 3.8 illustrates the speedup and energy reductions when the predictive activation is

disabled (i.e. exact mode). In this approach, SnaPEA hardware only applies the early activation

when the value of partial sum drops below zero (See Section 3.6). As there is no prediction,

the CNN classification accuracy will not be deteriorated. In this setting, SnaPEA, on average,

delivers 1.3× speedup and 1.16× energy reductions over EYERISS, respectively. Even for

SqueezeNet [IHM+16]—a statically pruned convolutional neural network—SnaPEA yields 1.3×
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Figure 3.8: Overall (a) speedup and (b) energy reduction with exact mode.

and 1.14×. These savings for SqueezeNet show that static pruning techniques are complimentary

to the dynamic approach of SnaPEA. Overall, the results in the exact mode show the practicality

of SnaPEA in delivering speedup and energy reductions even in the pure exact mode, in which

the CNN classification accuracy remains untampered (Table 3.1).

Overall Benefits in Predictive Mode

Figure 3.9a illustrates the overall performance improvement of SnaPEA over EYERISS

in the predictive mode while maintaining the classification accuracy within 3% range of its

baseline value (See Table 3.1). In this configuration, the predictive activation units (PAUs) might

mis-predict a positive activation value as negative, hence degrading the classification accuracy.

The injected error in the convolutional layers may lead to a drop in the final classification accuracy.

The highest speedup (2.08×) is observed in GoogLeNet, in which a large fraction of the features
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Figure 3.9: Overall (a) speedup and (b) energy reduction with SnaPEA over EYERISS [CES16]
in the predictive mode. The acceptable classification accuracy drop is maintained within ≤3%
range of its baseline value.

are negative, and hence the saving is larger.

Figure 3.9b illustrates the energy reduction with SnaPEA in predictive mode over EYE-

RISS [CES16]. Similar to the simulation settings for speedup, the degradation in classification

accuracy is maintained within 3%. Among all the CNN models, GoogLeNet enjoys the highest

energy reductions (1.63×). Also, in SqueezeNet [IHM+16], a statically pruned CNN model,

our technique yields 1.80× and 1.42× speedup and energy reductions, respectively. This result

endorses the effectiveness of SnaPEA, even compared to static pruning techniques [IHM+16], in

exploiting the runtime information to provide significant savings.

Figure 3.10 illustrates the speedup of convolutional layers in different networks when

accuracy drop is set to 3%. The maximum range of speedup is observed in GoogLeNet, in which

the maximum speedup is 3.59× achieved by convolution layer inception 4e/1x1, and the minimum

73



Alex
Net

Goo
gLe

Net

Squ
eez

eNe
t

VGG
Net

1.00✕

1.50✕

2.00✕

2.50✕

3.00✕

3.50✕

Sp
ee

du
p

conv4

conv3

inception_4e/5x5_reduce

inception_4e/1x1

fire5/squeeze1x1

fire6/expand3x3

conv4_2

conv5_3

Figure 3.10: Speedup of convolutional layers in each network for the predictive mode when the
degradation in classification accuracy is set to ≤ 3%.

speedup is 17% achieved by the layer inception 4e/5x5 reduce.

Moreover, in the predictive mode, to achieve acceptable accuracy drop, a fraction of the

convolutional layers can operate in the predictive mode, which are specified by the software part.

Table 3.4 summarizes the percentage of convolutional layers that operate in the predictive mode

in each network when the accuracy drop is set to 3%. The average speedup and energy saving

across those layers are also brought in the table. The results show that, on average, 67.8% of the

convolutional layers operate in the predictive mode, and the average speedup and energy saving

across these layers are 2.02× and 1.89×, respectively.

Prediction Accuracy

We study how effective the predictive mode is in predicting the negative values. Table 3.5

shows the average true negative and false negative rate across all the convolutional layers in the

studied CNN models. The true negative rate measures the proportion of negative values that are

correctly identified as negative. Applying early activation on these values does not have any effect

on final classification accuracy. The false negative rate measures the proportion of the positive

values that are mis-predicted as negative and squashed to zero; hence, might lead to degradation
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Figure 3.11: Speedup vs. loss in the CNN classification accuracy. Each bar indicates the
speedup when the acceptable degradation in the classification accuracy is 0% (pure exact mode),
1% (predictive mode), 2.0% (predictive mode), and 3.0% (predictive mode), respectively.

in the final classification accuracy. On average, the true (false) negative rate of our proposed

prediction mechanism is 56.26% (20.41%). Due to our optimization technique (See Algorithm 1),

on average, more than 86% of the error occurs on the small positive values. The small positive

values in the activations generally have slight effect on the final classification accuracy. The main

reason for this is attributed to the fact that each convolutional layer is commonly accompanied by

a max-pooling layer, in which the small values are filtered out. The high true negative rate enables

us to apply the activation on the negative values early and significantly reduce the ineffectual

operations. Furthermore, the high true negative rate along the modest false negative rate exhibits

the capability of SnaPEA in utilizing the runtime information to predict the negative values while

meticulously injecting errors mainly on small positive values.

Sensitivity to the Degree of Speculation

To study the effect of our proposed predictive early activation technique, Figure 3.11

illustrates the speedup with SnaPEA over EYERISS [CES16] when the classification accuracy

loss varies from 0% to 3%. The 0% classification accuracy loss is when we do not use any

prediction mechanism (exact mode). The remaining classification accuracy loss levels (e.g., 1.0%,
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Table 3.4: The percentage of convolution layers that operates in the predictive mode, when
classification accuracy drop is set to ≤ 3%. The second and third column illustrates the average
speedup and energy reduction across these convolution layers.

Network

AlexNet
GoogLeNet
SqueezeNet
VGGNet

% of Convolution 
Layers Average Speedup

60.0%
84.21%
65.38%
61.50%

2.11✕
2.17✕
1.94✕
1.87✕

Average Energy
Reduction

1.97✕
2.04✕
1.84✕
1.73✕

Table 3.5: True negative and false negative rate in predictive mode when classification accuracy
drop is set to ≤ 3%.

Network True Negative Rate False Negative Rate

AlexNet
GoogLeNet
SqueezeNet
VGGNet

61.84%
66.36%
49.32%
47.54%

21.39%
28.37%
16.69%
15.21%

2.0%, 3.0%) is when we use the predictive early activation mechanism (predictive mode). In

fact, supporting distinct levels of loss in the classification accuracy is one of the contributions

of our work. The proposed predictive early activations technique exposes a knob for the user

to gracefully navigate the trade-offs between CNN classification accuracy and performance and

efficiency gains. On average, SnaPEA delivers 1.28×, 1.38×, 1.63×, and 1.9× speedup when we

relax the constraint on the acceptable degradation of classification accuracy to 0.0%, 1.0%, 2.0%,

and 3.0%, respectively. As we increase the acceptable degradation in the classification accuracy

all the evaluated CNNs enjoy a boost in the speedup and energy reductions.

Sensitivity to the Number of Compute Lanes

Figure 3.12 illustrates the impact of varying the number of compute lanes within each PE

on speedup with SnaPEA over EYERISS. We present the results for the predictive mode when the

maximum loss in the CNN classification accuracy is set to 3%. The second bar (Default) shows
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Figure 3.12: Sensitivity of speedup with SnaPEA over EYERISS to the number of compute
lanes per each PEs. Each bar indicates the speedup when the number of compute lanes per each
PEs is altered by different factors (acceptable classification accuracy drop ≤3%).

the speedup in the baseline SnaPEA system (i.e., four compute lanes) over EYERISS with the

same number of compute elements. The rest of the bars (first, third, and fourth bar) show the

speedup of SnaPEA when the number of compute lanes per each PE is altered uniformly across

all the PEs by a factor of half, two, and four, respectively. Increasing the number of compute lanes

potentially increases the parallelization level between different convolutional windows. However,

due to the synchronization overhead between the compute lanes per each PE (See Section 3.6,

Organization of PEs), the improvements diminish. The results show that increasing the number of

lanes two times and four times hurts the performance by ≈ 36% and ≈ 45%, respectively. Also,

if we reduce the number of lanes by 0.5×, the performance decreases by ≈ 26%. The reason

for this behavior is mostly because of an uneven amount of computations performed by each

compute lane. In contrast to EYERISS [CES16], in SnaPEA the number of operations in each

convolution window varies due to its runtime early activation. Therefore, increasing the number

of arithmetic units reduces the utilization of the compute lanes and diminishes the benefit of

higher parallelization.
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3.8 Summary of the Chapter

Traditionally, layers of deep neural networks have been thought to work in separation while

handing each other their results. However, our work took a disparate approach in considering the

most common sequence of layers in emerging deep networks to reduce the amount of computation.

As such, SnaPEA has devised a predictive early activation that operates in two distinct modes,

namely exact and predictive mode. In the exact mode, in which the nominal classification

accuracy remains untampered, SnaPEA uses a combination of static re-ordering of the weights

and low-overhead sign check to determine when to terminate the computation. SnaPEA further

improves the performance and efficiency of convolution operations in the predictive mode by

speculatively cutting the computation of convolution operations if it predicts its output is negative,

immediately applying activation. Compared to a recent CNN accelerator, SnaPEA in the exact

mode yields 28% speedup (maximum of 74%) and 16% (maximum of 51%) energy reductions

across various modern CNNs without affecting their classification accuracy. With 3% loss in

classification accuracy, on average, 67.8% of the convolutional layers operate in the predictive

mode, and the average speedup and energy saving across these layers are 2.02× and 1.89×,

respectively. The significant gains due to the computation and memory access reduction across

several modern CNNs show the effectiveness of our approach that conjoins runtime information

and algorithmic insights into a unified accelerator.

Chapter 3, is a reprint of the material appeared in Vahideh Akhlaghi, Amir Yazdanbakhsh,

Kambiz Samadi, Rajesh Gupta, and Hadi Esmaeilzadeh, “Snapea: Predictive Early Activation for

Reducing Computation in Deep Convolutional Neural Networks”, in Proceedings of ACM/IEEE

International Symposium on Computer Architecture (ISCA), 2018.
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Chapter 4

Platform-Aware Algorithm-Hardware

Approximation

To improve the execution costs of many applications, approximate computing is one of

the promising solution that exploits the intrinsic error-tolerance of applications to trade accuracy

of computation for improved performance or/and energy efficiency. Sometimes, depending on the

application error tolerability, a combination of various approximate methods at both algorithm

and hardware level helps to maximize the related efficiency. However, an optimal approximation

that maximizes the efficiency under a given user-specified output quality is hard to achieve due to

several reasons such as large design space and limitations imposed by the underlying hardware

platforms. In addition, taking the underlying hardware architecture into account for selecting

approximate designs and/or modifying the underlying hardware architecture to comply with the

approximate configurations are necessary for maximum efficiency. Therefore, a systematic way to

find a proper configurations for the algorithm and hardware related approximate methods given a

set of constraints imposed by both model and hardware along with selecting an optimal hardware

architecture design is required. In this chapter, we provide a novel machine learning based strategy

for fast design space exploration, proper selection of approximate configurations considering
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the model and platform related constraints, as well as selection of proper hardware architecture

related parameters to maximize the efficiency. In particular, we model the impact of approximate

methods as a function of approximate design parameters, modify CNNs computation as a function

of approximate design parameters, model the execution cost as a function of approximate design,

hardware architecture and platform related parameters, formulate the problem of finding an

optimal approximate and architecture settings under a given set of quality and platform related

constraints coming from the underlying CNN model and platform as a constrained optimization

problem and solve the problem with stochastic gradient descent (SGD).

4.1 Introduction

Many applications and algorithms such as multimedia, machine learning, and signal

processing admit some level of tolerance to the reduced precision of computations. For example,

the accuracy of deep learning algorithms are not impacted by some level of imprecise computation

due to several factors such as over-parameterization [NBA+18]. To improve their execution costs,

approximate execution of these algorithms by reducing computation precision at the algorithm or

hardware level can be deployed. At the algorithm level, approximate versions of these algorithms

with reduced operations, parameters and data precision, which are more efficient alternatives

in terms of the computation complexity, can replace the original ones. At the hardware level,

approximate hardware units that are low cost but less accurate can be employed to execute such

applications and algorithms approximately with low cost. For example, reducing the numerical

precision of data (i.e., quantization) in CNNs [MSC+16, WH19, LMC+16, RORF16, KWW+17]

at the algorithm level and using approximate arithmetic units (e.g., adders [KK12] and multipliers

[VKAKP17]) and approximate memory units with lower operating voltages and timing constraints

[CGW+14, LKP+15, LPMZ11, LJVM12] at the hardware level show improvements in the

execution cost of aforementioned applications.
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Despite the proven system-level benefits of these techniques in the literature, there is still

a gap between the actual benefits of these techniques in practice and what has been explored and

designed so far. To bridge this gap and allow approximate computing techniques to realize their

full potential in improving DNNs execution time and energy consumption, several challenges and

opportunities are required to be addressed and explored.

The first challenge is in controlling the output quality. The efficiency of approximate meth-

ods must be balanced against the degradation of output quality in a measurable way. Therefore,

for a given CNN model, it is necessary to find a proper configuration for the underlying approx-

imate methods (e.g., the number of bits to represent data in quantization or the voltage/timing

parameters of approximate memories) such that its execution cost (i.e., energy and latency) is

minimized while the final output quality remains acceptable.

The second challenge is that the approximate methods are application and input depen-

dent [BC10, ZPL14]. Exploiting the opportunities offered by the approximate computing requires

selection of proper approximate methods for a given application and a given input dataset. Further,

the current approaches use a single approximate method [NHKL20, LMC+16] with uniform

conservative configuration for all the target instructions across the entire program, which limits the

potential gains and calls into question the value of approximate computing. Practical and useful

means for approximate computing must consider the impact of simultaneous use of multiple

approximate methods at both hardware and algorithm levels with non-uniform configurations on

output quality.

Finally, the underlying platform and their related hardware architectures are the key

factors that are required to be considered in selecting non-uniform configurations of approximate

methods used throughout the model execution and/or optimized to support the non-uniform

configurations and maximize the benefits. The following examples show the ineffectiveness of

current methods in finding optimal configurations because of neglecting the impact of underlying

platform in their approaches. EDEN [KOY+19], in which different settings for approximate
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memories are determined for accessing and storing the input and output feature maps of different

layers in CNNs, ignores the impact of pipelining the execution of a group of layers on some

reconfigurable and smaller sizes of platforms; therefore, in such platforms where feature maps

of some layers are not moved to DRAM units, the selection of approximate configurations for

those layers are useless and proper approximate configurations will not be achieved due to the

impractical tolerable error estimation for all layers. As another example, HAQ [WLL+19] learns

various bit-width for various layers of a CNN through reinforcement learning, and then, the

learned bit-width for all layers is adjusted manually to meet the constraints on the hardware

resources. However, the final bit-width suggestion may not be an optimal one due to ignoring the

limitation of hardware directly in the optimization process.

Based on the mentioned challenges, the key approach to maximize the efficiency of ML

accelerators is non-uniform platform aware approximation at the algorithm and hardware level

as well as architectural level optimizations. To reach this point, a simple and systematic method-

ology is required for a fast exploration of a large design space, a proper selection of non-uniform

approximate configurations for the model and hardware related approximate methods and a proper

design choice for the hardware architecture such that the computation cost of a CNN model

is maximized while the algorithm related constraints (e.g., acceptable classification accuracy)

and the hardware related constraints (e.g., using limited number of hardware resources) will

be satisfied. To find a proper approximate configurations and an efficient architectural design

systematically, we introduce a machine learning-based optimization framework, which (1) in-

tegrates the impact of each approximate methods at both the algorithm and hardware level into

a given CNN model considering the underlying architectural support, (2) formulates the problem

of minimizing the computation cost under given model and hardware related constraints into an

optimization problem and (3) learns the proper configurations and architectural design choice

through stochastic gradient descent procedure.
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4.2 Related Work

To expand the applicability of deep neural networks and enable them to run on edge

devices, various types of designs and optimizations are explored and studied on both DNNs

algorithms and computing architectures. One of the main approaches to improve their performance

on the hardware is approximate computing. DNN models are intrinsically tolerant, to some extent,

to the reduced precision in their computation. This characteristic pave the way for reducing the

precision of computation in order to improve the execution costs. There are several approximate

techniques at the algorithm or hardware level employed to accelerate deep learning algorithms.

Quantization [MSC+16] and using approximate DRAM units [KOY+19] are examples of such

approximate computing techniques, at the algorithm and the hardware level, respectively. Despite

their effectiveness in reducing the cost, most of the existing methods only employ one source of

approximation or lack of a systematic optimization approach to maximize their benefits. In this

work, we show that optimal algorithm-hardware approximation with non-uniform configurations

throughout the program enhances the benefit of approximate computing. Also, considering the

hardware limitation and optimizing architectural parameters can further improve the cost and

practicality of these approaches.

Quantization Techniques

One of the main approximate methods at the algorithm level that significantly reduces the

cost of arithmetic operations, memory accesses, and data transfers is using narrower bit-width for

presenting data in DNN models. [SCYE17] provides a review of set of quantization techniques

in DNNs. One of the common quantization methods used in DNN accelerators is representing

data in fixed-point format [MSC+16, CES16]. Despite the significant benefits of quantization,

the main challenge is to determine the number of bits to represent data without significant impact

on the final accuracy. For fixed-point values, for example, as well as the total number of bits,
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specifying the number of bits to represent the fractional parts and the number of bits for the integer

parts without changing the accuracy is challenging. [MSC+16] shows that using 8 bits for the

weights and 10 bits for feature maps can maintain the accuracy within 1% of the original accuracy.

Therefore, selecting a proper bit-width configuration is necessary for keeping the accuracy high.

Approximate DRAM Units

To reduce the energy consumption of DRAM accesses, the main approach is to reduce

the supply voltage, thus reducing the refresh rate and relaxing their timing constrains such as

activation latency and pre-charge latency [CGW+14, LKP+15, LJVM12, CYG+17, LPMZ11].

However, these relaxed settings introduce errors during read and write operations [CYG+17].

Therefore, to control the accuracy proper DRAM parameters settings are required. The authors

in [KOY+19] provide a framework to enable safe use of approximate DRAM units in DNNs by

modeling the error of a set of DRAM chips and controlling their voltage reduction based on the

tolerance of DNN models.

Determining Approximate Configurations

As discussed above, although approximate computing techniques reduce the computation

cost, the main challenge is a proper choice of level of approximation to control their impact on the

final model accuracy. Most of the research in the area of approximation computing for reducing

computation costs, especially in DNNs, determines the proper approximate configurations with

a heuristic search by increasing the approximation level gradually until a safe configuration is

found [KOY+19]. In [LLH+16], a statistical quality model is proposed in which an error model

is first extracted from a given set of approximate functional units for fast exploration, and then

their impacts on the output quality are explored by error propagation techniques. Although

[LLH+16] offers an error model for approximate computing for fast design space exploration, the

method is not scalable and limited to a specific set of approximate functional units with uniform
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configurations, which inhibits maximum gain. Despite the effectiveness of these techniques in

finding a safe configuration, a major challenge appears when the design space becomes large

due to various levels of approximations, various approximation methods at each level, and

non-uniform approximation of a large numbers of computation blocks in the algorithms, which

makes the search exhaustive. HAQ [WLL+19] deploys reinforcement learning to find the proper

bit-width for different layers of CNNs. However, this approach requires complex formulation of

the problem to use reinforcement learning; thereby, not only finding the optimal configurations

becomes highly dependent on the proper formulation and definition of the reward function, but in

a setting with different approximate methods, using HAQ is not straightforward. To overcome

these challenges, our proposed scalable framework uses a simple formulation of the problem and

solves it based on a machine learning technique to explore various configurations fast and learns

proper configurations in different approximate settings.

4.3 Overview of the Framework

In this section, the overall process to find the proper approximate setting for algorithm

and hardware related approximate methods based on the underlying platform and architecture

along with optimizing architecture to support such approximation efficiently will be explained in

details. The first step is to model the impact of approximate methods into the computation of a

given DNN models as a function of a set of approximation related parameters. The second step is

to determine the model and hardware related constraints and formulate them as a function of a

set of parameters. The parameters required for formulating the constraints can be a combination

of the approximate related parameters defined in the previous step and a set of new parameters

that are related to the underlying platform, architecture and the DNN models. The third step is

to formulate the main problem of finding proper configurations in the form of minimizing an

objective function under a set of constraints formulated before. The objective function represents
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the execution cost. Finally, the proper configurations can be determined by finding a solution to

the defined problem through stochastic gradient descent (SGD).

4.3.1 Parameterized Error Injection

In order to integrate the impact of the approximation methods used to improve model

computation and the cost of hardware units on a given DNN model’s output, we need to obtain

a proper model that imitates their true error behaviors. Here, we explain several methods that

can be categorized into two groups. Depending on the approximate method and the available

information about how it impacts the computation, one of the methods is selected to inject the

error of approximation into the DNN computation.

Model-Based Error Injection

One of the most precise methods to inject the error of an approximate method is to find

a mathematical model to represent the actual impact of a given method (e.g., quantization) and

modify the corresponding computation part of the DNN model accordingly. To explain this

method in more detail, let’s consider quantization as an example of the approximate methods to

reduce the computation burden of CNNs. Suppose we quantize a value represented as a floating-

point number (Vf loat) to a fixed-point number (Vf ixed) with m bits for the integer (int) and q bits

for the fractional part ( f raction). Assuming that m is fixed for different quantization levels and

large enough to represent the integer part of the value, with the fractional part represented with q

bits, the new quantized value of Vf loat with the mentioned fixed-point format can be obtained by

the following model:

Vf ixed =
round(Vf loat×2q)

2q (4.1)

With the model formulated in 4.1, the quantization error can simply be injected through

quantizing the values directly in a given computation. Here, in this formula, the quantized value
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is represented as a function of parameter q that controls the level of quantization. In this work,

we call the parameter q as the error parameter related to quantization that can be considered as a

controlling knob for the quantization.

Despite the true representation of the error behavior offered by this model-based method,

one of the main challenges is lack of such explicit models for some of the approximate methods.

Statistics-Based Error Injection

For the approximate methods with no explicit model to inject their errors into a given

computation, statistical analysis are used to estimate and model their error behaviors. In the

statistical-based error modeling, the distribution of the error is mainly computed and injected into

the computation. However, since finding a true error distribution is not feasible, the expected

value of the impacted computation is estimated based on the available and easily-computing error

metrics related to the approximate methods. Then, the estimated expected values are used to

replace the corresponding computation part in a DNN model so that the impact of approximation

is injected and propagated to the output.

As an example of the error metrics that can be used for error estimation is the error rate,

which is the probability of occurrence of the error related to an approximate method. The impact

of the error expressed with the error rate is modeled with the following formula:

X̃ = α×E +(1−α)×X (4.2)

where X and X̃ are the value before and after being exposed to the approximation method,

respectively; E is the error value as a result of the approximation method when error occurs and

α is the probability of the occurrence of the error.

Another prevailing error metric to express the behavior of approximate methods, especially

in the approximate hardware units, is the average of relative error. For these cases, the impact of
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the average of relative error ω on a value X is formulated in 4.3.

X̃ = X× (1+ω) (4.3)

In equations 4.2 and 4.3, the parameters α and ω are the error parameters that can be

used as the controlling knobs for controlling the degree of approximation in the underlying

approximate methods.

With these two error injection methods, the error of approximation is integrated into the

model computation and propagated to the model output. Therefore, the output of the model

impacted by a set of approximate methods (Õ) can be formulated as equation 4.4 that is a function

of its inputs (X), the model related parameters (W ), i.e., the parameters of the original model

such as convolutional filters in a CNN, and the error parameters (E), i.e., the parameters related

to controlling the approximation degree of the approximate methods used to approximate model’s

algorithms and/or hardware units.

Õ = f (X ,W ,E) (4.4)

4.3.2 Model and Hardware Related Constraints

Using approximate alternatives of computation in DNN models or approximate units

at the hardware level decreases the execution costs of these models; on the other hand, it may

adversely impact the quality of the models outputs. For example, in CNNs, approximate methods

degrade their classification accuracies to an unacceptable level if the degree of approximation

is not controlled properly. Therefore, improvement in execution costs is required to be balanced

against the degradation on the models output quality, which necessitates a proper selection of

approximate methods such that the execution cost will be minimized while the output quality

remains within the user-specified acceptable range. In addition, to maximize the cost efficiency
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requires that the approximate alternatives of computation in DNN model are executed efficiently

on the hardware. To ensure the hardware efficiency of approximate models, hardware level

information is required to decide which alternative to be selected. The hardware level information

could be the underlying hardware architecture and the related dataflow mechanism, the number

of possible arithmetic units implemented on the chip and the number of available on-chip buffers.

Based on the aforementioned issues, due to the necessity of maintaining a balance between

the cost improvement and model output quality and taking the hardware level constraints into

consideration in selecting a cost-efficient approximate implementation of a DNN model, we

require to include model and hardware related constraints into the process of learning optimal

algorithm-hardware approximation. Accordingly, we formulate these constraints as below. The

output quality related constraints can be specified as:

Q(Õ)≥Cout (4.5)

where Q is a function that specifies the model output quality which depends on the type of model

and its application (e.g., for CNNs, Q is the classification accuracy), and Cout is the lower bound

on the output quality.

The main hardware related constraint is the number of available hardware resources (e.g.,

number of Look Up Tables on FPGA) which varies across different platforms. In addition to

the model and hardware related approximate methods and their configurations that determine

the required number of hardware resources, the underlying hardware architecture (e.g., the

number of parallel MAC units on an ML accelerator) is also important. To show the impact

of the architecture, we define a new set of architecture related parameters (A) representing the

underlying architecture design that along with the error parameters (E) help to formulate the

hardware related constraints. Accordingly, the following formula determines the hardware related

constraints:

RH (E ,A)≤CH (4.6)
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where RH is a function that determines the required hardware resources H of the underlying

hardware platform to implement a given approximate version of computation, and CH is the

maximum number of available hardware resources H on a given platform.

4.3.3 Problem Formulation

Providing an optimal non-uniform algorithm-hardware approximation requires to select a

proper approximate configuration for the model algorithm and hardware units as well as a proper

hardware architecture design such that the computation cost is minimized while the model and

hardware related constraints are satisfied. The approximate configurations that inject higher error

to the output is expected to offer lower computation cost. However, as mentioned before, the

lower cost must be balanced against the output quality. On the other hand, given a limited number

of resources on the underlying platform, for non-uniform selection of approximate configurations,

the underlying hardware architecture is required to be taken into account and designed properly

to maximize the efficiency. Accordingly, the problem of providing optimal platform-aware

algorithm-hardware approximation can be formulated as the following optimization problem:

Problem 4.1. Find a set of error parameters E and architecture parameters A such that:

min
E ,A

fc(X ,W ,E ,A)

s.t. Q(Õ)≥Cout where Õ = f (X ,W ,E)

RH (E ,A)≤CH

where fc is a function that determines the computation cost, which depends on the input

and model parameters as well as the error parameters controlling the degree of approximation

and architecture parameters determining a suitable architecture for this design.

To find an optimal platform-aware approximate configurations for computation and

hardware units, in the next step, we require to find a solution, i.e., finding a proper values of E

and A , for Problem 4.1.
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4.3.4 Learning Optimal Algorithm-Hardware Level Approximation and

Architecture Design

In order to find a solution for Problem 4.1., we use a well-known technique, stochastic

gradient descent, employed in machine learning algorithms to find the model parameters that

minimize a loss function. Stochastic gradient descent is useful for finding an optimal solution for

an unconstrained optimization problem; thus, for solving Problem 4.1, which is a constrained

optimization problem, it is required to be converted to an unconstrained one. We convert Problem

4.1 to an unconstrained optimization problem using Penalty and Barrier method [Die13]. Penalty

and Barrier method defines a continuous function called Penalty function, the value of which

increases to infinity for the points approaching the boundary of feasible regions. The penalty

function defined by this method will be integrated into the objective function of the problem so

that any violation of the constraints will be penalized significantly, which leads the solver toward

finding solutions to satisfy the constraints.

For Problem 4.1., the penalty functions for the constraints can be defined as follows:

Penalty(Q) = λQ(Q(Õ)−Cout) (4.7)

Penalty(R) = λR(RH (E ,A)−CH ) (4.8)

where λQ and λR are large positive numbers that penalize violation of the constraints

defined in 4.5 and 4.6 and used in Problem 4.1. with a large factor.

By integrating the penalty functions defined in equations 4.7 and 4.8 into Problem 4.1.,

the problem of providing optimal platform-aware algorithm-hardware approximation can be
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formulated as 4.9 and be solved with the SGD.

min
E ,A

fc(X ,W ,E ,A)+λQ(Q(Õ)−Cout)+λR(RH (E ,A)−CH )

where Õ = f (X ,W ,E)

(4.9)

Now, stochastic gradient descent can find an optimal set of parameters, i.e., Ẽ and Ã , for

Equation 4.9 by iteratively updating the parameters using the gradient of the objective function

with respect to each parameter at training data points. Finally, the optimal set of parameters Ẽ

learned in 4.9 determines proper configurations of approximate methods for the algorithm and

hardware units and Ã determines proper architecture design that reduce the cost while satisfying

the conditions on output quality and hardware resources.

4.4 Optimal Algorithm-Hardware Approximation for FPGA-

based CNN accelerators

In this section, we explain how the process of providing optimal platform-aware algorithm-

hardware approximation can be used to optimize CNN algorithms on FPGA-based accelerators.

In particular, we consider quantization as an approximate method to reduce the burden of model

computation and DRAM voltage scaling as an approximate method to reduce the cost of hardware

units. As mentioned before, to maximize energy saving of CNNs with acceptable accuracy,

finding proper bit-widths for quantizing the weights and feature maps of each convolutional layer

given the underlying resource limitations, proper voltage levels for storing and accessing weights

and feature maps of each layer in DRAM, and a proper hardware architecture setting is required.

Before defining the optimization problem to find such configurations, let’s look at an

example of FPGA-based accelerator architecture shown in Figure 4.1. The accelerator architecture

consists of several parts: an interface to DRAM unit to buffer data coming from or written back
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Figure 4.1: Overview of FPGA-based accelerator architecture with uniform quantization and
DRAM voltage for all layers. M q-bits MAC units are used in parallel to execute convolutional
layers. IF/OF maps buffers and weight buffers all store q-bits values. All the chips and DRAM
partitions are working with the same voltage.

to memory, a set of buffers to store weights (Weight Buffer) and input feature maps (IF Buffer)

and output feature maps (OF Buffer), a set of M MAC units to execute convolutional layers by

parallelizing their operations and a pooling unit to execute pooling layers. In this architecture, all

the units are designed to execute a CNN, the feature maps and weight of which are quantized to

q bits. Therefore, all the MAC units execute q-bit operations and buffers store q-bit values. In

addition, all the data related to each layer is stored in and accessed through a DRAM where all

the partitions and DRAM chips work under a fixed operating voltage. Therefore, this architecture

supports uniform approximate configurations.

Now, to use different bit-width for different layers based on their eror tolerance to save

more energy, we require an architecture to support such non-uniformity of the operation precision

across various layers. Such architecture, as shown in Figure 4.2, needs a dedicated set of resources

for different groups of layers (the layers in a group have similar quantization setting), which

impacts its compute efficiency due to limited resources on FPGA platforms. As an example,

the architecture in Figure 4.2 has d separate set of resources to support the execution of d

groups of convolutional and pooling layers, meaning that layers weights and feature maps can be
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Figure 4.2: CNN accelerator architecture to support non-uniform quantization and approximate
main memory error

quantized to one of qw1 and q f1 bits to qwd and q fd bits configurations. Dedication of various set

of resources on FPGA to each group of convolutional layers limits parallelization of operations

in each layer depending on the size of FPGA mainly due to resource under-utilization for each

layer. The resource under-utilization leads to deployment of limited number of MAC units to

parallelize operations of a layer at each time while the rest of the MAC units and resources are idle.

Therefore, to maximize the energy efficiency, it is required to control this heterogeneity across

layers (i.e., selecting a proper value for d) and make a proper decision on the number of dedicated

MAC units for each group g (i.e., selecting a proper value for Mq f gqwg
) based on the number of

available resources on FPGA, as well as a proper number of bits for feature maps and the weight

of the layers (i.e., selecting a proper value for a set of parameters {q f iqwi∀i ∈ {1,2, ...,d}} and

assigning a proper bit-width configuration from the set to a layer depending on its tolerance to the

quantization).

In the followings, we elaborate on the process of defining the optimization problem and

learning the bit-width and DRAM voltages for each layer and proper number of MAC units for
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each group.

4.4.1 Injecting Quantization and DRAM Voltage Scaling Error into CNNs

Here, we explain the process of injecting error of quantization and DRAM voltage scaling

into CNNs and define a set of related parameters that will be used later to control the degree of

approximation in these methods.

The impact of quantizing the weights and feature maps can be directly modeled based

on the quantization method. As mentioned in Section 4.3.1, for fixed point quantization method,

the formula in 4.1 can be used. With a proper formula, for any given quantization method, the

weights and feature maps in each layer of a CNN model can be modified directly throughout the

entire model based on the number of bits represented as a quantization parameter assigned for the

weights and feature maps of the layer. Therefore, for the entire CNN model, to inject the impact

of quantization, a set of quantization parameters is defined as follows:

Q = {ql
f |∀l ∈ L}∪{ql

w|∀l ∈ L}, (4.10)

where L is a set of all convolutional layers in a CNN model, ql
f is the number of bits to quantize

input and output feature maps of layer l and ql
w is the number of bits for the model weights.

For injecting the impact of voltage scaling of DRAM into CNN models, we use Bit Error

Rate (BER), which is the number of bits that are flipped due to scaling the operating voltage of

memories or reducing the activation/pre-charge latency [CGW+14, LKP+15, CYG+17]. Thus,

BER can be interpreted as the probability of a bit flip (p). With this information obtained from

the approximate DRAM, the probability of having error perr on an n-bit value is:

perr = 1− (1− p)n. (4.11)
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For injecting the impact of DRAM, the statistics-based error injection shown in Equation 4.2 can

be used. Assuming that the bit flips are randomly distributed across different bits, the value of E

can be considered as a random number. Therefore, here, we consider BER represented by p as

the error parameter corresponding to approximate DRAM. Accordingly, different parameters of p

can be defined for weights and IFM/OFMs in different layers of a CNN model as follows:

P = {pl
f |∀l ∈ L}∪{pl

w|∀l ∈ L}, (4.12)

where L is a set of all convolutional layers in a CNN model, pl
f corresponds to BER for the

feature maps of layer l and pl
w corresponds to BER for the weights in that layer.

4.4.2 Constraints on Model Accuracy and FPGA Resource Budget

The next step is to specify a set of model and hardware related constraints similar to those

mentioned in Section 4.3.2. For determining the model related constraints, the main factor for

quality measurement in CNNs is classification accuracy. Therefore, in 4.5, Q is the classification

accuracy of the CNN impacted by quantization and DRAM voltage scaling. In addition, in

computer vision tasks, classification accuracy within 1% of the original classification accuracy is

acceptable. Thus, Cout in 4.5 which is the maximum acceptable quality degradation is equal to

the original accuracy reduced by 1%. Therefore, the model related constraints in CNNs can be

formulated as follows:

˜acc≥ acc−1

˜acc = f̃ (X ,W ,Q ,P ) & acc = f (X ,W )

(4.13)

where ˜acc is the accuracy of the CNN impacted by quantization and DRAM voltage scaling

which is a function of CNN input, weights, and error parameters Q and P , and acc is the accuracy

of the original CNN as a function of CNN input and weights.
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The main hardware related constraints for CNNs running on FPGA platforms are the

limited FPGA resources mainly the limited number of Look Up Tables (LUT), Flip-Flops

(FF), Block BRAMs (BRAM) and Digital Signal Processors (DSP) which varies across various

platforms. As mentioned earlier in this section, non-uniform quantization of the weights and

feature maps in different layers of CNNs, although, in theory, reduces the latency compared

to uniform quantization of layers due to selecting the highest quantization level that can be

tolerated by each individual layer, in practice on hardware platforms such as FPGAs due to the

limited number of resources and the necessity of allocating separate resources to perform MAC

operations with different bit-widths, it suffers from resource under-utilization of FPGA resources,

which impacts the execution costs. Therefore, proper selection of bit-width along with proper

selection of the number of MAC units for each group of convolutional layers such that the energy

consumption is minimized while the number of required resources for such configuration does

not exceed the number of available resources on FPGAs is necessary.

To formulate the hardware related constraint, we require to formulate the number of re-

quired resources for a given non-uniform bit-width configuration of layers. Here, let’s assume that

the required number of bits are less than or equal to 8 bits. Since in synthesis tools such as Vivado

HLS tool, only LUTs and FFs are used to implement MAC operations between values having less

than or equal to 8 bits, we only require to compute the number of required LUTs (T ) and FFs (F).

The number of LUTs (Tl) for each layer l can be computed directly by the number of

MAC units that are dedicated for the layer to parallelize the operations in the convolutions.

To estimate the number of LUTs and FFs to implement M Mac units on FPGA, we obtain

a model based on an FPGA synthesis of a 3x3 convolutional layer with different bit-width settings

and the number of MAC units. The experiments show that for all bit-width configurations, there

is a linear relation between the number of LUTs and FFs for different number of MAC units

(power-2 multiples of 16 units) and the number of LUTs and FFs required for 16 MAC units

with similar bit-width (T Base
ql

wql
f

) as the baseline configuration. Therefore, for a given bit-width
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configuration qwq f and its corresponding number of MAC units Mqwq f , the number of LUTs

(T conv
qwq f

) and FFs (Fconv
qwq f

) can be computed with the following formula.

T conv
Mqwq f

= αMqwq f
T Base

qwq f

Fconv
Mqwq f

= βMqwq f
FBase

qwq f

(4.14)

Therefore, the architecture related parameters are:

A = {Mqwq f |∀qwq f ∈ ∪l∈L{ql
wql

f }} (4.15)

4.4.3 Problem Formulation

Now, based on the error parameters defined in Section 4.4.1 and model and hardware

related constraints and architecture parameters defined in Section 4.4.2, the problem of finding

proper platform-aware approximate configurations along with proper architecture design parame-

ters to minimize latency under a given resource budget while maintaining an acceptable accuracy

is formulated as the following:

Problem 4.2. For a given CNN with L convolutional layers, convolutional parameters W ,

and input image X , and a given FPGA platform with RLUT LUTs and RFF FFs, find a set of error

parameters E = {Q ∪P} and architecture parameters A = {Mqwq f |∀qwq f ∈ ∪l∈L{ql
wql

f }} such

that:

min
E ,A

(∑
l

OPl

Mql
wql

f

)

s.t. ˜acc≥ acc−1 where ˜acc = f̃ (X ,W ,Q ,P ) & acc = f (X ,W )

∑
Mqwq f

T conv
Mqwq f

≤ RLUT where T conv
Mqwq f

= αMqwq f
T Base

qwq f

∑
Mqwq f

Fconv
Mqwq f

≤ RFF where Fconv
Mqwq f

= βMqwq f
FBase

qwq f
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In Problem 4.2. OPl
M

ql
wql

f

estimates the latency of layer l.

4.4.4 Optimal Quantization and DRAM Voltage

To learn proper number of bits for the quantizing different layers and proper voltage

of DRAM to store feature maps and weights along with proper number of MAC units for

implementing non-uniform quantization given a set of resource constraints, we use SGD to solve

Problem 4.2. Before applying SGD, the problem is required to be reformulated and represented in

the form of unconstrained optimization problem. Using the Penalty and Barrier method [Die13]

as described in Section 4.3.4 the problem will be in the following form.

min
E ,A

(∑
l

OPl

Mql
wql

f

)+λacc( ˜acc− (acc−1))+λLUT ( ∑
Mqwq f

T conv
Mqwq f

−RLUT )+λFF( ∑
Mqwq f

Fconv
Mqwq f

−RFF)

where T conv
Mqwq f

= αMqwq f
T Base

qwq f
& Fconv

Mqwq f
= βMqwq f

FBase
qwq f

(4.16)

4.5 Experimental Evaluation

In this section, we evaluate our proposed framework in finding the proper model and

approximate hardware configurations to minimize hardware cost and accuracy drop. Through

different sets of experiments, we show the generality of the proposed framework to find the

proper approximate configurations of different combinations of approximate methods for different

machine learning models under various model and hardware related constraints.

4.5.1 Optimal Hardware Approximation for the Weight Updates in Linear

Regression and SVM

We use the proposed process for efficient execution of two machine learning training algo-

rithms (i.e., two gradient descent algorithms used for updating the weights in Linear Regression
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and Support Vector Machine (SVM) [MPA+16]) on the hardware with approximate methods only

at the hardware level. Here, we assume that the underlying hardware platform has three types

of configurable approximate hardware units (i.e., Adders, Multipliers and DRAM units). The

goal is to find the best approximate configurations for these units so that the energy consumption

is minimized while the average of relative errors of the weight updates at each iteration remain

within a specific range. To find the best configuration for this problem, we customize the process

explained in Section 4.3 and call the framework LEMAX.

We consider an approximate platform that contains an approximate DRAM, and a set

of approximate multiplier units and adders which are proposed in [LPMZ11],[AKAKP17],

[VKAKP17], respectively. Accordingly, the specification of these units including their energy-

error model and the error metric, is extracted and summarized in Table 4.1.

DRAM- Relaxing data preserving schemes in DRAM has been proposed earlier to improve its

energy consumption. As an approximate DRAM, we chose Flikker [LPMZ11] in which the

refresh rate is reduced. The error metric is error rate in the applications input data. Therefore, we

use Equation 4.2 to integrate the effect of approximate DRAM on the output quality and energy

consumption. Since Flikker uses the same refresh rate for all pages, we use the same α for all

the inputs. Moreover, the corresponding approximate erroneous value (E) is chosen uniformly at

random. The refresh energy of baseline DRAM is extracted from [mica]. In the experiments, the

energy of refreshing DRAM in only one DRAM operating cycle is accounted in the cost function.

Adder- We chose RAP-CLA [AKAKP17], a configurable approximate carry look-ahead adder

where an external correction unit for the exact add operation is omitted. The error metric of

average of relative error is chosen to define the error parameters and Equation 4.3 to inject the

corresponding error into the computation. The energy-error model is extracted from [AKAKP17]

which are obtained in 45 nm technology.

Multiplier- For the approximate multiplier, we use AQ-LETAM [VKAKP17] which is composed

of approximate multiplication, shift and add operations on the truncated inputs. The accuracy of
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Table 4.1: Energy-error of approximate units extracted from [LPMZ11, AKAKP17, VKAKP17]

Adder Avg. Rel. Err 0 0.004 0.056 0.12 -
Energy (aJ) 5789 1906 1815 1145 -

Multiplier Avg. Rel. Err 0 72E-5 24E-4 8E-3 24E-3
Energy (fJ) 4920 1000 930 740 590

DRAM Error Rate 0 1E-9 1E-8 1E-7 1E-6
Energy (nJ) 132.84 120.8 110.2 102.6 99.6
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Figure 4.3: Energy consumption improvement of different approximate systems compared to
the baseline in executing Linear Regression training algorithm with different number of features
under different quality constraints.

AQ-LETAM is adjusted by selecting the proper truncation length. The chosen error metric and

the process of error injection is similar to the case of adders. The reported energy numbers for

different configurations were obtained using 45 nm technology.

We evaluate LEMAX effectiveness on four approximate systems with different approx-

imate modules. APX-DMA comprises of approximate DRAM, approximate multipliers and

approximate adders. APX-DRAM only employs approximate DRAM to improve the energy

consumption of a system while APX-MUL and APX-ADD only use approximate multipliers

and adders, respectively. To determine the best configurations of approximate units in each

system for the corresponding instruction throughout the program, we require to define and solve

a problem similar to the one defined in Equation 4.9. Here, in this case, we assume that the

area budget is not limited or impacted significantly by different approximate arithmetic units,

therefore, the term related to resource constraints in Equation 4.9 can be removed. To define the
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Figure 4.4: Energy consumption improvement of different approximate systems compared
to the baseline in executing SVM training algorithm with different number of features under
different quality constraints.

objective function, the corresponding part of the program (i.e., weight update loop that includes

computing the gradient descent algorithm in LR and SVM) is implemented in Python and the

related error of the approximate unit in each system is injected into the program by defining a

set of error parameters E . Accordingly, the quality loss Q(Õ) is defined as a function of error

parameters by traversing the original and parameterized approximate version of the program.

Moreover, the cost function fc is defined based on the energy-error model obtained from the

hardware specifications (Table 4.1) and the operations in the program. In order to learn the error

parameters to minimize the modified objective function defined in Problem 4.9, we use Adam

optimizer [KB14]. As such, we exploit Autograd (version v1.2)[aut], which enables the gradient

descent based optimization by providing the gradient of a function at a given point with respect

to the parameters. The obtained gradient of the objective function is then fed into the Adam

optimizer, implemented by the Autograd developers, to learn the error parameters.

To learn the error parameters, we use 6000 data samples from UCI machine learning

repository [DG17] as the training set and 1500 samples as the validation set. In order to perform

mini-batch gradient descent, the training set is divided into 15 batches, each of which has

400 samples. To evaluate the scalability of LEMAX in learning the error parameters of more

inputs/operations in larger programs, we change the size of the applications by varying the number

of features used in the data sets. We evaluated LEMAX for the chosen applications with the input

sets consisting of 32, 64, 256, and 512 features. Accordingly, Table 4.2 shows the number of
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Table 4.2: Number of error parameters, adders and multipliers, and the quality loss on the
validation dataset for Linear Regression and Support Vector Machine learning algorithms with
different number of input features

Application #Features Error Parameters # Adders # Multipliers Tested Quality Loss (%)
5% 2% 0.5%

LR 32 161 64 96 5.2 2.0 0.52
LR 64 321 128 192 5.1 2.07 0.49
LR 256 1281 512 768 4.98 1.9 0.47
LR 512 1024 1536 2269 5.1 2.1 0.49

SVM 32 226 95 130 4.8 2.04 0.49
SVM 64 450 191 258 4.9 2.1 0.49
SVM 256 1794 767 1026 4.9 2.03 0.48
SVM 512 3586 1535 2050 5.1 1.8 0.5

error parameters, and the number of adders and multipliers. As the output quality metric, i.e.,

function Q, in this work, we chose average of relative error and evaluate LEMAX under different

quality losses of 5%, 2% and 0.5%. LEMAX can be used for any other quality metrics, as well.

To evaluate training time of LEMAX for finding the error parameters for Linear Regression

and SVM with various quality constraints, we use the Python package timeit. Results show that

LEMAX converges relatively fast (i.e., on average, 354 for smaller sizes of applications (32 and

64 features) and 1594 for larger applications). We also tested quality loss of the applications

on the validation data set shown in Table 4.2. The results show that LEMAX can successfully

achieve a configuration that meets the desired quality even for the validation data.

To estimate the energy consumption of applications in different approximate systems

defined above, the refresh energy of DRAM, energy of adders and energy of multipliers are

summed up together. The energy numbers for each module is dependent on the respective

error parameter learned by LEMAX. Since the goal of this work is to show the effectiveness of

simultaneous non-uniform use of multiple approximate units, in this case, we only consider the

energy of refresh in approximate DRAM, and energy of adders and energy of multipliers, and

exclude the effect of other modules in estimating the energy consumption. Figure 4.3 and 4.4 show

the energy improvement of the Linear Regression and SVM training algorithms, respectively, in
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four mentioned approximate systems compared to the baseline case where all the units operate in

the exact mode. The evaluation is performed for different quality losses and different number of

input features. The energy is calculated based on the error parameters obtained by LEMAX.

In Linear Regression, use of multiple approximate units achieves energy improvement of

96.2%, 43.3% and 36.4%, on average, compared to the exact system for quality loss of 5%, 2%,

and 0.5%, respectively, while only a single approximate unit improves the energy by 31.47%,

17.1%, and 12.75%. In addition, the results show that the energy improvement is lower for the

larger circuits (e.g., 65% for quality loss 5% in APX-DMA for 512 features) compared to the

smaller one with less number of input features (e.g., 2.4× for quality loss 5% in APX-DMA for

32 features). The happens because of similar impact of all features on the output quality in Linear

Regression algorithm, which limits the degree of approximation.

In SVM, APX-DMA decreases the energy consumption by 4.96×, 4.32× and 3.39×, on

average, compared to the exact system for quality loss of 5%, 2%, and 0.5%, respectively. In

approximating a single unit, only APX-MUL results in high energy reduction compared to the

exact system (i.e., 4.54×, 3.5× and 2.8× for quality loss of 5%, 2%, and 0.5%, respectively).

In the other systems, i.e., APX-DRAM and APX-ADD, the improvement is negligible (0.2%).

Although APX-MUL improves energy consumption significantly, using approximate multipliers

along with approximate DRAM and adders is still a better design option achieving, on average

41.7% additional improvement. We note that because of the training algorithm of SVM in

which the weight parameters are updated only for the mis-classified data samples, and the

consequential effect of a small set of features on the classification accuracy, the tolerance of

SVM to approximation is higher than Linear Regression. The higher tolerance of SVM to the

approximation leads to achieving larger gains. Similarly, for SVM, the benefits of approximating

larger circuits that have larger number of input features are higher since in these circuits, there

are more operations that are less consequential, hence less sensitive to the approximation.

Table 4.3 breaks down the energy consumption of Linear Regression executing on the exact
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Table 4.3: Energy consumption (nJ) of adders, multipliers and refreshing DRAM of Linear
Regression in the exact mode and in APX-DMA with quality loss of 5%.

# Features Mode Adders Multipliers DRAM Refresh

32 Exact 0.33 499.2 132.8
APX-DMA 0.18 167.52 102.6

64 Exact 0.66 998.4 132.8
APX-DMA 0.44 416.1 102.6

256 Exact 2.66 3993.6 132.8
APX-DMA 2.05 2194.28 110.2

512 Exact 5.32 7987.2 132.8
APX-DMA 4.43 4698.35 110.2

and approximate system APX-DMA under quality loss of 5% into energy of multipliers, adders

and DRAM refresh energy. Results show that although DRAM refresh energy is significantly

larger than energy consumption of a single multiplier unit, due to a large number of multiply

operations, total energy consumption of multiplier units becomes dominant even in the relaxed

systems with proper parameter settings.

4.5.2 Optimal Algorithm-Hardware Approximation

In this section, we evaluate the proposed process to approximate the algorithm and

the hardware for CNN accelerators by finding a proper approximate setting for the algorithm

related approximate method and the approximate hardware units. We assume quantization as

an approximate method to optimize the model computation and approximate DRAM unit as an

approximate hardware unit in the underlying computing system. In this case, we assume that

weights and feature maps of each layer can be quantized with different bit-width and read/written

from/to the approximate DRAM with different voltage levels. Here, we show the deployment and

the effectiveness of the proposed process to find the best bit-width and DRAM voltage level for

weights and feature maps of each layer to maximize the compute efficiency while maintaining the

classification accuracy within an acceptable range. We employ the proposed process to determine

105



a proper configuration of the approximate hardware for DNN accelerators for ResNet models

(ResNet56 and ResNet110) used for CIFAR-10 dataset. We implemented the process in PyTorch

[PGC+] by modifying the implementation of models provided in [res]. We choose two models –

ResNet-56 and ResNet-110 – for CIFAR-10 dataset as the DNN models studied in this work. In

order to train the approximate hardware parameters and fine-tune the models if necessary, we use

NVIDIA GeForce RTX 2080 Ti GPU. We also estimate reduction in DRAM energy accesses due

to the underlying approximation techniques and the learned configurations, with SCALE-Sim

[SZW+18] and DRAMPower [CWL+18]. The rest of this section explains various approximation

techniques used in this work in more details, defines the parameters and the problem for this case

study, and evaluates the effectiveness of this method in finding proper approximate settings for

the mentioned ResNet models.

Quantization

For the quantization method, we use the model-based error injection approach provided

in Section 4.3.1. We assume that the original values are in fixed-point format with 16 bits (based

on various techniques compared in [SCYE17], 16-bit fixed point format for the weights and

feature maps is commonly used to get similar accuracy to the original model accuracy with 32-bit

floating-point values.) Now, the goal is to reduce the number of bits for representing weights and

feature maps in each convolutional layers to less than 16. To preserve the range of values, we

assume that the number of bits for the integer part of the fixed-point values are fixed. Therefore,

only the number of bits for the fractional part of fixed point values will be learned. To determine

the number of bits for the integer part, we evaluate different under-study models during the

inference phase with a subset of input dataset, and based on the values of weights and feature

maps observed in various layers, we choose 5 bits for the integer part of the feature maps and 1

bit for the integer part of the weights. To learn the number of bits for the fractional part of the

weights and feature maps in convolutional layers of a CNN model, in this work, we represent
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them as the parameters defined in Equation 4.10 and inject the quantization impact into the model

through converting the values into their equivalent fixed point value using Equation 4.1 in the

PyTorch implementation of CNN models.

Approximate DRAM Units

For approximate DRAM units, the voltage and the activation latency (tRCD) and pre-

charge latency (tRP) [KOY+19, CGW+14, LKP+15] can be reduced to save energy and expedite

DRAM accesses. However, due to low voltage levels and insufficient time for data to be

read/written properly, the values coming from approximate DRAM units are erroneous. To

model this type of error in DNN models, we use the error model and parameters introduced in

[KOY+19, CYG+17]. According to [CGW+14, LKP+15, CYG+17], using faster and energy

efficient DRAM by reducing their voltage and timing parameter is possible at the cost of increased

bit error rate (BER). Therefore, we assume that bits of values coming from DRAM are erroneous

at the rate of a specific BER depending on the level of reduction in their voltage and timing

settings. Accordingly, to inject this error into DNN models, we assume that weights and feature

maps coming to each layer are erroneous due to approximate DRAM units. As mentioned in

Section 4.4, the error rate of their values (perr) is a function of BER (p) which depends on the

number of bits of the values (see equation 4.11). The impact of approximate DRAM units is

therefore injected to the layers inputs and weights according to equations 4.2 and 4.11 and the

error parameters defined in Equation 4.12. Since reducing the activation latency (tRCD) and pre-

charge latency (tRP) uniformly flips the bits across several banks [CGW+14, LKP+15, CYG+17],

the erroneous value (E) in equation (4.2) is chosen uniformly at random within the minimum and

maximum values that can be represented by the corresponding number of bits for weight and

feature maps, which is similar to the Error Model 0 introduced in a prior work [KOY+19].

In order to determine the voltage level for the learned BER obtained for each layer’s

weights and feature maps, we use the error model obtained in [CYG+17] by applying various
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Table 4.4: CNN model size, original model accuracy, and accuracy of the models with the
approximate configurations learned at layer-wise granularity without fine-tuning (ft.) the original
model parameters.

Model Model Size Original Acc. Acc. with Layer-wise Appx. w/o ft.

ResNet-56 3.3 MB 92.48% 92.01%

ResNet-110 7.1 MB 94.36% 93.5%

voltage levels to several DRAM chips from different vendors. The model provided in [CYG+17]

determines the fraction of beats (i.e., 64-bits of data transferred on the data bus) that are erroneous

with a specific supply voltage level in DRAMs. Since the process learns the tolerable BER, we

convert BER to beats error rate according to equation 4.17 and find the proper voltage level.

Further explanation of this conversion will be provided in Section 4.5.2.

Problem Formulation

To formulate the problem for this case study we modify Equation 4.9 as below. For

this problem, we make no assumption on the number of available resources on the underlying

computing platform; therefore, like the previous case, the term related to resource constraint in

Equation 4.9 can be removed. In addition, since in this case, our goal is to find the tolerability of

different layers to quantization and memory error disregarding the architecture of the underlying

computing platform, instead of formulating the cost function, the execution cost is indirectly

minimized by adding the regularization terms into the objective function. The regularization terms

guide the process toward learning lower bit-width and higher memory error rate to minimize the

cost. Therefore, the regularization terms in this case are the L-2 norm of the parameters q and

inverse of the parameters p regularized by specific decay factors.
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Experimental Evaluation

The accuracy and model size of the DNN models studied in this work are presented in

Table 4.4. To learn the approximate hardware configurations for these models, we use the Pytorch

implementation provided in [res] and modify them to inject the error of approximation methods

explained earlier. To obtain the original model accuracy, we train original models from scratch

and feed the trained models into the process to learn the approximation related parameters. To

learn the approximate parameters, we initialize the weights in all layers in the modified CNN

model by the pre-trained model weights. However, the approximate hardware parameters are

initialized by a Gaussian distribution with a specific mean and variance. The mean and variance

depend on the approximate technique. For quantization, we select 7.0 as the mean and 0.9 as the

variance for the corresponding hardware parameters (ql
f and ql

w). For approximate DRAM, for

the corresponding parameters that help to inject error to the weights (i.e., pl
w), we set mean to 0.01

and variance to 0.009, and for the IFMs (i.e., pl
f ), we set mean to 0.001 and variance to 0.0009.

For the learning rate, we set it to 0.1 and train the modified model for a few epochs until

the final accuracy of the modified model reaches within 1% of the original model accuracy. We

observe that, in most of the cases, four training epochs are enough recover the accuracy. In order

to allow higher degree of approximation, fine-tuning the model parameters (i.e., weights) after

finding a set of approximate hardware configurations will help to compensate the accuracy drop.

For this part, after a configuration is learned for the hardware parameters with a fixed set of

weights, the hardware parameters are fixated and the weights of the model will be updated for

a few iterations with the starting learning rate of 0.0001, and then after each 10 iterations, the

learning rate will be multiplied by 0.1.

To evaluate the proposed process, we choose ResNet-56 and ResNet-110 models and

specify approximate hardware configurations for different computation granularity. Based on the

granularity of the computation blocks, each block can be executed with a separate quantization

level with its own set of quantization parameters for weights and feature maps. The blocks can
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Table 4.5: Accuracy obtained for ResNet-56 in various settings: layer-wise granularity with
fine-tuning (ft.) the model parameters, filter-wise approximation without fine-tuning of original
model, and layer-wise approximation when only quantization is considered.

Layer-wise Appx. w/ ft. Filter-wise Appx. w/o ft. Layer-wise Quantization

91.8% 92.0% 91.8%
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Figure 4.5: Bit error rate and the number of bits of feature maps (IFMs/OFMs) and weights in
ResNet-56 learned by the proposed process without fine-tuning the original network parameters.

be a layer, a kernel, etc. Here, we assume two granularity levels: one at the layer level, called

layer-wise approximation, where each layer can have its own set of error parameters, and one

at the filter level, called filter-wise approximation, where each filter within a layer can have a

separate set of error parameters.

Layer-Wise Approximation

For layer-wise approximation, we assume that data in each layer (i.e., weights and feature

maps) can use a specific approximate hardware configuration, and the configuration can vary

across various layers. To apply layer-wise approximation to the model, a set of parameters shown

in equations (4.10 and 4.12) are defined.

ResNet-56. For this model, we train the approximate parameters once without fine-tuning

the original model weights and once with fine-tuning the weights. For the first case, the learned

bit error rates and the number of bits for weights and feature maps for each convolutional layer
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Figure 4.6: Bit error rate and the number of bits of IFMs/OFMs and weights in ResNet-56
learned by the proposed process with fine-tuning the original network parameters. Fine-tuning
the model parameters help to choose more efficient configurations (compare the parameters in
this figures with those in Figure 4.5.)

are shown in Figure 4.5. Table 4.5 shows the accuracy of the model with this approximate con-

figuration. Figure 4.5a shows several key points about the tolerable memory error of ResNet-56.

First, it shows that most of the layers with high tolerable memory error are those in the middle of

the network, while the layers in the beginning and end of the network have lower error tolerance.

Comparing the BER of weights and feature maps, we see that, in the first seven layers, feature

maps can tolerate higher error rate than the weights, whereas in the last layer, when the feature

maps cannot tolerate any memory error, the BER of weights are around 0.04%. On average, in

56.36% of the layers, the weights can tolerate more memory error than the feature maps.

Regarding quantization, Figure 4.5b shows that the number of tolerable fractional bits for

the weights in different layers are either 6 or 7. While around 25% of the layers require 7 bits, we

can assign 6 bits to the fractional part of the weights in 75% of the layers. For the feature maps,

the tolerable bit-width for the fractions is 4-6, where only 3 layers in the middle of the network

out of 55 layers can work with 4 bits.

In the next set of experiments, we allow fine-tuning the model parameters after a set

of approximate hardware parameters are learned in the case that the obtained accuracy is not

acceptable. The bit error rates and the number of bits learned with this setting are summarized

in Figure 4.6. As shown in the figure, both the BER and the number of bits are improved. The

111



number of bits for the fractional part of feature maps is between 5-6 but only 25% of the layers

are quantized with 6-bit fractional part. For the weights they are reduced to 5-6 bits and only

14% of the layers require 6 bits and the rest work under 5-bit fractional parts. The accuracy of

the model with this approximate setting and updated model parameters is also provided in Table

4.5. As we can see, by fine-tuning the model parameters, we can choose more relaxed hardware

parameters for the quantization as well as BER, while the accuracy is also maintained.
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Figure 4.7: Bit error rate and the number of bits of feature maps (IFMs/OFMs) and weights
in ResNet-110 learned by the process without fine-tuning the original network parameters.
The learned approximate hardware parameters for ResNet-110 are more efficient than those of
ResNet-56 due to its larger size and higher error tolerance.

ResNet-110. Since the approximation degree highly depends on the tolerance of DNN

models to errors, and larger-sized models (due to over-parameterization and higher generaliz-

ability) are more error-tolerant, the process is expected to find higher degree of approximation

(i.e., more efficient hardware configurations) for larger models than ResNet-56. To evaluate the

efficacy of the framework for larger models, we use the process to find approximate configurations

for ResNet-110. For a fair comparison, we train the parameters of ResNet-110 without fine-tuning

the original model parameters and use a similar initialization of the parameters as for ResNet-56.

The BER and quantization parameters for different layers are summarized in Figure 4.7.

As expected, ResNet-110 model has higher tolerance to approximation than ResNet-56.

Higher error tolerance of larger model such as ResNet-110 is more realizable on both the bit error

rates and quantization. Comparing Figure 4.5 and 4.7, we see significant difference of these two
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Figure 4.8: Number of bits for the fractional part of quantized feature maps and weights in
different filters of layers 2-19 of ResNet-56 for CIFAR-10 dataset learned by the proposed
process without fine-tuning the original network parameters. The highlighted boxes indicate the
filters with 7-bit fractional parts, which are sparse due to filter-wise approximation.

models in their error tolerance characteristics. The results show that tolerable BER of the weights

in most of the layers in ResNet-110 is 6.47× higher than that of ResNet-56 (the average BER

of the weights in ResNet-56 is 0.03% while in ResNet-110 is 0.19%). The average BER for the

feature maps are similar in two models (≈0.027%).

The results for the number of bits (see Figure 4.7b) show that the tolerable bits for the

fractional parts of the weights and feature maps are either 5 or 6 (except one layer that can work

with 4 bits for its feature maps). While the weights in ResNet-56 in ≈ 25% of the layer require 7

bits for their fractional parts, in ResNet-110, none of the layers require 7 bits (78.8% of the layers

require 6 bits and 21.2% can work with 5 bits).

Filter-Wise Approximation

In this set of experiments, we assume that approximation can be performed at a finer gran-

ularity of computation, and evaluate the process in finding a proper approximate configurations

for the resulting computation blocks.

We set the granularity of computation for DNN models at the filter level for the quantiza-

tion technique and keep the layer-wise granularity for approximate memory units. This setting

allows the weights in a layer for different filters to have different bit-widths. It also allows the
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Figure 4.9: Number of bits for the fractional part of quantized feature maps and weights in
different filters of layers 44-49 of ResNet-56 for CIFAR-10 dataset learned by the proposed
process without fine-tuning the original network parameters. The highlighted boxes indicate the
filters with 7-bit fractional parts, which are sparse.

feature maps across different channels to have different bit-widths. We then use the proposed

process to determine the quantization degree for weights in various filters in each layer and

various channels of input feature maps in a DNN model as well as memory BER for various

layers. With this setting, we use the proposed process to learn the approximate hardware pa-

rameters for ResNet-56. To compare it with layer-wise approximation, we use similar training

hyper-parameters.

Figures 4.8 and 4.9 show the number of fractional bits of the weights and feature maps

learned by the proposed process for a few layers in the beginning and end of ResNet-56 model.

Due to space limit, we only show the results of a subset of layers in those figures. The results

show that for the weights, while in layer-wise approximation, 25% of the layers weights require 7

bits for the fractions, here in filter-wise approximation, 7 bits are required by only a few filters

across the model. As we can see, the highlighted boxes in figures 4.8a and 4.9a showing the filters

with 7 fractional bits are sparse. Compared to layer-wise approximation, the lower number of the

required bits for weights in filter-wise case happens because of varying significance of different

filters in the same layer that leads to varying levels of error tolerance. Therefore, unlike layer-wise
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Figure 4.10: Bit error rate of feature maps and weights in different layers of ResNet-56 for
CIFAR-10 dataset learned by the proposed process without fine-tuning of the original model
parameters when feature maps and weights are quantized with filter-wise approximation setting
(each filter (input channel) in weights (input feature maps) is considered to be quantized with
a separate number of bits.)

approximation where the bit-width of all the filters in a layer is set to the tolerable bit-width

of lowest error tolerant filters, filter-wise approximation can reduce the bit-width more. With

layer-wise approximation, most of the layers of ResNet-56 work with 6-7 bits for the weights

and 5-6 bits for feature maps. The number of bits for the feature maps in most of the filters in

different layers are 4-5 and 5-6 for the weights.

The bit error rate of different layers learned by the proposed process along with filter-wise

quantization is provided in Figure 4.10. In addition to lower bit width, higher tolerable bit error

rate is also achieved in filter-wise approximation. The average BER for feature maps (weights)

in filter-wise approximation is 0.11% (0.098%) while in layer-wise approximation it is 0.028%

(0.032%). The results for filter-wise approximation indicate that allowing different approximate

hardware configurations for different computation blocks at a finer granularity can increase the

degree of approximation, hence improving the cost of execution.
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Energy Estimation for Main Memory Accesses

We also evaluate the main memory energy consumption that can be saved by the con-

figurations the proposed process determines for a DNN model. In order to estimate the energy

consumption of accessing main memory units, we assume that approximate memory units can

be achieved by scaling the main memory supply voltage (Vdd). Now, the first step to estimate

energy consumption of memory units is to choose a proper voltage level based on the learned bit

error rates (BER). To specify which voltage level leads to a specific BER, as mentioned before

we use the model provided in [CYG+17]. In [CYG+17], various DRAM chips from different

vendors are tested with various voltage levels and the error rates are measured. Based on the

experiments performed in [CYG+17], both the minimum voltage that no error occurs and the rate

of the error vary across different vendors and DRAM chips. For this work, we choose the vendor

that is more sensitive to error, and estimate the proper voltage for the learned BERs based on the

model provided for that vendor in [CYG+17]. The error metric in the provided model is the rate

of the errors in a set of data beats. Beat is the unit of data transferred through the data bus. Each

beat is considered as 64-bit data. The fraction of beats that are erroneous (p f aultybeats) for each

voltage levels is provided in Table 4.6. To use this error characteristics to estimate the energy

of DRAM units in our work, we need to first convert BER to the beats error rate, and choose a

proper voltage accordingly. This conversion is necessary since the proposed process provides

the tolerable BERs for each specified computation block in a given DNN model. To do this, we

use the equation below (4.17) to obtain the probability of n-bit values that are erroneous (perr)

based on a given beat error rate (p f aultybeats), and then according to equation (4.11), we can find

the BER by replacing perr with the obtained perr value:

p f aultybeats = 1− (1− perr)
64/n, (4.17)
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Table 4.6: Error model (percentage of beats that are erroneous) in approximate DRAM units
under various voltage levels obtained from [CYG+17]

Supply Voltage V > 1.25 V=1.25 V=1.2 V=1.15 V=1.1

Beats Error Rate (%) 0.0 10% 35% 40% 50%

where 64/n is the number of n-bit values that each beat represents. (1− perr)
64/n represents the

probability that no error occurs in a beat.

For each supply voltage level and a given bit-width for the values, we have a specific BER

and we can use it to determine the voltage level for each computation blocks in a DNN (based on

the tolerable BER learned for that block.)

Now that the supply voltage is computed, the second step is to estimate the energy

consumption of DRAM accesses. For energy consumption, we use Eyeriss [CES16] as an under-

lying DNN accelerator and estimate the DRAM energy consumption using the cycle-accurate

SCALE-Sim simulator [SZW+18] and DRAMPower [CWL+18]. SCALE-Sim simulator is used

to obtain memory traces of a given DNN on Eyeriss (i.e., required DRAM bandwidth and bytes

for transferring feature maps and model weights) based on the topology of the DNN models

(ResNet-56 and ResNet-110) we provided to SCALE-Sim. Then, we use the obtained traces and

the bit-width of data to calculate DRAM read/write cycles, and feed the cycles to DRAMPower

to estimate the energy consumption. In DRAMPower, we choose a 2GB DDR3 DRAM with the

nominal voltage of 1.5V from a set of predefined memory specifications, and change its voltage

to consider the impact of voltage scaling in DRAM energy consumption.

For the energy consumption comparison, we assumed that the baseline models’ weights

and feature maps are 16-bit fixed-point values since this setting does not impact the accuracy

[SCYE17]. Also, we assumed that the baseline voltage for DRAM units is 1.5V. The summary

of energy consumption is provided in Figure 4.12. We estimate the energy reduction of ResNet-

56 and ResNet-110 based on the configurations for quantization and approximate memories
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Figure 4.11: The number of bits for the fractional parts of feature maps and weights in different
layers of ResNet-56 learned by the proposed process without fine-tuning of the original model
parameters when the only source of error is quantization with layer-wise approximation setting.
For ResNet-56, the number of width is lower than the case where approximate memories are
also available.

summarized in figures 4.6 and 4.7. For ResNet-56, we consider the settings that are learned with

additional fine-tuning of the model parameters and estimates its energy consumption. For ResNet-

56, due to low tolerance of this network to bit errors, the supply voltage for almost all the layers

(except for the weights of two layers) is required to be within the safe range (i.e., 1.3-1.5V based

on the evaluations performed on different DRAM chips under different voltage levels provided

in [CYG+17].) Therefore, the only source of energy reduction is quantization that reduces the

memory accesses. Assuming the DRAM voltage of 1.3V for executing the model on both baseline

and approximate hardware, the DRAM energy reduction of the obtained configurations by the

proposed process is 45.86%. If we assume no voltage reduction for the baseline accelerator (i.e.,

1.5V) and safe reduction for approximate accelerators (1.3V), the reduction in energy saving is

68.03%. This energy saving is acquired by quantization not the bit errors.

For ResNet-110, due to the larger size of this model, bit error rates are higher. However,

these larger bit error rates still cannot significantly change the voltage. We observed that weights
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Figure 4.12: Estimated energy (µJ) of DRAM accesses for various models under various
configurations. Nominal baseline voltage for DRAM is 1.5V. The first two configurations are for
ResNet-56 with fine-tuning of the model parameters (Figure 4.6) and ResNet-110 without any
fine-tuning (Figure 4.7). The last configuration is for ResNet-56 under the quantization without
any bit error rates (Figure 4.11).

in 50% of the layers can work with voltage level of 1.25V, while the range of BER for feature

maps still requires 1.3V as the supply voltage for DRAM units. Based on this voltage settings and

the bit-width of feature maps and weights, the DRAM energy reduction is 43.85% considering

1.3V of the DRAM supply voltage for baseline model, and 65.46% considering 1.5V DRAM

voltage for the baseline setting. Only 1.9% of the energy reduction comes from the scaled voltage

of DRAM beyond the safe point and 98% of the reduction is from quantization.

Based on this evaluation, with the proposed process, we can conclude that for small

models, the rate of acceptable memory errors is not significant and can be discarded from

approximate design space to make room for other sources of approximation such as quantization.

To evaluate this point, we only inject the error of quantization in ResNet-56 and learn the number

of bits for the fractional parts without fine-tuning the original model. As we see in Figure 4.11,

the number of required bits is much smaller compared to Figure 4.5b. We can see some layers

that work with 3 and 4 bits as their fractional part. This configuration leads to higher DRAM
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energy saving compared to the one with the bit error rate. Estimating the DRAM energy saving

shows that, compared to 1.5V DRAM in the baseline model, 78.25% energy will be saved and

compared to 1.3V, 54.74% energy reduction is achieved.

Since we use a statistical approach to model the memory errors, to validate the configura-

tions and energy saving obtained by the proposed process, we compare the obtained results with

the work that is mostly related to our work [KOY+19]. In this work, the error is induced into

DNN models based on the actual data obtained from DRAM Chips with scaled voltages. Similar

behavior for small size of models is also observed in [KOY+19]. It shows that small models with

the size of less than 10MB cannot tolerate high memory errors (e.g., the tolerable BER is less

than 0.5% for SqueezeNet model [KOY+19]), which results in insignificant energy saving.

4.5.3 Optimal FPGA-Aware Algorithm-Hardware Approximation

In this section, we evaluate the proposed process on optimizing the FPGA-based CNN

accelerators by finding a proper approximate setting for both model and hardware related ap-

proximate methods based on the available resources on FPGA as well as finding an optimal

configurations for the number of MAC units. Similar to Section 4.5.2, we assume quantization

as an approximate method to optimize the model computation and approximate DRAM unit as

an approximate hardware unit in the underlying computing system. In this set of experimental

evaluation, for quantization, we consider BFloat16 format as the underlying quantization approach

and aim to lower the bit-width of the mantissa to lower than 8-bit. We assume that weights and

feature maps of each layer can be quantized with different bit-width.

In this section, we also consider the type of dataflow used in the underlying architecture

that impacts off-chip memory accesses. We assume that the dataflow is input-output stationary,

meaning that part of input feature maps will be brought on-chip and reused until all the related

operations of a layer are performed. In addition, the related intermediate output of a set of

subsequent layers for that part of input remain on-chip until all the operation of all the layers
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within the set are executed. Therefore, only the input/output feature maps of each set of layers

will experience the error of DRAM voltage reduction. Since the weights of all layer will be

always read from DRAM, thus being impacted by approximate DRAM error.

We employ the proposed technique explained in Section 4.4 to determine a proper platform-

aware algorithm-hardware approximation and architecture configuration for DNN accelerators for

ResNet-56 used for CIFAR-10 dataset. We use PyTorch [PGC+] to modify the implementation

of the model provided in [res]. In order to train the approximate hardware parameters, we use

NVIDIA GeForce RTX 2080 Ti GPU. We also estimate reduction in DRAM energy accesses

with DRAMPower [CWL+18].

Quantization

In this case, for the quantization method, we use the model-based error injection approach

similar to the one provided in Section 4.3.1.

We assume that the original values are in BFloat16 format with 16 bits. BFloat16 uses

one bit for the sign, 8 bits for the exponent and 7 bits for the mantissa. Therefore, 8-bit MAC

units are used to perform operations in different layers of a CNN. Now, the goal is to explore the

possibility of using less than 7 bits for the mantissa to improve the execution cost without drastic

degradation of the accuracy.

To learn the number of bits for the mantissa of the weights and feature maps in convo-

lutional layers of a CNN model, in this work, we represent them as the parameters defined in

Equation 4.10 and inject the quantization impact into the model through converting the values

into their equivalent BFloat value. To approximate values to their BFloat value we extract their

mantissa, converting them to the corresponding q number of bits and turning them back to the

BFloat format, which is implemented in the PyTorch and applied to the CNN computation.

121



Table 4.7: The estimated coefficients α and β in Problem 4.2. to model the required number of
LUTs and FFs for different number of MAC units based on the required resources for 16 MACs

Resources 16 MACs 32 MACs 64 MACs 128 MACs 256 MACs

Coeff. for LUT (αM) 1.0 1.2 1.68 2.25 3.78

Coeff. for FF (βM) 1.0 1.04 1.12 1.28 1.54

Approximate DRAM Units

For approximate DRAM units and injecting their impact into a given CNN model, we

use a similar process described in Section 4.5.2. However, because of the impact of dataflow of

the underlying architecture, as mentioned earlier, in this set of experiments with input-output

stationary dataflow, energy saving from DRAM voltage reduction can be achievable through

low cost accesses to all layers weights depending on their error tolerability as well as low-cost

read/write accesses of feature maps of a subset of layers. For the understudied CNN model, a

sequence of layers without any pooling layers or a sequence of layers, the convolutional layers of

which have the stride of 1, are considered as a set of layers that are pipelined on the chip; therefore,

only the input feature maps of the first layer and output feature maps of the last layer in the set

will be impacted by approximate DRAM while the input/output feature maps of the intermediate

layers remain intact. As described in Section 4.5.2, to model this type of error in DNN models,

we use the error model and parameters introduced in [KOY+19, CYG+17]. Accordingly, to

inject this error into DNN models, we assume that weights of all layers and feature maps of the

impacted layers, explained above, are erroneous due to approximate DRAM units. The impact

of approximate DRAM units is therefore injected to the layers inputs and weights according to

equations 4.2 and 4.11 and the error parameters defined in Equation 4.12.
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Figure 4.13: Bit error rate and the number of bits for the mantissa of feature maps (IFMs/OFMs)
and weights represented in BFloat format in ResNet-56 learned by platform-aware algorithm-
hardware approximation process. The numbers are learned assuming that exact values of feature
maps and weights are in BFloat16 format.

MAC Units on FPGA

To learn the best number of MAC units for each bit-width configuration given the limited

resources on a given FPGA through solving Problem 4.2., the values of parameters αMqwq f
,

βMqwq f
, T Base

qwq f
and FBase

qwq f
are required to be pre-determined before running SGD. To set these

parameters, the base number of MAC units is set to 16, and the goal is to find Mqwq f as a

multiple of 16 MAC units. Therefore, T Base
qwq f

and FBase
qwq f

are the number of LUTs and FFs to

implement 16 qw−bit×q f −bit MAC units. To determine αMqwq f
and βMqwq f

, we implemented

one convolutional layer with different bit-widths and number of MAC units (multiples of 16 MAC

units), and profiled their required number of LUTs and FFs. Based on the obtained values, αMqwq f

and βMqwq f
are estimated and summarized in Table 4.7.

Experimental Evaluation

To compare this optimization process with the one described in the previous example in

Section 4.5.2 that does not consider the underlying platform in the optimization process, we apply

the process of finding the optimal configurations for algorithm-hardware level approximation on

ResNet-56 once without any assumption on the underlying hardware platform (the results are

shown in Figure 4.13) and once assuming that the model is executed on small FPGAs used for
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Figure 4.14: Bit error rate and the number of bits for the mantissa of feature maps (IFMs/OFMs)
and weights represented in BFloat format in ResNet-56 learned by platform-aware algorithm-
hardware approximation process. The numbers are learned assuming that exact values of feature
maps and weights are in BFloat16 format.

edge devices as its underlying computing platform (the results are shown in Figure 4.14). For this

set of experiments, we choose a Xilinix FPGA of Zynq-7000 series (i.e., xc7z020-clg484).

As shown in Figure 4.14b, for ResNet-56, 2 bits for the mantissa of the weights in all layers

and 2-3 bits for the feature maps are learned. Compared to the learned bit-width setting without

considering any specific hardware platform (Figure 4.13b) which requires three convolutional

groups implemented on the underlying platform, this set of learned bit-width setting for different

layers only requires two groups of convolutional layers with lower bit-width.

BERs learned for the weights of different layers summarized in Figure 4.14a allow to

reduce the voltage of DRAM for the weights to 1.25V in ≈35% of layers. For the feature maps of

the layers that are accessed through DRAM, the voltage can be reduced to 1.1-1.2V. The number

of MAC units that are learned by our method is 128 for both convolution groups, one with 2-bit

weights and 3-bit feature maps and one with 2-bit weights and 2-bit feature maps. Total number of

utilized resources of Xilinx FPGA of xc7z020-clg484 for ResNet-56 implemented with BFloat16

and the learned quantization setting and their corresponding energy consumption of FPGA are

presented in Table 4.8. Compared to the model with BFloat16, the model implemented by the

bit-width settings and the number of MAC units learned by our method achieves 24% energy

saving. In addition, the reduction in DRAM energy consumption is estimated as 52.85% which
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Table 4.8: On-chip energy consumption on FGPA, energy improvement of DRAM accesses
and resource utilization on a Xilinx Zynq-7000 series FPGA (xc7z020-clg484) for original
ResNet-56 in BFloat16 and platform-aware quantization and approximate DRAM settings.

Original Approximate

Energy Cons. on FPGA (mJ) 63.4mJ 50.9mJ

Energy Saving of DRAM N/A 52.85%

BRAM 81 56

DSP 5 5

FF 20536 13762

LUT 48890 51703

comes from the reduced size of data with the learned quantization settings and reduced voltage

based on the learned tolerance of layers to bit error rates.

4.6 Summary of the Chapter

Approximate computing improves energy consumption of many applications by relaxing

the design constraints imposed at various levels of design from algorithms to hardware. To

effectively use this capability requires simultaneous and non-uniform use of multiple approximate

resources at both the algorithm and hardware level that together result in overall efficiency gains

while ensuring bounds on the quality of the results. In addition, considering hardware limitations

such as limited resources and the underlying architecture design when using various approximate

methods with non-uniform configurations throughout the computation of a DNN model along

with optimizing the underlying architecture to support such non-uniform approximation guarantee

the effectiveness of approximate computing in practice. This chapter addresses the mentioned

challenges by formulating the problem of determining an optimal approximation setting as a
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parametric optimization problem that is amenable to recent advances in optimization methods

in machine learning. This is implemented in a framework which can be integrated into design

automation tools such as synthesis tools to provide efficient platform-aware algorithm-hardware

approximate settings and optimal supporting architecture level design choices given the underlying

platform constraints.

Chapter 4, partly contains the materials of Vahideh Akhlaghi, Sicun Gao, and Rajesh

Gupta, “LEMAX: learning-based Energy Consumption Minimization in Approximate Computing

with Quality Guarantee”, in Proceedings of the ACM/IEEE Design Automation Conference

(DAC), 2018. In addition, this chapter contains the unpublished materials co-authored by Vahideh

Akhlaghi, Dezhi Hong, Sicun Gao, Hadi Esmaeilzadeh and Rajesh K. Gupta. This dissertation

author is the primary author of the mentioned materials.
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Chapter 5

Parameter Approximation

DNN algorithms are proliferating to the“edge” and “end” devices, that is, devices at the

edge or near the edge of the network, due to a growing importance of data privacy and real-time

data processing and decision making needs. Emergence of federated learning as a distributed

training method to train DNNs on edge devices with users’ data is an indication of this increased

demand to implement DNNs on edge devices. However, efficient DNN processing on edge

and end devices requires to address and solve several key challenges. Limited bandwidth and

communication cost are the main bottlenecks for the distributed training algorithms, including

federated learning. In addition, limited off-chip storage and on-chip memory and logic on the

edge devices prohibit the deployments and efficient computation of large yet highly-accurate

models on edge devices. To overcome the mentioned challenges, in this chapter, we propose a

novel and simple algorithm-hardware optimization solution that reduces the size of DNN model,

in particular CNN models, by reducing their number of parameters. This approach alleviates the

communication bottleneck in distributed training and federate learning by reducing the required

number of gradients transmitted between devices. It also makes CNN models compatible with

and efficient to be executed on embedded devices with scarce resources and limited energy budget

by reducing the size of the model residing in their storage and memory units and the memory
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accesses during the execution of the model. Therefore, the proposed approach paves the way

for privacy preserving algorithms to become ubiquitous and for real time data processing and

decision making to become realizable through edge and end devices.

5.1 Introduction

For the training of large CNNs, where distributed machine learning approaches are typ-

ically used, communication constraints present a key challenge, as gradients of the network

parameters need to be communicated among different nodes [WSL+18]. Similarly, in federated

learning, in which a neural network is continuously optimized and customized in a distributed

manner using numerous users’ devices [KMY+16] with limited resources, the size and imple-

mentation efficiency of these networks are also critical [MARAM18, LBG+15, WBC+19].

A possible solution to these problems is reducing the number of parameters of the CNN in a

way such that its performance is not tangibly affected. Most of today’s techniques, however, either

focus on the inference phase and do not reduce the number of parameters during the training phase

(while maintaining the accuracy of the network), or they reduce the number of parameters during

the training, but their accuracy loss, computational burden, or implementation cost is considerable

[CWZZ18]. This chapter seeks to overcome these limitations by introducing a novel plug-and-

play algorithm-hardware optimization approach to reduce the number of parameters of any CNN

architecture. The reduced number of parameters improves the performance of training and infer-

ence of CNN models by reducing the size of gradients, the required storage and memory accesses.

Our proposed method exploits the inherent redundancy in the parameters of the convo-

lutional filters and provides a hardware-aware partitioning of the set of filters of convolutional

layers and representing these partitions in a low dimensional latent space. This hardware-aware

parameter reduction not only helps to reduce the size of gradients during training, it reduces the

memory accesses during both inference and training as well.
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To obtain this low-dimensional representation of the CNN filters, we introduce an auxiliary

neural network, called Convolutional Slice Generator (CSG), that can be used in conjunction with

any CNN architecture. The CSG, which is shared among all the convolutional layers, generates

four dimensional tensors called “slices” that correspond to the above-mentioned cross-filter

partitions, from a low dimensional “code” space. These slices are then concatenated to form

sets of convolutional filters of all the layers of the original architecture. Although our technique

supports any arbitrary shape of slices, to improve the memory accesses during CNNs’ execution,

the shape of these slices can be selected such that it complies with the shape of the partitions of

the filters accessed repeatedly by CNN accelerators, which leads to accessing fewer parameters

from a lower dimensional space (i.e., “code” space).

To elaborate the method, the trainable CSG network takes as input a set of trainable code

vectors corresponding to partitions or slices of sets of convolutional filters of the layers and

re-produces these slices which are then concatenated to make the regular shaped but approximate

version of the set of convolutional filters of the layers of the original architecture. These approx-

imate versions of the filters replace the original filters of the convolutional layers of the CNN

both during the training and inference phases (see Fig. 5.1). Thus, by design this compression

approach that preserves the original CNN architecture (while approximating its set of filters) can

be applied in conjunction with many other methods for additional gains, and can be used during

both the training and inference phases. During the training of the CNN, the code vectors, which

lie in a space of cardinality ≈ 20× smaller than the cardinality of their corresponding slice of

the convolutional filters, are trained. We have explained our method on how this compression

ratio is achieved eliminating the need for tuning these parameters. The auxiliary neural network

(CSG) can either be trained alongside the code vectors or be provided to the network in advance

with pre-trained and fixed parameters. Due to the simplicity of our method, using a recent result

[AZLS19] and for a simplified architecture we have theoretically shown the convergence of

training in our approach which is backed by our experimental evaluations. In addition, to support
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Figure 5.1: Generation of a regular-shaped but approximate set of filters from the concatenation
of slices. Each slice of a set of convolutional filters is generated from a code vector using a
shared CSG. The generated filters are then used by the corresponding convolutional layer as
in regular CNNs. The proposed method can be applied to any filter shape. In this example there
are n f filters with k channels and h×w kernels. Each slice, generated by the CSG, is assumed
to be n̂ f × k̂× ĥ× ŵ. The figure shows one slice in darker color, that spans across multiple
channels and multiple filters, and its corresponding code vector (see Sections 5.3 and 5.4).

CSG-augmented CNN architecture on the embedded device for improved inference for edge

applications, we introduce Binarized Slice Generator (BSG), which binarizes and optimizes

CSG parameters based on the hardware limitation in small edge devices. Accordingly, a BSG-

augmented accelerator architecture is proposed to support execution of BSG-augmented CNNs

by a providing a slight modification to the conventional CNN accelerators.

We apply our proposed technique to several CNN architectures used for classification

and semantic segmentation tasks and compare it with most of the state of the art methods that

are comparable to our approach. Our experiments on classification tasks show that while this

approach significantly reduces the cardinality of the parameter space of the CNN, the resulting

networks, except in extreme compression cases, still achieve top-1 accuracies that are within one

percent of the accuracies of the original CNNs. Our approach for some modern wide architectures

improves the original accuracy by a compression ratio of ≈ 2×, which is compatible with a

general trend [CWZZ18] that wider networks can tolerate more compression. In case of narrow

networks, when our technique maintains the accuracy within one percent of the original ones,

other compression methods lead to higher accuracy degradation with similar compression ratios.

To further confirm the generality of our approach, experimental results show the possibility of
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applying it to architectures that are used for semantic segmentation tasks without significant

performance degradation (≈ 2.3× parameter reduction leads to ≈ 3% in the mean Intersection

over Union (mIoU)).

To show the efficiency of our method on the hardware, we implement the BSG-augmented

CNN models for the CIFAR-10 dataset on a small FPGA suitable for edge devices. Our ex-

periments show that with approximately 16× fewer parameters our ResNet-56 variation can

achieve an accuracy that is within 1% of the original network. With ≈ 30× fewer parameters,

the accuracy stays within 2%. These variations lead to 27.9× and 21.77× energy saving for

off-chip memory accesses in an accelerator architecture implemented on small size of FPGAs.

Further, in case of MobileNetV2, which is a compressed network using separable filters, with our

modification, we can achieve≈ 1.5× compression while having an accuracy≈ 1% of the original

network, which results in 43% energy saving for off-chip memory accesses. This improvement

comes from several factors: representation of slices of filters in a lower dimensional space, the

hardware-aware selection of slices dimensionality and size, binarization and several bit-level

optimizations of the CSG network parameters and design of customized hardware, which help

to reduce the memory accesses and communication cost with negligible added computation.

5.2 Related Works

In Chapter 1, we provided an extensive review of the methods that reduce the number of

parameters of CNN models. Here, we briefly mention the related techniques, their challenges and

relevance of these methods to our work.

Network Pruning. To improve the inference time of CNN models, pruning the network

parameters and network connections have been proposed [HPTD15a, LKD+16, AHS17]. These

methods, however, are only applicable to the networks after the training phase of the original

network with original number of parameters. Extra training and fine tuning are also required to
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recover the accuracy degradation. Other pruning-based techniques that modify the training phase

such as [YYX+19, FC19] are also available, however, they either do not reduce the number of

parameters during the training phase or they significantly add to the computational burden and

hence are not desired for distributed training.

Knowledge Distillation (KD). An example of such methods is introduced in [CCY+17],

which focuses on reducing the number of network parameters, both during the training and

inference phases. However, these techniques assume that the parameters of the original network

are readily available.

Quantization. These methods are among the very successful methods for reducing the

computational burden of CNNs that can be used during both training and inference phases

[HCS+17, KWW+17, RORF16]. Excessive quantization of gradients in the training phase,

however, can lead to significant reduction in the model’s accuracy [RORF16]. In addition, the

necessity of performing some optimizations and elaborate modifications to the model and their

training process to achieve high accuracy makes these methods not easy to implement.

Efficient Fast-Fourier-Transform (FFT). These types of approaches exploit the com-

putational efficiency of FFT-based multiplications [ASKM18, DLW+17]. To be useful, these

schemes require complex multiplications and efficient implementations of FFT. There are also

methods based on the Winograd algorithm [Win80] for performing efficient convolutions in the

real domain [LG16]. We note that these approaches to compress and accelerate operations in the

fully connected layers or to accelerate the convolution operations can yield additional gains when

combined with our method.

Parallel Training and Gradient Compression. These methods are concerned with

performing different stages of the training in parallel, or to reduce the amount of information that

needs to be communicated between different nodes of the distributed computation network using

compression, or quantization of the gradients [WSL+18, LHM+18, YA18, LAP+14, RRWN11,

WWLZ18]. However, these works are not concerned with the architecture of the network or on
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how the filters are designed, and can be applied to any architecture including our CSG-augmented

CNNs. While some of these methods provide lossless compression for the gradients, others lead

to significant accuracy loss or need elaborate modifications.

Neural Architecture Search (NAS). Methods proposed in [GLL19] and [WLF17] re-

quire the training of many architectures to find a well performing architecture. Custom designed

networks such as [HZC+17, ZZLS18] are tiny networks for mobile devices and focus on reduc-

ing the complexity of 1×1 convolutions and hence they do not provide general plug-and-play

methods for reducing the number of parameters during the training of a given full architecture.

Structured Convolutional Filters. these approaches have been explored at the intersec-

tion of signal processing and computer vision. In [JvGLS16] the authors, inspired by scattering

networks [SM13, BM13, Mal12], introduce a structured method based on the family of Gaussian

filters and its smooth derivatives, to produce the CNN filters from basis functions that are learned

during the training phase. Steerable filter design has been studied for about three decades

[FA91].

Low-Rank Tensor Decomposition. Another set of approaches such as Canonical Polyadic

(CP) decomposition [LGR+15], Singular Value Decomposition (SVD) based methods [TXZ+15],

[JVZ14], and separable filter [MG12] focus on finding a low-rank decomposition of the filters

in order to achieve a network with improved inference time. However, all these methods except

separable filters [MG12] require training on the full set of parameters. In addition, compute-

heavy decomposition methods such as [TXZ+15] significantly slow down the training of CNNs.

Therefore, due to their inability to reduce the number of trainable parameters and significantly

slower training time for some of them, they are not comparable with our approach and are not

included in our comparisons.

Transferred Convolutional Filters. Methods such as [SSAL16, CW16], on the other

hand, exploit the equivariant group theory and they reduce the number of trainable parameters

and accelerate the training. For instance, [RSLF13] show that multiple image filters can be
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approximated by a shared set of separable (rank-1) filters, and the authors in [SSAL16, CW16]

reuse the filters, allowing large speedups with minimal loss in accuracy.

The difference between our approach and methods such as separable filters and trans-

ferred convolutional filters is two folds. First, we use a single network (CSG) to generate all

the convolutional filters of the entire neural network. Second, we reproduce these filters by

approximating slices that expand across multiple filters. Later in this chapter, We provide an

experimental comparison of our approach with these methods in terms of compression ratio and

the impact on the accuracy.

5.3 Preliminaries

5.3.1 Convolutional Neural Network (CNN)

In a typical classification task, a CNN is composed of several convolutional layers and one

or more fully connected layers, at the very end of the network, responsible for the classification.

Each convolutional layer consists of a set of filters and perhaps is followed by some batch

normalization layers and activation layers. Our goal is to reduce the number of these trainable

parameters by providing a compact representation for the parameters of the sets of filters of the

convolutional layers.

Let l ∈ Rn f×k×h×w, for n f ,k,h,w ∈ N, denote a set of n f filters in the CNN, where k is

the number of input channels and h and w are the height and width of the kernel, respectively.

Let denote the collection of all the sets of filters in a CNN, namely the main parameters of the

convolutional layers, by L and the set of all the other parameters in the CNN by O. Then, we

represent the set of all the parameters by P := L ∪O.
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5.3.2 Slices

Instead of focusing on direct compression of filters, in this work we focus on slices.

We define a slice as a tensor s ∈ Rn̂ f×k̂×ĥ×ŵ, for n̂ f , k̂, ĥ, ŵ ∈ N. We partition each set of

filters l ∈ L \ {l0}, where l0 denotes the set of filters of the first convolutional layer, into

dn f /n̂ f edk/k̂edh/ĥedw/ŵe slices starting from the first slice l(0 : n̂ f ,0 : k̂,0 : ĥ,0 : ŵ). In Fig. 5.1,

one slice of a set of filters of a convolutional layer is shown in darker color. We denote the set of

all such slices for all layers by S . The ordering of these partitions is arbitrary and does not affect

the final results. Without loss of generality we assume that this partitioning is possible. 1 To

reduce the trainable parameters, we produce same size but approximate versions of these slices

denoted by ŝ ∈ Ŝ from a compact low dimensional space (codes) using the CSG as explained in

detail in the next section.

5.3.3 Code Vectors

To approximate each slice of each set of filters s ∈ S by ŝ ∈ Ŝ using the CSG, we use a

code vector c ∈ Rnc , where nc ∈ N. The relationship between slices and their corresponding code

vectors is detailed in the following section.

5.4 Convolutional Slice Generator

The Convolutional Slice Generator (CSG) provides a linear approximation for the slices of

a convolutional filter. This means that each slice of a set of convolutional filters is represented by a

code vector that has around 20× fewer elements. Multiplying the CSG matrix by this code vector,

followed by an appropriate reshaping, produces an approximation for this slice. Several slices are

then concatenated to produce a regular but approximate version of the set of convolutional filters.

1In practice we consider additional slices for fractional partitions and only use part of the final slice(s) to
reconstruct the set of convolutional filters.
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The shared CSG matrix used by all layers provides the association among the convolutional layers.

In the following sections we make these statements precise.

5.4.1 The CSG Network

To generate an approximate version of each slice si, for i ∈ {1, ..., |S |} denoted by ŝi, we

have

ŝi = Reshape(ACSGci), for i ∈ {1, ..., |Ŝ |}, (5.1)

where ACSG denotes an n̂ f k̂ĥŵ by nc matrix representing the weights of the CSG network, ci

denotes the code vector corresponding to the i’th slice where i∈ {1,2, ..., |Ŝ |}, and the Reshape(.)

operator reshapes the input vector to a tensor of dimensions n̂ f , k̂, ĥ, ŵ in an arbitrary but consistent

order. See Fig. 5.1 for an example of how a single slice of a set of filters for a convolutional layer

is generated.

5.4.2 Training the CSG-Augmented Network

Let Ĝ denote the parameters of the CSG, i.e., the elements of the matrix ACSG, Ĉ denote

the set of all the code vectors, and let Ô = O denote all the other parameters of the CNN, e.g.,

biases, batch normalization parameters, fully connected layer(s), and the first convolutional layer

filters. Hence, we can denote the set of all the parameters of the network by P̂ := Ĉ ∪ Ĝ ∪ Ô. Let

D denote the set of the input data. A general objective function to train the CNN in our approach

can be written as

f (D, P̂ ) = f (D, Ĉ , Ĝ , Ô).

Hence, to train the CSG-augmented CNN, instead of taking the gradients with respect to the

kernels’ weights (L), they are taken with respect to the set of code vectors and the CSG parameters
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(Ĉ , Ĝ).

5.4.3 Cardinality of the Code Vector Space

In this section, we discuss our method for providing a rough estimate on the cardinality

of the code vector space nc. First, we need to choose a shape for the slices. In order to decide

about this shape, we considered several widely used CNNs including VGG16, VGG19, ResNet,

etc. A 3× 3 filter size is the most common size for the filters. Also, these architectures sug-

gests that a slice with channel size of 16 and the depth of 16 would divide most of these filters.

Hence, we chose ŝ1 = 16, ŝ2 = 16, ŝ3 = 3, ŝ4 = 3 for this part of our work.In order to determine

the cardinality of the code vector space, we need an estimate of the number of the elements

of the slice in its possible latent domain, namely an estimate for nc. Inspired by the fact that

these filters are responsible for detecting visual features and knowing that usage of DCT leads

to a very good encoding of visual representations [Wat94], we looked at the four-dimensional

Type-II DCTs (4-D DCT-II) of about 29000 slices of pre-trained filters extracted from VGG-16,

VGG-19, ResNet-50, InceptionV3, DenseNet-169, DenseNet-201, InceptionResNetV2 (available

in Tensorflow). We then computed the 4-D DCT-II representation of these slices and removed

the elements of this representation in such a way that the remaining elements would result in

an inverse transform which is not very different from the original slice. Our analysis, presented

below, suggests that a code vector that has close to 20× fewer number of elements would be

sufficient. In our experiments, we chose code vectors that have 18× fewer elements than the

slices, and our experiments on the neural networks confirm this choice.

To determine the size of code vectors, we first take the 4-D DCT-II of each slice. The 4-D
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DCT-II that we use, after removing the scaling factors, is stated as follows.

K[u,v,w, t] :=
ŝ1−1

∑
i=0

ŝ2−1

∑
j=0

ŝ3−1

∑
k=0

ŝ4−1

∑
l=0

k[i, j,k, l]×

cos
(

π

ŝ1

(
i+

1
2

)
u
)
× cos

(
π

ŝ2

(
j+

1
2

)
v
)
×

cos
(

π

ŝ3

(
k+

1
2

)
w
)
× cos

(
π

ŝ4

(
l +

1
2

)
t
)

After taking the 4-D DCT-II, we then remove the elements of the slice in the transformed domain

that were smaller than a threshold. We then took the inverse transform. The inverse 4-D DCT

transform, after neglecting its scaling factors, can be stated as follows.

K[i, j,k, l] :=
ŝ1−1

∑
u=0

ŝ2−1

∑
v=0

ŝ3−1

∑
w=0

ŝ4−1

∑
t=0

k[u,v,w, t]×

cos
(

π

ŝ1

(
u+

1
2

)
u
)
× cos

(
π

ŝ2

(
v+

1
2

)
v
)
×

cos
(

π

ŝ3

(
w+

1
2

)
w
)
× cos

(
π

ŝ4

(
t +

1
2

)
t
)

In order to measure the similarity between the inverse transformed version of the slice

and the original slice, inspired by image compression similarity measures, we use a variation of a

known measure called PSNR [Wel99] which we define as follows. Let k̂∗ denote the inverse DCT

of the pruned DCT of the slice k̂. We re-scale the elements of the slices and their corresponding

approximate version to [0,1] with a bit of abuse of notation we represent the re-scaled versions

with the same notations.

PSNR∗ = 10log
12

MSE
, (5.2)
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where

MSE =
1

ŝ1ŝ2ŝ3ŝ4
||k̂− k̂∗||22. (5.3)

We chose the threshold for keeping the elements in the DCT domain such that the average PSNR*

is above 20dB which from image compression literature is expected to result in images that are

still recognizable (see, for instance [Vel10]). We then calculated the mean of the number of

remaining elements in the DCT domain after the pruning step. This suggests that a code size of

20 times fewer elements than its corresponding slice would be sufficient.

5.4.4 Training Convergence

While convergence is always observed in all our experiments, in this section, we provide a

proof of convergence for a simple CSG-augmented CNN with only one convolutional layer based

on the recent work [AZLS19]. Let m denote the number of channels of the input, and d denote

the number of its features (e.g., pixels). For simplicity, let us assume that the number of channels

remains m after the convolutional layer. Let n denote the number of data points, and d′ denote the

number of labels. We assume that the data-set is non-degenerate meaning that there does not exist

similar inputs with dissimilar labels. We denote by δ the minimum distance between two training

points. We restate the following theorem from [AZLS19] for the CSG-augmented CNNs.

Theorem 1 (CNN [AZLS19]) As long as m ≥ Ω̃(poly(n,d,δ−1)d′), with a probability that

approaches one as m→ ∞, Stochastic Gradient Decent (SGD) finds an ε-error solution for l2

regression in T = Ω̃

(
poly(n,d)

δ2 logε−1
)

iterations for a CNN.

The above theorem as discussed in [AZLS19] can be easily extended for other convergence

criteria including the cross-entropy. Now let us consider our CSG-augmented CNN which we

denote by CNN-CSG. For simplicity, in the following theorem, we consider the case when only

a single layer convolutional layer is present.
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Theorem 2 (CNN-CSG) If |Ĉ | ≥ Ω̃(poly(n,d,δ−1)d′), with a probability that approaches one

as |Ĉ | → ∞, then SGD finds an ε-error solution for l2 regression in T = Ω̃

(
poly(n,d)

δ2 logε−1
)

iterations for a CNN-CSG.

The proof of the above theorem, which follows from the fact that the code vectors following the

CSG layer can simply be viewed as an additional fully connected layer is provided below. Similar

to Theorem 1, Theorem 2 can be easily extended for other convergence criteria including the

cross-entropy.

Proof of Theorem 2 First of all we note that since the number of weights in the con-

volutional layer is a polynomial function of |Ĉ |, it has replaced the m in Theorem 2. Now,

let

C =
[
c1, ...,c ˆ|C |

]
, (5.4)

denote a matrix whose columns are the code vectors corresponding to the slices of the convolu-

tional layer.

Now, instead of assuming that the convolutional filter is first generated and then it is used

for the convolution operation, equivalently, using associativity, we can assume that each column

of the matrix ACSG denotes a vectorized version of a slice of a convolutional filter. It means

that, for each column of ACSG, we need to calculate the convolution of a slice for its |Ĉ | possible

locations in the filter. But each of these would be an ordinary convolution with appropriate

zero-paddings. Now, the matrix C can be viewed as an additional fully connected layer before the

final classification layers. Hence we are dealing with a CNN with an additional fully connected

layer at the final stage for which the results in [AZLS19] and specially Theorem 1 hold.
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5.5 Binarized Slice Generator (BSG)

In this section, we explain the optimized CSG method that is specifically designed to

improve the memory accesses during inference phase when a given CNN is executed on small

sizes of embedded devices for edge applications.

To optimize CSG on edge devices during the inference phase, we deploy several optimiza-

tion methods such as binarization of CSG parameters, permutations and bit level manipulations.

5.5.1 Binarization

In order to further reduce off-chip and on-chip memory accesses during inference phase,

instead of generating the slices of convolutional filters from floating point CSG matrix and code

vectors, we use binary CSG matrix and code vectors. We called this method as Binarized Slice

Generator (BSG). In order to maintain the classification accuracy, the binarized CSG matrix,

called ABSG and the binary code vectors are trained and specified as follows. In the beginning of

training, the elements of ABSG are selected uniformly at random from {−1,+1} and fixated. To

train the code vectors, their elements are trained in floating point format during the backward

pass; however, in the forward pass, the elements of code vectors are set to their sign. Therefore,

after training the BSG-augmented CNN models, the code vectors are set to either −1 or +1.

5.5.2 Permutation

To generate each slice of convolutional filter during inference on the underlying hardware,

the whole BSG matrix is required. Although binarization of ABSG helps to reduce memory

accesses, we can further reduce the memory accesses and the required on-chip memory by

providing further compression of ABSG through generating BSG matrix from a single binary

vector. The binary vector can be then circularly shifted each time to generate the corresponding

part of the BSG matrix that is required to generate a weight of the slice. Therefore, ABSG is
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represented by a vector of size nc, which is equal to the size of the code vectors. The process of

generating the weights are as follows.

In the beginning of the inference phase, only a binary vector of size nc is brought on-chip

that is a representative of ABSG. For generating one slice of convolutional filters, one binary

code vector of size nc is loaded on-chip. Then, to generate n̂ f k̂ĥŵ weights, the binary vector

corresponding to ABSG is shifted circularly and multiplied by the code vector available on-chip.

5.5.3 Bit-Level Manipulation

To generate i-th weight of slice s of a layer l, the inner product of i− th circular shift of

the binary vector corresponding to ABSG shown as (BSGi) by the code vector corresponding to

the slice of the layer l that the weight belongs to (shown as CV[l][s]) is performed according to

Equation 5.5.

W l
i,s =

nc

∑
v=1

(BSGi)[v]×CV [l][s][v] (5.5)

However, due to the binary representation of BSG parameters and the code vectors, with

binary values from {−1,+1}, the inner product of the two vectors in BSG can be replaced by

simpler operations. For hardware efficiency, we represent +1 by 1 and −1 by 0. Therefore,

instead of multiplications in the inner product, the elements of two vectors of nc binary values

are now required to be XORed and the final output will be the difference between the number of

zeros and ones. The process is shown in Equation 5.6, where count ones is a function counting

the number of ones of its binary input vector and count zeros counts the number of zeros.

BCX =CV [l][s]⊕BSGi

W l
i,s = count ones(BCX)− count zeros(BCX)

(5.6)
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5.6 Accelerator Architecture for BSG-Augmented CNNs

This section details the accelerator architecture called BSG-augmented accelerator to

support the efficient inference of CNNs augmented by BSG on FPGA devices.

5.6.1 Hardware Implementation of BSG

To efficiently implement the process of generating weights of a slice of the convolutional

filters in a layer through BSG, we design a module called BSG at the hardware level that execute

the process shown in Equation 5.6.

To minimize the latency of computing the weights by BSG, all nc XORs are parallelized

and the function (count ones) is implemented by an adder tree with log2(nc) levels. For area and

latency efficiency, the bit-width of adders in each level of the adder tree is increased by one from

top to the bottom. The hardware implementation of this process is shown in Figure 5.2a, where

the elements of two code vector and BSG vector are XORed and the number of ones in the output

are counted.

Finally, the number of zeros can be computed by subtracting the number of ones from nc,

which is the length of the vector. It should be noted that to generate each weight, the corresponding

vector of ABSG that is generated by proper number of circular shifts of the base vector is required

to be passed to the BSG module.

5.6.2 BSG-based Architectural Modification of Accelerators

We now consider the baseline FPGA based accelerator architecture and the modification

applied to the baseline architecture to support the execution of BSG-augmented CNNs on FPGA

during inference. Figure 5.2b illustrates the baseline accelerator architecture augmented by BSG.
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Baseline Architecture

In general, the CNN accelerator architecture consists of on-chip buffers to store on-chip

data, processing units for executing different types of layers in CNNs, and memory interface

to access the main memory. On-chip buffers can be used to implement two types of buffers:

Parameter buffer to store the parameters of CNN models and Data buffer to store input and output

feature maps of each layer as well as intermediate data of the processing units. Convolution

processing unit (Conv) consisting of several MAC units performs the convolution operations

in convolutional layers of CNN models. Pool, BatchNorm and FC are the processing units

responsible for executing the pooling, batch normalization and fully connected layers, respectively.

Due to the limited resources of FPGA platforms, to minimize off-chip memory accesses the

following dataflow for executing a given CNN is generally used.

An input image of shape (cin×W ×H) is partitioned vertically and horizontally and each

partition (with the shape of cin×w×h) is brought onto the on-chip buffer for processing. The

layers of a CNN models are also grouped so that each group contains a number of consequent

layers. The process starts with the first image partition and loads it onto the data buffer and the

operations related to the first group of layers are performed on that partition in sequence. To

perform the operations corresponding to a layer in a group, the related parameters are loaded

onto the parameter buffer and the operations are performed on the data available in data buffer.

While the outputs of layers within a group except those of last layer in the group are stored on the

on-chip data buffer to be accessed immediately by their next layers, the output of last layer in

the group is stored in the main memory. This process is repeated until the results of all the input

partitions related to the first group of layers are generated. Then, the inputs of the next group of

layers are similarly partitioned and loaded onto the chip to be processed by the corresponding

layers. The process continues until the whole CNN is executed on the entire input image.

Here, since BSG impacts only the convolutional layers, we explain the implementation

of convolutional layers on FPGA. According to the dataflow described above, for each input
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(a) The hardware implementation of XORing BSG
vector and code vector and the function count ones
used in Equation 5.6 to generate the weights in BSG

(b) BSG-augmented accelerator architecture

Figure 5.2: a) The hardware implementation of BSG and b) the BSG-augmented accelerator
architecture

partition, the parameters of a set of layers in a group are required to be loaded on-chip. However,

due to limited on-chip buffer, the parameters of a convolutional layer of a regular CNN are

partitioned into a set of slices and one partition is loaded on-chip at a time. The partition remains

on-chip until all the related operations on the available on-chip data are performed. Inside the

convolution unit, which consists of m× n MAC units, the operations of several convolutional

windows are parallelized by dividing filters among the rows and input feature maps among the

columns. MAC units on each row have access to the same filters and on each column have access

to the same input feature maps. Therefore, at each cycle, MAC units on a row, multiply the same

weight of their assigned filter by their own corresponding input feature map.

BSG-Augmented Architecture

To support BSG during inference, the BSG module, which performs the operations in

Equation 5.6 with the aid of the module shown in Figure 5.2a to perform XOR and count one,

is integrated into the convolutional unit on the accelerator. Before performing the convolutions,

the parameters in one slice is required to be generated by BSG in the order required by the

convolution operations. To generate the slice, one code vector and one vector corresponding to
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the BSG matrix is required. As mentioned earlier, the whole BSG matrix can be generated by a

set of circular right-shift of the base BSG vector. The vector corresponding to the BSG matrix

is brought on-chip once and remains on-chip until the end of the CNN execution. Since it is

binarized, we packed its bits and stored it as an array of
nc

16
16-bit values. Since the weights

are generated one by one in sequence, each time the base BSG vector is shifted one bit to the

right and sent to BSG module to generate the weight. Unlike the vector for the BSG matrix, the

code vectors are required to be loaded on-chip whenever their corresponding slice is required for

performing convolutions. Similarly, since the code vectors are binarized, each can be represented

as
nc

16
16-bit values.

The BSG-augmented architecture can lead to better energy efficiency due to the following

reasons. 1) Unlike the baseline architecture, BSG-augmented architecture utilizes less on-chip

buffer for each slice. 2) While in baseline architecture, one slice is required to be loaded for each

input partition separately, due to fewer BSG related parameters, in BSG augmented architecture,

with similar sizes of on-chip buffer, the BSG parameters corresponding to more slices can be

brought on-chip and reused until the whole input of a group of layers is processed. Therefore, due

to higher reuse distance, the off-chip memory accesses will be reduced significantly depending

on the vector size and the shape of slices. We evaluate the hardware efficiency of our method,

which is provided in the next section.

5.7 Experiments

We evaluated our approach on five different CNN models (ResNet-56, DenseNet-BC-40-

48, DenseNet-BC-40-36, ShuffleNet V2, MobileNet V2) on CIFAR-10 dataset, two CNN models

(ResNet-50 and ResNet-101) on ImageNet-1000 dataset, and two Deeplab models on Pascal VOC

dataset. The CSGs are integrated into the models implemented in PyTorch. For training the models

on the CIFAR-10 dataset, we used a machine with a single GPU (Nvidia Geforce 2080 Ti) and
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Figure 5.3: Training and test error for DenseNet-BC-40-48, DenseNet-BC-40-36 and their
CSG-augmented versions on CIFAR-10 dataset over the course of 200 epochs with batch size
of 128. For the first 100 epochs the learning rate was 0.05 and for the two final 50 epochs,
5×10−3 and 5×10−4, respectively.

for the training on the two other datasets we used four (NVidia Geforce 1080 Ti) GPUs. Note that

we did not do any parameter tuning for any of our CSG-augmented networks and the experiments

are all done using the same settings that were used for the original networks. Also, as it is clear

from the previous sections, we did not apply our method to the very first convolutional layer.
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Table 5.1: Training results on CIFAR-10 dataset with similar hyperparameters. When CSG is
used, the slice shape and the code vector size are indicated as CSG-[ŝ1, ŝ2, ŝ3, ŝ4]-nc following the
name of the original network. In the “Top-1 Err.” column the average and standard deviations
of test errors at the last epoch for three non-selective trainings and on the “Ratio” column the
compression ratios with respect to the original networks are reported.

Network Architecture # Param. Top-1 Err. Ratio

DenseNet-BC-40-48 (Original) 2,733,130 4.97 ± 0.26 1.00×

DenseNet-BC-40-48-CSG-[12,12,3,3]-72 1,416,394 4.83 ± 0.24 1.92×

DenseNet-BC-40-48-CSG-[12,12,3,3]-72 w/ Pre-trained CSG on DenseNet-BC-40-48 1,323,082 5.07 ± 0.11 2.06×

DenseNet-BC-40-48-CSG-[12,12,3,3]-72

w/ Pre-trained CSG on DenseNet-BC-40-36 1,323,082 5.14 ± 0.23 2.06×

DenseNet-BC-40-48-CSG-[12,12,3,3]-72

w/ Compressed 1x1 Kernels 904,906 5.62 ± 0.28 3.02×

DenseNet-BC-40-36 (Original) 1,542,682 5.38 ± 0.27 1.00×

DenseNet-BC-40-36-CSG-[12,12,3,3]-72 842,842 5.12 ± 0.09 1.83×

DenseNet-BC-40-36-CSG-[12,12,3,3]-72

w/ Pre-trained CSG on DenseNet-BC-40-48 749,530 5.61 ± 0.21 2.05×

ResNet-56 (Original) 853,018 6.28 ± 0.20 1.00×

ResNet-56-CSG-[16,16,3,3]-128 347,162 7.24 ± 0.11 2.45×

ResNet-56-CSG-[12,12,3,3]-72 160,450 8.01 ± 0.27 5.31×

ResNet-56-CSG-[16,16,3,3]-128

w/ Pre-trained CSG on ResNet-20 52,250 11.98 ± 0.28 16.3×

ShuffleNet-(0.5x) (Original) 352,042 9.81 ± 0.23 1.00×

ShuffleNet-(0.5x)-CSG-[16,16,1,1]-16 171,818 10.15 ± 0.16 2.04×

MobileNetV2 (Original) 2,296,922 6.64 ± 0.18 1.00×

MobileNetV2-CSG-[16,16,1,1]-16 1,595,322 7.65 ± 0.18 1.44×

5.7.1 CSG on CIFAR-10 Dataset

CIFAR-10 dataset includes 50K training images and 10K test images from 10 different

classes. See Table 5.1 for a summary of the results. As we can see, when we used [16,16,3,3]

slices and code vectors of size 128 for ResNet-56 [HZRS16b], we achieved ≈ 2.5× reduction

148



with less than 1% increase in top-1 error. If we allow a higher accuracy degradation of≈ 1.5%, we

can achieve over 5.3× parameter reduction by using [12,12,3,3] slices and code vectors of size

72. In case of DenseNet [HLVDMW17], we considered the most challenging cases, namely, when

bottlenecks are used and the network has a 50% compression factor (i.e., θ = 0.5), which is abbre-

viated as DenseNet-BC. We only considered 3×3 kernels and did not compress the bottleneck or

transition layers in these implementations. Since the number of filters is a multiple of 12, we chose

slices of shape [12,12,3,3] and code size of 72 to keep the ratio between the number of elements

in the slice and code vector size nc the same. We considered two cases when L = 40,K = 48, and

L = 40,K = 36, where L is the number of layers and K is the growth rate. For the first case, we

could achieve ≈ 2× reduction with a slight improvement in accuracy. For the second case, the

use of CSG had little effect on the accuracy of the network while reducing its parameters by over

1.8×. For ShuffleNet V2 (CIFAR version) we have compressed the last convolutional layer of the

networks which is again a 1x1 kernel and constitutes a large portion of the network weights result-

ing in ≈ 2× compression while the accuracy loss is within 0.5%. For the case of MobileNetV2

(CIFAR version) we have compressed the first 1x1 kernel in each block (namely kernels w/ largest

number of parameters) resulting in 1.44× reduction with an accuracy loss of 1%.

The training and test error of different models for CIFAR-10 dataset and their CSG-

augmented versions reported in Table 5.1 at each epoch over 200 epochs are presented in

figures 5.3 through 5.6. These errors show that training of the CSG-augmented models is

converged and over-fitting does not occur. In addition, we can see that the trend of training

and test error in CSG-augmented models is similar to the original models, which indicates the

applicability of our approach to other CNN models that have not studied here in this dissertation.

149



 

 

 

 

 

 

 

 

 

 

 

0

10

20

30

40

50

60

0 20 40 60 80 100 120 140 160 180 200

Er
ro

r (
%

)

Epochs

ResNet-56-CSG-[12,12,3,3]-72

Test Error
Train Error

0

10

20

30

40

50

60

0 20 40 60 80 100 120 140 160 180 200
Er

ro
r (

%
)

Epochs

ResNet-56-CSG-[16,16,3,3]-128
w/ Pre-trained CSG on ResNet-20

Test Error
Train Error

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100 120 140 160 180 200

Er
ro

r (
%

)

Epochs

ResNet-56

Test Error
Train Error

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100 120 140 160 180 200

Er
ro

r (
%

)

Epochs

ResNet-56-CSG-[16,16,3,3]-128

Test Error
Train Error

Figure 5.4: Training and test error for the ResNet-56 and its CSG-augmented versions over
the course of 200 epochs. The batch size was 128. For the first 100 epochs the learning rate
was 0.05 and for the two final 50 epochs, 5×10−3 and 5×10−4 respectively.

5.7.2 CSG on ImageNet-1000 (ILSVRC2012) Dataset

We trained the CSG-augmented versions of ResNet-50 and ResNet-101 on the ImageNet-

1000 (ILSVRC2012) dataset which consists of ≈1.3 million images for training and 50K images

for validation. We used the same hyper-parameters as the ones mentioned in the original paper

[HZRS16a], namely we used batch sizes of 256 images, and started from the learning rate of 0.1

and divided the learning rate by 10 every 30 epochs. We continued the training for 100 epochs

(which is 20 epochs less than the original paper).

The number of parameters and the Top-1 error for the original model and the CSG-

augmented ones and the corresponding compression ratios are summarized in Table 5.2. The

results for ResNet-50 show that While ResNet-50-CSG-[16,16,3,3]-128 has a compression ratio

of 1.68×, it achieves a top-1 error of 24.9% which is within 1% of the error of the original

ResNet-50 implemented in PyTorch and reported by TorchVision [Tor30].

ResNet-101-CSG-[16,16,3,3]-128 achieves 23.1% top-1 error with a compression ratio of
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Figure 5.5: Training and test error for MobileNet V2 (CIFAR version) and its CSG-augmented
version over the course of 200 epochs. The batch size was 128. For the first 100 epochs the
learning rate was 0.05 and for the two final 50 epochs, 5×10−3 and 5×10−4 respectively.
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Figure 5.6: Training and test error for ShuffleNet V2 (0.5x) (CIFAR Version) and its
CSG-augmented version over the course of 200 epochs. The batch size was 128. For the first
100 epochs the learning rate was 0.05 and for the two final 50 epochs, 5×10−3 and 5×10−4

respectively.

1.81×. While this model now has around one million parameters less than original ResNet-50,

its error-rate is still ≈ 0.8% smaller. The results are summarized in Table 5.2. More details of

training and validation errors over the course of 100 epochs are shown in Fig. 5.7.

5.7.3 Training the CSG alongside the CNN

In this set of experiments we train all the models from scratch. We initialize the parameters

of CSG Ĝ with random initial values and train it alongside the code vectors Ĉ as well as other

parameters of the network Ô. We refer the reader to the supplamentary material for a detail

account of the datasets and implementation as well as convergence figures.
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Table 5.2: Training results on ImageNet-1000 (ILSVRC2012) dataset. When CSG is used, the
slice shape and the code vector size are indicated as CSG-[ŝ1, ŝ2, ŝ3, ŝ4]-nc following the name of
the original network. In the “Top-1 Error” column the validation error for the center cropped
images at the last epoch for the training and on the “Ratio” column the compression ratios with
respect to the original networks are reported. The results indicated with a ”*” are reported from
[Tor30]

Network Architecture # Param. Top-1 Err. Ratio

ResNet-50 (Original) 25,557,032 23.9*% 1.00×

ResNet-50-CSG-[16,16,3,3]-128 15,163,432 24.9% 1.68×

ResNet-101 (Original) 44,654,504 22.6*% 1.00×

ResNet-101-CSG-[16,16,3,3]-128 24,685,608 23.1% 1.81×

5.7.4 Using Pre-Trained CSG

When using pre-trained CSG parameters during the training of the CSG-augmented

CNNs, the number of parameters to be trained reduces to |Ĉ |+ |Ô|. This can result in significant

reduction in the number of the parameters of the network depending on its architecture. We em-

ployed pre-trained CSGs to train DenseNet-40-48, DenseNet-40-36 and ResNet-56 models from

CSG-augmented DenseNet-40-36, DenseNet-40-48 and ResNet-20, respectively. The summary

of our results are provided in Table 5.1 and figures 5.3 and 5.4.

5.7.5 CSG for Semantic Segmentation Tasks

To explore the possibility of applying our approach to tasks other than image classification,

in these experiments we applied it to Deeplab V3 [CPK+17] for semantic segmentation on the

Pascal VOC 2012 [EVGW+10] dataset without any hyper-parameter tuning. We considered the

Deeplab V3 architecture alongside Resnet-50 and Resnet-101 for feature extraction. For each
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Figure 5.7: Train and validation errors of ResNet-50-CSG-[16,16,3,3]-128, and ResNet-101-
CSG-[16,16,3,3]-128 on ImageNet dataset.

case, two scenarios were studied against two baseline scenarios where no modification to the

models were done. The baseline scenarios in our implementation achieve mean Intersection Over

Unions (mIOUs) of 73.38% and 74.73% respectively.

In the first scenario, we used Resnet-50-CSG-[16,16,3,3]-128 and Resnet-101-CSG-

[16,16,3,3]-128 for the feature extraction with pretrained parameters and did not modify the rest

of the architecture. In this settings our approach achieves mIoUs of 71.41% and 72.98% with

1.35× and 1.5× compression ratios. In the second scenario, in addition to using CSG-augmented

versions of Resnet-50 and Resnet-101 for the feature extraction with pretrained parameters, we

also considered a second CSG for the Atrous Spatial Pyramid Pooling (ASPP) modules. In

these settings, we achieve mIoUs of 70.28% and 71.63% respectively with 2.39× and 2.24×

compression ratios. The results are summarized in Table 5.3.

5.7.6 Comparison of CSG with Related Methods

In this section, we provide a detailed comparison of our proposed technique with the

relevant methods, as discussed in more detail in Section 5.2: Kernel decomposition (separable

filters) [JVZ14] and two transferred convolutional filters methods, CRELU [SSAL16] and G-CNN

[CW16]. We applied these techniques on both wide and narrow CNN models DenseNet-BC-40-48
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Table 5.3: Results of semantic segmentation on Pascal VOC 2012 validation dataset after
training for 50 epochs with batch size of 4. With CSG, the slice shape and the code vector size
are indicated as CSG-[n̂ f , k̂, ĥ, ŵ]-nc following the name of the original network.

Network Architecture # Param. mIoU (%) Ratio

DeeplabV3-ResNet-50 (Original) 40,352,181 73.38% 1.00×

DeeplabV3-ResNet-50-CSG-[16,16,3,3]-128 29,958,581 71.41% 1.35×

DeeplabV3-CSG-[16,16,3,3]-128-ResNet-50-CSG-[16,16,3,3]-128 16,884,149 70.28% 2.39×

DeeplabV3-ResNet-101 (Original) 59,344,309 74.73% 1.00×

DeeplabV3-ResNet-101-CSG-[16,16,3,3]-128 39,480,757 72.98% 1.50×

DeeplabV3-CSG-[16,16,3,3]-128-ResNet-101-CSG-[16,16,3,3]-128 26,406,325 71.63% 2.24×

and ResNet-56 for CIFAR-10 dataset. Each modified model is trained three times with similar

hyper parameters as in Section 5.7 and the results are summarized in Table 5.4. As shown in the

table, for wide CNN models such as DenseNet-BC-40-48, the compression ratio of all methods is

similar (≈ 2×). While the error of the model modified with other methods is increased, the CSG-

augmented model improves the error slightly. For ResNet-56 which is a narrow model, when half

of the convolutional layers are replaced by separable filters or when we compress the model using

the CRELU we achieve ≈ 2× reduction. In both cases compared to our CSG-augmented model

with even a slightly higher compression ratio, the top-1 errors are higher. The accuracy of G-CNN

based model achieving compression ratio of 3.92× is still lower than the one in CSG-augmented

one with 5.31× ratio. We also applied separable filters to all the layers of ResNet-56 that achieves

significant parameter reduction ≈ 7× at the cost of high accuracy degradation. In summary, the

results show that for narrow models, the other techniques degrade accuracy which is compatible

with their mentioned drawbacks in [CWZZ18], while our proposed technique does not degrade

the accuracy significantly in both narrow and wide CNNs. We also train both the original and

CSG-augmented model from scratch with 16-bit floating point numeric format to show the impact

of quantization on their performance. The results validate that CSG can be applied on top of other
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Table 5.4: Comparison of various compression techniques with our method on CIFAR-10
dataset. As discussed before, Kernel Decomposition methods such as SVD and CP, due to
not reducing the number of trainable parameters, are not comparable, thus not included. The
“Top-1 Err.” column shows the test errors at the last epoch ± standard deviation in three runs
and the “Ratio” column shows the compression ratios with respect to the original networks.
Ratios decorated with a “*” denote bit-wise ratios.

Compression Method Network Architecture # Param. Top-1 Err. Ratio

CSG DenseNet-BC-40-48-CSG-[12,12,3,3]-72 1,416,394 4.83 ± 0.24 1.92×

Low Rank Decomposition DenseNet-BC-Separable Filters 1,441,450 5.13 ± 0.05 1.90×

Transferred Convolutions
DenseNet-BC-CReLU 1,369,210 5.39 ± 0.28 2.00×

DenseNet-BC-GCNN (p4) 1,613,602 5.25 ± 0.29 1.60×

Quantization DenseNet-BC-40-48-FP16 2,733,130 5.15 ± 0.05 2.00*×

CSG+Quantization DenseNet-40-48-CSG-[12,12,3,3]-72-FP16 1,416,394 5.43 ± 0.08 3.84*×

CSG
ResNet-56-CSG-[16,16,3,3]-128 347,162 7.24 ± 0.11 2.45×

ResNet-56-CSG-[12,12,3,3]-72 160,450 8.01 ± 0.27 5.31×

Low Rank Decomposition
ResNet-56-Separable Filters (1/2 Layers) 494,709 7.56 ± 0.45 1.72×

ResNet-56-Separable Filters (All Layers) 117,066 8.41 ± 0.05 7.29×

Transferred Convolutions
ResNet-56-CReLU 427,066 8.27 ± 0.10 2.00×

ResNet-56-GCNN (p4) 217,618 8.79 ± 0.31 3.92×

Quantization ResNet-56-FP16 853,018 6.64 ± 0.35 2.00*×

CSG+Quantization ResNet-56-CSG-[16,16,3,3]-128-FP16 347,162 7.54 ± 0.01 4.90*×

compression methods to provide higher compression ratios while keeping the accuracy acceptable.

5.7.7 BSG for Improved Inference on FPGA

For evaluating the efficacy of BSG to improve the inference efficiency of CNNs, we modify

ResNet-56 and MobileNetV2 on CIFAR-10 dateset with BSG and compare its efficiency with the

original model. To evaluate the impact of this approach on classification accuracy, the models and

their BSG-augmented versions are implemented and trained using PyTorch from scratch with the

exact same training hyperparameters in their original papers. The parameters and feature maps

are converted to BFloat16 format for the inference phase. To evaluate the hardware efficiency of
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this approach, we implement the models and their BSG versions using the accelerator architecture

for the baseline and the BSG-augmented architecture supporting operations with BFloat16 in

C++ and use Xilinx Vivado HLS and Vivado Suite 2019.1 to synthesize the architectures and

estimate the latency and resource utilization. We choose a small size of FPGA platform from

Xilinx Zynq-7000 series (xc7z020-clg484 FPGA) as the target platform in order to evaluate the

inference efficiency of BSG-augmented CNNs with the proposed architecture on the edge devices.

To parallelize the operations of convolutional layers 128 MAC units are used and each performs

8-bit multiplications and additions.

To estimate the energy consumption improvement of the BSC-augmented models executed

on FPGA, we use Xilinx Power Estimation tool (XPE) to estimate the power consumption using

the utilized FPGA resources and use the latency reported by Vivado HLS tool. To estimate the

energy consumption saving of DRAM accesses, we profiled required memory accesses by the

implemented accelerator architecture and estimate the energy saving of our approach compared

to the original model with DRAMPower [CWL+18].

BSG for ResNet-56

For ResNet-56, all the layers except the first convolutional layer and fully connected layer

are augmented by BSG. The shape of each slice is set to (16,16,3,3) and different code sizes are

selected in each set of experiments. The BSG matrix is represented by a binary vector of size nc

and generated by performing a set of circular shift on the FPGA, as described in Section 5.5.2.

Parameter Reduction and Accuracy- We evaluate the impact of BSG on classification

accuracy and the size of parameters during training and inference phase for different sizes of the

code vectors (i.e.,nc). The accuracy, the number of parameters for both inference and training and

the compression ratio during inference are summarized in Table 5.5.

As shown in the table, depending on the code vector size, the size of the model during in-

ference is decreased by 16.3×-77.2×, while the accuracy is dropped by 1%−5%. Larger sizes of

156



Table 5.5: Accuracy and the model size of ResNet-56 and its BSG augmented version for
different sizes of code vectors (nc)

Original nc = 256 nc = 512 nc = 1024 nc = 2048

Accuracy 93.19% 88.14% 90.33% 91.52% 92.26%

Param. Size (Train) 853KB 99KB 193KB 382KB 759KB

Param. Size (Inference) 853KB 11KB 17KB 29KB 52KB

Comp. Ratio (Inference) 1× 77.2× 50.3× 29.7× 16.3×

the code vector due to lower compression decrease the degree of parameters approximation, thus

leading to lower accuracy drop. Compared to the inference phase, the size of trainable parameters

of the model during training is higher because the code vectors are trained in 32-bit floating point

format and their sign is used during the forward pass. Only the base vector corresponding to the

BSG matrix is binarized and fixated during training. In the most accurate case (i.e., nc = 2048),

the size of the trainable parameters is reduced by 11%.

Hardware Efficiency- Hardware efficiency of the BSG-augmented variations of ResNet-

56 with different code vector sizes compared to the original model in terms of on-chip latency

and energy consumption reported by Vivado HLS tool and XPE, energy improvement of off-chip

memory accesses and the resource utilization is summarized in Table 5.6. The latency of each

model is reported by Vivado HLS tool that only considers latency of on-chip modules. Based

on the reported latency, for the case with ≈ 1% drop compared to original model, 1.3% and

with ≈ 5% accuracy drop, 15.8% improvement of latency is reported by Vivado HLS tool. The

estimated energy consumption of FPGA, calculated by the estimated on-chip power from XPE

tool and the reported latency from Vivado HLS, is reduced from 50.11mJ to 47.30mJ-40.25mJ

depending on the size of the code vector. The reason is that larger code vectors require more

cycles and resources on FPGA compared to smaller ones due to increased computation complexity

of their BSG process.
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Table 5.6: Latency reported by Vivado HLS and the corresponding on-chip energy consumption
of FGPA, energy improvement of DRAM accesses and resource utilization on a Xilinx
Zynq-7000 series FPGA (xc7z020-clg484) for BSG-augmented ResNet-56 compared to the
original model for different sizes of code vectors (nc)

Original nc = 256 nc = 512 nc = 1024 nc = 2048

Latency on FPGA 28.8ms 24.25ms 24.54ms 27.09ms 29.2ms

Energy Cons. on FPGA 50.11mJ 40.25mJ 41.22mJ 46.05mJ 47.30mJ

Energy Saving of DRAM 1.0× 35.38× 32.48× 27.9× 21.77×

BRAM 39 (13%) 35 (12%) 35 (12%) 36 (12%) 38 (13%)

DSP 6 (2%) 6 (2%) 6 (2%) 6 (2%) 6 (2%)

FF 20345 (23%) 13697 (12%) 14763(13%) 16888 (15%) 19131 (17%)

LUT 48994 (92%) 43435 (81%) 45842 (86%) 49802 (93%) 53214 (100%)

The reduction in the energy consumption of DRAM accesses, shown in Table 5.6, due

to lower number of parameters to be accessed during inference time, is 21.77×−35.38×. The

results show that 21.77× energy saving in off-chip memory accesses with only ≈ 1% accuracy

drop is achieved and 27.9× with ≈ 1.5% accuracy drop. This high energy saving is achieved

because of lower parameter size and higher reuse distance of the on-chip parameters compared

to the original model. To estimate the energy of off-chip memory accesses, accessing both

parameters and feature maps according to the dataflow described in Section 5.6.2 are considered.

Since the size of feature maps to be transferred between FPGA and DRAM even with the

mentioned dataflow is still high compared to the model parameter, the energy saving of the cases

with small parameter sizes such as the case corresponding to V = 256 is less than the ratio of

their parameter reduction.

In addition, comparing resource utilization of the ResNet-56 and its different BSG-

augmented variations on the underlying FPGA, provided in Table 5.6, shows that fewer number of

BRAMs and FFs are always utilized, mainly because of lower number of parameters used on-chip.
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Table 5.7: Accuracy and the model size of MobileNetV2 and its BSG augmented version for
different sizes of code vectors

Original nc = 32 nc = 64 nc = 128

Accuracy 93.33% 91.29% 91.67% 92.19%

Param. Size. (Train) 2.30MB 1.73MB 1.92MB 2.30MB

Param. Size. (Inference) 2.30 1.56 1.57 1.59

Comp. Ratio (Inference) 1× 1.48× 1.46× 1.44×

More number of LUTs for the cases with vector size of 1024 and 2048 are used compared to the

original model, due to requiring more resources to implement their BSG.

BSG for MobileNetV2

Here, in this section, we apply our method to MobileNetV2, which is a compact model

based on using low-rank filters, i.e., separable point-wise and depth-wise filters. We integrate BSG

into the MobileNetV2 architecture by modifying the first convolutional layers of each block that

are point-wise convolutions. The reason why we choose to modify only point-wise convolutional

layers is that they account for a large fraction of parameters and operations among the convolu-

tional layers in that model. Since MobileNetV2 is sensitive to the approximation in its parameters

due to the compact form of its convolutional filters and layers, we only apply BSG on the first point-

wise layer in each block to maintain the accuracy within 2%. Each slice of the convolution param-

eters for the BSG-augmented point-wise layers is selected as a tensor of shape (16,16,1,1), each

of which is generated by BSG network. To generate these slices, the shape of BSG matrix (ABSG)

for these layers is set to (nc,16,16,1,1), which is represented by one base vector of nc binary

elements, and the efficiency for different sizes of code vectors (i.e., 16, 32, 64, 128) are evaluated.

Parameter Reduction and Accuracy- The test accuracy of these models are summarized
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Table 5.8: Latency reported by Vivado HLS tool and the corresponding on-chip energy con-
sumption on FGPA, energy improvement of DRAM accesses and resource utilization on a Xilinx
Zynq-7000 series FPGA (xc7z020-clg484) for BSG-augmented MobileNetV2 compared to the
original model for different sizes of code vectors (nc)

Original nc = 32 nc = 64 nc = 128

Latency on FPGA 200.4ms 189.23ms 190.2ms 191.3ms

Energy Cons. on FPGA (mJ) 358.71mJ 323.59mJ 336.65mJ 340.51mJ

Energy Saving of DRAM N/A 44.24% 43.87% 43.13%

BRAM 131 (46%) 130 (46%) 130 (46%) 130 (46%)

DSP 35 (15%) 35 (15%) 35 (15%) 35 (15%)

FF 16209 (15%) 14399 (13%) 14645 (13%) 15295 (14%)

LUT 45219 (84%) 44154 (82%) 44234 (83%) 45103 (84%)

in Table 5.7. The accuracy of the aforementioned BSG-augmented version of MobileNetV2

with the code vector size of 128 is dropped by ≈ 1% with 1.44× compression ratio during

inference time, while with the vector size of 32, ≈ 2% accuracy drop with about only 4% higher

compression ratio is observed, which indicates the sensitivity of separable filters to this approach.

Hardware Efficiency- The hardware efficiency of different variations of BSG-augmented

MobileNetV2 based on different values of nc is summarized in Table 5.8. The reported on-chip

latency by Vivado HLS tool shows the latency improvement of 4%-6% in the mentioned variation

of MobileNetV2. On-chip latency reduction is relatively low due to the dominance of convolution

operations compared to on-chip memory accesses. The corresponding on-chip energy consump-

tion obtained by the reported latency and XPE tool, is improved by ≈ 5%−10% depending on

the level of approximation and the accuracy drop. Comparing resource utilization of FPGA shows

fewer number of BRAMs and FFs required for BSG-augmented version due to lower number of

parameters to represent the original parameters of the impacted layers. In addition, fewer number
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of LUTs in the BSG-augmented ones shows that the required resources for implementing BSG

is compensated by less resources required for storing and interfacing fewer number of parameters

in the BSG-augmented one.

Based on the implementation of MobileNetV2 and its BSG-augmented version on the

accelerator architecture described in Section 5.6.2, the size of parameters transferred between

FPGA and main memory are dominant compared to the size of feature maps; therefore, similar

energy improvement of off-chip memory accesses (43%−44%) to the compression ratio of the

model size is achieved for different code vector sizes.

5.8 Summary of the Chapter

We presented a novel and easy to implement method to reduce the number of unnecessary

parameters of convolutional layers during both training and inference by representing them in a

low dimensional space through the use of a simple auxiliary neural network without significantly

compromising the accuracy or tangibly adding to the processing burden. In addition, we presented

an accelerator architecture to implement CNN models augmented by a Binarized Slice Generator

(BSG). This architecture reduces latency and memory accesses due to two reasons: compact

representation of model parameters through a smaller sizes of binary code vectors and binarized

CSG matrix, called BSG matrix; and simplified BSG network and longer reuse distance of

parameters loaded on the on-chip buffers.

The experimental results on CIFAR-10 dataset show that on show 5%-24% on-chip energy

efficiency for ResNet-56. In addition, due to lowering off-chip memory accesses by reducing the

size of the parameters in inference phase by ≈ 16×-77×, BSG improves the overall energy of

DRAM accesses in ResNet-56 by ≈ 22×-35× with 1%−5% drop in classification accuracy. We

note that the on-chip energy and latency savings are significantly less than the parameter compres-

sion would suggest. The gains in energy and latency are over and above all optimizations that are
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already implemented in commercial synthesis tools. We also apply our proposed method to one

third of the layers in MobileNetV2, which is an already compact network compressed by other

methods, in particular, separable filters, to show the effectiveness of our method on compressed

networks. The evaluation shows that 4%−6% of on-chip energy consumption and 43%−44% of

energy required for off-chip memory accesses are saved, while the accuracy drop is ≈ 1%−2%.

We expect higher latency improvement for larger sizes of images such as images from ImageNet-

1K dataset, due to larger number of input partitions, thus longer reuse distance of BSG parameters.

There are still several directions that can be pursued in future. The use of this method for

other tasks, especially other than vision related tasks, such as natural language processing, etc.

needs to be assessed.The combination of this method with efficient computation and compres-

sion methods mentioned in this chapter for distributed machine learning and machine learning

acceleration for edge devices need to be explored further. Additionally, the use of more than one

CSG for different classes of filters or the use of non-linear and/or multi-layer CSGs remains to be

investigated. Tuning hyper-parameters for training the CSG-augmented networks is omitted in

this work, which can be considered as a possible direction to improve the results.

Chapter 5 contains the materials of Vahideh Akhlaghi, Hamed Omidvar, Massimo

Francescheti, and Rajesh K. Gupta, “Parameter Approximation of CNNs for Improved Inference

on FPGA”, submitted for publication in Design Automation Conference (DAC), 2021, of which

this dissertation author is the primary author, and Hamed Omidvar, Vahideh Akhlaghi, Hao Su,

Massimo Francescheti, and Rajesh K. Gupta, “Associative Convolutional Layers”, submitted for

publication in International Conference on Artificial Intelligence and Statistics (AISTATS), 2021,

of which this dissertation author is the primary investigator.
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Chapter 6

Conclusion

In this dissertation, we have provided algorithm-hardware optimizations of DNNs to

improve their computation costs in order to pave the way for their deployment on edge devices,

which helps to maintain users’ data privacy and provide fast highly accurate responses to their

requests. Through considering the optimization opportunities at both algorithm and hardware level

and the limitations imposed by the hardware such as limited resources and model performance

such as accuracy of the results, it has been shown that computation costs of DNNs can be

significantly improved on the small sizes of hardware platforms that are suitable for edge devices

without compromising the accuracy of DNN models below the acceptable threshold.

Low-cost hash-based function approximation of main costly operations in CNNs through

approximate computation reuse is one of the approaches explored in this dissertation that opti-

mizes the computation and hardware implementation of CNNs with acceptable accuracy. We also

show that dynamic network pruning decreases the number of massively occurring operations at

runtime by exploiting the algorithmic structure of CNNs and activating the operations of activation

functions in CNNs earlier based on lightweight yet optimal threshold of computation at runtime.

In addition, exploiting the error tolerance of different layers of CNNs to reduced precision at

algorithm and hardware level and capability of underlying platforms to support such precision re-
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duction, optimal platform-aware algorithm-hardware approximation to optimize the computation

of CNNs based on a set of constraints related to accuracy of models, resource limitations of under-

lying computing platforms and dataflow of the underlying hardware architecture. Finally, reducing

the size of model parameters, thus reducing the required storage to store these models and reduc-

ing the off-chip and on-chip memory accesses, has been achieved through linear approximation

of parameters of CNNs with a smaller number of auxiliary (sometimes, binary) parameters.

In conclusion, this dissertation shows that simultaneous optimization of algorithms of

DNN considering the hardware limitations, and optimization of hardware implementation of

DNNs exploiting the opportunities at their algorithms is a promising direction to improve the

computation costs of DNNs in order to improve their deployment for executing edge applications.
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